Files
heimdal/base/array.c
Nicolas Williams f4ba41ebdd Pluggable libheimbase interface for DBs and misc libheimbase enhancements
[Code reviewed by Love Hörnquist Åstrand <lha@kth.se>]

    Added heim_db_*() entry points for dealing with databases, and
    make krb5_aname_to_localname() use it.

    The following enhancements to libheimbase are included:

     - Add heim_data_t and heim_string_t "reference" variants to
       avoid memory copies of potentially large data/strings.

       See heim_data_ref_create() and heim_string_ref_create().

     - Added enhancements to heim_array_t to allow their use for
       queues and stacks, and to improve performance.  See
       heim_array_insert_value().

     - Added XPath-like accessors for heim_object_t.  See
       heim_path_get(), heim_path_copy(), heim_path_create(), and
       heim_path_delete().  These are used extensively in the DB
       framework's generic composition of ACID support and in the
       test_base program

     - Made libheimbase more consistent with Core Foundation naming
       conventions.  See heim_{dict, array}_{get, copy}_value() and
       heim_path_{get, copy}().

     - Added functionality to and fixed bugs in base/json.c:
        - heim_serialize();
        - depth limit for JSON parsing (for DoS protection);
        - pretty-printing;
        - JSON compliance (see below);
        - flag options for parsing and serializing; these are needed
          because of impedance mismatches between heim_object_t and
          JSON (e.g., heim_dict_t allows non-string keys, but JSON
          does not; heimbase supports binary data, while JSON does
          not).

     - Added heim_error_enomem().

     - Enhanced the test_base program to test new functionality and
       to use heim_path*() to better test JSON encoding.  This
       includes some fuzz testing of JSON parsing, and running the
       test under valgrind.

     - Started to add doxygen documentation for libheimbase (but doc
       build for libheimbase is still incomplete).

    Note that there's still some incomplete JSON support:

     - JSON string quoting is not fully implemented;

     - libheimbase lacks support for real numbers, while JSON has
       it -- otherwise libheimbase is a superset of JSON,
       specifically in that any heim_object_t can be a key for an
       associative array.

    The following DB backends are supported natively:

     - "sorted-text", a binary search of sorted (in C locale), flat
       text files;

     - "json", a backend that stores DB contents serialized as JSON
       (this is intended for configuration-like contents).

    The DB framework supports:

     - multiple key/value tables per-DB
     - ACID transactions

    The DB framework also natively implements ACID transactions for
    any DB backends that a) do not provide transactions natively, b)
    do provide lock/unlock/sync methods (even on Windows).  This
    includes autocommit of DB updates outside transactions.

    Future DB enhancements may include:

     - add backends for various DB types (BDB, CDB, MDB, ...);

     - make libhdb use heim_db_t;

     - add a command-line tool for interfacing to databases via
       libheimbase (e.g., to get/set/delete values, create/copy/
       backup DBs, inspect history, check integrity);

     - framework-level transaction logging (with redo and undo
       logging), for generic incremental replication;

     - framework-level DB integrity checking.

       We could store a MAC of the XOR of a hash function applied to
       {key, value} for every entry in the DB, then use this to check
       DB integrity incrementally during incremental replication, as
       well as for the whole DB.
2012-02-05 16:26:32 -06:00

