Files
heimdal/lib/des/imath/imrat.c
Love Hörnquist Åstrand b4c55d807b add imath-1.7
git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@18759 ec53bebd-3082-4978-b11e-865c3cabbd6b
2006-10-21 16:32:36 +00:00

1093 lines
24 KiB
C
Executable File

/*
Name: imrat.c
Purpose: Arbitrary precision rational arithmetic routines.
Author: M. J. Fromberger <http://www.dartmouth.edu/~sting/>
Info: $Id$
Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "imrat.h"
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
/* {{{ Useful macros */
#define TEMP(K) (temp + (K))
#define SETUP(E, C) \
do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
/* Argument checking:
Use CHECK() where a return value is required; NRCHECK() elsewhere */
#define CHECK(TEST) assert(TEST)
#define NRCHECK(TEST) assert(TEST)
/* }}} */
/* Reduce the given rational, in place, to lowest terms and canonical
form. Zero is represented as 0/1, one as 1/1. Signs are adjusted
so that the sign of the numerator is definitive. */
static mp_result s_rat_reduce(mp_rat r);
/* Common code for addition and subtraction operations on rationals. */
static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
mp_result (*comb_f)(mp_int, mp_int, mp_int));
/* {{{ mp_rat_init(r) */
mp_result mp_rat_init(mp_rat r)
{
return mp_rat_init_size(r, 0, 0);
}
/* }}} */
/* {{{ mp_rat_alloc() */
mp_rat mp_rat_alloc(void)
{
mp_rat out = malloc(sizeof(*out));
if(out != NULL) {
if(mp_rat_init(out) != MP_OK) {
free(out);
return NULL;
}
}
return out;
}
/* }}} */
/* {{{ mp_rat_init_size(r, n_prec, d_prec) */
mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec)
{
mp_result res;
if((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK)
return res;
if((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
mp_int_clear(MP_NUMER_P(r));
return res;
}
return mp_int_set_value(MP_DENOM_P(r), 1);
}
/* }}} */
/* {{{ mp_rat_init_copy(r, old) */
mp_result mp_rat_init_copy(mp_rat r, mp_rat old)
{
mp_result res;
if((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK)
return res;
if((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK)
mp_int_clear(MP_NUMER_P(r));
return res;
}
/* }}} */
/* {{{ mp_rat_set_value(r, numer, denom) */
mp_result mp_rat_set_value(mp_rat r, int numer, int denom)
{
mp_result res;
if(denom == 0)
return MP_UNDEF;
if((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK)
return res;
if((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK)
return res;
return s_rat_reduce(r);
}
/* }}} */
/* {{{ mp_rat_clear(r) */
void mp_rat_clear(mp_rat r)
{
mp_int_clear(MP_NUMER_P(r));
mp_int_clear(MP_DENOM_P(r));
}
/* }}} */
/* {{{ mp_rat_free(r) */
void mp_rat_free(mp_rat r)
{
NRCHECK(r != NULL);
if(r->num.digits != NULL)
mp_rat_clear(r);
free(r);
}
/* }}} */
/* {{{ mp_rat_numer(r, z) */
mp_result mp_rat_numer(mp_rat r, mp_int z)
{
return mp_int_copy(MP_NUMER_P(r), z);
}
/* }}} */
/* {{{ mp_rat_denom(r, z) */
mp_result mp_rat_denom(mp_rat r, mp_int z)
{
return mp_int_copy(MP_DENOM_P(r), z);
}
/* }}} */
/* {{{ mp_rat_sign(r) */
mp_sign mp_rat_sign(mp_rat r)
{
return MP_SIGN(MP_NUMER_P(r));
}
/* }}} */
/* {{{ mp_rat_copy(a, c) */
mp_result mp_rat_copy(mp_rat a, mp_rat c)
{
mp_result res;
if((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
return res;
res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
return res;
}
/* }}} */
/* {{{ mp_rat_zero(r) */
void mp_rat_zero(mp_rat r)
{
mp_int_zero(MP_NUMER_P(r));
mp_int_set_value(MP_DENOM_P(r), 1);
}
/* }}} */
/* {{{ mp_rat_abs(a, c) */
mp_result mp_rat_abs(mp_rat a, mp_rat c)
{
mp_result res;
if((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
return res;
res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c));
return res;
}
/* }}} */
/* {{{ mp_rat_neg(a, c) */
mp_result mp_rat_neg(mp_rat a, mp_rat c)
{
mp_result res;
if((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
return res;
res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
return res;
}
/* }}} */
/* {{{ mp_rat_recip(a, c) */
mp_result mp_rat_recip(mp_rat a, mp_rat c)
{
mp_result res;
if(mp_rat_compare_zero(a) == 0)
