db/simple: use class boost::intrusive::list

Remove the C list_head library and use type-safe C++ instead.
This commit is contained in:
Max Kellermann 2014-06-10 21:15:40 +02:00
parent 52594e64d0
commit 3ca0a39a35
12 changed files with 151 additions and 948 deletions

View File

@ -370,8 +370,6 @@ libutil_a_SOURCES = \
src/util/PeakBuffer.cxx src/util/PeakBuffer.hxx \
src/util/OptionParser.cxx src/util/OptionParser.hxx \
src/util/OptionDef.hxx \
src/util/list.h \
src/util/list_sort.c src/util/list_sort.h \
src/util/ByteReverse.cxx src/util/ByteReverse.hxx \
src/util/bit_reverse.c src/util/bit_reverse.h

View File

@ -33,10 +33,6 @@
#include "util/Alloc.hxx"
#include "util/Error.hxx"
extern "C" {
#include "util/list_sort.h"
}
#include <assert.h>
#include <string.h>
#include <stdlib.h>
@ -47,21 +43,14 @@ Directory::Directory(std::string &&_path_utf8, Directory *_parent)
path(std::move(_path_utf8)),
mounted_database(nullptr)
{
INIT_LIST_HEAD(&children);
INIT_LIST_HEAD(&songs);
}
Directory::~Directory()
{
delete mounted_database;
Song *song, *ns;
directory_for_each_song_safe(song, ns, *this)
song->Free();
Directory *child, *n;
directory_for_each_child_safe(child, n, *this)
delete child;
songs.clear_and_dispose(Song::Disposer());
children.clear_and_dispose(Disposer());
}
void
@ -70,8 +59,8 @@ Directory::Delete()
assert(holding_db_lock());
assert(parent != nullptr);
list_del(&siblings);
delete this;
parent->children.erase_and_dispose(parent->children.iterator_to(*this),
Disposer());
}
const char *
@ -94,7 +83,7 @@ Directory::CreateChild(const char *name_utf8)
: PathTraitsUTF8::Build(GetPath(), name_utf8);
Directory *child = new Directory(std::move(path_utf8), this);
list_add_tail(&child->siblings, &children);
children.push_back(*child);
return child;
}
@ -103,10 +92,9 @@ Directory::FindChild(const char *name) const
{
assert(holding_db_lock());
const Directory *child;
directory_for_each_child(child, *this)
if (strcmp(child->GetName(), name) == 0)
return child;
for (const auto &child : children)
if (strcmp(child.GetName(), name) == 0)
return &child;
return nullptr;
}
@ -116,17 +104,14 @@ Directory::PruneEmpty()
{
assert(holding_db_lock());
Directory *child, *n;
directory_for_each_child_safe(child, n, *this) {
if (child->IsMount())
/* never prune mount points; they're always
empty by definition, but that's ok */
continue;
for (auto child = children.begin(), end = children.end();
child != end;) {
child->PruneEmpty();
if (child->IsEmpty())
child->Delete();
child = children.erase_and_dispose(child, Disposer());
else
++child;
}
}
@ -182,7 +167,7 @@ Directory::AddSong(Song *song)
assert(song != nullptr);
assert(song->parent == this);
list_add_tail(&song->siblings, &songs);
songs.push_back(*song);
}
void
@ -192,7 +177,7 @@ Directory::RemoveSong(Song *song)
assert(song != nullptr);
assert(song->parent == this);
list_del(&song->siblings);
songs.erase(songs.iterator_to(*song));
}
const Song *
@ -201,25 +186,21 @@ Directory::FindSong(const char *name_utf8) const
assert(holding_db_lock());
assert(name_utf8 != nullptr);
Song *song;
directory_for_each_song(song, *this) {
assert(song->parent == this);
for (auto &song : songs) {
assert(song.parent == this);
if (strcmp(song->uri, name_utf8) == 0)
return song;
if (strcmp(song.uri, name_utf8) == 0)
return &song;
}
return nullptr;
}
static int
directory_cmp(gcc_unused void *priv,
struct list_head *_a, struct list_head *_b)
gcc_pure
static bool
directory_cmp(const Directory &a, const Directory &b)
{
const Directory *a = (const Directory *)_a;
const Directory *b = (const Directory *)_b;
return IcuCollate(a->path.c_str(), b->path.c_str());
return IcuCollate(a.path.c_str(), b.path.c_str()) < 0;
}
void
@ -227,12 +208,11 @@ Directory::Sort()
{
assert(holding_db_lock());
list_sort(nullptr, &children, directory_cmp);
song_list_sort(&songs);
children.sort(directory_cmp);
song_list_sort(songs);
Directory *child;
directory_for_each_child(child, *this)
child->Sort();
for (auto &child : children)
child.Sort();
}
bool
@ -260,9 +240,8 @@ Directory::Walk(bool recursive, const SongFilter *filter,
}
if (visit_song) {
Song *song;
directory_for_each_song(song, *this) {
const LightSong song2 = song->Export();
for (auto &song : songs){
const LightSong song2 = song.Export();
if ((filter == nullptr || filter->Match(song2)) &&
!visit_song(song2, error))
return false;
@ -275,16 +254,15 @@ Directory::Walk(bool recursive, const SongFilter *filter,
return false;
}
Directory *child;
directory_for_each_child(child, *this) {
for (auto &child : children) {
if (visit_directory &&
!visit_directory(child->Export(), error))
!visit_directory(child.Export(), error))
return false;
if (recursive &&
!child->Walk(recursive, filter,
visit_directory, visit_song, visit_playlist,
error))
!child.Walk(recursive, filter,
visit_directory, visit_song, visit_playlist,
error))
return false;
}

