git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@17471 ec53bebd-3082-4978-b11e-865c3cabbd6b
		
			
				
	
	
		
			3262 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			3262 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
  Name:     imath.c
 | 
						|
  Purpose:  Arbitrary precision integer arithmetic routines.
 | 
						|
  Author:   M. J. Fromberger <http://www.dartmouth.edu/~sting/>
 | 
						|
  Info:     $Id$
 | 
						|
 | 
						|
  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
 | 
						|
 | 
						|
  Permission is hereby granted, free of charge, to any person
 | 
						|
  obtaining a copy of this software and associated documentation files
 | 
						|
  (the "Software"), to deal in the Software without restriction,
 | 
						|
  including without limitation the rights to use, copy, modify, merge,
 | 
						|
  publish, distribute, sublicense, and/or sell copies of the Software,
 | 
						|
  and to permit persons to whom the Software is furnished to do so,
 | 
						|
  subject to the following conditions:
 | 
						|
 | 
						|
  The above copyright notice and this permission notice shall be
 | 
						|
  included in all copies or substantial portions of the Software.
 | 
						|
 | 
						|
  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | 
						|
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | 
						|
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | 
						|
  NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | 
						|
  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | 
						|
  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
						|
  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | 
						|
  SOFTWARE.
 | 
						|
 */
 | 
						|
 | 
						|
#include "imath.h"
 | 
						|
 | 
						|
#if DEBUG
 | 
						|
#include <stdio.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <ctype.h>
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
/* {{{ Constants */
 | 
						|
 | 
						|
const mp_result MP_OK     = 0;  /* no error, all is well  */
 | 
						|
const mp_result MP_FALSE  = 0;  /* boolean false          */
 | 
						|
const mp_result MP_TRUE   = -1; /* boolean true           */
 | 
						|
const mp_result MP_MEMORY = -2; /* out of memory          */
 | 
						|
const mp_result MP_RANGE  = -3; /* argument out of range  */
 | 
						|
const mp_result MP_UNDEF  = -4; /* result undefined       */
 | 
						|
const mp_result MP_TRUNC  = -5; /* output truncated       */
 | 
						|
const mp_result MP_BADARG = -6; /* invalid null argument  */
 | 
						|
 | 
						|
const mp_sign   MP_NEG  = 1;    /* value is strictly negative */
 | 
						|
const mp_sign   MP_ZPOS = 0;    /* value is non-negative      */
 | 
						|
 | 
						|
static const char *s_unknown_err = "unknown result code";
 | 
						|
static const char *s_error_msg[] = {
 | 
						|
  "error code 0",
 | 
						|
  "boolean true",
 | 
						|
  "out of memory",
 | 
						|
  "argument out of range",
 | 
						|
  "result undefined",
 | 
						|
  "output truncated",
 | 
						|
  "invalid null argument",
 | 
						|
  NULL
 | 
						|
};
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* Optional library flags */
 | 
						|
#define MP_CAP_DIGITS   1  /* flag bit to capitalize letter digits */
 | 
						|
 | 
						|
/* Argument checking macros 
 | 
						|
   Use CHECK() where a return value is required; NRCHECK() elsewhere */
 | 
						|
#define CHECK(TEST)   assert(TEST)
 | 
						|
#define NRCHECK(TEST) assert(TEST)
 | 
						|
 | 
						|
/* {{{ Logarithm table for computing output sizes */
 | 
						|
 | 
						|
/* The ith entry of this table gives the value of log_i(2).
 | 
						|
 | 
						|
   An integer value n requires ceil(log_i(n)) digits to be represented
 | 
						|
   in base i.  Since it is easy to compute lg(n), by counting bits, we
 | 
						|
   can compute log_i(n) = lg(n) * log_i(2).
 | 
						|
 */
 | 
						|
static const double s_log2[] = {
 | 
						|
   0.000000000, 0.000000000, 1.000000000, 0.630929754, 	/*  0  1  2  3 */
 | 
						|
   0.500000000, 0.430676558, 0.386852807, 0.356207187, 	/*  4  5  6  7 */
 | 
						|
   0.333333333, 0.315464877, 0.301029996, 0.289064826, 	/*  8  9 10 11 */
 | 
						|
   0.278942946, 0.270238154, 0.262649535, 0.255958025, 	/* 12 13 14 15 */
 | 
						|
   0.250000000, 0.244650542, 0.239812467, 0.235408913, 	/* 16 17 18 19 */
 | 
						|
   0.231378213, 0.227670249, 0.224243824, 0.221064729, 	/* 20 21 22 23 */
 | 
						|
   0.218104292, 0.215338279, 0.212746054, 0.210309918, 	/* 24 25 26 27 */
 | 
						|
   0.208014598, 0.205846832, 0.203795047, 0.201849087, 	/* 28 29 30 31 */
 | 
						|
   0.200000000, 0.198239863, 0.196561632, 0.194959022, 	/* 32 33 34 35 */
 | 
						|
   0.193426404, 0.191958720, 0.190551412, 0.189200360, 	/* 36 37 38 39 */
 | 
						|
   0.187901825, 0.186652411, 0.185449023, 0.184288833, 	/* 40 41 42 43 */
 | 
						|
   0.183169251, 0.182087900, 0.181042597, 0.180031327, 	/* 44 45 46 47 */
 | 
						|
   0.179052232, 0.178103594, 0.177183820, 0.176291434, 	/* 48 49 50 51 */
 | 
						|
   0.175425064, 0.174583430, 0.173765343, 0.172969690, 	/* 52 53 54 55 */
 | 
						|
   0.172195434, 0.171441601, 0.170707280, 0.169991616, 	/* 56 57 58 59 */
 | 
						|
   0.169293808, 0.168613099, 0.167948779, 0.167300179, 	/* 60 61 62 63 */
 | 
						|
   0.166666667
 | 
						|
};
 | 
						|
 | 
						|
/* }}} */
 | 
						|
/* {{{ Various macros */
 | 
						|
 | 
						|
/* Return the number of digits needed to represent a static value */
 | 
						|
#define MP_VALUE_DIGITS(V) \
 | 
						|
((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
 | 
						|
 | 
						|
/* Round precision P to nearest word boundary */
 | 
						|
#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
 | 
						|
 | 
						|
/* Set array P of S digits to zero */
 | 
						|
#define ZERO(P, S) \
 | 
						|
do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P);memset(p__,0,i__);}while(0)
 | 
						|
 | 
						|
/* Copy S digits from array P to array Q */
 | 
						|
#define COPY(P, Q, S) \
 | 
						|
do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P),*q__=(Q);\
 | 
						|
memcpy(q__,p__,i__);}while(0)
 | 
						|
 | 
						|
/* Reverse N elements of type T in array A */
 | 
						|
#define REV(T, A, N) \
 | 
						|
do{T *u_=(A),*v_=u_+(N)-1;while(u_<v_){T xch=*u_;*u_++=*v_;*v_--=xch;}}while(0)
 | 
						|
 | 
						|
#if TRACEABLE_CLAMP
 | 
						|
#define CLAMP(Z) s_clamp(Z)
 | 
						|
#else
 | 
						|
#define CLAMP(Z) \
 | 
						|
do{mp_int z_=(Z);mp_size uz_=MP_USED(z_);mp_digit *dz_=MP_DIGITS(z_)+uz_-1;\
 | 
						|
while(uz_ > 1 && (*dz_-- == 0)) --uz_;MP_USED(z_)=uz_;}while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define MIN(A, B) ((B)<(A)?(B):(A))
 | 
						|
#define MAX(A, B) ((B)>(A)?(B):(A))
 | 
						|
#define SWAP(T, A, B) do{T t_=(A);A=(B);B=t_;}while(0)
 | 
						|
 | 
						|
#define TEMP(K) (temp + (K))
 | 
						|
#define SETUP(E, C) \
 | 
						|
do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
 | 
						|
 | 
						|
#define CMPZ(Z) \
 | 
						|
(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
 | 
						|
 | 
						|
#define UMUL(X, Y, Z) \
 | 
						|
do{mp_size ua_=MP_USED(X),ub_=MP_USED(Y);mp_size o_=ua_+ub_;\
 | 
						|
ZERO(MP_DIGITS(Z),o_);\
 | 
						|
(void) s_kmul(MP_DIGITS(X),MP_DIGITS(Y),MP_DIGITS(Z),ua_,ub_);\
 | 
						|
MP_USED(Z)=o_;CLAMP(Z);}while(0)
 | 
						|
 | 
						|
#define USQR(X, Z) \
 | 
						|
do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
 | 
						|
(void) s_ksqr(MP_DIGITS(X),MP_DIGITS(Z),ua_);MP_USED(Z)=o_;CLAMP(Z);}while(0)
 | 
						|
 | 
						|
#define UPPER_HALF(W)           ((mp_word)((W) >> MP_DIGIT_BIT))
 | 
						|
#define LOWER_HALF(W)           ((mp_digit)(W))
 | 
						|
#define HIGH_BIT_SET(W)         ((W) >> (MP_WORD_BIT - 1))
 | 
						|
#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* Default number of digits allocated to a new mp_int */
 | 
						|
static mp_size default_precision = 8;
 | 
						|
 | 
						|
/* Minimum number of digits to invoke recursive multiply */
 | 
						|
static mp_size multiply_threshold = 32;
 | 
						|
 | 
						|
/* Default library configuration flags */
 | 
						|
static mp_word mp_flags = MP_CAP_DIGITS;
 | 
						|
 | 
						|
/* Allocate a buffer of (at least) num digits, or return
 | 
						|
   NULL if that couldn't be done.  */
 | 
						|
static mp_digit *s_alloc(mp_size num);
 | 
						|
#if TRACEABLE_FREE
 | 
						|
static void s_free(void *ptr);
 | 
						|
#else
 | 
						|
#define s_free(P) free(P)
 | 
						|
#endif
 | 
						|
 | 
						|
/* Insure that z has at least min digits allocated, resizing if
 | 
						|
   necessary.  Returns true if successful, false if out of memory. */
 | 
						|
int       s_pad(mp_int z, mp_size min);
 | 
						|
 | 
						|
/* Normalize by removing leading zeroes (except when z = 0) */
 | 
						|
#if TRACEABLE_CLAMP
 | 
						|
static void      s_clamp(mp_int z);
 | 
						|
#endif
 | 
						|
 | 
						|
/* Fill in a "fake" mp_int on the stack with a given value */
 | 
						|
static void      s_fake(mp_int z, int value, mp_digit vbuf[]);
 | 
						|
 | 
						|
/* Compare two runs of digits of given length, returns <0, 0, >0 */
 | 
						|
static int       s_cdig(mp_digit *da, mp_digit *db, mp_size len);
 | 
						|
 | 
						|
/* Pack the unsigned digits of v into array t */
 | 
						|
static int       s_vpack(int v, mp_digit t[]);
 | 
						|
 | 
						|
/* Compare magnitudes of a and b, returns <0, 0, >0 */
 | 
						|
static int       s_ucmp(mp_int a, mp_int b);
 | 
						|
 | 
						|
/* Compare magnitudes of a and v, returns <0, 0, >0 */
 | 
						|
static int       s_vcmp(mp_int a, int v);
 | 
						|
 | 
						|
/* Unsigned magnitude addition; assumes dc is big enough.
 | 
						|
   Carry out is returned (no memory allocated). */
 | 
						|
static mp_digit  s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, 
 | 
						|
		        mp_size size_a, mp_size size_b);
 | 
						|
 | 
						|
/* Unsigned magnitude subtraction.  Assumes dc is big enough. */
 | 
						|
static void      s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
 | 
						|
		        mp_size size_a, mp_size size_b);
 | 
						|
 | 
						|
/* Unsigned recursive multiplication.  Assumes dc is big enough. */
 | 
						|
static int       s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | 
						|
			mp_size size_a, mp_size size_b);
 | 
						|
 | 
						|
/* Unsigned magnitude multiplication.  Assumes dc is big enough. */
 | 
						|
static void      s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | 
						|
			mp_size size_a, mp_size size_b);
 | 
						|
 | 
						|
/* Unsigned recursive squaring.  Assumes dc is big enough. */
 | 
						|
static int       s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
 | 
						|
 | 
						|
/* Unsigned magnitude squaring.  Assumes dc is big enough. */
 | 
						|
static void      s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
 | 
						|
 | 
						|
/* Single digit addition.  Assumes a is big enough. */
 | 
						|
static void      s_dadd(mp_int a, mp_digit b);
 | 
						|
 | 
						|
/* Single digit multiplication.  Assumes a is big enough. */
 | 
						|
static void      s_dmul(mp_int a, mp_digit b);
 | 
						|
 | 
						|
/* Single digit multiplication on buffers; assumes dc is big enough. */
 | 
						|
static void      s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
 | 
						|
			 mp_size size_a);
 | 
						|
 | 
						|
/* Single digit division.  Replaces a with the quotient, 
 | 
						|
   returns the remainder.  */
 | 
						|
static mp_digit  s_ddiv(mp_int a, mp_digit b);
 | 
						|
 | 
						|
/* Quick division by a power of 2, replaces z (no allocation) */
 | 
						|
static void      s_qdiv(mp_int z, mp_size p2);
 | 
						|
 | 
						|
/* Quick remainder by a power of 2, replaces z (no allocation) */
 | 
						|
static void      s_qmod(mp_int z, mp_size p2);
 | 
						|
 | 
						|
/* Quick multiplication by a power of 2, replaces z. 
 | 
						|
   Allocates if necessary; returns false in case this fails. */
 | 
						|
static int       s_qmul(mp_int z, mp_size p2);
 | 
						|
 | 
						|
/* Quick subtraction from a power of 2, replaces z.
 | 
						|
   Allocates if necessary; returns false in case this fails. */
 | 
						|
static int       s_qsub(mp_int z, mp_size p2);
 | 
						|
 | 
						|
/* Return maximum k such that 2^k divides z. */
 | 
						|
static int       s_dp2k(mp_int z);
 | 
						|
 | 
						|
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
 | 
						|
static int       s_isp2(mp_int z);
 | 
						|
 | 
						|
/* Set z to 2^k.  May allocate; returns false in case this fails. */
 | 
						|
static int       s_2expt(mp_int z, int k);
 | 
						|
 | 
						|
/* Normalize a and b for division, returns normalization constant */
 | 
						|
static int       s_norm(mp_int a, mp_int b);
 | 
						|
 | 
						|
/* Compute constant mu for Barrett reduction, given modulus m, result
 | 
						|
   replaces z, m is untouched. */
 | 
						|
static mp_result s_brmu(mp_int z, mp_int m);
 | 
						|
 | 
						|
/* Reduce a modulo m, using Barrett's algorithm. */
 | 
						|
static int       s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
 | 
						|
 | 
						|
/* Modular exponentiation, using Barrett reduction */
 | 
						|
mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
 | 
						|
 | 
						|
/* Unsigned magnitude division.  Assumes |a| > |b|.  Allocates
 | 
						|
   temporaries; overwrites a with quotient, b with remainder. */
 | 
						|
static mp_result s_udiv(mp_int a, mp_int b);
 | 
						|
 | 
						|
/* Compute the number of digits in radix r required to represent the
 | 
						|
   given value.  Does not account for sign flags, terminators, etc. */
 | 
						|
static int       s_outlen(mp_int z, mp_size r);
 | 
						|
 | 
						|
/* Guess how many digits of precision will be needed to represent a
 | 
						|
   radix r value of the specified number of digits.  Returns a value
 | 
						|
   guaranteed to be no smaller than the actual number required. */
 | 
						|
static mp_size   s_inlen(int len, mp_size r);
 | 
						|
 | 
						|
/* Convert a character to a digit value in radix r, or 
 | 
						|
   -1 if out of range */
 | 
						|
static int       s_ch2val(char c, int r);
 | 
						|
 | 
						|
/* Convert a digit value to a character */
 | 
						|
static char      s_val2ch(int v, int caps);
 | 
						|
 | 
						|
/* Take 2's complement of a buffer in place */
 | 
						|
static void      s_2comp(unsigned char *buf, int len);
 | 
						|
 | 
						|
/* Convert a value to binary, ignoring sign.  On input, *limpos is the
 | 
						|
   bound on how many bytes should be written to buf; on output, *limpos
 | 
						|
   is set to the number of bytes actually written. */
 | 
						|
static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
 | 
						|
 | 
						|
#if DEBUG
 | 
						|
/* Dump a representation of the mp_int to standard output */
 | 
						|
void      s_print(char *tag, mp_int z);
 | 
						|
void      s_print_buf(char *tag, mp_digit *buf, mp_size num);
 | 
						|
#endif
 | 
						|
 | 
						|
/* {{{ get_default_precision() */
 | 
						|
 | 
						|
mp_size   mp_get_default_precision(void)
 | 
						|
{ 
 | 
						|
  return default_precision; 
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_set_default_precision(s) */
 | 
						|
 | 
						|
void      mp_set_default_precision(mp_size s)
 | 
						|
{ 
 | 
						|
  NRCHECK(s > 0);
 | 
						|
 | 
						|
  default_precision = (mp_size) ROUND_PREC(s);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_get_multiply_threshold() */
 | 
						|
 | 
						|
mp_size   mp_get_multiply_threshold(void)
 | 
						|
{
 | 
						|
  return multiply_threshold;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_set_multiply_threshold(s) */
 | 
						|
 | 
						|
void      mp_set_multiply_threshold(mp_size s)
 | 
						|
{
 | 
						|
  multiply_threshold = s;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_init(z) */
 | 
						|
 | 
						|
mp_result mp_int_init(mp_int z)
 | 
						|
{
 | 
						|
  return mp_int_init_size(z, default_precision);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_alloc() */
 | 
						|
 | 
						|
mp_int    mp_int_alloc(void)
 | 
						|
{
 | 
						|
  mp_int out = malloc(sizeof(mpz_t));
 | 
						|
 | 
						|
  assert(out != NULL);
 | 
						|
  out->digits = NULL;
 | 
						|
  out->used   = 0;
 | 
						|
  out->alloc  = 0;
 | 
						|
  out->sign   = 0;
 | 
						|
 | 
						|
  return out;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_init_size(z, prec) */
 | 
						|
 | 
						|
mp_result mp_int_init_size(mp_int z, mp_size prec)
 | 
						|
{
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  prec = (mp_size) ROUND_PREC(prec);
 | 
						|
  prec = MAX(prec, default_precision);
 | 
						|
 | 
						|
  if((MP_DIGITS(z) = s_alloc(prec)) == NULL)
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  z->digits[0] = 0;
 | 
						|
  MP_USED(z) = 1;
 | 
						|
  MP_ALLOC(z) = prec;
 | 
						|
  MP_SIGN(z) = MP_ZPOS;
 | 
						|
  
