
git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@20466 ec53bebd-3082-4978-b11e-865c3cabbd6b
187 lines
6.9 KiB
C
Executable File
187 lines
6.9 KiB
C
Executable File
/*
|
|
Name: iprime.c
|
|
Purpose: Pseudoprimality testing routines
|
|
Author: M. J. Fromberger <http://www.dartmouth.edu/~sting/>
|
|
Info: $Id$
|
|
|
|
Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
|
|
|
|
Permission is hereby granted, free of charge, to any person
|
|
obtaining a copy of this software and associated documentation files
|
|
(the "Software"), to deal in the Software without restriction,
|
|
including without limitation the rights to use, copy, modify, merge,
|
|
publish, distribute, sublicense, and/or sell copies of the Software,
|
|
and to permit persons to whom the Software is furnished to do so,
|
|
subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
*/
|
|
|
|
#include "iprime.h"
|
|
#include <stdlib.h>
|
|
|
|
static const int s_ptab[] = {
|
|
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
|
|
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
|
|
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
|
|
157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
|
|
211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
|
|
269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
|
|
331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
|
|
389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
|
|
449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
|
|
509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
|
|
587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
|
|
643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
|
|
709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
|
|
773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
|
|
853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
|
|
919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
|
|
991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
|
|
1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
|
|
1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
|
|
1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
|
|
1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
|
|
1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
|
|
1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
|
|
1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
|
|
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
|
|
1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
|
|
1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
|
|
1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
|
|
1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
|
|
1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
|
|
1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
|
|
1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
|
|
1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
|
|
1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
|
|
2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
|
|
2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
|
|
2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
|
|
2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
|
|
2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
|
|
2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
|
|
2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
|
|
2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
|
|
2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
|
|
2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
|
|
2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
|
|
2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
|
|
2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
|
|
2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
|
|
2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
|
|
3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
|
|
3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
|
|
3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
|
|
3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
|
|
3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
|
|
3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
|
|
3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
|
|
3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
|
|
3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
|
|
3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
|
|
3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
|
|
3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
|
|
3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
|
|
3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
|
|
3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
|
|
4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
|
|
4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
|
|
4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
|
|
4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
|
|
4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
|
|
4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
|
|
4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
|
|
4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
|
|
4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
|
|
4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
|
|
4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
|
|
4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
|
|
4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
|
|
4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
|
|
4957, 4967, 4969, 4973, 4987, 4993, 4999
|
|
};
|
|
static const int s_ptab_size = sizeof(s_ptab)/sizeof(s_ptab[0]);
|
|
|
|
|
|
/* {{{ mp_int_is_prime(z) */
|
|
|
|
/* Test whether z is likely to be prime:
|
|
MP_TRUE means it is probably prime
|
|
MP_FALSE means it is definitely composite
|
|
*/
|
|
mp_result mp_int_is_prime(mp_int z)
|
|
{
|
|
int i, rem;
|
|
mp_result res;
|
|
|
|
/* First check for divisibility by small primes; this eliminates a
|
|
large number of composite candidates quickly
|
|
*/
|
|
for(i = 0; i < s_ptab_size; ++i) {
|
|
if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK)
|
|
return res;
|
|
|
|
if(rem == 0)
|
|
return MP_FALSE;
|
|
}
|
|
|
|
/* Now try Fermat's test for several prime witnesses (since we now
|
|
know from the above that z is not a multiple of any of them)
|
|
*/
|
|
{
|
|
mpz_t tmp;
|
|
|
|
if((res = mp_int_init(&tmp)) != MP_OK) return res;
|
|
|
|
for(i = 0; i < 10 && i < s_ptab_size; ++i) {
|
|
if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK)
|
|
return res;
|
|
|
|
if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) {
|
|
mp_int_clear(&tmp);
|
|
return MP_FALSE;
|
|
}
|
|
}
|
|
|
|
mp_int_clear(&tmp);
|
|
}
|
|
|
|
return MP_TRUE;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* {{{ mp_int_find_prime(z) */
|
|
|
|
/* Find the first apparent prime in ascending order from z */
|
|
mp_result mp_int_find_prime(mp_int z)
|
|
{
|
|
mp_result res;
|
|
|
|
if(mp_int_is_even(z) && ((res = mp_int_add_value(z, 1, z)) != MP_OK))
|
|
return res;
|
|
|
|
while((res = mp_int_is_prime(z)) == MP_FALSE) {
|
|
if((res = mp_int_add_value(z, 2, z)) != MP_OK)
|
|
break;
|
|
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* }}} */
|
|
|
|
/* Here there be dragons */
|