return MP_UNDEF;
if((res = mp_rat_copy(a, c)) != MP_OK)
return res;
mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c));
/* Restore the signs of the swapped elements */
{
mp_sign tmp = MP_SIGN(MP_NUMER_P(c));
MP_SIGN(MP_NUMER_P(c)) = MP_SIGN(MP_DENOM_P(c));
MP_SIGN(MP_DENOM_P(c)) = tmp;
}
return MP_OK;
}
/* }}} */
/* {{{ mp_rat_add(a, b, c) */
mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c)
{
return s_rat_combine(a, b, c, mp_int_add);
}
/* }}} */
/* {{{ mp_rat_sub(a, b, c) */
mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c)
{
return s_rat_combine(a, b, c, mp_int_sub);
}
/* }}} */
/* {{{ mp_rat_mul(a, b, c) */
mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c)
{
mp_result res;
if((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
return res;
if(mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
if((res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c))) != MP_OK)
return res;
}
return s_rat_reduce(c);
}
/* }}} */
/* {{{ mp_int_div(a, b, c) */
mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c)
{
mp_result res = MP_OK;
if(mp_rat_compare_zero(b) == 0)
return MP_UNDEF;
if(c == a || c == b) {
mpz_t tmp;
if((res = mp_int_init(&tmp)) != MP_OK) return res;
if((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK)
goto CLEANUP;
if((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
goto CLEANUP;
res = mp_int_copy(&tmp, MP_NUMER_P(c));
CLEANUP:
mp_int_clear(&tmp);
}
else {
if((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) != MP_OK)
return res;
if((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
return res;
}
if(res != MP_OK)
return res;
else
return s_rat_reduce(c);
}
/* }}} */
/* {{{ mp_rat_add_int(a, b, c) */
mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c)
{
mpz_t tmp;
mp_result res;
if((res = mp_int_init_copy(&tmp, b)) != MP_OK)
return res;
if((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
goto CLEANUP;
if((res = mp_rat_copy(a, c)) != MP_OK)
goto CLEANUP;
if((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
goto CLEANUP;
res = s_rat_reduce(c);
CLEANUP:
mp_int_clear(&tmp);
return res;
}
/* }}} */
/* {{{ mp_rat_sub_int(a, b, c) */
mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c)
{
mpz_t tmp;
mp_result res;
if((res = mp_int_init_copy(&tmp, b)) != MP_OK)
return res;
if((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
goto CLEANUP;
if((res = mp_rat_copy(a, c)) != MP_OK)
goto CLEANUP;
if((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
goto CLEANUP;
res = s_rat_reduce(c);
CLEANUP:
mp_int_clear(&tmp);
return res;
}
/* }}} */
/* {{{ mp_rat_mul_int(a, b, c) */
mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c)
{
mp_result res;
if((res = mp_rat_copy(a, c)) != MP_OK)
return res;
if((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK)
return res;
return s_rat_reduce(c);
}
/* }}} */
/* {{{ mp_rat_div_int(a, b, c) */
mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c)
{
mp_result res;
if(mp_int_compare_zero(b) == 0)
return MP_UNDEF;
if((res = mp_rat_copy(a, c)) != MP_OK)
return res;
if((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK)
return res;
return s_rat_reduce(c);
}
/* }}} */
/* {{{ mp_rat_expt(a, b, c) */
mp_result mp_rat_expt(mp_rat a, int b, mp_rat c)
{
mp_result res;
/* Special cases for easy powers. */
if(b == 0)
return mp_rat_set_value(c, 1, 1);
else if(b == 1)
return mp_rat_copy(a, c);
/* Since rationals are always stored in lowest terms, it is not
necessary to reduce again when raising to an integer power. */
if((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK)
return res;
return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
}
/* }}} */
/* {{{ mp_rat_compare(a, b) */
int mp_rat_compare(mp_rat a, mp_rat b)
{
/* Quick check for opposite signs. Works because the sign of the
numerator is always definitive. */
if(MP_SIGN(MP_NUMER_P(a)) != MP_SIGN(MP_NUMER_P(b))) {
if(MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
return 1;
else
return -1;
}
else {
/* Compare absolute magnitudes; if both are positive, the answer
stands, otherwise it needs to be reflected about zero. */