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_init_copy(z, old) */
 | 
						|
 | 
						|
mp_result mp_int_init_copy(mp_int z, mp_int old)
 | 
						|
{
 | 
						|
  mp_result  res;
 | 
						|
  mp_size    uold, target;
 | 
						|
 | 
						|
  CHECK(z != NULL && old != NULL);
 | 
						|
 | 
						|
  uold = MP_USED(old);
 | 
						|
  target = MAX(uold, default_precision);
 | 
						|
 | 
						|
  if((res = mp_int_init_size(z, target)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  MP_USED(z) = uold;
 | 
						|
  MP_SIGN(z) = MP_SIGN(old);
 | 
						|
  COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_init_value(z, value) */
 | 
						|
 | 
						|
mp_result mp_int_init_value(mp_int z, int value)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  if((res = mp_int_init(z)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  return mp_int_set_value(z, value);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_set_value(z, value) */
 | 
						|
 | 
						|
mp_result  mp_int_set_value(mp_int z, int value)
 | 
						|
{
 | 
						|
  mp_size  ndig;
 | 
						|
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  /* How many digits to copy */
 | 
						|
  ndig = (mp_size) MP_VALUE_DIGITS(value);
 | 
						|
 | 
						|
  if(!s_pad(z, ndig))
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  MP_USED(z) = (mp_size)s_vpack(value, MP_DIGITS(z));
 | 
						|
  MP_SIGN(z) = (value < 0) ? MP_NEG : MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_clear(z) */
 | 
						|
 | 
						|
void      mp_int_clear(mp_int z)
 | 
						|
{
 | 
						|
  if(z == NULL)
 | 
						|
    return;
 | 
						|
 | 
						|
  if(MP_DIGITS(z) != NULL) {
 | 
						|
    s_free(MP_DIGITS(z));
 | 
						|
    MP_DIGITS(z) = NULL;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_free(z) */
 | 
						|
 | 
						|
void      mp_int_free(mp_int z)
 | 
						|
{
 | 
						|
  NRCHECK(z != NULL);
 | 
						|
 | 
						|
  if(z->digits != NULL)
 | 
						|
    mp_int_clear(z);
 | 
						|
 | 
						|
  free(z);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_copy(a, c) */
 | 
						|
 | 
						|
mp_result mp_int_copy(mp_int a, mp_int c)
 | 
						|
{
 | 
						|
  CHECK(a != NULL && c != NULL);
 | 
						|
 | 
						|
  if(a != c) {
 | 
						|
    mp_size   ua = MP_USED(a);
 | 
						|
    mp_digit *da, *dc;
 | 
						|
 | 
						|
    if(!s_pad(c, ua))
 | 
						|
      return MP_MEMORY;
 | 
						|
 | 
						|
    da = MP_DIGITS(a); dc = MP_DIGITS(c);
 | 
						|
    COPY(da, dc, ua);
 | 
						|
 | 
						|
    MP_USED(c) = ua;
 | 
						|
    MP_SIGN(c) = MP_SIGN(a);
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_swap(a, c) */
 | 
						|
 | 
						|
void      mp_int_swap(mp_int a, mp_int c)
 | 
						|
{
 | 
						|
  if(a != c) {
 | 
						|
    mpz_t tmp = *a;
 | 
						|
 | 
						|
    *a = *c;
 | 
						|
    *c = tmp;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_zero(z) */
 | 
						|
 | 
						|
void      mp_int_zero(mp_int z)
 | 
						|
{
 | 
						|
  NRCHECK(z != NULL);
 | 
						|
 | 
						|
  z->digits[0] = 0;
 | 
						|
  MP_USED(z) = 1;
 | 
						|
  MP_SIGN(z) = MP_ZPOS;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_abs(a, c) */
 | 
						|
 | 
						|
mp_result mp_int_abs(mp_int a, mp_int c)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
 | 
						|
  CHECK(a != NULL && c != NULL);
 | 
						|
 | 
						|
  if((res = mp_int_copy(a, c)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  MP_SIGN(c) = MP_ZPOS;
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_neg(a, c) */
 | 
						|
 | 
						|
mp_result mp_int_neg(mp_int a, mp_int c)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
 | 
						|
  CHECK(a != NULL && c != NULL);
 | 
						|
 | 
						|
  if((res = mp_int_copy(a, c)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if(CMPZ(c) != 0)
 | 
						|
    MP_SIGN(c) = 1 - MP_SIGN(a);
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_add(a, b, c) */
 | 
						|
 | 
						|
mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
 | 
						|
{ 
 | 
						|
  mp_size  ua, ub, uc, max;
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL && c != NULL);
 | 
						|
 | 
						|
  ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
 | 
						|
  max = MAX(ua, ub);
 | 
						|
 | 
						|
  if(MP_SIGN(a) == MP_SIGN(b)) {
 | 
						|
    /* Same sign -- add magnitudes, preserve sign of addends */
 | 
						|
    mp_digit carry;
 | 
						|
 | 
						|
    if(!s_pad(c, max))
 | 
						|
      return MP_MEMORY;
 | 
						|
 | 
						|
    carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
 | 
						|
    uc = max;
 | 
						|
 | 
						|
    if(carry) {
 | 
						|
      if(!s_pad(c, max + 1))
 | 
						|
	return MP_MEMORY;
 | 
						|
 | 
						|
      c->digits[max] = carry;
 | 
						|
      ++uc;
 | 
						|
    }
 | 
						|
 | 
						|
    MP_USED(c) = uc;
 | 
						|
    MP_SIGN(c) = MP_SIGN(a);
 | 
						|
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    /* Different signs -- subtract magnitudes, preserve sign of greater */
 | 
						|
    mp_int  x, y;
 | 
						|
    int     cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
 | 
						|
 | 
						|
    /* Set x to max(a, b), y to min(a, b) to simplify later code */
 | 
						|
    if(cmp >= 0) {
 | 
						|
      x = a; y = b;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      x = b; y = a; 
 | 
						|
    }
 | 
						|
 | 
						|
    if(!s_pad(c, MP_USED(x)))
 | 
						|
      return MP_MEMORY;
 | 
						|
 | 
						|
    /* Subtract smaller from larger */
 | 
						|
    s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
 | 
						|
    MP_USED(c) = MP_USED(x);
 | 
						|
    CLAMP(c);
 | 
						|
    
 | 
						|
    /* Give result the sign of the larger */
 | 
						|
    MP_SIGN(c) = MP_SIGN(x);
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_add_value(a, value, c) */
 | 
						|
 | 
						|
mp_result mp_int_add_value(mp_int a, int value, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t     vtmp;
 | 
						|
  mp_digit  vbuf[MP_VALUE_DIGITS(value)];
 | 
						|
 | 
						|
  s_fake(&vtmp, value, vbuf);
 | 
						|
 | 
						|
  return mp_int_add(a, &vtmp, c);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_sub(a, b, c) */
 | 
						|
 | 
						|
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
 | 
						|
{
 | 
						|
  mp_size  ua, ub, uc, max;
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL && c != NULL);
 | 
						|
 | 
						|
  ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
 | 
						|
  max = MAX(ua, ub);
 | 
						|
 | 
						|
  if(MP_SIGN(a) != MP_SIGN(b)) {
 | 
						|
    /* Different signs -- add magnitudes and keep sign of a */
 | 
						|
    mp_digit carry;
 | 
						|
 | 
						|
    if(!s_pad(c, max))
 | 
						|
      return MP_MEMORY;
 | 
						|
 | 
						|
    carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
 | 
						|
    uc = max;
 | 
						|
 | 
						|
    if(carry) {
 | 
						|
      if(!s_pad(c, max + 1))
 | 
						|
	return MP_MEMORY;
 | 
						|
 | 
						|
      c->digits[max] = carry;
 | 
						|
      ++uc;
 | 
						|
    }
 | 
						|
 | 
						|
    MP_USED(c) = uc;
 | 
						|
    MP_SIGN(c) = MP_SIGN(a);
 | 
						|
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    /* Same signs -- subtract magnitudes */
 | 
						|
    mp_int  x, y;
 | 
						|
    mp_sign osign;
 | 
						|
    int     cmp = s_ucmp(a, b);
 | 
						|
 | 
						|
    if(!s_pad(c, max))
 | 
						|
      return MP_MEMORY;
 | 
						|
 | 
						|
    if(cmp >= 0) {
 | 
						|
      x = a; y = b; osign = MP_ZPOS;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      x = b; y = a; osign = MP_NEG;
 | 
						|
    }
 | 
						|
 | 
						|
    if(MP_SIGN(a) == MP_NEG && cmp != 0)
 | 
						|
      osign = 1 - osign;
 | 
						|
 | 
						|
    s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
 | 
						|
    MP_USED(c) = MP_USED(x);
 | 
						|
    CLAMP(c);
 | 
						|
 | 
						|
    MP_SIGN(c) = osign;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_sub_value(a, value, c) */
 | 
						|
 | 
						|
mp_result mp_int_sub_value(mp_int a, int value, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t     vtmp;
 | 
						|
  mp_digit  vbuf[MP_VALUE_DIGITS(value)];
 | 
						|
 | 
						|
  s_fake(&vtmp, value, vbuf);
 | 
						|
 | 
						|
  return mp_int_sub(a, &vtmp, c);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_mul(a, b, c) */
 | 
						|
 | 
						|
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
 | 
						|
{ 
 | 
						|
  mp_digit *out;
 | 
						|
  mp_size   osize, ua, ub, p = 0;
 | 
						|
  mp_sign   osign;
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL && c != NULL);
 | 
						|
 | 
						|
  /* If either input is zero, we can shortcut multiplication */
 | 
						|
  if(mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) {
 | 
						|
    mp_int_zero(c);
 | 
						|
    return MP_OK;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* Output is positive if inputs have same sign, otherwise negative */
 | 
						|
  osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
 | 
						|
 | 
						|
  /* If the output is not equal to any of the inputs, we'll write the
 | 
						|
     results there directly; otherwise, allocate a temporary space. */
 | 
						|
  ua = MP_USED(a); ub = MP_USED(b);
 | 
						|
  osize = ua + ub;
 | 
						|
 | 
						|
  if(c == a || c == b) {
 | 
						|
    p = ROUND_PREC(osize);
 | 
						|
    p = MAX(p, default_precision);
 | 
						|
 | 
						|
    if((out = s_alloc(p)) == NULL)
 | 
						|
      return MP_MEMORY;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    if(!s_pad(c, osize))
 | 
						|
      return MP_MEMORY;
 | 
						|
    
