 4f875a4a85
			
		
	
	4f875a4a85
	
	
	
		
			
			git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@22803 ec53bebd-3082-4978-b11e-865c3cabbd6b
		
			
				
	
	
		
			84546 lines
		
	
	
		
			2.7 MiB
		
	
	
	
	
	
	
	
			
		
		
	
	
			84546 lines
		
	
	
		
			2.7 MiB
		
	
	
	
	
	
	
	
| /******************************************************************************
 | |
| ** This file is an amalgamation of many separate C source files from SQLite
 | |
| ** version 3.5.7.  By combining all the individual C code files into this 
 | |
| ** single large file, the entire code can be compiled as a one translation
 | |
| ** unit.  This allows many compilers to do optimizations that would not be
 | |
| ** possible if the files were compiled separately.  Performance improvements
 | |
| ** of 5% are more are commonly seen when SQLite is compiled as a single
 | |
| ** translation unit.
 | |
| **
 | |
| ** This file is all you need to compile SQLite.  To use SQLite in other
 | |
| ** programs, you need this file and the "sqlite3.h" header file that defines
 | |
| ** the programming interface to the SQLite library.  (If you do not have 
 | |
| ** the "sqlite3.h" header file at hand, you will find a copy in the first
 | |
| ** 5413 lines past this header comment.)  Additional code files may be
 | |
| ** needed if you want a wrapper to interface SQLite with your choice of
 | |
| ** programming language.  The code for the "sqlite3" command-line shell
 | |
| ** is also in a separate file.  This file contains only code for the core
 | |
| ** SQLite library.
 | |
| **
 | |
| ** This amalgamation was generated on 2008-03-17 18:47:08 UTC.
 | |
| */
 | |
| #define SQLITE_CORE 1
 | |
| #define SQLITE_AMALGAMATION 1
 | |
| #ifndef SQLITE_PRIVATE
 | |
| # define SQLITE_PRIVATE static
 | |
| #endif
 | |
| #ifndef SQLITE_API
 | |
| # define SQLITE_API
 | |
| #endif
 | |
| /************** Begin file sqliteInt.h ***************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Internal interface definitions for SQLite.
 | |
| **
 | |
| ** @(#) $Id: sqliteInt.h,v 1.673 2008/03/14 13:02:08 mlcreech Exp $
 | |
| */
 | |
| #ifndef _SQLITEINT_H_
 | |
| #define _SQLITEINT_H_
 | |
| 
 | |
| /*
 | |
| ** Include the configuration header output by 'configure' if it was run
 | |
| ** (otherwise we get an empty default).
 | |
| */
 | |
| /************** Include config.h in the middle of sqliteInt.h ****************/
 | |
| /************** Begin file config.h ******************************************/
 | |
| /*
 | |
| ** 2008 March 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Default configuration header in case the 'configure' script is not used
 | |
| **
 | |
| ** @(#) $Id: config.h,v 1.1 2008/03/06 07:36:18 mlcreech Exp $
 | |
| */
 | |
| #ifndef _CONFIG_H_
 | |
| #define _CONFIG_H_
 | |
| 
 | |
| /* We do nothing here, since no assumptions are made by default */
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /************** End of config.h **********************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| 
 | |
| /* Needed for various definitions... */
 | |
| #define _GNU_SOURCE
 | |
| 
 | |
| /*
 | |
| ** Include standard header files as necessary
 | |
| */
 | |
| #ifdef HAVE_STDINT_H
 | |
| #include <stdint.h>
 | |
| #endif
 | |
| #ifdef HAVE_INTTYPES_H
 | |
| #include <inttypes.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If possible, use the C99 intptr_t type to define an integral type of
 | |
| ** equivalent size to a pointer.  (Technically it's >= sizeof(void *), but
 | |
| ** practically it's == sizeof(void *)).  We fall back to an int if this type
 | |
| ** isn't defined.
 | |
| */
 | |
| #ifdef HAVE_INTPTR_T
 | |
|   typedef intptr_t sqlite3_intptr_t;
 | |
| #else
 | |
|   typedef int sqlite3_intptr_t;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The macro unlikely() is a hint that surrounds a boolean
 | |
| ** expression that is usually false.  Macro likely() surrounds
 | |
| ** a boolean expression that is usually true.  GCC is able to
 | |
| ** use these hints to generate better code, sometimes.
 | |
| */
 | |
| #if defined(__GNUC__) && 0
 | |
| # define likely(X)    __builtin_expect((X),1)
 | |
| # define unlikely(X)  __builtin_expect((X),0)
 | |
| #else
 | |
| # define likely(X)    !!(X)
 | |
| # define unlikely(X)  !!(X)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** These #defines should enable >2GB file support on Posix if the
 | |
| ** underlying operating system supports it.  If the OS lacks
 | |
| ** large file support, or if the OS is windows, these should be no-ops.
 | |
| **
 | |
| ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
 | |
| ** system #includes.  Hence, this block of code must be the very first
 | |
| ** code in all source files.
 | |
| **
 | |
| ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
 | |
| ** on the compiler command line.  This is necessary if you are compiling
 | |
| ** on a recent machine (ex: RedHat 7.2) but you want your code to work
 | |
| ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
 | |
| ** without this option, LFS is enable.  But LFS does not exist in the kernel
 | |
| ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
 | |
| ** portability you should omit LFS.
 | |
| **
 | |
| ** Similar is true for MacOS.  LFS is only supported on MacOS 9 and later.
 | |
| */
 | |
| #ifndef SQLITE_DISABLE_LFS
 | |
| # define _LARGE_FILE       1
 | |
| # ifndef _FILE_OFFSET_BITS
 | |
| #   define _FILE_OFFSET_BITS 64
 | |
| # endif
 | |
| # define _LARGEFILE_SOURCE 1
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/
 | |
| /************** Begin file sqliteLimit.h *************************************/
 | |
| /*
 | |
| ** 2007 May 7
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** 
 | |
| ** This file defines various limits of what SQLite can process.
 | |
| **
 | |
| ** @(#) $Id: sqliteLimit.h,v 1.6 2007/12/17 16:20:07 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The maximum length of a TEXT or BLOB in bytes.   This also
