Files
heimdal/lib/asn1/asn1parse.y
2022-01-22 03:48:27 -06:00

2035 lines
55 KiB
Plaintext

/*
* Copyright (c) 1997 - 2007 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Portions Copyright (c) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* $Id$ */
%{
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "symbol.h"
#include "lex.h"
#include "gen_locl.h"
#include "der.h"
static Type *new_type (Typetype t);
/*static IOSClass *new_class(struct fieldhead *);*/
/*static IOSObject *new_object(struct objfieldhead *);*/
/*IOSObjectSet *new_object_set(struct objectshead *);*/
static struct objectshead *add_object_set_spec(struct objectshead *, IOSObject *);
static ObjectField *new_field_setting(char *, Type *, struct value *);
static struct objfieldhead *add_field_setting(struct objfieldhead *, ObjectField *);
static struct fieldhead *add_field_spec(struct fieldhead *, Field *);
static Field *new_type_field(char *, int, Type *);
static Field *new_fixed_type_value_field(char *, Type *, int, int, struct value *);
static Type *parametrize_type(Type *, IOSClass *);
static Type *type_from_class_field(IOSClass *, const char *);
static void validate_object_set(IOSObjectSet *);
/*static Type *type_from_object(const char *, const char *);*/
static struct constraint_spec *new_constraint_spec(enum ctype);
static Type *new_tag(int tagclass, int tagvalue, int tagenv, Type *oldtype);
void yyerror (const char *);
#define yyerror yyerror
static struct objid *new_objid(const char *label, int value);
static void add_oid_to_tail(struct objid *, struct objid *);
static void fix_labels(Symbol *s);
struct string_list {
char *string;
struct string_list *next;
};
static int default_tag_env = TE_EXPLICIT;
static unsigned long idcounter;
/* Declarations for Bison */
#define YYMALLOC malloc
#define YYFREE free
%}
%union {
int64_t constant;
struct value *value;
struct range *range;
char *name;
Type *type;
IOSClass *class;
IOSObjectSet *objectset;
IOSObject *object;
Field *field;
ObjectField *objfield;
Member *member;
IOSClass *formalparam;
struct objid *objid;
char *defval;
struct string_list *sl;
struct tagtype tag;
struct memhead *members;
struct fieldhead *fields;
struct objectshead *objects;
struct objfieldhead *objfields;
struct constraint_spec *constraint_spec;
}
%token kw_ABSENT
%token kw_ABSTRACT_SYNTAX
%token kw_ALL
%token kw_APPLICATION
%token kw_AUTOMATIC
%token kw_BEGIN
%token kw_BIT
%token kw_BMPString
%token kw_BOOLEAN
%token kw_BY
%token kw_CHARACTER
%token kw_CHOICE
%token kw_CLASS
%token kw_COMPONENT
%token kw_COMPONENTS
%token kw_CONSTRAINED
%token kw_CONTAINING
%token kw_DEFAULT
%token kw_DEFINITIONS
%token kw_EMBEDDED
%token kw_ENCODED
%token kw_END
%token kw_ENUMERATED
%token kw_EXCEPT
%token kw_EXPLICIT
%token kw_EXPORTS
%token kw_EXTENSIBILITY
%token kw_EXTERNAL
%token kw_FALSE
%token kw_FROM
%token kw_GeneralString
%token kw_GeneralizedTime
%token kw_GraphicString
%token kw_IA5String
%token kw_IDENTIFIER
%token kw_IMPLICIT
%token kw_IMPLIED
%token kw_IMPORTS
%token kw_INCLUDES
%token kw_INSTANCE
%token kw_INTEGER
%token kw_INTERSECTION
%token kw_ISO646String
%token kw_MAX
%token kw_MIN
%token kw_MINUS_INFINITY
%token kw_NULL
%token kw_NumericString
%token kw_OBJECT
%token kw_OCTET
%token kw_OF
%token kw_OPTIONAL
%token kw_ObjectDescriptor
%token kw_PATTERN
%token kw_PDV
%token kw_PLUS_INFINITY
%token kw_PRESENT
%token kw_PRIVATE
%token kw_PrintableString
%token kw_REAL
%token kw_RELATIVE_OID
%token kw_SEQUENCE
%token kw_SET
%token kw_SIZE
%token kw_STRING
%token kw_SYNTAX
%token kw_T61String
%token kw_TAGS
%token kw_TRUE
%token kw_TYPE_IDENTIFIER
%token kw_TeletexString
%token kw_UNION
%token kw_UNIQUE
%token kw_UNIVERSAL
%token kw_UTCTime
%token kw_UTF8String
%token kw_UniversalString
%token kw_VideotexString
%token kw_VisibleString
%token kw_WITH
%token RANGE
%token EEQUAL
%token ELLIPSIS
%token <name> TYPE_IDENTIFIER referencename
%token <name> CLASS_IDENTIFIER
%token <name> VALUE_IDENTIFIER
%token <name> STRING
%token <constant> NUMBER
%type <constant> SignedNumber
%type <constant> Class tagenv
%type <constant> DummyReference
%type <name> Identifier
/*
* The NULL keyword being both a value and a type causes a reduce/reduce
* conflict in the FieldSetting production since its alternatives are
*
* '&' Identifier Type
*
* and
*
* '&' Identifier Value
*
* and NULL is both a type and a value.
*
* For now we work around this by having a ValueExNull production that excludes
* the NULL value. To really get past this will require unifying the type and
* value types (e.g., via type punning).
*/
%type <value> Value ValueExNull
%type <value> BuiltinValue BuiltinValueExNull
%type <value> IntegerValue
%type <value> BooleanValue
%type <value> ObjectIdentifierValue
%type <value> CharacterStringValue
%type <value> NullValue
%type <value> DefinedValue
%type <value> ReferencedValue
%type <value> Valuereference
%type <class> DefinedObjectClass ParamGovernor
%type <class> ObjectClassDefn
%type <class> Parameter
%type <type> Type
%type <type> BuiltinType
%type <type> BitStringType
%type <type> BooleanType
%type <type> ChoiceType
%type <type> ConstrainedType
%type <type> UnconstrainedType
%type <type> EnumeratedType
%type <type> IntegerType
%type <type> NullType
%type <type> OctetStringType
%type <type> SequenceType
%type <type> SequenceOfType
%type <type> SetType
%type <type> SetOfType
%type <type> TaggedType
%type <type> ReferencedType
%type <type> DefinedType
%type <type> UsefulType
%type <type> ObjectIdentifierType
%type <type> CharacterStringType
%type <type> RestrictedCharactedStringType
%type <type> ObjectClassFieldType
%type <type> ParameterizedType
/*%type <type> TypeFromObject*/
%type <objectset> ObjectSet DefinedObjectSet
%type <objectset> ActualParameter
%type <object> Object DefinedObject ObjectDefn
%type <objfield> FieldSetting
%type <tag> Tag
%type <field> FieldSpec TypeFieldSpec FixedTypeValueFieldSpec
%type <fields> FieldSpecList
%type <member> ComponentType
%type <member> NamedBit
%type <member> NamedNumber
%type <member> NamedType
%type <members> ComponentTypeList
%type <members> Enumerations
%type <members> NamedBitList
%type <members> NamedNumberList
%type <objects> ObjectSetSpec
%type <objfields> FieldSettings
%type <objid> objid objid_list objid_element objid_opt
%type <range> range size
%type <sl> referencenames
%type <constraint_spec> Constraint
%type <constraint_spec> ConstraintSpec
%type <constraint_spec> SubtypeConstraint
%type <constraint_spec> GeneralConstraint
%type <constraint_spec> ContentsConstraint
%type <constraint_spec> UserDefinedConstraint
%type <constraint_spec> SimpleTableConstraint TableConstraint
%type <constraint_spec> ComponentRelationConstraint
%start ModuleDefinition
%%
/*
* We have sinned by allowing types to have names that start with lower-case,
* and values that have names that start with upper-case.
*
* UPDATE: We sin no more. However, parts of this block comment are still
* relevant.
*
* That worked when we only supported basic X.680 because the rules for
* TypeAssignment and ValueAssignment are clearly unambiguous in spite of the
* case issue.
*
* We now pay the price because X.681 adds productions where the only thing we
* have to help us distinguish certain rules is the form of an identifier: the
* case of its first letter.
*
* We have cleansed our sin by not allowing wrong-case identifiers any more.
*
* Some historical instances of this sin in-tree:
*
* - DOMAIN-X500-COMPRESS (value (enum) but name starts with upper-case)
* - krb5int32 (type but name starts with lower-case)
* - krb5uint32 (type but name starts with lower-case)
* - hdb_keyset (type but name starts with lower-case)
* - hdb_entry (type but name starts with lower-case)
* - hdb_entry_alias (type but name starts with lower-case)
* - HDB_DB_FORMAT INTEGER (value (int) but name starts with upper-case)
*
* We have fixed all of these and others, in some cases leaving behind aliases
* in header files as needed.
*
* We have one shift/reduce conflict (shift ObjectClassAssignment, reduce
* TypeAssignment) and one reduce/reduce conflict (ObjectAssignment vs
* ValueAssignment) that we avoid by requiring CLASS names to start with an
* underscore.
*
* In the FieldSetting rule, also, we get a reduce/reduce conflict if we use
* `Identifier' instead of `TYPE_IDENTIFIER' for type field settings and
* `VALUE_IDENTIFIER' for value field settings, and then we can't make
* progress.
*
* Looking forward, we may not (will not) be able to distinguish ValueSet and
* ObjectSet field settings from each other either, and we may not (will not)
* be able distinguish Object and Value field settings from each other as well.
* To deal with those we will have to run-time type-tag and type-pun the C
* structures for valueset/objectset and value/object, and have one rule for
* each of those that inspects the type of the item to decide what kind of
* setting it is.
*
* Sadly, the extended syntax for ASN.1 (x.680 + x.681/2/3) appears to have
* ambiguities that cannot be resolved with bison/yacc.
*/
Identifier : TYPE_IDENTIFIER { $$ = $1; }
| VALUE_IDENTIFIER { $$ = $1; };
ModuleDefinition: Identifier objid_opt kw_DEFINITIONS TagDefault ExtensionDefault
EEQUAL kw_BEGIN ModuleBody kw_END
{
struct objid **o = objid2list($2);
size_t i;
fprintf(jsonfile,
"{\"module\":\"%s\",\"tagging\":\"%s\",\"objid\":[", $1,
default_tag_env == TE_EXPLICIT ? "explicit" : "implicit");
for (i = 0; o && o[i]; i++) {
fprintf(jsonfile, "%s{\"value\":%d", i ? "," : "", o[i]->value);
if (o[i]->label)
fprintf(jsonfile, ",\"label\":\"%s\"", o[i]->label);
fprintf(jsonfile, "}");
}
fprintf(jsonfile, "]}\n");
free(o);
}
;
TagDefault : kw_EXPLICIT kw_TAGS
{ default_tag_env = TE_EXPLICIT; }
| kw_IMPLICIT kw_TAGS
{ default_tag_env = TE_IMPLICIT; }
| kw_AUTOMATIC kw_TAGS
{ lex_error_message("automatic tagging is not supported"); }
| /* empty */
;
ExtensionDefault: kw_EXTENSIBILITY kw_IMPLIED
{ lex_error_message("no extensibility options supported"); }
| /* empty */
;
ModuleBody : Exports Imports AssignmentList
| /* empty */
;
Imports : kw_IMPORTS SymbolsImported ';'
| /* empty */
;
SymbolsImported : SymbolsFromModuleList
| /* empty */
;
SymbolsFromModuleList: SymbolsFromModule
| SymbolsFromModuleList SymbolsFromModule
;
SymbolsFromModule: referencenames kw_FROM Identifier objid_opt
{
/*
* FIXME We really could use knowing what kind of thing the
* identifier identifies -- a type, a value, what?
*
* Our sin of allowing type names to start with lower-case
* and values with upper-case means we can't tell. So we
* assume it's types only, but that means we can't import
* OID values, but we really want to!
*
* One thing we could do is not force `s->stype = Stype'
* here, instead set it to a new `Sunknown' value so that
* the first place that refers to this symbol with enough
* context to imply a symbol type can set it.
*/
struct string_list *sl;
for(sl = $1; sl != NULL; sl = sl->next) {
Symbol *s = addsym(sl->string);
s->stype = Stype;
gen_template_import(s);
}
add_import($3);
}
;
Exports : kw_EXPORTS referencenames ';'
{
struct string_list *sl;
for(sl = $2; sl != NULL; sl = sl->next)
add_export(sl->string);
}
| kw_EXPORTS kw_ALL
| /* empty */
;
AssignmentList : Assignment
| Assignment AssignmentList
;
Assignment : TypeAssignment
| ValueAssignment
| ParameterizedTypeAssignment
| ObjectClassAssignment
| ObjectAssignment
| ObjectSetAssignment
/* | ParameterizedAssignment // from X.683 */
;
referencenames : Identifier ',' referencenames
{
$$ = emalloc(sizeof(*$$));
$$->string = $1;
$$->next = $3;
}
| Identifier
{
$$ = emalloc(sizeof(*$$));
$$->string = $1;
$$->next = NULL;
}
;
DefinedObjectClass
: CLASS_IDENTIFIER
{
Symbol *s = addsym($1);
if(s->stype != Sclass)
lex_error_message ("%s is not a class\n", $1);
$$ = s->iosclass;
};
ObjectClassAssignment
: CLASS_IDENTIFIER EEQUAL ObjectClassDefn
{
Symbol *s = addsym($1);
s->stype = Sclass;
s->iosclass = $3;
s->iosclass->symbol = s;
fix_labels(s);
}
| CLASS_IDENTIFIER EEQUAL DefinedObjectClass
{
Symbol *s = addsym($1);
s->stype = Sclass;
s->iosclass = $3;
}
/* | ParameterizedObjectClass */
;
ObjectClassDefn : kw_CLASS '{' FieldSpecList '}'
{
$$ = ecalloc(1, sizeof(*$$));
$$->fields = $3;
$$->id = idcounter++;
};
ObjectAssignment: VALUE_IDENTIFIER DefinedObjectClass EEQUAL Object
{
Symbol *s = addsym($1);
s->stype = Sobj;
s->object = $4;
s->object->iosclass = $2;
if (!s->object->symbol)
s->object->symbol = s;
fix_labels(s);
}
;
ObjectSetAssignment
: TYPE_IDENTIFIER DefinedObjectClass EEQUAL ObjectSet
{
Symbol *s = addsym($1);
s->stype = Sobjset;
s->iosclass = $2;
s->objectset = $4;
s->objectset->symbol = s->objectset->symbol ? s->objectset->symbol : s;
s->objectset->iosclass = $2;
validate_object_set($4);
generate_template_objectset_forwards(s);
}
;
ObjectSet : '{' ObjectSetSpec '}'
{
$$ = ecalloc(1, sizeof(*$$));
$$->objects = $2;
$$->id = idcounter++;
}
;
ObjectSetSpec : DefinedObject
{ $$ = add_object_set_spec(NULL, $1); }
| ObjectSetSpec '|' DefinedObject
{ $$ = add_object_set_spec($1, $3); }
;
Object : DefinedObject
| ObjectDefn
/* | ObjectFromObject */
/* | ParameterizedObject */
;
DefinedObject : VALUE_IDENTIFIER
{
Symbol *s = addsym($1);
if(s->stype != Sobj)
lex_error_message ("%s is not an object\n", $1);
$$ = s->object;
}
;
DefinedObjectSet: TYPE_IDENTIFIER
{
Symbol *s = addsym($1);
if(s->stype != Sobjset && s->stype != SUndefined)
lex_error_message ("%s is not an object set\n", $1);
$$ = s->objectset;
}
;
ObjectDefn : '{' FieldSettings '}' /* DefaultSyntax */
{
$$ = ecalloc(1, sizeof(*$$));
$$->objfields = $2;
$$->id = idcounter++;
}
/* | DefinedSyntax */
;
FieldSettings : FieldSetting
{
$$ = add_field_setting(NULL, $1);
}
| FieldSettings ',' FieldSetting
{
$$ = add_field_setting($1, $3);
}
;
/* See note on `Identifier' */
FieldSetting : '&' Identifier Type
{ $$ = new_field_setting($2, $3, NULL); }
| '&' Identifier ValueExNull
{ $$ = new_field_setting($2, NULL, $3); }
/* | '&' TYPE_IDENTIFIER ValueSet */
/* | '&' VALUE_IDENTIFIER Object */
/* | '&' TYPE_IDENTIFIER ObjectSet */
;
/* Fields of a class */
FieldSpecList : FieldSpec
{ $$ = add_field_spec(NULL, $1); }
| FieldSpecList ',' FieldSpec
{ $$ = add_field_spec($1, $3); };
/*
* Fields of a CLASS
*
* There are seven kinds of class/object fields:
*
* - type fields,
* - fixed-type value fields,
* - fixed-type value set fields,
* - variable-type value fields
* - variable-type value set fields
* - object fields
* - object set fields
*
* We care only to support the bare minimum to treat open types as a CHOICE of
* sorts and automatically encode/decode values in open types. That's: type
* fields and fixed-type value fields.
*/
FieldSpec : TypeFieldSpec
| FixedTypeValueFieldSpec
/* | VariableTypeValueFieldSpec */
/* | VariableTypeValueSetFieldSpec */
/* | FixedTypeValueSetFieldSpec */
/* | ObjectFieldSpec */
/* | ObjectSetFieldSpec */
;
TypeFieldSpec : '&' Identifier
{ $$ = new_type_field($2, 0, NULL); }
| '&' Identifier kw_OPTIONAL
{ $$ = new_type_field($2, 1, NULL); }
| '&' Identifier kw_DEFAULT Type
{ $$ = new_type_field($2, 1, $4); }
;
FixedTypeValueFieldSpec
: '&' Identifier Type
{ $$ = new_fixed_type_value_field($2, $3, 0, 0, NULL); }
| '&' Identifier Type kw_UNIQUE
{ $$ = new_fixed_type_value_field($2, $3, 1, 0, NULL); }
| '&' Identifier Type kw_UNIQUE kw_OPTIONAL
{ $$ = new_fixed_type_value_field($2, $3, 1, 1, NULL); }
| '&' Identifier Type kw_UNIQUE kw_DEFAULT Value
{ $$ = new_fixed_type_value_field($2, $3, 1, 0, $6); }
| '&' Identifier Type kw_OPTIONAL
{ $$ = new_fixed_type_value_field($2, $3, 0, 1, NULL); }
| '&' Identifier Type kw_DEFAULT Value
{ $$ = new_fixed_type_value_field($2, $3, 0, 0, $5); };
/*
* Now we need a bit of X.683, just enough to parse PKIX.
*
* E.g., we need to parse this sort of type definition, which isn't quite the
* final type definition because the ExtensionSet will be provided later.
*
*-- <- ObjectClassDefn ->
* EXTENSION ::= CLASS {
* &id OBJECT IDENTIFIER UNIQUE,
* -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* -- FixedTypeValueFieldSpec
*
* &ExtnType,
* -- ^^^^^^^^^
* -- TypeFieldSpec
*
* &Critical BOOLEAN DEFAULT {TRUE | FALSE }
* -- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* -- FixedTypeValueFieldSpec
* } WITH SYNTAX {
* SYNTAX &ExtnType IDENTIFIED BY &id
* [CRITICALITY &Critical]
* }
*
*-- <--------- ParameterizedTypeAssignment -------->
* -- NOTE: The name of this type has to be Extension, really.
* -- But the name of the Extension type with the actual
* -- parameter provided also has to be Extension.
* -- We could disallow that and require that the various
* -- Extension types all have different names, then we'd
* -- let the one with the actual parameter in PKIX be the
* -- one named Extension. Or we could find a way to let
* -- them all share one symbol name, or at least two:
* -- the one with the formal parameter, and just one with
* -- an actual parameter.
* --
* -- Also, IMPORTing types that have formal parameters is
* -- almost certainly going to require parsing the IMPORTed
* -- module. Until we do that, users will be able to work
* -- around that by just copying CLASSes and pameterized
* -- type definitions around. But when we do start parsing
* -- IMPORTed modules we might need to do something about
* -- many types possibly having the same names, though we
* -- might do nothing and simply say "don't do that!".
* Extension{EXTENSION:ExtensionSet} ::= SEQUENCE {
* -- ^^^^^^^^^^^^
* -- is a DummyReference, which is a Reference, basically
* -- it is an object set variable which will have an object
* -- set value supplied where constrained types are defined
* -- from this one, possibly anonymous types where
* -- SEQUENCE/SET members of this type are defined.