View File

@ -21,10 +21,12 @@
#define MPD_DIRECTORY_HXX
#include "check.h"
#include "util/list.h"
#include "Compiler.h"
#include "db/Visitor.hxx"
#include "db/PlaylistVector.hxx"
#include "Song.hxx"
#include <boost/intrusive/list.hpp>
#include <string>
@ -41,25 +43,22 @@ static constexpr unsigned DEVICE_INARCHIVE = -1;
*/
static constexpr unsigned DEVICE_CONTAINER = -2;
#define directory_for_each_child(pos, directory) \
list_for_each_entry(pos, &(directory).children, siblings)
#define directory_for_each_child_safe(pos, n, directory) \
list_for_each_entry_safe(pos, n, &(directory).children, siblings)
#define directory_for_each_song(pos, directory) \
list_for_each_entry(pos, &(directory).songs, siblings)
#define directory_for_each_song_safe(pos, n, directory) \
list_for_each_entry_safe(pos, n, &(directory).songs, siblings)
struct Song;
struct db_visitor;
class SongFilter;
class Error;
class Database;
struct Directory {
static constexpr auto link_mode = boost::intrusive::normal_link;
typedef boost::intrusive::link_mode<link_mode> LinkMode;
typedef boost::intrusive::list_member_hook<LinkMode> Hook;
struct Disposer {
void operator()(Directory *directory) const {
delete directory;
}
};
/**
* Pointers to the siblings of this directory within the
* parent directory. It is unused (undefined) in the root
@ -68,7 +67,12 @@ struct Directory {
* This attribute is protected with the global #db_mutex.
* Read access in the update thread does not need protection.
*/
struct list_head siblings;
Hook siblings;
typedef boost::intrusive::member_hook<Directory, Hook,
&Directory::siblings> SiblingsHook;
typedef boost::intrusive::list<Directory, SiblingsHook,
boost::intrusive::constant_time_size<false>> List;
/**
* A doubly linked list of child directories.
@ -76,7 +80,7 @@ struct Directory {
* This attribute is protected with the global #db_mutex.
* Read access in the update thread does not need protection.
*/
struct list_head children;
List children;
/**
* A doubly linked list of songs within this directory.
@ -84,7 +88,7 @@ struct Directory {
* This attribute is protected with the global #db_mutex.
* Read access in the update thread does not need protection.
*/
struct list_head songs;
SongList songs;
PlaylistVector playlists;
@ -186,8 +190,8 @@ public:
gcc_pure
bool IsEmpty() const {
return list_empty(&children) &&
list_empty(&songs) &&
return children.empty() &&
songs.empty() &&
playlists.empty();
}
@ -210,6 +214,24 @@ public:
return parent == nullptr;
}
template<typename T>
void ForEachChildSafe(T &&t) {
const auto end = children.end();
for (auto i = children.begin(), next = i; i != end; i = next) {
next = std::next(i);
t(*i);
}
}
template<typename T>
void ForEachSongSafe(T &&t) {
const auto end = songs.end();
for (auto i = songs.begin(), next = i; i != end; i = next) {
next = std::next(i);
t(*i);
}
}
/**
* Look up a song in this directory by its name.
*