 | |
| ** limits the size of a row in a table or index.
 | |
| **
 | |
| ** The hard limit is the ability of a 32-bit signed integer
 | |
| ** to count the size: 2^31-1 or 2147483647.
 | |
| */
 | |
| #ifndef SQLITE_MAX_LENGTH
 | |
| # define SQLITE_MAX_LENGTH 1000000000
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This is the maximum number of
 | |
| **
 | |
| **    * Columns in a table
 | |
| **    * Columns in an index
 | |
| **    * Columns in a view
 | |
| **    * Terms in the SET clause of an UPDATE statement
 | |
| **    * Terms in the result set of a SELECT statement
 | |
| **    * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement.
 | |
| **    * Terms in the VALUES clause of an INSERT statement
 | |
| **
 | |
| ** The hard upper limit here is 32676.  Most database people will
 | |
| ** tell you that in a well-normalized database, you usually should
 | |
| ** not have more than a dozen or so columns in any table.  And if
 | |
| ** that is the case, there is no point in having more than a few
 | |
| ** dozen values in any of the other situations described above.
 | |
| */
 | |
| #ifndef SQLITE_MAX_COLUMN
 | |
| # define SQLITE_MAX_COLUMN 2000
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum length of a single SQL statement in bytes.
 | |
| ** A value of zero means there is no limit.
 | |
| */
 | |
| #ifndef SQLITE_MAX_SQL_LENGTH
 | |
| # define SQLITE_MAX_SQL_LENGTH 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum depth of an expression tree. This is limited to 
 | |
| ** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might 
 | |
| ** want to place more severe limits on the complexity of an 
 | |
| ** expression. A value of 0 (the default) means do not enforce
 | |
| ** any limitation on expression tree depth.
 | |
| */
 | |
| #ifndef SQLITE_MAX_EXPR_DEPTH
 | |
| # define SQLITE_MAX_EXPR_DEPTH 1000
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum number of terms in a compound SELECT statement.
 | |
| ** The code generator for compound SELECT statements does one
 | |
| ** level of recursion for each term.  A stack overflow can result
 | |
| ** if the number of terms is too large.  In practice, most SQL
 | |
| ** never has more than 3 or 4 terms.  Use a value of 0 to disable
 | |
| ** any limit on the number of terms in a compount SELECT.
 | |
| */
 | |
| #ifndef SQLITE_MAX_COMPOUND_SELECT
 | |
| # define SQLITE_MAX_COMPOUND_SELECT 500
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum number of opcodes in a VDBE program.
 | |
| ** Not currently enforced.
 | |
| */
 | |
| #ifndef SQLITE_MAX_VDBE_OP
 | |
| # define SQLITE_MAX_VDBE_OP 25000
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum number of arguments to an SQL function.
 | |
| */
 | |
| #ifndef SQLITE_MAX_FUNCTION_ARG
 | |
| # define SQLITE_MAX_FUNCTION_ARG 100
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum number of in-memory pages to use for the main database
 | |
| ** table and for temporary tables.  The SQLITE_DEFAULT_CACHE_SIZE
 | |
| */
 | |
| #ifndef SQLITE_DEFAULT_CACHE_SIZE
 | |
| # define SQLITE_DEFAULT_CACHE_SIZE  2000
 | |
| #endif
 | |
| #ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
 | |
| # define SQLITE_DEFAULT_TEMP_CACHE_SIZE  500
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The maximum number of attached databases.  This must be at least 2
 | |
| ** in order to support the main database file (0) and the file used to
 | |
| ** hold temporary tables (1).  And it must be less than 32 because
 | |
| ** we use a bitmask of databases with a u32 in places (for example
 | |
| ** the Parse.cookieMask field).
 | |
| */
 | |
| #ifndef SQLITE_MAX_ATTACHED
 | |
| # define SQLITE_MAX_ATTACHED 10
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The maximum value of a ?nnn wildcard that the parser will accept.
 | |
| */
 | |
| #ifndef SQLITE_MAX_VARIABLE_NUMBER
 | |
| # define SQLITE_MAX_VARIABLE_NUMBER 999
 | |
| #endif
 | |
| 
 | |
| /* Maximum page size.  The upper bound on this value is 32768.  This a limit
 | |
| ** imposed by the necessity of storing the value in a 2-byte unsigned integer
 | |
| ** and the fact that the page size must be a power of 2.
 | |
| */
 | |
| #ifndef SQLITE_MAX_PAGE_SIZE
 | |
| # define SQLITE_MAX_PAGE_SIZE 32768
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The default size of a database page.
 | |
| */
 | |
| #ifndef SQLITE_DEFAULT_PAGE_SIZE
 | |
| # define SQLITE_DEFAULT_PAGE_SIZE 1024
 | |
| #endif
 | |
| #if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
 | |
| # undef SQLITE_DEFAULT_PAGE_SIZE
 | |
| # define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Ordinarily, if no value is explicitly provided, SQLite creates databases
 | |
| ** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain
 | |
| ** device characteristics (sector-size and atomic write() support),
 | |
| ** SQLite may choose a larger value. This constant is the maximum value
 | |
| ** SQLite will choose on its own.
 | |
| */
 | |
| #ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE
 | |
| # define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192
 | |
| #endif
 | |
| #if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE
 | |
| # undef SQLITE_MAX_DEFAULT_PAGE_SIZE
 | |
| # define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Maximum number of pages in one database file.
 | |
| **
 | |
| ** This is really just the default value for the max_page_count pragma.
 | |
| ** This value can be lowered (or raised) at run-time using that the
 | |
| ** max_page_count macro.
 | |
| */
 | |
| #ifndef SQLITE_MAX_PAGE_COUNT
 | |
| # define SQLITE_MAX_PAGE_COUNT 1073741823
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Maximum length (in bytes) of the pattern in a LIKE or GLOB
 | |
| ** operator.
 | |
| */
 | |
| #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH
 | |
| # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000
