106 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath.h>
 | |
| #ifdef BN_MP_GCD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Greatest Common Divisor using the binary method */
 | |
| int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  u, v;
 | |
|   int     k, u_lsb, v_lsb, res;
 | |
| 
 | |
|   /* either zero than gcd is the largest */
 | |
|   if (mp_iszero (a) == MP_YES) {
 | |
|     return mp_abs (b, c);
 | |
|   }
 | |
|   if (mp_iszero (b) == MP_YES) {
 | |
|     return mp_abs (a, c);
 | |
|   }
 | |
| 
 | |
|   /* get copies of a and b we can modify */
 | |
|   if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
 | |
|     goto LBL_U;
 | |
|   }
 | |
| 
 | |
|   /* must be positive for the remainder of the algorithm */
 | |
|   u.sign = v.sign = MP_ZPOS;
 | |
| 
 | |
|   /* B1.  Find the common power of two for u and v */
 | |
|   u_lsb = mp_cnt_lsb(&u);
 | |
|   v_lsb = mp_cnt_lsb(&v);
 | |
|   k     = MIN(u_lsb, v_lsb);
 | |
| 
 | |
|   if (k > 0) {
 | |
|      /* divide the power of two out */
 | |
|      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
| 
 | |
|      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* divide any remaining factors of two out */
 | |
|   if (u_lsb != k) {
 | |
|      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if (v_lsb != k) {
 | |
|      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   while (mp_iszero(&v) == 0) {
 | |
|      /* make sure v is the largest */
 | |
|      if (mp_cmp_mag(&u, &v) == MP_GT) {
 | |
|         /* swap u and v to make sure v is >= u */
 | |
|         mp_exch(&u, &v);
 | |
|      }
 | |
| 
 | |
|      /* subtract smallest from largest */
 | |
|      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
| 
 | |
|      /* Divide out all factors of two */
 | |
|      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* multiply by 2**k which we divided out at the beginning */
 | |
|   if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
 | |
|      goto LBL_V;
 | |
|   }
 | |
|   c->sign = MP_ZPOS;
 | |
|   res = MP_OKAY;
 | |
| LBL_V:mp_clear (&u);
 | |
| LBL_U:mp_clear (&v);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/bn_mp_gcd.c,v $ */
 | |
| /* $Revision: 1.5 $ */
 | |
| /* $Date: 2006/12/28 01:25:13 $ */
 | 
