 6937d41a02
			
		
	
	6937d41a02
	
	
	
		
			
			git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@23815 ec53bebd-3082-4978-b11e-865c3cabbd6b
		
			
				
	
	
		
			613 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * fortuna.c
 | |
|  *		Fortuna-like PRNG.
 | |
|  *
 | |
|  * Copyright (c) 2005 Marko Kreen
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *	  notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *	  notice, this list of conditions and the following disclaimer in the
 | |
|  *	  documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
 | |
|  */
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include <config.h>
 | |
| #endif
 | |
| 
 | |
| RCSID("$Id$");
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <rand.h>
 | |
| 
 | |
| #include <roken.h>
 | |
| 
 | |
| #include "randi.h"
 | |
| #include "aes.h"
 | |
| #include "sha.h"
 | |
| 
 | |
| /*
 | |
|  * Why Fortuna-like: There does not seem to be any definitive reference
 | |
|  * on Fortuna in the net.  Instead this implementation is based on
 | |
|  * following references:
 | |
|  *
 | |
|  * http://en.wikipedia.org/wiki/Fortuna_(PRNG)
 | |
|  *	 - Wikipedia article
 | |
|  * http://jlcooke.ca/random/
 | |
|  *	 - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * There is some confusion about whether and how to carry forward
 | |
|  * the state of the pools.	Seems like original Fortuna does not
 | |
|  * do it, resetting hash after each request.  I guess expecting
 | |
|  * feeding to happen more often that requesting.   This is absolutely
 | |
|  * unsuitable for pgcrypto, as nothing asynchronous happens here.
 | |
|  *
 | |
|  * J.L. Cooke fixed this by feeding previous hash to new re-initialized
 | |
|  * hash context.
 | |
|  *
 | |
|  * Fortuna predecessor Yarrow requires ability to query intermediate
 | |
|  * 'final result' from hash, without affecting it.
 | |
|  *
 | |
|  * This implementation uses the Yarrow method - asking intermediate
 | |
|  * results, but continuing with old state.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Algorithm parameters
 | |
|  */
 | |
| 
 | |
| #define NUM_POOLS		32
 | |
| 
 | |
| /* in microseconds */
 | |
| #define RESEED_INTERVAL 100000	/* 0.1 sec */
 | |
| 
 | |
| /* for one big request, reseed after this many bytes */
 | |
| #define RESEED_BYTES	(1024*1024)
 | |
| 
 | |
| /*
 | |
|  * Skip reseed if pool 0 has less than this many
 | |
|  * bytes added since last reseed.
 | |
|  */
 | |
| #define POOL0_FILL		(256/8)
 | |
| 
 | |
| /*
 | |
|  * Algorithm constants
 | |
|  */
 | |
| 
 | |
| /* Both cipher key size and hash result size */
 | |
| #define BLOCK			32
 | |
| 
 | |
| /* cipher block size */
 | |
| #define CIPH_BLOCK		16
 | |
| 
 | |
| /* for internal wrappers */
 | |
| #define MD_CTX			SHA256_CTX
 | |
| #define CIPH_CTX		AES_KEY
 | |
| 
 | |
| struct fortuna_state
 | |
| {
 | |
|     unsigned char	counter[CIPH_BLOCK];
 | |
|     unsigned char	result[CIPH_BLOCK];
 | |
|     unsigned char	key[BLOCK];
 | |
|     MD_CTX		pool[NUM_POOLS];
 | |
|     CIPH_CTX		ciph;
 | |
|     unsigned		reseed_count;
 | |
|     struct timeval	last_reseed_time;
 | |
|     unsigned		pool0_bytes;
 | |
|     unsigned		rnd_pos;
 | |
|     int			tricks_done;
 | |
|     pid_t		pid;
 | |
| };
 | |
| typedef struct fortuna_state FState;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Use our own wrappers here.
 | |
|  * - Need to get intermediate result from digest, without affecting it.
 | |
|  * - Need re-set key on a cipher context.
 | |
|  * - Algorithms are guaranteed to exist.
