git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@17471 ec53bebd-3082-4978-b11e-865c3cabbd6b
		
			
				
	
	
		
			111 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
  Name:     iprime.c
 | 
						|
  Purpose:  Pseudoprimality testing routines
 | 
						|
  Author:   M. J. Fromberger <http://www.dartmouth.edu/~sting/>
 | 
						|
  Info:     $Id$
 | 
						|
 | 
						|
  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
 | 
						|
 | 
						|
  Permission is hereby granted, free of charge, to any person
 | 
						|
  obtaining a copy of this software and associated documentation files
 | 
						|
  (the "Software"), to deal in the Software without restriction,
 | 
						|
  including without limitation the rights to use, copy, modify, merge,
 | 
						|
  publish, distribute, sublicense, and/or sell copies of the Software,
 | 
						|
  and to permit persons to whom the Software is furnished to do so,
 | 
						|
  subject to the following conditions:
 | 
						|
 | 
						|
  The above copyright notice and this permission notice shall be
 | 
						|
  included in all copies or substantial portions of the Software.
 | 
						|
 | 
						|
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | 
						|
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | 
						|
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | 
						|
  NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | 
						|
  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | 
						|
  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
						|
  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
  SOFTWARE.
 | 
						|
 */
 | 
						|
 | 
						|
#include "iprime.h"
 | 
						|
#include <stdlib.h>
 | 
						|
 | 
						|
static int s_ptab_size = 32;
 | 
						|
static int s_ptab[] = {
 | 
						|
  2,   3,   5,   7,   11,  13,  17,  19,
 | 
						|
  23,  29,  31,  37,  41,  43,  47,  53,
 | 
						|
  59,  61,  67,  71,  73,  79,  83,  89,
 | 
						|
  97,  101, 103, 107, 109, 113, 127, 131
 | 
						|
};
 | 
						|
 | 
						|
/* {{{ mp_int_is_prime(z) */
 | 
						|
 | 
						|
/* Test whether z is likely to be prime:
 | 
						|
   MP_TRUE  means it is probably prime
 | 
						|
   MP_FALSE means it is definitely composite
 | 
						|
 */
 | 
						|
mp_result mp_int_is_prime(mp_int z)
 | 
						|
{
 | 
						|
  int       i, rem;
 | 
						|
  mp_result res;
 | 
						|
 | 
						|
  /* First check for divisibility by small primes; this eliminates a
 | 
						|
     large number of composite candidates quickly
 | 
						|
   */
 | 
						|
  for(i = 0; i < s_ptab_size; ++i) {
 | 
						|
    if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if(rem == 0)
 | 
						|
      return MP_FALSE;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now try Fermat's test for several prime witnesses (since we now
 | 
						|
     know from the above that z is not a multiple of any of them)
 | 
						|
   */
 | 
						|
  {
 | 
						|
    mpz_t  tmp;
 | 
						|
 | 
						|
    if((res = mp_int_init(&tmp)) != MP_OK) return res;
 | 
						|
 | 
						|
    for(i = 0; i < 10 && i < s_ptab_size; ++i) {
 | 
						|
      if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK)
 | 
						|
	return res;
 | 
						|
 | 
						|
      if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) {
 | 
						|
	mp_int_clear(&tmp);
 | 
						|
	return MP_FALSE;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    mp_int_clear(&tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_find_prime(z) */
 | 
						|
 | 
						|
/* Find the first apparent prime in ascending order from z */
 | 
						|
mp_result mp_int_find_prime(mp_int z)
 | 
						|
{
 | 
						|
  mp_result  res;
 | 
						|
 | 
						|
  if(mp_int_is_even(z) && ((res = mp_int_add_value(z, 1, z)) != MP_OK))
 | 
						|
    return res;
 | 
						|
 | 
						|
  while((res = mp_int_is_prime(z)) == MP_FALSE) {
 | 
						|
    if((res = mp_int_add_value(z, 2, z)) != MP_OK)
 | 
						|
      break;
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* Here there be dragons */
 |