 | |
| #endif
 | |
| 
 | |
| /************** End of sqliteLimit.h *****************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| 
 | |
| /*
 | |
| ** For testing purposes, the various size limit constants are really
 | |
| ** variables that we can modify in the testfixture.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
|   #undef SQLITE_MAX_LENGTH
 | |
|   #undef SQLITE_MAX_COLUMN
 | |
|   #undef SQLITE_MAX_SQL_LENGTH
 | |
|   #undef SQLITE_MAX_EXPR_DEPTH
 | |
|   #undef SQLITE_MAX_COMPOUND_SELECT
 | |
|   #undef SQLITE_MAX_VDBE_OP
 | |
|   #undef SQLITE_MAX_FUNCTION_ARG
 | |
|   #undef SQLITE_MAX_VARIABLE_NUMBER
 | |
|   #undef SQLITE_MAX_PAGE_SIZE
 | |
|   #undef SQLITE_MAX_PAGE_COUNT
 | |
|   #undef SQLITE_MAX_LIKE_PATTERN_LENGTH
 | |
| 
 | |
|   #define SQLITE_MAX_LENGTH              sqlite3MAX_LENGTH
 | |
|   #define SQLITE_MAX_COLUMN              sqlite3MAX_COLUMN
 | |
|   #define SQLITE_MAX_SQL_LENGTH          sqlite3MAX_SQL_LENGTH
 | |
|   #define SQLITE_MAX_EXPR_DEPTH          sqlite3MAX_EXPR_DEPTH
 | |
|   #define SQLITE_MAX_COMPOUND_SELECT     sqlite3MAX_COMPOUND_SELECT
 | |
|   #define SQLITE_MAX_VDBE_OP             sqlite3MAX_VDBE_OP
 | |
|   #define SQLITE_MAX_FUNCTION_ARG        sqlite3MAX_FUNCTION_ARG
 | |
|   #define SQLITE_MAX_VARIABLE_NUMBER     sqlite3MAX_VARIABLE_NUMBER
 | |
|   #define SQLITE_MAX_PAGE_SIZE           sqlite3MAX_PAGE_SIZE
 | |
|   #define SQLITE_MAX_PAGE_COUNT          sqlite3MAX_PAGE_COUNT
 | |
|   #define SQLITE_MAX_LIKE_PATTERN_LENGTH sqlite3MAX_LIKE_PATTERN_LENGTH
 | |
| 
 | |
|   extern int sqlite3MAX_LENGTH;
 | |
|   extern int sqlite3MAX_COLUMN;
 | |
|   extern int sqlite3MAX_SQL_LENGTH;
 | |
|   extern int sqlite3MAX_EXPR_DEPTH;
 | |
|   extern int sqlite3MAX_COMPOUND_SELECT;
 | |
|   extern int sqlite3MAX_VDBE_OP;
 | |
|   extern int sqlite3MAX_FUNCTION_ARG;
 | |
|   extern int sqlite3MAX_VARIABLE_NUMBER;
 | |
|   extern int sqlite3MAX_PAGE_SIZE;
 | |
|   extern int sqlite3MAX_PAGE_COUNT;
 | |
|   extern int sqlite3MAX_LIKE_PATTERN_LENGTH;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
 | |
| ** Older versions of SQLite used an optional THREADSAFE macro.
 | |
| ** We support that for legacy
 | |
| */
 | |
| #if !defined(SQLITE_THREADSAFE)
 | |
| #if defined(THREADSAFE)
 | |
| # define SQLITE_THREADSAFE THREADSAFE
 | |
| #else
 | |
| # define SQLITE_THREADSAFE 1
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Exactly one of the following macros must be defined in order to
 | |
| ** specify which memory allocation subsystem to use.
 | |
| **
 | |
| **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
 | |
| **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
 | |
| **     SQLITE_MEMORY_SIZE            // internal allocator #1
 | |
| **     SQLITE_MMAP_HEAP_SIZE         // internal mmap() allocator
 | |
| **     SQLITE_POW2_MEMORY_SIZE       // internal power-of-two allocator
 | |
| **
 | |
| ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
 | |
| ** the default.
 | |
| */
 | |
| #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
 | |
|     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
 | |
|     defined(SQLITE_POW2_MEMORY_SIZE)>1
 | |
| # error "At most one of the following compile-time configuration options\
 | |
|  is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
 | |
|  SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
 | |
| #endif
 | |
| #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
 | |
|     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
 | |
|     defined(SQLITE_POW2_MEMORY_SIZE)==0
 | |
| # define SQLITE_SYSTEM_MALLOC 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
 | |
| ** sizes of memory allocations below this value where possible.
 | |
| */
 | |
| #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
 | |
| # define SQLITE_MALLOC_SOFT_LIMIT 1024
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** We need to define _XOPEN_SOURCE as follows in order to enable
 | |
| ** recursive mutexes on most unix systems.  But Mac OS X is different.
 | |
| ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
 | |
| ** so it is omitted there.  See ticket #2673.
 | |
| **
 | |
| ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
 | |
| ** implemented on some systems.  So we avoid defining it at all
 | |
| ** if it is already defined or if it is unneeded because we are
 | |
| ** not doing a threadsafe build.  Ticket #2681.
 | |
| **
 | |
| ** See also ticket #2741.
 | |
| */
 | |
| #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
 | |
| #  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
 | |
| #endif
 | |
| 
 | |
| #if defined(SQLITE_TCL) || defined(TCLSH)
 | |
| # include <tcl.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
 | |
| ** Setting NDEBUG makes the code smaller and run faster.  So the following
 | |
| ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
 | |
| ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
 | |
| ** feature.
 | |
| */
 | |
| #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
 | |
| # define NDEBUG 1
 | |
| #endif
 | |
| 
 | |
| /************** Include sqlite3.h in the middle of sqliteInt.h ***************/
 | |
| /************** Begin file sqlite3.h *****************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This header file defines the interface that the SQLite library
 | |
| ** presents to client programs.  If a C-function, structure, datatype,
 | |
| ** or constant definition does not appear in this file, then it is
 | |
| ** not a published API of SQLite, is subject to change without
 | |
| ** notice, and should not be referenced by programs that use SQLite.
 | |
| **
 | |
| ** Some of the definitions that are in this file are marked as
 | |
| ** "experimental".  Experimental interfaces are normally new
 | |
| ** features recently added to SQLite.  We do not anticipate changes 
 | |
| ** to experimental interfaces but reserve to make minor changes if
