3988 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3988 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
    mpi.c
 | 
						|
 | 
						|
    by Michael J. Fromberger <sting@linguist.dartmouth.edu>
 | 
						|
    Copyright (C) 1998 Michael J. Fromberger
 | 
						|
 | 
						|
    Arbitrary precision integer arithmetic library
 | 
						|
 | 
						|
    SPDX-License-Identifier: Unlicense
 | 
						|
 | 
						|
    $Id$
 | 
						|
 */
 | 
						|
 | 
						|
#include "mpi.h"
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <ctype.h>
 | 
						|
 | 
						|
#if MP_DEBUG
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
 | 
						|
#else
 | 
						|
#define DIAG(T,V)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
   If MP_LOGTAB is not defined, use the math library to compute the
 | 
						|
   logarithms on the fly.  Otherwise, use the static table below.
 | 
						|
   Pick which works best for your system.
 | 
						|
 */
 | 
						|
#if MP_LOGTAB
 | 
						|
 | 
						|
/* {{{ s_logv_2[] - log table for 2 in various bases */
 | 
						|
 | 
						|
/*
 | 
						|
  A table of the logs of 2 for various bases (the 0 and 1 entries of
 | 
						|
  this table are meaningless and should not be referenced).
 | 
						|
 | 
						|
  This table is used to compute output lengths for the mp_toradix()
 | 
						|
  function.  Since a number n in radix r takes up about log_r(n)
 | 
						|
  digits, we estimate the output size by taking the least integer
 | 
						|
  greater than log_r(n), where:
 | 
						|
 | 
						|
  log_r(n) = log_2(n) * log_r(2)
 | 
						|
 | 
						|
  This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
 | 
						|
  which are the output bases supported.
 | 
						|
 */
 | 
						|
 | 
						|
#include "logtab.h"
 | 
						|
 | 
						|
/* }}} */
 | 
						|
#define LOG_V_2(R)  s_logv_2[(R)]
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#define LOG_V_2(R)  (log(2.0)/log(R))
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* Default precision for newly created mp_int's      */
 | 
						|
static unsigned int s_mp_defprec = MP_DEFPREC;
 | 
						|
 | 
						|
/* {{{ Digit arithmetic macros */
 | 
						|
 | 
						|
/*
 | 
						|
  When adding and multiplying digits, the results can be larger than
 | 
						|
  can be contained in an mp_digit.  Thus, an mp_word is used.  These
 | 
						|
  macros mask off the upper and lower digits of the mp_word (the
 | 
						|
  mp_word may be more than 2 mp_digits wide, but we only concern
 | 
						|
  ourselves with the low-order 2 mp_digits)
 | 
						|
 | 
						|
  If your mp_word DOES have more than 2 mp_digits, you need to
 | 
						|
  uncomment the first line, and comment out the second.
 | 
						|
 */
 | 
						|
 | 
						|
/* #define  CARRYOUT(W)  (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
 | 
						|
#define  CARRYOUT(W)  ((W)>>DIGIT_BIT)
 | 
						|
#define  ACCUM(W)     ((W)&MP_DIGIT_MAX)
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Comparison constants */
 | 
						|
 | 
						|
#define  MP_LT       -1
 | 
						|
#define  MP_EQ        0
 | 
						|
#define  MP_GT        1
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Constant strings */
 | 
						|
 | 
						|
/* Constant strings returned by mp_strerror() */
 | 
						|
static const char *mp_err_string[] = {
 | 
						|
  "unknown result code",     /* say what?            */
 | 
						|
  "boolean true",            /* MP_OKAY, MP_YES      */
 | 
						|
  "boolean false",           /* MP_NO                */
 | 
						|
  "out of memory",           /* MP_MEM               */
 | 
						|
  "argument out of range",   /* MP_RANGE             */
 | 
						|
  "invalid input parameter", /* MP_BADARG            */
 | 
						|
  "result is undefined"      /* MP_UNDEF             */
 | 
						|
};
 | 
						|
 | 
						|
/* Value to digit maps for radix conversion   */
 | 
						|
 | 
						|
/* s_dmap_1 - standard digits and letters */
 | 
						|
static const char *s_dmap_1 =
 | 
						|
  "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
 | 
						|
 | 
						|
#if 0
 | 
						|
/* s_dmap_2 - base64 ordering for digits  */
 | 
						|
static const char *s_dmap_2 =
 | 
						|
  "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Static function declarations */
 | 
						|
 | 
						|
/*
 | 
						|
   If MP_MACRO is false, these will be defined as actual functions;
 | 
						|
   otherwise, suitable macro definitions will be used.  This works
 | 
						|
   around the fact that ANSI C89 doesn't support an 'inline' keyword
 | 
						|
   (although I hear C9x will ... about bloody time).  At present, the
 | 
						|
   macro definitions are identical to the function bodies, but they'll
 | 
						|
   expand in place, instead of generating a function call.
 | 
						|
 | 
						|
   I chose these particular functions to be made into macros because
 | 
						|
   some profiling showed they are called a lot on a typical workload,
 | 
						|
   and yet they are primarily housekeeping.
 | 
						|
 */
 | 
						|
#if MP_MACRO == 0
 | 
						|
 void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
 | 
						|
 void     s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy    */
 | 
						|
 void    *s_mp_alloc(size_t nb, size_t ni);       /* general allocator     */
 | 
						|
 void     s_mp_free(void *ptr);                   /* general free function */
 | 
						|
#else
 | 
						|
 | 
						|
 /* Even if these are defined as macros, we need to respect the settings
 | 
						|
    of the MP_MEMSET and MP_MEMCPY configuration options...
 | 
						|
  */
 | 
						|
 #if MP_MEMSET == 0
 | 
						|
  #define  s_mp_setz(dp, count) \
 | 
						|
       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
 | 
						|
 #else
 | 
						|
  #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
 | 
						|
 #endif /* MP_MEMSET */
 | 
						|
 | 
						|
 #if MP_MEMCPY == 0
 | 
						|
  #define  s_mp_copy(sp, dp, count) \
 | 
						|
       {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
 | 
						|
 #else
 | 
						|
  #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
 | 
						|
 #endif /* MP_MEMCPY */
 | 
						|
 | 
						|
 #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
 | 
						|
 #define  s_mp_free(ptr) {if(ptr) free(ptr);}
 | 
						|
#endif /* MP_MACRO */
 | 
						|
 | 
						|
mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
 | 
						|
mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
 | 
						|
 | 
						|
void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
 | 
						|
 | 
						|
void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
 | 
						|
 | 
						|
mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
 | 
						|
void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
 | 
						|
void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
 | 
						|
void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
 | 
						|
mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place*/
 | 
						|
void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
 | 
						|
mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
 | 
						|
mp_digit s_mp_norm(mp_int *a, mp_int *b);      /* normalize for division  */
 | 
						|
mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
 | 
						|
mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
 | 
						|
mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
 | 
						|
mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
 | 
						|
                                               /* unsigned digit divide   */
 | 
						|
mp_err   s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
 | 
						|
                                               /* Barrett reduction       */
 | 
						|
mp_err   s_mp_add(mp_int *a, mp_int *b);       /* magnitude addition      */
 | 
						|
mp_err   s_mp_sub(mp_int *a, mp_int *b);       /* magnitude subtract      */
 | 
						|
mp_err   s_mp_mul(mp_int *a, mp_int *b);       /* magnitude multiply      */
 | 
						|
#if 0
 | 
						|
void     s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
 | 
						|
                                               /* multiply buffers in place */
 | 
						|
#endif
 | 
						|
#if MP_SQUARE
 | 
						|
mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
 | 
						|
#else
 | 
						|
#define  s_mp_sqr(a) s_mp_mul(a, a)
 | 
						|
#endif
 | 
						|
mp_err   s_mp_div(mp_int *a, mp_int *b);       /* magnitude divide        */
 | 
						|
mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
 | 
						|
int      s_mp_cmp(mp_int *a, mp_int *b);       /* magnitude comparison    */
 | 
						|
int      s_mp_cmp_d(mp_int *a, mp_digit d);    /* magnitude digit compare */
 | 
						|
int      s_mp_ispow2(mp_int *v);               /* is v a power of 2?      */
 | 
						|
int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
 | 
						|
 | 
						|
int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
 | 
						|
char     s_mp_todigit(int val, int r, int low); /* convert val to digit   */
 | 
						|
int      s_mp_outlen(int bits, int r);          /* output length in bytes */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Default precision manipulation */
 | 
						|
 | 
						|
unsigned int mp_get_prec(void)
 | 
						|
{
 | 
						|
  return s_mp_defprec;
 | 
						|
 | 
						|
} /* end mp_get_prec() */
 | 
						|
 | 
						|
void         mp_set_prec(unsigned int prec)
 | 
						|
{
 | 
						|
  if(prec == 0)
 | 
						|
    s_mp_defprec = MP_DEFPREC;
 | 
						|
  else
 | 
						|
    s_mp_defprec = prec;
 | 
						|
 | 
						|
} /* end mp_set_prec() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ mp_init(mp) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_init(mp)
 | 
						|
 | 
						|
  Initialize a new zero-valued mp_int.  Returns MP_OKAY if successful,
 | 
						|
  MP_MEM if memory could not be allocated for the structure.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_init(mp_int *mp)
 | 
						|
{
 | 
						|
  return mp_init_size(mp, s_mp_defprec);
 | 
						|
 | 
						|
} /* end mp_init() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_init_array(mp[], count) */
 | 
						|
 | 
						|
mp_err mp_init_array(mp_int mp[], int count)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
  int     pos;
 | 
						|
 | 
						|
  ARGCHK(mp !=NULL && count > 0, MP_BADARG);
 | 
						|
 | 
						|
  for(pos = 0; pos < count; ++pos) {
 | 
						|
    if((res = mp_init(&mp[pos])) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(--pos >= 0)
 | 
						|
    mp_clear(&mp[pos]);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_init_array() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_init_size(mp, prec) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_init_size(mp, prec)
 | 
						|
 | 
						|
  Initialize a new zero-valued mp_int with at least the given
 | 
						|
  precision; returns MP_OKAY if successful, or MP_MEM if memory could
 | 
						|
  not be allocated for the structure.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_init_size(mp_int *mp, mp_size prec)
 | 
						|
{
 | 
						|
  ARGCHK(mp != NULL && prec > 0, MP_BADARG);
 | 
						|
 | 
						|
  if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
 | 
						|
    return MP_MEM;
 | 
						|
 | 
						|
  SIGN(mp) = MP_ZPOS;
 | 
						|
  USED(mp) = 1;
 | 
						|
  ALLOC(mp) = prec;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_init_size() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_init_copy(mp, from) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_init_copy(mp, from)
 | 
						|
 | 
						|
  Initialize mp as an exact copy of from.  Returns MP_OKAY if
 | 
						|
  successful, MP_MEM if memory could not be allocated for the new
 | 
						|
  structure.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_init_copy(mp_int *mp, mp_int *from)
 | 
						|
{
 | 
						|
  ARGCHK(mp != NULL && from != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(mp == from)
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
 | 
						|
    return MP_MEM;
 | 
						|
 | 
						|
  s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
 | 
						|
  USED(mp) = USED(from);
 | 
						|
  ALLOC(mp) = USED(from);
 | 
						|
  SIGN(mp) = SIGN(from);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_init_copy() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_copy(from, to) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_copy(from, to)
 | 
						|
 | 
						|
  Copies the mp_int 'from' to the mp_int 'to'.  It is presumed that
 | 
						|
  'to' has already been initialized (if not, use mp_init_copy()
 | 
						|
  instead). If 'from' and 'to' are identical, nothing happens.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_copy(mp_int *from, mp_int *to)
 | 
						|
{
 | 
						|
  ARGCHK(from != NULL && to != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(from == to)
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  { /* copy */
 | 
						|
    mp_digit   *tmp;
 | 
						|
 | 
						|
    /*
 | 
						|
      If the allocated buffer in 'to' already has enough space to hold
 | 
						|
      all the used digits of 'from', we'll re-use it to avoid hitting
 | 
						|
      the memory allocater more than necessary; otherwise, we'd have
 | 
						|
      to grow anyway, so we just allocate a hunk and make the copy as
 | 
						|
      usual
 | 
						|
     */
 | 
						|
    if(ALLOC(to) >= USED(from)) {
 | 
						|
      s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
 | 
						|
      s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
 | 
						|
 | 
						|
    } else {
 | 
						|
      if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
 | 
						|
        return MP_MEM;
 | 
						|
 | 
						|
      s_mp_copy(DIGITS(from), tmp, USED(from));
 | 
						|
 | 
						|
      if(DIGITS(to) != NULL) {
 | 
						|
#if MP_CRYPTO
 | 
						|
        s_mp_setz(DIGITS(to), ALLOC(to));
 | 
						|
#endif
 | 
						|
        s_mp_free(DIGITS(to));
 | 
						|
      }
 | 
						|
 | 
						|
      DIGITS(to) = tmp;
 | 
						|
      ALLOC(to) = USED(from);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Copy the precision and sign from the original */
 | 
						|
    USED(to) = USED(from);
 | 
						|
    SIGN(to) = SIGN(from);
 | 
						|
  } /* end copy */
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_copy() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_exch(mp1, mp2) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_exch(mp1, mp2)
 | 
						|
 | 
						|
  Exchange mp1 and mp2 without allocating any intermediate memory
 | 
						|
  (well, unless you count the stack space needed for this call and the
 | 
						|
  locals it creates...).  This cannot fail.
 | 
						|
 */
 | 
						|
 | 
						|
void mp_exch(mp_int *mp1, mp_int *mp2)
 | 
						|
{
 | 
						|
#if MP_ARGCHK == 2
 | 
						|
  assert(mp1 != NULL && mp2 != NULL);
 | 
						|
#else
 | 
						|
  if(mp1 == NULL || mp2 == NULL)
 | 
						|
    return;
 | 
						|
#endif
 | 
						|
 | 
						|
  s_mp_exch(mp1, mp2);
 | 
						|
 | 
						|
} /* end mp_exch() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_clear(mp) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_clear(mp)
 | 
						|
 | 
						|
  Release the storage used by an mp_int, and void its fields so that
 | 
						|
  if someone calls mp_clear() again for the same int later, we won't
 | 
						|
  get tollchocked.
