 aa01dfb5e1
			
		
	
	aa01dfb5e1
	
	
	
		
			
			git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@18322 ec53bebd-3082-4978-b11e-865c3cabbd6b
		
			
				
	
	
		
			1093 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1093 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
|   Name:     imrat.c
 | |
|   Purpose:  Arbitrary precision rational arithmetic routines.
 | |
|   Author:   M. J. Fromberger <http://www.dartmouth.edu/~sting/>
 | |
|   Info:     $Id$
 | |
| 
 | |
|   Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
 | |
| 
 | |
|   Permission is hereby granted, free of charge, to any person
 | |
|   obtaining a copy of this software and associated documentation files
 | |
|   (the "Software"), to deal in the Software without restriction,
 | |
|   including without limitation the rights to use, copy, modify, merge,
 | |
|   publish, distribute, sublicense, and/or sell copies of the Software,
 | |
|   and to permit persons to whom the Software is furnished to do so,
 | |
|   subject to the following conditions:
 | |
| 
 | |
|   The above copyright notice and this permission notice shall be
 | |
|   included in all copies or substantial portions of the Software.
 | |
| 
 | |
|   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|   NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|   BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|   ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|   CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|   SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "imrat.h"
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| /* {{{ Useful macros */
 | |
| 
 | |
| #define TEMP(K) (temp + (K))
 | |
| #define SETUP(E, C) \
 | |
| do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
 | |
| 
 | |
| /* Argument checking:
 | |
|    Use CHECK() where a return value is required; NRCHECK() elsewhere */
 | |
| #define CHECK(TEST)   assert(TEST)
 | |
| #define NRCHECK(TEST) assert(TEST)
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* Reduce the given rational, in place, to lowest terms and canonical
 | |
|    form.  Zero is represented as 0/1, one as 1/1.  Signs are adjusted
 | |
|    so that the sign of the numerator is definitive. */
 | |
| static mp_result s_rat_reduce(mp_rat r);
 | |
| 
 | |
| /* Common code for addition and subtraction operations on rationals. */
 | |
| static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, 
 | |
| 			       mp_result (*comb_f)(mp_int, mp_int, mp_int));
 | |
| 
 | |
| /* {{{ mp_rat_init(r) */
 | |
| 
 | |
| mp_result mp_rat_init(mp_rat r)
 | |
| {
 | |
|   return mp_rat_init_size(r, 0, 0);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_alloc() */
 | |
| 
 | |
| mp_rat mp_rat_alloc(void)
 | |
| {
 | |
|   mp_rat out = malloc(sizeof(*out));
 | |
| 
 | |
|   if(out != NULL) {
 | |
|     if(mp_rat_init(out) != MP_OK) {
 | |
|       free(out);
 | |
|       return NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_init_size(r, n_prec, d_prec) */
 | |
| 
 | |
| mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK)
 | |
|     return res;
 | |
|   if((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
 | |
|     mp_int_clear(MP_NUMER_P(r));
 | |
|     return res;
 | |
|   }
 | |
|   
 | |
|   return mp_int_set_value(MP_DENOM_P(r), 1);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_init_copy(r, old) */
 | |
| 
 | |
| mp_result mp_rat_init_copy(mp_rat r, mp_rat old)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK)
 | |
|     return res;
 | |
|   if((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK) 
 | |
|     mp_int_clear(MP_NUMER_P(r));
 | |
|   
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_set_value(r, numer, denom) */
 | |
| 
 | |
| mp_result mp_rat_set_value(mp_rat r, int numer, int denom)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if(denom == 0)
 | |
|     return MP_UNDEF;
 | |
| 
 | |
|   if((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK)
 | |
|     return res;
 | |
|   if((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   return s_rat_reduce(r);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_clear(r) */
 | |
| 
 | |
| void      mp_rat_clear(mp_rat r)