 | |
| ** experience from use "in the wild" suggest such changes are prudent.
 | |
| **
 | |
| ** The official C-language API documentation for SQLite is derived
 | |
| ** from comments in this file.  This file is the authoritative source
 | |
| ** on how SQLite interfaces are suppose to operate.
 | |
| **
 | |
| ** The name of this file under configuration management is "sqlite.h.in".
 | |
| ** The makefile makes some minor changes to this file (such as inserting
 | |
| ** the version number) and changes its name to "sqlite3.h" as
 | |
| ** part of the build process.
 | |
| **
 | |
| ** @(#) $Id: sqlite.h.in,v 1.291 2008/03/08 12:37:31 drh Exp $
 | |
| */
 | |
| #ifndef _SQLITE3_H_
 | |
| #define _SQLITE3_H_
 | |
| #include <stdarg.h>     /* Needed for the definition of va_list */
 | |
| 
 | |
| /*
 | |
| ** Make sure we can call this stuff from C++.
 | |
| */
 | |
| #if 0
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add the ability to override 'extern'
 | |
| */
 | |
| #ifndef SQLITE_EXTERN
 | |
| # define SQLITE_EXTERN extern
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Make sure these symbols where not defined by some previous header
 | |
| ** file.
 | |
| */
 | |
| #ifdef SQLITE_VERSION
 | |
| # undef SQLITE_VERSION
 | |
| #endif
 | |
| #ifdef SQLITE_VERSION_NUMBER
 | |
| # undef SQLITE_VERSION_NUMBER
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Compile-Time Library Version Numbers {F10010}
 | |
| **
 | |
| ** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
 | |
| ** the sqlite3.h file specify the version of SQLite with which
 | |
| ** that header file is associated.
 | |
| **
 | |
| ** The "version" of SQLite is a string of the form "X.Y.Z".
 | |
| ** The phrase "alpha" or "beta" might be appended after the Z.
 | |
| ** The X value is major version number always 3 in SQLite3.
 | |
| ** The X value only changes when  backwards compatibility is
 | |
| ** broken and we intend to never break
 | |
| ** backwards compatibility.  The Y value is the minor version
 | |
| ** number and only changes when
 | |
| ** there are major feature enhancements that are forwards compatible
 | |
| ** but not backwards compatible.  The Z value is release number
 | |
| ** and is incremented with
 | |
| ** each release but resets back to 0 when Y is incremented.
 | |
| **
 | |
| ** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file
 | |
| **          evaluates to a string literal that is the SQLite version
 | |
| **          with which the header file is associated.
 | |
| **
 | |
| ** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer
 | |
| **          with the value  (X*1000000 + Y*1000 + Z) where X, Y, and
 | |
| **          Z are the major version, minor version, and release number.
 | |
| */
 | |
| #define SQLITE_VERSION         "3.5.7"
 | |
| #define SQLITE_VERSION_NUMBER  3005007
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Run-Time Library Version Numbers {F10020}
 | |
| ** KEYWORDS: sqlite3_version
 | |
| **
 | |
| ** These features provide the same information as the [SQLITE_VERSION]
 | |
| ** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated
 | |
| ** with the library instead of the header file.  Cautious programmers might
 | |
| ** include a check in their application to verify that 
 | |
| ** sqlite3_libversion_number() always returns the value 
 | |
| ** [SQLITE_VERSION_NUMBER].
 | |
| **
 | |
| ** The sqlite3_libversion() function returns the same information as is
 | |
| ** in the sqlite3_version[] string constant.  The function is provided
 | |
| ** for use in DLLs since DLL users usually do not have direct access to string
 | |
| ** constants within the DLL.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10021} The [sqlite3_libversion_number()] interface returns an integer
 | |
| **          equal to [SQLITE_VERSION_NUMBER]. 
 | |
| **
 | |
| ** {F10022} The [sqlite3_version] string constant contains the text of the
 | |
| **          [SQLITE_VERSION] string. 
 | |
| **
 | |
| ** {F10023} The [sqlite3_libversion()] function returns
 | |
| **          a pointer to the [sqlite3_version] string constant.
 | |
| */
 | |
| SQLITE_API const char sqlite3_version[];
 | |
| SQLITE_API const char *sqlite3_libversion(void);
 | |
| SQLITE_API int sqlite3_libversion_number(void);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Test To See If The Library Is Threadsafe {F10100}
 | |
| **
 | |
| ** SQLite can be compiled with or without mutexes.  When
 | |
| ** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes
 | |
| ** are enabled and SQLite is threadsafe.  When that macro is false,
 | |
| ** the mutexes are omitted.  Without the mutexes, it is not safe
 | |
| ** to use SQLite from more than one thread.
 | |
| **
 | |
| ** There is a measurable performance penalty for enabling mutexes.
 | |
| ** So if speed is of utmost importance, it makes sense to disable
 | |
| ** the mutexes.  But for maximum safety, mutexes should be enabled.
 | |
| ** The default behavior is for mutexes to be enabled.
 | |
| **
 | |
| ** This interface can be used by a program to make sure that the
 | |
| ** version of SQLite that it is linking against was compiled with
 | |
| ** the desired setting of the SQLITE_THREADSAFE macro.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10101} The [sqlite3_threadsafe()] function returns nonzero if
 | |
| **          SQLite was compiled with its mutexes enabled or zero
 | |
| **          if SQLite was compiled with mutexes disabled.
 | |
| */
 | |
| SQLITE_API int sqlite3_threadsafe(void);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Database Connection Handle {F12000}
 | |
| ** KEYWORDS: {database connection}
 | |
| **
 | |
| ** Each open SQLite database is represented by pointer to an instance of the
 | |
| ** opaque structure named "sqlite3".  It is useful to think of an sqlite3
 | |
| ** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
 | |
