mpd/src/player_control.h

170 lines
3.9 KiB
C
Raw Normal View History

/* the Music Player Daemon (MPD)
* Copyright (C) 2003-2007 by Warren Dukes (warren.dukes@gmail.com)
* This project's homepage is: http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef PLAYER_H
#define PLAYER_H
#include "notify.h"
#include <stdint.h>
enum player_state {
PLAYER_STATE_STOP = 0,
PLAYER_STATE_PAUSE,
PLAYER_STATE_PLAY
};
enum player_command {
PLAYER_COMMAND_NONE = 0,
PLAYER_COMMAND_EXIT,
PLAYER_COMMAND_STOP,
PLAYER_COMMAND_PLAY,
PLAYER_COMMAND_PAUSE,
PLAYER_COMMAND_SEEK,
PLAYER_COMMAND_CLOSE_AUDIO,
PLAYER_COMMAND_LOCK_QUEUE,
PLAYER_COMMAND_UNLOCK_QUEUE
};
#define PLAYER_ERROR_NOERROR 0
#define PLAYER_ERROR_FILE 1
#define PLAYER_ERROR_AUDIO 2
#define PLAYER_ERROR_SYSTEM 3
#define PLAYER_ERROR_UNKTYPE 4
#define PLAYER_ERROR_FILENOTFOUND 5
/* 0->1->2->3->5 regular playback
* ->4->0 don't play queued song
*/
2008-08-26 08:27:16 +02:00
enum player_queue_state {
2008-08-26 08:27:17 +02:00
/** there is no queued song */
2008-08-26 08:27:16 +02:00
PLAYER_QUEUE_BLANK = 0,
2008-08-26 08:27:17 +02:00
/** there is a queued song */
2008-08-26 08:27:16 +02:00
PLAYER_QUEUE_FULL = 1,
2008-08-26 08:27:17 +02:00
/** the player thread has forwarded the queued song to the
decoder; it waits for PLAY or STOP */
2008-08-26 08:27:16 +02:00
PLAYER_QUEUE_DECODE = 2,
2008-08-26 08:27:17 +02:00
/** tells the player thread to start playing the queued song;
this is a response to DECODE */
2008-08-26 08:27:16 +02:00
PLAYER_QUEUE_PLAY = 3,
2008-08-26 08:27:17 +02:00
/** tells the player thread to stop before playing the queued
song; this is a response to DECODE */
2008-08-26 08:27:16 +02:00
PLAYER_QUEUE_STOP = 4,
2008-08-26 08:27:17 +02:00
/** the player thread has begun playing the queued song, and
thus its queue is empty */
2008-08-26 08:27:16 +02:00
PLAYER_QUEUE_EMPTY = 5
};
#define PLAYER_QUEUE_UNLOCKED 0
#define PLAYER_QUEUE_LOCKED 1
struct player_control {
2008-08-26 08:45:14 +02:00
unsigned int buffered_before_play;
struct notify notify;
volatile enum player_command command;
volatile enum player_state state;
volatile int8_t error;
volatile uint16_t bitRate;
volatile int8_t bits;
volatile int8_t channels;
volatile uint32_t sampleRate;
volatile float totalTime;
volatile float elapsedTime;
volatile float fileTime;
struct song *volatile next_song;
struct song *errored_song;
2008-08-26 08:27:16 +02:00
volatile enum player_queue_state queueState;
volatile int8_t queueLockState;
volatile double seekWhere;
volatile float crossFade;
volatile uint16_t softwareVolume;
volatile double totalPlayTime;
};
extern struct player_control pc;
2008-08-26 08:45:14 +02:00
void pc_init(unsigned int buffered_before_play);
void pc_deinit(void);
void
playerPlay(struct song *song);
void playerSetPause(int pause_flag);
void playerPause(void);
void playerKill(void);
int getPlayerTotalTime(void);
int getPlayerElapsedTime(void);
unsigned long getPlayerBitRate(void);
enum player_state getPlayerState(void);
void clearPlayerError(void);
char *getPlayerErrorStr(void);
int getPlayerError(void);
void playerWait(void);
void
queueSong(struct song *song);
2008-08-26 08:27:16 +02:00
enum player_queue_state getPlayerQueueState(void);
2008-08-26 08:27:16 +02:00
void setQueueState(enum player_queue_state queueState);
void playerQueueLock(void);
void playerQueueUnlock(void);
int
playerSeek(struct song *song, float seek_time);
void setPlayerCrossFade(float crossFadeInSeconds);
float getPlayerCrossFade(void);
void setPlayerSoftwareVolume(int volume);
double getPlayerTotalPlayTime(void);
unsigned int getPlayerSampleRate(void);
int getPlayerBits(void);
int getPlayerChannels(void);
struct song *
playerCurrentDecodeSong(void);
void playerInit(void);
Initial cut of fork() => pthreads() for decoder and player I initially started to do a heavy rewrite that changed the way processes communicated, but that was too much to do at once. So this change only focuses on replacing the player and decode processes with threads and using condition variables instead of polling in loops; so the changeset itself is quiet small. * The shared output buffer variables will still need locking to guard against race conditions. So in this effect, we're probably just as buggy as before. The reduced context-switching overhead of using threads instead of processes may even make bugs show up more or less often... * Basic functionality appears to be working for playing local (and NFS) audio, including: play, pause, stop, seek, previous, next, and main playlist editing * I haven't tested HTTP streams yet, they should work. * I've only tested ALSA and Icecast. ALSA works fine, Icecast metadata seems to get screwy at times and breaks song advancement in the playlist at times. * state file loading works, too (after some last-minute hacks with non-blocking wakeup functions) * The non-blocking (*_nb) variants of the task management functions are probably overused. They're more lenient and easier to use because much of our code is still based on our previous polling-based system. * It currently segfaults on exit. I haven't paid much attention to the exit/signal-handling routines other than ensuring it compiles. At least the state file seems to work. We don't do any cleanups of the threads on exit, yet. * Update is still done in a child process and not in a thread. To do this in a thread, we'll need to ensure it does proper locking and communication with the main thread; but should require less memory in the end because we'll be updating the database "in-place" rather than updating a copy and then bulk-loading when done. * We're more sensitive to bugs in 3rd party libraries now. My plan is to eventually use a master process which forks() and restarts the child when it dies: locking and communication with the main thread; but should require less memory in the end because we'll be updating the database "in-place" rather than updating a copy and then bulk-loading when done. * We're more sensitive to bugs in 3rd party libraries now. My plan is to eventually use a master process which forks() and restarts the child when it dies: master - just does waitpid() + fork() in a loop \- main thread \- decoder thread \- player thread At the beginning of every song, the main thread will set a dirty flag and update the state file. This way, if we encounter a song that triggers a segfault killing the main thread, the master will start the replacement main on the next song. * The main thread still wakes up every second on select() to check for signals; which affects power management. [merged r7138 from branches/ew] git-svn-id: https://svn.musicpd.org/mpd/trunk@7240 09075e82-0dd4-0310-85a5-a0d7c8717e4f
2008-04-12 06:08:00 +02:00
#endif