int cmp = mp_rat_compare_unsigned(a, b);
if(MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
return cmp;
else
return -cmp;
}
}
/* }}} */
/* {{{ mp_rat_compare_unsigned(a, b) */
int mp_rat_compare_unsigned(mp_rat a, mp_rat b)
{
/* If the denominators are equal, we can quickly compare numerators
without multiplying. Otherwise, we actually have to do some work. */
if(mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0)
return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b));
else {
mpz_t temp[2];
mp_result res;
int cmp = INT_MAX, last = 0;
/* t0 = num(a) * den(b), t1 = num(b) * den(a) */
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
if((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
(res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
goto CLEANUP;
cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1));
CLEANUP:
while(--last >= 0)
mp_int_clear(TEMP(last));
return cmp;
}
}
/* }}} */
/* {{{ mp_rat_compare_zero(r) */
int mp_rat_compare_zero(mp_rat r)
{
return mp_int_compare_zero(MP_NUMER_P(r));
}
/* }}} */
/* {{{ mp_rat_compare_value(r, n, d) */
int mp_rat_compare_value(mp_rat r, int n, int d)
{
mpq_t tmp;
mp_result res;
int out = INT_MAX;
if((res = mp_rat_init(&tmp)) != MP_OK)
return out;
if((res = mp_rat_set_value(&tmp, n, d)) != MP_OK)
goto CLEANUP;
out = mp_rat_compare(r, &tmp);
CLEANUP:
mp_rat_clear(&tmp);
return out;
}
/* }}} */
/* {{{ mp_rat_is_integer(r) */
int mp_rat_is_integer(mp_rat r)
{
return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
}
/* }}} */
/* {{{ mp_rat_to_ints(r, *num, *den) */
mp_result mp_rat_to_ints(mp_rat r, int *num, int *den)
{
mp_result res;
if((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK)
return res;
res = mp_int_to_int(MP_DENOM_P(r), den);
return res;
}
/* }}} */
/* {{{ mp_rat_to_string(r, radix, *str, limit) */
mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit)
{
char *start;
int len;
mp_result res;
/* Write the numerator. The sign of the rational number is written
by the underlying integer implementation. */
if((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK)
return res;
/* If the value is zero, don't bother writing any denominator */
if(mp_int_compare_zero(MP_NUMER_P(r)) == 0)
return MP_OK;
/* Locate the end of the numerator, and make sure we are not going to
exceed the limit by writing a slash. */
len = strlen(str);
start = str + len;
limit -= len;
if(limit == 0)
return MP_TRUNC;
*start++ = '/';
limit -= 1;
res = mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
return res;
}
/* }}} */
/* {{{ mp_rat_to_decimal(r, radix, prec, *str, limit) */
mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec,
mp_round_mode round, char *str, int limit)
{
mpz_t temp[3];
mp_result res;
char *start = str;
int len, lead_0, left = limit, last = 0;
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
SETUP(mp_int_init(TEMP(last)), last);
SETUP(mp_int_init(TEMP(last)), last);
/* Get the unsigned integer part by dividing denominator into the
absolute value of the numerator. */
mp_int_abs(TEMP(0), TEMP(0));
if((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK)
goto CLEANUP;
/* Now: T0 = integer portion, unsigned;
T1 = remainder, from which fractional part is computed. */
/* Count up leading zeroes after the radix point. */
for(lead_0 = 0; lead_0 < prec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0;
++lead_0) {
if((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK)
goto CLEANUP;
}
/* Multiply remainder by a power of the radix sufficient to get the
right number of significant figures. */
if(prec > lead_0) {
if((res = mp_int_expt_value(radix, prec - lead_0, TEMP(2))) != MP_OK)
goto CLEANUP;
if((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK)
goto CLEANUP;
}
if((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK)
goto CLEANUP;
/* Now: T1 = significant digits of fractional part;
T2 = leftovers, to use for rounding.
At this point, what we do depends on the rounding mode. The
default is MP_ROUND_DOWN, for which everything is as it should be
already.