| ** [sqlite3_open_v2()] interfaces are its constructors
 | |
| ** and [sqlite3_close()] is its destructor.  There are many other interfaces
 | |
| ** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and
 | |
| ** [sqlite3_busy_timeout()] to name but three) that are methods on this
 | |
| ** object.
 | |
| */
 | |
| typedef struct sqlite3 sqlite3;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: 64-Bit Integer Types {F10200}
 | |
| ** KEYWORDS: sqlite_int64 sqlite_uint64
 | |
| **
 | |
| ** Because there is no cross-platform way to specify 64-bit integer types
 | |
| ** SQLite includes typedefs for 64-bit signed and unsigned integers.
 | |
| **
 | |
| ** The sqlite3_int64 and sqlite3_uint64 are the preferred type
 | |
| ** definitions.  The sqlite_int64 and sqlite_uint64 types are
 | |
| ** supported for backwards compatibility only.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a
 | |
| **          64-bit signed integer.
 | |
| **
 | |
| ** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify
 | |
| **          a 64-bit unsigned integer.
 | |
| */
 | |
| #ifdef SQLITE_INT64_TYPE
 | |
|   typedef SQLITE_INT64_TYPE sqlite_int64;
 | |
|   typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
 | |
| #elif defined(_MSC_VER) || defined(__BORLANDC__)
 | |
|   typedef __int64 sqlite_int64;
 | |
|   typedef unsigned __int64 sqlite_uint64;
 | |
| #else
 | |
|   typedef long long int sqlite_int64;
 | |
|   typedef unsigned long long int sqlite_uint64;
 | |
| #endif
 | |
| typedef sqlite_int64 sqlite3_int64;
 | |
| typedef sqlite_uint64 sqlite3_uint64;
 | |
| 
 | |
| /*
 | |
| ** If compiling for a processor that lacks floating point support,
 | |
| ** substitute integer for floating-point
 | |
| */
 | |
| #ifdef SQLITE_OMIT_FLOATING_POINT
 | |
| # define double sqlite3_int64
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Closing A Database Connection {F12010}
 | |
| **
 | |
| ** This routine is the destructor for the [sqlite3] object.  
 | |
| **
 | |
| ** Applications should [sqlite3_finalize | finalize] all
 | |
| ** [prepared statements] and
 | |
| ** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs] 
 | |
| ** associated with the [sqlite3] object prior
 | |
| ** to attempting to close the [sqlite3] object.
 | |
| **
 | |
| ** <todo>What happens to pending transactions?  Are they
 | |
| ** rolled back, or abandoned?</todo>
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object
 | |
| **          allocated by a prior call to [sqlite3_open()],
 | |
| **          [sqlite3_open16()], or [sqlite3_open_v2()].
 | |
| **
 | |
| ** {F12012} The [sqlite3_close()] function releases all memory used by the
 | |
| **          connection and closes all open files.
 | |
| **
 | |
| ** {F12013} If the database connection contains
 | |
| **          [prepared statements] that have not been
 | |
| **          finalized by [sqlite3_finalize()], then [sqlite3_close()]
 | |
| **          returns [SQLITE_BUSY] and leaves the connection open.
 | |
| **
 | |
| ** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object
 | |
| **          pointer previously obtained from [sqlite3_open()] or the 
 | |
| **          equivalent, or NULL.
 | |
| **
 | |
| ** {U12016} The parameter to [sqlite3_close()] must not have been previously
 | |
| **          closed.
 | |
| */
 | |
| SQLITE_API int sqlite3_close(sqlite3 *);
 | |
| 
 | |
| /*
 | |
| ** The type for a callback function.
 | |
| ** This is legacy and deprecated.  It is included for historical
 | |
| ** compatibility and is not documented.
 | |
| */
 | |
| typedef int (*sqlite3_callback)(void*,int,char**, char**);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: One-Step Query Execution Interface {F12100}
 | |
| **
 | |
| ** The sqlite3_exec() interface is a convenient way of running
 | |
| ** one or more SQL statements without a lot of C code.  The
 | |
| ** SQL statements are passed in as the second parameter to
 | |
| ** sqlite3_exec().  The statements are evaluated one by one
 | |
| ** until either an error or an interrupt is encountered or
 | |
| ** until they are all done.  The 3rd parameter is an optional
 | |
| ** callback that is invoked once for each row of any query results
 | |
| ** produced by the SQL statements.  The 5th parameter tells where
 | |
| ** to write any error messages.
 | |
| **
 | |
| ** The sqlite3_exec() interface is implemented in terms of
 | |
| ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
 | |
| ** The sqlite3_exec() routine does nothing that cannot be done
 | |
| ** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
 | |
| ** The sqlite3_exec() is just a convenient wrapper.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| ** 
 | |
| ** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8
 | |
| **          encoded, semicolon-separated, SQL statements in the
 | |
| **          zero-terminated string of its 2nd parameter within the
 | |
| **          context of the [sqlite3] object given in the 1st parameter.
 | |
| **
 | |
| ** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all
 | |
| **          SQL statements run successfully.
 | |
| **
 | |
| ** {F12105} The return value of [sqlite3_exec()] is an appropriate 
 | |
| **          non-zero error code if any SQL statement fails.
 | |
| **
 | |
| ** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()]
 | |
| **          return results and the 3rd parameter is not NULL, then
 | |
| **          the callback function specified by the 3rd parameter is
 | |
| **          invoked once for each row of result.
 | |
| **
 | |
| ** {F12110} If the callback returns a non-zero value then [sqlite3_exec()]
 | |
| **          will aborted the SQL statement it is currently evaluating,
 | |
| **          skip all subsequent SQL statements, and return [SQLITE_ABORT].
 | |
| **          <todo>What happens to *errmsg here?  Does the result code for
 | |
| **          sqlite3_errcode() get set?</todo>
 | |