 | |
| {
 | |
|   mp_int_clear(MP_NUMER_P(r));
 | |
|   mp_int_clear(MP_DENOM_P(r));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_free(r) */
 | |
| 
 | |
| void      mp_rat_free(mp_rat r)
 | |
| {
 | |
|   NRCHECK(r != NULL);
 | |
|   
 | |
|   if(r->num.digits != NULL)
 | |
|     mp_rat_clear(r);
 | |
| 
 | |
|   free(r);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_numer(r, z) */
 | |
| 
 | |
| mp_result mp_rat_numer(mp_rat r, mp_int z)
 | |
| {
 | |
|   return mp_int_copy(MP_NUMER_P(r), z);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_denom(r, z) */
 | |
| 
 | |
| mp_result mp_rat_denom(mp_rat r, mp_int z)
 | |
| {
 | |
|   return mp_int_copy(MP_DENOM_P(r), z);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_sign(r) */
 | |
| 
 | |
| mp_sign   mp_rat_sign(mp_rat r)
 | |
| {
 | |
|   return MP_SIGN(MP_NUMER_P(r));
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_copy(a, c) */
 | |
| 
 | |
| mp_result mp_rat_copy(mp_rat a, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
 | |
|     return res;
 | |
|   
 | |
|   res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_zero(r) */
 | |
| 
 | |
| void      mp_rat_zero(mp_rat r)
 | |
| {
 | |
|   mp_int_zero(MP_NUMER_P(r));
 | |
|   mp_int_set_value(MP_DENOM_P(r), 1);
 | |
|   
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_abs(a, c) */
 | |
| 
 | |
| mp_result mp_rat_abs(mp_rat a, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
 | |
|     return res;
 | |
|   
 | |
|   res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c));
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_neg(a, c) */
 | |
| 
 | |
| mp_result mp_rat_neg(mp_rat a, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_recip(a, c) */
 | |
| 
 | |
| mp_result mp_rat_recip(mp_rat a, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if(mp_rat_compare_zero(a) == 0)
 | |
|     return MP_UNDEF;
 | |
| 
 | |
|   if((res = mp_rat_copy(a, c)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c));
 | |
| 
 | |
|   /* Restore the signs of the swapped elements */
 | |
|   {
 | |
|     mp_sign tmp = MP_SIGN(MP_NUMER_P(c));
 | |
| 
 | |
|     MP_SIGN(MP_NUMER_P(c)) = MP_SIGN(MP_DENOM_P(c));
 | |
|     MP_SIGN(MP_DENOM_P(c)) = tmp;
 | |
|   }
 | |
| 
 | |
|   return MP_OK;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_add(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c)
 | |
| {
 | |
|   return s_rat_combine(a, b, c, mp_int_add);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_sub(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c)
 | |
| {
 | |
|   return s_rat_combine(a, b, c, mp_int_sub);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_mul(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   if(mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
 | |
|     if((res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c))) != MP_OK)
 | |
|       return res;
 | |
|   }
 | |
| 
 | |
|   return s_rat_reduce(c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_int_div(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c)
 | |
| {
 | |
|   mp_result res = MP_OK;
 | |
| 
 | |
|   if(mp_rat_compare_zero(b) == 0)
 | |
|     return MP_UNDEF;
 | |
| 
 | |
|   if(c == a || c == b) {
 | |
|     mpz_t tmp;
 | |
| 
 | |
|     if((res = mp_int_init(&tmp)) != MP_OK) return res;
 | |
|     if((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK) 
 | |
|       goto CLEANUP;
 | |
|     if((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     res = mp_int_copy(&tmp, MP_NUMER_P(c));
 | |
| 
 | |
|   CLEANUP:
 | |
|     mp_int_clear(&tmp);
 | |
|   }
 | |
|   else {
 | |
|     if((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) != MP_OK)
 | |
|       return res;
 | |
|     if((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
 | |
|       return res;
 | |
|   }
 | |
| 
 | |
|   if(res != MP_OK)
 | |
|     return res;
 | |
|   else
 | |
|     return s_rat_reduce(c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_add_int(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c)
 | |
| {
 | |
|   mpz_t tmp;
