Files
heimdal/lib/gssapi/ntlm/crypto.c
Nicolas Williams 490337f4f9 Make OpenSSL an hcrypto backend proper
This adds a new backend for libhcrypto: the OpenSSL backend.

Now libhcrypto has these backends:

 - hcrypto itself (i.e., the algorithms coded in lib/hcrypto)
 - Common Crypto (OS X)
 - PKCS#11 (specifically for Solaris, but not Solaris-specific)
 - Windows CNG (Windows)
 - OpenSSL (generic)

The ./configure --with-openssl=... option no longer disables the use of
hcrypto.  Instead it enables the use of OpenSSL as a (and the default)
backend in libhcrypto.  The libhcrypto framework is now always used.

OpenSSL should no longer be used directly within Heimdal, except in the
OpenSSL hcrypto backend itself, and files where elliptic curve (EC)
crypto is needed.

Because libhcrypto's EC support is incomplete, we can only use OpenSSL
for EC.  Currently that means separating all EC-using code so that it
does not use hcrypto, thus the libhx509/hxtool and PKINIT EC code has
been moved out of the files it used to be in.
2016-04-15 00:16:17 -05:00

597 lines
14 KiB
C

/*
* Copyright (c) 2006-2016 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "ntlm.h"
struct hx509_certs_data;
struct krb5_pk_identity;
struct krb5_pk_cert;
struct ContentInfo;
struct AlgorithmIdentifier;
struct _krb5_krb_auth_data;
struct krb5_dh_moduli;
struct _krb5_key_data;
struct _krb5_encryption_type;
struct _krb5_key_type;
#include "krb5_locl.h"
/*
*
*/
static void
encode_le_uint32(uint32_t n, unsigned char *p)
{
p[0] = (n >> 0) & 0xFF;
p[1] = (n >> 8) & 0xFF;
p[2] = (n >> 16) & 0xFF;
p[3] = (n >> 24) & 0xFF;
}
static void
decode_le_uint32(const void *ptr, uint32_t *n)
{
const unsigned char *p = ptr;
*n = (p[0] << 0) | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
}
/*
*
*/
const char a2i_signmagic[] =
"session key to server-to-client signing key magic constant";
const char a2i_sealmagic[] =
"session key to server-to-client sealing key magic constant";
const char i2a_signmagic[] =
"session key to client-to-server signing key magic constant";
const char i2a_sealmagic[] =
"session key to client-to-server sealing key magic constant";
void
_gss_ntlm_set_key(struct ntlmv2_key *key, int acceptor, int sealsign,
unsigned char *data, size_t len)
{
unsigned char out[16];
EVP_MD_CTX *ctx;
const char *signmagic;
const char *sealmagic;
if (acceptor) {
signmagic = a2i_signmagic;
sealmagic = a2i_sealmagic;
} else {
signmagic = i2a_signmagic;
sealmagic = i2a_sealmagic;
}
key->seq = 0;
ctx = EVP_MD_CTX_create();
EVP_DigestInit_ex(ctx, EVP_md5(), NULL);
EVP_DigestUpdate(ctx, data, len);
EVP_DigestUpdate(ctx, signmagic, strlen(signmagic) + 1);
EVP_DigestFinal_ex(ctx, key->signkey, NULL);
EVP_DigestInit_ex(ctx, EVP_md5(), NULL);
EVP_DigestUpdate(ctx, data, len);
EVP_DigestUpdate(ctx, sealmagic, strlen(sealmagic) + 1);
EVP_DigestFinal_ex(ctx, out, NULL);
EVP_MD_CTX_destroy(ctx);
RC4_set_key(&key->sealkey, 16, out);
if (sealsign)
key->signsealkey = &key->sealkey;
}
/*
*
*/
static OM_uint32
v1_sign_message(gss_buffer_t in,
RC4_KEY *signkey,
uint32_t seq,
unsigned char out[16])
{
unsigned char sigature[12];
uint32_t crc;
_krb5_crc_init_table();