 | 
						|
    out = MP_DIGITS(c);
 | 
						|
  }
 | 
						|
  ZERO(out, osize);
 | 
						|
 | 
						|
  if(!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  /* If we allocated a new buffer, get rid of whatever memory c was
 | 
						|
     already using, and fix up its fields to reflect that.
 | 
						|
   */
 | 
						|
  if(out != MP_DIGITS(c)) {
 | 
						|
    s_free(MP_DIGITS(c));
 | 
						|
    MP_DIGITS(c) = out;
 | 
						|
    MP_ALLOC(c) = p;
 | 
						|
  }
 | 
						|
 | 
						|
  MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
 | 
						|
  CLAMP(c);           /* ... right here */
 | 
						|
  MP_SIGN(c) = osign;
 | 
						|
  
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_mul_value(a, value, c) */
 | 
						|
 | 
						|
mp_result mp_int_mul_value(mp_int a, int value, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t     vtmp;
 | 
						|
  mp_digit  vbuf[MP_VALUE_DIGITS(value)];
 | 
						|
 | 
						|
  s_fake(&vtmp, value, vbuf);
 | 
						|
 | 
						|
  return mp_int_mul(a, &vtmp, c);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_mul_pow2(a, p2, c) */
 | 
						|
 | 
						|
mp_result mp_int_mul_pow2(mp_int a, int p2, mp_int c)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
  CHECK(a != NULL && c != NULL && p2 >= 0);
 | 
						|
 | 
						|
  if((res = mp_int_copy(a, c)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if(s_qmul(c, (mp_size) p2))
 | 
						|
    return MP_OK;
 | 
						|
  else
 | 
						|
    return MP_MEMORY;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_sqr(a, c) */
 | 
						|
 | 
						|
mp_result mp_int_sqr(mp_int a, mp_int c)
 | 
						|
{ 
 | 
						|
  mp_digit *out;
 | 
						|
  mp_size   osize, p = 0;
 | 
						|
 | 
						|
  CHECK(a != NULL && c != NULL);
 | 
						|
 | 
						|
  /* Get a temporary buffer big enough to hold the result */
 | 
						|
  osize = (mp_size) 2 * MP_USED(a);
 | 
						|
  if(a == c) {
 | 
						|
    p = ROUND_PREC(osize);
 | 
						|
    p = MAX(p, default_precision);
 | 
						|
 | 
						|
    if((out = s_alloc(p)) == NULL)
 | 
						|
      return MP_MEMORY;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    if(!s_pad(c, osize)) 
 | 
						|
      return MP_MEMORY;
 | 
						|
 | 
						|
    out = MP_DIGITS(c);
 | 
						|
  }
 | 
						|
  ZERO(out, osize);
 | 
						|
 | 
						|
  s_ksqr(MP_DIGITS(a), out, MP_USED(a));
 | 
						|
 | 
						|
  /* Get rid of whatever memory c was already using, and fix up its
 | 
						|
     fields to reflect the new digit array it's using
 | 
						|
   */
 | 
						|
  if(out != MP_DIGITS(c)) {
 | 
						|
    s_free(MP_DIGITS(c));
 | 
						|
    MP_DIGITS(c) = out;
 | 
						|
    MP_ALLOC(c) = p;
 | 
						|
  }
 | 
						|
 | 
						|
  MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
 | 
						|
  CLAMP(c);           /* ... right here */
 | 
						|
  MP_SIGN(c) = MP_ZPOS;
 | 
						|
  
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_div(a, b, q, r) */
 | 
						|
 | 
						|
mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
 | 
						|
{
 | 
						|
  int       cmp, last = 0, lg;
 | 
						|
  mp_result res = MP_OK;
 | 
						|
  mpz_t     temp[2];
 | 
						|
  mp_int    qout, rout;
 | 
						|
  mp_sign   sa = MP_SIGN(a), sb = MP_SIGN(b);
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL && q != r);
 | 
						|
  
 | 
						|
  if(CMPZ(b) == 0)
 | 
						|
    return MP_UNDEF;
 | 
						|
  else if((cmp = s_ucmp(a, b)) < 0) {
 | 
						|
    /* If |a| < |b|, no division is required:
 | 
						|
       q = 0, r = a
 | 
						|
     */
 | 
						|
    if(r && (res = mp_int_copy(a, r)) != MP_OK)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if(q)
 | 
						|
      mp_int_zero(q);
 | 
						|
 | 
						|
    return MP_OK;
 | 
						|
  } 
 | 
						|
  else if(cmp == 0) {
 | 
						|
    /* If |a| = |b|, no division is required:
 | 
						|
       q = 1 or -1, r = 0
 | 
						|
     */
 | 
						|
    if(r)
 | 
						|
      mp_int_zero(r);
 | 
						|
 | 
						|
    if(q) {
 | 
						|
      mp_int_zero(q);
 | 
						|
      q->digits[0] = 1;
 | 
						|
 | 
						|
      if(sa != sb)
 | 
						|
	MP_SIGN(q) = MP_NEG;
 | 
						|
    }
 | 
						|
 | 
						|
    return MP_OK;
 | 
						|
  } 
 | 
						|
 | 
						|
  /* When |a| > |b|, real division is required.  We need someplace to
 | 
						|
     store quotient and remainder, but q and r are allowed to be NULL
 | 
						|
     or to overlap with the inputs.
 | 
						|
   */
 | 
						|
  if((lg = s_isp2(b)) < 0) {
 | 
						|
    if(q && b != q && (res = mp_int_copy(a, q)) == MP_OK) {
 | 
						|
      qout = q;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      qout = TEMP(last);
 | 
						|
      SETUP(mp_int_init_copy(TEMP(last), a), last);
 | 
						|
    }
 | 
						|
 | 
						|
    if(r && a != r && (res = mp_int_copy(b, r)) == MP_OK) {
 | 
						|
      rout = r;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      rout = TEMP(last);
 | 
						|
      SETUP(mp_int_init_copy(TEMP(last), b), last);
 | 
						|
    }
 | 
						|
 | 
						|
    if((res = s_udiv(qout, rout)) != MP_OK) goto CLEANUP;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    if(q && (res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP;
 | 
						|
    if(r && (res = mp_int_copy(a, r)) != MP_OK) goto CLEANUP;
 | 
						|
 | 
						|
    if(q) s_qdiv(q, (mp_size) lg); qout = q;
 | 
						|
    if(r) s_qmod(r, (mp_size) lg); rout = r;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Recompute signs for output */
 | 
						|
  if(rout) { 
 | 
						|
    MP_SIGN(rout) = sa;
 | 
						|
    if(CMPZ(rout) == 0)
 | 
						|
      MP_SIGN(rout) = MP_ZPOS;
 | 
						|
  }
 | 
						|
  if(qout) {
 | 
						|
    MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
 | 
						|
    if(CMPZ(qout) == 0)
 | 
						|
      MP_SIGN(qout) = MP_ZPOS;
 | 
						|
  }
 | 
						|
 | 
						|
  if(q && (res = mp_int_copy(qout, q)) != MP_OK) goto CLEANUP;
 | 
						|
  if(r && (res = mp_int_copy(rout, r)) != MP_OK) goto CLEANUP;
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_mod(a, m, c) */
 | 
						|
 | 
						|
mp_result mp_int_mod(mp_int a, mp_int m, mp_int c)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
  mpz_t     tmp;
 | 
						|
  mp_int    out;
 | 
						|
 | 
						|
  if(m == c) {
 | 
						|
    if((res = mp_int_init(&tmp)) != MP_OK)
 | 
						|
      return res;
 | 
						|
 | 
						|
    out = &tmp;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    out = c;
 | 
						|
  }
 | 
						|
 | 
						|
  if((res = mp_int_div(a, m, NULL, out)) != MP_OK)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  if(CMPZ(out) < 0)
 | 
						|
    res = mp_int_add(out, m, c);
 | 
						|
  else
 | 
						|
    res = mp_int_copy(out, c);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  if(out != c)
 | 
						|
    mp_int_clear(&tmp);
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
 | 
						|
/* {{{ mp_int_div_value(a, value, q, r) */
 | 
						|
 | 
						|
mp_result mp_int_div_value(mp_int a, int value, mp_int q, int *r)
 | 
						|
{
 | 
						|
  mpz_t     vtmp, rtmp;
 | 
						|
  mp_digit  vbuf[MP_VALUE_DIGITS(value)];
 | 
						|
  mp_result res;
 | 
						|
 | 
						|
  if((res = mp_int_init(&rtmp)) != MP_OK) return res;
 | 
						|
  s_fake(&vtmp, value, vbuf);
 | 
						|
 | 
						|
  if((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  if(r)
 | 
						|
    (void) mp_int_to_int(&rtmp, r); /* can't fail */
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  mp_int_clear(&rtmp);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_div_pow2(a, p2, q, r) */
 | 
						|
 | 
						|
mp_result mp_int_div_pow2(mp_int a, int p2, mp_int q, mp_int r)
 | 
						|
{
 | 
						|
  mp_result res = MP_OK;
 | 
						|
 | 
						|
  CHECK(a != NULL && p2 >= 0 && q != r);
 | 
						|
 | 
						|
  if(q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
 | 
						|
    s_qdiv(q, (mp_size) p2);
 | 
						|
  
 | 
						|
  if(res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
 | 
						|
    s_qmod(r, (mp_size) p2);
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_expt(a, b, c) */
 | 
						|
 | 
						|
mp_result mp_int_expt(mp_int a, int b, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t     t;
 | 
						|
  mp_result res;
 | 
						|
  unsigned int v = abs(b);
 | 
						|
  
 | 
						|
  CHECK(b >= 0 && c != NULL);
 | 
						|
 | 
						|
  if((res = mp_int_init_copy(&t, a)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  (void) mp_int_set_value(c, 1);
 | 
						|
  while(v != 0) {
 | 
						|
    if(v & 1) {
 | 
						|
      if((res = mp_int_mul(c, &t, c)) != MP_OK)
 | 
						|
	goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    v >>= 1;
 | 
						|
    if(v == 0) break;
 | 
						|
 | 
						|
    if((res = mp_int_sqr(&t, &t)) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
  
 | 
						|
 CLEANUP:
 | 
						|
  mp_int_clear(&t);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_expt_value(a, b, c) */
 | 
						|
 | 
						|
mp_result mp_int_expt_value(int a, int b, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t     t;
 | 
						|
  mp_result res;
 | 
						|
  unsigned int v = abs(b);
 | 
						|
  
 | 
						|
  CHECK(b >= 0 && c != NULL);
 | 
						|
 | 
						|
  if((res = mp_int_init_value(&t, a)) != MP_OK)
 | 
						|
    return res;
 | 
						|
 | 
						|
  (void) mp_int_set_value(c, 1);
 | 
						|
  while(v != 0) {
 | 
						|
    if(v & 1) {
 | 
						|
      if((res = mp_int_mul(c, &t, c)) != MP_OK)
 | 
						|
	goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    v >>= 1;
 | 
						|
    if(v == 0) break;
 | 
						|
 | 
						|
    if((res = mp_int_sqr(&t, &t)) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
  
