255 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_S_MP_EXPTMOD_FAST_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | |
|  *
 | |
|  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | |
|  * The value of k changes based on the size of the exponent.
 | |
|  *
 | |
|  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | |
|  */
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
| #   define TAB_SIZE 32
 | |
| #   define MAX_WINSIZE 5
 | |
| #else
 | |
| #   define TAB_SIZE 256
 | |
| #   define MAX_WINSIZE 0
 | |
| #endif
 | |
| 
 | |
| mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
 | |
| {
 | |
|    mp_int  M[TAB_SIZE], res;
 | |
|    mp_digit buf, mp;
 | |
|    int     bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
|    mp_err   err;
 | |
| 
 | |
|    /* use a pointer to the reduction algorithm.  This allows us to use
 | |
|     * one of many reduction algorithms without modding the guts of
 | |
|     * the code with if statements everywhere.
 | |
|     */
 | |
|    mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho);
 | |
| 
 | |
|    /* find window size */
 | |
|    x = mp_count_bits(X);
 | |
|    if (x <= 7) {
 | |
|       winsize = 2;
 | |
|    } else if (x <= 36) {
 | |
|       winsize = 3;
 | |
|    } else if (x <= 140) {
 | |
|       winsize = 4;
 | |
|    } else if (x <= 450) {
 | |
|       winsize = 5;
 | |
|    } else if (x <= 1303) {
 | |
|       winsize = 6;
 | |
|    } else if (x <= 3529) {
 | |
|       winsize = 7;
 | |
|    } else {
 | |
|       winsize = 8;
 | |
|    }
 | |
| 
 | |
|    winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize;
 | |
| 
 | |
|    /* init M array */
 | |
|    /* init first cell */
 | |
|    if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    /* now init the second half of the array */
 | |
|    for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|       if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
 | |
|          for (y = 1<<(winsize-1); y < x; y++) {
 | |
|             mp_clear(&M[y]);
 | |
|          }
 | |
|          mp_clear(&M[1]);
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* determine and setup reduction code */
 | |
|    if (redmode == 0) {
 | |
|       if (MP_HAS(MP_MONTGOMERY_SETUP)) {
 | |
|          /* now setup montgomery  */
 | |
|          if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY)      goto LBL_M;
 | |
|       } else {
 | |
|          err = MP_VAL;
 | |
|          goto LBL_M;
 | |
|       }
 | |
| 
 | |
|       /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | |
|       if (MP_HAS(S_MP_MONTGOMERY_REDUCE_FAST) &&
 | |
|           (((P->used * 2) + 1) < MP_WARRAY) &&
 | |
|           (P->used < MP_MAXFAST)) {
 | |
|          redux = s_mp_montgomery_reduce_fast;
 | |
|       } else if (MP_HAS(MP_MONTGOMERY_REDUCE)) {
 | |
|          /* use slower baseline Montgomery method */
 | |
|          redux = mp_montgomery_reduce;
 | |
|       } else {
 | |
|          err = MP_VAL;
 | |
|          goto LBL_M;
 | |
|       }
 | |
|    } else if (redmode == 1) {
 | |
|       if (MP_HAS(MP_DR_SETUP) && MP_HAS(MP_DR_REDUCE)) {
 | |
|          /* setup DR reduction for moduli of the form B**k - b */
 | |
|          mp_dr_setup(P, &mp);
 | |
|          redux = mp_dr_reduce;
 | |
|       } else {
 | |
|          err = MP_VAL;
 | |
|          goto LBL_M;
 | |
|       }
 | |
|    } else if (MP_HAS(MP_REDUCE_2K_SETUP) && MP_HAS(MP_REDUCE_2K)) {
 | |
|       /* setup DR reduction for moduli of the form 2**k - b */
 | |
|       if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY)          goto LBL_M;
 | |
|       redux = mp_reduce_2k;
 | |
|    } else {
 | |
|       err = MP_VAL;
 | |
|       goto LBL_M;
 | |
|    }
 | |
| 
 | |
|    /* setup result */
 | |
|    if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY)           goto LBL_M;
 | |
| 
 | |
|    /* create M table
 | |
|     *
 | |
| 
 | |
|     *
 | |
|     * The first half of the table is not computed though accept for M[0] and M[1]
 | |
|     */
 | |
| 
 | |
|    if (redmode == 0) {
 | |
|       if (MP_HAS(MP_MONTGOMERY_CALC_NORMALIZATION)) {
 | |
|          /* now we need R mod m */
 | |
|          if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) goto LBL_RES;
 | |
| 
 | |
|          /* now set M[1] to G * R mod m */
 | |
|          if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY)     goto LBL_RES;
 | |
|       } else {
 | |
|          err = MP_VAL;
 | |
|          goto LBL_RES;
 | |
|       }
 | |
|    } else {
 | |
|       mp_set(&res, 1uL);
 | |
|       if ((err = mp_mod(G, P, &M[1])) != MP_OKAY)                 goto LBL_RES;
