 b90732860a
			
		
	
	b90732860a
	
	
	
		
			
			As pointed out by Steffen Jaeckel [https://github.com/sjaeckel], within bn_mp_prime_next_prime() t <= PRIME_SIZE as per the check at the top of the function. Remove the unnecessary comparison in a for loop conditional. Change-Id: I868bee1a7a019e0ab06bf2b81cc71cf66ca9acff
		
			
				
	
	
		
			171 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_NEXT_PRIME_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* finds the next prime after the number "a" using "t" trials
 | |
|  * of Miller-Rabin.
 | |
|  *
 | |
|  * bbs_style = 1 means the prime must be congruent to 3 mod 4
 | |
|  */
 | |
| int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
 | |
| {
 | |
|    int      err, res = MP_NO, x, y;
 | |
|    mp_digit res_tab[PRIME_SIZE], step, kstep;
 | |
|    mp_int   b;
 | |
| 
 | |
|    /* ensure t is valid */
 | |
|    if (t <= 0 || t > PRIME_SIZE) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* force positive */
 | |
|    a->sign = MP_ZPOS;
 | |
| 
 | |
|    /* simple algo if a is less than the largest prime in the table */
 | |
|    if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
 | |
|       /* find which prime it is bigger than */
 | |
|       for (x = PRIME_SIZE - 2; x >= 0; x--) {
 | |
|           if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
 | |
|              if (bbs_style == 1) {
 | |
|                 /* ok we found a prime smaller or
 | |
|                  * equal [so the next is larger]
 | |
|                  *
 | |
|                  * however, the prime must be
 | |
|                  * congruent to 3 mod 4
 | |
|                  */
 | |
|                 if ((ltm_prime_tab[x + 1] & 3) != 3) {
 | |
|                    /* scan upwards for a prime congruent to 3 mod 4 */
 | |
|                    for (y = x + 1; y < PRIME_SIZE; y++) {
 | |
|                        if ((ltm_prime_tab[y] & 3) == 3) {
 | |
|                           mp_set(a, ltm_prime_tab[y]);
 | |
|                           return MP_OKAY;
 | |
|                        }
 | |
|                    }
 | |
|                 }
 | |
|              } else {
 | |
|                 mp_set(a, ltm_prime_tab[x + 1]);
 | |
|                 return MP_OKAY;
 | |
|              }
 | |
|           }
 | |
|       }
 | |
|       /* at this point a maybe 1 */
 | |
|       if (mp_cmp_d(a, 1) == MP_EQ) {
 | |
|          mp_set(a, 2);
 | |
|          return MP_OKAY;
 | |
|       }
 | |
|       /* fall through to the sieve */
 | |
|    }
 | |
| 
 | |
|    /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
 | |
|    if (bbs_style == 1) {
 | |
|       kstep   = 4;
 | |
|    } else {
 | |
|       kstep   = 2;
 | |
|    }
 | |
| 
 | |
|    /* at this point we will use a combination of a sieve and Miller-Rabin */
 | |
| 
 | |
|    if (bbs_style == 1) {
 | |
|       /* if a mod 4 != 3 subtract the correct value to make it so */
 | |
|       if ((a->dp[0] & 3) != 3) {
 | |
|          if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
 | |
|       }
 | |
|    } else {
 | |
|       if (mp_iseven(a) == 1) {
 | |
|          /* force odd */
 | |
|          if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
 | |
|             return err;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* generate the restable */
 | |
|    for (x = 1; x < PRIME_SIZE; x++) {
 | |
|       if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* init temp used for Miller-Rabin Testing */
 | |
|    if ((err = mp_init(&b)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       /* skip to the next non-trivially divisible candidate */
 | |
|       step = 0;
 | |
|       do {
 | |
|          /* y == 1 if any residue was zero [e.g. cannot be prime] */
 | |
|          y     =  0;
 | |
| 
 | |
|          /* increase step to next candidate */
 | |
|          step += kstep;
 | |
| 
 | |
|          /* compute the new residue without using division */
 | |
|          for (x = 1; x < PRIME_SIZE; x++) {
 | |
|              /* add the step to each residue */
 | |
|              res_tab[x] += kstep;
 | |
| 
 | |
|              /* subtract the modulus [instead of using division] */
 | |
|              if (res_tab[x] >= ltm_prime_tab[x]) {
 | |
|                 res_tab[x]  -= ltm_prime_tab[x];
 | |
|              }
 | |
| 
 | |
|              /* set flag if zero */
 | |
|              if (res_tab[x] == 0) {
 | |
|                 y = 1;
 | |
|              }
 | |
|          }
 | |
|       } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
 | |
| 
 | |
|       /* add the step */
 | |
|       if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       /* if didn't pass sieve and step == MAX then skip test */
 | |
|       if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       /* is this prime? */
 | |
|       for (x = 0; x < t; x++) {
 | |
|           mp_set(&b, ltm_prime_tab[x]);
 | |
|           if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
 | |
|              goto LBL_ERR;
 | |
|           }
 | |
|           if (res == MP_NO) {
 | |
|              break;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       if (res == MP_YES) {
 | |
|          break;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    err = MP_OKAY;
 | |
| LBL_ERR:
 | |
|    mp_clear(&b);
 | |
|    return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/bn_mp_prime_next_prime.c,v $ */
 | |
| /* $Revision: 1.4 $ */
 | |
| /* $Date: 2006/12/28 01:25:13 $ */
 |