130 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_KRONECKER_C
 | |
| 
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /*
 | |
|    Kronecker symbol (a|p)
 | |
|    Straightforward implementation of algorithm 1.4.10 in
 | |
|    Henri Cohen: "A Course in Computational Algebraic Number Theory"
 | |
| 
 | |
|    @book{cohen2013course,
 | |
|      title={A course in computational algebraic number theory},
 | |
|      author={Cohen, Henri},
 | |
|      volume={138},
 | |
|      year={2013},
 | |
|      publisher={Springer Science \& Business Media}
 | |
|     }
 | |
|  */
 | |
| mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c)
 | |
| {
 | |
|    mp_int a1, p1, r;
 | |
|    mp_err err;
 | |
|    int v, k;
 | |
| 
 | |
|    static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
 | |
| 
 | |
|    if (MP_IS_ZERO(p)) {
 | |
|       if ((a->used == 1) && (a->dp[0] == 1u)) {
 | |
|          *c = 1;
 | |
|       } else {
 | |
|          *c = 0;
 | |
|       }
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) {
 | |
|       *c = 0;
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    if ((err = mp_init_copy(&a1, a)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
|    if ((err = mp_init_copy(&p1, p)) != MP_OKAY) {
 | |
|       goto LBL_KRON_0;
 | |
|    }
 | |
| 
 | |
|    v = mp_cnt_lsb(&p1);
 | |
|    if ((err = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
 | |
|       goto LBL_KRON_1;
 | |
|    }
 | |
| 
 | |
|    if ((v & 1) == 0) {
 | |
|       k = 1;
 | |
|    } else {
 | |
|       k = table[a->dp[0] & 7u];
 | |
|    }
 | |
| 
 | |
|    if (p1.sign == MP_NEG) {
 | |
|       p1.sign = MP_ZPOS;
 | |
|       if (a1.sign == MP_NEG) {
 | |
|          k = -k;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    if ((err = mp_init(&r)) != MP_OKAY) {
 | |
|       goto LBL_KRON_1;
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       if (MP_IS_ZERO(&a1)) {
 | |
|          if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
 | |
|             *c = k;
 | |
|             goto LBL_KRON;
 | |
|          } else {
 | |
|             *c = 0;
 | |
|             goto LBL_KRON;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       v = mp_cnt_lsb(&a1);
 | |
|       if ((err = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
 | |
|          goto LBL_KRON;
 | |
|       }
 | |
| 
 | |
|       if ((v & 1) == 1) {
 | |
|          k = k * table[p1.dp[0] & 7u];
 | |
|       }
 | |
| 
 | |
|       if (a1.sign == MP_NEG) {
 | |
|          /*
 | |
|           * Compute k = (-1)^((a1)*(p1-1)/4) * k
 | |
|           * a1.dp[0] + 1 cannot overflow because the MSB
 | |
|           * of the type mp_digit is not set by definition
 | |
|           */
 | |
|          if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
 | |
|             k = -k;
 | |
|          }
 | |
|       } else {
 | |
|          /* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
 | |
|          if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
 | |
|             k = -k;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       if ((err = mp_copy(&a1, &r)) != MP_OKAY) {
 | |
|          goto LBL_KRON;
 | |
|       }
 | |
|       r.sign = MP_ZPOS;
 | |
|       if ((err = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
 | |
|          goto LBL_KRON;
 | |
|       }
 | |
|       if ((err = mp_copy(&r, &p1)) != MP_OKAY) {
 | |
|          goto LBL_KRON;
 | |
|       }
 | |
|    }
 | |
| 
 | |
| LBL_KRON:
 | |
|    mp_clear(&r);
 | |
| LBL_KRON_1:
 | |
|    mp_clear(&p1);
 | |
| LBL_KRON_0:
 | |
|    mp_clear(&a1);
 | |
| 
 | |
|    return err;
 | |
| }
 | |
| 
 | |
| #endif
 | 
