Merge branch 'Exercise-7' into 'master'
Add exercise 7 and 8 See merge request oysteikt/ma0001-matematikk!1
This commit is contained in:
commit
42b82fb8eb
|
@ -8,3 +8,4 @@
|
||||||
*.out
|
*.out
|
||||||
*.synctex.gz
|
*.synctex.gz
|
||||||
*.toc
|
*.toc
|
||||||
|
*.listing
|
Binary file not shown.
|
@ -1,7 +1,7 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
|
|
||||||
\author{Øystein Tveit}
|
\newcommand{\theTitle}{MA0001 Øving 2}
|
||||||
\title{MA0001 Øving 2}
|
\newcommand{\theAuthor}{Øystein Tveit}
|
||||||
|
|
||||||
\input{../lib/lib.tex}
|
\input{../lib/lib.tex}
|
||||||
|
|
||||||
|
|
Binary file not shown.
|
@ -1,5 +1,8 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
|
|
||||||
|
\newcommand{\theTitle}{MA0001 Øving 3}
|
||||||
|
\newcommand{\theAuthor}{Øystein Tveit}
|
||||||
|
|
||||||
\input{../lib/lib.tex}
|
\input{../lib/lib.tex}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
Binary file not shown.
|
@ -1,5 +1,8 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
|
|
||||||
|
\newcommand{\theTitle}{MA0001 Øving 4}
|
||||||
|
\newcommand{\theAuthor}{Øystein Tveit}
|
||||||
|
|
||||||
\input{../lib/lib.tex}
|
\input{../lib/lib.tex}
|
||||||
|
|
||||||
\usepackage{amssymb}
|
\usepackage{amssymb}
|
||||||
|
|
Binary file not shown.
|
@ -1,5 +1,8 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
|
|
||||||
|
\newcommand{\theTitle}{MA0001 Øving 5}
|
||||||
|
\newcommand{\theAuthor}{Øystein Tveit}
|
||||||
|
|
||||||
\input{../lib/lib.tex}
|
\input{../lib/lib.tex}
|
||||||
|
|
||||||
\usepackage{amssymb}
|
\usepackage{amssymb}
|
||||||
|
|
Binary file not shown.
|
@ -1,5 +1,8 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
|
|
||||||
|
\newcommand{\theTitle}{MA0001 Øving 6}
|
||||||
|
\newcommand{\theAuthor}{Øystein Tveit}
|
||||||
|
|
||||||
\input{../lib/lib.tex}
|
\input{../lib/lib.tex}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
Binary file not shown.
|
@ -0,0 +1,46 @@
|
||||||
|
\documentclass{article}
|
||||||
|
|
||||||
|
\newcommand{\theTitle}{MA0001 Øving 7}
|
||||||
|
\newcommand{\theAuthor}{Øystein Tveit}
|
||||||
|
|
||||||
|
\input{../lib/lib.tex}
|
||||||
|
|
||||||
|
\usepackage{amssymb}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\thispagestyle{plain}
|
||||||
|
\tittel
|
||||||
|
\tableofcontents
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
\section{Forberedende oppgaver}
|
||||||
|
\begin{oppgaver}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/1.tex}
|
||||||
|
|
||||||
|
\end{oppgaver}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
\section{Innleveringsoppgaver}
|
||||||
|
\begin{oppgaver}
|
||||||
|