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_init_copy(&tmp, b)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   if((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if((res = mp_rat_copy(a, c)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   res = s_rat_reduce(c);
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_int_clear(&tmp);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_sub_int(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c)
 | |
| {
 | |
|   mpz_t tmp;
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_init_copy(&tmp, b)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   if((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if((res = mp_rat_copy(a, c)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   res = s_rat_reduce(c);
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_int_clear(&tmp);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_mul_int(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_rat_copy(a, c)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   if((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   return s_rat_reduce(c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_div_int(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if(mp_int_compare_zero(b) == 0)
 | |
|     return MP_UNDEF;
 | |
| 
 | |
|   if((res = mp_rat_copy(a, c)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   if((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   return s_rat_reduce(c);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_expt(a, b, c) */
 | |
| 
 | |
| mp_result mp_rat_expt(mp_rat a, int b, mp_rat c)
 | |
| {
 | |
|   mp_result  res;
 | |
| 
 | |
|   /* Special cases for easy powers. */
 | |
|   if(b == 0)
 | |
|     return mp_rat_set_value(c, 1, 1);
 | |
|   else if(b == 1)
 | |
|     return mp_rat_copy(a, c);
 | |
| 
 | |
|   /* Since rationals are always stored in lowest terms, it is not
 | |
|      necessary to reduce again when raising to an integer power. */
 | |
|   if((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_compare(a, b) */
 | |
| 
 | |
| int       mp_rat_compare(mp_rat a, mp_rat b)
 | |
| {
 | |
|   /* Quick check for opposite signs.  Works because the sign of the
 | |
|      numerator is always definitive. */
 | |
|   if(MP_SIGN(MP_NUMER_P(a)) != MP_SIGN(MP_NUMER_P(b))) {
 | |
|     if(MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
 | |
|       return 1;
 | |
|     else
 | |
|       return -1;
 | |
|   }
 | |
|   else {
 | |
|     /* Compare absolute magnitudes; if both are positive, the answer
 | |
|        stands, otherwise it needs to be reflected about zero. */
 | |
|     int cmp = mp_rat_compare_unsigned(a, b);
 | |
| 
 | |
|     if(MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
 | |
|       return cmp;
 | |
|     else
 | |
|       return -cmp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_compare_unsigned(a, b) */
 | |
| 
 | |
| int       mp_rat_compare_unsigned(mp_rat a, mp_rat b)
 | |
| {
 | |
|   /* If the denominators are equal, we can quickly compare numerators
 | |
|      without multiplying.  Otherwise, we actually have to do some work. */
 | |
|   if(mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0)
 | |
|     return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b));
 | |
| 
 | |
|   else {
 | |
|     mpz_t  temp[2];
 | |
|     mp_result res;
 | |
|     int  cmp = INT_MAX, last = 0;
 | |
| 
 | |
|     /* t0 = num(a) * den(b), t1 = num(b) * den(a) */
 | |
|     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
 | |
|     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
 | |
| 
 | |
|     if((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
 | |
|        (res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     
 | |
|     cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1));
 | |
|     
 | |
|   CLEANUP:
 | |
|     while(--last >= 0)
 | |
|       mp_int_clear(TEMP(last));
 | |
| 
 | |
|     return cmp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_compare_zero(r) */
 | |
| 
 | |
| int       mp_rat_compare_zero(mp_rat r)
 | |
| {
 | |
|   return mp_int_compare_zero(MP_NUMER_P(r));
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_compare_value(r, n, d) */
 | |
| 
 | |
| int       mp_rat_compare_value(mp_rat r, int n, int d)
 | |
| {