crc = _krb5_crc_update(in->value, in->length, 0);
encode_le_uint32(0, &sigature[0]);
encode_le_uint32(crc, &sigature[4]);
encode_le_uint32(seq, &sigature[8]);
encode_le_uint32(1, out); /* version */
RC4(signkey, sizeof(sigature), sigature, out + 4);
if (RAND_bytes(out + 4, 4) != 1)
return GSS_S_UNAVAILABLE;
return 0;
}
static OM_uint32
v2_sign_message(gss_buffer_t in,
unsigned char signkey[16],
RC4_KEY *sealkey,
uint32_t seq,
unsigned char out[16])
{
unsigned char hmac[16];
unsigned int hmaclen;
HMAC_CTX c;
HMAC_CTX_init(&c);
HMAC_Init_ex(&c, signkey, 16, EVP_md5(), NULL);
encode_le_uint32(seq, hmac);
HMAC_Update(&c, hmac, 4);
HMAC_Update(&c, in->value, in->length);
HMAC_Final(&c, hmac, &hmaclen);
HMAC_CTX_cleanup(&c);
encode_le_uint32(1, &out[0]);
if (sealkey)
RC4(sealkey, 8, hmac, &out[4]);
else
memcpy(&out[4], hmac, 8);
memset(&out[12], 0, 4);
return GSS_S_COMPLETE;
}
static OM_uint32
v2_verify_message(gss_buffer_t in,
unsigned char signkey[16],
RC4_KEY *sealkey,
uint32_t seq,
const unsigned char checksum[16])
{
OM_uint32 ret;
unsigned char out[16];
ret = v2_sign_message(in, signkey, sealkey, seq, out);
if (ret)
return ret;
if (memcmp(checksum, out, 16) != 0)
return GSS_S_BAD_MIC;
return GSS_S_COMPLETE;
}
static OM_uint32
v2_seal_message(const gss_buffer_t in,
unsigned char signkey[16],
uint32_t seq,
RC4_KEY *sealkey,
gss_buffer_t out)
{
unsigned char *p;
OM_uint32 ret;
if (in->length + 16 < in->length)
return EINVAL;
p = malloc(in->length + 16);
if (p == NULL)
return ENOMEM;
RC4(sealkey, in->length, in->value, p);
ret = v2_sign_message(in, signkey, sealkey, seq, &p[in->length]);
if (ret) {
free(p);
return ret;
}
out->value = p;
out->length = in->length + 16;
return 0;
}
static OM_uint32
v2_unseal_message(gss_buffer_t in,
unsigned char signkey[16],
uint32_t seq,
RC4_KEY *sealkey,
gss_buffer_t out)
{
OM_uint32 ret;
if (in->length < 16)
return GSS_S_BAD_MIC;
out->length = in->length - 16;
out->value = malloc(out->length);
if (out->value == NULL)
return GSS_S_BAD_MIC;
RC4(sealkey, out->length, in->value, out->value);
ret = v2_verify_message(out, signkey, sealkey, seq,
((const unsigned char *)in->value) + out->length);
if (ret) {
OM_uint32 junk;
gss_release_buffer(&junk, out);
}
return ret;
}
/*
*
*/
#define CTX_FLAGS_ISSET(_ctx,_flags) \
(((_ctx)->flags & (_flags)) == (_flags))
/*
*
*/
OM_uint32 GSSAPI_CALLCONV
_gss_ntlm_get_mic
(OM_uint32 * minor_status,
gss_const_ctx_id_t context_handle,
gss_qop_t qop_req,
const gss_buffer_t message_buffer,
gss_buffer_t message_token
)
{
ntlm_ctx ctx = (ntlm_ctx)context_handle;
OM_uint32 junk;
*minor_status = 0;
message_token->value = malloc(16);
message_token->length = 16;
if (message_token->value == NULL) {
*minor_status = ENOMEM;
return GSS_S_FAILURE;
}
if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SIGN|NTLM_NEG_NTLM2_SESSION)) {
OM_uint32 ret;
if ((ctx->status & STATUS_SESSIONKEY) == 0) {
gss_release_buffer(&junk, message_token);
return GSS_S_UNAVAILABLE;
}
ret = v2_sign_message(message_buffer,
ctx->u.v2.send.signkey,
ctx->u.v2.send.signsealkey,
ctx->u.v2.send.seq++,
message_token->value);
if (ret)
gss_release_buffer(&junk, message_token);
return ret;
