Files
heimdal/base/heimbasepriv.h
Nicolas Williams f4ba41ebdd Pluggable libheimbase interface for DBs and misc libheimbase enhancements
[Code reviewed by Love Hörnquist Åstrand <lha@kth.se>]

    Added heim_db_*() entry points for dealing with databases, and
    make krb5_aname_to_localname() use it.

    The following enhancements to libheimbase are included:

     - Add heim_data_t and heim_string_t "reference" variants to
       avoid memory copies of potentially large data/strings.

       See heim_data_ref_create() and heim_string_ref_create().

     - Added enhancements to heim_array_t to allow their use for
       queues and stacks, and to improve performance.  See
       heim_array_insert_value().

     - Added XPath-like accessors for heim_object_t.  See
       heim_path_get(), heim_path_copy(), heim_path_create(), and
       heim_path_delete().  These are used extensively in the DB
       framework's generic composition of ACID support and in the
       test_base program

     - Made libheimbase more consistent with Core Foundation naming
       conventions.  See heim_{dict, array}_{get, copy}_value() and
       heim_path_{get, copy}().

     - Added functionality to and fixed bugs in base/json.c:
        - heim_serialize();
        - depth limit for JSON parsing (for DoS protection);
        - pretty-printing;
        - JSON compliance (see below);
        - flag options for parsing and serializing; these are needed
          because of impedance mismatches between heim_object_t and
          JSON (e.g., heim_dict_t allows non-string keys, but JSON
          does not; heimbase supports binary data, while JSON does
          not).

     - Added heim_error_enomem().

     - Enhanced the test_base program to test new functionality and
       to use heim_path*() to better test JSON encoding.  This
       includes some fuzz testing of JSON parsing, and running the
       test under valgrind.

     - Started to add doxygen documentation for libheimbase (but doc
       build for libheimbase is still incomplete).

    Note that there's still some incomplete JSON support:

     - JSON string quoting is not fully implemented;

     - libheimbase lacks support for real numbers, while JSON has
       it -- otherwise libheimbase is a superset of JSON,
       specifically in that any heim_object_t can be a key for an
       associative array.

    The following DB backends are supported natively:

     - "sorted-text", a binary search of sorted (in C locale), flat
       text files;

     - "json", a backend that stores DB contents serialized as JSON
       (this is intended for configuration-like contents).

    The DB framework supports:

     - multiple key/value tables per-DB
     - ACID transactions

    The DB framework also natively implements ACID transactions for
    any DB backends that a) do not provide transactions natively, b)
    do provide lock/unlock/sync methods (even on Windows).  This
    includes autocommit of DB updates outside transactions.

    Future DB enhancements may include:

     - add backends for various DB types (BDB, CDB, MDB, ...);

     - make libhdb use heim_db_t;

     - add a command-line tool for interfacing to databases via
       libheimbase (e.g., to get/set/delete values, create/copy/
       backup DBs, inspect history, check integrity);

     - framework-level transaction logging (with redo and undo
       logging), for generic incremental replication;

     - framework-level DB integrity checking.

       We could store a MAC of the XOR of a hash function applied to
       {key, value} for every entry in the DB, then use this to check
       DB integrity incrementally during incremental replication, as
       well as for the whole DB.
2012-02-05 16:26:32 -06:00

105 lines
3.5 KiB
C

/*
* Copyright (c) 2010 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Portions Copyright (c) 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
typedef void (*heim_type_init)(void *);
typedef heim_object_t (*heim_type_copy)(void *);
typedef int (*heim_type_cmp)(void *, void *);
typedef unsigned long (*heim_type_hash)(void *);
typedef struct heim_type_data *heim_type_t;
enum {
HEIM_TID_NUMBER = 0,
HEIM_TID_NULL = 1,
HEIM_TID_BOOL = 2,
HEIM_TID_TAGGED_UNUSED2 = 3, /* reserved for tagged object types */
HEIM_TID_TAGGED_UNUSED3 = 4, /* reserved for tagged object types */
HEIM_TID_TAGGED_UNUSED4 = 5, /* reserved for tagged object types */
HEIM_TID_TAGGED_UNUSED5 = 6, /* reserved for tagged object types */
HEIM_TID_TAGGED_UNUSED6 = 7, /* reserved for tagged object types */
HEIM_TID_MEMORY = 128,
HEIM_TID_ARRAY = 129,
HEIM_TID_DICT = 130,
HEIM_TID_STRING = 131,
HEIM_TID_AUTORELEASE = 132,
HEIM_TID_ERROR = 133,
HEIM_TID_DATA = 134,
HEIM_TID_DB = 135,
HEIM_TID_USER = 255
};
struct heim_type_data {
heim_tid_t tid;
const char *name;
heim_type_init init;
heim_type_dealloc dealloc;
heim_type_copy copy;
heim_type_cmp cmp;
heim_type_hash hash;
};
heim_type_t _heim_get_isa(heim_object_t);
heim_type_t
_heim_create_type(const char *name,
heim_type_init init,
heim_type_dealloc dealloc,
heim_type_copy copy,
heim_type_cmp cmp,
heim_type_hash hash);
heim_object_t
_heim_alloc_object(heim_type_t type, size_t size);
void *
_heim_get_isaextra(heim_object_t o, size_t idx);
heim_tid_t
_heim_type_get_tid(heim_type_t type);
void
_heim_make_permanent(heim_object_t ptr);
heim_data_t
_heim_db_get_value(heim_db_t, heim_string_t, heim_data_t, heim_error_t *);
/* tagged tid */
extern struct heim_type_data _heim_null_object;
extern struct heim_type_data _heim_bool_object;
extern struct heim_type_data _heim_number_object;
extern struct heim_type_data _heim_string_object;