 | 
						|
 */
 | 
						|
 | 
						|
void   mp_clear(mp_int *mp)
 | 
						|
{
 | 
						|
  if(mp == NULL)
 | 
						|
    return;
 | 
						|
 | 
						|
  if(DIGITS(mp) != NULL) {
 | 
						|
#if MP_CRYPTO
 | 
						|
    s_mp_setz(DIGITS(mp), ALLOC(mp));
 | 
						|
#endif
 | 
						|
    s_mp_free(DIGITS(mp));
 | 
						|
    DIGITS(mp) = NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  USED(mp) = 0;
 | 
						|
  ALLOC(mp) = 0;
 | 
						|
 | 
						|
} /* end mp_clear() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_clear_array(mp[], count) */
 | 
						|
 | 
						|
void   mp_clear_array(mp_int mp[], int count)
 | 
						|
{
 | 
						|
  ARGCHK(mp != NULL && count > 0, MP_BADARG);
 | 
						|
 | 
						|
  while(--count >= 0)
 | 
						|
    mp_clear(&mp[count]);
 | 
						|
 | 
						|
} /* end mp_clear_array() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_zero(mp) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_zero(mp)
 | 
						|
 | 
						|
  Set mp to zero.  Does not change the allocated size of the structure,
 | 
						|
  and therefore cannot fail (except on a bad argument, which we ignore)
 | 
						|
 */
 | 
						|
void   mp_zero(mp_int *mp)
 | 
						|
{
 | 
						|
  if(mp == NULL)
 | 
						|
    return;
 | 
						|
 | 
						|
  s_mp_setz(DIGITS(mp), ALLOC(mp));
 | 
						|
  USED(mp) = 1;
 | 
						|
  SIGN(mp) = MP_ZPOS;
 | 
						|
 | 
						|
} /* end mp_zero() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_set(mp, d) */
 | 
						|
 | 
						|
void   mp_set(mp_int *mp, mp_digit d)
 | 
						|
{
 | 
						|
  if(mp == NULL)
 | 
						|
    return;
 | 
						|
 | 
						|
  mp_zero(mp);
 | 
						|
  DIGIT(mp, 0) = d;
 | 
						|
 | 
						|
} /* end mp_set() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_set_int(mp, z) */
 | 
						|
 | 
						|
mp_err mp_set_int(mp_int *mp, long z)
 | 
						|
{
 | 
						|
  int            ix;
 | 
						|
  unsigned long  v = labs(z);
 | 
						|
  mp_err         res;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL, MP_BADARG);
 | 
						|
 | 
						|
  mp_zero(mp);
 | 
						|
  if(z == 0)
 | 
						|
    return MP_OKAY;  /* shortcut for zero */
 | 
						|
 | 
						|
  for(ix = sizeof(long) - 1; ix >= 0; ix--) {
 | 
						|
 | 
						|
    if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    res = s_mp_add_d(mp,
 | 
						|
                     (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
 | 
						|
    if(res != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  if(z < 0)
 | 
						|
    SIGN(mp) = MP_NEG;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_set_int() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ Digit arithmetic */
 | 
						|
 | 
						|
/* {{{ mp_add_d(a, d, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_add_d(a, d, b)
 | 
						|
 | 
						|
  Compute the sum b = a + d, for a single digit d.  Respects the sign of
 | 
						|
  its primary addend (single digits are unsigned anyway).
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
 | 
						|
{
 | 
						|
  mp_err   res = MP_OKAY;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if(SIGN(b) == MP_ZPOS) {
 | 
						|
    res = s_mp_add_d(b, d);
 | 
						|
  } else if(s_mp_cmp_d(b, d) >= 0) {
 | 
						|
    res = s_mp_sub_d(b, d);
 | 
						|
  } else {
 | 
						|
    SIGN(b) = MP_ZPOS;
 | 
						|
 | 
						|
    DIGIT(b, 0) = d - DIGIT(b, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_add_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_sub_d(a, d, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_sub_d(a, d, b)
 | 
						|
 | 
						|
  Compute the difference b = a - d, for a single digit d.  Respects the
 | 
						|
  sign of its subtrahend (single digits are unsigned anyway).
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if(SIGN(b) == MP_NEG) {
 | 
						|
    if((res = s_mp_add_d(b, d)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
  } else if(s_mp_cmp_d(b, d) >= 0) {
 | 
						|
    if((res = s_mp_sub_d(b, d)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
  } else {
 | 
						|
    mp_neg(b, b);
 | 
						|
 | 
						|
    DIGIT(b, 0) = d - DIGIT(b, 0);
 | 
						|
    SIGN(b) = MP_NEG;
 | 
						|
  }
 | 
						|
 | 
						|
  if(s_mp_cmp_d(b, 0) == 0)
 | 
						|
    SIGN(b) = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_sub_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mul_d(a, d, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_mul_d(a, d, b)
 | 
						|
 | 
						|
  Compute the product b = a * d, for a single digit d.  Respects the sign
 | 
						|
  of its multiplicand (single digits are unsigned anyway)
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(d == 0) {
 | 
						|
    mp_zero(b);
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  if((res = mp_copy(a, b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  res = s_mp_mul_d(b, d);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_mul_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mul_2(a, c) */
 | 
						|
 | 
						|
mp_err mp_mul_2(mp_int *a, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  return s_mp_mul_2(c);
 | 
						|
 | 
						|
} /* end mp_mul_2() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_div_d(a, d, q, r) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_div_d(a, d, q, r)
 | 
						|
 | 
						|
  Compute the quotient q = a / d and remainder r = a mod d, for a
 | 
						|
  single digit d.  Respects the sign of its divisor (single digits are
 | 
						|
  unsigned anyway).
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_digit rem;
 | 
						|
  int      pow;
 | 
						|
 | 
						|
  ARGCHK(a != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(d == 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* Shortcut for powers of two ... */
 | 
						|
  if((pow = s_mp_ispow2d(d)) >= 0) {
 | 
						|
    mp_digit  mask;
 | 
						|
 | 
						|
    mask = (1 << pow) - 1;
 | 
						|
    rem = DIGIT(a, 0) & mask;
 | 
						|
 | 
						|
    if(q) {
 | 
						|
      mp_copy(a, q);
 | 
						|
      s_mp_div_2d(q, pow);
 | 
						|
    }
 | 
						|
 | 
						|
    if(r)
 | 
						|
      *r = rem;
 | 
						|
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
    If the quotient is actually going to be returned, we'll try to
 | 
						|
    avoid hitting the memory allocator by copying the dividend into it
 | 
						|
    and doing the division there.  This can't be any _worse_ than
 | 
						|
    always copying, and will sometimes be better (since it won't make
 | 
						|
    another copy)
 | 
						|
 | 
						|
    If it's not going to be returned, we need to allocate a temporary
 | 
						|
    to hold the quotient, which will just be discarded.
 | 
						|
   */
 | 
						|
  if(q) {
 | 
						|
    if((res = mp_copy(a, q)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    res = s_mp_div_d(q, d, &rem);
 | 
						|
    if(s_mp_cmp_d(q, 0) == MP_EQ)
 | 
						|
      SIGN(q) = MP_ZPOS;
 | 
						|
 | 
						|
  } else {
 | 
						|
    mp_int  qp;
 | 
						|
 | 
						|
    if((res = mp_init_copy(&qp, a)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    res = s_mp_div_d(&qp, d, &rem);
 | 
						|
    if(s_mp_cmp_d(&qp, 0) == 0)
 | 
						|
      SIGN(&qp) = MP_ZPOS;
 | 
						|
 | 
						|
    mp_clear(&qp);
 | 
						|
  }
 | 
						|
 | 
						|
  if(r)
 | 
						|
    *r = rem;
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_div_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_div_2(a, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_div_2(a, c)
 | 
						|
 | 
						|
  Compute c = a / 2, disregarding the remainder.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_div_2(mp_int *a, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  s_mp_div_2(c);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_div_2() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_expt_d(a, d, b) */
 | 
						|
 | 
						|
mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c)
 | 
						|
{
 | 
						|
  mp_int   s, x;
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_init(&s)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | 
						|
    goto X;
 | 
						|
 | 
						|
  DIGIT(&s, 0) = 1;
 | 
						|
 | 
						|
  while(d != 0) {
 | 
						|
    if(d & 1) {
 | 
						|
      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    d >>= 1;
 | 
						|
 | 
						|
    if((res = s_mp_sqr(&x)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_exch(&s, c);
 | 
						|
 | 
						|
CLEANUP:
 | 
						|
  mp_clear(&x);
 | 
						|
X:
 | 
						|
  mp_clear(&s);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_expt_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ Full arithmetic */
 | 
						|
 | 
						|
/* {{{ mp_abs(a, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_abs(a, b)
 | 
						|
 | 
						|
  Compute b = |a|.  'a' and 'b' may be identical.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_abs(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  SIGN(b) = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_abs() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_neg(a, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_neg(a, b)
 | 
						|
 | 
						|
  Compute b = -a.  'a' and 'b' may be identical.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_neg(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if(s_mp_cmp_d(b, 0) == MP_EQ)
 | 
						|
    SIGN(b) = MP_ZPOS;
 | 
						|
  else
 | 
						|
    SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_neg() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_add(a, b, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_add(a, b, c)
 | 
						|
 | 
						|
  Compute c = a + b.  All parameters may be identical.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
  int     cmp;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(SIGN(a) == SIGN(b)) { /* same sign:  add values, keep sign */
 | 
						|
 | 
						|
    /* Commutativity of addition lets us do this in either order,
 | 
						|
       so we avoid having to use a temporary even if the result
 | 
						|
       is supposed to replace the output
 | 
						|
     */
 | 
						|
    if(c == b) {
 | 
						|
      if((res = s_mp_add(c, a)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    } else {
 | 
						|
      if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
 | 
						|
      if((res = s_mp_add(c, b)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
  } else if((cmp = s_mp_cmp(a, b)) > 0) {  /* different sign: a > b   */
 | 
						|
 | 
						|
    /* If the output is going to be clobbered, we will use a temporary
 | 
						|
       variable; otherwise, we'll do it without touching the memory
 | 
						|
       allocator at all, if possible
 | 
						|
     */
 | 
						|
    if(c == b) {
 | 
						|
      mp_int  tmp;
 | 
						|
 | 
						|
      if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmp);
 | 
						|
        return res;
 | 
						|
      }
 | 
						|
 | 
						|
      s_mp_exch(&tmp, c);
 | 
						|
      mp_clear(&tmp);
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
      if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      if((res = s_mp_sub(c, b)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
  } else if(cmp == 0) {             /* different sign, a == b   */
 | 
						|
 | 
						|
    mp_zero(c);
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  } else {                          /* different sign: a < b    */
 | 
						|
 | 
						|
    /* See above... */
 | 
						|
    if(c == a) {
 | 
						|
      mp_int  tmp;
 | 
						|
 | 
						|
      if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmp);
 | 
						|
        return res;
 | 
						|
      }
 | 
						|
 | 
						|
      s_mp_exch(&tmp, c);
 | 
						|
      mp_clear(&tmp);
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
      if(c != b && (res = mp_copy(b, c)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      if((res = s_mp_sub(c, a)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if(USED(c) == 1 && DIGIT(c, 0) == 0)
 | 
						|
    SIGN(c) = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_add() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_sub(a, b, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_sub(a, b, c)
 | 
						|
 | 
						|
  Compute c = a - b.  All parameters may be identical.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
  int     cmp;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(SIGN(a) != SIGN(b)) {
 | 
						|
    if(c == a) {
 | 
						|
      if((res = s_mp_add(c, b)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    } else {
 | 
						|
      if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
 | 
						|
        return res;
 | 
						|
      if((res = s_mp_add(c, a)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      SIGN(c) = SIGN(a);
 | 
						|
    }
 | 
						|
 | 
						|
  } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
 | 
						|
    if(c == b) {
 | 
						|
      mp_int  tmp;
 | 
						|
 | 
						|
      if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmp);
 | 
						|
        return res;
 | 
						|
      }
 | 
						|
      s_mp_exch(&tmp, c);
 | 
						|
      mp_clear(&tmp);
 | 
						|
 | 
						|
    } else {
 | 
						|
      if(c != a && ((res = mp_copy(a, c)) != MP_OKAY))
 | 
						|
        return res;
 | 
						|
 | 
						|
      if((res = s_mp_sub(c, b)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
  } else if(cmp == 0) {  /* Same sign, equal magnitude */
 | 
						|
    mp_zero(c);
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  } else {               /* Same sign, b > a */
 | 
						|
    if(c == a) {
 | 
						|
      mp_int  tmp;
 | 
						|
 | 
						|
      if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
 | 
						|
      if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmp);
 | 
						|
        return res;
 | 
						|
      }
 | 
						|
      s_mp_exch(&tmp, c);
 | 
						|
      mp_clear(&tmp);
 | 
						|
 | 
						|
    } else {
 | 
						|
      if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
 | 
						|
        return res;
 | 
						|
 | 
						|
      if((res = s_mp_sub(c, a)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    SIGN(c) = !SIGN(b);
 | 
						|
  }
 | 
						|
 | 
						|
  if(USED(c) == 1 && DIGIT(c, 0) == 0)
 | 
						|
    SIGN(c) = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_sub() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mul(a, b, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_mul(a, b, c)
 | 
						|
 | 
						|
  Compute c = a * b.  All parameters may be identical.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_sign  sgn;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;
 | 
						|
 | 
						|
  if(c == b) {
 | 
						|
    if((res = s_mp_mul(c, a)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
  } else {
 | 
						|
    if((res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if((res = s_mp_mul(c, b)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
  }
 | 
						|
 | 
						|
  if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
 | 
						|
    SIGN(c) = MP_ZPOS;
 | 
						|
  else
 | 
						|
    SIGN(c) = sgn;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_mul() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mul_2d(a, d, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_mul_2d(a, d, c)
 | 
						|
 | 
						|
  Compute c = a * 2^d.  a may be the same as c.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if(d == 0)
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  return s_mp_mul_2d(c, d);
 | 
						|
 | 
						|