*/
switch(round) {
int cmp;
case MP_ROUND_UP:
if(mp_int_compare_zero(TEMP(2)) != 0) {
if(prec == 0)
res = mp_int_add_value(TEMP(0), 1, TEMP(0));
else
res = mp_int_add_value(TEMP(1), 1, TEMP(1));
}
break;
case MP_ROUND_HALF_UP:
case MP_ROUND_HALF_DOWN:
if((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK)
goto CLEANUP;
cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r));
if(round == MP_ROUND_HALF_UP)
cmp += 1;
if(cmp > 0) {
if(prec == 0)
res = mp_int_add_value(TEMP(0), 1, TEMP(0));
else
res = mp_int_add_value(TEMP(1), 1, TEMP(1));
}
break;
case MP_ROUND_DOWN:
break; /* No action required */
default:
return MP_BADARG; /* Invalid rounding specifier */
}
/* The sign of the output should be the sign of the numerator, but
if all the displayed digits will be zero due to the precision, a
negative shouldn't be shown. */
if(MP_SIGN(MP_NUMER_P(r)) == MP_NEG &&
(mp_int_compare_zero(TEMP(0)) != 0 ||
mp_int_compare_zero(TEMP(1)) != 0)) {
*start++ = '-';
left -= 1;
}
if((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK)
goto CLEANUP;
len = strlen(start);
start += len;
left -= len;
if(prec == 0)
goto CLEANUP;
*start++ = '.';
left -= 1;
if(left < prec + 1) {
res = MP_TRUNC;
goto CLEANUP;
}
memset(start, '0', lead_0 - 1);
left -= lead_0;
start += lead_0 - 1;
res = mp_int_to_string(TEMP(1), radix, start, left);
CLEANUP:
while(--last >= 0)
mp_int_clear(TEMP(last));
return res;
}
/* }}} */
/* {{{ mp_rat_string_len(r, radix) */
mp_result mp_rat_string_len(mp_rat r, mp_size radix)
{
mp_result n_len, d_len = 0;
n_len = mp_int_string_len(MP_NUMER_P(r), radix);
if(mp_int_compare_zero(MP_NUMER_P(r)) != 0)
d_len = mp_int_string_len(MP_DENOM_P(r), radix);
/* Though simplistic, this formula is correct. Space for the sign
flag is included in n_len, and the space for the NUL that is
counted in n_len counts for the separator here. The space for
the NUL counted in d_len counts for the final terminator here. */
return n_len + d_len;
}
/* }}} */
/* {{{ mp_rat_decimal_len(r, radix, prec) */
mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec)
{
int z_len, f_len;
z_len = mp_int_string_len(MP_NUMER_P(r), radix);
if(prec == 0)
f_len = 1; /* terminator only */
else
f_len = 1 + prec + 1; /* decimal point, digits, terminator */
return z_len + f_len;
}
/* }}} */
/* {{{ mp_rat_read_string(r, radix, *str) */
mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str)
{
return mp_rat_read_cstring(r, radix, str, NULL);
}
/* }}} */
/* {{{ mp_rat_read_cstring(r, radix, *str, **end) */
mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str,
char **end)
{
mp_result res;
char *endp;
if((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
(res != MP_TRUNC))
return res;
/* Skip whitespace between numerator and (possible) separator */
while(isspace((unsigned char) *endp))
++endp;
/* If there is no separator, we will stop reading at this point. */
if(*endp != '/') {
mp_int_set_value(MP_DENOM_P(r), 1);
if(end != NULL)
*end = endp;
return res;
}
++endp; /* skip separator */
if((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK)
return res;
/* Make sure the value is well-defined */
if(mp_int_compare_zero(MP_DENOM_P(r)) == 0)
return MP_UNDEF;
/* Reduce to lowest terms */
return s_rat_reduce(r);
}
/* }}} */
/* {{{ mp_rat_read_ustring(r, radix, *str, **end) */
/* Read a string and figure out what format it's in. The radix may be
supplied as zero to use "default" behaviour.
This function will accept either a/b notation or decimal notation.
*/
mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str,
char **end)
{
char *endp;
mp_result res;
if(radix == 0)
radix = 10; /* default to decimal input */
if((res = mp_rat_read_cstring(r, radix, str, &endp)) != MP_OK) {
if(res == MP_TRUNC) {
if(*endp == '.')
res = mp_rat_read_cdecimal(r, radix, str, &endp);
}
else
return res;
}
if(end != NULL)
*end = endp;
return res;
}
/* }}} */
/* {{{ mp_rat_read_decimal(r, radix, *str) */
mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str)
{
return mp_rat_read_cdecimal(r, radix, str, NULL);
}
/* }}} */
/* {{{ mp_rat_read_cdecimal(r, radix, *str, **end) */
mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str,
char **end)
{
mp_result res;
mp_sign osign;
char *endp;
while(isspace((unsigned char) *str))
++str;
switch(*str) {
case '-':
osign = MP_NEG;
break;
default:
osign = MP_ZPOS;
}
if((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
(res != MP_TRUNC))
return res;
/* This needs to be here. */
(void) mp_int_set_value(MP_DENOM_P(r), 1);
if(*endp != '.') {
if(end != NULL)
*end = endp;
return res;
}
/* If the character following the decimal point is whitespace or a
sign flag, we will consider this a truncated value. This special
case is because mp_int_read_string() will consider whitespace or
sign flags to be valid starting characters for a value, and we do
not want them following the decimal point.