| **
 | |
| ** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through
 | |
| **          as the 1st parameter of the callback.
 | |
| **
 | |
| ** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its
 | |
| **          callback to be the number of columns in the current row of
 | |
| **          result.
 | |
| **
 | |
| ** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its 
 | |
| **          callback to be an array of pointers to strings holding the
 | |
| **          values for each column in the current result set row as
 | |
| **          obtained from [sqlite3_column_text()].
 | |
| **
 | |
| ** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its
 | |
| **          callback to be an array of pointers to strings holding the
 | |
| **          names of result columns as obtained from [sqlite3_column_name()].
 | |
| **
 | |
| ** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then
 | |
| **          [sqlite3_exec()] never invokes a callback.  All query
 | |
| **          results are silently discarded.
 | |
| **
 | |
| ** {F12128} If an error occurs while parsing or evaluating any of the SQL
 | |
| **          statements handed to [sqlite3_exec()] then [sqlite3_exec()] will
 | |
| **          return an [error code] other than [SQLITE_OK].
 | |
| **
 | |
| ** {F12131} If an error occurs while parsing or evaluating any of the SQL
 | |
| **          handed to [sqlite3_exec()] and if the 5th parameter (errmsg)
 | |
| **          to [sqlite3_exec()] is not NULL, then an error message is
 | |
| **          allocated using the equivalent of [sqlite3_mprintf()] and
 | |
| **          *errmsg is made to point to that message.
 | |
| **
 | |
| ** {F12134} The [sqlite3_exec()] routine does not change the value of
 | |
| **          *errmsg if errmsg is NULL or if there are no errors.
 | |
| **
 | |
| ** {F12137} The [sqlite3_exec()] function sets the error code and message
 | |
| **          accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and
 | |
| **          [sqlite3_errmsg16()].
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open
 | |
| **          [database connection].
 | |
| **
 | |
| ** {U12142} The database connection must not be closed while
 | |
| **          [sqlite3_exec()] is running.
 | |
| ** 
 | |
| ** {U12143} The calling function is should use [sqlite3_free()] to free
 | |
| **          the memory that *errmsg is left pointing at once the error
 | |
| **          message is no longer needed.
 | |
| **
 | |
| ** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()]
 | |
| **          must remain unchanged while [sqlite3_exec()] is running.
 | |
| */
 | |
| SQLITE_API int sqlite3_exec(
 | |
|   sqlite3*,                                  /* An open database */
 | |
|   const char *sql,                           /* SQL to be evaluted */
 | |
|   int (*callback)(void*,int,char**,char**),  /* Callback function */
 | |
|   void *,                                    /* 1st argument to callback */
 | |
|   char **errmsg                              /* Error msg written here */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Result Codes {F10210}
 | |
| ** KEYWORDS: SQLITE_OK {error code} {error codes}
 | |
| **
 | |
| ** Many SQLite functions return an integer result code from the set shown
 | |
| ** here in order to indicates success or failure.
 | |
| **
 | |
| ** See also: [SQLITE_IOERR_READ | extended result codes]
 | |
| */
 | |
| #define SQLITE_OK           0   /* Successful result */
 | |
| /* beginning-of-error-codes */
 | |
| #define SQLITE_ERROR        1   /* SQL error or missing database */
 | |
| #define SQLITE_INTERNAL     2   /* Internal logic error in SQLite */
 | |
| #define SQLITE_PERM         3   /* Access permission denied */
 | |
| #define SQLITE_ABORT        4   /* Callback routine requested an abort */
 | |
| #define SQLITE_BUSY         5   /* The database file is locked */
 | |
| #define SQLITE_LOCKED       6   /* A table in the database is locked */
 | |
| #define SQLITE_NOMEM        7   /* A malloc() failed */
 | |
| #define SQLITE_READONLY     8   /* Attempt to write a readonly database */
 | |
| #define SQLITE_INTERRUPT    9   /* Operation terminated by sqlite3_interrupt()*/
 | |
| #define SQLITE_IOERR       10   /* Some kind of disk I/O error occurred */
 | |
| #define SQLITE_CORRUPT     11   /* The database disk image is malformed */
 | |
| #define SQLITE_NOTFOUND    12   /* NOT USED. Table or record not found */
 | |
| #define SQLITE_FULL        13   /* Insertion failed because database is full */
 | |
| #define SQLITE_CANTOPEN    14   /* Unable to open the database file */
 | |
| #define SQLITE_PROTOCOL    15   /* NOT USED. Database lock protocol error */
 | |
| #define SQLITE_EMPTY       16   /* Database is empty */
 | |
| #define SQLITE_SCHEMA      17   /* The database schema changed */
 | |
| #define SQLITE_TOOBIG      18   /* String or BLOB exceeds size limit */
 | |
| #define SQLITE_CONSTRAINT  19   /* Abort due to constraint violation */
 | |
| #define SQLITE_MISMATCH    20   /* Data type mismatch */
 | |
| #define SQLITE_MISUSE      21   /* Library used incorrectly */
 | |
| #define SQLITE_NOLFS       22   /* Uses OS features not supported on host */
 | |
| #define SQLITE_AUTH        23   /* Authorization denied */
 | |
| #define SQLITE_FORMAT      24   /* Auxiliary database format error */
 | |
| #define SQLITE_RANGE       25   /* 2nd parameter to sqlite3_bind out of range */
 | |
| #define SQLITE_NOTADB      26   /* File opened that is not a database file */
 | |
| #define SQLITE_ROW         100  /* sqlite3_step() has another row ready */
 | |
| #define SQLITE_DONE        101  /* sqlite3_step() has finished executing */
 | |
| /* end-of-error-codes */
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Extended Result Codes {F10220}
 | |
| ** KEYWORDS: {extended error code} {extended error codes}
 | |
| ** KEYWORDS: {extended result codes}
 | |
| **
 | |