 | |
|   mpq_t tmp;
 | |
|   mp_result res;
 | |
|   int  out = INT_MAX;
 | |
| 
 | |
|   if((res = mp_rat_init(&tmp)) != MP_OK)
 | |
|     return out;
 | |
|   if((res = mp_rat_set_value(&tmp, n, d)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
|   
 | |
|   out = mp_rat_compare(r, &tmp);
 | |
|   
 | |
|  CLEANUP:
 | |
|   mp_rat_clear(&tmp);
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_is_integer(r) */
 | |
| 
 | |
| int       mp_rat_is_integer(mp_rat r)
 | |
| {
 | |
|   return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_to_ints(r, *num, *den) */
 | |
| 
 | |
| mp_result mp_rat_to_ints(mp_rat r, int *num, int *den)
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   if((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   res = mp_int_to_int(MP_DENOM_P(r), den);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_to_string(r, radix, *str, limit) */
 | |
| 
 | |
| mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit)
 | |
| {
 | |
|   char *start;
 | |
|   int   len;
 | |
|   mp_result res;
 | |
| 
 | |
|   /* Write the numerator.  The sign of the rational number is written
 | |
|      by the underlying integer implementation. */
 | |
|   if((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   /* If the value is zero, don't bother writing any denominator */
 | |
|   if(mp_int_compare_zero(MP_NUMER_P(r)) == 0)
 | |
|     return MP_OK;
 | |
|   
 | |
|   /* Locate the end of the numerator, and make sure we are not going to 
 | |
|      exceed the limit by writing a slash. */
 | |
|   len = strlen(str);
 | |
|   start = str + len;
 | |
|   limit -= len;
 | |
|   if(limit == 0)
 | |
|     return MP_TRUNC;
 | |
| 
 | |
|   *start++ = '/';
 | |
|   limit -= 1;
 | |
|   
 | |
|   res = mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_to_decimal(r, radix, prec, *str, limit) */
 | |
| mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec,
 | |
|                             mp_round_mode round, char *str, int limit)
 | |
| {
 | |
|   mpz_t temp[3];
 | |
|   mp_result res;
 | |
|   char *start = str;
 | |
|   int len, lead_0, left = limit, last = 0;
 | |
|     
 | |
|   SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
 | |
|   SETUP(mp_int_init(TEMP(last)), last);
 | |
|   SETUP(mp_int_init(TEMP(last)), last);
 | |
| 
 | |
|   /* Get the unsigned integer part by dividing denominator into the
 | |
|      absolute value of the numerator. */
 | |
|   mp_int_abs(TEMP(0), TEMP(0));
 | |
|   if((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   /* Now:  T0 = integer portion, unsigned;
 | |
|            T1 = remainder, from which fractional part is computed. */
 | |
| 
 | |
|   /* Count up leading zeroes after the radix point. */
 | |
|   for(lead_0 = 0; lead_0 < prec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0; 
 | |
|       ++lead_0) {
 | |
|     if((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* Multiply remainder by a power of the radix sufficient to get the
 | |
|      right number of significant figures. */
 | |
|   if(prec > lead_0) {
 | |
|     if((res = mp_int_expt_value(radix, prec - lead_0, TEMP(2))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     if((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
|   if((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   /* Now:  T1 = significant digits of fractional part;
 | |
|            T2 = leftovers, to use for rounding. 
 | |
| 
 | |
|      At this point, what we do depends on the rounding mode.  The
 | |
|      default is MP_ROUND_DOWN, for which everything is as it should be
 | |
|      already.
 | |
|   */
 | |
|   switch(round) {
 | |
|     int cmp;
 | |
| 
 | |
|   case MP_ROUND_UP:
 | |
|     if(mp_int_compare_zero(TEMP(2)) != 0) {
 | |
|       if(prec == 0)
 | |
| 	res = mp_int_add_value(TEMP(0), 1, TEMP(0));
 | |
|       else
 | |
| 	res = mp_int_add_value(TEMP(1), 1, TEMP(1));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case MP_ROUND_HALF_UP:
 | |
|   case MP_ROUND_HALF_DOWN:
 | |
|     if((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r));    
 | |
| 
 | |
|     if(round == MP_ROUND_HALF_UP)
 | |
|       cmp += 1;
 | |
| 
 | |
|     if(cmp > 0) {
 | |
|       if(prec == 0)
