649 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * fortuna.c
 | 
						|
 *		Fortuna-like PRNG.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2005 Marko Kreen
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions
 | 
						|
 * are met:
 | 
						|
 * 1. Redistributions of source code must retain the above copyright
 | 
						|
 *	  notice, this list of conditions and the following disclaimer.
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright
 | 
						|
 *	  notice, this list of conditions and the following disclaimer in the
 | 
						|
 *	  documentation and/or other materials provided with the distribution.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | 
						|
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | 
						|
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | 
						|
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | 
						|
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | 
						|
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | 
						|
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | 
						|
 * SUCH DAMAGE.
 | 
						|
 *
 | 
						|
 * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
 | 
						|
 */
 | 
						|
 | 
						|
#include <config.h>
 | 
						|
#include <roken.h>
 | 
						|
#include <rand.h>
 | 
						|
#include <heim_threads.h>
 | 
						|
 | 
						|
#ifdef KRB5
 | 
						|
#include <krb5-types.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include "randi.h"
 | 
						|
#include "aes.h"
 | 
						|
#include "sha.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Why Fortuna-like: There does not seem to be any definitive reference
 | 
						|
 * on Fortuna in the net.  Instead this implementation is based on
 | 
						|
 * following references:
 | 
						|
 *
 | 
						|
 * http://en.wikipedia.org/wiki/Fortuna_(PRNG)
 | 
						|
 *	 - Wikipedia article
 | 
						|
 * http://jlcooke.ca/random/
 | 
						|
 *	 - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * There is some confusion about whether and how to carry forward
 | 
						|
 * the state of the pools.	Seems like original Fortuna does not
 | 
						|
 * do it, resetting hash after each request.  I guess expecting
 | 
						|
 * feeding to happen more often that requesting.   This is absolutely
 | 
						|
 * unsuitable for pgcrypto, as nothing asynchronous happens here.
 | 
						|
 *
 | 
						|
 * J.L. Cooke fixed this by feeding previous hash to new re-initialized
 | 
						|
 * hash context.
 | 
						|
 *
 | 
						|
 * Fortuna predecessor Yarrow requires ability to query intermediate
 | 
						|
 * 'final result' from hash, without affecting it.
 | 
						|
 *
 | 
						|
 * This implementation uses the Yarrow method - asking intermediate
 | 
						|
 * results, but continuing with old state.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Algorithm parameters
 | 
						|
 */
 | 
						|
 | 
						|
#define NUM_POOLS		32
 | 
						|
 | 
						|
/* in microseconds */
 | 
						|
#define RESEED_INTERVAL 100000	/* 0.1 sec */
 | 
						|
 | 
						|
/* for one big request, reseed after this many bytes */
 | 
						|
#define RESEED_BYTES	(1024*1024)
 | 
						|
 | 
						|
/*
 | 
						|
 * Skip reseed if pool 0 has less than this many
 | 
						|
 * bytes added since last reseed.
 | 
						|
 */
 | 
						|
#define POOL0_FILL		(256/8)
 | 
						|
 | 
						|
/*
 | 
						|
 * Algorithm constants
 | 
						|
 */
 | 
						|
 | 
						|
/* Both cipher key size and hash result size */
 | 
						|
#define BLOCK			32
 | 
						|
 | 
						|
/* cipher block size */
 | 
						|
#define CIPH_BLOCK		16
 | 
						|
 | 
						|
/* for internal wrappers */
 | 
						|
#define MD_CTX			SHA256_CTX
 | 
						|
#define CIPH_CTX		AES_KEY
 | 
						|
 | 
						|
struct fortuna_state
 | 
						|
{
 | 
						|
    unsigned char	counter[CIPH_BLOCK];
 | 
						|
    unsigned char	result[CIPH_BLOCK];
 | 
						|
    unsigned char	key[BLOCK];
 | 
						|
    MD_CTX		pool[NUM_POOLS];
 | 
						|
    CIPH_CTX		ciph;
 | 
						|
    unsigned		reseed_count;
 | 
						|
    struct timeval	last_reseed_time;
 | 
						|
    unsigned		pool0_bytes;
 | 
						|
    unsigned		rnd_pos;
 | 
						|
    int			tricks_done;
 | 
						|
    pid_t		pid;
 | 
						|
};
 | 
						|
typedef struct fortuna_state FState;
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Use our own wrappers here.
