
git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@18759 ec53bebd-3082-4978-b11e-865c3cabbd6b
1093 lines
24 KiB
C
Executable File
1093 lines
24 KiB
C
Executable File
/*
|
|
Name: imrat.c
|
|
Purpose: Arbitrary precision rational arithmetic routines.
|
|
Author: M. J. Fromberger <http://www.dartmouth.edu/~sting/>
|
|
Info: $Id$
|
|
|
|
Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
|
|
|
|
Permission is hereby granted, free of charge, to any person
|
|
obtaining a copy of this software and associated documentation files
|
|
(the "Software"), to deal in the Software without restriction,
|
|
including without limitation the rights to use, copy, modify, merge,
|
|
publish, distribute, sublicense, and/or sell copies of the Software,
|
|
and to permit persons to whom the Software is furnished to do so,
|
|
subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
|
|
#include "imrat.h"
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
/* {{{ Useful macros */
|
|
|
|
#define TEMP(K) (temp + (K))
|
|
#define SETUP(E, C) \
|
|
do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
|
|
|
|
/* Argument checking:
|
|
Use CHECK() where a return value is required; NRCHECK() elsewhere */
|
|
#define CHECK(TEST) assert(TEST)
|
|
#define NRCHECK(TEST) assert(TEST)
|
|
|
|
/* }}} */
|
|
|
|
/* Reduce the given rational, in place, to lowest terms and canonical
|
|
form. Zero is represented as 0/1, one as 1/1. Signs are adjusted
|
|
so that the sign of the numerator is definitive. */
|
|
static mp_result s_rat_reduce(mp_rat r);
|
|
|
|
/* Common code for addition and subtraction operations on rationals. */
|
|
static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
|
|
mp_result (*comb_f)(mp_int, mp_int, mp_int));
|
|
|
|
/* {{{ mp_rat_init(r) */
|
|
|
|
mp_result mp_rat_init(mp_rat r)
|
|
{
|
|
return mp_rat_init_size(r, 0, 0);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_alloc() */
|
|
|
|
mp_rat mp_rat_alloc(void)
|
|
{
|
|
mp_rat out = malloc(sizeof(*out));
|
|
|
|
if(out != NULL) {
|
|
if(mp_rat_init(out) != MP_OK) {
|
|
free(out);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_init_size(r, n_prec, d_prec) */
|
|
|
|
mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK)
|
|
return res;
|
|
if((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) {
|
|
mp_int_clear(MP_NUMER_P(r));
|
|
return res;
|
|
}
|
|
|
|
return mp_int_set_value(MP_DENOM_P(r), 1);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_init_copy(r, old) */
|
|
|
|
mp_result mp_rat_init_copy(mp_rat r, mp_rat old)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK)
|
|
return res;
|
|
if((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK)
|
|
mp_int_clear(MP_NUMER_P(r));
|
|
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_set_value(r, numer, denom) */
|
|
|
|
mp_result mp_rat_set_value(mp_rat r, int numer, int denom)
|
|
{
|
|
mp_result res;
|
|
|
|
if(denom == 0)
|
|
return MP_UNDEF;
|
|
|
|
if((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK)
|
|
return res;
|
|
if((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK)
|
|
return res;
|
|
|
|
return s_rat_reduce(r);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_clear(r) */
|
|
|
|
void mp_rat_clear(mp_rat r)
|
|
{
|
|
mp_int_clear(MP_NUMER_P(r));
|
|
mp_int_clear(MP_DENOM_P(r));
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_free(r) */
|
|
|
|
void mp_rat_free(mp_rat r)
|
|
{
|
|
NRCHECK(r != NULL);
|
|
|
|
if(r->num.digits != NULL)
|
|
mp_rat_clear(r);
|
|
|
|
free(r);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_numer(r, z) */
|
|
|
|
mp_result mp_rat_numer(mp_rat r, mp_int z)
|
|
{
|
|
return mp_int_copy(MP_NUMER_P(r), z);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_denom(r, z) */
|
|
|
|
mp_result mp_rat_denom(mp_rat r, mp_int z)
|
|
{
|
|
return mp_int_copy(MP_DENOM_P(r), z);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_sign(r) */
|
|
|
|
mp_sign mp_rat_sign(mp_rat r)
|
|
{
|
|
return MP_SIGN(MP_NUMER_P(r));
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_copy(a, c) */
|
|
|
|
mp_result mp_rat_copy(mp_rat a, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_zero(r) */
|
|
|
|
void mp_rat_zero(mp_rat r)
|
|
{
|
|
mp_int_zero(MP_NUMER_P(r));
|
|
mp_int_set_value(MP_DENOM_P(r), 1);
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_abs(a, c) */
|
|
|
|
mp_result mp_rat_abs(mp_rat a, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c));
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_neg(a, c) */
|
|
|
|
