149 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath.h>
 | |
| #ifdef BN_FAST_MP_INVMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes the modular inverse via binary extended euclidean algorithm,
 | |
|  * that is c = 1/a mod b
 | |
|  *
 | |
|  * Based on slow invmod except this is optimized for the case where b is
 | |
|  * odd as per HAC Note 14.64 on pp. 610
 | |
|  */
 | |
| int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x, y, u, v, B, D;
 | |
|   int     res, neg;
 | |
| 
 | |
|   /* 2. [modified] b must be odd   */
 | |
|   if (mp_iseven (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* init all our temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x == modulus, y == value to invert */
 | |
|   if ((res = mp_copy (b, &x)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* we need y = |a| */
 | |
|   if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   mp_set (&D, 1);
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven (&u) == 1) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 4.2 if B is odd then */
 | |
|     if (mp_isodd (&B) == 1) {
 | |
|       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | |
|         goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* B = B/2 */
 | |
|     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven (&v) == 1) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 5.2 if D is odd then */
 | |
|     if (mp_isodd (&D) == 1) {
 | |
|       /* D = (D-x)/2 */
 | |
|       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | |
|         goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* D = D/2 */
 | |
|     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp (&u, &v) != MP_LT) {
 | |
|     /* u = u - v, B = B - D */
 | |
|     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, D = D - B */
 | |
|     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero (&u) == 0) {
 | |
|     goto top;
 | |
|   }
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* b is now the inverse */
 | |
|   neg = a->sign;
 | |
|   while (D.sign == MP_NEG) {
 | |
|     if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
|   mp_exch (&D, c);
 | |
|   c->sign = neg;
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/bn_fast_mp_invmod.c,v $ */
 | |
| /* $Revision: 1.4 $ */
 | |
| /* $Date: 2006/12/28 01:25:13 $ */
 | 
