77 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "tommath_private.h"
 | 
						|
#ifdef BN_MP_EXPTMOD_C
 | 
						|
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | 
						|
/* SPDX-License-Identifier: Unlicense */
 | 
						|
 | 
						|
/* this is a shell function that calls either the normal or Montgomery
 | 
						|
 * exptmod functions.  Originally the call to the montgomery code was
 | 
						|
 * embedded in the normal function but that wasted alot of stack space
 | 
						|
 * for nothing (since 99% of the time the Montgomery code would be called)
 | 
						|
 */
 | 
						|
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
 | 
						|
{
 | 
						|
   int dr;
 | 
						|
 | 
						|
   /* modulus P must be positive */
 | 
						|
   if (P->sign == MP_NEG) {
 | 
						|
      return MP_VAL;
 | 
						|
   }
 | 
						|
 | 
						|
   /* if exponent X is negative we have to recurse */
 | 
						|
   if (X->sign == MP_NEG) {
 | 
						|
      mp_int tmpG, tmpX;
 | 
						|
      mp_err err;
 | 
						|
 | 
						|
      if (!MP_HAS(MP_INVMOD)) {
 | 
						|
         return MP_VAL;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) {
 | 
						|
         return err;
 | 
						|
      }
 | 
						|
 | 
						|
      /* first compute 1/G mod P */
 | 
						|
      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
 | 
						|
      /* now get |X| */
 | 
						|
      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
 | 
						|
      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | 
						|
      err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | 
						|
LBL_ERR:
 | 
						|
      mp_clear_multi(&tmpG, &tmpX, NULL);
 | 
						|
      return err;
 | 
						|
   }
 | 
						|
 | 
						|
   /* modified diminished radix reduction */
 | 
						|
   if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) &&
 | 
						|
       (mp_reduce_is_2k_l(P) == MP_YES)) {
 | 
						|
      return s_mp_exptmod(G, X, P, Y, 1);
 | 
						|
   }
 | 
						|
 | 
						|
   /* is it a DR modulus? default to no */
 | 
						|
   dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0;
 | 
						|
 | 
						|
   /* if not, is it a unrestricted DR modulus? */
 | 
						|
   if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) {
 | 
						|
      dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
 | 
						|
   }
 | 
						|
 | 
						|
   /* if the modulus is odd or dr != 0 use the montgomery method */
 | 
						|
   if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) {
 | 
						|
      return s_mp_exptmod_fast(G, X, P, Y, dr);
 | 
						|
   } else if (MP_HAS(S_MP_EXPTMOD)) {
 | 
						|
      /* otherwise use the generic Barrett reduction technique */
 | 
						|
      return s_mp_exptmod(G, X, P, Y, 0);
 | 
						|
   } else {
 | 
						|
      /* no exptmod for evens */
 | 
						|
      return MP_VAL;
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |