253 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include <tommath.h>
 | 
						|
#ifdef BN_S_MP_EXPTMOD_C
 | 
						|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 | 
						|
 *
 | 
						|
 * LibTomMath is a library that provides multiple-precision
 | 
						|
 * integer arithmetic as well as number theoretic functionality.
 | 
						|
 *
 | 
						|
 * The library was designed directly after the MPI library by
 | 
						|
 * Michael Fromberger but has been written from scratch with
 | 
						|
 * additional optimizations in place.
 | 
						|
 *
 | 
						|
 * The library is free for all purposes without any express
 | 
						|
 * guarantee it works.
 | 
						|
 *
 | 
						|
 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | 
						|
 */
 | 
						|
#ifdef MP_LOW_MEM
 | 
						|
   #define TAB_SIZE 32
 | 
						|
#else
 | 
						|
   #define TAB_SIZE 256
 | 
						|
#endif
 | 
						|
 | 
						|
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | 
						|
{
 | 
						|
  mp_int  M[TAB_SIZE], res, mu;
 | 
						|
  mp_digit buf;
 | 
						|
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | 
						|
  int (*redux)(mp_int*,mp_int*,mp_int*);
 | 
						|
 | 
						|
  /* find window size */
 | 
						|
  x = mp_count_bits (X);
 | 
						|
  if (x <= 7) {
 | 
						|
    winsize = 2;
 | 
						|
  } else if (x <= 36) {
 | 
						|
    winsize = 3;
 | 
						|
  } else if (x <= 140) {
 | 
						|
    winsize = 4;
 | 
						|
  } else if (x <= 450) {
 | 
						|
    winsize = 5;
 | 
						|
  } else if (x <= 1303) {
 | 
						|
    winsize = 6;
 | 
						|
  } else if (x <= 3529) {
 | 
						|
    winsize = 7;
 | 
						|
  } else {
 | 
						|
    winsize = 8;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef MP_LOW_MEM
 | 
						|
    if (winsize > 5) {
 | 
						|
       winsize = 5;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* init M array */
 | 
						|
  /* init first cell */
 | 
						|
  if ((err = mp_init(&M[1])) != MP_OKAY) {
 | 
						|
     return err;
 | 
						|
  }
 | 
						|
 | 
						|
  /* now init the second half of the array */
 | 
						|
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
						|
    if ((err = mp_init(&M[x])) != MP_OKAY) {
 | 
						|
      for (y = 1<<(winsize-1); y < x; y++) {
 | 
						|
        mp_clear (&M[y]);
 | 
						|
      }
 | 
						|
      mp_clear(&M[1]);
 | 
						|
      return err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* create mu, used for Barrett reduction */
 | 
						|
  if ((err = mp_init (&mu)) != MP_OKAY) {
 | 
						|
    goto LBL_M;
 | 
						|
  }
 | 
						|
 | 
						|
  if (redmode == 0) {
 | 
						|
     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | 
						|
        goto LBL_MU;
 | 
						|
     }
 | 
						|
     redux = mp_reduce;
 | 
						|
  } else {
 | 
						|
     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_MU;
 | 
						|
     }
 | 
						|
     redux = mp_reduce_2k_l;
 | 
						|
  }
 | 
						|
 | 
						|
  /* create M table
 | 
						|
   *
 | 
						|
   * The M table contains powers of the base,
 | 
						|
   * e.g. M[x] = G**x mod P
 | 
						|
   *
 | 
						|
   * The first half of the table is not
 | 
						|
   * computed though accept for M[0] and M[1]
 | 
						|
   */
 | 
						|
  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | 
						|
    goto LBL_MU;
 | 
						|
  }
 | 
						|
 | 
						|
  /* compute the value at M[1<<(winsize-1)] by squaring
 | 
						|
   * M[1] (winsize-1) times
 | 
						|
   */
 | 
						|
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
						|
    goto LBL_MU;
 | 
						|
  }
 | 
						|
 | 
						|
  for (x = 0; x < (winsize - 1); x++) {
 | 
						|
    /* square it */
 | 
						|
    if ((err = mp_sqr (&M[1 << (winsize - 1)],
 | 
						|
                       &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
 | 
						|
    /* reduce modulo P */
 | 
						|
    if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | 
						|
   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
 | 
						|
   */
 | 
						|
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | 
						|
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* setup result */
 | 
						|
  if ((err = mp_init (&res)) != MP_OKAY) {
 | 
						|
    goto LBL_MU;
 | 
						|
  }
 | 
						|
  mp_set (&res, 1);
 | 
						|
 | 
						|
  /* set initial mode and bit cnt */
 | 
						|
  mode   = 0;
 | 
						|
  bitcnt = 1;
 | 
						|
  buf    = 0;
 | 
						|
  digidx = X->used - 1;
 | 
						|
  bitcpy = 0;
 | 
						|
  bitbuf = 0;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    /* grab next digit as required */
 | 
						|
    if (--bitcnt == 0) {
 | 
						|
      /* if digidx == -1 we are out of digits */
 | 
						|
      if (digidx == -1) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      /* read next digit and reset the bitcnt */
 | 
						|
      buf    = X->dp[digidx--];
 | 
						|
      bitcnt = (int) DIGIT_BIT;
 | 
						|
    }
 | 
						|
 | 
						|
    /* grab the next msb from the exponent */
 | 
						|
    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | 
						|
    buf <<= (mp_digit)1;
 | 
						|
 | 
						|
    /* if the bit is zero and mode == 0 then we ignore it
 | 
						|
     * These represent the leading zero bits before the first 1 bit
 | 
						|
     * in the exponent.  Technically this opt is not required but it
 | 
						|
     * does lower the # of trivial squaring/reductions used
 | 
						|
     */
 | 
						|
    if (mode == 0 && y == 0) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* if the bit is zero and mode == 1 then we square */
 | 
						|
    if (mode == 1 && y == 0) {
 | 
						|
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* else we add it to the window */
 | 
						|
    bitbuf |= (y << (winsize - ++bitcpy));
 | 
						|
    mode    = 2;
 | 
						|
 | 
						|
    if (bitcpy == winsize) {
 | 
						|
      /* ok window is filled so square as required and multiply  */
 | 
						|
      /* square first */
 | 
						|
      for (x = 0; x < winsize; x++) {
 | 
						|
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* then multiply */
 | 
						|
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
 | 
						|
      /* empty window and reset */
 | 
						|
      bitcpy = 0;
 | 
						|
      bitbuf = 0;
 | 
						|
      mode   = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* if bits remain then square/multiply */
 | 
						|
  if (mode == 2 && bitcpy > 0) {
 | 
						|
    /* square then multiply if the bit is set */
 | 
						|
    for (x = 0; x < bitcpy; x++) {
 | 
						|
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
 | 
						|
      bitbuf <<= 1;
 | 
						|
      if ((bitbuf & (1 << winsize)) != 0) {
 | 
						|
        /* then multiply */
 | 
						|
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mp_exch (&res, Y);
 | 
						|
  err = MP_OKAY;
 | 
						|
LBL_RES:mp_clear (&res);
 | 
						|
LBL_MU:mp_clear (&mu);
 | 
						|
LBL_M:
 | 
						|
  mp_clear(&M[1]);
 | 
						|
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
						|
    mp_clear (&M[x]);
 | 
						|
  }
 | 
						|
  return err;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* $Source: /cvs/libtom/libtommath/bn_s_mp_exptmod.c,v $ */
 | 
						|
/* $Revision: 1.5 $ */
 | 
						|
/* $Date: 2006/12/28 01:25:13 $ */
 |