* -- ^^^^^^^^^
* -- is a ParamGovernor, really, just Governor, either a Type or
* -- DefinedObjectClass (we only need DefinedObjectClass)
* -- ^^^^^^^^^^^^^^^^^^^^^^
* -- is a Parameter
* -- ^^^^^^^^^^^^^^^^^^^^^^^^
* -- is a ParameterList (we need only support one param though)
* extnID EXTENSION.&id({ExtensionSet}),
* -- ^^^^^^^^^^^^^^^^
* -- simple table constraint limiting id to OIDs
* -- from ExtensionSet
* -- ^^^^^^^^^^^^^
* -- a reference to the id field of the EXTENSION CLASS
* critical BOOLEAN DEFAULT FALSE,
* extnValue OCTET STRING (CONTAINING
* -- ObjectClassFieldType
* -- vvvvvvvvvvvvvvvvvvv
* EXTENSION.&ExtnType({ExtensionSet}{@extnID}))
* -- ^^^^^^^^^
* -- AtNotation
* -- ^^^^^^^^^^^^^^
* -- DefinedObjectSet
* -- ^^^^^^^^^^^^^^^^^^^^^^^^
* -- ComponentRelationConstraint
* -- says that extnValue will contain
* -- a value of a type identified by
* -- the OID in extnID in the object
* -- set ExtensionSet (which is a set
* -- of {OID, type} objects)
* -- ^^^^^^^^^^^^^^^^^^^^^^^^^^
* -- ConstraintSpec
* -- ^^^^^^^^^^^^^^^^^^^
* -- another type ref
* }
*
* Then later we'll see (ParameterizedType, a part of DefinedType):
*
* TBSCertificate ::= SEQUENCE {
* ...
* -- Here is where the object set is linked into the
* -- whole thing, making *magic* possible. This is
* -- where the real Extensions type is defined. Sadly
* -- this might mean we can't have a C type named
* -- Extensions. Hmmm. We might need an ASN.1
* -- extension that lets use do this:
* --
* -- Extension ::= Extension{{CertExtensions}}
* --
* -- or
* --
* -- Extension ::= ParameterizedExtension{{CertExtensions}}
* --
* -- and then rename the Extension type above to this.
* -- Then we can define Extensions as a SEQUENCE OF
* -- that.
* --
* -- <- ParameterizedType ->
* extensions [3] Extensions{{CertExtensions}} OPTIONAL
* -- ^^^^^^^^^^^^^^
* -- ObjectSetSpec
* -- ^^^^^^^^^^^^^^^^
* -- ObjectSet
* -- ^^^^^^^^^^^^^^^^^^
* -- ActualParameterList
* -- ^^^^^^^^^^
* -- Type
* }
*
* Then:
*
* -- Object set, limits what Extensions can be in TBSCertificate.
*-- <- ObjectSetAssignment ->
* CertExtensions EXTENSION ::= {
* -- ^^^^^^^^^
* -- DefinedObjectClass
*-- ^^^^^^^^^^^^^^
*-- objectsetreference, for us, IDENTIFIER
* ext-AuthorityKeyIdentifier | ext-SubjectKeyIdentifier | ...
* }
*
* and:
*
* -- ObjectAssignment (with defined syntax, which we're not going to support):
* --
* -- Defines one particular object in the CertExtensions object set.
* -- We don't need th SYNTAX bits though -- ETOOMUCHWORK.
* -- This says that the OID id-ce-authorityKeyIdentifier means the extnValue
* -- is a DER-encoded AuthorityKeyIdentifier.
* ext-AuthorityKeyIdentifier EXTENSION ::= { SYNTAX
* AuthorityKeyIdentifier IDENTIFIED BY
* id-ce-authorityKeyIdentifier }
* id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }
*
* -- ObjectAssignment (with default syntax):
* ext-AuthorityKeyIdentifier EXTENSION ::= {
* -- fields don't have to be in order since we have the field names
* &extnId id-ce-authorityKeyIdentifier,
* &extnValue AuthorityKeyIdentifier
* }
*
* -- Plain old type def using only X.680
* AuthorityKeyIdentifier ::= SEQUENCE {
* keyIdentifier [0] KeyIdentifier OPTIONAL,
* authorityCertIssuer [1] GeneralNames OPTIONAL,
* authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
*
* In terms of compilation, we'll want to support only the template backend,
* though we'll generate the same C types for both, the template backend and
* the codegen backend.
*
* The generators should see a type for Extension that includes a) the
* parametrization (relating members in the SEQUENCE to fields in the CLASS),
* and b) the object set CertExtensions for the _same_ class.
*
* - The C types for ASN.1 parametrized types with object set parameters
* should be laid out just as before, but with additional fields:
*
* typedef struct Extension {
* heim_oid extnID;
* int *critical;
* heim_octet_string extnValue;
* // NEW FIELDS BELOW
* enum {
* opentypechoice_unknown_Extension = 0
* opentypechoice_Extension_id_ce_authorityKeyIdentifier,
* ...
* } _element;
* union {
* // er, what should this be named?! we have no name information
* // and naming it after its object value name is probably not a good
* // idea or not easy. We do have the OID value and possible name
* // though, so we should use that:
* AuthorityKeyIdentifier id_ce_authorityKeyIdentifier;
* ...
* } _u;
* } Extension;
*
* - The template for this should consist of new struct asn1_template entries
* following the ones for the normal fields of Extension. The first of these
* should have an OP that indicates that the following N entries correspond
* to the object set that specifies this open type, then the following N
* entries should each point to an object in the object set. Or maybe the
* object set should be a separate template -- either way. We'll also want a
* flag to indicate whether the object set is sorted (none of the type IDs
* are IMPORTed) or not (some of the type IDs are IMPORTed) so we can binary
* search the object set at encode/decode time.
*
* Hmm, we can assume the object sets are already sorted when there's
* IMPORTed IDs -- the author can do it. Yes, they're sets, but lexically
* they must be in some order.
*
* I like that, actually, requiring that the module author manually sort the
* object sets, at least when they refer to type IDs that are IMPORTed. Or
* maybe forbid object sets that use IMPORTed type IDs -- the module author
* can always copy their definitions anyways.
*/
TypeAssignment : Identifier EEQUAL Type
{
Symbol *s = addsym($1);
s->stype = Stype;
s->type = $3;
fix_labels(s);
/*
* Hack: make sure that non-anonymous enumeration types get
* a symbol tacked on so we can generate a template for
* their members for value printing.
*/
if (s->type->type == TTag && $3->symbol == NULL &&
$3->subtype != NULL && $3->subtype->type == TInteger &&
$3->subtype->symbol == NULL) {
$3->subtype->symbol = s;
}
if (original_order)
generate_type(s);
else
generate_type_header_forwards(s);
}
;
ParameterizedTypeAssignment
/* For now we'll only support one parameter -- enough for PKIX */
: Identifier '{' Parameter '}' EEQUAL Type
{
char *pname = NULL;
Symbol *s;
if (asprintf(&pname, "%s{%s:x}", $1, $3->symbol->name) == -1 ||
pname == NULL)
err(1, "Out of memory");
s = addsym(pname);
free($1);
s->stype = Sparamtype;
s->type = parametrize_type($6, $3);
s->type->symbol = s;
fix_labels(s);
}
;
/*
* We're not going to support governor variables for now. We don't need to.
*
* Also, we're not going to support more than one formal parameter.
* Correspondingly we'll only support a single actual parameter (the count of
* formal and actual parameters has to match, naturally).