 | 
						|
 * - Need to get intermediate result from digest, without affecting it.
 | 
						|
 * - Need re-set key on a cipher context.
 | 
						|
 * - Algorithms are guaranteed to exist.
 | 
						|
 * - No memory allocations.
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
ciph_init(CIPH_CTX * ctx, const unsigned char *key, int klen)
 | 
						|
{
 | 
						|
    AES_set_encrypt_key(key, klen * 8, ctx);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ciph_encrypt(CIPH_CTX * ctx, const unsigned char *in, unsigned char *out)
 | 
						|
{
 | 
						|
    AES_encrypt(in, out, ctx);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
md_init(MD_CTX * ctx)
 | 
						|
{
 | 
						|
    SHA256_Init(ctx);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
md_update(MD_CTX * ctx, const unsigned char *data, int len)
 | 
						|
{
 | 
						|
    SHA256_Update(ctx, data, len);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
md_result(MD_CTX * ctx, unsigned char *dst)
 | 
						|
{
 | 
						|
    SHA256_CTX	tmp;
 | 
						|
 | 
						|
    memcpy(&tmp, ctx, sizeof(*ctx));
 | 
						|
    SHA256_Final(dst, &tmp);
 | 
						|
    memset_s(&tmp, sizeof(tmp), 0, sizeof(tmp));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * initialize state
 | 
						|
 */
 | 
						|
static void
 | 
						|
init_state(FState * st)
 | 
						|
{
 | 
						|
    int			i;
 | 
						|
 | 
						|
    memset(st, 0, sizeof(*st));
 | 
						|
    for (i = 0; i < NUM_POOLS; i++)
 | 
						|
	md_init(&st->pool[i]);
 | 
						|
    st->pid = getpid();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Endianess does not matter.
 | 
						|
 * It just needs to change without repeating.
 | 
						|
 */
 | 
						|
static void
 | 
						|
inc_counter(FState * st)
 | 
						|
{
 | 
						|
    uint32_t   *val = (uint32_t *) st->counter;
 | 
						|
 | 
						|
    if (++val[0])
 | 
						|
	return;
 | 
						|
    if (++val[1])
 | 
						|
	return;
 | 
						|
    if (++val[2])
 | 
						|
	return;
 | 
						|
    ++val[3];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is called 'cipher in counter mode'.
 | 
						|
 */
 | 
						|
static void
 | 
						|
encrypt_counter(FState * st, unsigned char *dst)
 | 
						|
{
 | 
						|
    ciph_encrypt(&st->ciph, st->counter, dst);
 | 
						|
    inc_counter(st);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * The time between reseed must be at least RESEED_INTERVAL
 | 
						|
 * microseconds.