} /* end mp_mul() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_sqr(a, b) */
 | 
						|
 | 
						|
#if MP_SQUARE
 | 
						|
mp_err mp_sqr(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_copy(a, b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  if((res = s_mp_sqr(b)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  SIGN(b) = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_sqr() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_div(a, b, q, r) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_div(a, b, q, r)
 | 
						|
 | 
						|
  Compute q = a / b and r = a mod b.  Input parameters may be re-used
 | 
						|
  as output parameters.  If q or r is NULL, that portion of the
 | 
						|
  computation will be discarded (although it will still be computed)
 | 
						|
 | 
						|
  Pay no attention to the hacker behind the curtain.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_int   qtmp, rtmp;
 | 
						|
  int      cmp;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(mp_cmp_z(b) == MP_EQ)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* If a <= b, we can compute the solution without division, and
 | 
						|
     avoid any memory allocation
 | 
						|
   */
 | 
						|
  if((cmp = s_mp_cmp(a, b)) < 0) {
 | 
						|
    if(r) {
 | 
						|
      if((res = mp_copy(a, r)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    if(q)
 | 
						|
      mp_zero(q);
 | 
						|
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  } else if(cmp == 0) {
 | 
						|
 | 
						|
    /* Set quotient to 1, with appropriate sign */
 | 
						|
    if(q) {
 | 
						|
      int qneg = (SIGN(a) != SIGN(b));
 | 
						|
 | 
						|
      mp_set(q, 1);
 | 
						|
      if(qneg)
 | 
						|
        SIGN(q) = MP_NEG;
 | 
						|
    }
 | 
						|
 | 
						|
    if(r)
 | 
						|
      mp_zero(r);
 | 
						|
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If we get here, it means we actually have to do some division */
 | 
						|
 | 
						|
  /* Set up some temporaries... */
 | 
						|
  if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  /* Compute the signs for the output  */
 | 
						|
  SIGN(&rtmp) = SIGN(a); /* Sr = Sa              */
 | 
						|
  if(SIGN(a) == SIGN(b))
 | 
						|
    SIGN(&qtmp) = MP_ZPOS;  /* Sq = MP_ZPOS if Sa = Sb */
 | 
						|
  else
 | 
						|
    SIGN(&qtmp) = MP_NEG;   /* Sq = MP_NEG if Sa != Sb */
 | 
						|
 | 
						|
  if(s_mp_cmp_d(&qtmp, 0) == MP_EQ)
 | 
						|
    SIGN(&qtmp) = MP_ZPOS;
 | 
						|
  if(s_mp_cmp_d(&rtmp, 0) == MP_EQ)
 | 
						|
    SIGN(&rtmp) = MP_ZPOS;
 | 
						|
 | 
						|
  /* Copy output, if it is needed      */
 | 
						|
  if(q)
 | 
						|
    s_mp_exch(&qtmp, q);
 | 
						|
 | 
						|
  if(r)
 | 
						|
    s_mp_exch(&rtmp, r);
 | 
						|
 | 
						|
CLEANUP:
 | 
						|
  mp_clear(&rtmp);
 | 
						|
  mp_clear(&qtmp);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_div() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_div_2d(a, d, q, r) */
 | 
						|
 | 
						|
mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(q) {
 | 
						|
    if((res = mp_copy(a, q)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    s_mp_div_2d(q, d);
 | 
						|
  }
 | 
						|
 | 
						|
  if(r) {
 | 
						|
    if((res = mp_copy(a, r)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    s_mp_mod_2d(r, d);
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_div_2d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_expt(a, b, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_expt(a, b, c)
 | 
						|
 | 
						|
  Compute c = a ** b, that is, raise a to the b power.  Uses a
 | 
						|
  standard iterative square-and-multiply technique.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
  mp_int   s, x;
 | 
						|
  mp_err   res;
 | 
						|
  mp_digit d;
 | 
						|
  unsigned int bit, dig;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(mp_cmp_z(b) < 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  if((res = mp_init(&s)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  mp_set(&s, 1);
 | 
						|
 | 
						|
  if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | 
						|
    goto X;
 | 
						|
 | 
						|
  /* Loop over low-order digits in ascending order */
 | 
						|
  for(dig = 0; dig < (USED(b) - 1); dig++) {
 | 
						|
    d = DIGIT(b, dig);
 | 
						|
 | 
						|
    /* Loop over bits of each non-maximal digit */
 | 
						|
    for(bit = 0; bit < DIGIT_BIT; bit++) {
 | 
						|
      if(d & 1) {
 | 
						|
        if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | 
						|
          goto CLEANUP;
 | 
						|
      }
 | 
						|
 | 
						|
      d >>= 1;
 | 
						|
 | 
						|
      if((res = s_mp_sqr(&x)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Consider now the last digit... */
 | 
						|
  d = DIGIT(b, dig);
 | 
						|
 | 
						|
  while(d) {
 | 
						|
    if(d & 1) {
 | 
						|
      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    d >>= 1;
 | 
						|
 | 
						|
    if((res = s_mp_sqr(&x)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  if(mp_iseven(b))
 | 
						|
    SIGN(&s) = SIGN(a);
 | 
						|
 | 
						|
  res = mp_copy(&s, c);
 | 
						|
 | 
						|
CLEANUP:
 | 
						|
  mp_clear(&x);
 | 
						|
X:
 | 
						|
  mp_clear(&s);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_expt() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_2expt(a, k) */
 | 
						|
 | 
						|
/* Compute a = 2^k */
 | 
						|
 | 
						|
mp_err mp_2expt(mp_int *a, mp_digit k)
 | 
						|
{
 | 
						|
  ARGCHK(a != NULL, MP_BADARG);
 | 
						|
 | 
						|
  return s_mp_2expt(a, k);
 | 
						|
 | 
						|
} /* end mp_2expt() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mod(a, m, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_mod(a, m, c)
 | 
						|
 | 
						|
  Compute c = a (mod m).  Result will always be 0 <= c < m.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
  int     mag;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(SIGN(m) == MP_NEG)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /*
 | 
						|
     If |a| > m, we need to divide to get the remainder and take the
 | 
						|
     absolute value.
 | 
						|
 | 
						|
     If |a| < m, we don't need to do any division, just copy and adjust
 | 
						|
     the sign (if a is negative).
 | 
						|
 | 
						|
     If |a| == m, we can simply set the result to zero.
 | 
						|
 | 
						|
     This order is intended to minimize the average path length of the
 | 
						|
     comparison chain on common workloads -- the most frequent cases are
 | 
						|
     that |a| != m, so we do those first.
 | 
						|
   */
 | 
						|
  if((mag = s_mp_cmp(a, m)) > 0) {
 | 
						|
    if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if(SIGN(c) == MP_NEG) {
 | 
						|
      if((res = mp_add(c, m, c)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
  } else if(mag < 0) {
 | 
						|
    if((res = mp_copy(a, c)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if(mp_cmp_z(a) < 0) {
 | 
						|
      if((res = mp_add(c, m, c)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    mp_zero(c);
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_mod() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mod_d(a, d, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_mod_d(a, d, c)
 | 
						|
 | 
						|
  Compute c = a (mod d).  Result will always be 0 <= c < d
 | 
						|
 */
 | 
						|
mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_digit rem;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(s_mp_cmp_d(a, d) > 0) {
 | 
						|
    if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
  } else {
 | 
						|
    if(SIGN(a) == MP_NEG)
 | 
						|
      rem = d - DIGIT(a, 0);
 | 
						|
    else
 | 
						|
      rem = DIGIT(a, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  if(c)
 | 
						|
    *c = rem;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_mod_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_sqrt(a, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_sqrt(a, b)
 | 
						|
 | 
						|
  Compute the integer square root of a, and store the result in b.
 | 
						|
  Uses an integer-arithmetic version of Newton's iterative linear
 | 
						|
  approximation technique to determine this value; the result has the
 | 
						|
  following two properties:
 | 
						|
 | 
						|
     b^2 <= a
 | 
						|
     (b+1)^2 >= a
 | 
						|
 | 
						|
  It is a range error to pass a negative value.
 | 
						|
 */
 | 
						|
mp_err mp_sqrt(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_int   x, t;
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | 
						|
 | 
						|
  /* Cannot take square root of a negative value */
 | 
						|
  if(SIGN(a) == MP_NEG)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* Special cases for zero and one, trivial     */
 | 
						|
  if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
 | 
						|
    return mp_copy(a, b);
 | 
						|
 | 
						|
  /* Initialize the temporaries we'll use below  */
 | 
						|
  if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  /* Compute an initial guess for the iteration as a itself */
 | 
						|
  if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | 
						|
    goto X;
 | 
						|
 | 
						|
s_mp_rshd(&x, (USED(&x)/2)+1);
 | 
						|
mp_add_d(&x, 1, &x);
 | 
						|
 | 
						|
  for(;;) {
 | 
						|
    /* t = (x * x) - a */
 | 
						|
    mp_copy(&x, &t);      /* can't fail, t is big enough for original x */
 | 
						|
    if((res = mp_sqr(&t, &t)) != MP_OKAY ||
 | 
						|
       (res = mp_sub(&t, a, &t)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    /* t = t / 2x       */
 | 
						|
    s_mp_mul_2(&x);
 | 
						|
    if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
    s_mp_div_2(&x);
 | 
						|
 | 
						|
    /* Terminate the loop, if the quotient is zero */
 | 
						|
    if(mp_cmp_z(&t) == MP_EQ)
 | 
						|
      break;
 | 
						|
 | 
						|
    /* x = x - t       */
 | 
						|
    if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  /* Copy result to output parameter */
 | 
						|
  mp_sub_d(&x, 1, &x);
 | 
						|
  s_mp_exch(&x, b);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  mp_clear(&x);
 | 
						|
 X:
 | 
						|
  mp_clear(&t);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_sqrt() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ Modular arithmetic */
 | 
						|
 | 
						|
#if MP_MODARITH
 | 
						|
/* {{{ mp_addmod(a, b, m, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_addmod(a, b, m, c)
 | 
						|
 | 
						|
  Compute c = (a + b) mod m
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_add(a, b, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_mod(c, m, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_submod(a, b, m, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_submod(a, b, m, c)
 | 
						|
 | 
						|
  Compute c = (a - b) mod m
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_sub(a, b, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_mod(c, m, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_mulmod(a, b, m, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_mulmod(a, b, m, c)
 | 
						|
 | 
						|
  Compute c = (a * b) mod m
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_mul(a, b, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_mod(c, m, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_sqrmod(a, m, c) */
 | 
						|
 | 
						|
#if MP_SQUARE
 | 
						|
mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_sqr(a, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_mod(c, m, c)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_sqrmod() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_exptmod(a, b, m, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_exptmod(a, b, m, c)
 | 
						|
 | 
						|
  Compute c = (a ** b) mod m.  Uses a standard square-and-multiply
 | 
						|
  method with modular reductions at each step. (This is basically the
 | 
						|
  same code as mp_expt(), except for the addition of the reductions)
 | 
						|
 | 
						|
  The modular reductions are done using Barrett's algorithm (see
 | 
						|
  s_mp_reduce() below for details)
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_int   s, x, mu;
 | 
						|
  mp_err   res;
 | 
						|
  mp_digit d, *db = DIGITS(b);
 | 
						|
  mp_size  ub = USED(b);
 | 
						|
  unsigned int bit, dig;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  if((res = mp_init(&s)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | 
						|
    goto X;
 | 
						|
  if((res = mp_mod(&x, m, &x)) != MP_OKAY ||
 | 
						|
     (res = mp_init(&mu)) != MP_OKAY)
 | 
						|
    goto MU;
 | 
						|
 | 
						|
  mp_set(&s, 1);
 | 
						|
 | 
						|
  /* mu = b^2k / m */
 | 
						|
  s_mp_add_d(&mu, 1);
 | 
						|
  s_mp_lshd(&mu, 2 * USED(m));
 | 
						|
  if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  /* Loop over digits of b in ascending order, except highest order */
 | 
						|
  for(dig = 0; dig < (ub - 1); dig++) {
 | 
						|
    d = *db++;
 | 
						|
 | 
						|
    /* Loop over the bits of the lower-order digits */
 | 
						|
    for(bit = 0; bit < DIGIT_BIT; bit++) {
 | 
						|
      if(d & 1) {
 | 
						|
        if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | 
						|
          goto CLEANUP;
 | 
						|
        if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
 | 
						|
          goto CLEANUP;
 | 
						|
      }
 | 
						|
 | 
						|
      d >>= 1;
 | 
						|
 | 
						|
      if((res = s_mp_sqr(&x)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
      if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now do the last digit... */
 | 
						|
  d = *db;
 | 
						|
 | 
						|
  while(d) {
 | 
						|
    if(d & 1) {
 | 
						|
      if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
      if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    d >>= 1;
 | 
						|
 | 
						|
    if((res = s_mp_sqr(&x)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
    if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_exch(&s, c);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  mp_clear(&mu);
 | 
						|
 MU:
 | 
						|
  mp_clear(&x);
 | 
						|
 X:
 | 
						|
  mp_clear(&s);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_exptmod() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_exptmod_d(a, d, m, c) */
 | 
						|
 | 
						|
mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_int   s, x;
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_init(&s)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | 
						|
    goto X;
 | 
						|
 | 
						|
  mp_set(&s, 1);
 | 
						|
 | 
						|
  while(d != 0) {
 | 
						|
    if(d & 1) {
 | 
						|
      if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
 | 
						|
         (res = mp_mod(&s, m, &s)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
    }
 | 
						|
 | 
						|
    d /= 2;
 | 
						|
 | 
						|
    if((res = s_mp_sqr(&x)) != MP_OKAY ||
 | 
						|
       (res = mp_mod(&x, m, &x)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_exch(&s, c);
 | 
						|
 | 
						|
CLEANUP:
 | 
						|
  mp_clear(&x);
 | 
						|
X:
 | 
						|
  mp_clear(&s);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_exptmod_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
#endif /* if MP_MODARITH */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ Comparison functions */
 | 
						|
 | 
						|
/* {{{ mp_cmp_z(a) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_cmp_z(a)
 | 
						|
 | 
						|
  Compare a <=> 0.  Returns <0 if a<0, 0 if a=0, >0 if a>0.
