3986 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3986 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|     mpi.c
 | |
| 
 | |
|     by Michael J. Fromberger <sting@linguist.dartmouth.edu>
 | |
|     Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
 | |
| 
 | |
|     Arbitrary precision integer arithmetic library
 | |
| 
 | |
|     $Id: mpi.c,v 1.2 2005/05/05 14:38:47 tom Exp $
 | |
|  */
 | |
| 
 | |
| #include "mpi.h"
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <ctype.h>
 | |
| 
 | |
| #if MP_DEBUG
 | |
| #include <stdio.h>
 | |
| 
 | |
| #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
 | |
| #else
 | |
| #define DIAG(T,V)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|    If MP_LOGTAB is not defined, use the math library to compute the
 | |
|    logarithms on the fly.  Otherwise, use the static table below.
 | |
|    Pick which works best for your system.
 | |
|  */
 | |
| #if MP_LOGTAB
 | |
| 
 | |
| /* {{{ s_logv_2[] - log table for 2 in various bases */
 | |
| 
 | |
| /*
 | |
|   A table of the logs of 2 for various bases (the 0 and 1 entries of
 | |
|   this table are meaningless and should not be referenced).
 | |
| 
 | |
|   This table is used to compute output lengths for the mp_toradix()
 | |
|   function.  Since a number n in radix r takes up about log_r(n)
 | |
|   digits, we estimate the output size by taking the least integer
 | |
|   greater than log_r(n), where:
 | |
| 
 | |
|   log_r(n) = log_2(n) * log_r(2)
 | |
| 
 | |
|   This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
 | |
|   which are the output bases supported.
 | |
|  */
 | |
| 
 | |
| #include "logtab.h"
 | |
| 
 | |
| /* }}} */
 | |
| #define LOG_V_2(R)  s_logv_2[(R)]
 | |
| 
 | |
| #else
 | |
| 
 | |
| #include <math.h>
 | |
| #define LOG_V_2(R)  (log(2.0)/log(R))
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Default precision for newly created mp_int's      */
 | |
| static unsigned int s_mp_defprec = MP_DEFPREC;
 | |
| 
 | |
| /* {{{ Digit arithmetic macros */
 | |
| 
 | |
| /*
 | |
|   When adding and multiplying digits, the results can be larger than
 | |
|   can be contained in an mp_digit.  Thus, an mp_word is used.  These
 | |
|   macros mask off the upper and lower digits of the mp_word (the
 | |
|   mp_word may be more than 2 mp_digits wide, but we only concern
 | |
|   ourselves with the low-order 2 mp_digits)
 | |
| 
 | |
|   If your mp_word DOES have more than 2 mp_digits, you need to
 | |
|   uncomment the first line, and comment out the second.
 | |
|  */
 | |
| 
 | |
| /* #define  CARRYOUT(W)  (((W)>>DIGIT_BIT)&MP_DIGIT_MAX) */
 | |
| #define  CARRYOUT(W)  ((W)>>DIGIT_BIT)
 | |
| #define  ACCUM(W)     ((W)&MP_DIGIT_MAX)
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Comparison constants */
 | |
| 
 | |
| #define  MP_LT       -1
 | |
| #define  MP_EQ        0
 | |
| #define  MP_GT        1
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Constant strings */
 | |
| 
 | |
| /* Constant strings returned by mp_strerror() */
 | |
| static const char *mp_err_string[] = {
 | |
|   "unknown result code",     /* say what?            */
 | |
|   "boolean true",            /* MP_OKAY, MP_YES      */
 | |
|   "boolean false",           /* MP_NO                */
 | |
|   "out of memory",           /* MP_MEM               */
 | |
|   "argument out of range",   /* MP_RANGE             */
 | |
|   "invalid input parameter", /* MP_BADARG            */
 | |
|   "result is undefined"      /* MP_UNDEF             */
 | |
| };
 | |
| 
 | |
| /* Value to digit maps for radix conversion   */
 | |
| 
 | |
| /* s_dmap_1 - standard digits and letters */
 | |
| static const char *s_dmap_1 =
 | |
|   "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
 | |
| 
 | |
| #if 0
 | |
| /* s_dmap_2 - base64 ordering for digits  */
 | |
| static const char *s_dmap_2 =
 | |
|   "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Static function declarations */
 | |
| 
 | |
| /*
 | |
|    If MP_MACRO is false, these will be defined as actual functions;
 | |
|    otherwise, suitable macro definitions will be used.  This works
 | |
|    around the fact that ANSI C89 doesn't support an 'inline' keyword
 | |
|    (although I hear C9x will ... about bloody time).  At present, the
 | |
|    macro definitions are identical to the function bodies, but they'll
 | |
|    expand in place, instead of generating a function call.
 | |
| 
 | |
|    I chose these particular functions to be made into macros because
 | |
|    some profiling showed they are called a lot on a typical workload,
 | |
|    and yet they are primarily housekeeping.
 | |
|  */
 | |
| #if MP_MACRO == 0
 | |
|  void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
 | |
|  void     s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count); /* copy    */
 | |
|  void    *s_mp_alloc(size_t nb, size_t ni);       /* general allocator     */
 | |
|  void     s_mp_free(void *ptr);                   /* general free function */
 | |
| #else
 | |
| 
 | |
|  /* Even if these are defined as macros, we need to respect the settings
 | |
|     of the MP_MEMSET and MP_MEMCPY configuration options...
 | |
|   */
 | |
|  #if MP_MEMSET == 0
 | |
|   #define  s_mp_setz(dp, count) \
 | |
|        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
 | |
|  #else
 | |
|   #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
 | |
|  #endif /* MP_MEMSET */
 | |
| 
 | |
|  #if MP_MEMCPY == 0
 | |
|   #define  s_mp_copy(sp, dp, count) \
 | |
|        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
 | |
|  #else
 | |
|   #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
 | |
|  #endif /* MP_MEMCPY */
 | |
| 
 | |
|  #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
 | |
|  #define  s_mp_free(ptr) {if(ptr) free(ptr);}
 | |
| #endif /* MP_MACRO */
 | |
| 
 | |
| mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
 | |
| mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
 | |
| 
 | |
| void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
 | |
| 
 | |
| void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
 | |
| 
 | |
| mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
 | |
| void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
 | |
| void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
 | |
| void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
 | |
| mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place*/
 | |
| void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
 | |
| mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
 | |
| mp_digit s_mp_norm(mp_int *a, mp_int *b);      /* normalize for division  */
 | |
| mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
 | |
| mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
 | |
| mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
 | |
| mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
 | |
| 		                               /* unsigned digit divide   */
 | |
| mp_err   s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu);
 | |
|                                                /* Barrett reduction       */
 | |
| mp_err   s_mp_add(mp_int *a, mp_int *b);       /* magnitude addition      */
 | |
| mp_err   s_mp_sub(mp_int *a, mp_int *b);       /* magnitude subtract      */
 | |
| mp_err   s_mp_mul(mp_int *a, mp_int *b);       /* magnitude multiply      */
 | |
| #if 0
 | |
| void     s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len);
 | |
|                                                /* multiply buffers in place */
 | |
| #endif
 | |
| #if MP_SQUARE
 | |
| mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
 | |
| #else
 | |
| #define  s_mp_sqr(a) s_mp_mul(a, a)
 | |
| #endif
 | |
| mp_err   s_mp_div(mp_int *a, mp_int *b);       /* magnitude divide        */
 | |
| mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
 | |
| int      s_mp_cmp(mp_int *a, mp_int *b);       /* magnitude comparison    */
 | |
| int      s_mp_cmp_d(mp_int *a, mp_digit d);    /* magnitude digit compare */
 | |
| int      s_mp_ispow2(mp_int *v);               /* is v a power of 2?      */
 | |
| int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
 | |
| 
 | |
| int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
 | |
| char     s_mp_todigit(int val, int r, int low); /* convert val to digit   */
 | |
| int      s_mp_outlen(int bits, int r);          /* output length in bytes */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Default precision manipulation */
 | |
| 
 | |
| unsigned int mp_get_prec(void)
 | |
| {
 | |
|   return s_mp_defprec;
 | |
| 
 | |
| } /* end mp_get_prec() */
 | |
| 
 | |
| void         mp_set_prec(unsigned int prec)
 | |
| {
 | |
|   if(prec == 0)
 | |
|     s_mp_defprec = MP_DEFPREC;
 | |
|   else
 | |
|     s_mp_defprec = prec;
 | |
| 
 | |
| } /* end mp_set_prec() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ mp_init(mp) */
 | |
| 
 | |
| /*
 | |
|   mp_init(mp)
 | |
| 
 | |
|   Initialize a new zero-valued mp_int.  Returns MP_OKAY if successful,
 | |
|   MP_MEM if memory could not be allocated for the structure.
 | |
|  */
 | |
| 
 | |
| mp_err mp_init(mp_int *mp)
 | |
| {
 | |
|   return mp_init_size(mp, s_mp_defprec);
 | |
| 
 | |
| } /* end mp_init() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_init_array(mp[], count) */
 | |
| 
 | |
| mp_err mp_init_array(mp_int mp[], int count)
 | |
| {
 | |
|   mp_err  res;
 | |
|   int     pos;
 | |
| 
 | |
|   ARGCHK(mp !=NULL && count > 0, MP_BADARG);
 | |
| 
 | |
|   for(pos = 0; pos < count; ++pos) {
 | |
|     if((res = mp_init(&mp[pos])) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
|  CLEANUP:
 | |
|   while(--pos >= 0)
 | |
|     mp_clear(&mp[pos]);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_init_array() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_init_size(mp, prec) */
 | |
| 
 | |
| /*
 | |
|   mp_init_size(mp, prec)
 | |
| 
 | |
|   Initialize a new zero-valued mp_int with at least the given
 | |
|   precision; returns MP_OKAY if successful, or MP_MEM if memory could
 | |
|   not be allocated for the structure.
 | |
|  */
 | |
| 
 | |
| mp_err mp_init_size(mp_int *mp, mp_size prec)
 | |
| {
 | |
|   ARGCHK(mp != NULL && prec > 0, MP_BADARG);
 | |
| 
 | |
|   if((DIGITS(mp) = s_mp_alloc(prec, sizeof(mp_digit))) == NULL)
 | |
|     return MP_MEM;
 | |
| 
 | |
|   SIGN(mp) = MP_ZPOS;
 | |
|   USED(mp) = 1;
 | |
|   ALLOC(mp) = prec;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_init_size() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_init_copy(mp, from) */
 | |
| 
 | |
| /*
 | |
|   mp_init_copy(mp, from)
 | |
| 
 | |
|   Initialize mp as an exact copy of from.  Returns MP_OKAY if
 | |
|   successful, MP_MEM if memory could not be allocated for the new
 | |
|   structure.
 | |
|  */
 | |
| 
 | |
| mp_err mp_init_copy(mp_int *mp, mp_int *from)
 | |
| {
 | |
|   ARGCHK(mp != NULL && from != NULL, MP_BADARG);
 | |
| 
 | |
|   if(mp == from)
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   if((DIGITS(mp) = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
 | |
|     return MP_MEM;
 | |
| 
 | |
|   s_mp_copy(DIGITS(from), DIGITS(mp), USED(from));
 | |
|   USED(mp) = USED(from);
 | |
|   ALLOC(mp) = USED(from);
 | |
|   SIGN(mp) = SIGN(from);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_init_copy() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_copy(from, to) */
 | |
| 
 | |
| /*
 | |
|   mp_copy(from, to)
 | |
| 
 | |
|   Copies the mp_int 'from' to the mp_int 'to'.  It is presumed that
 | |
|   'to' has already been initialized (if not, use mp_init_copy()
 | |
|   instead). If 'from' and 'to' are identical, nothing happens.
 | |
|  */
 | |
| 
 | |
| mp_err mp_copy(mp_int *from, mp_int *to)
 | |
| {
 | |
|   ARGCHK(from != NULL && to != NULL, MP_BADARG);
 | |
| 
 | |
|   if(from == to)
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   { /* copy */
 | |
|     mp_digit   *tmp;
 | |
| 
 | |
|     /*
 | |
|       If the allocated buffer in 'to' already has enough space to hold
 | |
|       all the used digits of 'from', we'll re-use it to avoid hitting
 | |
|       the memory allocater more than necessary; otherwise, we'd have
 | |
|       to grow anyway, so we just allocate a hunk and make the copy as
 | |
|       usual
 | |
|      */
 | |
|     if(ALLOC(to) >= USED(from)) {
 | |
|       s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
 | |
|       s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
 | |
| 
 | |
|     } else {
 | |
|       if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
 | |
| 	return MP_MEM;
 | |
| 
 | |
|       s_mp_copy(DIGITS(from), tmp, USED(from));
 | |
| 
 | |
|       if(DIGITS(to) != NULL) {
 | |
| #if MP_CRYPTO
 | |
| 	s_mp_setz(DIGITS(to), ALLOC(to));
 | |
| #endif
 | |
| 	s_mp_free(DIGITS(to));
 | |
|       }
 | |
| 
 | |
|       DIGITS(to) = tmp;
 | |
|       ALLOC(to) = USED(from);
 | |
|     }
 | |
| 
 | |
|     /* Copy the precision and sign from the original */
 | |
|     USED(to) = USED(from);
 | |
|     SIGN(to) = SIGN(from);
 | |
|   } /* end copy */
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_copy() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_exch(mp1, mp2) */
 | |
| 
 | |
| /*
 | |
|   mp_exch(mp1, mp2)
 | |
| 
 | |
|   Exchange mp1 and mp2 without allocating any intermediate memory
 | |
|   (well, unless you count the stack space needed for this call and the
 | |
|   locals it creates...).  This cannot fail.
 | |
|  */
 | |
| 
 | |
| void mp_exch(mp_int *mp1, mp_int *mp2)
 | |
| {
 | |
| #if MP_ARGCHK == 2
 | |
|   assert(mp1 != NULL && mp2 != NULL);
 | |
| #else
 | |
|   if(mp1 == NULL || mp2 == NULL)
 | |
|     return;
 | |
| #endif
 | |
| 
 | |
|   s_mp_exch(mp1, mp2);
 | |
| 
 | |
| } /* end mp_exch() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_clear(mp) */
 | |
| 
 | |
| /*
 | |
|   mp_clear(mp)
 | |
| 
 | |
|   Release the storage used by an mp_int, and void its fields so that
 | |
|   if someone calls mp_clear() again for the same int later, we won't
 | |
|   get tollchocked.