mp_result mp_rat_neg(mp_rat a, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c));
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_recip(a, c) */
|
|
|
|
mp_result mp_rat_recip(mp_rat a, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if(mp_rat_compare_zero(a) == 0)
|
|
return MP_UNDEF;
|
|
|
|
if((res = mp_rat_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c));
|
|
|
|
/* Restore the signs of the swapped elements */
|
|
{
|
|
mp_sign tmp = MP_SIGN(MP_NUMER_P(c));
|
|
|
|
MP_SIGN(MP_NUMER_P(c)) = MP_SIGN(MP_DENOM_P(c));
|
|
MP_SIGN(MP_DENOM_P(c)) = tmp;
|
|
}
|
|
|
|
return MP_OK;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_add(a, b, c) */
|
|
|
|
mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c)
|
|
{
|
|
return s_rat_combine(a, b, c, mp_int_add);
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_sub(a, b, c) */
|
|
|
|
mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c)
|
|
{
|
|
return s_rat_combine(a, b, c, mp_int_sub);
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_mul(a, b, c) */
|
|
|
|
mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
if(mp_int_compare_zero(MP_NUMER_P(c)) != 0) {
|
|
if((res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c))) != MP_OK)
|
|
return res;
|
|
}
|
|
|
|
return s_rat_reduce(c);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_int_div(a, b, c) */
|
|
|
|
mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c)
|
|
{
|
|
mp_result res = MP_OK;
|
|
|
|
if(mp_rat_compare_zero(b) == 0)
|
|
return MP_UNDEF;
|
|
|
|
if(c == a || c == b) {
|
|
mpz_t tmp;
|
|
|
|
if((res = mp_int_init(&tmp)) != MP_OK) return res;
|
|
if((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK)
|
|
goto CLEANUP;
|
|
if((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
|
|
goto CLEANUP;
|
|
res = mp_int_copy(&tmp, MP_NUMER_P(c));
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&tmp);
|
|
}
|
|
else {
|
|
if((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
if((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK)
|
|
return res;
|
|
}
|
|
|
|
if(res != MP_OK)
|
|
return res;
|
|
else
|
|
return s_rat_reduce(c);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_add_int(a, b, c) */
|
|
|
|
mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c)
|
|
{
|
|
mpz_t tmp;
|
|
mp_result res;
|
|
|
|
if((res = mp_int_init_copy(&tmp, b)) != MP_OK)
|
|
return res;
|
|
|
|
if((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if((res = mp_rat_copy(a, c)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
res = s_rat_reduce(c);
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_sub_int(a, b, c) */
|
|
|
|
mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c)
|
|
{
|
|
mpz_t tmp;
|
|
mp_result res;
|
|
|
|
if((res = mp_int_init_copy(&tmp, b)) != MP_OK)
|
|
return res;
|
|
|
|
if((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if((res = mp_rat_copy(a, c)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
res = s_rat_reduce(c);
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&tmp);
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_mul_int(a, b, c) */
|
|
|
|
mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_rat_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
if((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
return s_rat_reduce(c);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_div_int(a, b, c) */
|
|
|
|
mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
if(mp_int_compare_zero(b) == 0)
|
|
return MP_UNDEF;
|
|
|
|
if((res = mp_rat_copy(a, c)) != MP_OK)
|
|
return res;
|
|
|
|
if((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
return s_rat_reduce(c);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_expt(a, b, c) */
|
|
|
|
mp_result mp_rat_expt(mp_rat a, int b, mp_rat c)
|
|
{
|
|
mp_result res;
|
|
|
|
/* Special cases for easy powers. */
|
|
if(b == 0)
|
|
return mp_rat_set_value(c, 1, 1);
|
|
else if(b == 1)
|
|
return mp_rat_copy(a, c);
|
|
|
|
/* Since rationals are always stored in lowest terms, it is not
|
|
necessary to reduce again when raising to an integer power. */
|
|
if((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c));
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_compare(a, b) */
|
|
|
|
int mp_rat_compare(mp_rat a, mp_rat b)
|
|
{
|
|
/* Quick check for opposite signs. Works because the sign of the
|
|
numerator is always definitive. */
|
|
if(MP_SIGN(MP_NUMER_P(a)) != MP_SIGN(MP_NUMER_P(b))) {
|
|
if(MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
|
|
return 1;
|
|
else
|
|
return -1;
|
|
}
|
|
else {
|
|