 | 
						|
 */
 | 
						|
 | 
						|
int    mp_cmp_z(mp_int *a)
 | 
						|
{
 | 
						|
  if(SIGN(a) == MP_NEG)
 | 
						|
    return MP_LT;
 | 
						|
  else if(USED(a) == 1 && DIGIT(a, 0) == 0)
 | 
						|
    return MP_EQ;
 | 
						|
  else
 | 
						|
    return MP_GT;
 | 
						|
 | 
						|
} /* end mp_cmp_z() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_cmp_d(a, d) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_cmp_d(a, d)
 | 
						|
 | 
						|
  Compare a <=> d.  Returns <0 if a<d, 0 if a=d, >0 if a>d
 | 
						|
 */
 | 
						|
 | 
						|
int    mp_cmp_d(mp_int *a, mp_digit d)
 | 
						|
{
 | 
						|
  ARGCHK(a != NULL, MP_EQ);
 | 
						|
 | 
						|
  if(SIGN(a) == MP_NEG)
 | 
						|
    return MP_LT;
 | 
						|
 | 
						|
  return s_mp_cmp_d(a, d);
 | 
						|
 | 
						|
} /* end mp_cmp_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_cmp(a, b) */
 | 
						|
 | 
						|
int    mp_cmp(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_EQ);
 | 
						|
 | 
						|
  if(SIGN(a) == SIGN(b)) {
 | 
						|
    int  mag;
 | 
						|
 | 
						|
    if((mag = s_mp_cmp(a, b)) == MP_EQ)
 | 
						|
      return MP_EQ;
 | 
						|
 | 
						|
    if(SIGN(a) == MP_ZPOS)
 | 
						|
      return mag;
 | 
						|
    else
 | 
						|
      return -mag;
 | 
						|
 | 
						|
  } else if(SIGN(a) == MP_ZPOS) {
 | 
						|
    return MP_GT;
 | 
						|
  } else {
 | 
						|
    return MP_LT;
 | 
						|
  }
 | 
						|
 | 
						|
} /* end mp_cmp() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_cmp_mag(a, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_cmp_mag(a, b)
 | 
						|
 | 
						|
  Compares |a| <=> |b|, and returns an appropriate comparison result
 | 
						|
 */
 | 
						|
 | 
						|
int    mp_cmp_mag(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  ARGCHK(a != NULL && b != NULL, MP_EQ);
 | 
						|
 | 
						|
  return s_mp_cmp(a, b);
 | 
						|
 | 
						|
} /* end mp_cmp_mag() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_cmp_int(a, z) */
 | 
						|
 | 
						|
/*
 | 
						|
  This just converts z to an mp_int, and uses the existing comparison
 | 
						|
  routines.  This is sort of inefficient, but it's not clear to me how
 | 
						|
  frequently this wil get used anyway.  For small positive constants,
 | 
						|
  you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
 | 
						|
 */
 | 
						|
int    mp_cmp_int(mp_int *a, long z)
 | 
						|
{
 | 
						|
  mp_int  tmp;
 | 
						|
  int     out;
 | 
						|
 | 
						|
  ARGCHK(a != NULL, MP_EQ);
 | 
						|
 | 
						|
  mp_init(&tmp); mp_set_int(&tmp, z);
 | 
						|
  out = mp_cmp(a, &tmp);
 | 
						|
  mp_clear(&tmp);
 | 
						|
 | 
						|
  return out;
 | 
						|
 | 
						|
} /* end mp_cmp_int() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_isodd(a) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_isodd(a)
 | 
						|
 | 
						|
  Returns a true (non-zero) value if a is odd, false (zero) otherwise.
 | 
						|
 */
 | 
						|
int    mp_isodd(mp_int *a)
 | 
						|
{
 | 
						|
  ARGCHK(a != NULL, 0);
 | 
						|
 | 
						|
  return (DIGIT(a, 0) & 1);
 | 
						|
 | 
						|
} /* end mp_isodd() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_iseven(a) */
 | 
						|
 | 
						|
int    mp_iseven(mp_int *a)
 | 
						|
{
 | 
						|
  return !mp_isodd(a);
 | 
						|
 | 
						|
} /* end mp_iseven() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ Number theoretic functions */
 | 
						|
 | 
						|
#if MP_NUMTH
 | 
						|
/* {{{ mp_gcd(a, b, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  Like the old mp_gcd() function, except computes the GCD using the
 | 
						|
  binary algorithm due to Josef Stein in 1961 (via Knuth).
 | 
						|
 */
 | 
						|
mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_int   u, v, t;
 | 
						|
  mp_size  k = 0;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
 | 
						|
      return MP_RANGE;
 | 
						|
  if(mp_cmp_z(a) == MP_EQ) {
 | 
						|
    return mp_copy(b, c);
 | 
						|
  } else if(mp_cmp_z(b) == MP_EQ) {
 | 
						|
    return mp_copy(a, c);
 | 
						|
  }
 | 
						|
 | 
						|
  if((res = mp_init(&t)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init_copy(&u, a)) != MP_OKAY)
 | 
						|
    goto U;
 | 
						|
  if((res = mp_init_copy(&v, b)) != MP_OKAY)
 | 
						|
    goto V;
 | 
						|
 | 
						|
  SIGN(&u) = MP_ZPOS;
 | 
						|
  SIGN(&v) = MP_ZPOS;
 | 
						|
 | 
						|
  /* Divide out common factors of 2 until at least 1 of a, b is even */
 | 
						|
  while(mp_iseven(&u) && mp_iseven(&v)) {
 | 
						|
    s_mp_div_2(&u);
 | 
						|
    s_mp_div_2(&v);
 | 
						|
    ++k;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Initialize t */
 | 
						|
  if(mp_isodd(&u)) {
 | 
						|
    if((res = mp_copy(&v, &t)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    /* t = -v */
 | 
						|
    if(SIGN(&v) == MP_ZPOS)
 | 
						|
      SIGN(&t) = MP_NEG;
 | 
						|
    else
 | 
						|
      SIGN(&t) = MP_ZPOS;
 | 
						|
 | 
						|
  } else {
 | 
						|
    if((res = mp_copy(&u, &t)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  for(;;) {
 | 
						|
    while(mp_iseven(&t)) {
 | 
						|
      s_mp_div_2(&t);
 | 
						|
    }
 | 
						|
 | 
						|
    if(mp_cmp_z(&t) == MP_GT) {
 | 
						|
      if((res = mp_copy(&t, &u)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
 | 
						|
    } else {
 | 
						|
      if((res = mp_copy(&t, &v)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
 | 
						|
      /* v = -t */
 | 
						|
      if(SIGN(&t) == MP_ZPOS)
 | 
						|
        SIGN(&v) = MP_NEG;
 | 
						|
      else
 | 
						|
        SIGN(&v) = MP_ZPOS;
 | 
						|
    }
 | 
						|
 | 
						|
    if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    if(s_mp_cmp_d(&t, 0) == MP_EQ)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_2expt(&v, k);       /* v = 2^k   */
 | 
						|
  res = mp_mul(&u, &v, c); /* c = u * v */
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  mp_clear(&v);
 | 
						|
 V:
 | 
						|
  mp_clear(&u);
 | 
						|
 U:
 | 
						|
  mp_clear(&t);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_bgcd() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_lcm(a, b, c) */
 | 
						|
 | 
						|
/* We compute the least common multiple using the rule:
 | 
						|
 | 
						|
   ab = [a, b](a, b)
 | 
						|
 | 
						|
   ... by computing the product, and dividing out the gcd.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
  mp_int  gcd, prod;
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | 
						|
 | 
						|
  /* Set up temporaries */
 | 
						|
  if((res = mp_init(&gcd)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init(&prod)) != MP_OKAY)
 | 
						|
    goto GCD;
 | 
						|
 | 
						|
  if((res = mp_mul(a, b, &prod)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
  if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  res = mp_div(&prod, &gcd, c, NULL);
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  mp_clear(&prod);
 | 
						|
 GCD:
 | 
						|
  mp_clear(&gcd);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_lcm() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_xgcd(a, b, g, x, y) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_xgcd(a, b, g, x, y)
 | 
						|
 | 
						|
  Compute g = (a, b) and values x and y satisfying Bezout's identity
 | 
						|
  (that is, ax + by = g).  This uses the extended binary GCD algorithm
 | 
						|
  based on the Stein algorithm used for mp_gcd()
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
 | 
						|
{
 | 
						|
  mp_int   gx, xc, yc, u, v, A, B, C, D;
 | 
						|
  mp_int  *clean[9];
 | 
						|
  mp_err   res;
 | 
						|
  int      last = -1;
 | 
						|
 | 
						|
  if(mp_cmp_z(b) == 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* Initialize all these variables we need */
 | 
						|
  if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &u;
 | 
						|
  if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &v;
 | 
						|
  if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &gx;
 | 
						|
  if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &A;
 | 
						|
  if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &B;
 | 
						|
  if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &C;
 | 
						|
  if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &D;
 | 
						|
  if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &xc;
 | 
						|
  mp_abs(&xc, &xc);
 | 
						|
  if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
 | 
						|
  clean[++last] = &yc;
 | 
						|
  mp_abs(&yc, &yc);
 | 
						|
 | 
						|
  mp_set(&gx, 1);
 | 
						|
 | 
						|
  /* Divide by two until at least one of them is even */
 | 
						|
  while(mp_iseven(&xc) && mp_iseven(&yc)) {
 | 
						|
    s_mp_div_2(&xc);
 | 
						|
    s_mp_div_2(&yc);
 | 
						|
    if((res = s_mp_mul_2(&gx)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  mp_copy(&xc, &u);
 | 
						|
  mp_copy(&yc, &v);
 | 
						|
  mp_set(&A, 1); mp_set(&D, 1);
 | 
						|
 | 
						|
  /* Loop through binary GCD algorithm */
 | 
						|
  for(;;) {
 | 
						|
    while(mp_iseven(&u)) {
 | 
						|
      s_mp_div_2(&u);
 | 
						|
 | 
						|
      if(mp_iseven(&A) && mp_iseven(&B)) {
 | 
						|
        s_mp_div_2(&A); s_mp_div_2(&B);
 | 
						|
      } else {
 | 
						|
        if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
 | 
						|
        s_mp_div_2(&A);
 | 
						|
        if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
 | 
						|
        s_mp_div_2(&B);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    while(mp_iseven(&v)) {
 | 
						|
      s_mp_div_2(&v);
 | 
						|
 | 
						|
      if(mp_iseven(&C) && mp_iseven(&D)) {
 | 
						|
        s_mp_div_2(&C); s_mp_div_2(&D);
 | 
						|
      } else {
 | 
						|
        if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
 | 
						|
        s_mp_div_2(&C);
 | 
						|
        if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
 | 
						|
        s_mp_div_2(&D);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if(mp_cmp(&u, &v) >= 0) {
 | 
						|
      if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
 | 
						|
      if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
 | 
						|
      if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;
 | 
						|
 | 
						|
    } else {
 | 
						|
      if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
 | 
						|
      if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
 | 
						|
      if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    /* If we're done, copy results to output */
 | 
						|
    if(mp_cmp_z(&u) == 0) {
 | 
						|
      if(x)
 | 
						|
        if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;
 | 
						|
 | 
						|
      if(y)
 | 
						|
        if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
 | 
						|
 | 
						|
      if(g)
 | 
						|
        if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
 | 
						|
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  while(last >= 0)
 | 
						|
    mp_clear(clean[last--]);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_xgcd() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_invmod(a, m, c) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_invmod(a, m, c)
 | 
						|
 | 
						|
  Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
 | 
						|
  This is equivalent to the question of whether (a, m) = 1.  If not,
 | 
						|
  MP_UNDEF is returned, and there is no inverse.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c)
 | 
						|
{
 | 
						|
  mp_int  g, x;
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(a && m && c, MP_BADARG);
 | 
						|
 | 
						|
  if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  if((res = mp_init(&g)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
  if((res = mp_init(&x)) != MP_OKAY)
 | 
						|
    goto X;
 | 
						|
 | 
						|
  if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  if(mp_cmp_d(&g, 1) != MP_EQ) {
 | 
						|
    res = MP_UNDEF;
 | 
						|
    goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  res = mp_mod(&x, m, c);
 | 
						|
  SIGN(c) = SIGN(a);
 | 
						|
 | 
						|
CLEANUP:
 | 
						|
  mp_clear(&x);
 | 
						|
X:
 | 
						|
  mp_clear(&g);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_invmod() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
#endif /* if MP_NUMTH */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ mp_print(mp, ofp) */
 | 
						|
 | 
						|
#if MP_IOFUNC
 | 
						|
/*
 | 
						|
  mp_print(mp, ofp)
 | 
						|
 | 
						|
  Print a textual representation of the given mp_int on the output
 | 
						|
  stream 'ofp'.  Output is generated using the internal radix.