View File

@ -84,20 +84,18 @@ directory_save(FILE *fp, const Directory &directory)
fprintf(fp, "%s%s\n", DIRECTORY_BEGIN, directory.GetPath());
}
Directory *cur;
directory_for_each_child(cur, directory) {
fprintf(fp, DIRECTORY_DIR "%s\n", cur->GetName());
for (const auto &child : directory.children) {
fprintf(fp, DIRECTORY_DIR "%s\n", child.GetName());
if (!cur->IsMount())
directory_save(fp, *cur);
if (!child.IsMount())
directory_save(fp, child);
if (ferror(fp))
return;
}
Song *song;
directory_for_each_song(song, directory)
song_save(fp, *song);
for (const auto &song : directory.songs)
song_save(fp, song);
playlist_vector_save(fp, directory.playlists);

View File

@ -20,10 +20,11 @@
#ifndef MPD_SONG_HXX
#define MPD_SONG_HXX
#include "util/list.h"
#include "tag/Tag.hxx"
#include "Compiler.h"
#include <boost/intrusive/list.hpp>
#include <string>
#include <assert.h>
@ -39,6 +40,16 @@ class Storage;
* #SimpleDatabase class.
*/
struct Song {
static constexpr auto link_mode = boost::intrusive::normal_link;
typedef boost::intrusive::link_mode<link_mode> LinkMode;
typedef boost::intrusive::list_member_hook<LinkMode> Hook;
struct Disposer {
void operator()(Song *song) const {
song->Free();
}
};
/**
* Pointers to the siblings of this directory within the
* parent directory. It is unused (undefined) if this song is
@ -47,7 +58,7 @@ struct Song {
* This attribute is protected with the global #db_mutex.
* Read access in the update thread does not need protection.
*/
struct list_head siblings;
Hook siblings;
Tag tag;
@ -110,4 +121,9 @@ struct Song {
LightSong Export() const;
};
typedef boost::intrusive::list<Song,
boost::intrusive::member_hook<Song, Song::Hook,
&Song::siblings>,
boost::intrusive::constant_time_size<false>> SongList;
#endif

View File

@ -23,10 +23,6 @@
#include "tag/Tag.hxx"
#include "lib/icu/Collate.hxx"
extern "C" {
#include "util/list_sort.h"
}
#include <stdlib.h>
static int
@ -80,34 +76,33 @@ compare_tag_item(const Tag &a, const Tag &b, TagType type)
}
/* Only used for sorting/searchin a songvec, not general purpose compares */
static int
song_cmp(gcc_unused void *priv, struct list_head *_a, struct list_head *_b)
gcc_pure
static bool
song_cmp(const Song &a, const Song &b)
{
const Song *a = (const Song *)_a;
const Song *b = (const Song *)_b;
int ret;
/* first sort by album */
ret = compare_string_tag_item(a->tag, b->tag, TAG_ALBUM);
ret = compare_string_tag_item(a.tag, b.tag, TAG_ALBUM);
if (ret != 0)
return ret;
return ret < 0;
/* then sort by disc */
ret = compare_tag_item(a->tag, b->tag, TAG_DISC);
ret = compare_tag_item(a.tag, b.tag, TAG_DISC);
if (ret != 0)
return ret;
return ret < 0;
/* then by track number */
ret = compare_tag_item(a->tag, b->tag, TAG_TRACK);
ret = compare_tag_item(a.tag, b.tag, TAG_TRACK);
if (ret != 0)
return ret;
return ret < 0;
/* still no difference? compare file name */
return IcuCollate(a->uri, b->uri);
return IcuCollate(a.uri, b.uri) < 0;
}
void
song_list_sort(struct list_head *songs)
song_list_sort(SongList &songs)
{
list_sort(nullptr, songs, song_cmp);
songs.sort(song_cmp);
}

