94 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			94 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_IS_SQUARE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* Check if remainders are possible squares - fast exclude non-squares */
 | |
| static const char rem_128[128] = {
 | |
|    0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
 | |
| };
 | |
| 
 | |
| static const char rem_105[105] = {
 | |
|    0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
 | |
|    0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
 | |
|    0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|    0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
 | |
|    1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
 | |
|    1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
 | |
| };
 | |
| 
 | |
| /* Store non-zero to ret if arg is square, and zero if not */
 | |
| mp_err mp_is_square(const mp_int *arg, mp_bool *ret)
 | |
| {
 | |
|    mp_err        err;
 | |
|    mp_digit      c;
 | |
|    mp_int        t;
 | |
|    unsigned long r;
 | |
| 
 | |
|    /* Default to Non-square :) */
 | |
|    *ret = MP_NO;
 | |
| 
 | |
|    if (arg->sign == MP_NEG) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    if (MP_IS_ZERO(arg)) {
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    /* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */
 | |
|    if (rem_128[127u & arg->dp[0]] == (char)1) {
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    /* Next check mod 105 (3*5*7) */
 | |
|    if ((err = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
|    if (rem_105[c] == (char)1) {
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
| 
 | |
|    if ((err = mp_init_u32(&t, 11u*13u*17u*19u*23u*29u*31u)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
|    if ((err = mp_mod(arg, &t, &t)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
|    r = mp_get_u32(&t);
 | |
|    /* Check for other prime modules, note it's not an ERROR but we must
 | |
|     * free "t" so the easiest way is to goto LBL_ERR.  We know that err
 | |
|     * is already equal to MP_OKAY from the mp_mod call
 | |
|     */
 | |
|    if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL)         goto LBL_ERR;
 | |
|    if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL)         goto LBL_ERR;
 | |
|    if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL)        goto LBL_ERR;
 | |
|    if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL)       goto LBL_ERR;
 | |
|    if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL)      goto LBL_ERR;
 | |
|    if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL)     goto LBL_ERR;
 | |
|    if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL)    goto LBL_ERR;
 | |
| 
 | |
|    /* Final check - is sqr(sqrt(arg)) == arg ? */
 | |
|    if ((err = mp_sqrt(arg, &t)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
|    if ((err = mp_sqr(&t, &t)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
| 
 | |
|    *ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
 | |
| LBL_ERR:
 | |
|    mp_clear(&t);
 | |
|    return err;
 | |
| }
 | |
| #endif
 | 
