41 lines
837 B
TeX
41 lines
837 B
TeX
|
\[f(t) = \frac{t^2 -1}{t+1} + 6t^{1/3} + \sqrt{\sin t} + 4^t\]
|
||
|
|
||
|
Jeg deriverer funksjonen ledd for ledd
|
||
|
|
||
|
Ledd 1:
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{d}{dt} \frac{t^2-1}{t+1} &= \frac{d}{dt}\frac{(t+1)(t-1)}{t+1} \\
|
||
|
&= \frac{d}{dt} t-1 \\
|
||
|
&= 1
|
||
|
\end{align*}
|
||
|
|
||
|
Ledd 2:
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{d}{dt} 6t^{1/3} &= \frac{1}{3} \cdot 6t^{(1/3 - 1)} \\
|
||
|
&= 2t^{-2/3}\\
|
||
|
&= \frac{2}{\sqrt[3]{t^2}}
|
||
|
\end{align*}
|
||
|
|
||
|
Ledd 3:
|
||
|
|
||
|
\[ \frac{d}{dt} \sqrt{\sin t} \]
|
||
|
|
||
|
$u = \sin t$
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{dy}{dt} &= \frac{dy}{du} \cdot \frac{du}{dt} \\
|
||
|
&= \frac{d}{du} \sqrt{u} \cdot \frac{d}{dt} \sin t \\
|
||
|
&= \frac{1}{2\sqrt{u}} \cdot \cos t \\
|
||
|
&= \frac{\cos t}{2\sqrt{\sin t}}
|
||
|
\end{align*}
|
||
|
|
||
|
Ledd 4:
|
||
|
|
||
|
\begin{align*}
|
||
|
\frac{d}{dt} 4^t = 4^t ln(t) \\
|
||
|
\end{align*}
|
||
|
|
||
|
\[\frac{df}{dx} = 1 + \frac{2}{\sqrt[3]{t^2}} + \frac{\cos t}{2\sqrt{\sin t}} + 4^t ln(t)\]
|
||
|
|