 | 
						|
 */
 | 
						|
static int
 | 
						|
enough_time_passed(FState * st)
 | 
						|
{
 | 
						|
    int			ok;
 | 
						|
    struct timeval tv;
 | 
						|
    struct timeval *last = &st->last_reseed_time;
 | 
						|
 | 
						|
    gettimeofday(&tv, NULL);
 | 
						|
 | 
						|
    /* check how much time has passed */
 | 
						|
    ok = 0;
 | 
						|
    if (tv.tv_sec > last->tv_sec + 1)
 | 
						|
	ok = 1;
 | 
						|
    else if (tv.tv_sec == last->tv_sec + 1)
 | 
						|
    {
 | 
						|
	if (1000000 + tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
 | 
						|
	    ok = 1;
 | 
						|
    }
 | 
						|
    else if (tv.tv_usec - last->tv_usec >= RESEED_INTERVAL)
 | 
						|
	ok = 1;
 | 
						|
 | 
						|
    /* reseed will happen, update last_reseed_time */
 | 
						|
    if (ok)
 | 
						|
	memcpy(last, &tv, sizeof(tv));
 | 
						|
 | 
						|
    memset_s(&tv, sizeof(tv), 0, sizeof(tv));
 | 
						|
 | 
						|
    return ok;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * generate new key from all the pools
 | 
						|
 */
 | 
						|
static void
 | 
						|
reseed(FState * st)
 | 
						|
{
 | 
						|
    unsigned	k;
 | 
						|
    unsigned	n;
 | 
						|
    MD_CTX		key_md;
 | 
						|
    unsigned char	buf[BLOCK];
 | 
						|
 | 
						|
    /* set pool as empty */
 | 
						|
    st->pool0_bytes = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
 | 
						|
     */
 | 
						|
    n = ++st->reseed_count;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The goal: use k-th pool only 1/(2^k) of the time.
 | 
						|
     */
 | 
						|
    md_init(&key_md);
 | 
						|
    for (k = 0; k < NUM_POOLS; k++)
 | 
						|
    {
 | 
						|
	md_result(&st->pool[k], buf);
 | 
						|
	md_update(&key_md, buf, BLOCK);
 | 
						|
 | 
						|
	if (n & 1 || !n)
 | 
						|
	    break;
 | 
						|
	n >>= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* add old key into mix too */
 | 
						|
    md_update(&key_md, st->key, BLOCK);
 | 
						|
 | 
						|
    /* add pid to make output diverse after fork() */
 | 
						|
    md_update(&key_md, (const unsigned char *)&st->pid, sizeof(st->pid));
 | 
						|
 | 
						|
    /* now we have new key */
 | 
						|
    md_result(&key_md, st->key);
 | 
						|
 | 
						|
    /* use new key */
 | 
						|
    ciph_init(&st->ciph, st->key, BLOCK);
 | 
						|
 | 
						|
    memset_s(&key_md, sizeof(key_md), 0, sizeof(key_md));
 | 
						|
    memset_s(buf, sizeof(buf), 0, sizeof(buf));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Pick a random pool.	This uses key bytes as random source.
 | 
						|
 */
 | 
						|
static unsigned
 | 
						|
get_rand_pool(FState * st)
 | 
						|
{
 | 
						|
    unsigned	rnd;
 | 
						|
 | 
						|
    /*
 | 
						|
     * This slightly prefers lower pools - thats OK.
 | 
						|
     */
 | 
						|
    rnd = st->key[st->rnd_pos] % NUM_POOLS;
 | 
						|
 | 
						|
    st->rnd_pos++;
 | 
						|
    if (st->rnd_pos >= BLOCK)
 | 
						|
	st->rnd_pos = 0;
 | 
						|
 | 
						|
    return rnd;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * update pools
 | 
						|
 */
 | 
						|
static void
 | 
						|
add_entropy(FState * st, const unsigned char *data, unsigned len)
 | 
						|
{
 | 
						|
    unsigned		pos;
 | 
						|
    unsigned char	hash[BLOCK];
 | 
						|
    MD_CTX		md;
 | 
						|
 | 
						|
    /* hash given data */
 | 
						|
    md_init(&md);
 | 
						|
    md_update(&md, data, len);
 | 
						|
    md_result(&md, hash);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Make sure the pool 0 is initialized, then update randomly.