*/
Parameter : ParamGovernor ':' DummyReference
{ $$ = $1; };
/* | DummyReference */
;
DummyReference : TYPE_IDENTIFIER { $$ = idcounter++; };
ParamGovernor : DefinedObjectClass
{ $$ = $1; }
/* | DummyGovernor */
/* | Type */
;
UnconstrainedType : BitStringType
| BooleanType
| CharacterStringType
| ChoiceType
| EnumeratedType
| IntegerType
| NullType
| ObjectIdentifierType
| OctetStringType
| SequenceType
| SetType
| ObjectClassFieldType; /* X.681 */
Type : BuiltinType | ReferencedType | ConstrainedType ;
BuiltinType : BitStringType
| BooleanType
| CharacterStringType
| ChoiceType
| EnumeratedType
| IntegerType
| NullType
| ObjectIdentifierType
| OctetStringType
| SequenceType
| SequenceOfType
| SetType
| SetOfType
| TaggedType
| ObjectClassFieldType /* X.681 */
/* | InstanceOfType // X.681 */
;
ObjectClassFieldType
: DefinedObjectClass '.' '&' Identifier
{ $$ = type_from_class_field($1, $4); };
BooleanType : kw_BOOLEAN
{
$$ = new_tag(ASN1_C_UNIV, UT_Boolean,
TE_EXPLICIT, new_type(TBoolean));
}
;
/*
* The spec says the values in a ValueRange are Values, but a) all
* the various value ranges do not involve OBJECT IDENTIFIER, b)
* we only support integer value ranges at this time (as opposed
* to, e.g., time ranges, and we don't even support time values at
* this time), c) allowing OBJECT IDENTIFIER here causes a
* shift-reduce conflict, so we limit ourselves to integer values
* in ranges. We could always define IntegerValueRange,
* TimeValueRange, etc. when we add support for more value types.
*/
range : IntegerValue RANGE IntegerValue
{
if($1->type != integervalue)
lex_error_message("Non-integer used in first part of range");
if($1->type != integervalue)
lex_error_message("Non-integer in second part of range");
$$ = ecalloc(1, sizeof(*$$));
$$->min = $1->u.integervalue;
$$->max = $3->u.integervalue;
}
| IntegerValue RANGE kw_MAX
{
if($1->type != integervalue)
lex_error_message("Non-integer in first part of range");
$$ = ecalloc(1, sizeof(*$$));
$$->min = $1->u.integervalue;
$$->max = INT_MAX;
}
| kw_MIN RANGE IntegerValue
{
if($3->type != integervalue)
lex_error_message("Non-integer in second part of range");
$$ = ecalloc(1, sizeof(*$$));
$$->min = INT_MIN;
$$->max = $3->u.integervalue;
}
| IntegerValue
{
if($1->type != integervalue)
lex_error_message("Non-integer used in limit");
$$ = ecalloc(1, sizeof(*$$));
$$->min = $1->u.integervalue;
$$->max = $1->u.integervalue;
}
;
IntegerType : kw_INTEGER
{
$$ = new_tag(ASN1_C_UNIV, UT_Integer,
TE_EXPLICIT, new_type(TInteger));
}
| kw_INTEGER '{' NamedNumberList '}'
{
$$ = new_type(TInteger);
$$->members = $3;
$$ = new_tag(ASN1_C_UNIV, UT_Integer, TE_EXPLICIT, $$);
}
;
NamedNumberList : NamedNumber
{
$$ = emalloc(sizeof(*$$));
HEIM_TAILQ_INIT($$);
HEIM_TAILQ_INSERT_HEAD($$, $1, members);
}
| NamedNumberList ',' NamedNumber
{
HEIM_TAILQ_INSERT_TAIL($1, $3, members);
$$ = $1;
}
| NamedNumberList ',' ELLIPSIS
{ $$ = $1; } /* XXX used for Enumerations */
;
NamedNumber : Identifier '(' SignedNumber ')'
{
$$ = emalloc(sizeof(*$$));
$$->name = $1;
$$->gen_name = estrdup($1);
output_name ($$->gen_name);
$$->val = $3;
$$->optional = 0;
$$->ellipsis = 0;
$$->type = NULL;
}
| Identifier '(' DefinedValue ')'
{
if ($3->type != integervalue)
lex_error_message("Named number %s not a numeric value",
$3->s->name);
$$ = emalloc(sizeof(*$$));
$$->name = $1;
$$->gen_name = estrdup($1);
output_name ($$->gen_name);
$$->val = $3->u.integervalue;
$$->optional = 0;
$$->ellipsis = 0;
$$->type = NULL;
}
;
EnumeratedType : kw_ENUMERATED '{' Enumerations '}'
{
$$ = new_type(TInteger);
$$->members = $3;
$$ = new_tag(ASN1_C_UNIV, UT_Enumerated, TE_EXPLICIT, $$);
}
;
Enumerations : NamedNumberList /* XXX */
;
BitStringType : kw_BIT kw_STRING
{
$$ = new_type(TBitString);
$$->members = emalloc(sizeof(*$$->members));
HEIM_TAILQ_INIT($$->members);
$$ = new_tag(ASN1_C_UNIV, UT_BitString, TE_EXPLICIT, $$);
}
| kw_BIT kw_STRING '{' NamedBitList '}'
{
$$ = new_type(TBitString);
$$->members = $4;
$$ = new_tag(ASN1_C_UNIV, UT_BitString, TE_EXPLICIT, $$);
}
;
ObjectIdentifierType: kw_OBJECT kw_IDENTIFIER
{
$$ = new_tag(ASN1_C_UNIV, UT_OID,
TE_EXPLICIT, new_type(TOID));
}
;
OctetStringType : kw_OCTET kw_STRING size
{
Type *t = new_type(TOctetString);
t->range = $3;
if (t->range) {
if (t->range->min < 0)
lex_error_message("can't use a negative SIZE range "
"length for OCTET STRING");
}
$$ = new_tag(ASN1_C_UNIV, UT_OctetString,
TE_EXPLICIT, t);
}
;
NullType : kw_NULL
{
$$ = new_tag(ASN1_C_UNIV, UT_Null,
TE_EXPLICIT, new_type(TNull));
}
;
size :
{ $$ = NULL; }
| kw_SIZE '(' range ')'
{ $$ = $3; }
;
SequenceType : kw_SEQUENCE '{' /* ComponentTypeLists */ ComponentTypeList '}'
{
$$ = new_type(TSequence);
$$->members = $3;
$$ = new_tag(ASN1_C_UNIV, UT_Sequence, default_tag_env, $$);
}
| kw_SEQUENCE '{' '}'
{
$$ = new_type(TSequence);
$$->members = NULL;
$$ = new_tag(ASN1_C_UNIV, UT_Sequence, default_tag_env, $$);
}
;
SequenceOfType : kw_SEQUENCE size kw_OF Type
{
$$ = new_type(TSequenceOf);
$$->range = $2;
if ($$->range) {
if ($$->range->min < 0)
lex_error_message("can't use a negative SIZE range "
"length for SEQUENCE OF");
}
$$->subtype = $4;
$$ = new_tag(ASN1_C_UNIV, UT_Sequence, default_tag_env, $$);
}
;
SetType : kw_SET '{' /* ComponentTypeLists */ ComponentTypeList '}'
{
$$ = new_type(TSet);
$$->members = $3;
$$ = new_tag(ASN1_C_UNIV, UT_Set, default_tag_env, $$);
}
| kw_SET '{' '}'
{
$$ = new_type(TSet);
$$->members = NULL;
$$ = new_tag(ASN1_C_UNIV, UT_Set, default_tag_env, $$);
}
;
SetOfType : kw_SET kw_OF Type
{
$$ = new_type(TSetOf);
$$->subtype = $3;
$$ = new_tag(ASN1_C_UNIV, UT_Set, default_tag_env, $$);
}
;
ChoiceType : kw_CHOICE '{' /* AlternativeTypeLists */ ComponentTypeList '}'
{
$$ = new_type(TChoice);
$$->members = $3;
}
;
ReferencedType : DefinedType
| UsefulType
/* | TypeFromObject // X.681 */
/* | ValueSetFromObjects // X.681 */
;
/*
TypeFromObject : VALUE_IDENTIFIER '.' '&' TYPE_IDENTIFIER
{ $$ = type_from_object($1, $4); };
*/
DefinedType : TYPE_IDENTIFIER
{
Symbol *s = addsym($1);
$$ = new_type(TType);
if(s->stype != Stype && s->stype != SUndefined)
lex_error_message ("%s is not a type\n", $1);
else
$$->symbol = s;
}
| ParameterizedType
{ $$ = $1; }
;
/*
* Should be ActualParameterList, but we'll do just one for now
* as that's enough for PKIX.