 | |
|  */
 | |
| 
 | |
| void   mp_clear(mp_int *mp)
 | |
| {
 | |
|   if(mp == NULL)
 | |
|     return;
 | |
| 
 | |
|   if(DIGITS(mp) != NULL) {
 | |
| #if MP_CRYPTO
 | |
|     s_mp_setz(DIGITS(mp), ALLOC(mp));
 | |
| #endif
 | |
|     s_mp_free(DIGITS(mp));
 | |
|     DIGITS(mp) = NULL;
 | |
|   }
 | |
| 
 | |
|   USED(mp) = 0;
 | |
|   ALLOC(mp) = 0;
 | |
| 
 | |
| } /* end mp_clear() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_clear_array(mp[], count) */
 | |
| 
 | |
| void   mp_clear_array(mp_int mp[], int count)
 | |
| {
 | |
|   ARGCHK(mp != NULL && count > 0, MP_BADARG);
 | |
| 
 | |
|   while(--count >= 0)
 | |
|     mp_clear(&mp[count]);
 | |
| 
 | |
| } /* end mp_clear_array() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_zero(mp) */
 | |
| 
 | |
| /*
 | |
|   mp_zero(mp)
 | |
| 
 | |
|   Set mp to zero.  Does not change the allocated size of the structure,
 | |
|   and therefore cannot fail (except on a bad argument, which we ignore)
 | |
|  */
 | |
| void   mp_zero(mp_int *mp)
 | |
| {
 | |
|   if(mp == NULL)
 | |
|     return;
 | |
| 
 | |
|   s_mp_setz(DIGITS(mp), ALLOC(mp));
 | |
|   USED(mp) = 1;
 | |
|   SIGN(mp) = MP_ZPOS;
 | |
| 
 | |
| } /* end mp_zero() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_set(mp, d) */
 | |
| 
 | |
| void   mp_set(mp_int *mp, mp_digit d)
 | |
| {
 | |
|   if(mp == NULL)
 | |
|     return;
 | |
| 
 | |
|   mp_zero(mp);
 | |
|   DIGIT(mp, 0) = d;
 | |
| 
 | |
| } /* end mp_set() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_set_int(mp, z) */
 | |
| 
 | |
| mp_err mp_set_int(mp_int *mp, long z)
 | |
| {
 | |
|   int            ix;
 | |
|   unsigned long  v = labs(z);
 | |
|   mp_err         res;
 | |
| 
 | |
|   ARGCHK(mp != NULL, MP_BADARG);
 | |
| 
 | |
|   mp_zero(mp);
 | |
|   if(z == 0)
 | |
|     return MP_OKAY;  /* shortcut for zero */
 | |
| 
 | |
|   for(ix = sizeof(long) - 1; ix >= 0; ix--) {
 | |
| 
 | |
|     if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     res = s_mp_add_d(mp,
 | |
| 		     (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
 | |
|     if(res != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   if(z < 0)
 | |
|     SIGN(mp) = MP_NEG;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_set_int() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ Digit arithmetic */
 | |
| 
 | |
| /* {{{ mp_add_d(a, d, b) */
 | |
| 
 | |
| /*
 | |
|   mp_add_d(a, d, b)
 | |
| 
 | |
|   Compute the sum b = a + d, for a single digit d.  Respects the sign of
 | |
|   its primary addend (single digits are unsigned anyway).
 | |
|  */
 | |
| 
 | |
| mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b)
 | |
| {
 | |
|   mp_err   res = MP_OKAY;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   if(SIGN(b) == MP_ZPOS) {
 | |
|     res = s_mp_add_d(b, d);
 | |
|   } else if(s_mp_cmp_d(b, d) >= 0) {
 | |
|     res = s_mp_sub_d(b, d);
 | |
|   } else {
 | |
|     SIGN(b) = MP_ZPOS;
 | |
| 
 | |
|     DIGIT(b, 0) = d - DIGIT(b, 0);
 | |
|   }
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_add_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_sub_d(a, d, b) */
 | |
| 
 | |
| /*
 | |
|   mp_sub_d(a, d, b)
 | |
| 
 | |
|   Compute the difference b = a - d, for a single digit d.  Respects the
 | |
|   sign of its subtrahend (single digits are unsigned anyway).
 | |
|  */
 | |
| 
 | |
| mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b)
 | |
| {
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   if(SIGN(b) == MP_NEG) {
 | |
|     if((res = s_mp_add_d(b, d)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|   } else if(s_mp_cmp_d(b, d) >= 0) {
 | |
|     if((res = s_mp_sub_d(b, d)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|   } else {
 | |
|     mp_neg(b, b);
 | |
| 
 | |
|     DIGIT(b, 0) = d - DIGIT(b, 0);
 | |
|     SIGN(b) = MP_NEG;
 | |
|   }
 | |
| 
 | |
|   if(s_mp_cmp_d(b, 0) == 0)
 | |
|     SIGN(b) = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_sub_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mul_d(a, d, b) */
 | |
| 
 | |
| /*
 | |
|   mp_mul_d(a, d, b)
 | |
| 
 | |
|   Compute the product b = a * d, for a single digit d.  Respects the sign
 | |
|   of its multiplicand (single digits are unsigned anyway)
 | |
|  */
 | |
| 
 | |
| mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if(d == 0) {
 | |
|     mp_zero(b);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   if((res = mp_copy(a, b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   res = s_mp_mul_d(b, d);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_mul_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mul_2(a, c) */
 | |
| 
 | |
| mp_err mp_mul_2(mp_int *a, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   return s_mp_mul_2(c);
 | |
| 
 | |
| } /* end mp_mul_2() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_div_d(a, d, q, r) */
 | |
| 
 | |
| /*
 | |
|   mp_div_d(a, d, q, r)
 | |
| 
 | |
|   Compute the quotient q = a / d and remainder r = a mod d, for a
 | |
|   single digit d.  Respects the sign of its divisor (single digits are
 | |
|   unsigned anyway).
 | |
|  */
 | |
| 
 | |
| mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_digit rem;
 | |
|   int      pow;
 | |
| 
 | |
|   ARGCHK(a != NULL, MP_BADARG);
 | |
| 
 | |
|   if(d == 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /* Shortcut for powers of two ... */
 | |
|   if((pow = s_mp_ispow2d(d)) >= 0) {
 | |
|     mp_digit  mask;
 | |
| 
 | |
|     mask = (1 << pow) - 1;
 | |
|     rem = DIGIT(a, 0) & mask;
 | |
| 
 | |
|     if(q) {
 | |
|       mp_copy(a, q);
 | |
|       s_mp_div_2d(q, pow);
 | |
|     }
 | |
| 
 | |
|     if(r)
 | |
|       *r = rem;
 | |
| 
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|     If the quotient is actually going to be returned, we'll try to
 | |
|     avoid hitting the memory allocator by copying the dividend into it
 | |
|     and doing the division there.  This can't be any _worse_ than
 | |
|     always copying, and will sometimes be better (since it won't make
 | |
|     another copy)
 | |
| 
 | |
|     If it's not going to be returned, we need to allocate a temporary
 | |
|     to hold the quotient, which will just be discarded.
 | |
|    */
 | |
|   if(q) {
 | |
|     if((res = mp_copy(a, q)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     res = s_mp_div_d(q, d, &rem);
 | |
|     if(s_mp_cmp_d(q, 0) == MP_EQ)
 | |
|       SIGN(q) = MP_ZPOS;
 | |
| 
 | |
|   } else {
 | |
|     mp_int  qp;
 | |
| 
 | |
|     if((res = mp_init_copy(&qp, a)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     res = s_mp_div_d(&qp, d, &rem);
 | |
|     if(s_mp_cmp_d(&qp, 0) == 0)
 | |
|       SIGN(&qp) = MP_ZPOS;
 | |
| 
 | |
|     mp_clear(&qp);
 | |
|   }
 | |
| 
 | |
|   if(r)
 | |
|     *r = rem;
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_div_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_div_2(a, c) */
 | |
| 
 | |
| /*
 | |
|   mp_div_2(a, c)
 | |
| 
 | |
|   Compute c = a / 2, disregarding the remainder.
 | |
|  */
 | |
| 
 | |
| mp_err mp_div_2(mp_int *a, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   s_mp_div_2(c);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_div_2() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_expt_d(a, d, b) */
 | |
| 
 | |
| mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c)
 | |
| {
 | |
|   mp_int   s, x;
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_init(&s)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | |
|     goto X;
 | |
| 
 | |
|   DIGIT(&s, 0) = 1;
 | |
| 
 | |
|   while(d != 0) {
 | |
|     if(d & 1) {
 | |
|       if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
| 
 | |
|     d >>= 1;
 | |
| 
 | |
|     if((res = s_mp_sqr(&x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   s_mp_exch(&s, c);
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear(&x);
 | |
| X:
 | |
|   mp_clear(&s);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_expt_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ Full arithmetic */
 | |
| 
 | |
| /* {{{ mp_abs(a, b) */
 | |
| 
 | |
| /*
 | |
|   mp_abs(a, b)
 | |
| 
 | |
|   Compute b = |a|.  'a' and 'b' may be identical.
 | |
|  */
 | |
| 
 | |
| mp_err mp_abs(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   SIGN(b) = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_abs() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_neg(a, b) */
 | |
| 
 | |
| /*
 | |
|   mp_neg(a, b)
 | |
| 
 | |
|   Compute b = -a.  'a' and 'b' may be identical.
 | |
|  */
 | |
| 
 | |
| mp_err mp_neg(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   if(s_mp_cmp_d(b, 0) == MP_EQ)
 | |
|     SIGN(b) = MP_ZPOS;
 | |
|   else
 | |
|     SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_neg() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_add(a, b, c) */
 | |
| 
 | |
| /*
 | |
|   mp_add(a, b, c)
 | |
| 
 | |
|   Compute c = a + b.  All parameters may be identical.
 | |
|  */
 | |
| 
 | |
| mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
|   int     cmp;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(SIGN(a) == SIGN(b)) { /* same sign:  add values, keep sign */
 | |
| 
 | |
|     /* Commutativity of addition lets us do this in either order,
 | |
|        so we avoid having to use a temporary even if the result
 | |
|        is supposed to replace the output
 | |
|      */
 | |
|     if(c == b) {
 | |
|       if((res = s_mp_add(c, a)) != MP_OKAY)
 | |
| 	return res;
 | |
|     } else {
 | |
|       if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
 | |
| 	return res;
 | |
| 
 | |
|       if((res = s_mp_add(c, b)) != MP_OKAY)
 | |
| 	return res;
 | |
|     }
 | |
| 
 | |
|   } else if((cmp = s_mp_cmp(a, b)) > 0) {  /* different sign: a > b   */
 | |
| 
 | |
|     /* If the output is going to be clobbered, we will use a temporary
 | |
|        variable; otherwise, we'll do it without touching the memory
 | |
|        allocator at all, if possible
 | |
|      */
 | |
|     if(c == b) {
 | |
|       mp_int  tmp;
 | |
| 
 | |
|       if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
 | |
| 	return res;
 | |
|       if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
 | |
| 	mp_clear(&tmp);
 | |
| 	return res;
 | |
|       }
 | |
| 
 | |
|       s_mp_exch(&tmp, c);
 | |
|       mp_clear(&tmp);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|       if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
 | |
| 	return res;
 | |
|       if((res = s_mp_sub(c, b)) != MP_OKAY)
 | |
| 	return res;
 | |
| 
 | |
|     }
 | |
| 
 | |
|   } else if(cmp == 0) {             /* different sign, a == b   */
 | |
| 
 | |
|     mp_zero(c);
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   } else {                          /* different sign: a < b    */
 | |
| 
 | |
|     /* See above... */
 | |
|     if(c == a) {
 | |
|       mp_int  tmp;
 | |
| 
 | |
|       if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
 | |
| 	return res;
 | |
|       if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
 | |
| 	mp_clear(&tmp);
 | |
| 	return res;
 | |
|       }
 | |
| 
 | |
|       s_mp_exch(&tmp, c);
 | |
|       mp_clear(&tmp);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|       if(c != b && (res = mp_copy(b, c)) != MP_OKAY)
 | |
| 	return res;
 | |
|       if((res = s_mp_sub(c, a)) != MP_OKAY)
 | |
| 	return res;
 | |
| 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(USED(c) == 1 && DIGIT(c, 0) == 0)
 | |
|     SIGN(c) = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_add() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_sub(a, b, c) */
 | |
| 
 | |
| /*
 | |
|   mp_sub(a, b, c)
 | |
| 
 | |
|   Compute c = a - b.  All parameters may be identical.
 | |
|  */
 | |
| 
 | |
| mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
|   int     cmp;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(SIGN(a) != SIGN(b)) {
 | |
|     if(c == a) {
 | |
|       if((res = s_mp_add(c, b)) != MP_OKAY)
 | |
| 	return res;
 | |
|     } else {
 | |
|       if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
 | |
| 	return res;
 | |
|       if((res = s_mp_add(c, a)) != MP_OKAY)
 | |
| 	return res;
 | |
|       SIGN(c) = SIGN(a);
 | |
|     }
 | |
| 
 | |
|   } else if((cmp = s_mp_cmp(a, b)) > 0) { /* Same sign, a > b */
 | |
|     if(c == b) {
 | |
|       mp_int  tmp;
 | |
| 
 | |
|       if((res = mp_init_copy(&tmp, a)) != MP_OKAY)
 | |
| 	return res;
 | |
|       if((res = s_mp_sub(&tmp, b)) != MP_OKAY) {
 | |
| 	mp_clear(&tmp);
 | |
| 	return res;
 | |
|       }
 | |
|       s_mp_exch(&tmp, c);
 | |
|       mp_clear(&tmp);
 | |
| 
 | |
|     } else {
 | |
|       if(c != a && ((res = mp_copy(a, c)) != MP_OKAY))
 | |
| 	return res;
 | |
| 
 | |
|       if((res = s_mp_sub(c, b)) != MP_OKAY)
 | |
| 	return res;
 | |
|     }
 | |
| 
 | |
|   } else if(cmp == 0) {  /* Same sign, equal magnitude */
 | |
|     mp_zero(c);
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   } else {               /* Same sign, b > a */
 | |
|     if(c == a) {
 | |
|       mp_int  tmp;
 | |
| 
 | |
|       if((res = mp_init_copy(&tmp, b)) != MP_OKAY)
 | |
| 	return res;
 | |
| 
 | |
|       if((res = s_mp_sub(&tmp, a)) != MP_OKAY) {
 | |
| 	mp_clear(&tmp);
 | |
| 	return res;
 | |
|       }
 | |
|       s_mp_exch(&tmp, c);
 | |
|       mp_clear(&tmp);
 | |
| 
 | |
|     } else {
 | |
|       if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
 | |
| 	return res;
 | |
| 
 | |
|       if((res = s_mp_sub(c, a)) != MP_OKAY)
 | |
| 	return res;
 | |
|     }
 | |
| 
 | |
|     SIGN(c) = !SIGN(b);
 | |
|   }
 | |
| 
 | |
|   if(USED(c) == 1 && DIGIT(c, 0) == 0)
 | |
|     SIGN(c) = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_sub() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mul(a, b, c) */
 | |
| 
 | |
| /*
 | |
|   mp_mul(a, b, c)
 | |
| 
 | |
|   Compute c = a * b.  All parameters may be identical.