 | 
						|
 */
 | 
						|
 | 
						|
void   mp_print(mp_int *mp, FILE *ofp)
 | 
						|
{
 | 
						|
  int   ix;
 | 
						|
 | 
						|
  if(mp == NULL || ofp == NULL)
 | 
						|
    return;
 | 
						|
 | 
						|
  fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);
 | 
						|
 | 
						|
  for(ix = USED(mp) - 1; ix >= 0; ix--) {
 | 
						|
    fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
 | 
						|
  }
 | 
						|
 | 
						|
} /* end mp_print() */
 | 
						|
 | 
						|
#endif /* if MP_IOFUNC */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* {{{ More I/O Functions */
 | 
						|
 | 
						|
/* {{{ mp_read_signed_bin(mp, str, len) */
 | 
						|
 | 
						|
/*
 | 
						|
   mp_read_signed_bin(mp, str, len)
 | 
						|
 | 
						|
   Read in a raw value (base 256) into the given mp_int
 | 
						|
 */
 | 
						|
 | 
						|
mp_err  mp_read_signed_bin(mp_int *mp, unsigned char *str, int len)
 | 
						|
{
 | 
						|
  mp_err         res;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
 | 
						|
 | 
						|
  if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
 | 
						|
    /* Get sign from first byte */
 | 
						|
    if(str[0])
 | 
						|
      SIGN(mp) = MP_NEG;
 | 
						|
    else
 | 
						|
      SIGN(mp) = MP_ZPOS;
 | 
						|
  }
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end mp_read_signed_bin() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_signed_bin_size(mp) */
 | 
						|
 | 
						|
int    mp_signed_bin_size(mp_int *mp)
 | 
						|
{
 | 
						|
  ARGCHK(mp != NULL, 0);
 | 
						|
 | 
						|
  return mp_unsigned_bin_size(mp) + 1;
 | 
						|
 | 
						|
} /* end mp_signed_bin_size() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_to_signed_bin(mp, str) */
 | 
						|
 | 
						|
mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str)
 | 
						|
{
 | 
						|
  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
 | 
						|
 | 
						|
  /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */
 | 
						|
  str[0] = (char)SIGN(mp);
 | 
						|
 | 
						|
  return mp_to_unsigned_bin(mp, str + 1);
 | 
						|
 | 
						|
} /* end mp_to_signed_bin() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_read_unsigned_bin(mp, str, len) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_read_unsigned_bin(mp, str, len)
 | 
						|
 | 
						|
  Read in an unsigned value (base 256) into the given mp_int
 | 
						|
 */
 | 
						|
 | 
						|
mp_err  mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
 | 
						|
{
 | 
						|
  int     ix;
 | 
						|
  mp_err  res;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
 | 
						|
 | 
						|
  mp_zero(mp);
 | 
						|
 | 
						|
  for(ix = 0; ix < len; ix++) {
 | 
						|
    if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_read_unsigned_bin() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_unsigned_bin_size(mp) */
 | 
						|
 | 
						|
int     mp_unsigned_bin_size(mp_int *mp)
 | 
						|
{
 | 
						|
  mp_digit   topdig;
 | 
						|
  int        count;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL, 0);
 | 
						|
 | 
						|
  /* Special case for the value zero */
 | 
						|
  if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  count = (USED(mp) - 1) * sizeof(mp_digit);
 | 
						|
  topdig = DIGIT(mp, USED(mp) - 1);
 | 
						|
 | 
						|
  while(topdig != 0) {
 | 
						|
    ++count;
 | 
						|
    topdig >>= CHAR_BIT;
 | 
						|
  }
 | 
						|
 | 
						|
  return count;
 | 
						|
 | 
						|
} /* end mp_unsigned_bin_size() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_to_unsigned_bin(mp, str) */
 | 
						|
 | 
						|
mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
 | 
						|
{
 | 
						|
  mp_digit      *dp, *end, d;
 | 
						|
  unsigned char *spos;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
 | 
						|
 | 
						|
  dp = DIGITS(mp);
 | 
						|
  end = dp + USED(mp) - 1;
 | 
						|
  spos = str;
 | 
						|
 | 
						|
  /* Special case for zero, quick test */
 | 
						|
  if(dp == end && *dp == 0) {
 | 
						|
    *str = '\0';
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Generate digits in reverse order */
 | 
						|
  while(dp < end) {
 | 
						|
    unsigned int ix;
 | 
						|
 | 
						|
    d = *dp;
 | 
						|
    for(ix = 0; ix < sizeof(mp_digit); ++ix) {
 | 
						|
      *spos = d & UCHAR_MAX;
 | 
						|
      d >>= CHAR_BIT;
 | 
						|
      ++spos;
 | 
						|
    }
 | 
						|
 | 
						|
    ++dp;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Now handle last digit specially, high order zeroes are not written */
 | 
						|
  d = *end;
 | 
						|
  while(d != 0) {
 | 
						|
    *spos = d & UCHAR_MAX;
 | 
						|
    d >>= CHAR_BIT;
 | 
						|
    ++spos;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Reverse everything to get digits in the correct order */
 | 
						|
  while(--spos > str) {
 | 
						|
    unsigned char t = *str;
 | 
						|
    *str = *spos;
 | 
						|
    *spos = t;
 | 
						|
 | 
						|
    ++str;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_to_unsigned_bin() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_count_bits(mp) */
 | 
						|
 | 
						|
int    mp_count_bits(mp_int *mp)
 | 
						|
{
 | 
						|
  int      len;
 | 
						|
  mp_digit d;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL, MP_BADARG);
 | 
						|
 | 
						|
  len = DIGIT_BIT * (USED(mp) - 1);
 | 
						|
  d = DIGIT(mp, USED(mp) - 1);
 | 
						|
 | 
						|
  while(d != 0) {
 | 
						|
    ++len;
 | 
						|
    d >>= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return len;
 | 
						|
 | 
						|
} /* end mp_count_bits() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_read_radix(mp, str, radix) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_read_radix(mp, str, radix)
 | 
						|
 | 
						|
  Read an integer from the given string, and set mp to the resulting
 | 
						|
  value.  The input is presumed to be in base 10.  Leading non-digit
 | 
						|
  characters are ignored, and the function reads until a non-digit
 | 
						|
  character or the end of the string.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err  mp_read_radix(mp_int *mp, unsigned char *str, int radix)
 | 
						|
{
 | 
						|
  int     ix = 0, val = 0;
 | 
						|
  mp_err  res;
 | 
						|
  mp_sign sig = MP_ZPOS;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
 | 
						|
         MP_BADARG);
 | 
						|
 | 
						|
  mp_zero(mp);
 | 
						|
 | 
						|
  /* Skip leading non-digit characters until a digit or '-' or '+' */
 | 
						|
  while(str[ix] &&
 | 
						|
        (s_mp_tovalue(str[ix], radix) < 0) &&
 | 
						|
        str[ix] != '-' &&
 | 
						|
        str[ix] != '+') {
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  if(str[ix] == '-') {
 | 
						|
    sig = MP_NEG;
 | 
						|
    ++ix;
 | 
						|
  } else if(str[ix] == '+') {
 | 
						|
    sig = MP_ZPOS; /* this is the default anyway... */
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
 | 
						|
    if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
    if((res = s_mp_add_d(mp, val)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  if(s_mp_cmp_d(mp, 0) == MP_EQ)
 | 
						|
    SIGN(mp) = MP_ZPOS;
 | 
						|
  else
 | 
						|
    SIGN(mp) = sig;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_read_radix() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_radix_size(mp, radix) */
 | 
						|
 | 
						|
int    mp_radix_size(mp_int *mp, int radix)
 | 
						|
{
 | 
						|
  int  len;
 | 
						|
  ARGCHK(mp != NULL, 0);
 | 
						|
 | 
						|
  len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */
 | 
						|
 | 
						|
  if(mp_cmp_z(mp) < 0)
 | 
						|
    ++len; /* for sign */
 | 
						|
 | 
						|
  return len;
 | 
						|
 | 
						|
} /* end mp_radix_size() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_value_radix_size(num, qty, radix) */
 | 
						|
 | 
						|
/* num = number of digits
 | 
						|
   qty = number of bits per digit
 | 
						|
   radix = target base
 | 
						|
 | 
						|
   Return the number of digits in the specified radix that would be
 | 
						|
   needed to express 'num' digits of 'qty' bits each.
 | 
						|
 */
 | 
						|
int    mp_value_radix_size(int num, int qty, int radix)
 | 
						|
{
 | 
						|
  ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);
 | 
						|
 | 
						|
  return s_mp_outlen(num * qty, radix);
 | 
						|
 | 
						|
} /* end mp_value_radix_size() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_toradix(mp, str, radix) */
 | 
						|
 | 
						|
mp_err mp_toradix(mp_int *mp, char *str, int radix)
 | 
						|
{
 | 
						|
  int  ix, pos = 0;
 | 
						|
 | 
						|
  ARGCHK(mp != NULL && str != NULL, MP_BADARG);
 | 
						|
  ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
 | 
						|
 | 
						|
  if(mp_cmp_z(mp) == MP_EQ) {
 | 
						|
    str[0] = '0';
 | 
						|
    str[1] = '\0';
 | 
						|
  } else {
 | 
						|
    mp_err   res;
 | 
						|
    mp_int   tmp;
 | 
						|
    mp_sign  sgn;
 | 
						|
    mp_digit rem, rdx = (mp_digit)radix;
 | 
						|
    char     ch;
 | 
						|
 | 
						|
    if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    /* Save sign for later, and take absolute value */
 | 
						|
    sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;
 | 
						|
 | 
						|
    /* Generate output digits in reverse order      */
 | 
						|
    while(mp_cmp_z(&tmp) != 0) {
 | 
						|
      if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmp);
 | 
						|
        return res;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Generate digits, use capital letters */
 | 
						|
      ch = s_mp_todigit(rem, radix, 0);
 | 
						|
 | 
						|
      str[pos++] = ch;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Add - sign if original value was negative */
 | 
						|
    if(sgn == MP_NEG)
 | 
						|
      str[pos++] = '-';
 | 
						|
 | 
						|
    /* Add trailing NUL to end the string        */
 | 
						|
    str[pos--] = '\0';
 | 
						|
 | 
						|
    /* Reverse the digits and sign indicator     */
 | 
						|
    ix = 0;
 | 
						|
    while(ix < pos) {
 | 
						|
      char _tmp = str[ix];
 | 
						|
 | 
						|
      str[ix] = str[pos];
 | 
						|
      str[pos] = _tmp;
 | 
						|
      ++ix;
 | 
						|
      --pos;
 | 
						|
    }
 | 
						|
 | 
						|
    mp_clear(&tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end mp_toradix() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_char2value(ch, r) */
 | 
						|
 | 
						|
int    mp_char2value(char ch, int r)
 | 
						|
{
 | 
						|
  return s_mp_tovalue(ch, r);
 | 
						|
 | 
						|
} /* end mp_tovalue() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ mp_strerror(ec) */
 | 
						|
 | 
						|
/*
 | 
						|
  mp_strerror(ec)
 | 
						|
 | 
						|
  Return a string describing the meaning of error code 'ec'.  The
 | 
						|
  string returned is allocated in static memory, so the caller should
 | 
						|
  not attempt to modify or free the memory associated with this
 | 
						|
  string.
 | 
						|
 */
 | 
						|
const char  *mp_strerror(mp_err ec)
 | 
						|
{
 | 
						|
  int   aec = (ec < 0) ? -ec : ec;
 | 
						|
 | 
						|
  /* Code values are negative, so the senses of these comparisons
 | 
						|
     are accurate */
 | 
						|
  if(ec < MP_LAST_CODE || ec > MP_OKAY) {
 | 
						|
    return mp_err_string[0];  /* unknown error code */
 | 
						|
  } else {
 | 
						|
    return mp_err_string[aec + 1];
 | 
						|
  }
 | 
						|
 | 
						|
} /* end mp_strerror() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*========================================================================*/
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* Static function definitions (internal use only)                        */
 | 
						|
 | 
						|
/* {{{ Memory management */
 | 
						|
 | 
						|
/* {{{ s_mp_grow(mp, min) */
 | 
						|
 | 
						|
/* Make sure there are at least 'min' digits allocated to mp              */
 | 
						|
mp_err   s_mp_grow(mp_int *mp, mp_size min)
 | 
						|
{
 | 
						|
  if(min > ALLOC(mp)) {
 | 
						|
    mp_digit   *tmp;
 | 
						|
 | 
						|
    /* Set min to next nearest default precision block size */
 | 
						|
    min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec;
 | 
						|
 | 
						|
    if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
 | 
						|
      return MP_MEM;
 | 
						|
 | 
						|
    s_mp_copy(DIGITS(mp), tmp, USED(mp));
 | 
						|
 | 
						|
#if MP_CRYPTO
 | 
						|
    s_mp_setz(DIGITS(mp), ALLOC(mp));
 | 
						|
#endif
 | 
						|
    s_mp_free(DIGITS(mp));
 | 
						|
    DIGITS(mp) = tmp;
 | 
						|
    ALLOC(mp) = min;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_grow() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_pad(mp, min) */
 | 
						|
 | 
						|
/* Make sure the used size of mp is at least 'min', growing if needed     */
 | 
						|
mp_err   s_mp_pad(mp_int *mp, mp_size min)
 | 
						|
{
 | 
						|
  if(min > USED(mp)) {
 | 
						|
    mp_err  res;
 | 
						|
 | 
						|
    /* Make sure there is room to increase precision  */
 | 
						|
    if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    /* Increase precision; should already be 0-filled */
 | 
						|
    USED(mp) = min;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_pad() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_setz(dp, count) */
 | 
						|
 | 
						|
#if MP_MACRO == 0
 | 
						|
/* Set 'count' digits pointed to by dp to be zeroes                       */
 | 
						|
void s_mp_setz(mp_digit *dp, mp_size count)
 | 
						|
{
 | 
						|
#if MP_MEMSET == 0
 | 
						|
  int  ix;
 | 
						|
 | 
						|
  for(ix = 0; ix < count; ix++)
 | 
						|
    dp[ix] = 0;
 | 
						|
#else
 | 
						|
  memset(dp, 0, count * sizeof(mp_digit));
 | 
						|
#endif
 | 
						|
 | 
						|
} /* end s_mp_setz() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_copy(sp, dp, count) */
 | 
						|
 | 
						|
#if MP_MACRO == 0
 | 
						|
/* Copy 'count' digits from sp to dp                                      */
 | 
						|
void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count)
 | 
						|
{
 | 
						|
#if MP_MEMCPY == 0
 | 
						|
  int  ix;
 | 
						|
 | 
						|
  for(ix = 0; ix < count; ix++)
 | 
						|
    dp[ix] = sp[ix];
 | 
						|
#else
 | 
						|
  memcpy(dp, sp, count * sizeof(mp_digit));
 | 
						|
#endif
 | 
						|
 | 
						|
} /* end s_mp_copy() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_alloc(nb, ni) */
 | 
						|
 | 
						|
#if MP_MACRO == 0
 | 
						|
/* Allocate ni records of nb bytes each, and return a pointer to that     */
 | 
						|
void    *s_mp_alloc(size_t nb, size_t ni)
 | 
						|
{
 | 
						|
  return calloc(nb, ni);
 | 
						|
 | 
						|
} /* end s_mp_alloc() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_free(ptr) */
 | 
						|
 | 
						|
#if MP_MACRO == 0
 | 
						|
/* Free the memory pointed to by ptr                                      */
 | 
						|
void     s_mp_free(void *ptr)
 | 
						|
{
 | 
						|
  if(ptr)
 | 
						|
    free(ptr);
 | 
						|
 | 
						|
} /* end s_mp_free() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_clamp(mp) */
 | 
						|
 | 
						|
/* Remove leading zeroes from the given value                             */
 | 
						|
void     s_mp_clamp(mp_int *mp)
 | 
						|
{
 | 
						|
  mp_size   du = USED(mp);
 | 
						|
  mp_digit *zp = DIGITS(mp) + du - 1;
 | 
						|
 | 
						|
  while(du > 1 && !*zp--)
 | 
						|
    --du;
 | 
						|
 | 
						|
  USED(mp) = du;
 | 
						|
 | 
						|
} /* end s_mp_clamp() */
 | 
						|
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_exch(a, b) */
 | 
						|
 | 
						|
/* Exchange the data for a and b; (b, a) = (a, b)                         */
 | 
						|
void     s_mp_exch(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_int   tmp;
 | 
						|
 | 
						|
  tmp = *a;
 | 
						|
  *a = *b;
 | 
						|
  *b = tmp;
 | 
						|
 | 
						|
} /* end s_mp_exch() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Arithmetic helpers */
 | 
						|
 | 
						|
/* {{{ s_mp_lshd(mp, p) */
 | 
						|
 | 
						|
/*
 | 
						|
   Shift mp leftward by p digits, growing if needed, and zero-filling
 | 
						|
   the in-shifted digits at the right end.  This is a convenient
 | 
						|
   alternative to multiplication by powers of the radix
 | 
						|
 */
 | 
						|
 | 
						|
mp_err   s_mp_lshd(mp_int *mp, mp_size p)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_size  pos;
 | 
						|
  mp_digit *dp;
 | 
						|
  int ix;
 | 
						|
 | 
						|
  if(p == 0)
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
  if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  pos = USED(mp) - 1;
 | 
						|
  dp = DIGITS(mp);
 | 
						|
 | 
						|
  /* Shift all the significant figures over as needed */
 | 
						|
  for(ix = pos - p; ix >= 0; ix--)
 | 
						|
    dp[ix + p] = dp[ix];
 | 
						|
 | 
						|
  /* Fill the bottom digits with zeroes */
 | 
						|
  for(ix = 0; (unsigned)ix < p; ix++)
 | 
						|
    dp[ix] = 0;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_lshd() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_rshd(mp, p) */
 | 
						|
 | 
						|
/*
 | 
						|
   Shift mp rightward by p digits.  Maintains the invariant that
 | 
						|
   digits above the precision are all zero.  Digits shifted off the
 | 
						|
   end are lost.  Cannot fail.