 | 
						|
     */
 | 
						|
    if (st->reseed_count == 0)
 | 
						|
	pos = 0;
 | 
						|
    else
 | 
						|
	pos = get_rand_pool(st);
 | 
						|
    md_update(&st->pool[pos], hash, BLOCK);
 | 
						|
 | 
						|
    if (pos == 0)
 | 
						|
	st->pool0_bytes += len;
 | 
						|
 | 
						|
    memset_s(hash, sizeof(hash), 0, sizeof(hash));
 | 
						|
    memset_s(&md, sizeof(md), 0, sizeof(md));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Just take 2 next blocks as new key
 | 
						|
 */
 | 
						|
static void
 | 
						|
rekey(FState * st)
 | 
						|
{
 | 
						|
    encrypt_counter(st, st->key);
 | 
						|
    encrypt_counter(st, st->key + CIPH_BLOCK);
 | 
						|
    ciph_init(&st->ciph, st->key, BLOCK);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Hide public constants. (counter, pools > 0)
 | 
						|
 *
 | 
						|
 * This can also be viewed as spreading the startup
 | 
						|
 * entropy over all of the components.
 | 
						|
 */
 | 
						|
static void
 | 
						|
startup_tricks(FState * st)
 | 
						|
{
 | 
						|
    int			i;
 | 
						|
    unsigned char	buf[BLOCK];
 | 
						|
 | 
						|
    /* Use next block as counter. */
 | 
						|
    encrypt_counter(st, st->counter);
 | 
						|
 | 
						|
    /* Now shuffle pools, excluding #0 */
 | 
						|
    for (i = 1; i < NUM_POOLS; i++)
 | 
						|
    {
 | 
						|
	encrypt_counter(st, buf);
 | 
						|
	encrypt_counter(st, buf + CIPH_BLOCK);
 | 
						|
	md_update(&st->pool[i], buf, BLOCK);
 | 
						|
    }
 | 
						|
    memset_s(buf, sizeof(buf), 0, sizeof(buf));
 | 
						|
 | 
						|
    /* Hide the key. */
 | 
						|
    rekey(st);
 | 
						|
 | 
						|
    /* This can be done only once. */
 | 
						|
    st->tricks_done = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
extract_data(FState * st, unsigned count, unsigned char *dst)
 | 
						|
{
 | 
						|
    unsigned	n;
 | 
						|
    unsigned	block_nr = 0;
 | 
						|
    pid_t	pid = getpid();
 | 
						|
 | 
						|
    /* Should we reseed? */
 | 
						|
    if (st->pool0_bytes >= POOL0_FILL || st->reseed_count == 0)
 | 
						|
	if (enough_time_passed(st))
 | 
						|
	    reseed(st);
 | 
						|
 | 
						|
    /* Do some randomization on first call */
 | 
						|
    if (!st->tricks_done)
 | 
						|
	startup_tricks(st);
 | 
						|
 | 
						|
    /* If we forked, force a reseed again */
 | 
						|
    if (pid != st->pid) {
 | 
						|
	st->pid = pid;
 | 
						|
	reseed(st);
 | 
						|
    }
 | 
						|
 | 
						|
    while (count > 0)
 | 
						|
    {
 | 
						|
	/* produce bytes */
 | 
						|
	encrypt_counter(st, st->result);
 | 
						|
 | 
						|
	/* copy result */
 | 
						|
	if (count > CIPH_BLOCK)
 | 
						|
	    n = CIPH_BLOCK;
 | 
						|
	else
 | 
						|
	    n = count;
 | 
						|
	memcpy(dst, st->result, n);
 | 
						|
	dst += n;
 | 
						|
	count -= n;
 | 
						|
 | 
						|
	/* must not give out too many bytes with one key */
 | 
						|
	block_nr++;
 | 
						|
	if (block_nr > (RESEED_BYTES / CIPH_BLOCK))
 | 
						|
	{
 | 
						|
	    rekey(st);
 | 
						|
	    block_nr = 0;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    /* Set new key for next request. */
 | 
						|
    rekey(st);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * public interface
 | 