 | 
						|
 CLEANUP:
 | 
						|
  mp_int_clear(&t);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_compare(a, b) */
 | 
						|
 | 
						|
int       mp_int_compare(mp_int a, mp_int b)
 | 
						|
{ 
 | 
						|
  mp_sign sa;
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL);
 | 
						|
 | 
						|
  sa = MP_SIGN(a);
 | 
						|
  if(sa == MP_SIGN(b)) {
 | 
						|
    int cmp = s_ucmp(a, b);
 | 
						|
 | 
						|
    /* If they're both zero or positive, the normal comparison
 | 
						|
       applies; if both negative, the sense is reversed. */
 | 
						|
    if(sa == MP_ZPOS) 
 | 
						|
      return cmp;
 | 
						|
    else
 | 
						|
      return -cmp;
 | 
						|
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    if(sa == MP_ZPOS)
 | 
						|
      return 1;
 | 
						|
    else
 | 
						|
      return -1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_compare_unsigned(a, b) */
 | 
						|
 | 
						|
int       mp_int_compare_unsigned(mp_int a, mp_int b)
 | 
						|
{ 
 | 
						|
  NRCHECK(a != NULL && b != NULL);
 | 
						|
 | 
						|
  return s_ucmp(a, b);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_compare_zero(z) */
 | 
						|
 | 
						|
int       mp_int_compare_zero(mp_int z)
 | 
						|
{ 
 | 
						|
  NRCHECK(z != NULL);
 | 
						|
 | 
						|
  if(MP_USED(z) == 1 && z->digits[0] == 0)
 | 
						|
    return 0;
 | 
						|
  else if(MP_SIGN(z) == MP_ZPOS)
 | 
						|
    return 1;
 | 
						|
  else 
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_compare_value(z, value) */
 | 
						|
 | 
						|
int       mp_int_compare_value(mp_int z, int value)
 | 
						|
{
 | 
						|
  mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
 | 
						|
  int     cmp;
 | 
						|
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  if(vsign == MP_SIGN(z)) {
 | 
						|
    cmp = s_vcmp(z, value);
 | 
						|
 | 
						|
    if(vsign == MP_ZPOS)
 | 
						|
      return cmp;
 | 
						|
    else
 | 
						|
      return -cmp;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    if(value < 0)
 | 
						|
      return 1;
 | 
						|
    else
 | 
						|
      return -1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_exptmod(a, b, m, c) */
 | 
						|
 | 
						|
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
 | 
						|
{ 
 | 
						|
  mp_result res;
 | 
						|
  mp_size   um;
 | 
						|
  mpz_t     temp[3];
 | 
						|
  mp_int    s;
 | 
						|
  int       last = 0;
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
 | 
						|
 | 
						|
  /* Zero moduli and negative exponents are not considered. */
 | 
						|
  if(CMPZ(m) == 0)
 | 
						|
    return MP_UNDEF;
 | 
						|
  if(CMPZ(b) < 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  um = MP_USED(m);
 | 
						|
  SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
 | 
						|
  SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
 | 
						|
 | 
						|
  if(c == b || c == m) {
 | 
						|
    SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
 | 
						|
    s = TEMP(2);
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    s = c;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
 | 
						|
 | 
						|
  if((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP;
 | 
						|
 | 
						|
  if((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  res = mp_int_copy(s, c);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_exptmod_evalue(a, value, m, c) */
 | 
						|
 | 
						|
mp_result mp_int_exptmod_evalue(mp_int a, int value, mp_int m, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t    vtmp;
 | 
						|
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
 | 
						|
 | 
						|
  s_fake(&vtmp, value, vbuf);
 | 
						|
 | 
						|
  return mp_int_exptmod(a, &vtmp, m, c);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_exptmod_bvalue(v, b, m, c) */
 | 
						|
 | 
						|
mp_result mp_int_exptmod_bvalue(int value, mp_int b,
 | 
						|
				mp_int m, mp_int c)
 | 
						|
{
 | 
						|
  mpz_t    vtmp;
 | 
						|
  mp_digit vbuf[MP_VALUE_DIGITS(value)];
 | 
						|
 | 
						|
  s_fake(&vtmp, value, vbuf);
 | 
						|
 | 
						|
  return mp_int_exptmod(&vtmp, b, m, c);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_exptmod_known(a, b, m, mu, c) */
 | 
						|
 | 
						|
mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
  mp_size   um;
 | 
						|
  mpz_t     temp[2];
 | 
						|
  mp_int    s;
 | 
						|
  int       last = 0;
 | 
						|
 | 
						|
  CHECK(a && b && m && c);
 | 
						|
 | 
						|
  /* Zero moduli and negative exponents are not considered. */
 | 
						|
  if(CMPZ(m) == 0)
 | 
						|
    return MP_UNDEF;
 | 
						|
  if(CMPZ(b) < 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  um = MP_USED(m);
 | 
						|
  SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
 | 
						|
 | 
						|
  if(c == b || c == m) {
 | 
						|
    SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
 | 
						|
    s = TEMP(1);
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    s = c;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
 | 
						|
 | 
						|
  if((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  res = mp_int_copy(s, c);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_redux_const(m, c) */
 | 
						|
 | 
						|
mp_result mp_int_redux_const(mp_int m, mp_int c)
 | 
						|
{
 | 
						|
  CHECK(m != NULL && c != NULL && m != c);
 | 
						|
 | 
						|
  return s_brmu(c, m);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_invmod(a, m, c) */
 | 
						|
 | 
						|
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
  mp_sign   sa;
 | 
						|
  int       last = 0;
 | 
						|
  mpz_t     temp[2];
 | 
						|
 | 
						|
  CHECK(a != NULL && m != NULL && c != NULL);
 | 
						|
 | 
						|
  if(CMPZ(a) == 0 || CMPZ(m) <= 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  sa = MP_SIGN(a); /* need this for the result later */
 | 
						|
 | 
						|
  for(last = 0; last < 2; ++last)
 | 
						|
    if((res = mp_int_init(TEMP(last))) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
  if((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK) 
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  if(mp_int_compare_value(TEMP(0), 1) != 0) {
 | 
						|
    res = MP_UNDEF;
 | 
						|
    goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  /* It is first necessary to constrain the value to the proper range */
 | 
						|
  if((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  /* Now, if 'a' was originally negative, the value we have is
 | 
						|
     actually the magnitude of the negative representative; to get the
 | 
						|
     positive value we have to subtract from the modulus.  Otherwise,
 | 
						|
     the value is okay as it stands.
 | 
						|
   */
 | 
						|
  if(sa == MP_NEG)
 | 
						|
    res = mp_int_sub(m, TEMP(1), c);
 | 
						|
  else
 | 
						|
    res = mp_int_copy(TEMP(1), c);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_gcd(a, b, c) */
 | 
						|
 | 
						|
/* Binary GCD algorithm due to Josef Stein, 1961 */
 | 
						|
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
 | 
						|
{ 
 | 
						|
  int       ca, cb, k = 0;
 | 
						|
  mpz_t     u, v, t;
 | 
						|
  mp_result res;
 | 
						|
 | 
						|
  CHECK(a != NULL && b != NULL && c != NULL);
 | 
						|
 | 
						|
  ca = CMPZ(a);
 | 
						|
  cb = CMPZ(b);
 | 
						|
  if(ca == 0 && cb == 0)
 | 
						|
    return MP_UNDEF;
 | 
						|
  else if(ca == 0) 
 | 
						|
    return mp_int_abs(b, c);
 | 
						|
  else if(cb == 0) 
 | 
						|
    return mp_int_abs(a, c);
 | 
						|
 | 
						|
  if((res = mp_int_init(&t)) != MP_OK)
 | 
						|
    return res;
 | 
						|
  if((res = mp_int_init_copy(&u, a)) != MP_OK)
 | 
						|
    goto U;
 | 
						|
  if((res = mp_int_init_copy(&v, b)) != MP_OK)
 | 
						|
    goto V;
 | 
						|
 | 
						|
  MP_SIGN(&u) = MP_ZPOS; MP_SIGN(&v) = MP_ZPOS;
 | 
						|
 | 
						|
  { /* Divide out common factors of 2 from u and v */
 | 
						|
    int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v);
 | 
						|
   
 | 
						|
    k = MIN(div2_u, div2_v);
 | 
						|
    s_qdiv(&u, (mp_size) k);
 | 
						|
    s_qdiv(&v, (mp_size) k);
 | 
						|
  }
 | 
						|
  
 | 
						|
  if(mp_int_is_odd(&u)) {
 | 
						|
    if((res = mp_int_neg(&v, &t)) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    if((res = mp_int_copy(&u, &t)) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  for(;;) {
 | 
						|
    s_qdiv(&t, s_dp2k(&t));
 | 
						|
 | 
						|
    if(CMPZ(&t) > 0) {
 | 
						|
      if((res = mp_int_copy(&t, &u)) != MP_OK)
 | 
						|
	goto CLEANUP;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      if((res = mp_int_neg(&t, &v)) != MP_OK)
 | 
						|
	goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    if((res = mp_int_sub(&u, &v, &t)) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    if(CMPZ(&t) == 0)
 | 
						|
      break;
 | 
						|
  } 
 | 
						|
 | 
						|
  if((res = mp_int_abs(&u, c)) != MP_OK)
 | 
						|
    goto CLEANUP;
 | 
						|
  if(!s_qmul(c, (mp_size) k))
 | 
						|
    res = MP_MEMORY;
 | 
						|
  
 | 
						|
 CLEANUP:
 | 
						|
  mp_int_clear(&v);
 | 
						|
 V: mp_int_clear(&u);
 | 
						|
 U: mp_int_clear(&t);
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_egcd(a, b, c, x, y) */
 | 
						|
 | 
						|
/* This is the binary GCD algorithm again, but this time we keep track
 | 
						|
   of the elementary matrix operations as we go, so we can get values
 | 
						|
   x and y satisfying c = ax + by.
 | 
						|
 */
 | 
						|
mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, 
 | 
						|
		      mp_int x, mp_int y)
 | 
						|
{ 
 | 
						|
  int       k, last = 0, ca, cb;
 | 
						|
  mpz_t     temp[8];
 | 
						|
  mp_result res;
 | 
						|
  
 | 
						|
  CHECK(a != NULL && b != NULL && c != NULL && 
 | 
						|
	(x != NULL || y != NULL));
 | 
						|
 | 
						|
  ca = CMPZ(a);
 | 
						|
  cb = CMPZ(b);
 | 
						|
  if(ca == 0 && cb == 0)
 | 
						|
    return MP_UNDEF;
 | 
						|
  else if(ca == 0) {
 | 
						|
    if((res = mp_int_abs(b, c)) != MP_OK) return res;
 | 
						|
    mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK;
 | 
						|
  } 
 | 
						|
  else if(cb == 0) {
 | 
						|
    if((res = mp_int_abs(a, c)) != MP_OK) return res;
 | 
						|
    (void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Initialize temporaries:
 | 
						|
     A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
 | 
						|
  for(last = 0; last < 4; ++last) {
 | 
						|
    if((res = mp_int_init(TEMP(last))) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
  TEMP(0)->digits[0] = 1;
 | 
						|
  TEMP(3)->digits[0] = 1;
 | 
						|
 | 
						|
  SETUP(mp_int_init_copy(TEMP(4), a), last);
 | 
						|
  SETUP(mp_int_init_copy(TEMP(5), b), last);
 | 
						|
 | 
						|
  /* We will work with absolute values here */
 | 
						|
  MP_SIGN(TEMP(4)) = MP_ZPOS;
 | 
						|
  MP_SIGN(TEMP(5)) = MP_ZPOS;
 | 
						|
 | 
						|
  { /* Divide out common factors of 2 from u and v */
 | 
						|
    int  div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
 | 
						|
    
 | 
						|
    k = MIN(div2_u, div2_v);
 | 
						|
    s_qdiv(TEMP(4), k);
 | 
						|
    s_qdiv(TEMP(5), k);
 | 
						|
  }
 | 
						|
 | 
						|
  SETUP(mp_int_init_copy(TEMP(6), TEMP(4)), last);
 | 
						|
  SETUP(mp_int_init_copy(TEMP(7), TEMP(5)), last);
 | 
						|
 | 
						|
  for(;;) {
 | 
						|
    while(mp_int_is_even(TEMP(4))) {
 | 
						|
      s_qdiv(TEMP(4), 1);
 | 
						|
      
 | 
						|
      if(mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
 | 
						|
	if((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK) 
 | 
						|
	  goto CLEANUP;
 | 
						|
	if((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK) 
 | 
						|
	  goto CLEANUP;
 | 
						|
      }
 | 
						|
 | 
						|
      s_qdiv(TEMP(0), 1);
 | 
						|
      s_qdiv(TEMP(1), 1);
 | 
						|
    }
 | 
						|
    
 | 
						|
    while(mp_int_is_even(TEMP(5))) {
 | 
						|
      s_qdiv(TEMP(5), 1);
 | 
						|
 | 
						|
      if(mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
 | 
						|
	if((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK) 
 | 
						|
	  goto CLEANUP;
 | 
						|
	if((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK) 
 | 
						|
	  goto CLEANUP;
 | 
						|
      }
 | 
						|
 | 
						|
      s_qdiv(TEMP(2), 1);
 | 
						|
      s_qdiv(TEMP(3), 1);
 | 
						|
    }
 | 
						|
 | 
						|
    if(mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
 | 
						|
      if((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP;
 | 
						|
      if((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP;
 | 
						|
      if((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      if((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP;
 | 
						|
      if((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP;
 | 
						|
      if((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK) goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    if(CMPZ(TEMP(4)) == 0) {
 | 
						|
      if(x && (res = mp_int_copy(TEMP(2), x)) != MP_OK) goto CLEANUP;
 | 
						|
      if(y && (res = mp_int_copy(TEMP(3), y)) != MP_OK) goto CLEANUP;
 | 
						|
      if(c) {
 | 
						|
	if(!s_qmul(TEMP(5), k)) {
 | 
						|
	  res = MP_MEMORY;
 | 
						|
	  goto CLEANUP;
 | 
						|
	}
 | 
						|
	 
 | 
						|
	res = mp_int_copy(TEMP(5), c);
 | 
						|
      }
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_divisible_value(a, v) */
 | 
						|
 | 
						|
int       mp_int_divisible_value(mp_int a, int v)
 | 
						|
{
 | 
						|
  int       rem = 0;
 | 
						|
 | 
						|
  if(mp_int_div_value(a, v, NULL, &rem) != MP_OK)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return rem == 0;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_is_pow2(z) */
 | 
						|
 | 
						|
int       mp_int_is_pow2(mp_int z)
 | 
						|
{
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  return s_isp2(z);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_sqrt(a, c) */
 | 
						|
 | 
						|
mp_result mp_int_sqrt(mp_int a, mp_int c)
 | 
						|
{
 | 
						|
  mp_result  res = MP_OK;
 | 
						|
  mpz_t      temp[2];
 | 
						|
  int        last = 0;
 | 
						|
 | 
						|
  CHECK(a != NULL && c != NULL);
 | 
						|
 | 
						|
  /* The square root of a negative value does not exist in the integers. */
 | 
						|
  if(MP_SIGN(a) == MP_NEG)
 | 
						|
    return MP_UNDEF;
 | 
						|
 | 
						|
  SETUP(mp_int_init_copy(TEMP(last), a), last);
 | 
						|
  SETUP(mp_int_init(TEMP(last)), last);
 | 
						|
 | 
						|
  for(;;) {
 | 
						|
    if((res = mp_int_sqr(TEMP(0), TEMP(1))) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    if(mp_int_compare_unsigned(a, TEMP(1)) == 0) break;
 | 
						|
 | 
						|
    if((res = mp_int_copy(a, TEMP(1))) != MP_OK) 
 | 
						|
      goto CLEANUP;
 | 
						|
    if((res = mp_int_div(TEMP(1), TEMP(0), TEMP(1), NULL)) != MP_OK) 
 | 
						|
      goto CLEANUP;
 | 
						|
    if((res = mp_int_add(TEMP(0), TEMP(1), TEMP(1))) != MP_OK) 
 | 
						|
      goto CLEANUP;
 | 
						|
    if((res = mp_int_div_pow2(TEMP(1), 1, TEMP(1), NULL)) != MP_OK)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    if(mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0) break;
 | 
						|
    if((res = mp_int_sub_value(TEMP(0), 1, TEMP(0))) != MP_OK) goto CLEANUP;
 | 
						|
    if(mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0) break;
 | 
						|
 | 
						|
    if((res = mp_int_copy(TEMP(1), TEMP(0))) != MP_OK) goto CLEANUP;
 | 
						|
  }
 | 
						|
  
 | 
						|
  res = mp_int_copy(TEMP(0), c);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
  