| ** In its default configuration, SQLite API routines return one of 26 integer
 | |
| ** [SQLITE_OK | result codes].  However, experience has shown that
 | |
| ** many of these result codes are too course-grained.  They do not provide as
 | |
| ** much information about problems as programmers might like.  In an effort to
 | |
| ** address this, newer versions of SQLite (version 3.3.8 and later) include
 | |
| ** support for additional result codes that provide more detailed information
 | |
| ** about errors. The extended result codes are enabled or disabled
 | |
| ** for each database connection using the [sqlite3_extended_result_codes()]
 | |
| ** API.
 | |
| ** 
 | |
| ** Some of the available extended result codes are listed here.
 | |
| ** One may expect the number of extended result codes will be expand
 | |
| ** over time.  Software that uses extended result codes should expect
 | |
| ** to see new result codes in future releases of SQLite.
 | |
| **
 | |
| ** The SQLITE_OK result code will never be extended.  It will always
 | |
| ** be exactly zero.
 | |
| ** 
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10223} The symbolic name for an extended result code always contains
 | |
| **          a related primary result code as a prefix.
 | |
| **
 | |
| ** {F10224} Primary result code names contain a single "_" character.
 | |
| **
 | |
| ** {F10225} Extended result code names contain two or more "_" characters.
 | |
| **
 | |
| ** {F10226} The numeric value of an extended result code contains the
 | |
| **          numeric value of its corresponding primary result code in
 | |
| **          its least significant 8 bits.
 | |
| */
 | |
| #define SQLITE_IOERR_READ          (SQLITE_IOERR | (1<<8))
 | |
| #define SQLITE_IOERR_SHORT_READ    (SQLITE_IOERR | (2<<8))
 | |
| #define SQLITE_IOERR_WRITE         (SQLITE_IOERR | (3<<8))
 | |
| #define SQLITE_IOERR_FSYNC         (SQLITE_IOERR | (4<<8))
 | |
| #define SQLITE_IOERR_DIR_FSYNC     (SQLITE_IOERR | (5<<8))
 | |
| #define SQLITE_IOERR_TRUNCATE      (SQLITE_IOERR | (6<<8))
 | |
| #define SQLITE_IOERR_FSTAT         (SQLITE_IOERR | (7<<8))
 | |
| #define SQLITE_IOERR_UNLOCK        (SQLITE_IOERR | (8<<8))
 | |
| #define SQLITE_IOERR_RDLOCK        (SQLITE_IOERR | (9<<8))
 | |
| #define SQLITE_IOERR_DELETE        (SQLITE_IOERR | (10<<8))
 | |
| #define SQLITE_IOERR_BLOCKED       (SQLITE_IOERR | (11<<8))
 | |
| #define SQLITE_IOERR_NOMEM         (SQLITE_IOERR | (12<<8))
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Flags For File Open Operations {F10230}
 | |
| **
 | |
| ** These bit values are intended for use in the
 | |
| ** 3rd parameter to the [sqlite3_open_v2()] interface and
 | |
| ** in the 4th parameter to the xOpen method of the
 | |
| ** [sqlite3_vfs] object.
 | |
| */
 | |
| #define SQLITE_OPEN_READONLY         0x00000001
 | |
| #define SQLITE_OPEN_READWRITE        0x00000002
 | |
| #define SQLITE_OPEN_CREATE           0x00000004
 | |
| #define SQLITE_OPEN_DELETEONCLOSE    0x00000008
 | |
| #define SQLITE_OPEN_EXCLUSIVE        0x00000010
 | |
| #define SQLITE_OPEN_MAIN_DB          0x00000100
 | |
| #define SQLITE_OPEN_TEMP_DB          0x00000200
 | |
| #define SQLITE_OPEN_TRANSIENT_DB     0x00000400
 | |
| #define SQLITE_OPEN_MAIN_JOURNAL     0x00000800
 | |
| #define SQLITE_OPEN_TEMP_JOURNAL     0x00001000
 | |
| #define SQLITE_OPEN_SUBJOURNAL       0x00002000
 | |
| #define SQLITE_OPEN_MASTER_JOURNAL   0x00004000
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Device Characteristics {F10240}
 | |
| **
 | |
| ** The xDeviceCapabilities method of the [sqlite3_io_methods]
 | |
| ** object returns an integer which is a vector of the these
 | |
| ** bit values expressing I/O characteristics of the mass storage
 | |
| ** device that holds the file that the [sqlite3_io_methods]
 | |
| ** refers to.
 | |
| **
 | |
| ** The SQLITE_IOCAP_ATOMIC property means that all writes of
 | |
| ** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
 | |
| ** mean that writes of blocks that are nnn bytes in size and
 | |
| ** are aligned to an address which is an integer multiple of
 | |
| ** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
 | |
| ** that when data is appended to a file, the data is appended
 | |
| ** first then the size of the file is extended, never the other
 | |
| ** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
 | |
| ** information is written to disk in the same order as calls
 | |
| ** to xWrite().
 | |
| */
 | |
| #define SQLITE_IOCAP_ATOMIC          0x00000001
 | |
| #define SQLITE_IOCAP_ATOMIC512       0x00000002
 | |
| #define SQLITE_IOCAP_ATOMIC1K        0x00000004
 | |
| #define SQLITE_IOCAP_ATOMIC2K        0x00000008
 | |
| #define SQLITE_IOCAP_ATOMIC4K        0x00000010
 | |
| #define SQLITE_IOCAP_ATOMIC8K        0x00000020
 | |
| #define SQLITE_IOCAP_ATOMIC16K       0x00000040
 | |
| #define SQLITE_IOCAP_ATOMIC32K       0x00000080
 | |
| #define SQLITE_IOCAP_ATOMIC64K       0x00000100
 | |
| #define SQLITE_IOCAP_SAFE_APPEND     0x00000200
 | |
| #define SQLITE_IOCAP_SEQUENTIAL      0x00000400
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: File Locking Levels {F10250}
 | |
| **
 | |
| ** SQLite uses one of these integer values as the second
 | |
| ** argument to calls it makes to the xLock() and xUnlock() methods
 | |
| ** of an [sqlite3_io_methods] object.
 | |
| */
 | |
| #define SQLITE_LOCK_NONE          0
 | |
| #define SQLITE_LOCK_SHARED        1
 | |
| #define SQLITE_LOCK_RESERVED      2
 | |
| #define SQLITE_LOCK_PENDING       3
 | |
| #define SQLITE_LOCK_EXCLUSIVE     4
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Synchronization Type Flags {F10260}
 | |
| **
 | |
| ** When SQLite invokes the xSync() method of an
 | |
| ** [sqlite3_io_methods] object it uses a combination of
 | |
| ** these integer values as the second argument.
 | |
| **
 | |
| ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
 | |