 | |
|    }
 | |
| 
 | |
|    /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | |
|    if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES;
 | |
| 
 | |
|    for (x = 0; x < (winsize - 1); x++) {
 | |
|       if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES;
 | |
|       if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) goto LBL_RES;
 | |
|    }
 | |
| 
 | |
|    /* create upper table */
 | |
|    for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|       if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY)     goto LBL_RES;
 | |
|       if ((err = redux(&M[x], P, mp)) != MP_OKAY)                 goto LBL_RES;
 | |
|    }
 | |
| 
 | |
|    /* set initial mode and bit cnt */
 | |
|    mode   = 0;
 | |
|    bitcnt = 1;
 | |
|    buf    = 0;
 | |
|    digidx = X->used - 1;
 | |
|    bitcpy = 0;
 | |
|    bitbuf = 0;
 | |
| 
 | |
|    for (;;) {
 | |
|       /* grab next digit as required */
 | |
|       if (--bitcnt == 0) {
 | |
|          /* if digidx == -1 we are out of digits so break */
 | |
|          if (digidx == -1) {
 | |
|             break;
 | |
|          }
 | |
|          /* read next digit and reset bitcnt */
 | |
|          buf    = X->dp[digidx--];
 | |
|          bitcnt = (int)MP_DIGIT_BIT;
 | |
|       }
 | |
| 
 | |
|       /* grab the next msb from the exponent */
 | |
|       y     = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL;
 | |
|       buf <<= (mp_digit)1;
 | |
| 
 | |
|       /* if the bit is zero and mode == 0 then we ignore it
 | |
|        * These represent the leading zero bits before the first 1 bit
 | |
|        * in the exponent.  Technically this opt is not required but it
 | |
|        * does lower the # of trivial squaring/reductions used
 | |
|        */
 | |
|       if ((mode == 0) && (y == 0)) {
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       /* if the bit is zero and mode == 1 then we square */
 | |
|       if ((mode == 1) && (y == 0)) {
 | |
|          if ((err = mp_sqr(&res, &res)) != MP_OKAY)               goto LBL_RES;
 | |
|          if ((err = redux(&res, P, mp)) != MP_OKAY)               goto LBL_RES;
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       /* else we add it to the window */
 | |
|       bitbuf |= (y << (winsize - ++bitcpy));
 | |
|       mode    = 2;
 | |
| 
 | |
|       if (bitcpy == winsize) {
 | |
|          /* ok window is filled so square as required and multiply  */
 | |
|          /* square first */
 | |
|          for (x = 0; x < winsize; x++) {
 | |
|             if ((err = mp_sqr(&res, &res)) != MP_OKAY)            goto LBL_RES;
 | |
|             if ((err = redux(&res, P, mp)) != MP_OKAY)            goto LBL_RES;
 | |
|          }
 | |
| 
 | |
|          /* then multiply */
 | |
|          if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY)   goto LBL_RES;
 | |
|          if ((err = redux(&res, P, mp)) != MP_OKAY)               goto LBL_RES;
 | |
| 
 | |
|          /* empty window and reset */
 | |
|          bitcpy = 0;
 | |
|          bitbuf = 0;
 | |
|          mode   = 1;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* if bits remain then square/multiply */
 | |
|    if ((mode == 2) && (bitcpy > 0)) {
 | |
|       /* square then multiply if the bit is set */
 | |
|       for (x = 0; x < bitcpy; x++) {
 | |
|          if ((err = mp_sqr(&res, &res)) != MP_OKAY)               goto LBL_RES;
 | |
|          if ((err = redux(&res, P, mp)) != MP_OKAY)               goto LBL_RES;
 | |
| 
 | |
|          /* get next bit of the window */
 | |
|          bitbuf <<= 1;
 | |
|          if ((bitbuf & (1 << winsize)) != 0) {
 | |
|             /* then multiply */
 | |
|             if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY)     goto LBL_RES;
 | |
|             if ((err = redux(&res, P, mp)) != MP_OKAY)            goto LBL_RES;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    if (redmode == 0) {
 | |
|       /* fixup result if Montgomery reduction is used
 | |
|        * recall that any value in a Montgomery system is
 | |
|        * actually multiplied by R mod n.  So we have
 | |
|        * to reduce one more time to cancel out the factor
 | |
|        * of R.
 | |
|        */
 | |
|       if ((err = redux(&res, P, mp)) != MP_OKAY)                  goto LBL_RES;
 | |
|    }
 | |
| 
 | |
|    /* swap res with Y */
 | |
|    mp_exch(&res, Y);
 | |
|    err = MP_OKAY;
 | |
| LBL_RES:
 | |
|    mp_clear(&res);
 | |
| LBL_M:
 | |
|    mp_clear(&M[1]);
 | |
|    for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|       mp_clear(&M[x]);
 | |
|    }
 | |
|    return err;
 | |
| }
 | |
| #endif
 | 