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_to_int(z, out) */
 | 
						|
 | 
						|
mp_result mp_int_to_int(mp_int z, int *out)
 | 
						|
{
 | 
						|
  unsigned int uv = 0;
 | 
						|
  mp_size   uz;
 | 
						|
  mp_digit *dz;
 | 
						|
  mp_sign   sz;
 | 
						|
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  /* Make sure the value is representable as an int */
 | 
						|
  sz = MP_SIGN(z);
 | 
						|
  if((sz == MP_ZPOS && mp_int_compare_value(z, INT_MAX) > 0) ||
 | 
						|
     mp_int_compare_value(z, INT_MIN) < 0)
 | 
						|
    return MP_RANGE;
 | 
						|
     
 | 
						|
  uz = MP_USED(z);
 | 
						|
  dz = MP_DIGITS(z) + uz - 1;
 | 
						|
  
 | 
						|
  while(uz > 0) {
 | 
						|
    uv <<= MP_DIGIT_BIT/2;
 | 
						|
    uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
 | 
						|
    --uz;
 | 
						|
  }
 | 
						|
 | 
						|
  if(out)
 | 
						|
    *out = (sz == MP_NEG) ? -(int)uv : (int)uv;
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_to_string(z, radix, str, limit) */
 | 
						|
 | 
						|
mp_result mp_int_to_string(mp_int z, mp_size radix, 
 | 
						|
			   char *str, int limit)
 | 
						|
{
 | 
						|
  mp_result res;
 | 
						|
  int       cmp = 0;
 | 
						|
 | 
						|
  CHECK(z != NULL && str != NULL && limit >= 2);
 | 
						|
 | 
						|
  if(radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  if(CMPZ(z) == 0) {
 | 
						|
    *str++ = s_val2ch(0, mp_flags & MP_CAP_DIGITS);
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    mpz_t tmp;
 | 
						|
    char  *h, *t;
 | 
						|
 | 
						|
    if((res = mp_int_init_copy(&tmp, z)) != MP_OK)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if(MP_SIGN(z) == MP_NEG) {
 | 
						|
      *str++ = '-';
 | 
						|
      --limit;
 | 
						|
    }
 | 
						|
    h = str;
 | 
						|
 | 
						|
    /* Generate digits in reverse order until finished or limit reached */
 | 
						|
    for(/* */; limit > 0; --limit) {
 | 
						|
      mp_digit d;
 | 
						|
 | 
						|
      if((cmp = CMPZ(&tmp)) == 0)
 | 
						|
	break;
 | 
						|
 | 
						|
      d = s_ddiv(&tmp, (mp_digit)radix);
 | 
						|
      *str++ = s_val2ch(d, mp_flags & MP_CAP_DIGITS);
 | 
						|
    }
 | 
						|
    t = str - 1;
 | 
						|
 | 
						|
    /* Put digits back in correct output order */
 | 
						|
    while(h < t) {
 | 
						|
      char tc = *h;
 | 
						|
      *h++ = *t;
 | 
						|
      *t-- = tc;
 | 
						|
    }
 | 
						|
 | 
						|
    mp_int_clear(&tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  *str = '\0';
 | 
						|
  if(cmp == 0)
 | 
						|
    return MP_OK;
 | 
						|
  else
 | 
						|
    return MP_TRUNC;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_string_len(z, radix) */
 | 
						|
 | 
						|
mp_result mp_int_string_len(mp_int z, mp_size radix)
 | 
						|
{ 
 | 
						|
  int  len;
 | 
						|
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  if(radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  len = s_outlen(z, radix) + 1; /* for terminator */
 | 
						|
 | 
						|
  /* Allow for sign marker on negatives */
 | 
						|
  if(MP_SIGN(z) == MP_NEG)
 | 
						|
    len += 1;
 | 
						|
 | 
						|
  return len;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_read_string(z, radix, *str) */
 | 
						|
 | 
						|
/* Read zero-terminated string into z */
 | 
						|
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str)
 | 
						|
{
 | 
						|
  return mp_int_read_cstring(z, radix, str, NULL);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_read_cstring(z, radix, *str, **end) */
 | 
						|
 | 
						|
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
 | 
						|
{ 
 | 
						|
  int       ch;
 | 
						|
 | 
						|
  CHECK(z != NULL && str != NULL);
 | 
						|
 | 
						|
  if(radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* Skip leading whitespace */
 | 
						|
  while(isspace((int)*str))
 | 
						|
    ++str;
 | 
						|
 | 
						|
  /* Handle leading sign tag (+/-, positive default) */
 | 
						|
  switch(*str) {
 | 
						|
  case '-':
 | 
						|
    MP_SIGN(z) = MP_NEG;
 | 
						|
    ++str;
 | 
						|
    break;
 | 
						|
  case '+':
 | 
						|
    ++str; /* fallthrough */
 | 
						|
  default:
 | 
						|
    MP_SIGN(z) = MP_ZPOS;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Skip leading zeroes */
 | 
						|
  while((ch = s_ch2val(*str, radix)) == 0) 
 | 
						|
    ++str;
 | 
						|
 | 
						|
  /* Make sure there is enough space for the value */
 | 
						|
  if(!s_pad(z, s_inlen(strlen(str), radix)))
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  MP_USED(z) = 1; z->digits[0] = 0;
 | 
						|
 | 
						|
  while(*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) {
 | 
						|
    s_dmul(z, (mp_digit)radix);
 | 
						|
    s_dadd(z, (mp_digit)ch);
 | 
						|
    ++str;
 | 
						|
  }
 | 
						|
  
 | 
						|
  CLAMP(z);
 | 
						|
 | 
						|
  /* Override sign for zero, even if negative specified. */
 | 
						|
  if(CMPZ(z) == 0)
 | 
						|
    MP_SIGN(z) = MP_ZPOS;
 | 
						|
  
 | 
						|
  if(end != NULL)
 | 
						|
    *end = (char *)str;
 | 
						|
 | 
						|
  /* Return a truncation error if the string has unprocessed
 | 
						|
     characters remaining, so the caller can tell if the whole string
 | 
						|
     was done */
 | 
						|
  if(*str != '\0') 
 | 
						|
    return MP_TRUNC;
 | 
						|
  else
 | 
						|
    return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_count_bits(z) */
 | 
						|
 | 
						|
mp_result mp_int_count_bits(mp_int z)
 | 
						|
{
 | 
						|
  mp_size  nbits = 0, uz;
 | 
						|
  mp_digit d;
 | 
						|
 | 
						|
  CHECK(z != NULL);
 | 
						|
 | 
						|
  uz = MP_USED(z);
 | 
						|
  if(uz == 1 && z->digits[0] == 0)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  --uz;
 | 
						|
  nbits = uz * MP_DIGIT_BIT;
 | 
						|
  d = z->digits[uz];
 | 
						|
 | 
						|
  while(d != 0) {
 | 
						|
    d >>= 1;
 | 
						|
    ++nbits;
 | 
						|
  }
 | 
						|
 | 
						|
  return nbits;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_to_binary(z, buf, limit) */
 | 
						|
 | 
						|
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
 | 
						|
{
 | 
						|
  static const int PAD_FOR_2C = 1;
 | 
						|
 | 
						|
  mp_result res;
 | 
						|
  int       limpos = limit;
 | 
						|
 | 
						|
  CHECK(z != NULL && buf != NULL);
 | 
						|
  
 | 
						|
  res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
 | 
						|
 | 
						|
  if(MP_SIGN(z) == MP_NEG)
 | 
						|
    s_2comp(buf, limpos);
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_read_binary(z, buf, len) */
 | 
						|
 | 
						|
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
 | 
						|
{
 | 
						|
  mp_size need, i;
 | 
						|
  unsigned char *tmp;
 | 
						|
  mp_digit *dz;
 | 
						|
 | 
						|
  CHECK(z != NULL && buf != NULL && len > 0);
 | 
						|
 | 
						|
  /* Figure out how many digits are needed to represent this value */
 | 
						|
  need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
 | 
						|
  if(!s_pad(z, need))
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  mp_int_zero(z);
 | 
						|
 | 
						|
  /* If the high-order bit is set, take the 2's complement before
 | 
						|
     reading the value (it will be restored afterward) */
 | 
						|
  if(buf[0] >> (CHAR_BIT - 1)) {
 | 
						|
    MP_SIGN(z) = MP_NEG;
 | 
						|
    s_2comp(buf, len);
 | 
						|
  }
 | 
						|
  
 | 
						|
  dz = MP_DIGITS(z);
 | 
						|
  for(tmp = buf, i = len; i > 0; --i, ++tmp) {
 | 
						|
    s_qmul(z, (mp_size) CHAR_BIT);
 | 
						|
    *dz |= *tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Restore 2's complement if we took it before */
 | 
						|
  if(MP_SIGN(z) == MP_NEG)
 | 
						|
    s_2comp(buf, len);
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_binary_len(z) */
 | 
						|
 | 
						|
mp_result mp_int_binary_len(mp_int z)
 | 
						|
{
 | 
						|
  mp_result  res = mp_int_count_bits(z);
 | 
						|
  int        bytes = mp_int_unsigned_len(z);
 | 
						|
 | 
						|
  if(res <= 0)
 | 
						|
    return res;
 | 
						|
 | 
						|
  bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
 | 
						|
 | 
						|
  /* If the highest-order bit falls exactly on a byte boundary, we
 | 
						|
     need to pad with an extra byte so that the sign will be read
 | 
						|
     correctly when reading it back in. */
 | 
						|
  if(bytes * CHAR_BIT == res)
 | 
						|
    ++bytes;
 | 
						|
 | 
						|
  return bytes;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_to_unsigned(z, buf, limit) */
 | 
						|
 | 
						|
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
 | 
						|
{
 | 
						|
  static const int NO_PADDING = 0;
 | 
						|
 | 
						|
  CHECK(z != NULL && buf != NULL);
 | 
						|
 | 
						|
  return s_tobin(z, buf, &limit, NO_PADDING);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_read_unsigned(z, buf, len) */
 | 
						|
 | 
						|
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
 | 
						|
{
 | 
						|
  mp_size need, i;
 | 
						|
  unsigned char *tmp;
 | 
						|
  mp_digit *dz;
 | 
						|
 | 
						|
  CHECK(z != NULL && buf != NULL && len > 0);
 | 
						|
 | 
						|
  /* Figure out how many digits are needed to represent this value */
 | 
						|
  need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
 | 
						|
  if(!s_pad(z, need))
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  mp_int_zero(z);
 | 
						|
 | 
						|
  dz = MP_DIGITS(z);
 | 
						|
  for(tmp = buf, i = len; i > 0; --i, ++tmp) {
 | 
						|
    (void) s_qmul(z, CHAR_BIT);
 | 
						|
    *dz |= *tmp;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_int_unsigned_len(z) */
 | 
						|
 | 
						|
mp_result mp_int_unsigned_len(mp_int z)
 | 
						|
{
 | 
						|
  mp_result  res = mp_int_count_bits(z);
 | 
						|
  int        bytes;
 | 
						|
 | 
						|
  if(res <= 0)
 | 
						|
    return res;
 | 
						|
 | 
						|
  bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
 | 
						|
 | 
						|
  return bytes;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_error_string(res) */
 | 
						|
 | 
						|
const char *mp_error_string(mp_result res)
 | 
						|
{
 | 
						|
  int ix;
 | 
						|
  if(res > 0)
 | 
						|
    return s_unknown_err;
 | 
						|
 | 
						|
  res = -res;
 | 
						|
  for(ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
 | 
						|
    ;
 | 
						|
 | 
						|
  if(s_error_msg[ix] != NULL)
 | 
						|
    return s_error_msg[ix];
 | 
						|
  else
 | 
						|
    return s_unknown_err;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* Private functions for internal use.  These make assumptions.           */
 | 
						|
 | 
						|
/* {{{ s_alloc(num) */
 | 
						|
 | 
						|
static mp_digit *s_alloc(mp_size num)
 | 
						|
{
 | 
						|
  mp_digit *out = malloc(num * sizeof(mp_digit));
 | 
						|
 | 
						|
  assert(out != NULL); /* for debugging */
 | 
						|
 | 
						|
  return out;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_realloc(old, num) */
 | 
						|
 | 
						|
static mp_digit *s_realloc(mp_digit *old, mp_size num)
 | 
						|
{
 | 
						|
  mp_digit *new = realloc(old, num * sizeof(mp_digit));
 | 
						|
 | 
						|
  assert(new != NULL); /* for debugging */
 | 
						|
 | 
						|
  return new;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_free(ptr) */
 | 
						|
 | 
						|
#if TRACEABLE_FREE
 | 
						|
static void s_free(void *ptr)
 | 
						|
{
 | 
						|
  free(ptr);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_pad(z, min) */
 | 
						|
 | 
						|
int      s_pad(mp_int z, mp_size min)
 | 
						|
{
 | 
						|
  if(MP_ALLOC(z) < min) {
 | 
						|
    mp_size nsize = ROUND_PREC(min);
 | 
						|
    mp_digit *tmp = s_realloc(MP_DIGITS(z), nsize);
 | 
						|
 | 
						|
    if(tmp == NULL)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    MP_DIGITS(z) = tmp;
 | 
						|
    MP_ALLOC(z) = nsize;
 | 
						|
  }
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_clamp(z) */
 | 
						|
 | 
						|
#if TRACEABLE_CLAMP
 | 
						|
static void     s_clamp(mp_int z)
 | 
						|
{
 | 
						|
  mp_size   uz = MP_USED(z);
 | 
						|
  mp_digit *zd = MP_DIGITS(z) + uz - 1;
 | 
						|
 | 
						|
  while(uz > 1 && (*zd-- == 0))
 | 
						|
    --uz;
 | 
						|
 | 
						|
  MP_USED(z) = uz;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_fake(z, value, vbuf) */
 | 
						|
 | 
						|
static void      s_fake(mp_int z, int value, mp_digit vbuf[])
 | 
						|
{
 | 
						|
  mp_size uv = (mp_size)s_vpack(value, vbuf);
 | 
						|
 | 
						|
  z->used = uv;
 | 
						|
  z->alloc = MP_VALUE_DIGITS(value);
 | 
						|
  z->sign = (value < 0) ? MP_NEG : MP_ZPOS;
 | 
						|
  z->digits = vbuf;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_cdig(da, db, len) */
 | 
						|
 | 
						|
static int      s_cdig(mp_digit *da, mp_digit *db, mp_size len)
 | 
						|
{
 | 
						|
  mp_digit *dat = da + len - 1, *dbt = db + len - 1;
 | 
						|
 | 
						|
  for(/* */; len != 0; --len, --dat, --dbt) {
 | 
						|
    if(*dat > *dbt)
 | 
						|
      return 1;
 | 
						|
    else if(*dat < *dbt)
 | 
						|
      return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_vpack(v, t[]) */
 | 
						|
 | 
						|
static int       s_vpack(int v, mp_digit t[])
 | 
						|
{
 | 
						|
  unsigned int uv = (unsigned int)((v < 0) ? -v : v);
 | 
						|
  int          ndig = 0;
 | 
						|
  
