139 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Finds Mersenne primes using the Lucas-Lehmer test
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com
 | |
|  */
 | |
| #include <time.h>
 | |
| #include <tommath.h>
 | |
| 
 | |
| static mp_err is_mersenne(long s, mp_bool *pp)
 | |
| {
 | |
|    mp_int  n, u;
 | |
|    mp_err  res;
 | |
|    int     k;
 | |
| 
 | |
|    *pp = MP_NO;
 | |
| 
 | |
|    if ((res = mp_init(&n)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&u)) != MP_OKAY) {
 | |
|       goto LBL_N;
 | |
|    }
 | |
| 
 | |
|    /* n = 2^s - 1 */
 | |
|    if ((res = mp_2expt(&n, (int)s)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|    }
 | |
|    if ((res = mp_sub_d(&n, 1uL, &n)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|    }
 | |
| 
 | |
|    /* set u=4 */
 | |
|    mp_set(&u, 4uL);
 | |
| 
 | |
|    /* for k=1 to s-2 do */
 | |
|    for (k = 1; k <= (s - 2); k++) {
 | |
|       /* u = u^2 - 2 mod n */
 | |
|       if ((res = mp_sqr(&u, &u)) != MP_OKAY) {
 | |
|          goto LBL_MU;
 | |
|       }
 | |
|       if ((res = mp_sub_d(&u, 2uL, &u)) != MP_OKAY) {
 | |
|          goto LBL_MU;
 | |
|       }
 | |
| 
 | |
|       /* make sure u is positive */
 | |
|       while (u.sign == MP_NEG) {
 | |
|          if ((res = mp_add(&u, &n, &u)) != MP_OKAY) {
 | |
|             goto LBL_MU;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       /* reduce */
 | |
|       if ((res = mp_reduce_2k(&u, &n, 1uL)) != MP_OKAY) {
 | |
|          goto LBL_MU;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* if u == 0 then its prime */
 | |
|    if (mp_iszero(&u) == MP_YES) {
 | |
|       mp_prime_is_prime(&n, 8, pp);
 | |
|       if (*pp != MP_YES) printf("FAILURE\n");
 | |
|    }
 | |
| 
 | |
|    res = MP_OKAY;
 | |
| LBL_MU:
 | |
|    mp_clear(&u);
 | |
| LBL_N:
 | |
|    mp_clear(&n);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| /* square root of a long < 65536 */
 | |
| static long i_sqrt(long x)
 | |
| {
 | |
|    long    x1, x2;
 | |
| 
 | |
|    x2 = 16;
 | |
|    do {
 | |
|       x1 = x2;
 | |
|       x2 = x1 - ((x1 * x1) - x) / (2 * x1);
 | |
|    } while (x1 != x2);
 | |
| 
 | |
|    if ((x1 * x1) > x) {
 | |
|       --x1;
 | |
|    }
 | |
| 
 | |
|    return x1;
 | |
| }
 | |
| 
 | |
| /* is the long prime by brute force */
 | |
| static int isprime(long k)
 | |
| {
 | |
|    long    y, z;
 | |
| 
 | |
|    y = i_sqrt(k);
 | |
|    for (z = 2; z <= y; z++) {
 | |
|       if ((k % z) == 0)
 | |
|          return 0;
 | |
|    }
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|    mp_bool pp;
 | |
|    long    k;
 | |
|    clock_t tt;
 | |
| 
 | |
|    k = 3;
 | |
| 
 | |
|    for (;;) {
 | |
|       /* start time */
 | |
|       tt = clock();
 | |
| 
 | |
|       /* test if 2^k - 1 is prime */
 | |
|       if (is_mersenne(k, &pp) != MP_OKAY) {
 | |
|          printf("Whoa error\n");
 | |
|          return -1;
 | |
|       }
 | |
| 
 | |
|       if (pp == MP_YES) {
 | |
|          /* count time */
 | |
|          tt = clock() - tt;
 | |
| 
 | |
|          /* display if prime */
 | |
|          printf("2^%-5ld - 1 is prime, test took %ld ticks\n", k, (long)tt);
 | |
|       }
 | |
| 
 | |
|       /* goto next odd exponent */
 | |
|       k += 2;
 | |
| 
 | |
|       /* but make sure its prime */
 | |
|       while (isprime(k) == 0) {
 | |
|          k += 2;
 | |
|       }
 | |
|    }
 | |
| }
 | 