 | |
|  */
 | |
| 
 | |
| mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_sign  sgn;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   sgn = (SIGN(a) == SIGN(b)) ? MP_ZPOS : MP_NEG;
 | |
| 
 | |
|   if(c == b) {
 | |
|     if((res = s_mp_mul(c, a)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|   } else {
 | |
|     if((res = mp_copy(a, c)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     if((res = s_mp_mul(c, b)) != MP_OKAY)
 | |
|       return res;
 | |
|   }
 | |
| 
 | |
|   if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
 | |
|     SIGN(c) = MP_ZPOS;
 | |
|   else
 | |
|     SIGN(c) = sgn;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_mul() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mul_2d(a, d, c) */
 | |
| 
 | |
| /*
 | |
|   mp_mul_2d(a, d, c)
 | |
| 
 | |
|   Compute c = a * 2^d.  a may be the same as c.
 | |
|  */
 | |
| 
 | |
| mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c)
 | |
| {
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   if(d == 0)
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   return s_mp_mul_2d(c, d);
 | |
| 
 | |
| } /* end mp_mul() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_sqr(a, b) */
 | |
| 
 | |
| #if MP_SQUARE
 | |
| mp_err mp_sqr(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_copy(a, b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   if((res = s_mp_sqr(b)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   SIGN(b) = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_sqr() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_div(a, b, q, r) */
 | |
| 
 | |
| /*
 | |
|   mp_div(a, b, q, r)
 | |
| 
 | |
|   Compute q = a / b and r = a mod b.  Input parameters may be re-used
 | |
|   as output parameters.  If q or r is NULL, that portion of the
 | |
|   computation will be discarded (although it will still be computed)
 | |
| 
 | |
|   Pay no attention to the hacker behind the curtain.
 | |
|  */
 | |
| 
 | |
| mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_int   qtmp, rtmp;
 | |
|   int      cmp;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   if(mp_cmp_z(b) == MP_EQ)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /* If a <= b, we can compute the solution without division, and
 | |
|      avoid any memory allocation
 | |
|    */
 | |
|   if((cmp = s_mp_cmp(a, b)) < 0) {
 | |
|     if(r) {
 | |
|       if((res = mp_copy(a, r)) != MP_OKAY)
 | |
| 	return res;
 | |
|     }
 | |
| 
 | |
|     if(q)
 | |
|       mp_zero(q);
 | |
| 
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   } else if(cmp == 0) {
 | |
| 
 | |
|     /* Set quotient to 1, with appropriate sign */
 | |
|     if(q) {
 | |
|       int qneg = (SIGN(a) != SIGN(b));
 | |
| 
 | |
|       mp_set(q, 1);
 | |
|       if(qneg)
 | |
| 	SIGN(q) = MP_NEG;
 | |
|     }
 | |
| 
 | |
|     if(r)
 | |
|       mp_zero(r);
 | |
| 
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* If we get here, it means we actually have to do some division */
 | |
| 
 | |
|   /* Set up some temporaries... */
 | |
|   if((res = mp_init_copy(&qtmp, a)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init_copy(&rtmp, b)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if((res = s_mp_div(&qtmp, &rtmp)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   /* Compute the signs for the output  */
 | |
|   SIGN(&rtmp) = SIGN(a); /* Sr = Sa              */
 | |
|   if(SIGN(a) == SIGN(b))
 | |
|     SIGN(&qtmp) = MP_ZPOS;  /* Sq = MP_ZPOS if Sa = Sb */
 | |
|   else
 | |
|     SIGN(&qtmp) = MP_NEG;   /* Sq = MP_NEG if Sa != Sb */
 | |
| 
 | |
|   if(s_mp_cmp_d(&qtmp, 0) == MP_EQ)
 | |
|     SIGN(&qtmp) = MP_ZPOS;
 | |
|   if(s_mp_cmp_d(&rtmp, 0) == MP_EQ)
 | |
|     SIGN(&rtmp) = MP_ZPOS;
 | |
| 
 | |
|   /* Copy output, if it is needed      */
 | |
|   if(q)
 | |
|     s_mp_exch(&qtmp, q);
 | |
| 
 | |
|   if(r)
 | |
|     s_mp_exch(&rtmp, r);
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear(&rtmp);
 | |
|   mp_clear(&qtmp);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_div() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_div_2d(a, d, q, r) */
 | |
| 
 | |
| mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL, MP_BADARG);
 | |
| 
 | |
|   if(q) {
 | |
|     if((res = mp_copy(a, q)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     s_mp_div_2d(q, d);
 | |
|   }
 | |
| 
 | |
|   if(r) {
 | |
|     if((res = mp_copy(a, r)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     s_mp_mod_2d(r, d);
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_div_2d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_expt(a, b, c) */
 | |
| 
 | |
| /*
 | |
|   mp_expt(a, b, c)
 | |
| 
 | |
|   Compute c = a ** b, that is, raise a to the b power.  Uses a
 | |
|   standard iterative square-and-multiply technique.
 | |
|  */
 | |
| 
 | |
| mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_int   s, x;
 | |
|   mp_err   res;
 | |
|   mp_digit d;
 | |
|   int      dig, bit;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(mp_cmp_z(b) < 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   if((res = mp_init(&s)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   mp_set(&s, 1);
 | |
| 
 | |
|   if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | |
|     goto X;
 | |
| 
 | |
|   /* Loop over low-order digits in ascending order */
 | |
|   for(dig = 0; dig < (USED(b) - 1); dig++) {
 | |
|     d = DIGIT(b, dig);
 | |
| 
 | |
|     /* Loop over bits of each non-maximal digit */
 | |
|     for(bit = 0; bit < DIGIT_BIT; bit++) {
 | |
|       if(d & 1) {
 | |
| 	if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | |
| 	  goto CLEANUP;
 | |
|       }
 | |
| 
 | |
|       d >>= 1;
 | |
| 
 | |
|       if((res = s_mp_sqr(&x)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Consider now the last digit... */
 | |
|   d = DIGIT(b, dig);
 | |
| 
 | |
|   while(d) {
 | |
|     if(d & 1) {
 | |
|       if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
| 
 | |
|     d >>= 1;
 | |
| 
 | |
|     if((res = s_mp_sqr(&x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   if(mp_iseven(b))
 | |
|     SIGN(&s) = SIGN(a);
 | |
| 
 | |
|   res = mp_copy(&s, c);
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear(&x);
 | |
| X:
 | |
|   mp_clear(&s);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_expt() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_2expt(a, k) */
 | |
| 
 | |
| /* Compute a = 2^k */
 | |
| 
 | |
| mp_err mp_2expt(mp_int *a, mp_digit k)
 | |
| {
 | |
|   ARGCHK(a != NULL, MP_BADARG);
 | |
| 
 | |
|   return s_mp_2expt(a, k);
 | |
| 
 | |
| } /* end mp_2expt() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mod(a, m, c) */
 | |
| 
 | |
| /*
 | |
|   mp_mod(a, m, c)
 | |
| 
 | |
|   Compute c = a (mod m).  Result will always be 0 <= c < m.
 | |
|  */
 | |
| 
 | |
| mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
|   int     mag;
 | |
| 
 | |
|   ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(SIGN(m) == MP_NEG)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /*
 | |
|      If |a| > m, we need to divide to get the remainder and take the
 | |
|      absolute value.
 | |
| 
 | |
|      If |a| < m, we don't need to do any division, just copy and adjust
 | |
|      the sign (if a is negative).
 | |
| 
 | |
|      If |a| == m, we can simply set the result to zero.
 | |
| 
 | |
|      This order is intended to minimize the average path length of the
 | |
|      comparison chain on common workloads -- the most frequent cases are
 | |
|      that |a| != m, so we do those first.
 | |
|    */
 | |
|   if((mag = s_mp_cmp(a, m)) > 0) {
 | |
|     if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     if(SIGN(c) == MP_NEG) {
 | |
|       if((res = mp_add(c, m, c)) != MP_OKAY)
 | |
| 	return res;
 | |
|     }
 | |
| 
 | |
|   } else if(mag < 0) {
 | |
|     if((res = mp_copy(a, c)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     if(mp_cmp_z(a) < 0) {
 | |
|       if((res = mp_add(c, m, c)) != MP_OKAY)
 | |
| 	return res;
 | |
| 
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     mp_zero(c);
 | |
| 
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_mod() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mod_d(a, d, c) */
 | |
| 
 | |
| /*
 | |
|   mp_mod_d(a, d, c)
 | |
| 
 | |
|   Compute c = a (mod d).  Result will always be 0 <= c < d
 | |
|  */
 | |
| mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_digit rem;
 | |
| 
 | |
|   ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(s_mp_cmp_d(a, d) > 0) {
 | |
|     if((res = mp_div_d(a, d, NULL, &rem)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|   } else {
 | |
|     if(SIGN(a) == MP_NEG)
 | |
|       rem = d - DIGIT(a, 0);
 | |
|     else
 | |
|       rem = DIGIT(a, 0);
 | |
|   }
 | |
| 
 | |
|   if(c)
 | |
|     *c = rem;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_mod_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_sqrt(a, b) */
 | |
| 
 | |
| /*
 | |
|   mp_sqrt(a, b)
 | |
| 
 | |
|   Compute the integer square root of a, and store the result in b.
 | |
|   Uses an integer-arithmetic version of Newton's iterative linear
 | |
|   approximation technique to determine this value; the result has the
 | |
|   following two properties:
 | |
| 
 | |
|      b^2 <= a
 | |
|      (b+1)^2 >= a
 | |
| 
 | |
|   It is a range error to pass a negative value.
 | |
|  */
 | |
| mp_err mp_sqrt(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_int   x, t;
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL, MP_BADARG);
 | |
| 
 | |
|   /* Cannot take square root of a negative value */
 | |
|   if(SIGN(a) == MP_NEG)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /* Special cases for zero and one, trivial     */
 | |
|   if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
 | |
|     return mp_copy(a, b);
 | |
| 
 | |
|   /* Initialize the temporaries we'll use below  */
 | |
|   if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   /* Compute an initial guess for the iteration as a itself */
 | |
|   if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | |
|     goto X;
 | |
| 
 | |
| s_mp_rshd(&x, (USED(&x)/2)+1);
 | |
| mp_add_d(&x, 1, &x);
 | |
| 
 | |
|   for(;;) {
 | |
|     /* t = (x * x) - a */
 | |
|     mp_copy(&x, &t);      /* can't fail, t is big enough for original x */
 | |
|     if((res = mp_sqr(&t, &t)) != MP_OKAY ||
 | |
|        (res = mp_sub(&t, a, &t)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     /* t = t / 2x       */
 | |
|     s_mp_mul_2(&x);
 | |
|     if((res = mp_div(&t, &x, &t, NULL)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|     s_mp_div_2(&x);
 | |
| 
 | |
|     /* Terminate the loop, if the quotient is zero */
 | |
|     if(mp_cmp_z(&t) == MP_EQ)
 | |
|       break;
 | |
| 
 | |
|     /* x = x - t       */
 | |
|     if((res = mp_sub(&x, &t, &x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /* Copy result to output parameter */
 | |
|   mp_sub_d(&x, 1, &x);
 | |
|   s_mp_exch(&x, b);
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_clear(&x);
 | |
|  X:
 | |
|   mp_clear(&t);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_sqrt() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ Modular arithmetic */
 | |
| 
 | |
| #if MP_MODARITH
 | |
| /* {{{ mp_addmod(a, b, m, c) */
 | |
| 
 | |
| /*
 | |
|   mp_addmod(a, b, m, c)
 | |
| 
 | |
|   Compute c = (a + b) mod m
 | |
|  */
 | |
| 
 | |
| mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_add(a, b, c)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_mod(c, m, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_submod(a, b, m, c) */
 | |
| 
 | |
| /*
 | |
|   mp_submod(a, b, m, c)
 | |
| 
 | |
|   Compute c = (a - b) mod m
 | |
|  */
 | |
| 
 | |
| mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_sub(a, b, c)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_mod(c, m, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_mulmod(a, b, m, c) */
 | |
| 
 | |
| /*
 | |
|   mp_mulmod(a, b, m, c)
 | |
| 
 | |
|   Compute c = (a * b) mod m
 | |
|  */
 | |
| 
 | |
| mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && m != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_mul(a, b, c)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_mod(c, m, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_sqrmod(a, m, c) */
 | |
| 
 | |
| #if MP_SQUARE
 | |
| mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && m != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_sqr(a, c)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_mod(c, m, c)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_sqrmod() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_exptmod(a, b, m, c) */
 | |
| 
 | |
| /*
 | |
|   mp_exptmod(a, b, m, c)
 | |
| 
 | |
|   Compute c = (a ** b) mod m.  Uses a standard square-and-multiply
 | |
|   method with modular reductions at each step. (This is basically the
 | |
|   same code as mp_expt(), except for the addition of the reductions)
 | |
| 
 | |
|   The modular reductions are done using Barrett's algorithm (see
 | |
|   s_mp_reduce() below for details)
 | |
|  */
 | |
| 
 | |
| mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_int   s, x, mu;
 | |
|   mp_err   res;
 | |
|   mp_digit d, *db = DIGITS(b);
 | |
|   mp_size  ub = USED(b);
 | |
|   int      dig, bit;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(mp_cmp_z(b) < 0 || mp_cmp_z(m) <= 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   if((res = mp_init(&s)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | |
|     goto X;
 | |
|   if((res = mp_mod(&x, m, &x)) != MP_OKAY ||
 | |
|      (res = mp_init(&mu)) != MP_OKAY)
 | |
|     goto MU;
 | |
| 
 | |
|   mp_set(&s, 1);
 | |
| 
 | |
|   /* mu = b^2k / m */
 | |
|   s_mp_add_d(&mu, 1);
 | |
|   s_mp_lshd(&mu, 2 * USED(m));
 | |
|   if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   /* Loop over digits of b in ascending order, except highest order */
 | |
|   for(dig = 0; dig < (ub - 1); dig++) {
 | |
|     d = *db++;
 | |
| 
 | |
|     /* Loop over the bits of the lower-order digits */
 | |
|     for(bit = 0; bit < DIGIT_BIT; bit++) {
 | |
|       if(d & 1) {
 | |
| 	if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | |
| 	  goto CLEANUP;
 | |
| 	if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
 | |
| 	  goto CLEANUP;
 | |
|       }
 | |
| 
 | |
|       d >>= 1;
 | |
| 
 | |
|       if((res = s_mp_sqr(&x)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|       if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Now do the last digit... */
 | |
|   d = *db;
 | |
| 
 | |
|   while(d) {
 | |
|     if(d & 1) {
 | |
|       if((res = s_mp_mul(&s, &x)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|       if((res = s_mp_reduce(&s, m, &mu)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
| 
 | |
|     d >>= 1;
 | |
| 
 | |
|     if((res = s_mp_sqr(&x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|     if((res = s_mp_reduce(&x, m, &mu)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   s_mp_exch(&s, c);
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_clear(&mu);
 | |
|  MU:
 | |
|   mp_clear(&x);
 | |
|  X:
 | |
|   mp_clear(&s);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_exptmod() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_exptmod_d(a, d, m, c) */
 | |
| 
 | |
| mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_int   s, x;
 | |
|   mp_err   res;
 | |
| 
 | |
|   ARGCHK(a != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_init(&s)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init_copy(&x, a)) != MP_OKAY)
 | |
|     goto X;
 | |
| 
 | |
|   mp_set(&s, 1);
 | |
| 
 | |
|   while(d != 0) {
 | |
|     if(d & 1) {
 | |
|       if((res = s_mp_mul(&s, &x)) != MP_OKAY ||
 | |
| 	 (res = mp_mod(&s, m, &s)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
|     }
 | |
| 
 | |
|     d /= 2;
 | |
| 
 | |
|     if((res = s_mp_sqr(&x)) != MP_OKAY ||
 | |
|        (res = mp_mod(&x, m, &x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   s_mp_exch(&s, c);
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear(&x);
 | |
| X:
 | |
|   mp_clear(&s);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_exptmod_d() */
 | |
| 
 | |
| /* }}} */
 | |
| #endif /* if MP_MODARITH */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ Comparison functions */
 | |
| 
 | |
| /* {{{ mp_cmp_z(a) */
 | |
| 
 | |
| /*
 | |
|   mp_cmp_z(a)
 | |
| 
 | |
|   Compare a <=> 0.  Returns <0 if a<0, 0 if a=0, >0 if a>0.