 | 
						|
  if(uv == 0)
 | 
						|
    t[ndig++] = 0;
 | 
						|
  else {
 | 
						|
    while(uv != 0) {
 | 
						|
      t[ndig++] = (mp_digit) uv;
 | 
						|
      uv >>= MP_DIGIT_BIT/2;
 | 
						|
      uv >>= MP_DIGIT_BIT/2;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ndig;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_ucmp(a, b) */
 | 
						|
 | 
						|
static int      s_ucmp(mp_int a, mp_int b)
 | 
						|
{
 | 
						|
  mp_size  ua = MP_USED(a), ub = MP_USED(b);
 | 
						|
  
 | 
						|
  if(ua > ub)
 | 
						|
    return 1;
 | 
						|
  else if(ub > ua) 
 | 
						|
    return -1;
 | 
						|
  else 
 | 
						|
    return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_vcmp(a, v) */
 | 
						|
 | 
						|
static int      s_vcmp(mp_int a, int v)
 | 
						|
{
 | 
						|
  mp_digit     vdig[MP_VALUE_DIGITS(v)];
 | 
						|
  int          ndig = 0;
 | 
						|
  mp_size      ua = MP_USED(a);
 | 
						|
 | 
						|
  ndig = s_vpack(v, vdig);
 | 
						|
 | 
						|
  if(ua > ndig)
 | 
						|
    return 1;
 | 
						|
  else if(ua < ndig)
 | 
						|
    return -1;
 | 
						|
  else
 | 
						|
    return s_cdig(MP_DIGITS(a), vdig, ndig);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_uadd(da, db, dc, size_a, size_b) */
 | 
						|
 | 
						|
static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, 
 | 
						|
		       mp_size size_a, mp_size size_b)
 | 
						|
{
 | 
						|
  mp_size pos;
 | 
						|
  mp_word w = 0;
 | 
						|
 | 
						|
  /* Insure that da is the longer of the two to simplify later code */
 | 
						|
  if(size_b > size_a) {
 | 
						|
    SWAP(mp_digit *, da, db);
 | 
						|
    SWAP(mp_size, size_a, size_b);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Add corresponding digits until the shorter number runs out */
 | 
						|
  for(pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
 | 
						|
    w = w + (mp_word)*da + (mp_word)*db;
 | 
						|
    *dc = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Propagate carries as far as necessary */
 | 
						|
  for(/* */; pos < size_a; ++pos, ++da, ++dc) {
 | 
						|
    w = w + *da;
 | 
						|
 | 
						|
    *dc = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Return carry out */
 | 
						|
  return (mp_digit)w;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_usub(da, db, dc, size_a, size_b) */
 | 
						|
 | 
						|
static void     s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
 | 
						|
		       mp_size size_a, mp_size size_b)
 | 
						|
{
 | 
						|
  mp_size pos;
 | 
						|
  mp_word w = 0;
 | 
						|
 | 
						|
  /* We assume that |a| >= |b| so this should definitely hold */
 | 
						|
  assert(size_a >= size_b);
 | 
						|
 | 
						|
  /* Subtract corresponding digits and propagate borrow */
 | 
						|
  for(pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
 | 
						|
    w = ((mp_word)MP_DIGIT_MAX + 1 +  /* MP_RADIX */
 | 
						|
	 (mp_word)*da) - w - (mp_word)*db;
 | 
						|
 | 
						|
    *dc = LOWER_HALF(w);
 | 
						|
    w = (UPPER_HALF(w) == 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Finish the subtraction for remaining upper digits of da */
 | 
						|
  for(/* */; pos < size_a; ++pos, ++da, ++dc) {
 | 
						|
    w = ((mp_word)MP_DIGIT_MAX + 1 +  /* MP_RADIX */
 | 
						|
	 (mp_word)*da) - w; 
 | 
						|
 | 
						|
    *dc = LOWER_HALF(w);
 | 
						|
    w = (UPPER_HALF(w) == 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If there is a borrow out at the end, it violates the precondition */
 | 
						|
  assert(w == 0);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_kmul(da, db, dc, size_a, size_b) */
 | 
						|
 | 
						|
static int       s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | 
						|
			mp_size size_a, mp_size size_b)
 | 
						|
{
 | 
						|
  mp_size  bot_size;
 | 
						|
 | 
						|
  /* Make sure b is the smaller of the two input values */
 | 
						|
  if(size_b > size_a) {
 | 
						|
    SWAP(mp_digit *, da, db);
 | 
						|
    SWAP(mp_size, size_a, size_b);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Insure that the bottom is the larger half in an odd-length split;
 | 
						|
     the code below relies on this being true.
 | 
						|
   */
 | 
						|
  bot_size = (size_a + 1) / 2;
 | 
						|
 | 
						|
  /* If the values are big enough to bother with recursion, use the
 | 
						|
     Karatsuba algorithm to compute the product; otherwise use the
 | 
						|
     normal multiplication algorithm
 | 
						|
   */
 | 
						|
  if(multiply_threshold && 
 | 
						|
     size_a >= multiply_threshold && 
 | 
						|
     size_b > bot_size) {
 | 
						|
 | 
						|
    mp_digit *t1, *t2, *t3, carry;
 | 
						|
 | 
						|
    mp_digit *a_top = da + bot_size; 
 | 
						|
    mp_digit *b_top = db + bot_size;
 | 
						|
 | 
						|
    mp_size  at_size = size_a - bot_size;
 | 
						|
    mp_size  bt_size = size_b - bot_size;
 | 
						|
    mp_size  buf_size = 2 * bot_size;
 | 
						|
 | 
						|
    /* Do a single allocation for all three temporary buffers needed;
 | 
						|
       each buffer must be big enough to hold the product of two
 | 
						|
       bottom halves, and one buffer needs space for the completed 
 | 
						|
       product; twice the space is plenty.
 | 
						|
     */
 | 
						|
    if((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
 | 
						|
    t2 = t1 + buf_size; 
 | 
						|
    t3 = t2 + buf_size;
 | 
						|
    ZERO(t1, 4 * buf_size);
 | 
						|
 | 
						|
    /* t1 and t2 are initially used as temporaries to compute the inner product
 | 
						|
       (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
 | 
						|
     */
 | 
						|
    carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
 | 
						|
    t1[bot_size] = carry;
 | 
						|
 | 
						|
    carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
 | 
						|
    t2[bot_size] = carry;
 | 
						|
 | 
						|
    (void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1);   /* t3 = t1 * t2 */
 | 
						|
 | 
						|
    /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
 | 
						|
       we're left with only the pieces we want:  t3 = a1b0 + a0b1
 | 
						|
     */
 | 
						|
    ZERO(t1, bot_size + 1);
 | 
						|
    ZERO(t2, bot_size + 1);
 | 
						|
    (void) s_kmul(da, db, t1, bot_size, bot_size);     /* t1 = a0 * b0 */
 | 
						|
    (void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
 | 
						|
 | 
						|
    /* Subtract out t1 and t2 to get the inner product */
 | 
						|
    s_usub(t3, t1, t3, buf_size + 2, buf_size);
 | 
						|
    s_usub(t3, t2, t3, buf_size + 2, buf_size);
 | 
						|
 | 
						|
    /* Assemble the output value */
 | 
						|
    COPY(t1, dc, buf_size);
 | 
						|
    (void) s_uadd(t3, dc + bot_size, dc + bot_size,
 | 
						|
		  buf_size + 1, buf_size + 1);
 | 
						|
 | 
						|
    (void) s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
 | 
						|
		  buf_size, buf_size);
 | 
						|
    
 | 
						|
    s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    s_umul(da, db, dc, size_a, size_b);
 | 
						|
  }
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_umul(da, db, dc, size_a, size_b) */
 | 
						|
 | 
						|
static void     s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
 | 
						|
		       mp_size size_a, mp_size size_b)
 | 
						|
{
 | 
						|
  mp_size   a, b;
 | 
						|
  mp_word   w;
 | 
						|
 | 
						|
  for(a = 0; a < size_a; ++a, ++dc, ++da) {
 | 
						|
    mp_digit *dct = dc;
 | 
						|
    mp_digit *dbt = db;
 | 
						|
 | 
						|
    if(*da == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    w = 0;
 | 
						|
    for(b = 0; b < size_b; ++b, ++dbt, ++dct) {
 | 
						|
      w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
 | 
						|
 | 
						|
      *dct = LOWER_HALF(w);
 | 
						|
      w = UPPER_HALF(w);
 | 
						|
    }
 | 
						|
 | 
						|
    *dct = (mp_digit)w;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_ksqr(da, dc, size_a) */
 | 
						|
 | 
						|
static int       s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
 | 
						|
{
 | 
						|
  if(multiply_threshold && size_a > multiply_threshold) {
 | 
						|
    mp_size    bot_size = (size_a + 1) / 2;
 | 
						|
    mp_digit  *a_top = da + bot_size;
 | 
						|
    mp_digit  *t1, *t2, *t3;
 | 
						|
    mp_size    at_size = size_a - bot_size;
 | 
						|
    mp_size    buf_size = 2 * bot_size;
 | 
						|
 | 
						|
    if((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
 | 
						|
    t2 = t1 + buf_size;
 | 
						|
    t3 = t2 + buf_size;
 | 
						|
    ZERO(t1, 4 * buf_size);
 | 
						|
 | 
						|
    (void) s_ksqr(da, t1, bot_size);    /* t1 = a0 ^ 2 */
 | 
						|
    (void) s_ksqr(a_top, t2, at_size);  /* t2 = a1 ^ 2 */
 | 
						|
 | 
						|
    (void) s_kmul(da, a_top, t3, bot_size, at_size);  /* t3 = a0 * a1 */
 | 
						|
 | 
						|
    /* Quick multiply t3 by 2, shifting left (can't overflow) */
 | 
						|
    {
 | 
						|
      int     i, top = bot_size + at_size;
 | 
						|
      mp_word w, save = 0;
 | 
						|
 | 
						|
      for(i = 0; i < top; ++i) {
 | 
						|
	w = t3[i];
 | 
						|
	w = (w << 1) | save;
 | 
						|
	t3[i] = LOWER_HALF(w);
 | 
						|
	save = UPPER_HALF(w);
 | 
						|
      }
 | 
						|
      t3[i] = LOWER_HALF(save);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Assemble the output value */
 | 
						|
    COPY(t1, dc, 2 * bot_size);
 | 
						|
    (void) s_uadd(t3, dc + bot_size, dc + bot_size,
 | 
						|
		  buf_size + 1, buf_size + 1);
 | 
						|
    