*/
ParameterizedType
: Identifier '{' ActualParameter '}' /* XXX ActualParameterList */
{
Symbol *s, *ps;
char *pname = NULL;
if ($3 == NULL) {
lex_error_message("Unknown ActualParameter object set parametrizing %s\n", $1);
exit(1);
}
/* Lookup the type from a ParameterizedTypeAssignment */
if (asprintf(&pname, "%s{%s:x}", $1,
$3->iosclass->symbol->name) == -1 ||
pname == NULL)
err(1, "Out of memory");
ps = addsym(pname);
if (ps->stype != Sparamtype)
lex_error_message ("%s is not a parameterized type\n", $1);
s = addsym($1);
$$ = ps->type; /* XXX copy, probably */
if (!ps->type)
errx(1, "Wrong class (%s) parameter for parameterized "
"type %s", $3->iosclass->symbol->name, $1);
s->stype = Stype;
if(s->stype != Stype && s->stype != SUndefined)
lex_error_message ("%s is not a type\n", $1);
else
$$->symbol = s;
$$->actual_parameter = $3;
if ($$->type == TTag)
$$->subtype->actual_parameter = $3;
}
/*
* Per X.683 $1 for ActualParameter should be any of: a Type, a Value, a
* ValueSet, a DefinedObjectClass, an Object, or an ObjectSet. For PKIX we
* need nothing more than an ObjectSet here.
*
* Also, we can't lexically or syntactically tell the difference between all
* these things, though fortunately we can for ObjectSet.
*/
ActualParameter : DefinedObjectSet
{ $$ = $1; };
UsefulType : kw_GeneralizedTime
{
$$ = new_tag(ASN1_C_UNIV, UT_GeneralizedTime,
TE_EXPLICIT, new_type(TGeneralizedTime));
}
| kw_UTCTime
{
$$ = new_tag(ASN1_C_UNIV, UT_UTCTime,
TE_EXPLICIT, new_type(TUTCTime));
}
;
ConstrainedType : UnconstrainedType Constraint
{
$$ = $1;
if ($2->ctype == CT_RANGE) {
if ($1->type != TTag || $1->subtype->type != TInteger)
lex_error_message("RANGE constraints apply only to INTEGER types");
$$->subtype->range = $2->u.range;
free($2);
} else {
$$->constraint = $2;
}
/* if (Constraint.type == contentConstraint) {
assert(Constraint.u.constraint.type == octetstring|bitstring-w/o-NamedBitList); // remember to check type reference too
if (Constraint.u.constraint.type) {
assert((Constraint.u.constraint.type.length % 8) == 0);
}
}
if (Constraint.u.constraint.encoding) {
type == der-oid|ber-oid
}
*/
}
;
Constraint : '(' ConstraintSpec ')'
{
$$ = $2;
}
;
ConstraintSpec : SubtypeConstraint | GeneralConstraint
;
SubtypeConstraint: range
{
$$ = new_constraint_spec(CT_RANGE);
$$->u.range = $1;
}
GeneralConstraint: ContentsConstraint
| UserDefinedConstraint
| TableConstraint
;
ContentsConstraint: kw_CONTAINING Type
{
$$ = new_constraint_spec(CT_CONTENTS);
$$->u.content.type = $2;
$$->u.content.encoding = NULL;
}
| kw_ENCODED kw_BY Value
{
if ($3->type != objectidentifiervalue)
lex_error_message("Non-OID used in ENCODED BY constraint");
$$ = new_constraint_spec(CT_CONTENTS);
$$->u.content.type = NULL;
$$->u.content.encoding = $3;
}
| kw_CONTAINING Type kw_ENCODED kw_BY Value
{
if ($5->type != objectidentifiervalue)
lex_error_message("Non-OID used in ENCODED BY constraint");
$$ = new_constraint_spec(CT_CONTENTS);
$$->u.content.type = $2;
$$->u.content.encoding = $5;
}
;
UserDefinedConstraint: kw_CONSTRAINED kw_BY '{' '}'
{
$$ = new_constraint_spec(CT_USER);
}
;
TableConstraint : SimpleTableConstraint
{ $$ = $1; }
| ComponentRelationConstraint
{ $$ = $1; };
SimpleTableConstraint
: '{' TYPE_IDENTIFIER '}'
{
$$ = ecalloc(1, sizeof(*$$));
$$->ctype = CT_TABLE_CONSTRAINT;
$$->u.content.crel.objectname = $2;
$$->u.content.crel.membername = 0;
};
/*
* In X.682, ComponentRelationConstraint is a fantastically more complicated
* production. The stuff in the second set of braces is a list of AtNotation,
* and AtNotation is '@' followed by some number of '.'s, followed by a
* ComponentIdList, which is a non-empty set of identifiers separated by '.'s.
* The number of '.'s is a "level" used to identify a SET, SEQUENCE, or CHOICE
* where the path of member identifiers is rooted that ultimately identifies
* the field providing the constraint.
*
* So in
*
* extnValue OCTET STRING
* (CONTAINING
* EXTENSION.&ExtnType({ExtensionSet}{@extnID}))
* ^^^^^^^^^^^^^^^^^^^
* ObjectClassFieldType
* meaning the open type field
* &ExtnType of EXTENSION
* ^^^^^^^^^^^^^^^^^^^^^^^^^
* GeneralConstraint
* ^^^^^^^^^^^^^^^^^^^^^^^
* ComponentRelationConstraint
* ^^^^^^^^^^^^^^
* DefinedObjectSet
* ^^^^^^^^
* '{' AtNotation ',' + '}'
*
* we have EXTENSION.&ExtnType is the ObjectClassFieldType, and
* ({ExtensionSet}{@extnID}) is the ComponentRelationConstraint on the
* extnValue member, where {ExtensionSet} is the DummyReference from the formal
* parameter of the enclosing parameterized type, and {@extnID} is the
* AtNotation list identifying the field of the class/objects-in-the-object-set
* that will be identifying the type of the extnValue field.
*
* We need just the one AtNotation component.
*/
ComponentRelationConstraint
: '{' TYPE_IDENTIFIER '}' '{' '@' Identifier '}'
{
$$ = ecalloc(1, sizeof(*$$));
$$->ctype = CT_TABLE_CONSTRAINT;
$$->u.content.crel.objectname = $2;
$$->u.content.crel.membername = $6;
};
TaggedType : Tag tagenv Type
{
$$ = new_type(TTag);
$$->tag = $1;
$$->tag.tagenv = $2;
if (template_flag) {
$$->subtype = $3;
} else if ($2 == TE_IMPLICIT) {
Type *t = $3;
/*
* FIXME We shouldn't do this... The logic for
* dealing with IMPLICIT tags belongs elsewhere.