View File

@ -20,9 +20,11 @@
#ifndef MPD_SONG_SORT_HXX
#define MPD_SONG_SORT_HXX
#include "Song.hxx"
struct list_head;
void
song_list_sort(list_head *songs);
song_list_sort(SongList &songs);
#endif

View File

@ -64,15 +64,14 @@ DatabaseEditor::LockDeleteSong(Directory &parent, Song *song)
inline void
DatabaseEditor::ClearDirectory(Directory &directory)
{
Directory *child, *n;
directory_for_each_child_safe(child, n, directory)
DeleteDirectory(child);
directory.ForEachChildSafe([this](Directory &child){
DeleteDirectory(&child);
});
Song *song, *ns;
directory_for_each_song_safe(song, ns, directory) {
assert(song->parent == &directory);
DeleteSong(directory, song);
}
directory.ForEachSongSafe([this, &directory](Song &song){
assert(song.parent == &directory);
DeleteSong(directory, &song);
});
}
void

View File

@ -80,26 +80,25 @@ UpdateWalk::RemoveExcludedFromDirectory(Directory &directory,
{
db_lock();
Directory *child, *n;
directory_for_each_child_safe(child, n, directory) {
const auto name_fs = AllocatedPath::FromUTF8(child->GetName());
directory.ForEachChildSafe([&](Directory &child){
const auto name_fs =
AllocatedPath::FromUTF8(child.GetName());
if (name_fs.IsNull() || exclude_list.Check(name_fs)) {
editor.DeleteDirectory(child);
modified = true;
}
}
if (name_fs.IsNull() || exclude_list.Check(name_fs)) {
editor.DeleteDirectory(&child);
modified = true;
}
});
Song *song, *ns;
directory_for_each_song_safe(song, ns, directory) {
assert(song->parent == &directory);
directory.ForEachSongSafe([&](Song &song){
assert(song.parent == &directory);
const auto name_fs = AllocatedPath::FromUTF8(song->uri);
if (name_fs.IsNull() || exclude_list.Check(name_fs)) {
editor.DeleteSong(directory, song);
modified = true;
}
}
const auto name_fs = AllocatedPath::FromUTF8(song.uri);
if (name_fs.IsNull() || exclude_list.Check(name_fs)) {
editor.DeleteSong(directory, &song);
modified = true;
}
});
db_unlock();
}
@ -107,25 +106,23 @@ UpdateWalk::RemoveExcludedFromDirectory(Directory &directory,
inline void
UpdateWalk::PurgeDeletedFromDirectory(Directory &directory)
{
Directory *child, *n;
directory_for_each_child_safe(child, n, directory) {
if (DirectoryExists(storage, *child))
continue;
directory.ForEachChildSafe([&](Directory &child){
if (DirectoryExists(storage, child))
return;
editor.LockDeleteDirectory(child);
modified = true;
}
Song *song, *ns;
directory_for_each_song_safe(song, ns, directory) {
if (!directory_child_is_regular(storage, directory,
song->uri)) {
editor.LockDeleteSong(directory, song);
editor.LockDeleteDirectory(&child);
modified = true;
}
}
});
directory.ForEachSongSafe([&](Song &song){
if (!directory_child_is_regular(storage, directory,
song.uri)) {
editor.LockDeleteSong(directory, &song);
modified = true;
}
});
for (auto i = directory.playlists.begin(),
end = directory.playlists.end();