/* Compare absolute magnitudes; if both are positive, the answer
|
|
stands, otherwise it needs to be reflected about zero. */
|
|
int cmp = mp_rat_compare_unsigned(a, b);
|
|
|
|
if(MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS)
|
|
return cmp;
|
|
else
|
|
return -cmp;
|
|
}
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_compare_unsigned(a, b) */
|
|
|
|
int mp_rat_compare_unsigned(mp_rat a, mp_rat b)
|
|
{
|
|
/* If the denominators are equal, we can quickly compare numerators
|
|
without multiplying. Otherwise, we actually have to do some work. */
|
|
if(mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0)
|
|
return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b));
|
|
|
|
else {
|
|
mpz_t temp[2];
|
|
mp_result res;
|
|
int cmp = INT_MAX, last = 0;
|
|
|
|
/* t0 = num(a) * den(b), t1 = num(b) * den(a) */
|
|
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
|
|
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
|
|
|
|
if((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK ||
|
|
(res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1));
|
|
|
|
CLEANUP:
|
|
while(--last >= 0)
|
|
mp_int_clear(TEMP(last));
|
|
|
|
return cmp;
|
|
}
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_compare_zero(r) */
|
|
|
|
int mp_rat_compare_zero(mp_rat r)
|
|
{
|
|
return mp_int_compare_zero(MP_NUMER_P(r));
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_compare_value(r, n, d) */
|
|
|
|
int mp_rat_compare_value(mp_rat r, int n, int d)
|
|
{
|
|
mpq_t tmp;
|
|
mp_result res;
|
|
int out = INT_MAX;
|
|
|
|
if((res = mp_rat_init(&tmp)) != MP_OK)
|
|
return out;
|
|
if((res = mp_rat_set_value(&tmp, n, d)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
out = mp_rat_compare(r, &tmp);
|
|
|
|
CLEANUP:
|
|
mp_rat_clear(&tmp);
|
|
return out;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_is_integer(r) */
|
|
|
|
int mp_rat_is_integer(mp_rat r)
|
|
{
|
|
return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_to_ints(r, *num, *den) */
|
|
|
|
mp_result mp_rat_to_ints(mp_rat r, int *num, int *den)
|
|
{
|
|
mp_result res;
|
|
|
|
if((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK)
|
|
return res;
|
|
|
|
res = mp_int_to_int(MP_DENOM_P(r), den);
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_to_string(r, radix, *str, limit) */
|
|
|
|
mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit)
|
|
{
|
|
char *start;
|
|
int len;
|
|
mp_result res;
|
|
|
|
/* Write the numerator. The sign of the rational number is written
|
|
by the underlying integer implementation. */
|
|
if((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK)
|
|
return res;
|
|
|
|
/* If the value is zero, don't bother writing any denominator */
|
|
if(mp_int_compare_zero(MP_NUMER_P(r)) == 0)
|
|
return MP_OK;
|
|
|
|
/* Locate the end of the numerator, and make sure we are not going to
|
|
exceed the limit by writing a slash. */
|
|
len = strlen(str);
|
|
start = str + len;
|
|
limit -= len;
|
|
if(limit == 0)
|
|
return MP_TRUNC;
|
|
|
|
*start++ = '/';
|
|
limit -= 1;
|
|
|
|
res = mp_int_to_string(MP_DENOM_P(r), radix, start, limit);
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_to_decimal(r, radix, prec, *str, limit) */
|
|
mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec,
|
|
mp_round_mode round, char *str, int limit)
|
|
{
|
|
mpz_t temp[3];
|
|
mp_result res;
|
|
char *start = str;
|
|
int len, lead_0, left = limit, last = 0;
|
|
|
|
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last);
|
|
SETUP(mp_int_init(TEMP(last)), last);
|
|
SETUP(mp_int_init(TEMP(last)), last);
|
|
|
|
/* Get the unsigned integer part by dividing denominator into the
|
|
absolute value of the numerator. */
|
|
mp_int_abs(TEMP(0), TEMP(0));
|
|
if((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
/* Now: T0 = integer portion, unsigned;
|
|
T1 = remainder, from which fractional part is computed. */
|
|
|
|
/* Count up leading zeroes after the radix point. */
|
|
for(lead_0 = 0; lead_0 < prec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0;
|
|
++lead_0) {
|
|
if((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* Multiply remainder by a power of the radix sufficient to get the
|
|
right number of significant figures. */
|
|
if(prec > lead_0) {
|
|
if((res = mp_int_expt_value(radix, prec - lead_0, TEMP(2))) != MP_OK)
|
|
goto CLEANUP;
|
|
if((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
if((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
/* Now: T1 = significant digits of fractional part;
|
|
T2 = leftovers, to use for rounding.
