293 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath.h>
 | |
| #ifdef BN_MP_DIV_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| #ifdef BN_MP_DIV_SMALL
 | |
| 
 | |
| /* slower bit-bang division... also smaller */
 | |
| int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|    mp_int ta, tb, tq, q;
 | |
|    int    res, n, n2;
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 	
 | |
|   /* init our temps */
 | |
|   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   mp_set(&tq, 1);
 | |
|   n = mp_count_bits(a) - mp_count_bits(b);
 | |
|   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
 | |
|       ((res = mp_abs(b, &tb)) != MP_OKAY) || 
 | |
|       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
 | |
|       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
 | |
|       goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   while (n-- >= 0) {
 | |
|      if (mp_cmp(&tb, &ta) != MP_GT) {
 | |
|         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
 | |
|             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
 | |
|            goto LBL_ERR;
 | |
|         }
 | |
|      }
 | |
|      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
 | |
|          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
 | |
|            goto LBL_ERR;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* now q == quotient and ta == remainder */
 | |
|   n  = a->sign;
 | |
|   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
 | |
|   if (c != NULL) {
 | |
|      mp_exch(c, &q);
 | |
|      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
 | |
|   }
 | |
|   if (d != NULL) {
 | |
|      mp_exch(d, &ta);
 | |
|      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
 | |
|   }
 | |
| LBL_ERR:
 | |
|    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* integer signed division. 
 | |
|  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 | |
|  * HAC pp.598 Algorithm 14.20
 | |
|  *
 | |
|  * Note that the description in HAC is horribly 
 | |
|  * incomplete.  For example, it doesn't consider 
 | |
|  * the case where digits are removed from 'x' in 
 | |
|  * the inner loop.  It also doesn't consider the 
 | |
|  * case that y has fewer than three digits, etc..
 | |
|  *
 | |
|  * The overall algorithm is as described as 
 | |
|  * 14.20 from HAC but fixed to treat these cases.
 | |
| */
 | |
| int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_int  q, x, y, t1, t2;
 | |
|   int     res, n, t, i, norm, neg;
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   q.used = a->used + 2;
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     goto LBL_Q;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto LBL_T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
 | |
|     goto LBL_T2;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
 | |
|     goto LBL_X;
 | |
|   }
 | |
| 
 | |
|   /* fix the sign */
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
|   x.sign = y.sign = MP_ZPOS;
 | |
| 
 | |
|   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
 | |
|   norm = mp_count_bits(&y) % DIGIT_BIT;
 | |
|   if (norm < (int)(DIGIT_BIT-1)) {
 | |
|      norm = (DIGIT_BIT-1) - norm;
 | |
|      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
 | |
|        goto LBL_Y;
 | |
|      }
 | |
|      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
 | |
|        goto LBL_Y;
 | |
|      }
 | |
|   } else {
 | |
|      norm = 0;
 | |
|   }
 | |
| 
 | |
|   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
 | |
|   n = x.used - 1;
 | |
|   t = y.used - 1;
 | |
| 
 | |
|   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
 | |
|   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
 | |
|     goto LBL_Y;
 | |
|   }
 | |
| 
 | |
|   while (mp_cmp (&x, &y) != MP_LT) {
 | |
|     ++(q.dp[n - t]);
 | |
|     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset y by shifting it back down */
 | |
|   mp_rshd (&y, n - t);
 | |
| 
 | |
|   /* step 3. for i from n down to (t + 1) */
 | |
|   for (i = n; i >= (t + 1); i--) {
 | |
|     if (i > x.used) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
 | |
|      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
 | |
|     if (x.dp[i] == y.dp[t]) {
 | |
|       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
 | |
|     } else {
 | |
|       mp_word tmp;
 | |
|       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
 | |
|       tmp |= ((mp_word) x.dp[i - 1]);
 | |
|       tmp /= ((mp_word) y.dp[t]);
 | |
|       if (tmp > (mp_word) MP_MASK)
 | |
|         tmp = MP_MASK;
 | |
|       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* while (q{i-t-1} * (yt * b + y{t-1})) > 
 | |
|              xi * b**2 + xi-1 * b + xi-2 
 | |
|      
 | |
|        do q{i-t-1} -= 1; 
 | |
|     */
 | |
|     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
 | |
|     do {
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
 | |
| 
 | |
|       /* find left hand */
 | |
|       mp_zero (&t1);
 | |
|       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
 | |
|       t1.dp[1] = y.dp[t];
 | |
|       t1.used = 2;
 | |
|       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       /* find right hand */
 | |
|       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
 | |
|       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
 | |
|       t2.dp[2] = x.dp[i];
 | |
|       t2.used = 3;
 | |
|     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
 | |
| 
 | |
|     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
 | |
|     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
 | |
|     if (x.sign == MP_NEG) {
 | |
|       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
|       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
|       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* now q is the quotient and x is the remainder 
 | |
|    * [which we have to normalize] 
 | |
|    */
 | |
|   
 | |
|   /* get sign before writing to c */
 | |
|   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 | |
| 
 | |
|   if (c != NULL) {
 | |
|     mp_clamp (&q);
 | |
|     mp_exch (&q, c);
 | |
|     c->sign = neg;
 | |
|   }
 | |
| 
 | |
|   if (d != NULL) {
 | |
|     mp_div_2d (&x, norm, &x, NULL);
 | |
|     mp_exch (&x, d);
 | |
|   }
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_Y:mp_clear (&y);
 | |
| LBL_X:mp_clear (&x);
 | |
| LBL_T2:mp_clear (&t2);
 | |
| LBL_T1:mp_clear (&t1);
 | |
| LBL_Q:mp_clear (&q);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */
 | |
| /* $Revision: 1.4 $ */
 | |
| /* $Date: 2006/12/28 01:25:13 $ */
 | 
