401 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Generates provable primes
 | |
|  *
 | |
|  * See http://gmail.com:8080/papers/pp.pdf for more info.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
 | |
|  */
 | |
| #include <time.h>
 | |
| #include "tommath.h"
 | |
| 
 | |
| int   n_prime;
 | |
| FILE *primes;
 | |
| 
 | |
| /* fast square root */
 | |
| static  mp_digit
 | |
| i_sqrt (mp_word x)
 | |
| {
 | |
|   mp_word x1, x2;
 | |
| 
 | |
|   x2 = x;
 | |
|   do {
 | |
|     x1 = x2;
 | |
|     x2 = x1 - ((x1 * x1) - x) / (2 * x1);
 | |
|   } while (x1 != x2);
 | |
| 
 | |
|   if (x1 * x1 > x) {
 | |
|     --x1;
 | |
|   }
 | |
| 
 | |
|   return x1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* generates a prime digit */
 | |
| static void gen_prime (void)
 | |
| {
 | |
|   mp_digit r, x, y, next;
 | |
|   FILE *out;
 | |
| 
 | |
|   out = fopen("pprime.dat", "wb");
 | |
| 
 | |
|   /* write first set of primes */
 | |
|   r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
|   r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
 | |
| 
 | |
|   /* get square root, since if 'r' is composite its factors must be < than this */
 | |
|   y = i_sqrt (r);
 | |
|   next = (y + 1) * (y + 1);
 | |
| 
 | |
|   for (;;) {
 | |
|   do {
 | |
|     r += 2;			/* next candidate */
 | |
|     r &= MP_MASK;
 | |
|     if (r < 31) break;
 | |
| 
 | |
|     /* update sqrt ? */
 | |
|     if (next <= r) {
 | |
|       ++y;
 | |
|       next = (y + 1) * (y + 1);
 | |
|     }
 | |
| 
 | |
|     /* loop if divisible by 3,5,7,11,13,17,19,23,29  */
 | |
|     if ((r % 3) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 5) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 7) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 11) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 13) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 17) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 19) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 23) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if ((r % 29) == 0) {
 | |
|       x = 0;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
 | |
|     for (x = 30; x <= y; x += 30) {
 | |
|       if ((r % (x + 1)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 7)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 11)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 13)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 17)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 19)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 23)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|       if ((r % (x + 29)) == 0) {
 | |
| 	x = 0;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|   } while (x == 0);
 | |
|   if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
 | |
|   if (r < 31) break;
 | |
|   }
 | |
| 
 | |
|   fclose(out);
 | |
| }
 | |
| 
 | |
| void load_tab(void)
 | |
| {
 | |
|    primes = fopen("pprime.dat", "rb");
 | |
|    if (primes == NULL) {
 | |
|       gen_prime();
 | |
|       primes = fopen("pprime.dat", "rb");
 | |
|    }
 | |
|    fseek(primes, 0, SEEK_END);
 | |
|    n_prime = ftell(primes) / sizeof(mp_digit);
 | |
| }
 | |
| 
 | |
| mp_digit prime_digit(void)
 | |
| {
 | |
|    int n;
 | |
|    mp_digit d;
 | |
| 
 | |
|    n = labs(rand()) % n_prime;
 | |
|    fseek(primes, n * sizeof(mp_digit), SEEK_SET);
 | |
|    fread(&d, 1, sizeof(mp_digit), primes);
 | |
|    return d;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* makes a prime of at least k bits */
 | |
| int
 | |
| pprime (int k, int li, mp_int * p, mp_int * q)
 | |
| {
 | |
|   mp_int  a, b, c, n, x, y, z, v;
 | |
|   int     res, ii;
 | |
|   static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
 | |
| 
 | |
|   /* single digit ? */
 | |
|   if (k <= (int) DIGIT_BIT) {
 | |
|     mp_set (p, prime_digit ());
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&c)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&v)) != MP_OKAY) {
 | |
|     goto LBL_C;
 | |
|   }
 | |
| 
 | |
|   /* product of first 50 primes */
 | |
|   if ((res =
 | |
|        mp_read_radix (&v,
 | |
| 		      "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
 | |
| 		      10)) != MP_OKAY) {
 | |
|     goto LBL_V;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&a)) != MP_OKAY) {
 | |
|     goto LBL_V;
 | |
|   }
 | |
| 
 | |
|   /* set the prime */
 | |
|   mp_set (&a, prime_digit ());
 | |
| 
 | |
|   if ((res = mp_init (&b)) != MP_OKAY) {
 | |
|     goto LBL_A;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&n)) != MP_OKAY) {
 | |
|     goto LBL_B;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&x)) != MP_OKAY) {
 | |
|     goto LBL_N;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&y)) != MP_OKAY) {
 | |
|     goto LBL_X;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&z)) != MP_OKAY) {
 | |
|     goto LBL_Y;
 | |
|   }