 | |
|  */
 | |
| 
 | |
| int    mp_cmp_z(mp_int *a)
 | |
| {
 | |
|   if(SIGN(a) == MP_NEG)
 | |
|     return MP_LT;
 | |
|   else if(USED(a) == 1 && DIGIT(a, 0) == 0)
 | |
|     return MP_EQ;
 | |
|   else
 | |
|     return MP_GT;
 | |
| 
 | |
| } /* end mp_cmp_z() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_cmp_d(a, d) */
 | |
| 
 | |
| /*
 | |
|   mp_cmp_d(a, d)
 | |
| 
 | |
|   Compare a <=> d.  Returns <0 if a<d, 0 if a=d, >0 if a>d
 | |
|  */
 | |
| 
 | |
| int    mp_cmp_d(mp_int *a, mp_digit d)
 | |
| {
 | |
|   ARGCHK(a != NULL, MP_EQ);
 | |
| 
 | |
|   if(SIGN(a) == MP_NEG)
 | |
|     return MP_LT;
 | |
| 
 | |
|   return s_mp_cmp_d(a, d);
 | |
| 
 | |
| } /* end mp_cmp_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_cmp(a, b) */
 | |
| 
 | |
| int    mp_cmp(mp_int *a, mp_int *b)
 | |
| {
 | |
|   ARGCHK(a != NULL && b != NULL, MP_EQ);
 | |
| 
 | |
|   if(SIGN(a) == SIGN(b)) {
 | |
|     int  mag;
 | |
| 
 | |
|     if((mag = s_mp_cmp(a, b)) == MP_EQ)
 | |
|       return MP_EQ;
 | |
| 
 | |
|     if(SIGN(a) == MP_ZPOS)
 | |
|       return mag;
 | |
|     else
 | |
|       return -mag;
 | |
| 
 | |
|   } else if(SIGN(a) == MP_ZPOS) {
 | |
|     return MP_GT;
 | |
|   } else {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
| } /* end mp_cmp() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_cmp_mag(a, b) */
 | |
| 
 | |
| /*
 | |
|   mp_cmp_mag(a, b)
 | |
| 
 | |
|   Compares |a| <=> |b|, and returns an appropriate comparison result
 | |
|  */
 | |
| 
 | |
| int    mp_cmp_mag(mp_int *a, mp_int *b)
 | |
| {
 | |
|   ARGCHK(a != NULL && b != NULL, MP_EQ);
 | |
| 
 | |
|   return s_mp_cmp(a, b);
 | |
| 
 | |
| } /* end mp_cmp_mag() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_cmp_int(a, z) */
 | |
| 
 | |
| /*
 | |
|   This just converts z to an mp_int, and uses the existing comparison
 | |
|   routines.  This is sort of inefficient, but it's not clear to me how
 | |
|   frequently this wil get used anyway.  For small positive constants,
 | |
|   you can always use mp_cmp_d(), and for zero, there is mp_cmp_z().
 | |
|  */
 | |
| int    mp_cmp_int(mp_int *a, long z)
 | |
| {
 | |
|   mp_int  tmp;
 | |
|   int     out;
 | |
| 
 | |
|   ARGCHK(a != NULL, MP_EQ);
 | |
| 
 | |
|   mp_init(&tmp); mp_set_int(&tmp, z);
 | |
|   out = mp_cmp(a, &tmp);
 | |
|   mp_clear(&tmp);
 | |
| 
 | |
|   return out;
 | |
| 
 | |
| } /* end mp_cmp_int() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_isodd(a) */
 | |
| 
 | |
| /*
 | |
|   mp_isodd(a)
 | |
| 
 | |
|   Returns a true (non-zero) value if a is odd, false (zero) otherwise.
 | |
|  */
 | |
| int    mp_isodd(mp_int *a)
 | |
| {
 | |
|   ARGCHK(a != NULL, 0);
 | |
| 
 | |
|   return (DIGIT(a, 0) & 1);
 | |
| 
 | |
| } /* end mp_isodd() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_iseven(a) */
 | |
| 
 | |
| int    mp_iseven(mp_int *a)
 | |
| {
 | |
|   return !mp_isodd(a);
 | |
| 
 | |
| } /* end mp_iseven() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ Number theoretic functions */
 | |
| 
 | |
| #if MP_NUMTH
 | |
| /* {{{ mp_gcd(a, b, c) */
 | |
| 
 | |
| /*
 | |
|   Like the old mp_gcd() function, except computes the GCD using the
 | |
|   binary algorithm due to Josef Stein in 1961 (via Knuth).
 | |
|  */
 | |
| mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_int   u, v, t;
 | |
|   mp_size  k = 0;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   if(mp_cmp_z(a) == MP_EQ && mp_cmp_z(b) == MP_EQ)
 | |
|       return MP_RANGE;
 | |
|   if(mp_cmp_z(a) == MP_EQ) {
 | |
|     return mp_copy(b, c);
 | |
|   } else if(mp_cmp_z(b) == MP_EQ) {
 | |
|     return mp_copy(a, c);
 | |
|   }
 | |
| 
 | |
|   if((res = mp_init(&t)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init_copy(&u, a)) != MP_OKAY)
 | |
|     goto U;
 | |
|   if((res = mp_init_copy(&v, b)) != MP_OKAY)
 | |
|     goto V;
 | |
| 
 | |
|   SIGN(&u) = MP_ZPOS;
 | |
|   SIGN(&v) = MP_ZPOS;
 | |
| 
 | |
|   /* Divide out common factors of 2 until at least 1 of a, b is even */
 | |
|   while(mp_iseven(&u) && mp_iseven(&v)) {
 | |
|     s_mp_div_2(&u);
 | |
|     s_mp_div_2(&v);
 | |
|     ++k;
 | |
|   }
 | |
| 
 | |
|   /* Initialize t */
 | |
|   if(mp_isodd(&u)) {
 | |
|     if((res = mp_copy(&v, &t)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     /* t = -v */
 | |
|     if(SIGN(&v) == MP_ZPOS)
 | |
|       SIGN(&t) = MP_NEG;
 | |
|     else
 | |
|       SIGN(&t) = MP_ZPOS;
 | |
| 
 | |
|   } else {
 | |
|     if((res = mp_copy(&u, &t)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   for(;;) {
 | |
|     while(mp_iseven(&t)) {
 | |
|       s_mp_div_2(&t);
 | |
|     }
 | |
| 
 | |
|     if(mp_cmp_z(&t) == MP_GT) {
 | |
|       if((res = mp_copy(&t, &u)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
| 
 | |
|     } else {
 | |
|       if((res = mp_copy(&t, &v)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
| 
 | |
|       /* v = -t */
 | |
|       if(SIGN(&t) == MP_ZPOS)
 | |
| 	SIGN(&v) = MP_NEG;
 | |
|       else
 | |
| 	SIGN(&v) = MP_ZPOS;
 | |
|     }
 | |
| 
 | |
|     if((res = mp_sub(&u, &v, &t)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     if(s_mp_cmp_d(&t, 0) == MP_EQ)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   s_mp_2expt(&v, k);       /* v = 2^k   */
 | |
|   res = mp_mul(&u, &v, c); /* c = u * v */
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_clear(&v);
 | |
|  V:
 | |
|   mp_clear(&u);
 | |
|  U:
 | |
|   mp_clear(&t);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_bgcd() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_lcm(a, b, c) */
 | |
| 
 | |
| /* We compute the least common multiple using the rule:
 | |
| 
 | |
|    ab = [a, b](a, b)
 | |
| 
 | |
|    ... by computing the product, and dividing out the gcd.
 | |
|  */
 | |
| 
 | |
| mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_int  gcd, prod;
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
 | |
| 
 | |
|   /* Set up temporaries */
 | |
|   if((res = mp_init(&gcd)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init(&prod)) != MP_OKAY)
 | |
|     goto GCD;
 | |
| 
 | |
|   if((res = mp_mul(a, b, &prod)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
|   if((res = mp_gcd(a, b, &gcd)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   res = mp_div(&prod, &gcd, c, NULL);
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_clear(&prod);
 | |
|  GCD:
 | |
|   mp_clear(&gcd);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_lcm() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_xgcd(a, b, g, x, y) */
 | |
| 
 | |
| /*
 | |
|   mp_xgcd(a, b, g, x, y)
 | |
| 
 | |
|   Compute g = (a, b) and values x and y satisfying Bezout's identity
 | |
|   (that is, ax + by = g).  This uses the extended binary GCD algorithm
 | |
|   based on the Stein algorithm used for mp_gcd()
 | |
|  */
 | |
| 
 | |
| mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
 | |
| {
 | |
|   mp_int   gx, xc, yc, u, v, A, B, C, D;
 | |
|   mp_int  *clean[9];
 | |
|   mp_err   res;
 | |
|   int      last = -1;
 | |
| 
 | |
|   if(mp_cmp_z(b) == 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /* Initialize all these variables we need */
 | |
|   if((res = mp_init(&u)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &u;
 | |
|   if((res = mp_init(&v)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &v;
 | |
|   if((res = mp_init(&gx)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &gx;
 | |
|   if((res = mp_init(&A)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &A;
 | |
|   if((res = mp_init(&B)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &B;
 | |
|   if((res = mp_init(&C)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &C;
 | |
|   if((res = mp_init(&D)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &D;
 | |
|   if((res = mp_init_copy(&xc, a)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &xc;
 | |
|   mp_abs(&xc, &xc);
 | |
|   if((res = mp_init_copy(&yc, b)) != MP_OKAY) goto CLEANUP;
 | |
|   clean[++last] = &yc;
 | |
|   mp_abs(&yc, &yc);
 | |
| 
 | |
|   mp_set(&gx, 1);
 | |
| 
 | |
|   /* Divide by two until at least one of them is even */
 | |
|   while(mp_iseven(&xc) && mp_iseven(&yc)) {
 | |
|     s_mp_div_2(&xc);
 | |
|     s_mp_div_2(&yc);
 | |
|     if((res = s_mp_mul_2(&gx)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   mp_copy(&xc, &u);
 | |
|   mp_copy(&yc, &v);
 | |
|   mp_set(&A, 1); mp_set(&D, 1);
 | |
| 
 | |
|   /* Loop through binary GCD algorithm */
 | |
|   for(;;) {
 | |
|     while(mp_iseven(&u)) {
 | |
|       s_mp_div_2(&u);
 | |
| 
 | |
|       if(mp_iseven(&A) && mp_iseven(&B)) {
 | |
| 	s_mp_div_2(&A); s_mp_div_2(&B);
 | |
|       } else {
 | |
| 	if((res = mp_add(&A, &yc, &A)) != MP_OKAY) goto CLEANUP;
 | |
| 	s_mp_div_2(&A);
 | |
| 	if((res = mp_sub(&B, &xc, &B)) != MP_OKAY) goto CLEANUP;
 | |
| 	s_mp_div_2(&B);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while(mp_iseven(&v)) {
 | |
|       s_mp_div_2(&v);
 | |
| 
 | |
|       if(mp_iseven(&C) && mp_iseven(&D)) {
 | |
| 	s_mp_div_2(&C); s_mp_div_2(&D);
 | |
|       } else {
 | |
| 	if((res = mp_add(&C, &yc, &C)) != MP_OKAY) goto CLEANUP;
 | |
| 	s_mp_div_2(&C);
 | |
| 	if((res = mp_sub(&D, &xc, &D)) != MP_OKAY) goto CLEANUP;
 | |
| 	s_mp_div_2(&D);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if(mp_cmp(&u, &v) >= 0) {
 | |
|       if((res = mp_sub(&u, &v, &u)) != MP_OKAY) goto CLEANUP;
 | |
|       if((res = mp_sub(&A, &C, &A)) != MP_OKAY) goto CLEANUP;
 | |
|       if((res = mp_sub(&B, &D, &B)) != MP_OKAY) goto CLEANUP;
 | |
| 
 | |
|     } else {
 | |
|       if((res = mp_sub(&v, &u, &v)) != MP_OKAY) goto CLEANUP;
 | |
|       if((res = mp_sub(&C, &A, &C)) != MP_OKAY) goto CLEANUP;
 | |
|       if((res = mp_sub(&D, &B, &D)) != MP_OKAY) goto CLEANUP;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     /* If we're done, copy results to output */
 | |
|     if(mp_cmp_z(&u) == 0) {
 | |
|       if(x)
 | |
| 	if((res = mp_copy(&C, x)) != MP_OKAY) goto CLEANUP;
 | |
| 
 | |
|       if(y)
 | |
| 	if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
 | |
| 
 | |
|       if(g)
 | |
| 	if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
 | |
| 
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  CLEANUP:
 | |
|   while(last >= 0)
 | |
|     mp_clear(clean[last--]);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_xgcd() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_invmod(a, m, c) */
 | |
| 
 | |
| /*
 | |
|   mp_invmod(a, m, c)
 | |
| 
 | |
|   Compute c = a^-1 (mod m), if there is an inverse for a (mod m).
 | |
|   This is equivalent to the question of whether (a, m) = 1.  If not,
 | |
|   MP_UNDEF is returned, and there is no inverse.