} else if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SIGN)) {
OM_uint32 ret;
if ((ctx->status & STATUS_SESSIONKEY) == 0) {
gss_release_buffer(&junk, message_token);
return GSS_S_UNAVAILABLE;
}
ret = v1_sign_message(message_buffer,
&ctx->u.v1.crypto_send.key,
ctx->u.v1.crypto_send.seq++,
message_token->value);
if (ret)
gss_release_buffer(&junk, message_token);
return ret;
} else if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_ALWAYS_SIGN)) {
unsigned char *sigature;
sigature = message_token->value;
encode_le_uint32(1, &sigature[0]); /* version */
encode_le_uint32(0, &sigature[4]);
encode_le_uint32(0, &sigature[8]);
encode_le_uint32(0, &sigature[12]);
return GSS_S_COMPLETE;
}
gss_release_buffer(&junk, message_token);
return GSS_S_UNAVAILABLE;
}
/*
*
*/
OM_uint32 GSSAPI_CALLCONV
_gss_ntlm_verify_mic
(OM_uint32 * minor_status,
gss_const_ctx_id_t context_handle,
const gss_buffer_t message_buffer,
const gss_buffer_t token_buffer,
gss_qop_t * qop_state
)
{
ntlm_ctx ctx = (ntlm_ctx)context_handle;
if (qop_state != NULL)
*qop_state = GSS_C_QOP_DEFAULT;
*minor_status = 0;
if (token_buffer->length != 16)
return GSS_S_BAD_MIC;
if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SIGN|NTLM_NEG_NTLM2_SESSION)) {
OM_uint32 ret;
if ((ctx->status & STATUS_SESSIONKEY) == 0)
return GSS_S_UNAVAILABLE;
ret = v2_verify_message(message_buffer,
ctx->u.v2.recv.signkey,
ctx->u.v2.recv.signsealkey,
ctx->u.v2.recv.seq++,
token_buffer->value);
if (ret)
return ret;
return GSS_S_COMPLETE;
} else if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SIGN)) {
unsigned char sigature[12];
uint32_t crc, num;
if ((ctx->status & STATUS_SESSIONKEY) == 0)
return GSS_S_UNAVAILABLE;
decode_le_uint32(token_buffer->value, &num);
if (num != 1)
return GSS_S_BAD_MIC;
RC4(&ctx->u.v1.crypto_recv.key, sizeof(sigature),
((unsigned char *)token_buffer->value) + 4, sigature);
_krb5_crc_init_table();
crc = _krb5_crc_update(message_buffer->value,
message_buffer->length, 0);
/* skip first 4 bytes in the encrypted checksum */
decode_le_uint32(&sigature[4], &num);
if (num != crc)
return GSS_S_BAD_MIC;
decode_le_uint32(&sigature[8], &num);
if (ctx->u.v1.crypto_recv.seq != num)
return GSS_S_BAD_MIC;
ctx->u.v1.crypto_recv.seq++;
return GSS_S_COMPLETE;
} else if (ctx->flags & NTLM_NEG_ALWAYS_SIGN) {
uint32_t num;
unsigned char *p;
p = (unsigned char*)(token_buffer->value);
decode_le_uint32(&p[0], &num); /* version */
if (num != 1) return GSS_S_BAD_MIC;
decode_le_uint32(&p[4], &num);
if (num != 0) return GSS_S_BAD_MIC;
decode_le_uint32(&p[8], &num);
if (num != 0) return GSS_S_BAD_MIC;
decode_le_uint32(&p[12], &num);
if (num != 0) return GSS_S_BAD_MIC;
return GSS_S_COMPLETE;
}
return GSS_S_UNAVAILABLE;
}
/*
*
*/
OM_uint32 GSSAPI_CALLCONV
_gss_ntlm_wrap_size_limit (
OM_uint32 * minor_status,
gss_const_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
OM_uint32 req_output_size,
OM_uint32 * max_input_size
)
{
ntlm_ctx ctx = (ntlm_ctx)context_handle;
*minor_status = 0;
if(ctx->flags & NTLM_NEG_SEAL) {
if (req_output_size < 16)
*max_input_size = 0;
else
*max_input_size = req_output_size - 16;
return GSS_S_COMPLETE;
}
return GSS_S_UNAVAILABLE;
}