439 lines
11 KiB
C

/*
* Copyright (c) 2010 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Portions Copyright (c) 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "baselocl.h"
/*
*
*/
struct heim_array_data {
size_t len;
heim_object_t *val;
size_t allocated_len;
heim_object_t *allocated;
};
static void
array_dealloc(heim_object_t ptr)
{
heim_array_t array = ptr;
size_t n;
for (n = 0; n < array->len; n++)
heim_release(array->val[n]);
free(array->allocated);
}
struct heim_type_data array_object = {
HEIM_TID_ARRAY,
"dict-object",
NULL,
array_dealloc,
NULL,
NULL,
NULL
};
/**
* Allocate an array
*
* @return A new allocated array, free with heim_release()
*/
heim_array_t
heim_array_create(void)
{
heim_array_t array;
array = _heim_alloc_object(&array_object, sizeof(*array));
if (array == NULL)
return NULL;
array->allocated = NULL;
array->allocated_len = 0;
array->val = NULL;
array->len = 0;
return array;
}
/**
* Get type id of an dict
*
* @return the type id
*/
heim_tid_t
heim_array_get_type_id(void)
{
return HEIM_TID_ARRAY;
}
/**
* Append object to array
*
* @param array array to add too
* @param object the object to add
*
* @return zero if added, errno otherwise
*/
int
heim_array_append_value(heim_array_t array, heim_object_t object)
{
heim_object_t *ptr;
size_t leading = array->val - array->allocated; /* unused leading slots */
size_t trailing = array->allocated_len - array->len - leading;
size_t new_len;
if (trailing > 0) {
/* We have pre-allocated space; use it */
array->val[array->len++] = heim_retain(object);
return 0;
}
if (leading > (array->len + 1)) {
/*
* We must have appending to, and deleting at index 0 from this
* array a lot; don't want to grow forever!
*/
(void) memmove(&array->allocated[0], &array->val[0],
array->len * sizeof(array->val[0]));
array->val = array->allocated;
/* We have pre-allocated space; use it */
array->val[array->len++] = heim_retain(object);
return 0;
}
/* Pre-allocate extra .5 times number of used slots */
new_len = leading + array->len + 1 + (array->len >> 1);
ptr = realloc(array->allocated, new_len * sizeof(array->val[0]));
if (ptr == NULL)
return ENOMEM;
array->allocated = ptr;
array->allocated_len = new_len;
array->val = &ptr[leading];
array->val[array->len++] = heim_retain(object);
return 0;
}
/*
* Internal function to insert at index 0, taking care to optimize the
* case where we're always inserting at index 0, particularly the case
* where we insert at index 0 and delete from the right end.
*/
static int
heim_array_prepend_value(heim_array_t array, heim_object_t object)
{
heim_object_t *ptr;
size_t leading = array->val - array->allocated; /* unused leading slots */
size_t trailing = array->allocated_len - array->len - leading;
size_t new_len;
if (leading > 0) {
/* We have pre-allocated space; use it */
array->val--;
array->val[0] = heim_retain(object);
array->len++;
return 0;
}
if (trailing > (array->len + 1)) {
/*
* We must have prepending to, and deleting at index
* array->len - 1 from this array a lot; don't want to grow
* forever!
*/
(void) memmove(&array->allocated[array->len], &array->val[0],
array->len * sizeof(array->val[0]));
array->val = &array->allocated[array->len];
/* We have pre-allocated space; use it */
array->val--;
array->val[0] = heim_retain(object);
array->len++;
return 0;
}
/* Pre-allocate extra .5 times number of used slots */
new_len = array->len + 1 + trailing + (array->len >> 1);
ptr = realloc(array->allocated, new_len * sizeof(array->val[0]));
if (ptr == NULL)
return ENOMEM;
(void) memmove(&ptr[1], &ptr[0], array->len * sizeof (array->val[0]));
array->allocated = ptr;
array->allocated_len = new_len;
array->val = &ptr[0];
array->val[0] = heim_retain(object);
array->len++;
return 0;
}
/**
* Insert an object at a given index in an array
*
* @param array array to add too
* @param idx index where to add element (-1 == append, -2 next to last, ...)
* @param object the object to add
*
* @return zero if added, errno otherwise
*/
int
heim_array_insert_value(heim_array_t array, size_t idx, heim_object_t object)
{
int ret;
if (idx == 0)
return heim_array_prepend_value(array, object);
else if (idx > array->len)
heim_abort("index too large");
/*
* We cheat: append this element then rotate elements around so we