 | |
|  */
 | |
| 
 | |
| mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c)
 | |
| {
 | |
|   mp_int  g, x;
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(a && m && c, MP_BADARG);
 | |
| 
 | |
|   if(mp_cmp_z(a) == 0 || mp_cmp_z(m) == 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   if((res = mp_init(&g)) != MP_OKAY)
 | |
|     return res;
 | |
|   if((res = mp_init(&x)) != MP_OKAY)
 | |
|     goto X;
 | |
| 
 | |
|   if((res = mp_xgcd(a, m, &g, &x, NULL)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   if(mp_cmp_d(&g, 1) != MP_EQ) {
 | |
|     res = MP_UNDEF;
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   res = mp_mod(&x, m, c);
 | |
|   SIGN(c) = SIGN(a);
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear(&x);
 | |
| X:
 | |
|   mp_clear(&g);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_invmod() */
 | |
| 
 | |
| /* }}} */
 | |
| #endif /* if MP_NUMTH */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ mp_print(mp, ofp) */
 | |
| 
 | |
| #if MP_IOFUNC
 | |
| /*
 | |
|   mp_print(mp, ofp)
 | |
| 
 | |
|   Print a textual representation of the given mp_int on the output
 | |
|   stream 'ofp'.  Output is generated using the internal radix.
 | |
|  */
 | |
| 
 | |
| void   mp_print(mp_int *mp, FILE *ofp)
 | |
| {
 | |
|   int   ix;
 | |
| 
 | |
|   if(mp == NULL || ofp == NULL)
 | |
|     return;
 | |
| 
 | |
|   fputc((SIGN(mp) == MP_NEG) ? '-' : '+', ofp);
 | |
| 
 | |
|   for(ix = USED(mp) - 1; ix >= 0; ix--) {
 | |
|     fprintf(ofp, DIGIT_FMT, DIGIT(mp, ix));
 | |
|   }
 | |
| 
 | |
| } /* end mp_print() */
 | |
| 
 | |
| #endif /* if MP_IOFUNC */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* {{{ More I/O Functions */
 | |
| 
 | |
| /* {{{ mp_read_signed_bin(mp, str, len) */
 | |
| 
 | |
| /*
 | |
|    mp_read_signed_bin(mp, str, len)
 | |
| 
 | |
|    Read in a raw value (base 256) into the given mp_int
 | |
|  */
 | |
| 
 | |
| mp_err  mp_read_signed_bin(mp_int *mp, unsigned char *str, int len)
 | |
| {
 | |
|   mp_err         res;
 | |
| 
 | |
|   ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
 | |
| 
 | |
|   if((res = mp_read_unsigned_bin(mp, str + 1, len - 1)) == MP_OKAY) {
 | |
|     /* Get sign from first byte */
 | |
|     if(str[0])
 | |
|       SIGN(mp) = MP_NEG;
 | |
|     else
 | |
|       SIGN(mp) = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end mp_read_signed_bin() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_signed_bin_size(mp) */
 | |
| 
 | |
| int    mp_signed_bin_size(mp_int *mp)
 | |
| {
 | |
|   ARGCHK(mp != NULL, 0);
 | |
| 
 | |
|   return mp_unsigned_bin_size(mp) + 1;
 | |
| 
 | |
| } /* end mp_signed_bin_size() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_to_signed_bin(mp, str) */
 | |
| 
 | |
| mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str)
 | |
| {
 | |
|   ARGCHK(mp != NULL && str != NULL, MP_BADARG);
 | |
| 
 | |
|   /* Caller responsible for allocating enough memory (use mp_raw_size(mp)) */
 | |
|   str[0] = (char)SIGN(mp);
 | |
| 
 | |
|   return mp_to_unsigned_bin(mp, str + 1);
 | |
| 
 | |
| } /* end mp_to_signed_bin() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_read_unsigned_bin(mp, str, len) */
 | |
| 
 | |
| /*
 | |
|   mp_read_unsigned_bin(mp, str, len)
 | |
| 
 | |
|   Read in an unsigned value (base 256) into the given mp_int
 | |
|  */
 | |
| 
 | |
| mp_err  mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
 | |
| {
 | |
|   int     ix;
 | |
|   mp_err  res;
 | |
| 
 | |
|   ARGCHK(mp != NULL && str != NULL && len > 0, MP_BADARG);
 | |
| 
 | |
|   mp_zero(mp);
 | |
| 
 | |
|   for(ix = 0; ix < len; ix++) {
 | |
|     if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
 | |
|       return res;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_read_unsigned_bin() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_unsigned_bin_size(mp) */
 | |
| 
 | |
| int     mp_unsigned_bin_size(mp_int *mp)
 | |
| {
 | |
|   mp_digit   topdig;
 | |
|   int        count;
 | |
| 
 | |
|   ARGCHK(mp != NULL, 0);
 | |
| 
 | |
|   /* Special case for the value zero */
 | |
|   if(USED(mp) == 1 && DIGIT(mp, 0) == 0)
 | |
|     return 1;
 | |
| 
 | |
|   count = (USED(mp) - 1) * sizeof(mp_digit);
 | |
|   topdig = DIGIT(mp, USED(mp) - 1);
 | |
| 
 | |
|   while(topdig != 0) {
 | |
|     ++count;
 | |
|     topdig >>= CHAR_BIT;
 | |
|   }
 | |
| 
 | |
|   return count;
 | |
| 
 | |
| } /* end mp_unsigned_bin_size() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_to_unsigned_bin(mp, str) */
 | |
| 
 | |
| mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str)
 | |
| {
 | |
|   mp_digit      *dp, *end, d;
 | |
|   unsigned char *spos;
 | |
| 
 | |
|   ARGCHK(mp != NULL && str != NULL, MP_BADARG);
 | |
| 
 | |
|   dp = DIGITS(mp);
 | |
|   end = dp + USED(mp) - 1;
 | |
|   spos = str;
 | |
| 
 | |
|   /* Special case for zero, quick test */
 | |
|   if(dp == end && *dp == 0) {
 | |
|     *str = '\0';
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* Generate digits in reverse order */
 | |
|   while(dp < end) {
 | |
|     int      ix;
 | |
| 
 | |
|     d = *dp;
 | |
|     for(ix = 0; ix < sizeof(mp_digit); ++ix) {
 | |
|       *spos = d & UCHAR_MAX;
 | |
|       d >>= CHAR_BIT;
 | |
|       ++spos;
 | |
|     }
 | |
| 
 | |
|     ++dp;
 | |
|   }
 | |
| 
 | |
|   /* Now handle last digit specially, high order zeroes are not written */
 | |
|   d = *end;
 | |
|   while(d != 0) {
 | |
|     *spos = d & UCHAR_MAX;
 | |
|     d >>= CHAR_BIT;
 | |
|     ++spos;
 | |
|   }
 | |
| 
 | |
|   /* Reverse everything to get digits in the correct order */
 | |
|   while(--spos > str) {
 | |
|     unsigned char t = *str;
 | |
|     *str = *spos;
 | |
|     *spos = t;
 | |
| 
 | |
|     ++str;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_to_unsigned_bin() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_count_bits(mp) */
 | |
| 
 | |
| int    mp_count_bits(mp_int *mp)
 | |
| {
 | |
|   int      len;
 | |
|   mp_digit d;
 | |
| 
 | |
|   ARGCHK(mp != NULL, MP_BADARG);
 | |
| 
 | |
|   len = DIGIT_BIT * (USED(mp) - 1);
 | |
|   d = DIGIT(mp, USED(mp) - 1);
 | |
| 
 | |
|   while(d != 0) {
 | |
|     ++len;
 | |
|     d >>= 1;
 | |
|   }
 | |
| 
 | |
|   return len;
 | |
| 
 | |
| } /* end mp_count_bits() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_read_radix(mp, str, radix) */
 | |
| 
 | |
| /*
 | |
|   mp_read_radix(mp, str, radix)
 | |
| 
 | |
|   Read an integer from the given string, and set mp to the resulting
 | |
|   value.  The input is presumed to be in base 10.  Leading non-digit
 | |
|   characters are ignored, and the function reads until a non-digit
 | |
|   character or the end of the string.
 | |
|  */
 | |
| 
 | |
| mp_err  mp_read_radix(mp_int *mp, unsigned char *str, int radix)
 | |
| {
 | |
|   int     ix = 0, val = 0;
 | |
|   mp_err  res;
 | |
|   mp_sign sig = MP_ZPOS;
 | |
| 
 | |
|   ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
 | |
| 	 MP_BADARG);
 | |
| 
 | |
|   mp_zero(mp);
 | |
| 
 | |
|   /* Skip leading non-digit characters until a digit or '-' or '+' */
 | |
|   while(str[ix] &&
 | |
| 	(s_mp_tovalue(str[ix], radix) < 0) &&
 | |
| 	str[ix] != '-' &&
 | |
| 	str[ix] != '+') {
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   if(str[ix] == '-') {
 | |
|     sig = MP_NEG;
 | |
|     ++ix;
 | |
|   } else if(str[ix] == '+') {
 | |
|     sig = MP_ZPOS; /* this is the default anyway... */
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   while((val = s_mp_tovalue(str[ix], radix)) >= 0) {
 | |
|     if((res = s_mp_mul_d(mp, radix)) != MP_OKAY)
 | |
|       return res;
 | |
|     if((res = s_mp_add_d(mp, val)) != MP_OKAY)
 | |
|       return res;
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   if(s_mp_cmp_d(mp, 0) == MP_EQ)
 | |
|     SIGN(mp) = MP_ZPOS;
 | |
|   else
 | |
|     SIGN(mp) = sig;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_read_radix() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_radix_size(mp, radix) */
 | |
| 
 | |
| int    mp_radix_size(mp_int *mp, int radix)
 | |
| {
 | |
|   int  len;
 | |
|   ARGCHK(mp != NULL, 0);
 | |
| 
 | |
|   len = s_mp_outlen(mp_count_bits(mp), radix) + 1; /* for NUL terminator */
 | |
| 
 | |
|   if(mp_cmp_z(mp) < 0)
 | |
|     ++len; /* for sign */
 | |
| 
 | |
|   return len;
 | |
| 
 | |
| } /* end mp_radix_size() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_value_radix_size(num, qty, radix) */
 | |
| 
 | |
| /* num = number of digits
 | |
|    qty = number of bits per digit
 | |
|    radix = target base
 | |
| 
 | |
|    Return the number of digits in the specified radix that would be
 | |
|    needed to express 'num' digits of 'qty' bits each.
 | |
|  */
 | |
| int    mp_value_radix_size(int num, int qty, int radix)
 | |
| {
 | |
|   ARGCHK(num >= 0 && qty > 0 && radix >= 2 && radix <= MAX_RADIX, 0);
 | |
| 
 | |
|   return s_mp_outlen(num * qty, radix);
 | |
| 
 | |
| } /* end mp_value_radix_size() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_toradix(mp, str, radix) */
 | |
| 
 | |
| mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
 | |
| {
 | |
|   int  ix, pos = 0;
 | |
| 
 | |
|   ARGCHK(mp != NULL && str != NULL, MP_BADARG);
 | |
|   ARGCHK(radix > 1 && radix <= MAX_RADIX, MP_RANGE);
 | |
| 
 | |
|   if(mp_cmp_z(mp) == MP_EQ) {
 | |
|     str[0] = '0';
 | |
|     str[1] = '\0';
 | |
|   } else {
 | |
|     mp_err   res;
 | |
|     mp_int   tmp;
 | |
|     mp_sign  sgn;
 | |
|     mp_digit rem, rdx = (mp_digit)radix;
 | |
|     char     ch;
 | |
| 
 | |
|     if((res = mp_init_copy(&tmp, mp)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     /* Save sign for later, and take absolute value */
 | |
|     sgn = SIGN(&tmp); SIGN(&tmp) = MP_ZPOS;
 | |
| 
 | |
|     /* Generate output digits in reverse order      */
 | |
|     while(mp_cmp_z(&tmp) != 0) {
 | |
|       if((res = s_mp_div_d(&tmp, rdx, &rem)) != MP_OKAY) {
 | |
| 	mp_clear(&tmp);
 | |
| 	return res;
 | |
|       }
 | |
| 
 | |
|       /* Generate digits, use capital letters */
 | |
|       ch = s_mp_todigit(rem, radix, 0);
 | |
| 
 | |
|       str[pos++] = ch;
 | |
|     }
 | |
| 
 | |
|     /* Add - sign if original value was negative */
 | |
|     if(sgn == MP_NEG)
 | |
|       str[pos++] = '-';
 | |
| 
 | |
|     /* Add trailing NUL to end the string        */
 | |
|     str[pos--] = '\0';
 | |
| 
 | |
|     /* Reverse the digits and sign indicator     */
 | |
|     ix = 0;
 | |
|     while(ix < pos) {
 | |
|       char tmp = str[ix];
 | |
| 
 | |
|       str[ix] = str[pos];
 | |
|       str[pos] = tmp;
 | |
|       ++ix;
 | |
|       --pos;
 | |
|     }
 | |
| 
 | |
|     mp_clear(&tmp);
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end mp_toradix() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_char2value(ch, r) */
 | |
| 
 | |
| int    mp_char2value(char ch, int r)
 | |
| {
 | |
|   return s_mp_tovalue(ch, r);
 | |
| 
 | |
| } /* end mp_tovalue() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ mp_strerror(ec) */
 | |
| 
 | |
| /*
 | |
|   mp_strerror(ec)
 | |
| 
 | |
|   Return a string describing the meaning of error code 'ec'.  The
 | |
|   string returned is allocated in static memory, so the caller should
 | |
|   not attempt to modify or free the memory associated with this
 | |
|   string.