View File

@ -1,607 +0,0 @@
/*
* Copyright (C) 2003-2014 The Music Player Daemon Project
* http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* This code was imported from the Linux kernel.
*
*/
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H
#ifdef __clang__
/* allow typeof() */
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#endif
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) \
((type *)((uint8_t *)ptr - offsetof(type, member)))
/*
* These are non-NULL pointers that will result in page faults
* under normal circumstances, used to verify that nobody uses
* non-initialized list entries.
*/
#define LIST_POISON1 ((struct list_head *)(void *) 0x00100100)
#define LIST_POISON2 ((struct list_head *)(void *) 0x00200200)
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new_item,
struct list_head *prev,
struct list_head *next)
{
next->prev = new_item;
new_item->next = next;
new_item->prev = prev;
prev->next = new_item;
}
#else
extern void __list_add(struct list_head *new_item,
struct list_head *prev,
struct list_head *next);
#endif
/**
* list_add - add a new entry
* @new_item: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new_item, struct list_head *head)
{
__list_add(new_item, head, head->next);
}
/**
* list_add_tail - add a new entry
* @new_item: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void
list_add_tail(struct list_head *new_item, struct list_head *head)
{
__list_add(new_item, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new_item : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace(struct list_head *old,
struct list_head *new_item)
{
new_item->next = old->next;
new_item->next->prev = new_item;
new_item->prev = old->prev;
new_item->prev->next = new_item;
}
static inline void list_replace_init(struct list_head *old,
struct list_head *new_item)
{
list_replace(old, new_item);
INIT_LIST_HEAD(old);
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
}
/**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
/**
* list_empty_careful - tests whether a list is empty and not being modified
* @head: the list to test
*
* Description:
* tests whether a list is empty _and_ checks that no other CPU might be
* in the process of modifying either member (next or prev)
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*/
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
/**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static inline void list_rotate_left(struct list_head *head)
{
struct list_head *first;
if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
}
/**
* list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static inline int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}
static inline void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
}
/**
* list_cut_position - cut a list into two
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
* and if so we won't cut the list
*
* This helper moves the initial part of @head, up to and
* including @entry, from @head to @list. You should
* pass on @entry an element you know is on @head. @list
* should be an empty list or a list you do not care about
* losing its data.
*
*/
static inline void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
}
static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
first->prev = prev;
prev->next = first;
last->next = next;
next->prev = last;
}
/**
* list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}
/**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}
/**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static inline void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* This variant doesn't differ from list_for_each() any more.
* We don't do prefetching in either case.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
pos != (head); \
pos = n, n = pos->prev)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
/**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_struct within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, typeof(*pos), member))
/**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_continue_reverse - iterate backwards from the given point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Start to iterate over list of given type backwards, continuing after
* the current position.
*/
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
/**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; &pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_entry_safe_continue - continue list iteration safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_entry(pos->member.next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_entry_safe_from - iterate over list from current point safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member), \
n = list_entry(pos->member.prev, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.prev, typeof(*n), member))
/**
* list_safe_reset_next - reset a stale list_for_each_entry_safe loop
* @pos: the loop cursor used in the list_for_each_entry_safe loop
* @n: temporary storage used in list_for_each_entry_safe
* @member: the name of the list_struct within the struct.
*
* list_safe_reset_next is not safe to use in general if the list may be
* modified concurrently (eg. the lock is dropped in the loop body). An
* exception to this is if the cursor element (pos) is pinned in the list,
* and list_safe_reset_next is called after re-taking the lock and before
* completing the current iteration of the loop body.
*/
#define list_safe_reset_next(pos, n, member) \
n = list_entry(pos->member.next, typeof(*pos), member)
#endif

