103 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_MONTGOMERY_REDUCE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction */
 | |
| mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
 | |
| {
 | |
|    int      ix, digs;
 | |
|    mp_err   err;
 | |
|    mp_digit mu;
 | |
| 
 | |
|    /* can the fast reduction [comba] method be used?
 | |
|     *
 | |
|     * Note that unlike in mul you're safely allowed *less*
 | |
|     * than the available columns [255 per default] since carries
 | |
|     * are fixed up in the inner loop.
 | |
|     */
 | |
|    digs = (n->used * 2) + 1;
 | |
|    if ((digs < MP_WARRAY) &&
 | |
|        (x->used <= MP_WARRAY) &&
 | |
|        (n->used < MP_MAXFAST)) {
 | |
|       return s_mp_montgomery_reduce_fast(x, n, rho);
 | |
|    }
 | |
| 
 | |
|    /* grow the input as required */
 | |
|    if (x->alloc < digs) {
 | |
|       if ((err = mp_grow(x, digs)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
|    x->used = digs;
 | |
| 
 | |
|    for (ix = 0; ix < n->used; ix++) {
 | |
|       /* mu = ai * rho mod b
 | |
|        *
 | |
|        * The value of rho must be precalculated via
 | |
|        * montgomery_setup() such that
 | |
|        * it equals -1/n0 mod b this allows the
 | |
|        * following inner loop to reduce the
 | |
|        * input one digit at a time
 | |
|        */
 | |
|       mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
 | |
| 
 | |
|       /* a = a + mu * m * b**i */
 | |
|       {
 | |
|          int iy;
 | |
|          mp_digit *tmpn, *tmpx, u;
 | |
|          mp_word r;
 | |
| 
 | |
|          /* alias for digits of the modulus */
 | |
|          tmpn = n->dp;
 | |
| 
 | |
|          /* alias for the digits of x [the input] */
 | |
|          tmpx = x->dp + ix;
 | |
| 
 | |
|          /* set the carry to zero */
 | |
|          u = 0;
 | |
| 
 | |
|          /* Multiply and add in place */
 | |
|          for (iy = 0; iy < n->used; iy++) {
 | |
|             /* compute product and sum */
 | |
|             r       = ((mp_word)mu * (mp_word)*tmpn++) +
 | |
|                       (mp_word)u + (mp_word)*tmpx;
 | |
| 
 | |
|             /* get carry */
 | |
|             u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
 | |
| 
 | |
|             /* fix digit */
 | |
|             *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
 | |
|          }
 | |
|          /* At this point the ix'th digit of x should be zero */
 | |
| 
 | |
| 
 | |
|          /* propagate carries upwards as required*/
 | |
|          while (u != 0u) {
 | |
|             *tmpx   += u;
 | |
|             u        = *tmpx >> MP_DIGIT_BIT;
 | |
|             *tmpx++ &= MP_MASK;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* at this point the n.used'th least
 | |
|     * significant digits of x are all zero
 | |
|     * which means we can shift x to the
 | |
|     * right by n.used digits and the
 | |
|     * residue is unchanged.
 | |
|     */
 | |
| 
 | |
|    /* x = x/b**n.used */
 | |
|    mp_clamp(x);
 | |
|    mp_rshd(x, n->used);
 | |
| 
 | |
|    /* if x >= n then x = x - n */
 | |
|    if (mp_cmp_mag(x, n) != MP_LT) {
 | |
|       return s_mp_sub(x, n, x);
 | |
|    }
 | |
| 
 | |
|    return MP_OKAY;
 | |
| }
 | |
| #endif
 | 