 | |
|  * - No memory allocations.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| ciph_init(CIPH_CTX * ctx, const unsigned char *key, int klen)
 | |
| {
 | |
|     AES_set_encrypt_key(key, klen * 8, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| ciph_encrypt(CIPH_CTX * ctx, const unsigned char *in, unsigned char *out)
 | |
| {
 | |
|     AES_encrypt(in, out, ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| md_init(MD_CTX * ctx)
 | |
| {
 | |
|     SHA256_Init(ctx);
 | |
| }
 | |
| 
 | |
| static void
 | |
| md_update(MD_CTX * ctx, const unsigned char *data, int len)
 | |
| {
 | |
|     SHA256_Update(ctx, data, len);
 | |
| }
 | |
| 
 | |
| static void
 | |
| md_result(MD_CTX * ctx, unsigned char *dst)
 | |
| {
 | |
|     SHA256_CTX	tmp;
 | |
| 
 | |
|     memcpy(&tmp, ctx, sizeof(*ctx));
 | |
|     SHA256_Final(dst, &tmp);
 | |
|     memset(&tmp, 0, sizeof(tmp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * initialize state
 | |
|  */
 | |
| static void
 | |
| init_state(FState * st)
 | |
| {
 | |
|     int			i;
 | |
| 
 | |
|     memset(st, 0, sizeof(*st));
 | |
|     for (i = 0; i < NUM_POOLS; i++)
 | |
| 	md_init(&st->pool[i]);
 | |
|     st->pid = getpid();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Endianess does not matter.
 | |
|  * It just needs to change without repeating.
 | |
|  */
 | |
| static void
 | |
| inc_counter(FState * st)
 | |
| {
 | |
|     uint32_t   *val = (uint32_t *) st->counter;
 | |
| 
 | |
|     if (++val[0])
 | |
| 	return;
 | |
|     if (++val[1])
 | |
| 	return;
 | |
|     if (++val[2])
 | |
| 	return;
 | |
|     ++val[3];
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called 'cipher in counter mode'.
 | |
|  */
 | |
| static void
 | |
| encrypt_counter(FState * st, unsigned char *dst)
 | |
| {
 | |
|     ciph_encrypt(&st->ciph, st->counter, dst);
 | |
|     inc_counter(st);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The time between reseed must be at least RESEED_INTERVAL
 | |
|  * microseconds.
 | |
|  */
 | |
| static int
 | |
| enough_time_passed(FState * st)
 | |
| {
 | |
|     int			ok;
 | |
|     struct timeval tv;
 | |
|     struct timeval *last = &st->last_reseed_time;
 | |
| 
 | |
|     gettimeofday(&tv, NULL);
 | |
| 
 | |
|     /* check how much time has passed */
 | |
|     ok = 0;
 | |
|     if (tv.tv_sec > last->tv_sec + 1)
 | |
| 	ok = 1;
 | |
|     else if (tv.tv_sec == last->tv_sec + 1)
 | |
|     {
 | |
| 	if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
 | |
| 	    ok = 1;
 | |
|     }
 | |
|     else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
 | |
| 	ok = 1;
 | |
| 
 | |
|     /* reseed will happen, update last_reseed_time */
 | |
|     if (ok)
 | |
| 	memcpy(last, &tv, sizeof(tv));
 | |
| 
 | |
|     memset(&tv, 0, sizeof(tv));
 | |
| 
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * generate new key from all the pools
 | |
|  */
 | |
| static void
 | |
| reseed(FState * st)
 | |
| {
 | |
|     unsigned	k;
 | |
|     unsigned	n;
 | |
|     MD_CTX		key_md;
 | |
|     unsigned char	buf[BLOCK];
 | |
| 
 | |
|     /* set pool as empty */
 | |
|     st->pool0_bytes = 0;
 | |
| 
 | |
|     /*
 | |
|      * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
 | |
|      */
 | |
|     n = ++st->reseed_count;
 | |
| 
 | |
|     /*
 | |
|      * The goal: use k-th pool only 1/(2^k) of the time.
