MA0001/Exercise 8/tasks/3.tex

41 lines
837 B
TeX

\[f(t) = \frac{t^2 -1}{t+1} + 6t^{1/3} + \sqrt{\sin t} + 4^t\]
Jeg deriverer funksjonen ledd for ledd
Ledd 1:
\begin{align*}
\frac{d}{dt} \frac{t^2-1}{t+1} &= \frac{d}{dt}\frac{(t+1)(t-1)}{t+1} \\
&= \frac{d}{dt} t-1 \\
&= 1
\end{align*}
Ledd 2:
\begin{align*}
\frac{d}{dt} 6t^{1/3} &= \frac{1}{3} \cdot 6t^{(1/3 - 1)} \\
&= 2t^{-2/3}\\
&= \frac{2}{\sqrt[3]{t^2}}
\end{align*}
Ledd 3:
\[ \frac{d}{dt} \sqrt{\sin t} \]
$u = \sin t$
\begin{align*}
\frac{dy}{dt} &= \frac{dy}{du} \cdot \frac{du}{dt} \\
&= \frac{d}{du} \sqrt{u} \cdot \frac{d}{dt} \sin t \\
&= \frac{1}{2\sqrt{u}} \cdot \cos t \\
&= \frac{\cos t}{2\sqrt{\sin t}}
\end{align*}
Ledd 4:
\begin{align*}
\frac{d}{dt} 4^t = 4^t ln(t) \\
\end{align*}
\[\frac{df}{dx} = 1 + \frac{2}{\sqrt[3]{t^2}} + \frac{\cos t}{2\sqrt{\sin t}} + 4^t ln(t)\]