\setoppg{1}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/2.tex}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/3.tex}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/4.tex}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/5.tex}
|
||||||
|
|
||||||
|
\end{oppgaver}
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -0,0 +1,11 @@
|
||||||
|
\begin{deloppgaver}
|
||||||
|
\delo
|
||||||
|
\[f'(x) = 3\]
|
||||||
|
|
||||||
|
\delo
|
||||||
|
\[f^{-1}(x) = \frac{x}{3} - 1\]
|
||||||
|
|
||||||
|
\delo
|
||||||
|
\[\frac{d}{dx} f^{-1}(x) = \frac{1}{3} \]
|
||||||
|
|
||||||
|
\end{deloppgaver}
|
|
@ -0,0 +1,12 @@
|
||||||
|
\[ f(x) = x^2 \]
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dx} f(x) &= \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} \\[2ex]
|
||||||
|
&= \lim_{\Delta x \to 0} \frac{(x+\Delta x)^2 - x^2}{\Delta x} \\[2ex]
|
||||||
|
&= \lim_{\Delta x \to 0} \frac{x^2 + 2x \Delta x + {\Delta x}^2 - x^2}{\Delta x} \\[2ex]
|
||||||
|
&= \lim_{\Delta x \to 0} \frac{2x \Delta x + {\Delta x}^2}{\Delta x} \\[2ex]
|
||||||
|
&= \lim_{\Delta x \to 0} \frac{2x + \Delta x}{1} \\[2ex]
|
||||||
|
&= \lim_{\Delta x \to 0} \frac{2x + \Delta x}{1} \\[2ex]
|
||||||
|
&= 2x + 0 \\[2ex]
|
||||||
|
&= 2x \\[2ex]
|
||||||
|
\end{align*}
|
|
@ -0,0 +1,6 @@
|
||||||
|
\[ h(x) = -\frac{1}{4}x^4 + \frac{2}{3}x^3 + 2x^2 - \sqrt{2}x + \pi^e \]
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
h'(x) &= 4 \cdot -\frac{1}{4}x^{4-1} + 3 \cdot \frac{2}{3}x^{3-1} + 2\cdot2x^{2-1} - 1 \cdot \sqrt{2}x^{1-1} + 0 \cdot \pi^e x^{0-1} \\
|
||||||
|
&= -x^{3} + 2x^{2} + 4x - \sqrt{2} \\
|
||||||
|
\end{align*}
|
|
@ -0,0 +1,12 @@
|
||||||
|
\begin{align*}
|
||||||
|
\left(x^{1/3}-x\right) \cdot \left(x^{2/3}+x^2\right)
|
||||||
|
&= x^{1/3} \cdot x^{2/3} + x^{1/3} \cdot x^2 - x\cdot x^{2/3} - x \cdot x^{2} \\
|
||||||
|
&= x + x^{7/3} - x^{5/3} - x^3 \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dx} \left( x + x^{7/3} - x^{5/3} - x^3 \right)
|
||||||
|
&= 1 + \frac{7}{3}x^{4/3} - \frac{5}{3}x^{2/3} - 3x^2 \\
|
||||||
|
&= - 3x^2 - \frac{5}{3}x^{2/3} + \frac{7}{3}x^{4/3} + 1
|
||||||
|
\end{align*}
|
|
@ -0,0 +1,14 @@
|
||||||
|
\[ f(x): \mathbb{R} \to \mathbb{R} = \begin{cases}
|
||||||
|
\sqrt{x},\qquad &x \ge 0 \\
|
||||||
|
x, &x < 0
|
||||||
|
\end{cases} \]
|
||||||
|
|
||||||
|
Ettersom \[\sqrt{0} = 0\] og \[\lim_{x\to 0}x = 0\] er funksjonen kontinuerlig.
|
||||||
|
|
||||||
|
Den deriverte av den første delen av funksjonen blir
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dx} \sqrt{x} &= \frac{1}{2} x^{-\frac{1}{2}} \\[2ex]
|
||||||
|
&= \frac{1}{2\sqrt{x}}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Ved $x=0$ blir \[\frac{1}{2\sqrt{x}} = \frac{1}{0}\] som er udefinert, og dermed er ikke den funksjonen deriverbar for denne $x$-verdien
|
Binary file not shown.