*/
while (t->type == TType) {
if (t->subtype)
t = t->subtype;
else if (t->symbol && t->symbol->type)
t = t->symbol->type;
else
break;
}
/*
* IMPLICIT tags of CHOICE types are EXPLICIT
* instead.
*/
if (t->type == TChoice)
$$->tag.tagenv = TE_EXPLICIT;
if($3->type == TTag && $2 == TE_IMPLICIT) {
$$->subtype = $3->subtype;
free($3);
} else {
$$->subtype = $3;
}
} else {
$$->subtype = $3;
}
}
;
Tag : '[' Class NUMBER ']'
{
$$.tagclass = $2;
$$.tagvalue = $3;
$$.tagenv = default_tag_env;
}
;
Class : /* */
{
$$ = ASN1_C_CONTEXT;
}
| kw_UNIVERSAL
{
$$ = ASN1_C_UNIV;
}
| kw_APPLICATION
{
$$ = ASN1_C_APPL;
}
| kw_PRIVATE
{
$$ = ASN1_C_PRIVATE;
}
;
tagenv : /* */
{
$$ = default_tag_env;
}
| kw_EXPLICIT
{
$$ = default_tag_env;
}
| kw_IMPLICIT
{
$$ = TE_IMPLICIT;
}
;
ValueAssignment : VALUE_IDENTIFIER Type EEQUAL Value
{
Symbol *s;
s = addsym ($1);
s->stype = SValue;
s->value = $4;
generate_constant (s);
/*
* Save this value's name so we can know some name for
* this value wherever _a_ name may be needed for it.
*
* This is useful for OIDs used as type IDs in objects
* sets of classes with open types. We'll generate
* enum labels from those OIDs' names.
*/
s->value->s = s;
}
;
CharacterStringType: RestrictedCharactedStringType
;
RestrictedCharactedStringType: kw_GeneralString
{
$$ = new_tag(ASN1_C_UNIV, UT_GeneralString,
TE_EXPLICIT, new_type(TGeneralString));
}
| kw_TeletexString
{
$$ = new_tag(ASN1_C_UNIV, UT_TeletexString,
TE_EXPLICIT, new_type(TTeletexString));
}
| kw_UTF8String
{
$$ = new_tag(ASN1_C_UNIV, UT_UTF8String,
TE_EXPLICIT, new_type(TUTF8String));
}
| kw_PrintableString
{
$$ = new_tag(ASN1_C_UNIV, UT_PrintableString,
TE_EXPLICIT, new_type(TPrintableString));
}
| kw_VisibleString
{
$$ = new_tag(ASN1_C_UNIV, UT_VisibleString,
TE_EXPLICIT, new_type(TVisibleString));
}
| kw_IA5String
{
$$ = new_tag(ASN1_C_UNIV, UT_IA5String,
TE_EXPLICIT, new_type(TIA5String));
}
| kw_BMPString
{
$$ = new_tag(ASN1_C_UNIV, UT_BMPString,
TE_EXPLICIT, new_type(TBMPString));
}
| kw_UniversalString
{
$$ = new_tag(ASN1_C_UNIV, UT_UniversalString,
TE_EXPLICIT, new_type(TUniversalString));
}
;
ComponentTypeList: ComponentType
{
$$ = emalloc(sizeof(*$$));
HEIM_TAILQ_INIT($$);
HEIM_TAILQ_INSERT_HEAD($$, $1, members);
}
| ComponentTypeList ',' ComponentType
{
HEIM_TAILQ_INSERT_TAIL($1, $3, members);
$$ = $1;
}
| ComponentTypeList ',' ELLIPSIS
{
struct member *m = ecalloc(1, sizeof(*m));
m->name = estrdup("...");
m->gen_name = estrdup("asn1_ellipsis");
m->ellipsis = 1;
HEIM_TAILQ_INSERT_TAIL($1, m, members);
$$ = $1;
}
;
NamedType : Identifier Type
{
$$ = emalloc(sizeof(*$$));
$$->name = $1;
$$->gen_name = estrdup($1);
output_name ($$->gen_name);
$$->type = $2;
$$->ellipsis = 0;
}
;
ComponentType : NamedType
{
$$ = $1;
$$->optional = 0;
$$->defval = NULL;
}
| NamedType kw_OPTIONAL
{
$$ = $1;
$$->optional = 1;
$$->defval = NULL;
}
| NamedType kw_DEFAULT Value
{
$$ = $1;
$$->optional = 0;
$$->defval = $3;
}
;
NamedBitList : NamedBit
{
$$ = emalloc(sizeof(*$$));
HEIM_TAILQ_INIT($$);
HEIM_TAILQ_INSERT_HEAD($$, $1, members);
}
| NamedBitList ',' NamedBit
{
HEIM_TAILQ_INSERT_TAIL($1, $3, members);
$$ = $1;
}
;
NamedBit : Identifier '(' NUMBER ')'
{
$$ = emalloc(sizeof(*$$));
$$->name = $1;
$$->gen_name = estrdup($1);
output_name ($$->gen_name);
$$->val = $3;
$$->optional = 0;
$$->ellipsis = 0;
$$->type = NULL;
}
;
objid_opt : objid
| /* empty */ { $$ = NULL; }
;
objid : '{' objid_list '}'
{
$$ = $2;
}
;
objid_list : /* empty */
{
$$ = NULL;
}
| objid_element objid_list
{
if ($2) {
$$ = $2;
add_oid_to_tail($2, $1);
} else {
$$ = $1;
}
}
;
objid_element : Identifier '(' NUMBER ')'
{
$$ = new_objid($1, $3);
}
| Identifier
{
Symbol *s = addsym($1);
if(s->stype != SValue ||
s->value->type != objectidentifiervalue) {
lex_error_message("%s is not an object identifier\n",
s->name);
exit(1);
}
$$ = s->value->u.objectidentifiervalue;
}
| NUMBER
{
$$ = new_objid(NULL, $1);
}
;
Value : BuiltinValue
| ReferencedValue
;
ValueExNull : BuiltinValueExNull
| ReferencedValue
;
BuiltinValue : BooleanValue
| CharacterStringValue
| IntegerValue
| ObjectIdentifierValue
| NullValue
;
BuiltinValueExNull
: BooleanValue
| CharacterStringValue
| IntegerValue
| ObjectIdentifierValue
;
ReferencedValue : DefinedValue
;
DefinedValue : Valuereference
;
Valuereference : VALUE_IDENTIFIER
{
Symbol *s = addsym($1);
if(s->stype != SValue)
lex_error_message ("%s is not a value\n",
s->name);
else
$$ = s->value;
}
;
CharacterStringValue: STRING
{
$$ = emalloc(sizeof(*$$));
$$->type = stringvalue;
$$->u.stringvalue = $1;
}
;
BooleanValue : kw_TRUE
{
$$ = emalloc(sizeof(*$$));
$$->type = booleanvalue;
$$->u.booleanvalue = 1;
}
| kw_FALSE
{
$$ = emalloc(sizeof(*$$));
$$->type = booleanvalue;
$$->u.booleanvalue = 0;
}
;
IntegerValue : SignedNumber
{
$$ = emalloc(sizeof(*$$));
$$->type = integervalue;
$$->u.integervalue = $1;
}
;
SignedNumber : NUMBER
;
NullValue : kw_NULL
{
}
;
ObjectIdentifierValue: objid
{
$$ = emalloc(sizeof(*$$));
$$->type = objectidentifiervalue;
$$->u.objectidentifiervalue = $1;
}
;
%%
void
yyerror (const char *s)
{