 | |
| 	res = mp_int_add_value(TEMP(0), 1, TEMP(0));
 | |
|       else
 | |
| 	res = mp_int_add_value(TEMP(1), 1, TEMP(1));
 | |
|     }
 | |
|     break;
 | |
|     
 | |
|   case MP_ROUND_DOWN:
 | |
|     break;  /* No action required */
 | |
| 
 | |
|   default: 
 | |
|     return MP_BADARG; /* Invalid rounding specifier */
 | |
|   }
 | |
| 
 | |
|   /* The sign of the output should be the sign of the numerator, but
 | |
|      if all the displayed digits will be zero due to the precision, a
 | |
|      negative shouldn't be shown. */
 | |
|   if(MP_SIGN(MP_NUMER_P(r)) == MP_NEG &&
 | |
|      (mp_int_compare_zero(TEMP(0)) != 0 ||
 | |
|       mp_int_compare_zero(TEMP(1)) != 0)) {
 | |
|     *start++ = '-';
 | |
|     left -= 1;
 | |
|   }
 | |
| 
 | |
|   if((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
|   
 | |
|   len = strlen(start);
 | |
|   start += len;
 | |
|   left -= len;
 | |
|   
 | |
|   if(prec == 0) 
 | |
|     goto CLEANUP;
 | |
|   
 | |
|   *start++ = '.';
 | |
|   left -= 1;
 | |
|   
 | |
|   if(left < prec + 1) {
 | |
|     res = MP_TRUNC;
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   memset(start, '0', lead_0 - 1);
 | |
|   left -= lead_0;
 | |
|   start += lead_0 - 1;
 | |
| 
 | |
|   res = mp_int_to_string(TEMP(1), radix, start, left);
 | |
| 
 | |
|  CLEANUP:
 | |
|   while(--last >= 0)
 | |
|     mp_int_clear(TEMP(last));
 | |
|   
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_string_len(r, radix) */
 | |
| 
 | |
| mp_result mp_rat_string_len(mp_rat r, mp_size radix)
 | |
| {
 | |
|   mp_result n_len, d_len = 0;
 | |
| 
 | |
|   n_len = mp_int_string_len(MP_NUMER_P(r), radix);
 | |
| 
 | |
|   if(mp_int_compare_zero(MP_NUMER_P(r)) != 0)
 | |
|     d_len = mp_int_string_len(MP_DENOM_P(r), radix);
 | |
| 
 | |
|   /* Though simplistic, this formula is correct.  Space for the sign
 | |
|      flag is included in n_len, and the space for the NUL that is
 | |
|      counted in n_len counts for the separator here.  The space for
 | |
|      the NUL counted in d_len counts for the final terminator here. */
 | |
| 
 | |
|   return n_len + d_len;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_decimal_len(r, radix, prec) */
 | |
| 
 | |
| mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec)
 | |
| {
 | |
|   int  z_len, f_len;
 | |
| 
 | |
|   z_len = mp_int_string_len(MP_NUMER_P(r), radix);
 | |
|   
 | |
|   if(prec == 0)
 | |
|     f_len = 1; /* terminator only */
 | |
|   else
 | |
|     f_len = 1 + prec + 1; /* decimal point, digits, terminator */
 | |
|   
 | |
|   return z_len + f_len;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_read_string(r, radix, *str) */
 | |
| 
 | |
| mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str)
 | |
| {
 | |
|   return mp_rat_read_cstring(r, radix, str, NULL);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_read_cstring(r, radix, *str, **end) */
 | |
| 
 | |
| mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str, 
 | |
| 			      char **end)
 | |
| {
 | |
|   mp_result res;
 | |
|   char *endp;
 | |
| 
 | |
|   if((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
 | |
|      (res != MP_TRUNC))
 | |
|     return res;
 | |
| 
 | |
|   /* Skip whitespace between numerator and (possible) separator */
 | |
|   while(isspace((unsigned char)*endp))
 | |
|     ++endp;
 | |
|   
 | |
|   /* If there is no separator, we will stop reading at this point. */
 | |
|   if(*endp != '/') {
 | |
|     mp_int_set_value(MP_DENOM_P(r), 1);
 | |
|     if(end != NULL)
 | |
|       *end = endp;
 | |
|     return res;
 | |
|   }
 | |
|   
 | |
|   ++endp; /* skip separator */
 | |
|   if((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK)
 | |
|     return res;
 | |
|   
 | |
|   /* Make sure the value is well-defined */
 | |
|   if(mp_int_compare_zero(MP_DENOM_P(r)) == 0)
 | |
|     return MP_UNDEF;
 | |
| 
 | |
|   /* Reduce to lowest terms */
 | |
|   return s_rat_reduce(r);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_read_ustring(r, radix, *str, **end) */
 | |
| 
 | |
| /* Read a string and figure out what format it's in.  The radix may be 
 | |
|    supplied as zero to use "default" behaviour.