|
@ -0,0 +1,47 @@
|
||||||
|
\documentclass{article}
|
||||||
|
|
||||||
|
\newcommand{\theTitle}{Øystein Tveit}
|
||||||
|
\newcommand{\theAuthor}{MA0001 Øving 8}
|
||||||
|
|
||||||
|
\input{../lib/lib.tex}
|
||||||
|
\input{../lib/lst.tex}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
|
||||||
|
\thispagestyle{plain}
|
||||||
|
\tittel
|
||||||
|
\tableofcontents
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
\section{Forberedende oppgaver}
|
||||||
|
\begin{oppgaver}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/1.tex}
|
||||||
|
|
||||||
|
\end{oppgaver}
|
||||||
|
|
||||||
|
\newpage
|
||||||
|
|
||||||
|
\section{Innleveringsoppgaver}
|
||||||
|
\begin{oppgaver}
|
||||||
|
|
||||||
|
\setoppg{1}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/2.tex}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/3.tex}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/4.tex}
|
||||||
|
|
||||||
|
\oppg
|
||||||
|
\input{tasks/5.tex}
|
||||||
|
|
||||||
|
\end{oppgaver}
|
||||||
|
|
||||||
|
\end{document}
|
|
@ -0,0 +1,19 @@
|
||||||
|
from math import e
|
||||||
|
|
||||||
|
def f(x): return e ** x - 2
|
||||||
|
def df(x): return e ** x
|
||||||
|
|
||||||
|
def Newton(a, f, df):
|
||||||
|
return a - f(a)/df(a)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
i = 0
|
||||||
|
a = [5]
|
||||||
|
while True:
|
||||||
|
a.append(Newton(a[i], f, df))
|
||||||
|
if abs(a[i] - a[i-1]) < 0.001:
|
||||||
|
print(f'Iterasjoner: {i-1}, a: {a[i-1]}')
|
||||||
|
break
|
||||||
|
i += 1
|
||||||
|
|
||||||
|
main()
|
|
@ -0,0 +1,10 @@
|
||||||
|
|
||||||
|
\[f(x) = \frac{1}{2}x^3 -7x +22\]
|
||||||
|
|
||||||
|
\[f'(x) = \frac{3}{2}x^2 -7\]
|
||||||
|
|
||||||
|
\[f''(x) = 3x \]
|
||||||
|
|
||||||
|
\[f'''(x) = 3 \]
|
||||||
|
|
||||||
|
\[f^{(100)} = 0\]
|
|
@ -0,0 +1,53 @@
|
||||||
|
\begin{enumerate}[label=\arabic*.]
|
||||||
|
\item \[ f(x) = ln\left(\frac{1}{x^2}\right) \]
|
||||||
|
|
||||||
|
La $u = \frac{1}{x^2}$
|
||||||
|
|
||||||
|
Jeg bruker kjerneregelen:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{dy}{dx} &= \frac{dy}{du} \cdot \frac{du}{dx} \\
|
||||||
|
&= \frac{d}{du} ln(u) \cdot \frac{d}{dx} \frac{1}{x^2} \\
|
||||||
|
&= \frac{1}{u} -2 \frac{1}{x^3} \\
|
||||||
|
&= \frac{1}{\frac{1}{x^2}} -2 \frac{1}{x^3} \\
|
||||||
|
&= x^2 -2 \frac{1}{x^3}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\item \[g(x) = \frac{1 + \sin x}{1 + e^x + x^2}\]
|
||||||
|
|
||||||
|
Jeg bruker kvotientregelen:
|
||||||
|
|
||||||
|
$u = 1 + \sin x$
|
||||||
|
|
||||||
|
$v = 1 + e^x + x^2$
|
||||||
|
|
||||||
|
\[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{ \frac{d}{dx}(u) \cdot v - u \cdot \frac{d}{dx}(v)}{v^2} \]
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dx} u &= \frac{d}{dx} 1 + \sin x \\
|
||||||
|
&= \cos x
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dx} v &= \frac{d}{dx} 1 + e^x + x^2 \\
|
||||||
|
&= e^x + 2x