						|
 */
 | 
						|
 | 
						|
static FState	main_state;
 | 
						|
static int	init_done;
 | 
						|
static int	have_entropy;
 | 
						|
#define FORTUNA_RESEED_BYTE	10000
 | 
						|
static unsigned	resend_bytes;
 | 
						|
 | 
						|
/*
 | 
						|
 * This mutex protects all of the above static elements from concurrent
 | 
						|
 * access by multiple threads
 | 
						|
 */
 | 
						|
static HEIMDAL_MUTEX fortuna_mutex = HEIMDAL_MUTEX_INITIALIZER;
 | 
						|
 | 
						|
/*
 | 
						|
 * Try our best to do an initial seed
 | 
						|
 */
 | 
						|
#define INIT_BYTES	128
 | 
						|
 | 
						|
/*
 | 
						|
 * fortuna_mutex must be held across calls to this function
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
fortuna_reseed(void)
 | 
						|
{
 | 
						|
    int entropy_p = 0;
 | 
						|
 | 
						|
    if (!init_done)
 | 
						|
	abort();
 | 
						|
 | 
						|
#ifndef NO_RAND_UNIX_METHOD
 | 
						|
    {
 | 
						|
	unsigned char buf[INIT_BYTES];
 | 
						|
	if ((*hc_rand_unix_method.bytes)(buf, sizeof(buf)) == 1) {
 | 
						|
	    add_entropy(&main_state, buf, sizeof(buf));
 | 
						|
	    entropy_p = 1;
 | 
						|
	    memset_s(buf, sizeof(buf), 0, sizeof(buf));
 | 
						|
	}
 | 
						|
    }
 | 
						|
#endif
 | 
						|
#ifdef HAVE_ARC4RANDOM
 | 
						|
    {
 | 
						|
	uint32_t buf[INIT_BYTES / sizeof(uint32_t)];
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < sizeof(buf)/sizeof(buf[0]); i++)
 | 
						|
	    buf[i] = arc4random();
 | 
						|
	add_entropy(&main_state, (void *)buf, sizeof(buf));
 | 
						|
	entropy_p = 1;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /*
 | 
						|
     * Fall back to gattering data from timer and secret files, this
 | 
						|
     * is really the last resort.
 | 
						|
     */
 | 
						|
    if (!entropy_p) {
 | 
						|
	/* to save stackspace */
 | 
						|
	union {
 | 
						|
	    unsigned char buf[INIT_BYTES];
 | 
						|
	    unsigned char shad[1001];
 | 
						|
	} u;
 | 
						|
	int fd;
 | 
						|
 | 
						|
	/* add timer info */
 | 
						|
	if ((*hc_rand_timer_method.bytes)(u.buf, sizeof(u.buf)) == 1)
 | 
						|
	    add_entropy(&main_state, u.buf, sizeof(u.buf));
 | 
						|
	/* add /etc/shadow */
 | 
						|
	fd = open("/etc/shadow", O_RDONLY, 0);
 | 
						|
	if (fd >= 0) {
 | 
						|
	    rk_cloexec(fd);
 | 
						|
	    /* add_entropy will hash the buf */
 | 
						|
	    while (read(fd, (char *)u.shad, sizeof(u.shad)) > 0)
 | 
						|
		add_entropy(&main_state, u.shad, sizeof(u.shad));
 | 
						|
	    close(fd);
 | 
						|
	}
 | 
						|
 | 
						|
	memset_s(&u, sizeof(u), 0, sizeof(u));
 | 
						|
 | 
						|
	entropy_p = 1; /* sure about this ? */
 | 
						|
    }
 | 
						|
    {
 | 
						|
	pid_t pid = getpid();
 | 
						|
	add_entropy(&main_state, (void *)&pid, sizeof(pid));
 | 
						|
    }
 | 
						|
    {
 | 
						|
	struct timeval tv;
 | 
						|
	gettimeofday(&tv, NULL);
 | 
						|
	add_entropy(&main_state, (void *)&tv, sizeof(tv));
 | 
						|
    }
 | 
						|
#ifdef HAVE_GETUID
 | 
						|
    {
 | 
						|
	uid_t u = getuid();
 | 
						|
	add_entropy(&main_state, (void *)&u, sizeof(u));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return entropy_p;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fortuna_mutex must be held by callers of this function