|
|
|
|
At this point, what we do depends on the rounding mode. The
|
|
default is MP_ROUND_DOWN, for which everything is as it should be
|
|
already.
|
|
*/
|
|
switch(round) {
|
|
int cmp;
|
|
|
|
case MP_ROUND_UP:
|
|
if(mp_int_compare_zero(TEMP(2)) != 0) {
|
|
if(prec == 0)
|
|
res = mp_int_add_value(TEMP(0), 1, TEMP(0));
|
|
else
|
|
res = mp_int_add_value(TEMP(1), 1, TEMP(1));
|
|
}
|
|
break;
|
|
|
|
case MP_ROUND_HALF_UP:
|
|
case MP_ROUND_HALF_DOWN:
|
|
if((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r));
|
|
|
|
if(round == MP_ROUND_HALF_UP)
|
|
cmp += 1;
|
|
|
|
if(cmp > 0) {
|
|
if(prec == 0)
|
|
res = mp_int_add_value(TEMP(0), 1, TEMP(0));
|
|
else
|
|
res = mp_int_add_value(TEMP(1), 1, TEMP(1));
|
|
}
|
|
break;
|
|
|
|
case MP_ROUND_DOWN:
|
|
break; /* No action required */
|
|
|
|
default:
|
|
return MP_BADARG; /* Invalid rounding specifier */
|
|
}
|
|
|
|
/* The sign of the output should be the sign of the numerator, but
|
|
if all the displayed digits will be zero due to the precision, a
|
|
negative shouldn't be shown. */
|
|
if(MP_SIGN(MP_NUMER_P(r)) == MP_NEG &&
|
|
(mp_int_compare_zero(TEMP(0)) != 0 ||
|
|
mp_int_compare_zero(TEMP(1)) != 0)) {
|
|
*start++ = '-';
|
|
left -= 1;
|
|
}
|
|
|
|
if((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
len = strlen(start);
|
|
start += len;
|
|
left -= len;
|
|
|
|
if(prec == 0)
|
|
goto CLEANUP;
|
|
|
|
*start++ = '.';
|
|
left -= 1;
|
|
|
|
if(left < prec + 1) {
|
|
res = MP_TRUNC;
|
|
goto CLEANUP;
|
|
}
|
|
|
|
memset(start, '0', lead_0 - 1);
|
|
left -= lead_0;
|
|
start += lead_0 - 1;
|
|
|
|
res = mp_int_to_string(TEMP(1), radix, start, left);
|
|
|
|
CLEANUP:
|
|
while(--last >= 0)
|
|
mp_int_clear(TEMP(last));
|
|
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_string_len(r, radix) */
|
|
|
|
mp_result mp_rat_string_len(mp_rat r, mp_size radix)
|
|
{
|
|
mp_result n_len, d_len = 0;
|
|
|
|
n_len = mp_int_string_len(MP_NUMER_P(r), radix);
|
|
|
|
if(mp_int_compare_zero(MP_NUMER_P(r)) != 0)
|
|
d_len = mp_int_string_len(MP_DENOM_P(r), radix);
|
|
|
|
/* Though simplistic, this formula is correct. Space for the sign
|
|
flag is included in n_len, and the space for the NUL that is
|
|
counted in n_len counts for the separator here. The space for
|
|
the NUL counted in d_len counts for the final terminator here. */
|
|
|
|
return n_len + d_len;
|
|
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_decimal_len(r, radix, prec) */
|
|
|
|
mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec)
|
|
{
|
|
int z_len, f_len;
|
|
|
|
z_len = mp_int_string_len(MP_NUMER_P(r), radix);
|
|
|
|
if(prec == 0)
|
|
f_len = 1; /* terminator only */
|
|
else
|
|
f_len = 1 + prec + 1; /* decimal point, digits, terminator */
|
|
|
|
return z_len + f_len;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_read_string(r, radix, *str) */
|
|
|
|
mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str)
|
|
{
|
|
return mp_rat_read_cstring(r, radix, str, NULL);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_read_cstring(r, radix, *str, **end) */