 | |
| 
 | |
|    This function will accept either a/b notation or decimal notation.
 | |
|  */
 | |
| mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str, 
 | |
| 			      char **end)
 | |
| {
 | |
|   char      *endp;
 | |
|   mp_result  res;
 | |
| 
 | |
|   if(radix == 0)
 | |
|     radix = 10;  /* default to decimal input */
 | |
| 
 | |
|   if((res = mp_rat_read_cstring(r, radix, str, &endp)) != MP_OK) {
 | |
|     if(res == MP_TRUNC) {
 | |
|       if(*endp == '.')
 | |
| 	res = mp_rat_read_cdecimal(r, radix, str, &endp);
 | |
|     }
 | |
|     else
 | |
|       return res;
 | |
|   }
 | |
| 
 | |
|   if(end != NULL)
 | |
|     *end = endp;
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_read_decimal(r, radix, *str) */
 | |
| 
 | |
| mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str)
 | |
| {
 | |
|   return mp_rat_read_cdecimal(r, radix, str, NULL);
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_rat_read_cdecimal(r, radix, *str, **end) */
 | |
| 
 | |
| mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str, 
 | |
| 			       char **end)
 | |
| {
 | |
|   mp_result res;
 | |
|   mp_sign   osign;
 | |
|   char *endp;
 | |
| 
 | |
|   while(isspace((unsigned char) *str))
 | |
|     ++str;
 | |
|   
 | |
|   switch(*str) {
 | |
|   case '-':
 | |
|     osign = MP_NEG;
 | |
|     break;
 | |
|   default:
 | |
|     osign = MP_ZPOS;
 | |
|   }
 | |
|   
 | |
|   if((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
 | |
|      (res != MP_TRUNC))
 | |
|     return res;
 | |
| 
 | |
|   /* This needs to be here. */
 | |
|   (void) mp_int_set_value(MP_DENOM_P(r), 1);
 | |
| 
 | |
|   if(*endp != '.') {
 | |
|     if(end != NULL)
 | |
|       *end = endp;
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* If the character following the decimal point is whitespace or a
 | |
|      sign flag, we will consider this a truncated value.  This special
 | |
|      case is because mp_int_read_string() will consider whitespace or
 | |
|      sign flags to be valid starting characters for a value, and we do
 | |
|      not want them following the decimal point.
 | |
| 
 | |
|      Once we have done this check, it is safe to read in the value of
 | |
|      the fractional piece as a regular old integer.
 | |
|   */
 | |
|   ++endp;
 | |
|   if(*endp == '\0') {
 | |
|     if(end != NULL)
 | |
|       *end = endp;
 | |
|     return MP_OK;
 | |
|   }
 | |
|   else if(isspace((unsigned char)*endp) || *endp == '-' || *endp == '+') {
 | |
|     return MP_TRUNC;
 | |
|   }
 | |
|   else {
 | |
|     mpz_t  frac;
 | |
|     mp_result save_res;
 | |
|     char  *save = endp;
 | |
|     int    num_lz = 0;
 | |
| 
 | |
|     /* Make a temporary to hold the part after the decimal point. */
 | |
|     if((res = mp_int_init(&frac)) != MP_OK)
 | |
|       return res;
 | |
|     
 | |
|     if((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
 | |
|        (res != MP_TRUNC))
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     /* Save this response for later. */
 | |
|     save_res = res;
 | |
| 
 | |
|     if(mp_int_compare_zero(&frac) == 0)
 | |
|       goto FINISHED;
 | |
| 
 | |
|     /* Discard trailing zeroes (somewhat inefficiently) */
 | |
|     while(mp_int_divisible_value(&frac, radix))
 | |
|       if((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK)
 | |
| 	goto CLEANUP;
 | |
|     
 | |
|     /* Count leading zeros after the decimal point */
 | |
|     while(save[num_lz] == '0')
 | |
|       ++num_lz;
 | |
| 
 | |
|     /* Find the least power of the radix that is at least as large as
 | |
|        the significant value of the fractional part, ignoring leading
 | |
|        zeroes.  */
 | |
|     (void) mp_int_set_value(MP_DENOM_P(r), radix); 
 | |
|     
 | |
|     while(mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
 | |
|       if((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
|     