 | 
						|
 */
 | 
						|
 | 
						|
void     s_mp_rshd(mp_int *mp, mp_size p)
 | 
						|
{
 | 
						|
  mp_size  ix;
 | 
						|
  mp_digit *dp;
 | 
						|
 | 
						|
  if(p == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  /* Shortcut when all digits are to be shifted off */
 | 
						|
  if(p >= USED(mp)) {
 | 
						|
    s_mp_setz(DIGITS(mp), ALLOC(mp));
 | 
						|
    USED(mp) = 1;
 | 
						|
    SIGN(mp) = MP_ZPOS;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Shift all the significant figures over as needed */
 | 
						|
  dp = DIGITS(mp);
 | 
						|
  for(ix = p; ix < USED(mp); ix++)
 | 
						|
    dp[ix - p] = dp[ix];
 | 
						|
 | 
						|
  /* Fill the top digits with zeroes */
 | 
						|
  ix -= p;
 | 
						|
  while(ix < USED(mp))
 | 
						|
    dp[ix++] = 0;
 | 
						|
 | 
						|
  /* Strip off any leading zeroes    */
 | 
						|
  s_mp_clamp(mp);
 | 
						|
 | 
						|
} /* end s_mp_rshd() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_div_2(mp) */
 | 
						|
 | 
						|
/* Divide by two -- take advantage of radix properties to do it fast      */
 | 
						|
void     s_mp_div_2(mp_int *mp)
 | 
						|
{
 | 
						|
  s_mp_div_2d(mp, 1);
 | 
						|
 | 
						|
} /* end s_mp_div_2() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_mul_2(mp) */
 | 
						|
 | 
						|
mp_err s_mp_mul_2(mp_int *mp)
 | 
						|
{
 | 
						|
  unsigned int ix;
 | 
						|
  mp_digit kin = 0, kout, *dp = DIGITS(mp);
 | 
						|
  mp_err   res;
 | 
						|
 | 
						|
  /* Shift digits leftward by 1 bit */
 | 
						|
  for(ix = 0; ix < USED(mp); ix++) {
 | 
						|
    kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
 | 
						|
    dp[ix] = (dp[ix] << 1) | kin;
 | 
						|
 | 
						|
    kin = kout;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Deal with rollover from last digit */
 | 
						|
  if(kin) {
 | 
						|
    if(ix >= ALLOC(mp)) {
 | 
						|
      if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
 | 
						|
        return res;
 | 
						|
      dp = DIGITS(mp);
 | 
						|
    }
 | 
						|
 | 
						|
    dp[ix] = kin;
 | 
						|
    USED(mp) += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_mul_2() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_mod_2d(mp, d) */
 | 
						|
 | 
						|
/*
 | 
						|
  Remainder the integer by 2^d, where d is a number of bits.  This
 | 
						|
  amounts to a bitwise AND of the value, and does not require the full
 | 
						|
  division code
 | 
						|
 */
 | 
						|
void     s_mp_mod_2d(mp_int *mp, mp_digit d)
 | 
						|
{
 | 
						|
  unsigned int  ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
 | 
						|
  unsigned int  ix;
 | 
						|
  mp_digit      dmask, *dp = DIGITS(mp);
 | 
						|
 | 
						|
  if(ndig >= USED(mp))
 | 
						|
    return;
 | 
						|
 | 
						|
  /* Flush all the bits above 2^d in its digit */
 | 
						|
  dmask = (1 << nbit) - 1;
 | 
						|
  dp[ndig] &= dmask;
 | 
						|
 | 
						|
  /* Flush all digits above the one with 2^d in it */
 | 
						|
  for(ix = ndig + 1; ix < USED(mp); ix++)
 | 
						|
    dp[ix] = 0;
 | 
						|
 | 
						|
  s_mp_clamp(mp);
 | 
						|
 | 
						|
} /* end s_mp_mod_2d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_mul_2d(mp, d) */
 | 
						|
 | 
						|
/*
 | 
						|
  Multiply by the integer 2^d, where d is a number of bits.  This
 | 
						|
  amounts to a bitwise shift of the value, and does not require the
 | 
						|
  full multiplication code.
 | 
						|
 */
 | 
						|
mp_err    s_mp_mul_2d(mp_int *mp, mp_digit d)
 | 
						|
{
 | 
						|
  mp_err   res;
 | 
						|
  mp_digit save, next, mask, *dp;
 | 
						|
  mp_size  used;
 | 
						|
  unsigned int ix;
 | 
						|
 | 
						|
  if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  dp = DIGITS(mp); used = USED(mp);
 | 
						|
  d %= DIGIT_BIT;
 | 
						|
 | 
						|
  mask = (1 << d) - 1;
 | 
						|
 | 
						|
  /* If the shift requires another digit, make sure we've got one to
 | 
						|
     work with */
 | 
						|
  if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
 | 
						|
    if((res = s_mp_grow(mp, used + 1)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
    dp = DIGITS(mp);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Do the shifting... */
 | 
						|
  save = 0;
 | 
						|
  for(ix = 0; ix < used; ix++) {
 | 
						|
    next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
 | 
						|
    dp[ix] = (dp[ix] << d) | save;
 | 
						|
    save = next;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If, at this point, we have a nonzero carryout into the next
 | 
						|
     digit, we'll increase the size by one digit, and store it...
 | 
						|
   */
 | 
						|
  if(save) {
 | 
						|
    dp[used] = save;
 | 
						|
    USED(mp) += 1;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_clamp(mp);
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_mul_2d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_div_2d(mp, d) */
 | 
						|
 | 
						|
/*
 | 
						|
  Divide the integer by 2^d, where d is a number of bits.  This
 | 
						|
  amounts to a bitwise shift of the value, and does not require the
 | 
						|
  full division code (used in Barrett reduction, see below)
 | 
						|
 */
 | 
						|
void     s_mp_div_2d(mp_int *mp, mp_digit d)
 | 
						|
{
 | 
						|
  int       ix;
 | 
						|
  mp_digit  save, next, mask, *dp = DIGITS(mp);
 | 
						|
 | 
						|
  s_mp_rshd(mp, d / DIGIT_BIT);
 | 
						|
  d %= DIGIT_BIT;
 | 
						|
 | 
						|
  mask = (1 << d) - 1;
 | 
						|
 | 
						|
  save = 0;
 | 
						|
  for(ix = USED(mp) - 1; ix >= 0; ix--) {
 | 
						|
    next = dp[ix] & mask;
 | 
						|
    dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
 | 
						|
    save = next;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_clamp(mp);
 | 
						|
 | 
						|
} /* end s_mp_div_2d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_norm(a, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  s_mp_norm(a, b)
 | 
						|
 | 
						|
  Normalize a and b for division, where b is the divisor.  In order
 | 
						|
  that we might make good guesses for quotient digits, we want the
 | 
						|
  leading digit of b to be at least half the radix, which we
 | 
						|
  accomplish by multiplying a and b by a constant.  This constant is
 | 
						|
  returned (so that it can be divided back out of the remainder at the
 | 
						|
  end of the division process).
 | 
						|
 | 
						|
  We multiply by the smallest power of 2 that gives us a leading digit
 | 
						|
  at least half the radix.  By choosing a power of 2, we simplify the
 | 
						|
  multiplication and division steps to simple shifts.
 | 
						|
 */
 | 
						|
mp_digit s_mp_norm(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_digit  t, d = 0;
 | 
						|
 | 
						|
  t = DIGIT(b, USED(b) - 1);
 | 
						|
  while(t < (RADIX / 2)) {
 | 
						|
    t <<= 1;
 | 
						|
    ++d;
 | 
						|
  }
 | 
						|
 | 
						|
  if(d != 0) {
 | 
						|
    s_mp_mul_2d(a, d);
 | 
						|
    s_mp_mul_2d(b, d);
 | 
						|
  }
 | 
						|
 | 
						|
  return d;
 | 
						|
 | 
						|
} /* end s_mp_norm() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Primitive digit arithmetic */
 | 
						|
 | 
						|
/* {{{ s_mp_add_d(mp, d) */
 | 
						|
 | 
						|
/* Add d to |mp| in place                                                 */
 | 
						|
mp_err   s_mp_add_d(mp_int *mp, mp_digit d)    /* unsigned digit addition */
 | 
						|
{
 | 
						|
  mp_word   w, k = 0;
 | 
						|
  mp_size   ix = 1, used = USED(mp);
 | 
						|
  mp_digit *dp = DIGITS(mp);
 | 
						|
 | 
						|
  w = dp[0] + d;
 | 
						|
  dp[0] = ACCUM(w);
 | 
						|
  k = CARRYOUT(w);
 | 
						|
 | 
						|
  while(ix < used && k) {
 | 
						|
    w = dp[ix] + k;
 | 
						|
    dp[ix] = ACCUM(w);
 | 
						|
    k = CARRYOUT(w);
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  if(k != 0) {
 | 
						|
    mp_err  res;
 | 
						|
 | 
						|
    if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    DIGIT(mp, ix) = k;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_add_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_sub_d(mp, d) */
 | 
						|
 | 
						|
/* Subtract d from |mp| in place, assumes |mp| > d                        */
 | 
						|
mp_err   s_mp_sub_d(mp_int *mp, mp_digit d)    /* unsigned digit subtract */
 | 
						|
{
 | 
						|
  mp_word   w, b = 0;
 | 
						|
  mp_size   ix = 1, used = USED(mp);
 | 
						|
  mp_digit *dp = DIGITS(mp);
 | 
						|
 | 
						|
  /* Compute initial subtraction    */
 | 
						|
  w = (RADIX + dp[0]) - d;
 | 
						|
  b = CARRYOUT(w) ? 0 : 1;
 | 
						|
  dp[0] = ACCUM(w);
 | 
						|
 | 
						|
  /* Propagate borrows leftward     */
 | 
						|
  while(b && ix < used) {
 | 
						|
    w = (RADIX + dp[ix]) - b;
 | 
						|
    b = CARRYOUT(w) ? 0 : 1;
 | 
						|
    dp[ix] = ACCUM(w);
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Remove leading zeroes          */
 | 
						|
  s_mp_clamp(mp);
 | 
						|
 | 
						|
  /* If we have a borrow out, it's a violation of the input invariant */
 | 
						|
  if(b)
 | 
						|
    return MP_RANGE;
 | 
						|
  else
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_sub_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_mul_d(a, d) */
 | 
						|
 | 
						|
/* Compute a = a * d, single digit multiplication                         */
 | 
						|
mp_err   s_mp_mul_d(mp_int *a, mp_digit d)
 | 
						|
{
 | 
						|
  mp_word w, k = 0;
 | 
						|
  mp_size ix, max;
 | 
						|
  mp_err  res;
 | 
						|
  mp_digit *dp = DIGITS(a);
 | 
						|
 | 
						|
  /*
 | 
						|
    Single-digit multiplication will increase the precision of the
 | 
						|
    output by at most one digit.  However, we can detect when this
 | 
						|
    will happen -- if the high-order digit of a, times d, gives a
 | 
						|
    two-digit result, then the precision of the result will increase;
 | 
						|
    otherwise it won't.  We use this fact to avoid calling s_mp_pad()
 | 
						|
    unless absolutely necessary.