/*
*
*/
OM_uint32 GSSAPI_CALLCONV
_gss_ntlm_wrap
(OM_uint32 * minor_status,
gss_const_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
const gss_buffer_t input_message_buffer,
int * conf_state,
gss_buffer_t output_message_buffer
)
{
ntlm_ctx ctx = (ntlm_ctx)context_handle;
OM_uint32 ret;
*minor_status = 0;
if (conf_state)
*conf_state = 0;
if (output_message_buffer == GSS_C_NO_BUFFER)
return GSS_S_FAILURE;
if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SEAL|NTLM_NEG_NTLM2_SESSION)) {
return v2_seal_message(input_message_buffer,
ctx->u.v2.send.signkey,
ctx->u.v2.send.seq++,
&ctx->u.v2.send.sealkey,
output_message_buffer);
} else if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SEAL)) {
gss_buffer_desc trailer;
OM_uint32 junk;
output_message_buffer->length = input_message_buffer->length + 16;
output_message_buffer->value = malloc(output_message_buffer->length);
if (output_message_buffer->value == NULL) {
output_message_buffer->length = 0;
return GSS_S_FAILURE;
}
RC4(&ctx->u.v1.crypto_send.key, input_message_buffer->length,
input_message_buffer->value, output_message_buffer->value);
ret = _gss_ntlm_get_mic(minor_status, context_handle,
0, input_message_buffer,
&trailer);
if (ret) {
gss_release_buffer(&junk, output_message_buffer);
return ret;
}
if (trailer.length != 16) {
gss_release_buffer(&junk, output_message_buffer);
gss_release_buffer(&junk, &trailer);
return GSS_S_FAILURE;
}
memcpy(((unsigned char *)output_message_buffer->value) +
input_message_buffer->length,
trailer.value, trailer.length);
gss_release_buffer(&junk, &trailer);
return GSS_S_COMPLETE;
}
return GSS_S_UNAVAILABLE;
}
/*
*
*/
OM_uint32 GSSAPI_CALLCONV
_gss_ntlm_unwrap
(OM_uint32 * minor_status,
gss_const_ctx_id_t context_handle,
const gss_buffer_t input_message_buffer,
gss_buffer_t output_message_buffer,
int * conf_state,
gss_qop_t * qop_state
)
{
ntlm_ctx ctx = (ntlm_ctx)context_handle;
OM_uint32 ret;
*minor_status = 0;
output_message_buffer->value = NULL;
output_message_buffer->length = 0;
if (conf_state)
*conf_state = 0;
if (qop_state)
*qop_state = 0;
if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SEAL|NTLM_NEG_NTLM2_SESSION)) {
return v2_unseal_message(input_message_buffer,
ctx->u.v2.recv.signkey,
ctx->u.v2.recv.seq++,
&ctx->u.v2.recv.sealkey,
output_message_buffer);
} else if (CTX_FLAGS_ISSET(ctx, NTLM_NEG_SEAL)) {
gss_buffer_desc trailer;
OM_uint32 junk;
if (input_message_buffer->length < 16)
return GSS_S_BAD_MIC;
output_message_buffer->length = input_message_buffer->length - 16;
output_message_buffer->value = malloc(output_message_buffer->length);
if (output_message_buffer->value == NULL) {
output_message_buffer->length = 0;
return GSS_S_FAILURE;
}
RC4(&ctx->u.v1.crypto_recv.key, output_message_buffer->length,
input_message_buffer->value, output_message_buffer->value);
trailer.value = ((unsigned char *)input_message_buffer->value) +
output_message_buffer->length;
trailer.length = 16;
ret = _gss_ntlm_verify_mic(minor_status, context_handle,
output_message_buffer,
&trailer, NULL);
if (ret) {
gss_release_buffer(&junk, output_message_buffer);
return ret;
}
return GSS_S_COMPLETE;
}
return GSS_S_UNAVAILABLE;
}