 | |
|  */
 | |
| const char  *mp_strerror(mp_err ec)
 | |
| {
 | |
|   int   aec = (ec < 0) ? -ec : ec;
 | |
| 
 | |
|   /* Code values are negative, so the senses of these comparisons
 | |
|      are accurate */
 | |
|   if(ec < MP_LAST_CODE || ec > MP_OKAY) {
 | |
|     return mp_err_string[0];  /* unknown error code */
 | |
|   } else {
 | |
|     return mp_err_string[aec + 1];
 | |
|   }
 | |
| 
 | |
| } /* end mp_strerror() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*========================================================================*/
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* Static function definitions (internal use only)                        */
 | |
| 
 | |
| /* {{{ Memory management */
 | |
| 
 | |
| /* {{{ s_mp_grow(mp, min) */
 | |
| 
 | |
| /* Make sure there are at least 'min' digits allocated to mp              */
 | |
| mp_err   s_mp_grow(mp_int *mp, mp_size min)
 | |
| {
 | |
|   if(min > ALLOC(mp)) {
 | |
|     mp_digit   *tmp;
 | |
| 
 | |
|     /* Set min to next nearest default precision block size */
 | |
|     min = ((min + (s_mp_defprec - 1)) / s_mp_defprec) * s_mp_defprec;
 | |
| 
 | |
|     if((tmp = s_mp_alloc(min, sizeof(mp_digit))) == NULL)
 | |
|       return MP_MEM;
 | |
| 
 | |
|     s_mp_copy(DIGITS(mp), tmp, USED(mp));
 | |
| 
 | |
| #if MP_CRYPTO
 | |
|     s_mp_setz(DIGITS(mp), ALLOC(mp));
 | |
| #endif
 | |
|     s_mp_free(DIGITS(mp));
 | |
|     DIGITS(mp) = tmp;
 | |
|     ALLOC(mp) = min;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_grow() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_pad(mp, min) */
 | |
| 
 | |
| /* Make sure the used size of mp is at least 'min', growing if needed     */
 | |
| mp_err   s_mp_pad(mp_int *mp, mp_size min)
 | |
| {
 | |
|   if(min > USED(mp)) {
 | |
|     mp_err  res;
 | |
| 
 | |
|     /* Make sure there is room to increase precision  */
 | |
|     if(min > ALLOC(mp) && (res = s_mp_grow(mp, min)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     /* Increase precision; should already be 0-filled */
 | |
|     USED(mp) = min;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_pad() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_setz(dp, count) */
 | |
| 
 | |
| #if MP_MACRO == 0
 | |
| /* Set 'count' digits pointed to by dp to be zeroes                       */
 | |
| void s_mp_setz(mp_digit *dp, mp_size count)
 | |
| {
 | |
| #if MP_MEMSET == 0
 | |
|   int  ix;
 | |
| 
 | |
|   for(ix = 0; ix < count; ix++)
 | |
|     dp[ix] = 0;
 | |
| #else
 | |
|   memset(dp, 0, count * sizeof(mp_digit));
 | |
| #endif
 | |
| 
 | |
| } /* end s_mp_setz() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_copy(sp, dp, count) */
 | |
| 
 | |
| #if MP_MACRO == 0
 | |
| /* Copy 'count' digits from sp to dp                                      */
 | |
| void s_mp_copy(mp_digit *sp, mp_digit *dp, mp_size count)
 | |
| {
 | |
| #if MP_MEMCPY == 0
 | |
|   int  ix;
 | |
| 
 | |
|   for(ix = 0; ix < count; ix++)
 | |
|     dp[ix] = sp[ix];
 | |
| #else
 | |
|   memcpy(dp, sp, count * sizeof(mp_digit));
 | |
| #endif
 | |
| 
 | |
| } /* end s_mp_copy() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_alloc(nb, ni) */
 | |
| 
 | |
| #if MP_MACRO == 0
 | |
| /* Allocate ni records of nb bytes each, and return a pointer to that     */
 | |
| void    *s_mp_alloc(size_t nb, size_t ni)
 | |
| {
 | |
|   return calloc(nb, ni);
 | |
| 
 | |
| } /* end s_mp_alloc() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_free(ptr) */
 | |
| 
 | |
| #if MP_MACRO == 0
 | |
| /* Free the memory pointed to by ptr                                      */
 | |
| void     s_mp_free(void *ptr)
 | |
| {
 | |
|   if(ptr)
 | |
|     free(ptr);
 | |
| 
 | |
| } /* end s_mp_free() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_clamp(mp) */
 | |
| 
 | |
| /* Remove leading zeroes from the given value                             */
 | |
| void     s_mp_clamp(mp_int *mp)
 | |
| {
 | |
|   mp_size   du = USED(mp);
 | |
|   mp_digit *zp = DIGITS(mp) + du - 1;
 | |
| 
 | |
|   while(du > 1 && !*zp--)
 | |
|     --du;
 | |
| 
 | |
|   USED(mp) = du;
 | |
| 
 | |
| } /* end s_mp_clamp() */
 | |
| 
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_exch(a, b) */
 | |
| 
 | |
| /* Exchange the data for a and b; (b, a) = (a, b)                         */
 | |
| void     s_mp_exch(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_int   tmp;
 | |
| 
 | |
|   tmp = *a;
 | |
|   *a = *b;
 | |
|   *b = tmp;
 | |
| 
 | |
| } /* end s_mp_exch() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Arithmetic helpers */
 | |
| 
 | |
| /* {{{ s_mp_lshd(mp, p) */
 | |
| 
 | |
| /*
 | |
|    Shift mp leftward by p digits, growing if needed, and zero-filling
 | |
|    the in-shifted digits at the right end.  This is a convenient
 | |
|    alternative to multiplication by powers of the radix
 | |
|  */
 | |
| 
 | |
| mp_err   s_mp_lshd(mp_int *mp, mp_size p)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_size  pos;
 | |
|   mp_digit *dp;
 | |
|   int     ix;
 | |
| 
 | |
|   if(p == 0)
 | |
|     return MP_OKAY;
 | |
| 
 | |
|   if((res = s_mp_pad(mp, USED(mp) + p)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   pos = USED(mp) - 1;
 | |
|   dp = DIGITS(mp);
 | |
| 
 | |
|   /* Shift all the significant figures over as needed */
 | |
|   for(ix = pos - p; ix >= 0; ix--)
 | |
|     dp[ix + p] = dp[ix];
 | |
| 
 | |
|   /* Fill the bottom digits with zeroes */
 | |
|   for(ix = 0; ix < p; ix++)
 | |
|     dp[ix] = 0;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_lshd() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_rshd(mp, p) */
 | |
| 
 | |
| /*
 | |
|    Shift mp rightward by p digits.  Maintains the invariant that
 | |
|    digits above the precision are all zero.  Digits shifted off the
 | |
|    end are lost.  Cannot fail.
 | |
|  */
 | |
| 
 | |
| void     s_mp_rshd(mp_int *mp, mp_size p)
 | |
| {
 | |
|   mp_size  ix;
 | |
|   mp_digit *dp;
 | |
| 
 | |
|   if(p == 0)
 | |
|     return;
 | |
| 
 | |
|   /* Shortcut when all digits are to be shifted off */
 | |
|   if(p >= USED(mp)) {
 | |
|     s_mp_setz(DIGITS(mp), ALLOC(mp));
 | |
|     USED(mp) = 1;
 | |
|     SIGN(mp) = MP_ZPOS;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* Shift all the significant figures over as needed */
 | |
|   dp = DIGITS(mp);
 | |
|   for(ix = p; ix < USED(mp); ix++)
 | |
|     dp[ix - p] = dp[ix];
 | |
| 
 | |
|   /* Fill the top digits with zeroes */
 | |
|   ix -= p;
 | |
|   while(ix < USED(mp))
 | |
|     dp[ix++] = 0;
 | |
| 
 | |
|   /* Strip off any leading zeroes    */
 | |
|   s_mp_clamp(mp);
 | |
| 
 | |
| } /* end s_mp_rshd() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_div_2(mp) */
 | |
| 
 | |
| /* Divide by two -- take advantage of radix properties to do it fast      */
 | |
| void     s_mp_div_2(mp_int *mp)
 | |
| {
 | |
|   s_mp_div_2d(mp, 1);
 | |
| 
 | |
| } /* end s_mp_div_2() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_mul_2(mp) */
 | |
| 
 | |
| mp_err s_mp_mul_2(mp_int *mp)
 | |
| {
 | |
|   int      ix;
 | |
|   mp_digit kin = 0, kout, *dp = DIGITS(mp);
 | |
|   mp_err   res;
 | |
| 
 | |
|   /* Shift digits leftward by 1 bit */
 | |
|   for(ix = 0; ix < USED(mp); ix++) {
 | |
|     kout = (dp[ix] >> (DIGIT_BIT - 1)) & 1;
 | |
|     dp[ix] = (dp[ix] << 1) | kin;
 | |
| 
 | |
|     kin = kout;
 | |
|   }
 | |
| 
 | |
|   /* Deal with rollover from last digit */
 | |
|   if(kin) {
 | |
|     if(ix >= ALLOC(mp)) {
 | |
|       if((res = s_mp_grow(mp, ALLOC(mp) + 1)) != MP_OKAY)
 | |
| 	return res;
 | |
|       dp = DIGITS(mp);
 | |
|     }
 | |
| 
 | |
|     dp[ix] = kin;
 | |
|     USED(mp) += 1;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_mul_2() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_mod_2d(mp, d) */
 | |
| 
 | |
| /*
 | |
|   Remainder the integer by 2^d, where d is a number of bits.  This
 | |
|   amounts to a bitwise AND of the value, and does not require the full
 | |
|   division code
 | |
|  */
 | |
| void     s_mp_mod_2d(mp_int *mp, mp_digit d)
 | |
| {
 | |
|   unsigned int  ndig = (d / DIGIT_BIT), nbit = (d % DIGIT_BIT);
 | |
|   unsigned int  ix;
 | |
|   mp_digit      dmask, *dp = DIGITS(mp);
 | |
| 
 | |
|   if(ndig >= USED(mp))
 | |
|     return;
 | |
| 
 | |
|   /* Flush all the bits above 2^d in its digit */
 | |
|   dmask = (1 << nbit) - 1;
 | |
|   dp[ndig] &= dmask;
 | |
| 
 | |
|   /* Flush all digits above the one with 2^d in it */
 | |
|   for(ix = ndig + 1; ix < USED(mp); ix++)
 | |
|     dp[ix] = 0;
 | |
| 
 | |
|   s_mp_clamp(mp);
 | |
| 
 | |
| } /* end s_mp_mod_2d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_mul_2d(mp, d) */
 | |
| 
 | |
| /*
 | |
|   Multiply by the integer 2^d, where d is a number of bits.  This
 | |
|   amounts to a bitwise shift of the value, and does not require the
 | |
|   full multiplication code.
 | |
|  */
 | |
| mp_err    s_mp_mul_2d(mp_int *mp, mp_digit d)
 | |
| {
 | |
|   mp_err   res;
 | |
|   mp_digit save, next, mask, *dp;
 | |
|   mp_size  used;
 | |
|   int      ix;
 | |
| 
 | |
|   if((res = s_mp_lshd(mp, d / DIGIT_BIT)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   dp = DIGITS(mp); used = USED(mp);
 | |
|   d %= DIGIT_BIT;
 | |
| 
 | |
|   mask = (1 << d) - 1;
 | |
| 
 | |
|   /* If the shift requires another digit, make sure we've got one to
 | |
|      work with */
 | |
|   if((dp[used - 1] >> (DIGIT_BIT - d)) & mask) {
 | |
|     if((res = s_mp_grow(mp, used + 1)) != MP_OKAY)
 | |
|       return res;
 | |
|     dp = DIGITS(mp);
 | |
|   }
 | |
| 
 | |
|   /* Do the shifting... */
 | |
|   save = 0;
 | |
|   for(ix = 0; ix < used; ix++) {
 | |
|     next = (dp[ix] >> (DIGIT_BIT - d)) & mask;
 | |
|     dp[ix] = (dp[ix] << d) | save;
 | |
|     save = next;
 | |
|   }
 | |
| 
 | |
|   /* If, at this point, we have a nonzero carryout into the next
 | |
|      digit, we'll increase the size by one digit, and store it...
 | |
|    */
 | |
|   if(save) {
 | |
|     dp[used] = save;
 | |
|     USED(mp) += 1;
 | |
|   }
 | |
| 
 | |
|   s_mp_clamp(mp);
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_mul_2d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_div_2d(mp, d) */
 | |
| 
 | |
| /*
 | |
|   Divide the integer by 2^d, where d is a number of bits.  This
 | |
|   amounts to a bitwise shift of the value, and does not require the
 | |
|   full division code (used in Barrett reduction, see below)
 | |
|  */
 | |
| void     s_mp_div_2d(mp_int *mp, mp_digit d)
 | |
| {
 | |
|   int       ix;
 | |
|   mp_digit  save, next, mask, *dp = DIGITS(mp);
 | |
| 
 | |
|   s_mp_rshd(mp, d / DIGIT_BIT);
 | |
|   d %= DIGIT_BIT;
 | |
| 
 | |
|   mask = (1 << d) - 1;
 | |
| 
 | |
|   save = 0;
 | |
|   for(ix = USED(mp) - 1; ix >= 0; ix--) {
 | |
|     next = dp[ix] & mask;
 | |
|     dp[ix] = (dp[ix] >> d) | (save << (DIGIT_BIT - d));
 | |
|     save = next;
 | |
|   }
 | |
| 
 | |
|   s_mp_clamp(mp);
 | |
| 
 | |
| } /* end s_mp_div_2d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_norm(a, b) */
 | |
| 
 | |
| /*
 | |
|   s_mp_norm(a, b)
 | |
| 
 | |
|   Normalize a and b for division, where b is the divisor.  In order
 | |
|   that we might make good guesses for quotient digits, we want the
 | |
|   leading digit of b to be at least half the radix, which we
 | |
|   accomplish by multiplying a and b by a constant.  This constant is
 | |
|   returned (so that it can be divided back out of the remainder at the
 | |
|   end of the division process).
 | |
| 
 | |
|   We multiply by the smallest power of 2 that gives us a leading digit
 | |
|   at least half the radix.  By choosing a power of 2, we simplify the
 | |
|   multiplication and division steps to simple shifts.