|
|
|
|
mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str,
|
|
char **end)
|
|
{
|
|
mp_result res;
|
|
char *endp;
|
|
|
|
if((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
|
|
(res != MP_TRUNC))
|
|
return res;
|
|
|
|
/* Skip whitespace between numerator and (possible) separator */
|
|
while(isspace((unsigned char) *endp))
|
|
++endp;
|
|
|
|
/* If there is no separator, we will stop reading at this point. */
|
|
if(*endp != '/') {
|
|
mp_int_set_value(MP_DENOM_P(r), 1);
|
|
if(end != NULL)
|
|
*end = endp;
|
|
return res;
|
|
}
|
|
|
|
++endp; /* skip separator */
|
|
if((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK)
|
|
return res;
|
|
|
|
/* Make sure the value is well-defined */
|
|
if(mp_int_compare_zero(MP_DENOM_P(r)) == 0)
|
|
return MP_UNDEF;
|
|
|
|
/* Reduce to lowest terms */
|
|
return s_rat_reduce(r);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_read_ustring(r, radix, *str, **end) */
|
|
|
|
/* Read a string and figure out what format it's in. The radix may be
|
|
supplied as zero to use "default" behaviour.
|
|
|
|
This function will accept either a/b notation or decimal notation.
|
|
*/
|
|
mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str,
|
|
char **end)
|
|
{
|
|
char *endp;
|
|
mp_result res;
|
|
|
|
if(radix == 0)
|
|
radix = 10; /* default to decimal input */
|
|
|
|
if((res = mp_rat_read_cstring(r, radix, str, &endp)) != MP_OK) {
|
|
if(res == MP_TRUNC) {
|
|
if(*endp == '.')
|
|
res = mp_rat_read_cdecimal(r, radix, str, &endp);
|
|
}
|
|
else
|
|
return res;
|
|
}
|
|
|
|
if(end != NULL)
|
|
*end = endp;
|
|
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_read_decimal(r, radix, *str) */
|
|
|
|
mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str)
|
|
{
|
|
return mp_rat_read_cdecimal(r, radix, str, NULL);
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_rat_read_cdecimal(r, radix, *str, **end) */
|
|
|
|
mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str,
|
|
char **end)
|
|
{
|
|
mp_result res;
|
|
mp_sign osign;
|
|
char *endp;
|
|
|
|
while(isspace((unsigned char) *str))
|
|
++str;
|
|
|
|
switch(*str) {
|
|
case '-':
|
|
osign = MP_NEG;
|
|
break;
|
|
default:
|
|
osign = MP_ZPOS;
|
|
}
|
|
|
|
if((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK &&
|
|
(res != MP_TRUNC))
|
|
return res;
|
|
|
|
/* This needs to be here. */
|
|
(void) mp_int_set_value(MP_DENOM_P(r), 1);
|
|
|
|
if(*endp != '.') {
|
|
if(end != NULL)
|
|
*end = endp;
|
|
return res;
|
|
}
|
|
|
|
/* If the character following the decimal point is whitespace or a
|
|
sign flag, we will consider this a truncated value. This special
|
|
case is because mp_int_read_string() will consider whitespace or
|
|
sign flags to be valid starting characters for a value, and we do
|
|
not want them following the decimal point.
|
|
|
|
Once we have done this check, it is safe to read in the value of
|
|
the fractional piece as a regular old integer.
