253 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			253 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_EXPTMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| #ifdef MP_LOW_MEM
 | |
|    #define TAB_SIZE 32
 | |
| #else
 | |
|    #define TAB_SIZE 256
 | |
| #endif
 | |
| 
 | |
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[TAB_SIZE], res, mu;
 | |
|   mp_digit buf;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
|   int (*redux)(mp_int*,mp_int*,mp_int*);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|     if (winsize > 5) {
 | |
|        winsize = 5;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   /* init first cell */
 | |
|   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | |
|      return err; 
 | |
|   }
 | |
| 
 | |
|   /* now init the second half of the array */
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | |
|       for (y = 1<<(winsize-1); y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       mp_clear(&M[1]);
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create mu, used for Barrett reduction */
 | |
|   if ((err = mp_init (&mu)) != MP_OKAY) {
 | |
|     goto LBL_M;
 | |
|   }
 | |
|   
 | |
|   if (redmode == 0) {
 | |
|      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | |
|         goto LBL_MU;
 | |
|      }
 | |
|      redux = mp_reduce;
 | |
|   } else {
 | |
|      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_MU;
 | |
|      }
 | |
|      redux = mp_reduce_2k_l;
 | |
|   }    
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
|    * The M table contains powers of the base, 
 | |
|    * e.g. M[x] = G**x mod P
 | |
|    *
 | |
|    * The first half of the table is not 
 | |
|    * computed though accept for M[0] and M[1]
 | |
|    */
 | |
|   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring 
 | |
|    * M[1] (winsize-1) times 
 | |
|    */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     /* square it */
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], 
 | |
|                        &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
| 
 | |
|     /* reduce modulo P */
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | |
|    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
 | |
|    */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
|   mp_set (&res, 1);
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       /* if digidx == -1 we are out of digits */
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       /* read next digit and reset the bitcnt */
 | |
|       buf    = X->dp[digidx--];
 | |
|       bitcnt = (int) DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode    = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode   = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| LBL_RES:mp_clear (&res);
 | |
| LBL_MU:mp_clear (&mu);
 | |
| LBL_M:
 | |
|   mp_clear(&M[1]);
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/bn_s_mp_exptmod.c,v $ */
 | |
| /* $Revision: 1.5 $ */
 | |
| /* $Date: 2006/12/28 01:25:13 $ */
 | 