 | 
						|
   */
 | 
						|
  max = USED(a);
 | 
						|
  w = dp[max - 1] * d;
 | 
						|
  if(CARRYOUT(w) != 0) {
 | 
						|
    if((res = s_mp_pad(a, max + 1)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
    dp = DIGITS(a);
 | 
						|
  }
 | 
						|
 | 
						|
  for(ix = 0; ix < max; ix++) {
 | 
						|
    w = (dp[ix] * d) + k;
 | 
						|
    dp[ix] = ACCUM(w);
 | 
						|
    k = CARRYOUT(w);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If there is a precision increase, take care of it here; the above
 | 
						|
     test guarantees we have enough storage to do this safely.
 | 
						|
   */
 | 
						|
  if(k) {
 | 
						|
    dp[max] = k;
 | 
						|
    USED(a) = max + 1;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_clamp(a);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_mul_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_div_d(mp, d, r) */
 | 
						|
 | 
						|
/*
 | 
						|
  s_mp_div_d(mp, d, r)
 | 
						|
 | 
						|
  Compute the quotient mp = mp / d and remainder r = mp mod d, for a
 | 
						|
  single digit d.  If r is null, the remainder will be discarded.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
 | 
						|
{
 | 
						|
  mp_word   w = 0, t;
 | 
						|
  mp_int    quot;
 | 
						|
  mp_err    res;
 | 
						|
  mp_digit *dp = DIGITS(mp), *qp;
 | 
						|
  int       ix;
 | 
						|
 | 
						|
  if(d == 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* Make room for the quotient */
 | 
						|
  if((res = mp_init_size(", USED(mp))) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  USED(") = USED(mp); /* so clamping will work below */
 | 
						|
  qp = DIGITS(");
 | 
						|
 | 
						|
  /* Divide without subtraction */
 | 
						|
  for(ix = USED(mp) - 1; ix >= 0; ix--) {
 | 
						|
    w = (w << DIGIT_BIT) | dp[ix];
 | 
						|
 | 
						|
    if(w >= d) {
 | 
						|
      t = w / d;
 | 
						|
      w = w % d;
 | 
						|
    } else {
 | 
						|
      t = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    qp[ix] = t;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Deliver the remainder, if desired */
 | 
						|
  if(r)
 | 
						|
    *r = w;
 | 
						|
 | 
						|
  s_mp_clamp(");
 | 
						|
  mp_exch(", mp);
 | 
						|
  mp_clear(");
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_div_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Primitive full arithmetic */
 | 
						|
 | 
						|
/* {{{ s_mp_add(a, b) */
 | 
						|
 | 
						|
/* Compute a = |a| + |b|                                                  */
 | 
						|
mp_err   s_mp_add(mp_int *a, mp_int *b)        /* magnitude addition      */
 | 
						|
{
 | 
						|
  mp_word   w = 0;
 | 
						|
  mp_digit *pa, *pb;
 | 
						|
  mp_size   ix, used = USED(b);
 | 
						|
  mp_err    res;
 | 
						|
 | 
						|
  /* Make sure a has enough precision for the output value */
 | 
						|
  if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  /*
 | 
						|
    Add up all digits up to the precision of b.  If b had initially
 | 
						|
    the same precision as a, or greater, we took care of it by the
 | 
						|
    padding step above, so there is no problem.  If b had initially
 | 
						|
    less precision, we'll have to make sure the carry out is duly
 | 
						|
    propagated upward among the higher-order digits of the sum.
 | 
						|
   */
 | 
						|
  pa = DIGITS(a);
 | 
						|
  pb = DIGITS(b);
 | 
						|
  for(ix = 0; ix < used; ++ix) {
 | 
						|
    w += *pa + *pb++;
 | 
						|
    *pa++ = ACCUM(w);
 | 
						|
    w = CARRYOUT(w);
 | 
						|
  }
 | 
						|
 | 
						|
  /* If we run out of 'b' digits before we're actually done, make
 | 
						|
     sure the carries get propagated upward...
 | 
						|
   */
 | 
						|
  used = USED(a);
 | 
						|
  while(w && ix < used) {
 | 
						|
    w += *pa;
 | 
						|
    *pa++ = ACCUM(w);
 | 
						|
    w = CARRYOUT(w);
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If there's an overall carry out, increase precision and include
 | 
						|
     it.  We could have done this initially, but why touch the memory
 | 
						|
     allocator unless we're sure we have to?
 | 
						|
   */
 | 
						|
  if(w) {
 | 
						|
    if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
 | 
						|
      return res;
 | 
						|
 | 
						|
    DIGIT(a, ix) = w;  /* pa may not be valid after s_mp_pad() call */
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_add() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_sub(a, b) */
 | 
						|
 | 
						|
/* Compute a = |a| - |b|, assumes |a| >= |b|                              */
 | 
						|
mp_err   s_mp_sub(mp_int *a, mp_int *b)        /* magnitude subtract      */
 | 
						|
{
 | 
						|
  mp_word   w = 0;
 | 
						|
  mp_digit *pa, *pb;
 | 
						|
  mp_size   ix, used = USED(b);
 | 
						|
 | 
						|
  /*
 | 
						|
    Subtract and propagate borrow.  Up to the precision of b, this
 | 
						|
    accounts for the digits of b; after that, we just make sure the
 | 
						|
    carries get to the right place.  This saves having to pad b out to
 | 
						|
    the precision of a just to make the loops work right...
 | 
						|
   */
 | 
						|
  pa = DIGITS(a);
 | 
						|
  pb = DIGITS(b);
 | 
						|
 | 
						|
  for(ix = 0; ix < used; ++ix) {
 | 
						|
    w = (RADIX + *pa) - w - *pb++;
 | 
						|
    *pa++ = ACCUM(w);
 | 
						|
    w = CARRYOUT(w) ? 0 : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  used = USED(a);
 | 
						|
  while(ix < used) {
 | 
						|
    w = RADIX + *pa - w;
 | 
						|
    *pa++ = ACCUM(w);
 | 
						|
    w = CARRYOUT(w) ? 0 : 1;
 | 
						|
    ++ix;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Clobber any leading zeroes we created    */
 | 
						|
  s_mp_clamp(a);
 | 
						|
 | 
						|
  /*
 | 
						|
     If there was a borrow out, then |b| > |a| in violation
 | 
						|
     of our input invariant.  We've already done the work,
 | 
						|
     but we'll at least complain about it...
 | 
						|
   */
 | 
						|
  if(w)
 | 
						|
    return MP_RANGE;
 | 
						|
  else
 | 
						|
    return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_sub() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
mp_err   s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
 | 
						|
{
 | 
						|
  mp_int   q;
 | 
						|
  mp_err   res;
 | 
						|
  mp_size  um = USED(m);
 | 
						|
 | 
						|
  if((res = mp_init_copy(&q, x)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  s_mp_rshd(&q, um - 1);       /* q1 = x / b^(k-1)  */
 | 
						|
  s_mp_mul(&q, mu);            /* q2 = q1 * mu      */
 | 
						|
  s_mp_rshd(&q, um + 1);       /* q3 = q2 / b^(k+1) */
 | 
						|
 | 
						|
  /* x = x mod b^(k+1), quick (no division) */
 | 
						|
  s_mp_mod_2d(x, (mp_digit)(DIGIT_BIT * (um + 1)));
 | 
						|
 | 
						|
  /* q = q * m mod b^(k+1), quick (no division), uses the short multiplier */
 | 
						|
#ifndef SHRT_MUL
 | 
						|
  s_mp_mul(&q, m);
 | 
						|
  s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
 | 
						|
#else
 | 
						|
  s_mp_mul_dig(&q, m, um + 1);
 | 
						|
#endif
 | 
						|
 | 
						|
  /* x = x - q */
 | 
						|
  if((res = mp_sub(x, &q, x)) != MP_OKAY)
 | 
						|
    goto CLEANUP;
 | 
						|
 | 
						|
  /* If x < 0, add b^(k+1) to it */
 | 
						|
  if(mp_cmp_z(x) < 0) {
 | 
						|
    mp_set(&q, 1);
 | 
						|
    if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
    if((res = mp_add(x, &q, x)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Back off if it's too big */
 | 
						|
  while(mp_cmp(x, m) >= 0) {
 | 
						|
    if((res = s_mp_sub(x, m)) != MP_OKAY)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
 CLEANUP:
 | 
						|
  mp_clear(&q);
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end s_mp_reduce() */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* {{{ s_mp_mul(a, b) */
 | 
						|
 | 
						|
/* Compute a = |a| * |b|                                                  */
 | 
						|
mp_err   s_mp_mul(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_word   w, k = 0;
 | 
						|
  mp_int    tmp;
 | 
						|
  mp_err    res;
 | 
						|
  mp_size   ix, jx, ua = USED(a), ub = USED(b);
 | 
						|
  mp_digit *pa, *pb, *pt, *pbt;
 | 
						|
 | 
						|
  if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  /* This has the effect of left-padding with zeroes... */
 | 
						|
  USED(&tmp) = ua + ub;
 | 
						|
 | 
						|
  /* We're going to need the base value each iteration */
 | 
						|
  pbt = DIGITS(&tmp);
 | 
						|
 | 
						|
  /* Outer loop:  Digits of b */
 | 
						|
 | 
						|
  pb = DIGITS(b);
 | 
						|
  for(ix = 0; ix < ub; ++ix, ++pb) {
 | 
						|
    if(*pb == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    /* Inner product:  Digits of a */
 | 
						|
    pa = DIGITS(a);
 | 
						|
    for(jx = 0; jx < ua; ++jx, ++pa) {
 | 
						|
      pt = pbt + ix + jx;
 | 
						|
      w = *pb * *pa + k + *pt;
 | 
						|
      *pt = ACCUM(w);
 | 
						|
      k = CARRYOUT(w);
 | 
						|
    }
 | 
						|
 | 
						|
    pbt[ix + jx] = k;
 | 
						|
    k = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  s_mp_clamp(&tmp);
 | 
						|
  s_mp_exch(&tmp, a);
 | 
						|
 | 
						|
  mp_clear(&tmp);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_mul() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_kmul(a, b, out, len) */
 | 
						|
 | 
						|
#if 0
 | 
						|
void   s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
 | 
						|
{
 | 
						|
  mp_word   w, k = 0;
 | 
						|
  mp_size   ix, jx;
 | 
						|
  mp_digit *pa, *pt;
 | 
						|
 | 
						|
  for(ix = 0; ix < len; ++ix, ++b) {
 | 
						|
    if(*b == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    pa = a;
 | 
						|
    for(jx = 0; jx < len; ++jx, ++pa) {
 | 
						|
      pt = out + ix + jx;
 | 
						|
      w = *b * *pa + k + *pt;
 | 
						|
      *pt = ACCUM(w);
 | 
						|
      k = CARRYOUT(w);
 | 
						|
    }
 | 
						|
 | 
						|
    out[ix + jx] = k;
 | 
						|
    k = 0;
 | 
						|
  }
 | 
						|
 | 
						|
} /* end s_mp_kmul() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_sqr(a) */
 | 
						|
 | 
						|
/*
 | 
						|
  Computes the square of a, in place.  This can be done more
 | 
						|
  efficiently than a general multiplication, because many of the
 | 
						|
  computation steps are redundant when squaring.  The inner product
 | 
						|
  step is a bit more complicated, but we save a fair number of
 | 
						|
  iterations of the multiplication loop.
 | 
						|
 */
 | 
						|
#if MP_SQUARE
 | 
						|
mp_err   s_mp_sqr(mp_int *a)
 | 
						|
{
 | 
						|
  mp_word  w, k = 0;
 | 
						|
  mp_int   tmp;
 | 
						|
  mp_err   res;
 | 
						|
  mp_size  ix, jx, kx, used = USED(a);
 | 
						|
  mp_digit *pa1, *pa2, *pt, *pbt;
 | 
						|
 | 
						|
  if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  /* Left-pad with zeroes */
 | 
						|
  USED(&tmp) = 2 * used;
 | 
						|
 | 
						|
  /* We need the base value each time through the loop */
 | 
						|
  pbt = DIGITS(&tmp);
 | 
						|
 | 
						|
  pa1 = DIGITS(a);
 | 
						|
  for(ix = 0; ix < used; ++ix, ++pa1) {
 | 
						|
    if(*pa1 == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);
 | 
						|
 | 
						|
    pbt[ix + ix] = ACCUM(w);
 | 
						|
    k = CARRYOUT(w);
 | 
						|
 | 
						|
    /*
 | 
						|
      The inner product is computed as:
 | 
						|
 | 
						|
         (C, S) = t[i,j] + 2 a[i] a[j] + C
 | 
						|
 | 
						|
      This can overflow what can be represented in an mp_word, and
 | 
						|
      since C arithmetic does not provide any way to check for
 | 
						|
      overflow, we have to check explicitly for overflow conditions
 | 
						|
      before they happen.
 | 
						|
     */
 | 
						|
    for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
 | 
						|
      mp_word  u = 0, v;
 | 
						|
 | 
						|
      /* Store this in a temporary to avoid indirections later */
 | 
						|
      pt = pbt + ix + jx;
 | 
						|
 | 
						|
      /* Compute the multiplicative step */
 | 
						|
      w = *pa1 * *pa2;
 | 
						|
 | 
						|
      /* If w is more than half MP_WORD_MAX, the doubling will
 | 
						|
         overflow, and we need to record a carry out into the next
 | 
						|
         word */
 | 
						|
      u = (w >> (MP_WORD_BIT - 1)) & 1;
 | 
						|
 | 
						|
      /* Double what we've got, overflow will be ignored as defined
 | 
						|
         for C arithmetic (we've already noted if it is to occur)
 | 
						|
       */
 | 
						|
      w *= 2;
 | 
						|
 | 
						|
      /* Compute the additive step */
 | 
						|
      v = *pt + k;
 | 
						|
 | 
						|
      /* If we do not already have an overflow carry, check to see
 | 
						|
         if the addition will cause one, and set the carry out if so
 | 
						|
       */
 | 
						|
      u |= ((MP_WORD_MAX - v) < w);
 | 
						|
 | 
						|
      /* Add in the rest, again ignoring overflow */
 | 
						|
      w += v;
 | 
						|
 | 
						|
      /* Set the i,j digit of the output */
 | 
						|
      *pt = ACCUM(w);
 | 
						|
 | 
						|
      /* Save carry information for the next iteration of the loop.