Once we have done this check, it is safe to read in the value of
the fractional piece as a regular old integer.
*/
++endp;
if(*endp == '\0') {
if(end != NULL)
*end = endp;
return MP_OK;
}
else if(isspace((unsigned char) *endp) || *endp == '-' || *endp == '+') {
return MP_TRUNC;
}
else {
mpz_t frac;
mp_result save_res;
char *save = endp;
int num_lz = 0;
/* Make a temporary to hold the part after the decimal point. */
if((res = mp_int_init(&frac)) != MP_OK)
return res;
if((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
(res != MP_TRUNC))
goto CLEANUP;
/* Save this response for later. */
save_res = res;
if(mp_int_compare_zero(&frac) == 0)
goto FINISHED;
/* Discard trailing zeroes (somewhat inefficiently) */
while(mp_int_divisible_value(&frac, radix))
if((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK)
goto CLEANUP;
/* Count leading zeros after the decimal point */
while(save[num_lz] == '0')
++num_lz;
/* Find the least power of the radix that is at least as large as
the significant value of the fractional part, ignoring leading
zeroes. */
(void) mp_int_set_value(MP_DENOM_P(r), radix);
while(mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
if((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
goto CLEANUP;
}
/* Also shift by enough to account for leading zeroes */
while(num_lz > 0) {
if((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
goto CLEANUP;
--num_lz;
}
/* Having found this power, shift the numerator leftward that
many, digits, and add the nonzero significant digits of the
fractional part to get the result. */
if((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) != MP_OK)
goto CLEANUP;
{ /* This addition needs to be unsigned. */
MP_SIGN(MP_NUMER_P(r)) = MP_ZPOS;
if((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK)
goto CLEANUP;
MP_SIGN(MP_NUMER_P(r)) = osign;
}
if((res = s_rat_reduce(r)) != MP_OK)
goto CLEANUP;
/* At this point, what we return depends on whether reading the
fractional part was truncated or not. That information is
saved from when we called mp_int_read_string() above. */
FINISHED:
res = save_res;
if(end != NULL)
*end = endp;
CLEANUP:
mp_int_clear(&frac);
return res;
}
}
/* }}} */
/* Private functions for internal use. Make unchecked assumptions
about format and validity of inputs. */
/* {{{ s_rat_reduce(r) */
static mp_result s_rat_reduce(mp_rat r)
{
mpz_t gcd;
mp_result res = MP_OK;
if(mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
mp_int_set_value(MP_DENOM_P(r), 1);
return MP_OK;
}
/* If the greatest common divisor of the numerator and denominator
is greater than 1, divide it out. */
if((res = mp_int_init(&gcd)) != MP_OK)
return res;
if((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK)
goto CLEANUP;
if(mp_int_compare_value(&gcd, 1) != 0) {
if((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK)
goto CLEANUP;
if((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK)
goto CLEANUP;
}
/* Fix up the signs of numerator and denominator */
if(MP_SIGN(MP_NUMER_P(r)) == MP_SIGN(MP_DENOM_P(r)))
MP_SIGN(MP_NUMER_P(r)) = MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
else {
MP_SIGN(MP_NUMER_P(r)) = MP_NEG;
MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
}
CLEANUP:
mp_int_clear(&gcd);
return res;
}
/* }}} */
/* {{{ s_rat_combine(a, b, c, comb_f) */
static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
mp_result (*comb_f)(mp_int, mp_int, mp_int))
{
mp_result res;
/* Shortcut when denominators are already common */
if(mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
if((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
return res;
if((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK)
return res;
return s_rat_reduce(c);
}
else {
mpz_t temp[2];
int last = 0;
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
if((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK)
goto CLEANUP;
if((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
goto CLEANUP;
if((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK)
goto CLEANUP;
res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));
CLEANUP:
while(--last >= 0)
mp_int_clear(TEMP(last));
if(res == MP_OK)
return s_rat_reduce(c);
else
return res;
}
}
/* }}} */
/* Here there be dragons */