 | |
|  */
 | |
| mp_digit s_mp_norm(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_digit  t, d = 0;
 | |
| 
 | |
|   t = DIGIT(b, USED(b) - 1);
 | |
|   while(t < (RADIX / 2)) {
 | |
|     t <<= 1;
 | |
|     ++d;
 | |
|   }
 | |
| 
 | |
|   if(d != 0) {
 | |
|     s_mp_mul_2d(a, d);
 | |
|     s_mp_mul_2d(b, d);
 | |
|   }
 | |
| 
 | |
|   return d;
 | |
| 
 | |
| } /* end s_mp_norm() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Primitive digit arithmetic */
 | |
| 
 | |
| /* {{{ s_mp_add_d(mp, d) */
 | |
| 
 | |
| /* Add d to |mp| in place                                                 */
 | |
| mp_err   s_mp_add_d(mp_int *mp, mp_digit d)    /* unsigned digit addition */
 | |
| {
 | |
|   mp_word   w, k = 0;
 | |
|   mp_size   ix = 1, used = USED(mp);
 | |
|   mp_digit *dp = DIGITS(mp);
 | |
| 
 | |
|   w = dp[0] + d;
 | |
|   dp[0] = ACCUM(w);
 | |
|   k = CARRYOUT(w);
 | |
| 
 | |
|   while(ix < used && k) {
 | |
|     w = dp[ix] + k;
 | |
|     dp[ix] = ACCUM(w);
 | |
|     k = CARRYOUT(w);
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   if(k != 0) {
 | |
|     mp_err  res;
 | |
| 
 | |
|     if((res = s_mp_pad(mp, USED(mp) + 1)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     DIGIT(mp, ix) = k;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_add_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_sub_d(mp, d) */
 | |
| 
 | |
| /* Subtract d from |mp| in place, assumes |mp| > d                        */
 | |
| mp_err   s_mp_sub_d(mp_int *mp, mp_digit d)    /* unsigned digit subtract */
 | |
| {
 | |
|   mp_word   w, b = 0;
 | |
|   mp_size   ix = 1, used = USED(mp);
 | |
|   mp_digit *dp = DIGITS(mp);
 | |
| 
 | |
|   /* Compute initial subtraction    */
 | |
|   w = (RADIX + dp[0]) - d;
 | |
|   b = CARRYOUT(w) ? 0 : 1;
 | |
|   dp[0] = ACCUM(w);
 | |
| 
 | |
|   /* Propagate borrows leftward     */
 | |
|   while(b && ix < used) {
 | |
|     w = (RADIX + dp[ix]) - b;
 | |
|     b = CARRYOUT(w) ? 0 : 1;
 | |
|     dp[ix] = ACCUM(w);
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   /* Remove leading zeroes          */
 | |
|   s_mp_clamp(mp);
 | |
| 
 | |
|   /* If we have a borrow out, it's a violation of the input invariant */
 | |
|   if(b)
 | |
|     return MP_RANGE;
 | |
|   else
 | |
|     return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_sub_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_mul_d(a, d) */
 | |
| 
 | |
| /* Compute a = a * d, single digit multiplication                         */
 | |
| mp_err   s_mp_mul_d(mp_int *a, mp_digit d)
 | |
| {
 | |
|   mp_word w, k = 0;
 | |
|   mp_size ix, max;
 | |
|   mp_err  res;
 | |
|   mp_digit *dp = DIGITS(a);
 | |
| 
 | |
|   /*
 | |
|     Single-digit multiplication will increase the precision of the
 | |
|     output by at most one digit.  However, we can detect when this
 | |
|     will happen -- if the high-order digit of a, times d, gives a
 | |
|     two-digit result, then the precision of the result will increase;
 | |
|     otherwise it won't.  We use this fact to avoid calling s_mp_pad()
 | |
|     unless absolutely necessary.
 | |
|    */
 | |
|   max = USED(a);
 | |
|   w = dp[max - 1] * d;
 | |
|   if(CARRYOUT(w) != 0) {
 | |
|     if((res = s_mp_pad(a, max + 1)) != MP_OKAY)
 | |
|       return res;
 | |
|     dp = DIGITS(a);
 | |
|   }
 | |
| 
 | |
|   for(ix = 0; ix < max; ix++) {
 | |
|     w = (dp[ix] * d) + k;
 | |
|     dp[ix] = ACCUM(w);
 | |
|     k = CARRYOUT(w);
 | |
|   }
 | |
| 
 | |
|   /* If there is a precision increase, take care of it here; the above
 | |
|      test guarantees we have enough storage to do this safely.
 | |
|    */
 | |
|   if(k) {
 | |
|     dp[max] = k;
 | |
|     USED(a) = max + 1;
 | |
|   }
 | |
| 
 | |
|   s_mp_clamp(a);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_mul_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_div_d(mp, d, r) */
 | |
| 
 | |
| /*
 | |
|   s_mp_div_d(mp, d, r)
 | |
| 
 | |
|   Compute the quotient mp = mp / d and remainder r = mp mod d, for a
 | |
|   single digit d.  If r is null, the remainder will be discarded.
 | |
|  */
 | |
| 
 | |
| mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r)
 | |
| {
 | |
|   mp_word   w = 0, t;
 | |
|   mp_int    quot;
 | |
|   mp_err    res;
 | |
|   mp_digit *dp = DIGITS(mp), *qp;
 | |
|   int       ix;
 | |
| 
 | |
|   if(d == 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /* Make room for the quotient */
 | |
|   if((res = mp_init_size(", USED(mp))) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   USED(") = USED(mp); /* so clamping will work below */
 | |
|   qp = DIGITS(");
 | |
| 
 | |
|   /* Divide without subtraction */
 | |
|   for(ix = USED(mp) - 1; ix >= 0; ix--) {
 | |
|     w = (w << DIGIT_BIT) | dp[ix];
 | |
| 
 | |
|     if(w >= d) {
 | |
|       t = w / d;
 | |
|       w = w % d;
 | |
|     } else {
 | |
|       t = 0;
 | |
|     }
 | |
| 
 | |
|     qp[ix] = t;
 | |
|   }
 | |
| 
 | |
|   /* Deliver the remainder, if desired */
 | |
|   if(r)
 | |
|     *r = w;
 | |
| 
 | |
|   s_mp_clamp(");
 | |
|   mp_exch(", mp);
 | |
|   mp_clear(");
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_div_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Primitive full arithmetic */
 | |
| 
 | |
| /* {{{ s_mp_add(a, b) */
 | |
| 
 | |
| /* Compute a = |a| + |b|                                                  */
 | |
| mp_err   s_mp_add(mp_int *a, mp_int *b)        /* magnitude addition      */
 | |
| {
 | |
|   mp_word   w = 0;
 | |
|   mp_digit *pa, *pb;
 | |
|   mp_size   ix, used = USED(b);
 | |
|   mp_err    res;
 | |
| 
 | |
|   /* Make sure a has enough precision for the output value */
 | |
|   if((used > USED(a)) && (res = s_mp_pad(a, used)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   /*
 | |
|     Add up all digits up to the precision of b.  If b had initially
 | |
|     the same precision as a, or greater, we took care of it by the
 | |
|     padding step above, so there is no problem.  If b had initially
 | |
|     less precision, we'll have to make sure the carry out is duly
 | |
|     propagated upward among the higher-order digits of the sum.
 | |
|    */
 | |
|   pa = DIGITS(a);
 | |
|   pb = DIGITS(b);
 | |
|   for(ix = 0; ix < used; ++ix) {
 | |
|     w += *pa + *pb++;
 | |
|     *pa++ = ACCUM(w);
 | |
|     w = CARRYOUT(w);
 | |
|   }
 | |
| 
 | |
|   /* If we run out of 'b' digits before we're actually done, make
 | |
|      sure the carries get propagated upward...
 | |
|    */
 | |
|   used = USED(a);
 | |
|   while(w && ix < used) {
 | |
|     w += *pa;
 | |
|     *pa++ = ACCUM(w);
 | |
|     w = CARRYOUT(w);
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   /* If there's an overall carry out, increase precision and include
 | |
|      it.  We could have done this initially, but why touch the memory
 | |
|      allocator unless we're sure we have to?
 | |
|    */
 | |
|   if(w) {
 | |
|     if((res = s_mp_pad(a, used + 1)) != MP_OKAY)
 | |
|       return res;
 | |
| 
 | |
|     DIGIT(a, ix) = w;  /* pa may not be valid after s_mp_pad() call */
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_add() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_sub(a, b) */
 | |
| 
 | |
| /* Compute a = |a| - |b|, assumes |a| >= |b|                              */
 | |
| mp_err   s_mp_sub(mp_int *a, mp_int *b)        /* magnitude subtract      */
 | |
| {
 | |
|   mp_word   w = 0;
 | |
|   mp_digit *pa, *pb;
 | |
|   mp_size   ix, used = USED(b);
 | |
| 
 | |
|   /*
 | |
|     Subtract and propagate borrow.  Up to the precision of b, this
 | |
|     accounts for the digits of b; after that, we just make sure the
 | |
|     carries get to the right place.  This saves having to pad b out to
 | |
|     the precision of a just to make the loops work right...
 | |
|    */
 | |
|   pa = DIGITS(a);
 | |
|   pb = DIGITS(b);
 | |
| 
 | |
|   for(ix = 0; ix < used; ++ix) {
 | |
|     w = (RADIX + *pa) - w - *pb++;
 | |
|     *pa++ = ACCUM(w);
 | |
|     w = CARRYOUT(w) ? 0 : 1;
 | |
|   }
 | |
| 
 | |
|   used = USED(a);
 | |
|   while(ix < used) {
 | |
|     w = RADIX + *pa - w;
 | |
|     *pa++ = ACCUM(w);
 | |
|     w = CARRYOUT(w) ? 0 : 1;
 | |
|     ++ix;
 | |
|   }
 | |
| 
 | |
|   /* Clobber any leading zeroes we created    */
 | |
|   s_mp_clamp(a);
 | |
| 
 | |
|   /*
 | |
|      If there was a borrow out, then |b| > |a| in violation
 | |
|      of our input invariant.  We've already done the work,
 | |
|      but we'll at least complain about it...
 | |
|    */
 | |
|   if(w)
 | |
|     return MP_RANGE;
 | |
|   else
 | |
|     return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_sub() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| mp_err   s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
 | |
| {
 | |
|   mp_int   q;
 | |
|   mp_err   res;
 | |
|   mp_size  um = USED(m);
 | |
| 
 | |
|   if((res = mp_init_copy(&q, x)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   s_mp_rshd(&q, um - 1);       /* q1 = x / b^(k-1)  */
 | |
|   s_mp_mul(&q, mu);            /* q2 = q1 * mu      */
 | |
|   s_mp_rshd(&q, um + 1);       /* q3 = q2 / b^(k+1) */
 | |
| 
 | |
|   /* x = x mod b^(k+1), quick (no division) */
 | |
|   s_mp_mod_2d(x, (mp_digit)(DIGIT_BIT * (um + 1)));
 | |
| 
 | |
|   /* q = q * m mod b^(k+1), quick (no division), uses the short multiplier */
 | |
| #ifndef SHRT_MUL
 | |
|   s_mp_mul(&q, m);
 | |
|   s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
 | |
| #else
 | |
|   s_mp_mul_dig(&q, m, um + 1);
 | |
| #endif
 | |
| 
 | |
|   /* x = x - q */
 | |
|   if((res = mp_sub(x, &q, x)) != MP_OKAY)
 | |
|     goto CLEANUP;
 | |
| 
 | |
|   /* If x < 0, add b^(k+1) to it */
 | |
|   if(mp_cmp_z(x) < 0) {
 | |
|     mp_set(&q, 1);
 | |
|     if((res = s_mp_lshd(&q, um + 1)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|     if((res = mp_add(x, &q, x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* Back off if it's too big */
 | |
|   while(mp_cmp(x, m) >= 0) {
 | |
|     if((res = s_mp_sub(x, m)) != MP_OKAY)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|  CLEANUP:
 | |
|   mp_clear(&q);
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end s_mp_reduce() */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* {{{ s_mp_mul(a, b) */
 | |
| 
 | |
| /* Compute a = |a| * |b|                                                  */
 | |
| mp_err   s_mp_mul(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_word   w, k = 0;
 | |
|   mp_int    tmp;
 | |
|   mp_err    res;
 | |
|   mp_size   ix, jx, ua = USED(a), ub = USED(b);
 | |
|   mp_digit *pa, *pb, *pt, *pbt;
 | |
| 
 | |
|   if((res = mp_init_size(&tmp, ua + ub)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   /* This has the effect of left-padding with zeroes... */
 | |
|   USED(&tmp) = ua + ub;
 | |
| 
 | |
|   /* We're going to need the base value each iteration */
 | |
|   pbt = DIGITS(&tmp);
 | |
| 
 | |
|   /* Outer loop:  Digits of b */
 | |
| 
 | |
|   pb = DIGITS(b);
 | |
|   for(ix = 0; ix < ub; ++ix, ++pb) {
 | |
|     if(*pb == 0)
 | |
|       continue;
 | |
| 
 | |
|     /* Inner product:  Digits of a */
 | |
|     pa = DIGITS(a);
 | |
|     for(jx = 0; jx < ua; ++jx, ++pa) {
 | |
|       pt = pbt + ix + jx;
 | |
|       w = *pb * *pa + k + *pt;
 | |
|       *pt = ACCUM(w);
 | |
|       k = CARRYOUT(w);
 | |
|     }
 | |
| 
 | |
|     pbt[ix + jx] = k;
 | |
|     k = 0;
 | |
|   }
 | |
| 
 | |
|   s_mp_clamp(&tmp);
 | |
|   s_mp_exch(&tmp, a);
 | |
| 
 | |
|   mp_clear(&tmp);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_mul() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_kmul(a, b, out, len) */
 | |
| 
 | |
| #if 0
 | |
| void   s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
 | |
| {
 | |
|   mp_word   w, k = 0;
 | |
|   mp_size   ix, jx;
 | |
|   mp_digit *pa, *pt;
 | |
| 
 | |
|   for(ix = 0; ix < len; ++ix, ++b) {
 | |
|     if(*b == 0)
 | |
|       continue;
 | |
| 
 | |
|     pa = a;
 | |
|     for(jx = 0; jx < len; ++jx, ++pa) {
 | |
|       pt = out + ix + jx;
 | |
|       w = *b * *pa + k + *pt;
 | |
|       *pt = ACCUM(w);
 | |
|       k = CARRYOUT(w);
 | |
|     }
 | |
| 
 | |
|     out[ix + jx] = k;
 | |
|     k = 0;
 | |
|   }
 | |
| 
 | |
| } /* end s_mp_kmul() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_sqr(a) */
 | |
| 
 | |
| /*
 | |
|   Computes the square of a, in place.  This can be done more
 | |
|   efficiently than a general multiplication, because many of the
 | |
|   computation steps are redundant when squaring.  The inner product
 | |
|   step is a bit more complicated, but we save a fair number of
 | |
|   iterations of the multiplication loop.
 | |
|  */
 | |
| #if MP_SQUARE
 | |
| mp_err   s_mp_sqr(mp_int *a)
 | |
| {
 | |
|   mp_word  w, k = 0;
 | |
|   mp_int   tmp;
 | |
|   mp_err   res;
 | |
|   mp_size  ix, jx, kx, used = USED(a);
 | |
|   mp_digit *pa1, *pa2, *pt, *pbt;
 | |
| 
 | |
|   if((res = mp_init_size(&tmp, 2 * used)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   /* Left-pad with zeroes */
 | |
|   USED(&tmp) = 2 * used;
 | |
| 
 | |
|   /* We need the base value each time through the loop */
 | |
|   pbt = DIGITS(&tmp);
 | |
| 
 | |
|   pa1 = DIGITS(a);
 | |
|   for(ix = 0; ix < used; ++ix, ++pa1) {
 | |
|     if(*pa1 == 0)
 | |
|       continue;
 | |
| 
 | |
|     w = DIGIT(&tmp, ix + ix) + (*pa1 * *pa1);
 | |
| 
 | |
|     pbt[ix + ix] = ACCUM(w);
 | |
|     k = CARRYOUT(w);
 | |
| 
 | |
|     /*
 | |
|       The inner product is computed as:
 | |
| 
 | |
|          (C, S) = t[i,j] + 2 a[i] a[j] + C
 | |
| 
 | |
|       This can overflow what can be represented in an mp_word, and
 | |
|       since C arithmetic does not provide any way to check for
 | |
|       overflow, we have to check explicitly for overflow conditions
 | |
|       before they happen.