 | 
						|
 */
 | 
						|
static int
 | 
						|
fortuna_init(void)
 | 
						|
{
 | 
						|
    if (!init_done)
 | 
						|
    {
 | 
						|
	init_state(&main_state);
 | 
						|
	init_done = 1;
 | 
						|
    }
 | 
						|
    if (!have_entropy)
 | 
						|
	have_entropy = fortuna_reseed();
 | 
						|
    return (init_done && have_entropy);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
fortuna_seed(const void *indata, int size)
 | 
						|
{
 | 
						|
    HEIMDAL_MUTEX_lock(&fortuna_mutex);
 | 
						|
 | 
						|
    fortuna_init();
 | 
						|
    add_entropy(&main_state, indata, size);
 | 
						|
    if (size >= INIT_BYTES)
 | 
						|
	have_entropy = 1;
 | 
						|
 | 
						|
    HEIMDAL_MUTEX_unlock(&fortuna_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
fortuna_bytes(unsigned char *outdata, int size)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    HEIMDAL_MUTEX_lock(&fortuna_mutex);
 | 
						|
 | 
						|
    if (!fortuna_init())
 | 
						|
	goto out;
 | 
						|
 | 
						|
    resend_bytes += size;
 | 
						|
    if (resend_bytes > FORTUNA_RESEED_BYTE || resend_bytes < size) {
 | 
						|
	resend_bytes = 0;
 | 
						|
	fortuna_reseed();
 | 
						|
    }
 | 
						|
    extract_data(&main_state, size, outdata);
 | 
						|
    ret = 1;
 | 
						|
 | 
						|
out:
 | 
						|
    HEIMDAL_MUTEX_unlock(&fortuna_mutex);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fortuna_cleanup(void)
 | 
						|
{
 | 
						|
    HEIMDAL_MUTEX_lock(&fortuna_mutex);
 | 
						|
 | 
						|
    init_done = 0;
 | 
						|
    have_entropy = 0;
 | 
						|
    memset_s(&main_state, sizeof(main_state), 0, sizeof(main_state));
 | 
						|
 | 
						|
    HEIMDAL_MUTEX_unlock(&fortuna_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fortuna_add(const void *indata, int size, double entropi)
 | 
						|
{
 | 
						|
    fortuna_seed(indata, size);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
fortuna_pseudorand(unsigned char *outdata, int size)
 | 
						|
{
 | 
						|
    return fortuna_bytes(outdata, size);
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
fortuna_status(void)
 | 
						|
{
 | 
						|
    int result;
 | 
						|
 | 
						|
    HEIMDAL_MUTEX_lock(&fortuna_mutex);
 | 
						|
    result = fortuna_init();
 | 
						|
    HEIMDAL_MUTEX_unlock(&fortuna_mutex);
 | 
						|
 | 
						|
    return result ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__GNUC__) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901)
 | 
						|
const RAND_METHOD hc_rand_fortuna_method = {
 | 
						|
    .seed = fortuna_seed,
 | 
						|
    .bytes = fortuna_bytes,
 | 
						|
    .cleanup = fortuna_cleanup,
 | 
						|
    .add = fortuna_add,
 | 
						|
    .pseudorand = fortuna_pseudorand,
 | 
						|
    .status = fortuna_status
 | 
						|
};
 | 
						|
#else
 | 
						|
const RAND_METHOD hc_rand_fortuna_method = {
 | 
						|
    fortuna_seed,
 | 
						|
    fortuna_bytes,
 | 
						|
    fortuna_cleanup,
 | 
						|
    fortuna_add,
 | 
						|
    fortuna_pseudorand,
 | 
						|
    fortuna_status
 | 
						|
};
 | 
						|
#endif
 | 
						|
 | 
						|
const RAND_METHOD *
 | 
						|
RAND_fortuna_method(void)
 | 
						|
{
 | 
						|
    return &hc_rand_fortuna_method;
 | 
						|
}
 |