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{dg}{dx} &= \frac{(\cos x)(1+e^x+x^2) - (1+\sin x)(e^x + 2x)}{\left(1 + e^x + x^2\right)^2}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\item \[h(x) = \sqrt{1 + \sqrt{x}}\]
|
||||||
|
|
||||||
|
$u = 1 + \sqrt{x}$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{dy}{dx} &= \frac{dy}{dv} \cdot \frac{du}{dx} \\
|
||||||
|
&= \frac{d}{du} \sqrt{u} \cdot \frac{d}{dx} \left( 1 + \sqrt{x} \right) \\
|
||||||
|
&= \frac{1}{2\sqrt{u}} \cdot \frac{1}{2\sqrt{x}} \\
|
||||||
|
&= \frac{1}{2\sqrt{1+\sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \\
|
||||||
|
&= \frac{1}{4\sqrt{1+\sqrt{x}} \sqrt{x}}
|
||||||
|
\end{align*}
|
||||||
|
\end{enumerate}
|
|
@ -0,0 +1,41 @@
|
||||||
|
\[f(t) = \frac{t^2 -1}{t+1} + 6t^{1/3} + \sqrt{\sin t} + 4^t\]
|
||||||
|
|
||||||
|
Jeg deriverer funksjonen ledd for ledd
|
||||||
|
|
||||||
|
Ledd 1:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dt} \frac{t^2-1}{t+1} &= \frac{d}{dt}\frac{(t+1)(t-1)}{t+1} \\
|
||||||
|
&= \frac{d}{dt} t-1 \\
|
||||||
|
&= 1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Ledd 2:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dt} 6t^{1/3} &= \frac{1}{3} \cdot 6t^{(1/3 - 1)} \\
|
||||||
|
&= 2t^{-2/3}\\
|
||||||
|
&= \frac{2}{\sqrt[3]{t^2}}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Ledd 3:
|
||||||
|
|
||||||
|
\[ \frac{d}{dt} \sqrt{\sin t} \]
|
||||||
|
|
||||||
|
$u = \sin t$
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{dy}{dt} &= \frac{dy}{du} \cdot \frac{du}{dt} \\
|
||||||
|
&= \frac{d}{du} \sqrt{u} \cdot \frac{d}{dt} \sin t \\
|
||||||
|
&= \frac{1}{2\sqrt{u}} \cdot \cos t \\
|
||||||
|
&= \frac{\cos t}{2\sqrt{\sin t}}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Ledd 4:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dt} 4^t = 4^t ln(t) \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\[\frac{df}{dx} = 1 + \frac{2}{\sqrt[3]{t^2}} + \frac{\cos t}{2\sqrt{\sin t}} + 4^t ln(t)\]
|
||||||
|
|
|
@ -0,0 +1,7 @@
|
||||||
|
|
||||||
|
Her har jeg brukt python for å løse oppgaven.
|
||||||
|
|
||||||
|
\pythonBlock{./scripts/4.py}
|
||||||
|
|
||||||
|
Output:
|
||||||
|
\fbox{Iterasjoner: 7, a: 0.6932882713164431}
|
|
@ -0,0 +1,18 @@
|
||||||
|
\[f(y) = a^y \]
|
||||||
|
\[f'(y) = a^y \ln a\]
|
||||||
|
\[f^{-1}(y) = \log_{a} y\]
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dy}f^{-1}(y) &= \frac{1}{f' \circ f^{-1}(y)} \\[2ex]
|
||||||
|
&= \frac{1}{a^{\log_{a} y} \ln a} \\[2ex]
|
||||||
|
&= \frac{1}{y \ln a} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Gitt at vi vet at $\frac{d}{dx} ln(x) = \frac{1}{x}$, så kan vi også løse det på følgende måte
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\frac{d}{dy} \log_{a} y &= \frac{d}{dy} \frac{\ln y}{\ln a} \\[2ex]
|
||||||
|
&= \frac{1}{\ln a} \cdot \frac{d}{dy} \ln y \\[2ex]
|
||||||
|
&= \frac{1}{\ln a} \cdot \frac{1}{y} \\[2ex]
|
||||||
|
&= \frac{1}{y \ln a}
|
||||||
|
\end{align*}
|
18
lib/lib.tex
18
lib/lib.tex
|
@ -11,22 +11,22 @@
|
||||||
|
|
||||||
\definecolor{ntnublue}{RGB}{0,80,158}
|