* have this new element at the desired location, unless we're truly
* appending the new element. This means reusing array growth in
* heim_array_append_value() instead of duplicating that here.
*/
ret = heim_array_append_value(array, object);
if (ret != 0 || idx == (array->len - 1))
return ret;
/*
* Shift to the right by one all the elements after idx, then set
* [idx] to the new object.
*/
(void) memmove(&array->val[idx + 1], &array->val[idx],
(array->len - idx - 1) * sizeof(array->val[0]));
array->val[idx] = heim_retain(object);
return 0;
}
/**
* Iterate over all objects in array
*
* @param array array to iterate over
* @param ctx context passed to fn
* @param fn function to call on each object
*/
void
heim_array_iterate_f(heim_array_t array, void *ctx, heim_array_iterator_f_t fn)
{
size_t n;
for (n = 0; n < array->len; n++)
fn(array->val[n], ctx);
}
#ifdef __BLOCKS__
/**
* Iterate over all objects in array
*
* @param array array to iterate over
* @param fn block to call on each object
*/
void
heim_array_iterate(heim_array_t array, void (^fn)(heim_object_t))
{
size_t n;
for (n = 0; n < array->len; n++)
fn(array->val[n]);
}
#endif
/**
* Iterate over all objects in array, backwards
*
* @param array array to iterate over
* @param ctx context passed to fn
* @param fn function to call on each object
*/
void
heim_array_iterate_reverse_f(heim_array_t array, void *ctx, heim_array_iterator_f_t fn)
{
size_t n;
for (n = array->len; n > 0; n--)
fn(array->val[n - 1], ctx);
}
#ifdef __BLOCKS__
/**
* Iterate over all objects in array, backwards
*
* @param array array to iterate over
* @param fn block to call on each object
*/
void
heim_array_iterate_reverse(heim_array_t array, void (^fn)(heim_object_t))
{
size_t n;
for (n = array->len; n > 0; n--)
fn(array->val[n - 1]);
}
#endif
/**
* Get length of array
*
* @param array array to get length of
*
* @return length of array
*/
size_t
heim_array_get_length(heim_array_t array)
{
return array->len;
}
/**
* Get value of element at array index
*
* @param array array copy object from
* @param idx index of object, 0 based, must be smaller then
* heim_array_get_length()
*
* @return a not-retained copy of the object
*/
heim_object_t
heim_array_get_value(heim_array_t array, size_t idx)
{
if (idx >= array->len)
heim_abort("index too large");
return array->val[idx];
}
/**
* Get value of element at array index
*
* @param array array copy object from
* @param idx index of object, 0 based, must be smaller then
* heim_array_get_length()
*
* @return a retained copy of the object
*/
heim_object_t
heim_array_copy_value(heim_array_t array, size_t idx)
{
if (idx >= array->len)
heim_abort("index too large");
return heim_retain(array->val[idx]);
}
/**
* Set value at array index
*
* @param array array copy object from
* @param idx index of object, 0 based, must be smaller then
* heim_array_get_length()
* @param value value to set
*
*/
void
heim_array_set_value(heim_array_t array, size_t idx, heim_object_t value)
{
if (idx >= array->len)
heim_abort("index too large");
heim_release(array->val[idx]);
array->val[idx] = heim_retain(value);
}
/**
* Delete value at idx
*
* @param array the array to modify
* @param idx the key to delete
*/
void
heim_array_delete_value(heim_array_t array, size_t idx)
{
heim_object_t obj;
if (idx >= array->len)
heim_abort("index too large");
obj = array->val[idx];
array->len--;
/*
* Deleting the first or last elements is cheap, as we leave
* allocated space for opportunistic reuse later; no realloc(), no
* memmove(). All others require a memmove().
*
* If we ever need to optimize deletion of non-last/ non-first
* element we can use a tagged object type to signify "deleted
* value" so we can leave holes in the array, avoid memmove()s on
* delete, and opportunistically re-use those holes on insert.
*/
if (idx == 0)
array->val++;
else if (idx < array->len)
(void) memmove(&array->val[idx], &array->val[idx + 1],
(array->len - idx) * sizeof(array->val[0]));
heim_release(obj);
}
#ifdef __BLOCKS__
/**
* Get value at idx
*
* @param array the array to modify
* @param idx the key to delete
*/
void
heim_array_filter(heim_array_t array, int (^block)(heim_object_t))
{
size_t n = 0;
while (n < array->len) {
if (block(array->val[n])) {
heim_array_delete_value(array, n);
} else {
n++;
}
}
}
#endif /* __BLOCKS__ */