133 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_PRIME_NEXT_PRIME_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* finds the next prime after the number "a" using "t" trials
 | |
|  * of Miller-Rabin.
 | |
|  *
 | |
|  * bbs_style = 1 means the prime must be congruent to 3 mod 4
 | |
|  */
 | |
| mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style)
 | |
| {
 | |
|    int      x, y;
 | |
|    mp_ord   cmp;
 | |
|    mp_err   err;
 | |
|    mp_bool  res = MP_NO;
 | |
|    mp_digit res_tab[PRIVATE_MP_PRIME_TAB_SIZE], step, kstep;
 | |
|    mp_int   b;
 | |
| 
 | |
|    /* force positive */
 | |
|    a->sign = MP_ZPOS;
 | |
| 
 | |
|    /* simple algo if a is less than the largest prime in the table */
 | |
|    if (mp_cmp_d(a, s_mp_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE-1]) == MP_LT) {
 | |
|       /* find which prime it is bigger than "a" */
 | |
|       for (x = 0; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
 | |
|          cmp = mp_cmp_d(a, s_mp_prime_tab[x]);
 | |
|          if (cmp == MP_EQ) {
 | |
|             continue;
 | |
|          }
 | |
|          if (cmp != MP_GT) {
 | |
|             if ((bbs_style == 1) && ((s_mp_prime_tab[x] & 3u) != 3u)) {
 | |
|                /* try again until we get a prime congruent to 3 mod 4 */
 | |
|                continue;
 | |
|             } else {
 | |
|                mp_set(a, s_mp_prime_tab[x]);
 | |
|                return MP_OKAY;
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|       /* fall through to the sieve */
 | |
|    }
 | |
| 
 | |
|    /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
 | |
|    if (bbs_style == 1) {
 | |
|       kstep   = 4;
 | |
|    } else {
 | |
|       kstep   = 2;
 | |
|    }
 | |
| 
 | |
|    /* at this point we will use a combination of a sieve and Miller-Rabin */
 | |
| 
 | |
|    if (bbs_style == 1) {
 | |
|       /* if a mod 4 != 3 subtract the correct value to make it so */
 | |
|       if ((a->dp[0] & 3u) != 3u) {
 | |
|          if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
 | |
|             return err;
 | |
|          }
 | |
|       }
 | |
|    } else {
 | |
|       if (MP_IS_EVEN(a)) {
 | |
|          /* force odd */
 | |
|          if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
 | |
|             return err;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* generate the restable */
 | |
|    for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
 | |
|       if ((err = mp_mod_d(a, s_mp_prime_tab[x], res_tab + x)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* init temp used for Miller-Rabin Testing */
 | |
|    if ((err = mp_init(&b)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       /* skip to the next non-trivially divisible candidate */
 | |
|       step = 0;
 | |
|       do {
 | |
|          /* y == 1 if any residue was zero [e.g. cannot be prime] */
 | |
|          y     =  0;
 | |
| 
 | |
|          /* increase step to next candidate */
 | |
|          step += kstep;
 | |
| 
 | |
|          /* compute the new residue without using division */
 | |
|          for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
 | |
|             /* add the step to each residue */
 | |
|             res_tab[x] += kstep;
 | |
| 
 | |
|             /* subtract the modulus [instead of using division] */
 | |
|             if (res_tab[x] >= s_mp_prime_tab[x]) {
 | |
|                res_tab[x]  -= s_mp_prime_tab[x];
 | |
|             }
 | |
| 
 | |
|             /* set flag if zero */
 | |
|             if (res_tab[x] == 0u) {
 | |
|                y = 1;
 | |
|             }
 | |
|          }
 | |
|       } while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep)));
 | |
| 
 | |
|       /* add the step */
 | |
|       if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       /* if didn't pass sieve and step == MP_MAX then skip test */
 | |
|       if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) {
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if (res == MP_YES) {
 | |
|          break;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    err = MP_OKAY;
 | |
| LBL_ERR:
 | |
|    mp_clear(&b);
 | |
|    return err;
 | |
| }
 | |
| 
 | |
| #endif
 | 