|
|
*/
|
|
++endp;
|
|
if(*endp == '\0') {
|
|
if(end != NULL)
|
|
*end = endp;
|
|
return MP_OK;
|
|
}
|
|
else if(isspace((unsigned char) *endp) || *endp == '-' || *endp == '+') {
|
|
return MP_TRUNC;
|
|
}
|
|
else {
|
|
mpz_t frac;
|
|
mp_result save_res;
|
|
char *save = endp;
|
|
int num_lz = 0;
|
|
|
|
/* Make a temporary to hold the part after the decimal point. */
|
|
if((res = mp_int_init(&frac)) != MP_OK)
|
|
return res;
|
|
|
|
if((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK &&
|
|
(res != MP_TRUNC))
|
|
goto CLEANUP;
|
|
|
|
/* Save this response for later. */
|
|
save_res = res;
|
|
|
|
if(mp_int_compare_zero(&frac) == 0)
|
|
goto FINISHED;
|
|
|
|
/* Discard trailing zeroes (somewhat inefficiently) */
|
|
while(mp_int_divisible_value(&frac, radix))
|
|
if((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
/* Count leading zeros after the decimal point */
|
|
while(save[num_lz] == '0')
|
|
++num_lz;
|
|
|
|
/* Find the least power of the radix that is at least as large as
|
|
the significant value of the fractional part, ignoring leading
|
|
zeroes. */
|
|
(void) mp_int_set_value(MP_DENOM_P(r), radix);
|
|
|
|
while(mp_int_compare(MP_DENOM_P(r), &frac) < 0) {
|
|
if((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* Also shift by enough to account for leading zeroes */
|
|
while(num_lz > 0) {
|
|
if((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
--num_lz;
|
|
}
|
|
|
|
/* Having found this power, shift the numerator leftward that
|
|
many, digits, and add the nonzero significant digits of the
|
|
fractional part to get the result. */
|
|
if((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
{ /* This addition needs to be unsigned. */
|
|
MP_SIGN(MP_NUMER_P(r)) = MP_ZPOS;
|
|
if((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
MP_SIGN(MP_NUMER_P(r)) = osign;
|
|
}
|
|
if((res = s_rat_reduce(r)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
/* At this point, what we return depends on whether reading the
|
|
fractional part was truncated or not. That information is
|
|
saved from when we called mp_int_read_string() above. */
|
|
FINISHED:
|
|
res = save_res;
|
|
if(end != NULL)
|
|
*end = endp;
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&frac);
|
|
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* Private functions for internal use. Make unchecked assumptions
|
|
about format and validity of inputs. */
|
|
|
|
/* {{{ s_rat_reduce(r) */
|
|
|
|
static mp_result s_rat_reduce(mp_rat r)
|
|
{
|
|
mpz_t gcd;
|
|
mp_result res = MP_OK;
|
|
|
|
if(mp_int_compare_zero(MP_NUMER_P(r)) == 0) {
|
|
mp_int_set_value(MP_DENOM_P(r), 1);
|
|
return MP_OK;
|
|
}
|
|
|
|
/* If the greatest common divisor of the numerator and denominator
|
|
is greater than 1, divide it out. */
|
|
if((res = mp_int_init(&gcd)) != MP_OK)
|
|
return res;
|
|
|
|
if((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
if(mp_int_compare_value(&gcd, 1) != 0) {
|
|
if((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK)
|
|
goto CLEANUP;
|
|
if((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK)
|
|
goto CLEANUP;
|
|
}
|
|
|
|
/* Fix up the signs of numerator and denominator */
|
|
if(MP_SIGN(MP_NUMER_P(r)) == MP_SIGN(MP_DENOM_P(r)))
|
|
MP_SIGN(MP_NUMER_P(r)) = MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
|
|
else {
|
|
MP_SIGN(MP_NUMER_P(r)) = MP_NEG;
|
|
MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS;
|
|
}
|
|
|
|
CLEANUP:
|
|
mp_int_clear(&gcd);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ s_rat_combine(a, b, c, comb_f) */
|
|
|
|
static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c,
|
|
mp_result (*comb_f)(mp_int, mp_int, mp_int))
|
|
{
|
|
mp_result res;
|
|
|
|
/* Shortcut when denominators are already common */
|
|
if(mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) {
|
|
if((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK)
|
|
return res;
|
|
if((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK)
|
|
return res;
|
|
|
|
return s_rat_reduce(c);
|
|
}
|
|
else {
|
|
mpz_t temp[2];
|
|
int last = 0;
|
|
|
|
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last);
|
|
SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last);
|
|
|
|
if((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK)
|
|
goto CLEANUP;
|
|
if((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK)
|
|
goto CLEANUP;
|
|
if((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK)
|
|
goto CLEANUP;
|
|
|
|
res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c));
|
|
|
|
CLEANUP:
|
|
while(--last >= 0)
|
|
mp_int_clear(TEMP(last));
|
|
|
|
if(res == MP_OK)
|
|
return s_rat_reduce(c);
|
|
else
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* Here there be dragons */
|