GCC7 outputs the following error without this change:
src/util/ReusableArray.hxx:61:35: error: no matching function for call to ‘swap(size_t&, const size_t&)’
std::swap(capacity, src.capacity);
which can be resolved by just using an rvalue-reference rather than a
const rvalue-reference.
Signed-off-by: Ben Boeckel <mathstuf@gmail.com>
https://bugs.musicpd.org/view.php?id=4656 describes a crash due to
division by zero because frame.samples==0. This should never happen,
but apparently can happen after seeking. The best we can do is to
just ignore this frame.
Fixes another buffer overflow: if the stream has a very long title or
URL, resulting in a metadata string of more than 2 kB, icy_string[0]
is a negative value, which gets casted to size_t - ouch!
https://bugs.musicpd.org/view.php?id=4652
Fixes a buffer overflow due to the bad formula rounding the buffer
size up. At the same time, remove the "+1" from the meta_length
calculation, which takes the padding into account and at the same time
implements proper rounding.
Now ClearSocketList() may only be called from PrepareSockets().
Calling it before destroying the object doesn't work properly, because
it doesn't unregister the TimeoutMonitor and the IdleMonitor. Some of
its callers need to be fixed.
Change EventLoop::IsInside() call to EventLoop::IsInsideOrNull().
This means that BlockingCall() may be used during shutdown, after the
main EventLoop::Run() has finished. This is important because mixers
are currently registered in the main EventLoop.
Fixes race condition when epoll_ctl() gets called after the socket has
been closed, which may affect a different socket created by another
thread meanwhile.
When rpc_reconnect_requeue() gets called from inside nfs_service(),
the NfsInputStream can stall completely because the old socket has
been unregistered from epoll automatically, but the new one has never
been registered. Therefore, nfs_service() will never be called again.
This kludge attempts to detect this condition by checking
nfs_which_events()==POLLOUT.
https://bugs.musicpd.org/view.php?id=4081
If the base class is not accessible, the "catching" the base class
won't work. This caused the fatal error:
terminate called after throwing an instance of 'LibmpdclientError'
Each close/open cycle resets the Filter's state, because a new Filter
instance is being created. That results in the serials
(replay_gain_serial and other_replay_gain_serial) being out of sync
with the internal ReplayGainFilter state.
So instead of initializing those serials once, we need to initialize
them each time we create new ReplayGainFilter instances, i.e. in
OpenFilter().
https://bugs.musicpd.org/view.php?id=4632
Previously, there was no special code to convert stereo to
multi-channel. The generic solution for this was to convert to mono,
and then copy the result to all channels. That's a pretty bad
solution, but at least something which always renders audio. MPD does
something, instead of failing.
Now that MPD has proper support for multi-channel (by defining the
channel order), we can do better than that. It is a (somewhat) common
case to play back stereo music on a DAC which can only do
multi-channel. The best approach here is to copy the stereo channels
to front-left and front-right, and apply the "silence" pattern to all
other channels.
If the input AudioFormat changes but the out_audio_format doesn't
change (e.g. because there is a fixed "format" setting in this
"audio_output" section), the ConvertFilter needs to be reconfigured.
This didn't happen, resulting in awful static noise after changing
songs.
This method is used by DecoderControl::IsCurrentSong(), which is used
by the player thread to check whether the current decoder instance can
be reused to seek. When switching to another song in the same CUE
sheet, previously DetachedSong::IsSame() returned true, and thus the
old decoder instance was used for the new song, not considering the
new end_time. This led to the old decoder quickly quitting.
This way, we have four periods instead of the default of two. With
only two periods, we don't get woken up often enough, and we
frequently encounter buffer overruns. With four periods, we have more
time to breathe, and the buffer overruns magically disappear.
This is necessary because we'll never get woken up again by
epoll_wait() after a buffer overrun recovery, unless we start the PCM
explicitly before returning to the I/O loop.
The byte order of DSD_U32 was wrong from the start. The oldest bits
must be in the MSB, not in the LSB, according to
snd_pcm_format_descriptions in alsa-lib.