 | |
|      */
 | |
|     for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
 | |
|       mp_word  u = 0, v;
 | |
| 
 | |
|       /* Store this in a temporary to avoid indirections later */
 | |
|       pt = pbt + ix + jx;
 | |
| 
 | |
|       /* Compute the multiplicative step */
 | |
|       w = *pa1 * *pa2;
 | |
| 
 | |
|       /* If w is more than half MP_WORD_MAX, the doubling will
 | |
| 	 overflow, and we need to record a carry out into the next
 | |
| 	 word */
 | |
|       u = (w >> (MP_WORD_BIT - 1)) & 1;
 | |
| 
 | |
|       /* Double what we've got, overflow will be ignored as defined
 | |
| 	 for C arithmetic (we've already noted if it is to occur)
 | |
|        */
 | |
|       w *= 2;
 | |
| 
 | |
|       /* Compute the additive step */
 | |
|       v = *pt + k;
 | |
| 
 | |
|       /* If we do not already have an overflow carry, check to see
 | |
| 	 if the addition will cause one, and set the carry out if so
 | |
|        */
 | |
|       u |= ((MP_WORD_MAX - v) < w);
 | |
| 
 | |
|       /* Add in the rest, again ignoring overflow */
 | |
|       w += v;
 | |
| 
 | |
|       /* Set the i,j digit of the output */
 | |
|       *pt = ACCUM(w);
 | |
| 
 | |
|       /* Save carry information for the next iteration of the loop.
 | |
| 	 This is why k must be an mp_word, instead of an mp_digit */
 | |
|       k = CARRYOUT(w) | (u << DIGIT_BIT);
 | |
| 
 | |
|     } /* for(jx ...) */
 | |
| 
 | |
|     /* Set the last digit in the cycle and reset the carry */
 | |
|     k = DIGIT(&tmp, ix + jx) + k;
 | |
|     pbt[ix + jx] = ACCUM(k);
 | |
|     k = CARRYOUT(k);
 | |
| 
 | |
|     /* If we are carrying out, propagate the carry to the next digit
 | |
|        in the output.  This may cascade, so we have to be somewhat
 | |
|        circumspect -- but we will have enough precision in the output
 | |
|        that we won't overflow
 | |
|      */
 | |
|     kx = 1;
 | |
|     while(k) {
 | |
|       k = pbt[ix + jx + kx] + 1;
 | |
|       pbt[ix + jx + kx] = ACCUM(k);
 | |
|       k = CARRYOUT(k);
 | |
|       ++kx;
 | |
|     }
 | |
|   } /* for(ix ...) */
 | |
| 
 | |
|   s_mp_clamp(&tmp);
 | |
|   s_mp_exch(&tmp, a);
 | |
| 
 | |
|   mp_clear(&tmp);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_sqr() */
 | |
| #endif
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_div(a, b) */
 | |
| 
 | |
| /*
 | |
|   s_mp_div(a, b)
 | |
| 
 | |
|   Compute a = a / b and b = a mod b.  Assumes b > a.
 | |
|  */
 | |
| 
 | |
| mp_err   s_mp_div(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_int   quot, rem, t;
 | |
|   mp_word  q;
 | |
|   mp_err   res;
 | |
|   mp_digit d;
 | |
|   int      ix;
 | |
| 
 | |
|   if(mp_cmp_z(b) == 0)
 | |
|     return MP_RANGE;
 | |
| 
 | |
|   /* Shortcut if b is power of two */
 | |
|   if((ix = s_mp_ispow2(b)) >= 0) {
 | |
|     mp_copy(a, b);  /* need this for remainder */
 | |
|     s_mp_div_2d(a, (mp_digit)ix);
 | |
|     s_mp_mod_2d(b, (mp_digit)ix);
 | |
| 
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* Allocate space to store the quotient */
 | |
|   if((res = mp_init_size(", USED(a))) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   /* A working temporary for division     */
 | |
|   if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
 | |
|     goto T;
 | |
| 
 | |
|   /* Allocate space for the remainder     */
 | |
|   if((res = mp_init_size(&rem, USED(a))) != MP_OKAY)
 | |
|     goto REM;
 | |
| 
 | |
|   /* Normalize to optimize guessing       */
 | |
|   d = s_mp_norm(a, b);
 | |
| 
 | |
|   /* Perform the division itself...woo!   */
 | |
|   ix = USED(a) - 1;
 | |
| 
 | |
|   while(ix >= 0) {
 | |
|     /* Find a partial substring of a which is at least b */
 | |
|     while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
 | |
|       if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
| 
 | |
|       if((res = s_mp_lshd(", 1)) != MP_OKAY)
 | |
| 	goto CLEANUP;
 | |
| 
 | |
|       DIGIT(&rem, 0) = DIGIT(a, ix);
 | |
|       s_mp_clamp(&rem);
 | |
|       --ix;
 | |
|     }
 | |
| 
 | |
|     /* If we didn't find one, we're finished dividing    */
 | |
|     if(s_mp_cmp(&rem, b) < 0)
 | |
|       break;
 | |
| 
 | |
|     /* Compute a guess for the next quotient digit       */
 | |
|     q = DIGIT(&rem, USED(&rem) - 1);
 | |
|     if(q <= DIGIT(b, USED(b) - 1) && USED(&rem) > 1)
 | |
|       q = (q << DIGIT_BIT) | DIGIT(&rem, USED(&rem) - 2);
 | |
| 
 | |
|     q /= DIGIT(b, USED(b) - 1);
 | |
| 
 | |
|     /* The guess can be as much as RADIX + 1 */
 | |
|     if(q >= RADIX)
 | |
|       q = RADIX - 1;
 | |
| 
 | |
|     /* See what that multiplies out to                   */
 | |
|     mp_copy(b, &t);
 | |
|     if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     /*
 | |
|        If it's too big, back it off.  We should not have to do this
 | |
|        more than once, or, in rare cases, twice.  Knuth describes a
 | |
|        method by which this could be reduced to a maximum of once, but
 | |
|        I didn't implement that here.
 | |
|      */
 | |
|     while(s_mp_cmp(&t, &rem) > 0) {
 | |
|       --q;
 | |
|       s_mp_sub(&t, b);
 | |
|     }
 | |
| 
 | |
|     /* At this point, q should be the right next digit   */
 | |
|     if((res = s_mp_sub(&rem, &t)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
| 
 | |
|     /*
 | |
|       Include the digit in the quotient.  We allocated enough memory
 | |
|       for any quotient we could ever possibly get, so we should not
 | |
|       have to check for failures here
 | |
|      */
 | |
|     DIGIT(", 0) = q;
 | |
|   }
 | |
| 
 | |
|   /* Denormalize remainder                */
 | |
|   if(d != 0)
 | |
|     s_mp_div_2d(&rem, d);
 | |
| 
 | |
|   s_mp_clamp(");
 | |
|   s_mp_clamp(&rem);
 | |
| 
 | |
|   /* Copy quotient back to output         */
 | |
|   s_mp_exch(", a);
 | |
| 
 | |
|   /* Copy remainder back to output        */
 | |
|   s_mp_exch(&rem, b);
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear(&rem);
 | |
| REM:
 | |
|   mp_clear(&t);
 | |
| T:
 | |
|   mp_clear(");
 | |
| 
 | |
|   return res;
 | |
| 
 | |
| } /* end s_mp_div() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_2expt(a, k) */
 | |
| 
 | |
| mp_err   s_mp_2expt(mp_int *a, mp_digit k)
 | |
| {
 | |
|   mp_err    res;
 | |
|   mp_size   dig, bit;
 | |
| 
 | |
|   dig = k / DIGIT_BIT;
 | |
|   bit = k % DIGIT_BIT;
 | |
| 
 | |
|   mp_zero(a);
 | |
|   if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
 | |
|     return res;
 | |
| 
 | |
|   DIGIT(a, dig) |= (1 << bit);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| 
 | |
| } /* end s_mp_2expt() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Primitive comparisons */
 | |
| 
 | |
| /* {{{ s_mp_cmp(a, b) */
 | |
| 
 | |
| /* Compare |a| <=> |b|, return 0 if equal, <0 if a<b, >0 if a>b           */
 | |
| int      s_mp_cmp(mp_int *a, mp_int *b)
 | |
| {
 | |
|   mp_size   ua = USED(a), ub = USED(b);
 | |
| 
 | |
|   if(ua > ub)
 | |
|     return MP_GT;
 | |
|   else if(ua < ub)
 | |
|     return MP_LT;
 | |
|   else {
 | |
|     int      ix = ua - 1;
 | |
|     mp_digit *ap = DIGITS(a) + ix, *bp = DIGITS(b) + ix;
 | |
| 
 | |
|     while(ix >= 0) {
 | |
|       if(*ap > *bp)
 | |
| 	return MP_GT;
 | |
|       else if(*ap < *bp)
 | |
| 	return MP_LT;
 | |
| 
 | |
|       --ap; --bp; --ix;
 | |
|     }
 | |
| 
 | |
|     return MP_EQ;
 | |
|   }
 | |
| 
 | |
| } /* end s_mp_cmp() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_cmp_d(a, d) */
 | |
| 
 | |
| /* Compare |a| <=> d, return 0 if equal, <0 if a<d, >0 if a>d             */
 | |
| int      s_mp_cmp_d(mp_int *a, mp_digit d)
 | |
| {
 | |
|   mp_size  ua = USED(a);
 | |
|   mp_digit *ap = DIGITS(a);
 | |
| 
 | |
|   if(ua > 1)
 | |
|     return MP_GT;
 | |
| 
 | |
|   if(*ap < d)
 | |
|     return MP_LT;
 | |
|   else if(*ap > d)
 | |
|     return MP_GT;
 | |
|   else
 | |
|     return MP_EQ;
 | |
| 
 | |
| } /* end s_mp_cmp_d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_ispow2(v) */
 | |
| 
 | |
| /*
 | |
|   Returns -1 if the value is not a power of two; otherwise, it returns
 | |
|   k such that v = 2^k, i.e. lg(v).
 | |
|  */
 | |
| int      s_mp_ispow2(mp_int *v)
 | |
| {
 | |
|   mp_digit d, *dp;
 | |
|   mp_size  uv = USED(v);
 | |
|   int      extra = 0, ix;
 | |
| 
 | |
|   d = DIGIT(v, uv - 1); /* most significant digit of v */
 | |
| 
 | |
|   while(d && ((d & 1) == 0)) {
 | |
|     d >>= 1;
 | |
|     ++extra;
 | |
|   }
 | |
| 
 | |
|   if(d == 1) {
 | |
|     ix = uv - 2;
 | |
|     dp = DIGITS(v) + ix;
 | |
| 
 | |
|     while(ix >= 0) {
 | |
|       if(*dp)
 | |
| 	return -1; /* not a power of two */
 | |
| 
 | |
|       --dp; --ix;
 | |
|     }
 | |
| 
 | |
|     return ((uv - 1) * DIGIT_BIT) + extra;
 | |
|   }
 | |
| 
 | |
|   return -1;
 | |
| 
 | |
| } /* end s_mp_ispow2() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_ispow2d(d) */
 | |
| 
 | |
| int      s_mp_ispow2d(mp_digit d)
 | |
| {
 | |
|   int   pow = 0;
 | |
| 
 | |
|   while((d & 1) == 0) {
 | |
|     ++pow; d >>= 1;
 | |
|   }
 | |
| 
 | |
|   if(d == 1)
 | |
|     return pow;
 | |
| 
 | |
|   return -1;
 | |
| 
 | |
| } /* end s_mp_ispow2d() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ Primitive I/O helpers */
 | |
| 
 | |
| /* {{{ s_mp_tovalue(ch, r) */
 | |
| 
 | |
| /*
 | |
|   Convert the given character to its digit value, in the given radix.
 | |
|   If the given character is not understood in the given radix, -1 is
 | |
|   returned.  Otherwise the digit's numeric value is returned.
 | |
| 
 | |
|   The results will be odd if you use a radix < 2 or > 62, you are
 | |
|   expected to know what you're up to.
 | |
|  */
 | |
| int      s_mp_tovalue(char ch, int r)
 | |
| {
 | |
|   int    val, xch;
 | |
| 
 | |
|   if(r > 36)
 | |
|     xch = ch;
 | |
|   else
 | |
|     xch = toupper(ch);
 | |
| 
 | |
|   if(isdigit(xch))
 | |
|     val = xch - '0';
 | |
|   else if(isupper(xch))
 | |
|     val = xch - 'A' + 10;
 | |
|   else if(islower(xch))
 | |
|     val = xch - 'a' + 36;
 | |
|   else if(xch == '+')
 | |
|     val = 62;
 | |
|   else if(xch == '/')
 | |
|     val = 63;
 | |
|   else
 | |
|     return -1;
 | |
| 
 | |
|   if(val < 0 || val >= r)
 | |
|     return -1;
 | |
| 
 | |
|   return val;
 | |
| 
 | |
| } /* end s_mp_tovalue() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_todigit(val, r, low) */
 | |
| 
 | |
| /*
 | |
|   Convert val to a radix-r digit, if possible.  If val is out of range
 | |
|   for r, returns zero.  Otherwise, returns an ASCII character denoting
 | |
|   the value in the given radix.
 | |
| 
 | |
|   The results may be odd if you use a radix < 2 or > 64, you are
 | |
|   expected to know what you're doing.
 | |
|  */
 | |
| 
 | |
| char     s_mp_todigit(int val, int r, int low)
 | |
| {
 | |
|   char   ch;
 | |
| 
 | |
|   if(val < 0 || val >= r)
 | |
|     return 0;
 | |
| 
 | |
|   ch = s_dmap_1[val];
 | |
| 
 | |
|   if(r <= 36 && low)
 | |
|     ch = tolower(ch);
 | |
| 
 | |
|   return ch;
 | |
| 
 | |
| } /* end s_mp_todigit() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* {{{ s_mp_outlen(bits, radix) */
 | |
| 
 | |
| /*
 | |
|    Return an estimate for how long a string is needed to hold a radix
 | |
|    r representation of a number with 'bits' significant bits.
 | |
| 
 | |
|    Does not include space for a sign or a NUL terminator.
 | |
|  */
 | |
| int      s_mp_outlen(int bits, int r)
 | |
| {
 | |
|   return (int)((double)bits * LOG_V_2(r));
 | |
| 
 | |
| } /* end s_mp_outlen() */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /* }}} */
 | |
| 
 | |
| /*------------------------------------------------------------------------*/
 | |
| /* HERE THERE BE DRAGONS                                                  */
 | |
| /* crc==4242132123, version==2, Sat Feb 02 06:43:52 2002 */
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/mtest/mpi.c,v $ */
 | |
| /* $Revision: 1.2 $ */
 | |
| /* $Date: 2005/05/05 14:38:47 $ */
 | 