\definecolor{ntnublue}{RGB}{0,80,158}
|
||||||
|
|
||||||
\input{../lib/geometry.tex}
|
|
||||||
\input{../lib/header.tex}
|
\input{../lib/header.tex}
|
||||||
|
\input{../lib/geometry.tex}
|
||||||
\input{../lib/math.tex}
|
\input{../lib/math.tex}
|
||||||
\usetikzlibrary{angles, quotes}
|
\usetikzlibrary{angles, quotes}
|
||||||
|
|
||||||
\hypersetup{
|
\hypersetup{
|
||||||
colorlinks=true,
|
colorlinks=true,
|
||||||
linkcolor=blue,
|
linkcolor=blue,
|
||||||
filecolor=magenta,
|
filecolor=magenta,
|
||||||
urlcolor=blue,
|
urlcolor=blue,
|
||||||
}
|
}
|
||||||
|
|
||||||
\pgfplotsset{compat=newest}
|
\pgfplotsset{compat=newest}
|
||||||
|
|
||||||
\author{Øystein Tveit}
|
\author{\theAuthor}
|
||||||
\title{MA0001 Øving 6}
|
\title{\theTitle}
|
||||||
|
|
||||||
\input{../lib/titling.tex}
|
\input{../lib/titling.tex}
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,41 @@
|
||||||
|
\usepackage{listings}
|
||||||
|
|
||||||
|
\definecolor{background}{RGB}{39, 40, 34}
|
||||||
|
\definecolor{string}{RGB}{230, 219, 116}
|
||||||
|
\definecolor{comment}{RGB}{117, 113, 94}
|
||||||
|
\definecolor{normal}{RGB}{248, 248, 242}
|
||||||
|
\definecolor{identifier}{RGB}{166, 226, 46}
|
||||||
|
|
||||||
|
\lstdefinestyle{monokaiPython}{
|
||||||
|
frame=none,
|
||||||
|
language=python, % choose the language of the code
|
||||||
|
numbers=left, % where to put the line-numbers
|
||||||
|
stepnumber=1, % the step between two line-numbers.
|
||||||
|
numbersep=5pt, % how far the line-numbers are from the code
|
||||||
|
numberstyle=\color{white}\ttfamily,
|
||||||
|
backgroundcolor=\color{background}, % choose the background color. You must add \usepackage{color}
|
||||||
|
showspaces=false, % show spaces adding particular underscores
|
||||||
|
showstringspaces=false, % underline spaces within strings
|
||||||
|
showtabs=false, % show tabs within strings adding particular underscores
|
||||||
|
tabsize=2, % sets default tabsize to 2 spaces
|
||||||
|
captionpos=b, % sets the caption-position to bottom
|
||||||
|
breaklines=true, % sets automatic line breaking
|
||||||
|
breakatwhitespace=true, % sets if automatic breaks should only happen at whitespace
|
||||||
|
title=\color{white}\lstname, % show the filename of files included with \lstinputlisting;
|
||||||
|
basicstyle=\color{normal}\ttfamily, % sets font style for the code
|
||||||
|
keywordstyle=\color{magenta}\ttfamily, % sets color for keywords
|
||||||
|
stringstyle=\color{string}\ttfamily, % sets color for strings
|
||||||
|
commentstyle=\color{comment}\ttfamily, % sets color for comments
|
||||||
|
emph={format_string, eff_ana_bf, permute, eff_ana_btr},
|
||||||
|
emphstyle=\color{identifier}\ttfamily
|
||||||
|
}
|
||||||
|
|
||||||
|
\usepackage{framed}
|
||||||
|
\definecolor{shadecolor}{named}{background}
|
||||||
|
|
||||||
|
\newcommand{\pythonBlock}[1]
|
||||||
|
{
|
||||||
|
\begin{shaded}
|
||||||
|
\lstinputlisting[style=monokaiPython]{#1}
|
||||||
|
\end{shaded}
|
||||||
|
}
|
Loading…
Reference in New Issue