 | |
|      */
 | |
|     md_init(&key_md);
 | |
|     for (k = 0; k < NUM_POOLS; k++)
 | |
|     {
 | |
| 	md_result(&st->pool[k], buf);
 | |
| 	md_update(&key_md, buf, BLOCK);
 | |
| 
 | |
| 	if (n & 1 || !n)
 | |
| 	    break;
 | |
| 	n >>= 1;
 | |
|     }
 | |
| 
 | |
|     /* add old key into mix too */
 | |
|     md_update(&key_md, st->key, BLOCK);
 | |
| 
 | |
|     /* add pid to make output diverse after fork() */
 | |
|     md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));
 | |
| 
 | |
|     /* now we have new key */
 | |
|     md_result(&key_md, st->key);
 | |
| 
 | |
|     /* use new key */
 | |
|     ciph_init(&st->ciph, st->key, BLOCK);
 | |
| 
 | |
|     memset(&key_md, 0, sizeof(key_md));
 | |
|     memset(buf, 0, BLOCK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pick a random pool.	This uses key bytes as random source.
 | |
|  */
 | |
| static unsigned
 | |
| get_rand_pool(FState * st)
 | |
| {
 | |
|     unsigned	rnd;
 | |
| 
 | |
|     /*
 | |
|      * This slightly prefers lower pools - thats OK.
 | |
|      */
 | |
|     rnd = st->key[st->rnd_pos] % NUM_POOLS;
 | |
| 
 | |
|     st->rnd_pos++;
 | |
|     if (st->rnd_pos >= BLOCK)
 | |
| 	st->rnd_pos = 0;
 | |
| 
 | |
|     return rnd;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update pools
 | |
|  */
 | |
| static void
 | |
| add_entropy(FState * st, const unsigned char *data, unsigned len)
 | |
| {
 | |
|     unsigned		pos;
 | |
|     unsigned char	hash[BLOCK];
 | |
|     MD_CTX		md;
 | |
| 
 | |
|     /* hash given data */
 | |
|     md_init(&md);
 | |
|     md_update(&md, data, len);
 | |
|     md_result(&md, hash);
 | |
| 
 | |
|     /*
 | |
|      * Make sure the pool 0 is initialized, then update randomly.
 | |
|      */
 | |
|     if (st->reseed_count == 0)
 | |
| 	pos = 0;
 | |
|     else
 | |
| 	pos = get_rand_pool(st);
 | |
|     md_update(&st->pool[pos], hash, BLOCK);
 | |
| 
 | |
|     if (pos == 0)
 | |
| 	st->pool0_bytes += len;
 | |
| 
 | |
|     memset(hash, 0, BLOCK);
 | |
|     memset(&md, 0, sizeof(md));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Just take 2 next blocks as new key
 | |
|  */
 | |
| static void
 | |
| rekey(FState * st)
 | |
| {
 | |
|     encrypt_counter(st, st->key);
 | |
|     encrypt_counter(st, st->key + CIPH_BLOCK);
 | |
|     ciph_init(&st->ciph, st->key, BLOCK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hide public constants. (counter, pools > 0)
 | |
|  *
 | |
|  * This can also be viewed as spreading the startup
 | |
|  * entropy over all of the components.
