77 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_EXPTMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* this is a shell function that calls either the normal or Montgomery
 | |
|  * exptmod functions.  Originally the call to the montgomery code was
 | |
|  * embedded in the normal function but that wasted alot of stack space
 | |
|  * for nothing (since 99% of the time the Montgomery code would be called)
 | |
|  */
 | |
| mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
 | |
| {
 | |
|    int dr;
 | |
| 
 | |
|    /* modulus P must be positive */
 | |
|    if (P->sign == MP_NEG) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* if exponent X is negative we have to recurse */
 | |
|    if (X->sign == MP_NEG) {
 | |
|       mp_int tmpG, tmpX;
 | |
|       mp_err err;
 | |
| 
 | |
|       if (!MP_HAS(MP_INVMOD)) {
 | |
|          return MP_VAL;
 | |
|       }
 | |
| 
 | |
|       if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
| 
 | |
|       /* first compute 1/G mod P */
 | |
|       if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       /* now get |X| */
 | |
|       if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | |
|       err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | |
| LBL_ERR:
 | |
|       mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    /* modified diminished radix reduction */
 | |
|    if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) &&
 | |
|        (mp_reduce_is_2k_l(P) == MP_YES)) {
 | |
|       return s_mp_exptmod(G, X, P, Y, 1);
 | |
|    }
 | |
| 
 | |
|    /* is it a DR modulus? default to no */
 | |
|    dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0;
 | |
| 
 | |
|    /* if not, is it a unrestricted DR modulus? */
 | |
|    if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) {
 | |
|       dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
 | |
|    }
 | |
| 
 | |
|    /* if the modulus is odd or dr != 0 use the montgomery method */
 | |
|    if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) {
 | |
|       return s_mp_exptmod_fast(G, X, P, Y, dr);
 | |
|    } else if (MP_HAS(S_MP_EXPTMOD)) {
 | |
|       /* otherwise use the generic Barrett reduction technique */
 | |
|       return s_mp_exptmod(G, X, P, Y, 0);
 | |
|    } else {
 | |
|       /* no exptmod for evens */
 | |
|       return MP_VAL;
 | |
|    }
 | |
| }
 | |
| 
 | |
| #endif
 | 