lex_error_message ("%s\n", s);
}
static Type *
new_tag(int tagclass, int tagvalue, int tagenv, Type *oldtype)
{
Type *t;
if(oldtype->type == TTag && oldtype->tag.tagenv == TE_IMPLICIT) {
t = oldtype;
oldtype = oldtype->subtype; /* XXX */
} else
t = new_type (TTag);
t->tag.tagclass = tagclass;
t->tag.tagvalue = tagvalue;
t->tag.tagenv = tagenv;
t->subtype = oldtype;
return t;
}
static struct objid *
new_objid(const char *label, int value)
{
struct objid *s;
s = emalloc(sizeof(*s));
s->label = label;
s->value = value;
s->next = NULL;
return s;
}
static void
add_oid_to_tail(struct objid *head, struct objid *tail)
{
struct objid *o;
o = head;
while (o->next)
o = o->next;
o->next = tail;
}
static Type *
new_type (Typetype tt)
{
Type *t = ecalloc(1, sizeof(*t));
t->type = tt;
t->id = idcounter++;
return t;
}
static struct constraint_spec *
new_constraint_spec(enum ctype ct)
{
struct constraint_spec *c = ecalloc(1, sizeof(*c));
c->ctype = ct;
return c;
}
static void fix_labels2(Type *t, const char *prefix);
static void fix_labels1(struct memhead *members, const char *prefix)
{
Member *m;
if(members == NULL)
return;
HEIM_TAILQ_FOREACH(m, members, members) {
if (asprintf(&m->label, "%s_%s", prefix, m->gen_name) < 0)
errx(1, "malloc");
if (m->label == NULL)
errx(1, "malloc");
if(m->type != NULL)
fix_labels2(m->type, m->label);
}
}
static void fix_labels2(Type *t, const char *prefix)
{
for(; t; t = t->subtype)
fix_labels1(t->members, prefix);
}
static void
fix_labels(Symbol *s)
{
char *p = NULL;
if (asprintf(&p, "choice_%s", s->gen_name) < 0 || p == NULL)
errx(1, "malloc");
if (s->type)
fix_labels2(s->type, p);
free(p);
}
static struct objectshead *
add_object_set_spec(struct objectshead *lst, IOSObject *o)
{
if (lst == NULL) {
lst = emalloc(sizeof(*lst));
HEIM_TAILQ_INIT(lst);
HEIM_TAILQ_INSERT_HEAD(lst, o, objects);
} else {
HEIM_TAILQ_INSERT_TAIL(lst, o, objects);
}
return lst;
}
static struct objfieldhead *
add_field_setting(struct objfieldhead *lst, ObjectField *f)
{
if (lst == NULL) {
lst = emalloc(sizeof(*lst));
HEIM_TAILQ_INIT(lst);
HEIM_TAILQ_INSERT_HEAD(lst, f, objfields);
} else {
HEIM_TAILQ_INSERT_TAIL(lst, f, objfields);
}
return lst;
}
static struct fieldhead *
add_field_spec(struct fieldhead *lst, Field *f)
{
if (lst == NULL) {
lst = emalloc(sizeof(*lst));
HEIM_TAILQ_INIT(lst);
HEIM_TAILQ_INSERT_HEAD(lst, f, fields);
} else {
HEIM_TAILQ_INSERT_TAIL(lst, f, fields);
}
return lst;
}
static ObjectField *
new_field_setting(char *n, Type *t, struct value *v)
{
ObjectField *of;
of = ecalloc(1, sizeof(*of));
of->value = v;
of->type = t;
of->name = n;
return of;
}
static Field *
new_type_field(char *n, int optional, Type *t)
{
Field *f;
f = ecalloc(1, sizeof(*f));
f->optional = optional;
f->unique = 0;
f->defval = 0;
f->type = t;
f->name = n;
return f;
}
static Field *
new_fixed_type_value_field(char *n, Type *t, int unique, int optional, struct value *defval)
{
Field *f;
f = ecalloc(1, sizeof(*f));
f->optional = optional;
f->unique = unique;
f->defval = defval;
f->type = t;
f->name = n;
return f;
}
static Type *
parametrize_type(Type *t, IOSClass *c)
{
Type *type;
type = new_type(TType);
*type = *t; /* XXX Copy, or use subtype; this only works as long as we don't cleanup! */
type->formal_parameter = c;
return type;
}
static Type *
type_from_class_field(IOSClass *c, const char *n)
{
Field *f;
Type *t;
HEIM_TAILQ_FOREACH(f, c->fields, fields) {
if (strcmp(f->name, n) == 0) {
t = new_type(TType);
if (f->type) {
*t = *f->type;
} else {
Symbol *s = addsym("HEIM_ANY");
if(s->stype != Stype && s->stype != SUndefined)
errx(1, "Do not define HEIM_ANY, only import it\n");
s->stype = Stype;
t->symbol = s;
}
t->typeref.iosclass = c;
t->typeref.field = f;
return t;
}
}
return NULL;
}
static void
validate_object_set(IOSObjectSet *os)
{
IOSObject **objects;
ObjectField *of;
IOSObject *o;
Field *cf;
size_t nobjs, i;
/* Check unique fields */
HEIM_TAILQ_FOREACH(cf, os->iosclass->fields, fields) {
if (!cf->unique)
continue;
if (!cf->type)
errx(1, "Type fields of classes can't be UNIQUE (%s)",
os->iosclass->symbol->name);
sort_object_set(os, cf, &objects, &nobjs);
for (i = 0; i < nobjs; i++) {
HEIM_TAILQ_FOREACH(of, objects[i]->objfields, objfields) {
if (strcmp(cf->name, of->name) != 0)
continue;
if (!of->value)
errx(1, "Value not specified for required UNIQUE field %s of object %s",
cf->name, objects[i]->symbol->name);
break;
}
if (i == 0)
continue;
if (object_cmp(&objects[i - 1], &objects[i]) == 0)
errx(1, "Duplicate values of UNIQUE field %s of objects %s and %s",
cf->name, objects[i - 1]->symbol->name,
objects[i]->symbol->name);
}
free(objects);
}
/* Check required fields */
HEIM_TAILQ_FOREACH(cf, os->iosclass->fields, fields) {
if (cf->optional || cf->defval || !cf->type)
continue;
HEIM_TAILQ_FOREACH(o, os->objects, objects) {
int specified = 0;
HEIM_TAILQ_FOREACH(of, o->objfields, objfields) {
if (strcmp(of->name, cf->name) != 0)
continue;
if (of->value)
specified = 1;
break;
}
if (!specified)
errx(1, "Value not specified for required non-UNIQUE field %s of object %s",
cf->name, o->symbol->name);
}
}
}