 | 
						|
    (void) s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
 | 
						|
		  buf_size, buf_size);
 | 
						|
 | 
						|
    free(t1); /* note that t2 and t2 are internal pointers only */
 | 
						|
 | 
						|
  } 
 | 
						|
  else {
 | 
						|
    s_usqr(da, dc, size_a);
 | 
						|
  }
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_usqr(da, dc, size_a) */
 | 
						|
 | 
						|
static void      s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
 | 
						|
{
 | 
						|
  mp_size  i, j;
 | 
						|
  mp_word  w;
 | 
						|
 | 
						|
  for(i = 0; i < size_a; ++i, dc += 2, ++da) {
 | 
						|
    mp_digit  *dct = dc, *dat = da;
 | 
						|
 | 
						|
    if(*da == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    /* Take care of the first digit, no rollover */
 | 
						|
    w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
 | 
						|
    *dct = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w);
 | 
						|
    ++dat; ++dct;
 | 
						|
 | 
						|
    for(j = i + 1; j < size_a; ++j, ++dat, ++dct) {
 | 
						|
      mp_word  t = (mp_word)*da * (mp_word)*dat;
 | 
						|
      mp_word  u = w + (mp_word)*dct, ov = 0;
 | 
						|
 | 
						|
      /* Check if doubling t will overflow a word */
 | 
						|
      if(HIGH_BIT_SET(t))
 | 
						|
	ov = 1;
 | 
						|
 | 
						|
      w = t + t;
 | 
						|
 | 
						|
      /* Check if adding u to w will overflow a word */
 | 
						|
      if(ADD_WILL_OVERFLOW(w, u))
 | 
						|
	ov = 1;
 | 
						|
 | 
						|
      w += u;
 | 
						|
 | 
						|
      *dct = LOWER_HALF(w);
 | 
						|
      w = UPPER_HALF(w);
 | 
						|
      if(ov) {
 | 
						|
	w += MP_DIGIT_MAX; /* MP_RADIX */
 | 
						|
	++w;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    w = w + *dct;
 | 
						|
    *dct = (mp_digit)w; 
 | 
						|
    while((w = UPPER_HALF(w)) != 0) {
 | 
						|
      ++dct; w = w + *dct;
 | 
						|
      *dct = LOWER_HALF(w);
 | 
						|
    }
 | 
						|
 | 
						|
    assert(w == 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_dadd(a, b) */
 | 
						|
 | 
						|
static void      s_dadd(mp_int a, mp_digit b)
 | 
						|
{
 | 
						|
  mp_word   w = 0;
 | 
						|
  mp_digit *da = MP_DIGITS(a);
 | 
						|
  mp_size   ua = MP_USED(a);
 | 
						|
 | 
						|
  w = (mp_word)*da + b;
 | 
						|
  *da++ = LOWER_HALF(w);
 | 
						|
  w = UPPER_HALF(w);
 | 
						|
 | 
						|
  for(ua -= 1; ua > 0; --ua, ++da) {
 | 
						|
    w = (mp_word)*da + w;
 | 
						|
 | 
						|
    *da = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w);
 | 
						|
  }
 | 
						|
 | 
						|
  if(w) {
 | 
						|
    *da = (mp_digit)w;
 | 
						|
    MP_USED(a) += 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_dmul(a, b) */
 | 
						|
 | 
						|
static void      s_dmul(mp_int a, mp_digit b)
 | 
						|
{
 | 
						|
  mp_word   w = 0;
 | 
						|
  mp_digit *da = MP_DIGITS(a);
 | 
						|
  mp_size   ua = MP_USED(a);
 | 
						|
 | 
						|
  while(ua > 0) {
 | 
						|
    w = (mp_word)*da * b + w;
 | 
						|
    *da++ = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w);
 | 
						|
    --ua;
 | 
						|
  }
 | 
						|
 | 
						|
  if(w) {
 | 
						|
    *da = (mp_digit)w;
 | 
						|
    MP_USED(a) += 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_dbmul(da, b, dc, size_a) */
 | 
						|
 | 
						|
static void      s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
 | 
						|
{
 | 
						|
  mp_word  w = 0;
 | 
						|
 | 
						|
  while(size_a > 0) {
 | 
						|
    w = (mp_word)*da++ * (mp_word)b + w;
 | 
						|
 | 
						|
    *dc++ = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w);
 | 
						|
    --size_a;
 | 
						|
  }
 | 
						|
 | 
						|
  if(w)
 | 
						|
    *dc = LOWER_HALF(w);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_ddiv(da, d, dc, size_a) */
 | 
						|
 | 
						|
static mp_digit  s_ddiv(mp_int a, mp_digit b)
 | 
						|
{
 | 
						|
  mp_word   w = 0, qdigit;
 | 
						|
  mp_size   ua = MP_USED(a);
 | 
						|
  mp_digit *da = MP_DIGITS(a) + ua - 1;
 | 
						|
  
 | 
						|
  for(/* */; ua > 0; --ua, --da) {
 | 
						|
    w = (w << MP_DIGIT_BIT) | *da;
 | 
						|
 | 
						|
    if(w >= b) {
 | 
						|
      qdigit = w / b;
 | 
						|
      w = w % b;
 | 
						|
    } 
 | 
						|
    else {
 | 
						|
      qdigit = 0;
 | 
						|
    }
 | 
						|
      
 | 
						|
    *da = (mp_digit)qdigit;
 | 
						|
  }
 | 
						|
 | 
						|
  CLAMP(a);
 | 
						|
  return (mp_digit)w;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_qdiv(z, p2) */
 | 
						|
 | 
						|
static void     s_qdiv(mp_int z, mp_size p2)
 | 
						|
{
 | 
						|
  mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
 | 
						|
  mp_size uz = MP_USED(z);
 | 
						|
 | 
						|
  if(ndig) {
 | 
						|
    mp_size  mark;
 | 
						|
    mp_digit *to, *from;
 | 
						|
 | 
						|
    if(ndig >= uz) {
 | 
						|
      mp_int_zero(z);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    to = MP_DIGITS(z); from = to + ndig;
 | 
						|
 | 
						|
    for(mark = ndig; mark < uz; ++mark) 
 | 
						|
      *to++ = *from++;
 | 
						|
 | 
						|
    MP_USED(z) = uz - ndig;
 | 
						|
  }
 | 
						|
 | 
						|
  if(nbits) {
 | 
						|
    mp_digit d = 0, *dz, save;
 | 
						|
    mp_size  up = MP_DIGIT_BIT - nbits;
 | 
						|
 | 
						|
    uz = MP_USED(z);
 | 
						|
    dz = MP_DIGITS(z) + uz - 1;
 | 
						|
 | 
						|
    for(/* */; uz > 0; --uz, --dz) {
 | 
						|
      save = *dz;
 | 
						|
 | 
						|
      *dz = (*dz >> nbits) | (d << up);
 | 
						|
      d = save;
 | 
						|
    }
 | 
						|
 | 
						|
    CLAMP(z);
 | 
						|
  }
 | 
						|
 | 
						|
  if(MP_USED(z) == 1 && z->digits[0] == 0)
 | 
						|
    MP_SIGN(z) = MP_ZPOS;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_qmod(z, p2) */
 | 
						|
 | 
						|
static void     s_qmod(mp_int z, mp_size p2)
 | 
						|
{
 | 
						|
  mp_size   start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
 | 
						|
  mp_size   uz = MP_USED(z);
 | 
						|
  mp_digit  mask = (1 << rest) - 1;
 | 
						|
 | 
						|
  if(start <= uz) {
 | 
						|
    MP_USED(z) = start;
 | 
						|
    z->digits[start - 1] &= mask;
 | 
						|
    CLAMP(z);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_qmul(z, p2) */
 | 
						|
 | 
						|
static int      s_qmul(mp_int z, mp_size p2)
 | 
						|
{
 | 
						|
  mp_size   uz, need, rest, extra, i;
 | 
						|
  mp_digit *from, *to, d;
 | 
						|
 | 
						|
  if(p2 == 0)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  uz = MP_USED(z); 
 | 
						|
  need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT;
 | 
						|
 | 
						|
  /* Figure out if we need an extra digit at the top end; this occurs
 | 
						|
     if the topmost `rest' bits of the high-order digit of z are not
 | 
						|
     zero, meaning they will be shifted off the end if not preserved */
 | 
						|
  extra = 0;
 | 
						|
  if(rest != 0) {
 | 
						|
    mp_digit *dz = MP_DIGITS(z) + uz - 1;
 | 
						|
 | 
						|
    if((*dz >> (MP_DIGIT_BIT - rest)) != 0)
 | 
						|
      extra = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if(!s_pad(z, uz + need + extra))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  /* If we need to shift by whole digits, do that in one pass, then
 | 
						|
     to back and shift by partial digits.
 | 
						|
   */
 | 
						|
  if(need > 0) {
 | 
						|
    from = MP_DIGITS(z) + uz - 1;
 | 
						|
    to = from + need;
 | 
						|
 | 
						|
    for(i = 0; i < uz; ++i)
 | 
						|
      *to-- = *from--;
 | 
						|
 | 
						|
    ZERO(MP_DIGITS(z), need);
 | 
						|
    uz += need;
 | 
						|
  }
 | 
						|
 | 
						|
  if(rest) {
 | 
						|
    d = 0;
 | 
						|
    for(i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
 | 
						|
      mp_digit save = *from;
 | 
						|
      
 | 
						|
      *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
 | 
						|
      d = save;
 | 
						|
    }
 | 
						|
 | 
						|
    d >>= (MP_DIGIT_BIT - rest);
 | 
						|
    if(d != 0) {
 | 
						|
      *from = d;
 | 
						|
      uz += extra;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MP_USED(z) = uz;
 | 
						|
  CLAMP(z);
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_qsub(z, p2) */
 | 
						|
 | 
						|
/* Subtract |z| from 2^p2, assuming 2^p2 > |z|, and set z to be positive */
 | 
						|
static int       s_qsub(mp_int z, mp_size p2)
 | 
						|
{
 | 
						|
  mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp;
 | 
						|
  mp_size  tdig = (p2 / MP_DIGIT_BIT), pos;
 | 
						|
  mp_word  w = 0;
 | 
						|
 | 
						|
  if(!s_pad(z, tdig + 1))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  for(pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
 | 
						|
    w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
 | 
						|
 | 
						|
    *zp = LOWER_HALF(w);
 | 
						|
    w = UPPER_HALF(w) ? 0 : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
 | 
						|
  *zp = LOWER_HALF(w);
 | 
						|
 | 
						|
  assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
 | 
						|
  
 | 
						|
  MP_SIGN(z) = MP_ZPOS;
 | 
						|
  CLAMP(z);
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_dp2k(z) */
 | 
						|
 | 
						|
static int      s_dp2k(mp_int z)
 | 
						|
{
 | 
						|
  int       k = 0;
 | 
						|
  mp_digit *dp = MP_DIGITS(z), d;
 | 
						|
 | 
						|
  if(MP_USED(z) == 1 && *dp == 0)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  while(*dp == 0) {
 | 
						|
    k += MP_DIGIT_BIT;
 | 
						|
    ++dp;
 | 
						|
  }
 | 
						|
  