 | |
| 
 | |
|   /* now loop making the single digit */
 | |
|   while (mp_count_bits (&a) < k) {
 | |
|     fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
 | |
|     fflush (stderr);
 | |
|   top:
 | |
|     mp_set (&b, prime_digit ());
 | |
| 
 | |
|     /* now compute z = a * b * 2 */
 | |
|     if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) {	/* z = a * b */
 | |
|       goto LBL_Z;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy (&z, &c)) != MP_OKAY) {	/* c = a * b */
 | |
|       goto LBL_Z;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) {	/* z = 2 * a * b */
 | |
|       goto LBL_Z;
 | |
|     }
 | |
| 
 | |
|     /* n = z + 1 */
 | |
|     if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) {	/* n = z + 1 */
 | |
|       goto LBL_Z;
 | |
|     }
 | |
| 
 | |
|     /* check (n, v) == 1 */
 | |
|     if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) {	/* y = (n, v) */
 | |
|       goto LBL_Z;
 | |
|     }
 | |
| 
 | |
|     if (mp_cmp_d (&y, 1) != MP_EQ)
 | |
|       goto top;
 | |
| 
 | |
|     /* now try base x=bases[ii]  */
 | |
|     for (ii = 0; ii < li; ii++) {
 | |
|       mp_set (&x, bases[ii]);
 | |
| 
 | |
|       /* compute x^a mod n */
 | |
|       if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) {	/* y = x^a mod n */
 | |
| 	goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       /* if y == 1 loop */
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ)
 | |
| 	continue;
 | |
| 
 | |
|       /* now x^2a mod n */
 | |
|       if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2a mod n */
 | |
| 	goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ)
 | |
| 	continue;
 | |
| 
 | |
|       /* compute x^b mod n */
 | |
|       if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) {	/* y = x^b mod n */
 | |
| 	goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       /* if y == 1 loop */
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ)
 | |
| 	continue;
 | |
| 
 | |
|       /* now x^2b mod n */
 | |
|       if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2b mod n */
 | |
| 	goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ)
 | |
| 	continue;
 | |
| 
 | |
|       /* compute x^c mod n == x^ab mod n */
 | |
|       if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) {	/* y = x^ab mod n */
 | |
| 	goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       /* if y == 1 loop */
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ)
 | |
| 	continue;
 | |
| 
 | |
|       /* now compute (x^c mod n)^2 */
 | |
|       if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2ab mod n */
 | |
| 	goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       /* y should be 1 */
 | |
|       if (mp_cmp_d (&y, 1) != MP_EQ)
 | |
| 	continue;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* no bases worked? */
 | |
|     if (ii == li)
 | |
|       goto top;
 | |
| 
 | |
| {
 | |
|    char buf[4096];
 | |
| 
 | |
|    mp_toradix(&n, buf, 10);
 | |
|    printf("Certificate of primality for:\n%s\n\n", buf);
 | |
|    mp_toradix(&a, buf, 10);
 | |
|    printf("A == \n%s\n\n", buf);
 | |
|    mp_toradix(&b, buf, 10);
 | |
|    printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
 | |
|    printf("----------------------------------------------------------------\n");
 | |
| }
 | |
| 
 | |
|     /* a = n */
 | |
|     mp_copy (&n, &a);
 | |
|   }
 | |
| 
 | |
|   /* get q to be the order of the large prime subgroup */
 | |
|   mp_sub_d (&n, 1, q);
 | |
|   mp_div_2 (q, q);
 | |
|   mp_div (q, &b, q, NULL);
 | |
| 
 | |
|   mp_exch (&n, p);
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| LBL_Z:mp_clear (&z);
 | |
| LBL_Y:mp_clear (&y);
 | |
| LBL_X:mp_clear (&x);
 | |
| LBL_N:mp_clear (&n);
 | |
| LBL_B:mp_clear (&b);
 | |
| LBL_A:mp_clear (&a);
 | |
| LBL_V:mp_clear (&v);
 | |
| LBL_C:mp_clear (&c);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| main (void)
 | |
| {
 | |
|   mp_int  p, q;
 | |
|   char    buf[4096];
 | |
|   int     k, li;
 | |
|   clock_t t1;
 | |
| 
 | |
|   srand (time (NULL));
 | |
|   load_tab();
 | |
| 
 | |
|   printf ("Enter # of bits: \n");
 | |
|   fgets (buf, sizeof (buf), stdin);
 | |
|   sscanf (buf, "%d", &k);
 | |
| 
 | |
|   printf ("Enter number of bases to try (1 to 8):\n");
 | |
|   fgets (buf, sizeof (buf), stdin);
 | |
|   sscanf (buf, "%d", &li);
 | |
| 
 | |
| 
 | |
|   mp_init (&p);
 | |
|   mp_init (&q);
 | |
| 
 | |
|   t1 = clock ();
 | |
|   pprime (k, li, &p, &q);
 | |
|   t1 = clock () - t1;
 | |
| 
 | |
|   printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
 | |
| 
 | |
|   mp_toradix (&p, buf, 10);
 | |
|   printf ("P == %s\n", buf);
 | |
|   mp_toradix (&q, buf, 10);
 | |
|   printf ("Q == %s\n", buf);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/etc/pprime.c,v $ */
 | |
| /* $Revision: 1.3 $ */
 | |
| /* $Date: 2006/03/31 14:18:47 $ */
 | 