 | |
|     /* Also shift by enough to account for leading zeroes */
 | |
|     while(num_lz > 0) {
 | |
|       if((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
 | |
| 	goto CLEANUP;
 | |
| 
 | |
|       --num_lz;
 | |
|     }
 | |
| 
 | |
|     /* Having found this power, shift the numerator leftward that
 | |
|        many, digits, and add the nonzero significant digits of the
 | |
|        fractional part to get the result. */
 | |
|     if((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     
 | |
|     { /* This addition needs to be unsigned. */
 | |
|       MP_SIGN(MP_NUMER_P(r)) = MP_ZPOS;
 | |
|       if((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK)
 | |
| 	goto CLEANUP;
 | |
| 
 | |
|       MP_SIGN(MP_NUMER_P(r)) = osign;
 | |
|     }
 | |
|     if((res = s_rat_reduce(r)) != MP_OK)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     /* At this point, what we return depends on whether reading the
 | |
|        fractional part was truncated or not.  That information is
 | |
|        saved from when we called mp_int_read_string() above. */
 | |
|   FINISHED:
 | |
|     res = save_res;
 | |
|     if(end != NULL)
 | |
|       *end = endp;
 | |
| 
 | |
|   CLEANUP:
 | |
|     mp_int_clear(&frac);
 | |
| 
 | |
|     return res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* Private functions for internal use.  Make unchecked assumptions
 | |
|    about format and validity of inputs. */
 | |
| 
 | |
| /* {{{ s_rat_reduce(r) */
 | |
| 
 | |
| static mp_result s_rat_reduce(mp_rat r)
 | |
| {
 | |
|   mpz_t gcd;
 | |
|   mp_result res = MP_OK;
 | |
| 
 | |
|   if(mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
 | |
|     mp_int_set_value(MP_DENOM_P(r), 1);
 | |
|     return MP_OK;
 | |
|   }
 | |
| 
 | |
|   /* If the greatest common divisor of the numerator and denominator
 | |
|      is greater than 1, divide it out. */
 | |
|   if((res = mp_int_init(&gcd)) != MP_OK)
 | |
|     return res;
 | |
| 
 | |
|   if((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if(mp_int_compare_value(&gcd, 1) != 0) {
 | |
|     if((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     if((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* Fix up the signs of numerator and denominator */
 | |
|   if(MP_SIGN(MP_NUMER_P(r)) == MP_SIGN(MP_DENOM_P(r)))
 | |
|     MP_SIGN(MP_NUMER_P(r)) = MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
 | |
|   else {
 | |
|     MP_SIGN(MP_NUMER_P(r)) = MP_NEG;
 | |
|     MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_int_clear(&gcd);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_rat_combine(a, b, c, comb_f) */
 | |
| 
 | |
| static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, 
 | |
| 			       mp_result (*comb_f)(mp_int, mp_int, mp_int))
 | |
| {
 | |
|   mp_result res;
 | |
| 
 | |
|   /* Shortcut when denominators are already common */
 | |
|   if(mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
 | |
|     if((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
 | |
|       return res;
 | |
|     if((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK)
 | |
|       return res;
 | |
|     
 | |
|     return s_rat_reduce(c);
 | |
|   }
 | |
|   else {
 | |
|     mpz_t  temp[2];
 | |
|     int    last = 0;
 | |
| 
 | |
|     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
 | |
|     SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
 | |
|     
 | |
|     if((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     if((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
|     if((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));
 | |
| 
 | |
|   CLEANUP:
 | |
|     while(--last >= 0) 
 | |
|       mp_int_clear(TEMP(last));
 | |
| 
 | |
|     if(res == MP_OK)
 | |
|       return s_rat_reduce(c);
 | |
|     else
 | |
|       return res;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* Here there be dragons */
 |