 | |
|  */
 | |
| static void
 | |
| startup_tricks(FState * st)
 | |
| {
 | |
|     int			i;
 | |
|     unsigned char	buf[BLOCK];
 | |
| 
 | |
|     /* Use next block as counter. */
 | |
|     encrypt_counter(st, st->counter);
 | |
| 
 | |
|     /* Now shuffle pools, excluding #0 */
 | |
|     for (i = 1; i < NUM_POOLS; i++)
 | |
|     {
 | |
| 	encrypt_counter(st, buf);
 | |
| 	encrypt_counter(st, buf + CIPH_BLOCK);
 | |
| 	md_update(&st->pool[i], buf, BLOCK);
 | |
|     }
 | |
|     memset(buf, 0, BLOCK);
 | |
| 
 | |
|     /* Hide the key. */
 | |
|     rekey(st);
 | |
| 
 | |
|     /* This can be done only once. */
 | |
|     st->tricks_done = 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| extract_data(FState * st, unsigned count, unsigned char *dst)
 | |
| {
 | |
|     unsigned	n;
 | |
|     unsigned	block_nr = 0;
 | |
|     pid_t	pid = getpid();
 | |
| 
 | |
|     /* Should we reseed? */
 | |
|     if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
 | |
| 	if (enough_time_passed(st))
 | |
| 	    reseed(st);
 | |
| 
 | |
|     /* Do some randomization on first call */
 | |
|     if (!st->tricks_done)
 | |
| 	startup_tricks(st);
 | |
| 
 | |
|     /* If we forked, force a reseed again */
 | |
|     if (pid != st->pid) {
 | |
| 	st->pid = pid;
 | |
| 	reseed(st);
 | |
|     }
 | |
| 
 | |
|     while (count > 0)
 | |
|     {
 | |
| 	/* produce bytes */
 | |
| 	encrypt_counter(st, st->result);
 | |
| 
 | |
| 	/* copy result */
 | |
| 	if (count > CIPH_BLOCK)
 | |
| 	    n = CIPH_BLOCK;
 | |
| 	else
 | |
| 	    n = count;
 | |
| 	memcpy(dst, st->result, n);
 | |
| 	dst += n;
 | |
| 	count -= n;
 | |
| 
 | |
| 	/* must not give out too many bytes with one key */
 | |
| 	block_nr++;
 | |
| 	if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
 | |
| 	{
 | |
| 	    rekey(st);
 | |
| 	    block_nr = 0;
 | |
| 	}
 | |
|     }
 | |
|     /* Set new key for next request. */
 | |
|     rekey(st);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * public interface
 | |
|  */
 | |
| 
 | |
| static FState	main_state;
 | |
| static int	init_done;
 | |
| static int	have_entropy;
 | |
| #define FORTUNA_RESEED_BYTE	10000
 | |
| static unsigned	resend_bytes;
 | |
| 
 | |
| /*
 | |
|  * Try our best to do an inital seed
 | |
|  */
 | |
| #define INIT_BYTES	128
 | |
| 
 | |
| static int
 | |
| fortuna_reseed(void)
 | |
| {
 | |
|     int entropy_p = 0;
 | |
| 
 | |
|     if (!init_done)
 | |
| 	abort();
 | |
| 
 | |
|     {
 | |
| 	unsigned char buf[INIT_BYTES];
 | |
| 	if ((*hc_rand_unix_method.bytes)(buf, sizeof(buf)) == 1) {
 | |
| 	    add_entropy(&main_state, buf, sizeof(buf));
 | |
| 	    entropy_p = 1;
 | |
| 	    memset(buf, 0, sizeof(buf));
 | |
| 	}
 | |
|     }
 | |
| #ifdef HAVE_ARC4RANDOM
 | |
|     {
 | |
| 	uint32_t buf[INIT_BYTES / sizeof(uint32_t)];
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(buf)/sizeof(buf[0]); i++)
 | |
| 	    buf[i] = arc4random();
 | |
| 	add_entropy(&main_state, (void *)buf, sizeof(buf));
 | |
| 	entropy_p = 1;
 | |
|     }
 | |
| #endif
 | |
|     /*
 | |
|      * Only to get egd entropy if /dev/random or arc4rand failed since
 | |
|      * it can be horribly slow to generate new bits.
 | |
|      */
 | |
|     if (!entropy_p) {
 | |
| 	unsigned char buf[INIT_BYTES];
 | |
| 	if ((*hc_rand_egd_method.bytes)(buf, sizeof(buf)) == 1) {
 | |
| 	    add_entropy(&main_state, buf, sizeof(buf));
 | |
| 	    entropy_p = 1;
 | |
| 	    memset(buf, 0, sizeof(buf));
 | |
| 	}
 | |
|     }
 | |
|     /*
 | |
|      * Fall back to gattering data from timer and secret files, this
 | |
|      * is really the last resort.