 | 
						|
         This is why k must be an mp_word, instead of an mp_digit */
 | 
						|
      k = CARRYOUT(w) | (u << DIGIT_BIT);
 | 
						|
 | 
						|
    } /* for(jx ...) */
 | 
						|
 | 
						|
    /* Set the last digit in the cycle and reset the carry */
 | 
						|
    k = DIGIT(&tmp, ix + jx) + k;
 | 
						|
    pbt[ix + jx] = ACCUM(k);
 | 
						|
    k = CARRYOUT(k);
 | 
						|
 | 
						|
    /* If we are carrying out, propagate the carry to the next digit
 | 
						|
       in the output.  This may cascade, so we have to be somewhat
 | 
						|
       circumspect -- but we will have enough precision in the output
 | 
						|
       that we won't overflow
 | 
						|
     */
 | 
						|
    kx = 1;
 | 
						|
    while(k) {
 | 
						|
      k = pbt[ix + jx + kx] + 1;
 | 
						|
      pbt[ix + jx + kx] = ACCUM(k);
 | 
						|
      k = CARRYOUT(k);
 | 
						|
      ++kx;
 | 
						|
    }
 | 
						|
  } /* for(ix ...) */
 | 
						|
 | 
						|
  s_mp_clamp(&tmp);
 | 
						|
  s_mp_exch(&tmp, a);
 | 
						|
 | 
						|
  mp_clear(&tmp);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_sqr() */
 | 
						|
#endif
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_div(a, b) */
 | 
						|
 | 
						|
/*
 | 
						|
  s_mp_div(a, b)
 | 
						|
 | 
						|
  Compute a = a / b and b = a mod b.  Assumes b > a.
 | 
						|
 */
 | 
						|
 | 
						|
mp_err   s_mp_div(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_int   quot, rem, t;
 | 
						|
  mp_word  q;
 | 
						|
  mp_err   res;
 | 
						|
  mp_digit d;
 | 
						|
  int      ix;
 | 
						|
 | 
						|
  if(mp_cmp_z(b) == 0)
 | 
						|
    return MP_RANGE;
 | 
						|
 | 
						|
  /* Shortcut if b is power of two */
 | 
						|
  if((ix = s_mp_ispow2(b)) >= 0) {
 | 
						|
    mp_copy(a, b);  /* need this for remainder */
 | 
						|
    s_mp_div_2d(a, (mp_digit)ix);
 | 
						|
    s_mp_mod_2d(b, (mp_digit)ix);
 | 
						|
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Allocate space to store the quotient */
 | 
						|
  if((res = mp_init_size(", USED(a))) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  /* A working temporary for division     */
 | 
						|
  if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
 | 
						|
    goto T;
 | 
						|
 | 
						|
  /* Allocate space for the remainder     */
 | 
						|
  if((res = mp_init_size(&rem, USED(a))) != MP_OKAY)
 | 
						|
    goto REM;
 | 
						|
 | 
						|
  /* Normalize to optimize guessing       */
 | 
						|
  d = s_mp_norm(a, b);
 | 
						|
 | 
						|
  /* Perform the division itself...woo!   */
 | 
						|
  ix = USED(a) - 1;
 | 
						|
 | 
						|
  while(ix >= 0) {
 | 
						|
    /* Find a partial substring of a which is at least b */
 | 
						|
    while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
 | 
						|
      if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
 | 
						|
      if((res = s_mp_lshd(", 1)) != MP_OKAY)
 | 
						|
        goto CLEANUP;
 | 
						|
 | 
						|
      DIGIT(&rem, 0) = DIGIT(a, ix);
 | 
						|
      s_mp_clamp(&rem);
 | 
						|
      --ix;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If we didn't find one, we're finished dividing    */
 | 
						|
    if(s_mp_cmp(&rem, b) < 0)
 | 
						|
      break;
 | 
						|
 | 
						|
    /* Compute a guess for the next quotient digit       */
 | 
						|
    q = DIGIT(&rem, USED(&rem) - 1);
 | 
						|
    if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
 | 
						|
      q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
 | 
						|
 | 
						|
    q /= DIGIT(b, USED(b) - 1);
 | 
						|
 | 
						|
    /* The guess can be as much as RADIX + 1 */
 | 
						|
    if(q >= RADIX)
 | 
						|
      q = RADIX - 1;
 | 
						|
 | 
						|
    /* See what that multiplies out to                   */
 | 
						|
    mp_copy(b, &t);
 | 
						|
    if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    /*
 | 
						|
       If it's too big, back it off.  We should not have to do this
 | 
						|
       more than once, or, in rare cases, twice.  Knuth describes a
 | 
						|
       method by which this could be reduced to a maximum of once, but
 | 
						|
       I didn't implement that here.
 | 
						|
     */
 | 
						|
    while(s_mp_cmp(&t, &rem) > 0) {
 | 
						|
      --q;
 | 
						|
      s_mp_sub(&t, b);
 | 
						|
    }
 | 
						|
 | 
						|
    /* At this point, q should be the right next digit   */
 | 
						|
    if((res = s_mp_sub(&rem, &t)) != MP_OKAY)
 | 
						|
      goto CLEANUP;
 | 
						|
 | 
						|
    /*
 | 
						|
      Include the digit in the quotient.  We allocated enough memory
 | 
						|
      for any quotient we could ever possibly get, so we should not
 | 
						|
      have to check for failures here
 | 
						|
     */
 | 
						|
    DIGIT(", 0) = q;
 | 
						|
  }
 | 
						|
 | 
						|
  /* Denormalize remainder                */
 | 
						|
  if(d != 0)
 | 
						|
    s_mp_div_2d(&rem, d);
 | 
						|
 | 
						|
  s_mp_clamp(");
 | 
						|
  s_mp_clamp(&rem);
 | 
						|
 | 
						|
  /* Copy quotient back to output         */
 | 
						|
  s_mp_exch(", a);
 | 
						|
 | 
						|
  /* Copy remainder back to output        */
 | 
						|
  s_mp_exch(&rem, b);
 | 
						|
 | 
						|
CLEANUP:
 | 
						|
  mp_clear(&rem);
 | 
						|
REM:
 | 
						|
  mp_clear(&t);
 | 
						|
T:
 | 
						|
  mp_clear(");
 | 
						|
 | 
						|
  return res;
 | 
						|
 | 
						|
} /* end s_mp_div() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_2expt(a, k) */
 | 
						|
 | 
						|
mp_err   s_mp_2expt(mp_int *a, mp_digit k)
 | 
						|
{
 | 
						|
  mp_err    res;
 | 
						|
  mp_size   dig, bit;
 | 
						|
 | 
						|
  dig = k / DIGIT_BIT;
 | 
						|
  bit = k % DIGIT_BIT;
 | 
						|
 | 
						|
  mp_zero(a);
 | 
						|
  if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
 | 
						|
    return res;
 | 
						|
 | 
						|
  DIGIT(a, dig) |= (1 << bit);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
 | 
						|
} /* end s_mp_2expt() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Primitive comparisons */
 | 
						|
 | 
						|
/* {{{ s_mp_cmp(a, b) */
 | 
						|
 | 
						|
/* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b           */
 | 
						|
int      s_mp_cmp(mp_int *a, mp_int *b)
 | 
						|
{
 | 
						|
  mp_size   ua = USED(a), ub = USED(b);
 | 
						|
 | 
						|
  if(ua > ub)
 | 
						|
    return MP_GT;
 | 
						|
  else if(ua < ub)
 | 
						|
    return MP_LT;
 | 
						|
  else {
 | 
						|
    int      ix = ua - 1;
 | 
						|
    mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;
 | 
						|
 | 
						|
    while(ix >= 0) {
 | 
						|
      if(*ap > *bp)
 | 
						|
        return MP_GT;
 | 
						|
      else if(*ap < *bp)
 | 
						|
        return MP_LT;
 | 
						|
 | 
						|
      --ap; --bp; --ix;
 | 
						|
    }
 | 
						|
 | 
						|
    return MP_EQ;
 | 
						|
  }
 | 
						|
 | 
						|
} /* end s_mp_cmp() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_cmp_d(a, d) */
 | 
						|
 | 
						|
/* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d             */
 | 
						|
int      s_mp_cmp_d(mp_int *a, mp_digit d)
 | 
						|
{
 | 
						|
  mp_size  ua = USED(a);
 | 
						|
  mp_digit *ap = DIGITS(a);
 | 
						|
 | 
						|
  if(ua > 1)
 | 
						|
    return MP_GT;
 | 
						|
 | 
						|
  if(*ap < d)
 | 
						|
    return MP_LT;
 | 
						|
  else if(*ap > d)
 | 
						|
    return MP_GT;
 | 
						|
  else
 | 
						|
    return MP_EQ;
 | 
						|
 | 
						|
} /* end s_mp_cmp_d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_ispow2(v) */
 | 
						|
 | 
						|
/*
 | 
						|
  Returns -1 if the value is not a power of two; otherwise, it returns
 | 
						|
  k such that v = 2^k, i.e. lg(v).
 | 
						|
 */
 | 
						|
int      s_mp_ispow2(mp_int *v)
 | 
						|
{
 | 
						|
  mp_digit d, *dp;
 | 
						|
  mp_size  uv = USED(v);
 | 
						|
  int      extra = 0, ix;
 | 
						|
 | 
						|
  d = DIGIT(v, uv - 1); /* most significant digit of v */
 | 
						|
 | 
						|
  while(d && ((d & 1) == 0)) {
 | 
						|
    d >>= 1;
 | 
						|
    ++extra;
 | 
						|
  }
 | 
						|
 | 
						|
  if(d == 1) {
 | 
						|
    ix = uv - 2;
 | 
						|
    dp = DIGITS(v) + ix;
 | 
						|
 | 
						|
    while(ix >= 0) {
 | 
						|
      if(*dp)
 | 
						|
        return -1; /* not a power of two */
 | 
						|
 | 
						|
      --dp; --ix;
 | 
						|
    }
 | 
						|
 | 
						|
    return ((uv - 1) * DIGIT_BIT) + extra;
 | 
						|
  }
 | 
						|
 | 
						|
  return -1;
 | 
						|
 | 
						|
} /* end s_mp_ispow2() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_ispow2d(d) */
 | 
						|
 | 
						|
int      s_mp_ispow2d(mp_digit d)
 | 
						|
{
 | 
						|
  int   pow = 0;
 | 
						|
 | 
						|
  while((d & 1) == 0) {
 | 
						|
    ++pow; d >>= 1;
 | 
						|
  }
 | 
						|
 | 
						|
  if(d == 1)
 | 
						|
    return pow;
 | 
						|
 | 
						|
  return -1;
 | 
						|
 | 
						|
} /* end s_mp_ispow2d() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ Primitive I/O helpers */
 | 
						|
 | 
						|
/* {{{ s_mp_tovalue(ch, r) */
 | 
						|
 | 
						|
/*
 | 
						|
  Convert the given character to its digit value, in the given radix.
 | 
						|
  If the given character is not understood in the given radix, -1 is
 | 
						|
  returned.  Otherwise the digit's numeric value is returned.
 | 
						|
 | 
						|
  The results will be odd if you use a radix < 2 or > 62, you are
 | 
						|
  expected to know what you're up to.
 | 
						|
 */
 | 
						|
int      s_mp_tovalue(char ch, int r)
 | 
						|
{
 | 
						|
  int    val, xch;
 | 
						|
 | 
						|
  if(r > 36)
 | 
						|
    xch = ch;
 | 
						|
  else
 | 
						|
    xch = toupper(ch);
 | 
						|
 | 
						|
  if(isdigit(xch))
 | 
						|
    val = xch - '0';
 | 
						|
  else if(isupper(xch))
 | 
						|
    val = xch - 'A' + 10;
 | 
						|
  else if(islower(xch))
 | 
						|
    val = xch - 'a' + 36;
 | 
						|
  else if(xch == '+')
 | 
						|
    val = 62;
 | 
						|
  else if(xch == '/')
 | 
						|
    val = 63;
 | 
						|
  else
 | 
						|
    return -1;
 | 
						|
 | 
						|
  if(val < 0 || val >= r)
 | 
						|
    return -1;
 | 
						|
 | 
						|
  return val;
 | 
						|
 | 
						|
} /* end s_mp_tovalue() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_todigit(val, r, low) */
 | 
						|
 | 
						|
/*
 | 
						|
  Convert val to a radix-r digit, if possible.  If val is out of range
 | 
						|
  for r, returns zero.  Otherwise, returns an ASCII character denoting
 | 
						|
  the value in the given radix.
 | 
						|
 | 
						|
  The results may be odd if you use a radix < 2 or > 64, you are
 | 
						|
  expected to know what you're doing.
 | 
						|
 */
 | 
						|
 | 
						|
char     s_mp_todigit(int val, int r, int low)
 | 
						|
{
 | 
						|
  char   ch;
 | 
						|
 | 
						|
  if(val < 0 || val >= r)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  ch = s_dmap_1[val];
 | 
						|
 | 
						|
  if(r <= 36 && low)
 | 
						|
    ch = tolower(ch);
 | 
						|
 | 
						|
  return ch;
 | 
						|
 | 
						|
} /* end s_mp_todigit() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* {{{ s_mp_outlen(bits, radix) */
 | 
						|
 | 
						|
/*
 | 
						|
   Return an estimate for how long a string is needed to hold a radix
 | 
						|
   r representation of a number with 'bits' significant bits.
 | 
						|
 | 
						|
   Does not include space for a sign or a NUL terminator.
 | 
						|
 */
 | 
						|
int      s_mp_outlen(int bits, int r)
 | 
						|
{
 | 
						|
  return (int)((double)bits * LOG_V_2(r));
 | 
						|
 | 
						|
} /* end s_mp_outlen() */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/* }}} */
 | 
						|
 | 
						|
/*------------------------------------------------------------------------*/
 | 
						|
/* HERE THERE BE DRAGONS                                                  */
 | 
						|
/* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */
 | 
						|
 | 
						|
/* $Source$ */
 | 
						|
/* $Revision$ */
 | 
						|
/* $Date$ */
 |