 | 
						|
  d = *dp;
 | 
						|
  while((d & 1) == 0) {
 | 
						|
    d >>= 1;
 | 
						|
    ++k;
 | 
						|
  }
 | 
						|
 | 
						|
  return k;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_isp2(z) */
 | 
						|
 | 
						|
static int       s_isp2(mp_int z)
 | 
						|
{
 | 
						|
  mp_size uz = MP_USED(z), k = 0;
 | 
						|
  mp_digit *dz = MP_DIGITS(z), d;
 | 
						|
 | 
						|
  while(uz > 1) {
 | 
						|
    if(*dz++ != 0)
 | 
						|
      return -1;
 | 
						|
    k += MP_DIGIT_BIT;
 | 
						|
    --uz;
 | 
						|
  }
 | 
						|
 | 
						|
  d = *dz;
 | 
						|
  while(d > 1) {
 | 
						|
    if(d & 1)
 | 
						|
      return -1;
 | 
						|
    ++k; d >>= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return (int) k;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_2expt(z, k) */
 | 
						|
 | 
						|
static int       s_2expt(mp_int z, int k)
 | 
						|
{
 | 
						|
  mp_size  ndig, rest;
 | 
						|
  mp_digit *dz;
 | 
						|
 | 
						|
  ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
 | 
						|
  rest = k % MP_DIGIT_BIT;
 | 
						|
 | 
						|
  if(!s_pad(z, ndig))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  dz = MP_DIGITS(z);
 | 
						|
  ZERO(dz, ndig);
 | 
						|
  *(dz + ndig - 1) = (1 << rest);
 | 
						|
  MP_USED(z) = ndig;
 | 
						|
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_norm(a, b) */
 | 
						|
 | 
						|
static int      s_norm(mp_int a, mp_int b)
 | 
						|
{
 | 
						|
  mp_digit d = b->digits[MP_USED(b) - 1];
 | 
						|
  int      k = 0;
 | 
						|
 | 
						|
  while(d < (mp_digit) (1 << (MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
 | 
						|
    d <<= 1;
 | 
						|
    ++k;
 | 
						|
  }
 | 
						|
 | 
						|
  /* These multiplications can't fail */
 | 
						|
  if(k != 0) {
 | 
						|
    (void) s_qmul(a, (mp_size) k);
 | 
						|
    (void) s_qmul(b, (mp_size) k);
 | 
						|
  }
 | 
						|
 | 
						|
  return k;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_brmu(z, m) */
 | 
						|
 | 
						|
static mp_result s_brmu(mp_int z, mp_int m)
 | 
						|
{
 | 
						|
  mp_size um = MP_USED(m) * 2;
 | 
						|
 | 
						|
  if(!s_pad(z, um))
 | 
						|
    return MP_MEMORY;
 | 
						|
 | 
						|
  s_2expt(z, MP_DIGIT_BIT * um);
 | 
						|
  return mp_int_div(z, m, z, NULL);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_reduce(x, m, mu, q1, q2) */
 | 
						|
 | 
						|
static int       s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
 | 
						|
{
 | 
						|
  mp_size   um = MP_USED(m), umb_p1, umb_m1;
 | 
						|
 | 
						|
  umb_p1 = (um + 1) * MP_DIGIT_BIT;
 | 
						|
  umb_m1 = (um - 1) * MP_DIGIT_BIT;
 | 
						|
 | 
						|
  if(mp_int_copy(x, q1) != MP_OK)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
 | 
						|
  s_qdiv(q1, umb_m1);
 | 
						|
  UMUL(q1, mu, q2);
 | 
						|
  s_qdiv(q2, umb_p1);
 | 
						|
 | 
						|
  /* Set x = x mod b^(k+1) */
 | 
						|
  s_qmod(x, umb_p1);
 | 
						|
 | 
						|
  /* Now, q is a guess for the quotient a / m.
 | 
						|
     Compute x - q * m mod b^(k+1), replacing x.  This may be off
 | 
						|
     by a factor of 2m, but no more than that.
 | 
						|
   */
 | 
						|
  UMUL(q2, m, q1);
 | 
						|
  s_qmod(q1, umb_p1);
 | 
						|
  (void) mp_int_sub(x, q1, x); /* can't fail */
 | 
						|
 | 
						|
  /* The result may be < 0; if it is, add b^(k+1) to pin it in the
 | 
						|
     proper range. */
 | 
						|
  if((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  /* If x > m, we need to back it off until it is in range.
 | 
						|
     This will be required at most twice.  */
 | 
						|
  if(mp_int_compare(x, m) >= 0)
 | 
						|
    (void) mp_int_sub(x, m, x);
 | 
						|
  if(mp_int_compare(x, m) >= 0)
 | 
						|
    (void) mp_int_sub(x, m, x);
 | 
						|
 | 
						|
  /* At this point, x has been properly reduced. */
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_embar(a, b, m, mu, c) */
 | 
						|
 | 
						|
/* Perform modular exponentiation using Barrett's method, where mu is
 | 
						|
   the reduction constant for m.  Assumes a < m, b > 0. */
 | 
						|
mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
 | 
						|
{
 | 
						|
  mp_digit  *db, *dbt, umu, d;
 | 
						|
  mpz_t     temp[3]; 
 | 
						|
  mp_result res;
 | 
						|
  int       last = 0;
 | 
						|
 | 
						|
  umu = MP_USED(mu); db = MP_DIGITS(b); dbt = db + MP_USED(b) - 1;
 | 
						|
 | 
						|
  while(last < 3) 
 | 
						|
    SETUP(mp_int_init_size(TEMP(last), 2 * umu), last);
 | 
						|
 | 
						|
  (void) mp_int_set_value(c, 1);
 | 
						|
 | 
						|
  /* Take care of low-order digits */
 | 
						|
  while(db < dbt) {
 | 
						|
    int      i;
 | 
						|
 | 
						|
    for(d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
 | 
						|
      if(d & 1) {
 | 
						|
	/* The use of a second temporary avoids allocation */
 | 
						|
	UMUL(c, a, TEMP(0));
 | 
						|
	if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
 | 
						|
	  res = MP_MEMORY; goto CLEANUP;
 | 
						|
	}
 | 
						|
	mp_int_copy(TEMP(0), c);
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      USQR(a, TEMP(0));
 | 
						|
      assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
 | 
						|
      if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
 | 
						|
	res = MP_MEMORY; goto CLEANUP;
 | 
						|
      }
 | 
						|
      assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
 | 
						|
      mp_int_copy(TEMP(0), a);
 | 
						|
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    ++db;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Take care of highest-order digit */
 | 
						|
  d = *dbt;
 | 
						|
  for(;;) {
 | 
						|
    if(d & 1) {
 | 
						|
      UMUL(c, a, TEMP(0));
 | 
						|
      if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
 | 
						|
	res = MP_MEMORY; goto CLEANUP;
 | 
						|
      }
 | 
						|
      mp_int_copy(TEMP(0), c);
 | 
						|
    }
 | 
						|
    
 | 
						|
    d >>= 1;
 | 
						|
    if(!d) break;
 | 
						|
 | 
						|
    USQR(a, TEMP(0));
 | 
						|
    if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
 | 
						|
      res = MP_MEMORY; goto CLEANUP;
 | 
						|
    }
 | 
						|
    (void) mp_int_copy(TEMP(0), a);
 | 
						|
  }
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--last >= 0)
 | 
						|
    mp_int_clear(TEMP(last));
 | 
						|
  
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_udiv(a, b) */
 | 
						|
 | 
						|
/* Precondition:  a >= b and b > 0
 | 
						|
   Postcondition: a' = a / b, b' = a % b
 | 
						|
 */
 | 
						|
static mp_result s_udiv(mp_int a, mp_int b)
 | 
						|
{
 | 
						|
  mpz_t     q, r, t;
 | 
						|
  mp_size   ua, ub, qpos = 0;
 | 
						|
  mp_digit *da, btop;
 | 
						|
  mp_result res = MP_OK;
 | 
						|
  int       k, skip = 0;
 | 
						|
 | 
						|
  /* Force signs to positive */
 | 
						|
  MP_SIGN(a) = MP_ZPOS;
 | 
						|
  MP_SIGN(b) = MP_ZPOS;
 | 
						|
 | 
						|
  /* Normalize, per Knuth */
 | 
						|
  k = s_norm(a, b);
 | 
						|
 | 
						|
  ua = MP_USED(a); ub = MP_USED(b); btop = b->digits[ub - 1];
 | 
						|
  if((res = mp_int_init_size(&q, ua)) != MP_OK) return res;
 | 
						|
  if((res = mp_int_init_size(&t, ua + 1)) != MP_OK) goto CLEANUP;
 | 
						|
 | 
						|
  da = MP_DIGITS(a);
 | 
						|
  r.digits = da + ua - 1;  /* The contents of r are shared with a */
 | 
						|
  r.used   = 1;
 | 
						|
  r.sign   = MP_ZPOS;
 | 
						|
  r.alloc  = MP_ALLOC(a);
 | 
						|
  ZERO(t.digits, t.alloc);
 | 
						|
 | 
						|
  /* Solve for quotient digits, store in q.digits in reverse order */
 | 
						|
  while(r.digits >= da) {
 | 
						|
    assert(qpos <= q.alloc);
 | 
						|
 | 
						|
    if(s_ucmp(b, &r) > 0) {
 | 
						|
      r.digits -= 1;
 | 
						|
      r.used += 1;
 | 
						|
      
 | 
						|
      if(++skip > 1)
 | 
						|
	q.digits[qpos++] = 0;
 | 
						|
      
 | 
						|
      CLAMP(&r);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      mp_word  pfx = r.digits[r.used - 1];
 | 
						|
      mp_word  qdigit;
 | 
						|
      
 | 
						|
      if(r.used > 1 && (pfx < btop || r.digits[r.used - 2] == 0)) {
 | 
						|
	pfx <<= MP_DIGIT_BIT / 2;
 | 
						|
	pfx <<= MP_DIGIT_BIT / 2;
 | 
						|
	pfx |= r.digits[r.used - 2];
 | 
						|
      }
 | 
						|
 | 
						|
      qdigit = pfx / btop;
 | 
						|
      if(qdigit > MP_DIGIT_MAX) 
 | 
						|
	qdigit = 1;
 | 
						|
      
 | 
						|
      s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
 | 
						|
      t.used = ub + 1; CLAMP(&t);
 | 
						|
      while(s_ucmp(&t, &r) > 0) {
 | 
						|
	--qdigit;
 | 
						|
	(void) mp_int_sub(&t, b, &t); /* cannot fail */
 | 
						|
      }
 | 
						|
      
 | 
						|
      s_usub(r.digits, t.digits, r.digits, r.used, t.used);
 | 
						|
      CLAMP(&r);
 | 
						|
      
 | 
						|
      q.digits[qpos++] = (mp_digit) qdigit;
 | 
						|
      ZERO(t.digits, t.used);
 | 
						|
      skip = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* Put quotient digits in the correct order, and discard extra zeroes */
 | 
						|
  q.used = qpos;
 | 
						|
  REV(mp_digit, q.digits, qpos);
 | 
						|
  CLAMP(&q);
 | 
						|
 | 
						|
  /* Denormalize the remainder */
 | 
						|
  CLAMP(a);
 | 
						|
  if(k != 0)
 | 
						|
    s_qdiv(a, k);
 | 
						|
  
 | 
						|
  mp_int_copy(a, b);  /* ok:  0 <= r < b */
 | 
						|
  mp_int_copy(&q, a); /* ok:  q <= a     */
 | 
						|
  
 | 
						|
  mp_int_clear(&t);
 | 
						|
 CLEANUP:
 | 
						|
  mp_int_clear(&q);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_outlen(z, r) */
 | 
						|
 | 
						|
/* Precondition:  2 <= r < 64 */
 | 
						|
static int       s_outlen(mp_int z, mp_size r)
 | 
						|
{
 | 
						|
  mp_result  bits;
 | 
						|
  double     raw;
 | 
						|
 | 
						|
  bits = mp_int_count_bits(z);
 | 
						|
  raw = (double)bits * s_log2[r];
 | 
						|
 | 
						|
  return (int)(raw + 0.999999);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_inlen(len, r) */
 | 
						|
 | 
						|
static mp_size   s_inlen(int len, mp_size r)
 | 
						|
{
 | 
						|
  double  raw = (double)len / s_log2[r];
 | 
						|
  mp_size bits = (mp_size)(raw + 0.5);
 | 
						|
 | 
						|
  return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT);
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_ch2val(c, r) */
 | 
						|
 | 
						|
static int       s_ch2val(char c, int r)
 | 
						|
{
 | 
						|
  int out;
 | 
						|
 | 
						|
  if(isdigit((int)c))
 | 
						|
    out = c - '0';
 | 
						|
  else if(r > 10 && isalpha((int)c))
 | 
						|
    out = toupper(c) - 'A' + 10;
 | 
						|
  else
 | 
						|
    return -1;
 | 
						|
 | 
						|
  return (out >= r) ? -1 : out;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_val2ch(v, caps) */
 | 
						|
 | 
						|
static char      s_val2ch(int v, int caps)
 | 
						|
{
 | 
						|
  assert(v >= 0);
 | 
						|
 | 
						|
  if(v < 10)
 | 
						|
    return v + '0';
 | 
						|
  else {
 | 
						|
    char out = (v - 10) + 'a';
 | 
						|
 | 
						|
    if(caps)
 | 
						|
      return toupper(out);
 | 
						|
    else
 | 
						|
      return out;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_2comp(buf, len) */
 | 
						|
 | 
						|
static void      s_2comp(unsigned char *buf, int len)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
  unsigned short s = 1;
 | 
						|
 | 
						|
  for(i = len - 1; i >= 0; --i) {
 | 
						|
    unsigned char c = ~buf[i];
 | 
						|
 | 
						|
    s = c + s;
 | 
						|
    c = s & UCHAR_MAX;
 | 
						|
    s >>= CHAR_BIT;
 | 
						|
 | 
						|
    buf[i] = c;
 | 
						|
  }
 | 
						|
 | 
						|
  /* last carry out is ignored */
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_tobin(z, buf, *limpos) */
 | 
						|
 | 
						|
static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
 | 
						|
{
 | 
						|
  mp_size uz;
 | 
						|
  mp_digit *dz;
 | 
						|
  int pos = 0, limit = *limpos;
 | 
						|
 | 
						|
  uz = MP_USED(z); dz = MP_DIGITS(z);
 | 
						|
  while(uz > 0 && pos < limit) {
 | 
						|
    mp_digit d = *dz++;
 | 
						|
    int i;
 | 
						|
 | 
						|
    for(i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
 | 
						|
      buf[pos++] = (unsigned char)d;
 | 
						|
      d >>= CHAR_BIT;
 | 
						|
 | 
						|
      /* Don't write leading zeroes */
 | 
						|
      if(d == 0 && uz == 1)
 | 
						|
	i = 0; /* exit loop without signaling truncation */
 | 
						|
    }
 | 
						|
 | 
						|
    /* Detect truncation (loop exited with pos >= limit) */
 | 
						|
    if(i > 0) break;
 | 
						|
 | 
						|
    --uz;
 | 
						|
  }
 | 
						|
 | 
						|
  if(pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
 | 
						|
    if(pos < limit)
 | 
						|
      buf[pos++] = 0;
 | 
						|
    else
 | 
						|
      uz = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Digits are in reverse order, fix that */
 | 
						|
  REV(unsigned char, buf, pos);
 | 
						|
 | 
						|
  /* Return the number of bytes actually written */
 | 
						|
  *limpos = pos;
 | 
						|
 | 
						|
  return (uz == 0) ? MP_OK : MP_TRUNC;
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_print(tag, z) */
 | 
						|
 | 
						|
#if DEBUG
 | 
						|
void      s_print(char *tag, mp_int z)
 | 
						|
{
 | 
						|
  int  i;
 | 
						|
 | 
						|
  fprintf(stderr, "%s: %c ", tag,
 | 
						|
	  (MP_SIGN(z) == MP_NEG) ? '-' : '+');
 | 
						|
 | 
						|
  for(i = MP_USED(z) - 1; i >= 0; --i)
 | 
						|
    fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), z->digits[i]);
 | 
						|
 | 
						|
  fputc('\n', stderr);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void      s_print_buf(char *tag, mp_digit *buf, mp_size num)
 | 
						|
{
 | 
						|
  int  i;
 | 
						|
 | 
						|
  fprintf(stderr, "%s: ", tag);
 | 
						|
 | 
						|
  for(i = num - 1; i >= 0; --i) 
 | 
						|
    fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]);
 | 
						|
 | 
						|
  fputc('\n', stderr);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* HERE THERE BE DRAGONS */
 |