 | |
|      */
 | |
|     if (!entropy_p) {
 | |
| 	/* to save stackspace */
 | |
| 	union {
 | |
| 	    unsigned char buf[INIT_BYTES];
 | |
| 	    unsigned char shad[1001];
 | |
| 	} u;
 | |
| 	int fd;
 | |
| 
 | |
| 	/* add timer info */
 | |
| 	if ((*hc_rand_timer_method.bytes)(u.buf, sizeof(u.buf)) == 1)
 | |
| 	    add_entropy(&main_state, u.buf, sizeof(u.buf));
 | |
| 	/* add /etc/shadow */
 | |
| 	fd = open("/etc/shadow", O_RDONLY, 0);
 | |
| 	if (fd >= 0) {
 | |
| 	    ssize_t n;
 | |
| 	    rk_cloexec(fd);
 | |
| 	    /* add_entropy will hash the buf */
 | |
| 	    while ((n = read(fd, (char *)u.shad, sizeof(u.shad))) > 0)
 | |
| 		add_entropy(&main_state, u.shad, sizeof(u.shad));
 | |
| 	    close(fd);
 | |
| 	}
 | |
| 
 | |
| 	memset(&u, 0, sizeof(u));
 | |
| 
 | |
| 	entropy_p = 1; /* sure about this ? */
 | |
|     }
 | |
|     {
 | |
| 	pid_t pid = getpid();
 | |
| 	add_entropy(&main_state, (void *)&pid, sizeof(pid));
 | |
|     }
 | |
|     {
 | |
| 	struct timeval tv;
 | |
| 	gettimeofday(&tv, NULL);
 | |
| 	add_entropy(&main_state, (void *)&tv, sizeof(tv));
 | |
|     }
 | |
|     {
 | |
| 	uid_t u = getuid();
 | |
| 	add_entropy(&main_state, (void *)&u, sizeof(u));
 | |
|     }
 | |
|     return entropy_p;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fortuna_init(void)
 | |
| {
 | |
|     if (!init_done)
 | |
|     {
 | |
| 	init_state(&main_state);
 | |
| 	init_done = 1;
 | |
|     }
 | |
|     if (!have_entropy)
 | |
| 	have_entropy = fortuna_reseed();
 | |
|     return (init_done && have_entropy);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void
 | |
| fortuna_seed(const void *indata, int size)
 | |
| {
 | |
|     fortuna_init();
 | |
|     add_entropy(&main_state, indata, size);
 | |
|     if (size >= INIT_BYTES)
 | |
| 	have_entropy = 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| fortuna_bytes(unsigned char *outdata, int size)
 | |
| {
 | |
|     if (!fortuna_init())
 | |
| 	return 0;
 | |
|     resend_bytes += size;
 | |
|     if (resend_bytes > FORTUNA_RESEED_BYTE || resend_bytes < size) {
 | |
| 	resend_bytes = 0;
 | |
| 	fortuna_reseed();
 | |
|     }
 | |
|     extract_data(&main_state, size, outdata);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| fortuna_cleanup(void)
 | |
| {
 | |
|     init_done = 0;
 | |
|     have_entropy = 0;
 | |
|     memset(&main_state, 0, sizeof(main_state));
 | |
| }
 | |
| 
 | |
| static void
 | |
| fortuna_add(const void *indata, int size, double entropi)
 | |
| {
 | |
|     fortuna_seed(indata, size);
 | |
| }
 | |
| 
 | |
| static int
 | |
| fortuna_pseudorand(unsigned char *outdata, int size)
 | |
| {
 | |
|     return fortuna_bytes(outdata, size);
 | |
| }
 | |
| 
 | |
| static int
 | |
| fortuna_status(void)
 | |
| {
 | |
|     return fortuna_init() ? 1 : 0;
 | |
| }
 | |
| 
 | |
| const RAND_METHOD hc_rand_fortuna_method = {
 | |
|     fortuna_seed,
 | |
|     fortuna_bytes,
 | |
|     fortuna_cleanup,
 | |
|     fortuna_add,
 | |
|     fortuna_pseudorand,
 | |
|     fortuna_status
 | |
| };
 | |
| 
 | |
| const RAND_METHOD *
 | |
| RAND_fortuna_method(void)
 | |
| {
 | |
|     return &hc_rand_fortuna_method;
 | |
| }
 |