View File

@ -1,162 +0,0 @@
/*
* Copyright (C) 2003-2014 The Music Player Daemon Project
* http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* This code was imported from the Linux kernel.
*
*/
#include "list_sort.h"
#include "list.h"
#include "Macros.hxx"
#include "Compiler.h"
#include <string.h>
#define unlikely gcc_unlikely
#define MAX_LIST_LENGTH_BITS 20
/*
* Returns a list organized in an intermediate format suited
* to chaining of merge() calls: null-terminated, no reserved or
* sentinel head node, "prev" links not maintained.
*/
static struct list_head *merge(void *priv,
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b),
struct list_head *a, struct list_head *b)
{
struct list_head head, *tail = &head;
while (a && b) {
/* if equal, take 'a' -- important for sort stability */
if ((*cmp)(priv, a, b) <= 0) {
tail->next = a;
a = a->next;
} else {
tail->next = b;
b = b->next;
}
tail = tail->next;
}
tail->next = a?a:b;
return head.next;
}
/*
* Combine final list merge with restoration of standard doubly-linked
* list structure. This approach duplicates code from merge(), but
* runs faster than the tidier alternatives of either a separate final
* prev-link restoration pass, or maintaining the prev links
* throughout.
*/
static void merge_and_restore_back_links(void *priv,
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b),
struct list_head *head,
struct list_head *a, struct list_head *b)
{
struct list_head *tail = head;
while (a && b) {
/* if equal, take 'a' -- important for sort stability */
if ((*cmp)(priv, a, b) <= 0) {
tail->next = a;
a->prev = tail;
a = a->next;
} else {
tail->next = b;
b->prev = tail;
b = b->next;
}
tail = tail->next;
}
tail->next = a ? a : b;
do {
/*
* In worst cases this loop may run many iterations.
* Continue callbacks to the client even though no
* element comparison is needed, so the client's cmp()
* routine can invoke cond_resched() periodically.
*/
(*cmp)(priv, tail->next, tail->next);
tail->next->prev = tail;
tail = tail->next;
} while (tail->next);
tail->next = head;
head->prev = tail;
}
/**
* list_sort - sort a list
* @priv: private data, opaque to list_sort(), passed to @cmp
* @head: the list to sort
* @cmp: the elements comparison function
*
* This function implements "merge sort", which has O(nlog(n))
* complexity.
*
* The comparison function @cmp must return a negative value if @a
* should sort before @b, and a positive value if @a should sort after
* @b. If @a and @b are equivalent, and their original relative
* ordering is to be preserved, @cmp must return 0.
*/
void list_sort(void *priv, struct list_head *head,
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b))
{
struct list_head *part[MAX_LIST_LENGTH_BITS+1]; /* sorted partial lists
-- last slot is a sentinel */
int lev; /* index into part[] */
int max_lev = 0;
struct list_head *list;
if (list_empty(head))
return;
memset(part, 0, sizeof(part));
head->prev->next = NULL;
list = head->next;
while (list) {
struct list_head *cur = list;
list = list->next;
cur->next = NULL;
for (lev = 0; part[lev]; lev++) {
cur = merge(priv, cmp, part[lev], cur);
part[lev] = NULL;
}
if (lev > max_lev) {
max_lev = lev;
}
part[lev] = cur;
}
for (lev = 0; lev < max_lev; lev++)
if (part[lev])
list = merge(priv, cmp, part[lev], list);
merge_and_restore_back_links(priv, cmp, head, part[max_lev], list);
}

View File

@ -1,33 +0,0 @@
/*
* Copyright (C) 2003-2014 The Music Player Daemon Project
* http://www.musicpd.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* This code was imported from the Linux kernel.
*
*/
#ifndef _LINUX_LIST_SORT_H
#define _LINUX_LIST_SORT_H
struct list_head;
void list_sort(void *priv, struct list_head *head,
int (*cmp)(void *priv, struct list_head *a,
struct list_head *b));
#endif