| ** sync operation only needs to flush data to mass storage.  Inode
 | |
| ** information need not be flushed. The SQLITE_SYNC_NORMAL flag means 
 | |
| ** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means 
 | |
| ** to use Mac OS-X style fullsync instead of fsync().
 | |
| */
 | |
| #define SQLITE_SYNC_NORMAL        0x00002
 | |
| #define SQLITE_SYNC_FULL          0x00003
 | |
| #define SQLITE_SYNC_DATAONLY      0x00010
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: OS Interface Open File Handle {F11110}
 | |
| **
 | |
| ** An [sqlite3_file] object represents an open file in the OS
 | |
| ** interface layer.  Individual OS interface implementations will
 | |
| ** want to subclass this object by appending additional fields
 | |
| ** for their own use.  The pMethods entry is a pointer to an
 | |
| ** [sqlite3_io_methods] object that defines methods for performing
 | |
| ** I/O operations on the open file.
 | |
| */
 | |
| typedef struct sqlite3_file sqlite3_file;
 | |
| struct sqlite3_file {
 | |
|   const struct sqlite3_io_methods *pMethods;  /* Methods for an open file */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: OS Interface File Virtual Methods Object {F11120}
 | |
| **
 | |
| ** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to
 | |
| ** an instance of this object.  This object defines the
 | |
| ** methods used to perform various operations against the open file.
 | |
| **
 | |
| ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
 | |
| ** [SQLITE_SYNC_FULL].  The first choice is the normal fsync().
 | |
| *  The second choice is an
 | |
| ** OS-X style fullsync.  The SQLITE_SYNC_DATA flag may be ORed in to
 | |
| ** indicate that only the data of the file and not its inode needs to be
 | |
| ** synced.
 | |
| ** 
 | |
| ** The integer values to xLock() and xUnlock() are one of
 | |
| ** <ul>
 | |
| ** <li> [SQLITE_LOCK_NONE],
 | |
| ** <li> [SQLITE_LOCK_SHARED],
 | |
| ** <li> [SQLITE_LOCK_RESERVED],
 | |
| ** <li> [SQLITE_LOCK_PENDING], or
 | |
| ** <li> [SQLITE_LOCK_EXCLUSIVE].
 | |
| ** </ul>
 | |
| ** xLock() increases the lock. xUnlock() decreases the lock.  
 | |
| ** The xCheckReservedLock() method looks
 | |
| ** to see if any database connection, either in this
 | |
| ** process or in some other process, is holding an RESERVED,
 | |
| ** PENDING, or EXCLUSIVE lock on the file.  It returns true
 | |
| ** if such a lock exists and false if not.
 | |
| ** 
 | |
| ** The xFileControl() method is a generic interface that allows custom
 | |
| ** VFS implementations to directly control an open file using the
 | |
| ** [sqlite3_file_control()] interface.  The second "op" argument
 | |
| ** is an integer opcode.   The third
 | |
| ** argument is a generic pointer which is intended to be a pointer
 | |
| ** to a structure that may contain arguments or space in which to
 | |
| ** write return values.  Potential uses for xFileControl() might be
 | |
| ** functions to enable blocking locks with timeouts, to change the
 | |
| ** locking strategy (for example to use dot-file locks), to inquire
 | |
| ** about the status of a lock, or to break stale locks.  The SQLite
 | |
| ** core reserves opcodes less than 100 for its own use. 
 | |
| ** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available.
 | |
| ** Applications that define a custom xFileControl method should use opcodes 
 | |
| ** greater than 100 to avoid conflicts.
 | |
| **
 | |
| ** The xSectorSize() method returns the sector size of the
 | |
| ** device that underlies the file.  The sector size is the
 | |
| ** minimum write that can be performed without disturbing
 | |
| ** other bytes in the file.  The xDeviceCharacteristics()
 | |
| ** method returns a bit vector describing behaviors of the
 | |
| ** underlying device:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC512]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC1K]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC2K]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC4K]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC8K]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC16K]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC32K]
 | |
| ** <li> [SQLITE_IOCAP_ATOMIC64K]
 | |
| ** <li> [SQLITE_IOCAP_SAFE_APPEND]
 | |
| ** <li> [SQLITE_IOCAP_SEQUENTIAL]
 | |
| ** </ul>
 | |
| **
 | |
| ** The SQLITE_IOCAP_ATOMIC property means that all writes of
 | |
| ** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
 | |
| ** mean that writes of blocks that are nnn bytes in size and
 | |
| ** are aligned to an address which is an integer multiple of
 | |
| ** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
 | |
| ** that when data is appended to a file, the data is appended
 | |
| ** first then the size of the file is extended, never the other
 | |
| ** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
 | |
| ** information is written to disk in the same order as calls
 | |
| ** to xWrite().
 | |
| */
 | |
| typedef struct sqlite3_io_methods sqlite3_io_methods;
 | |
| struct sqlite3_io_methods {
 | |
|   int iVersion;
 | |
|   int (*xClose)(sqlite3_file*);
 | |
|   int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
 | |
|   int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
 | |
|   int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
 | |
|   int (*xSync)(sqlite3_file*, int flags);
 | |
|   int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
 | |
|   int (*xLock)(sqlite3_file*, int);
 | |
|   int (*xUnlock)(sqlite3_file*, int);
 | |
|   int (*xCheckReservedLock)(sqlite3_file*);
 | |
|   int (*xFileControl)(sqlite3_file*, int op, void *pArg);
 | |
|   int (*xSectorSize)(sqlite3_file*);
 | |
|   int (*xDeviceCharacteristics)(sqlite3_file*);
 | |
|   /* Additional methods may be added in future releases */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Standard File Control Opcodes {F11310}
 | |
| **
 | |
| ** These integer constants are opcodes for the xFileControl method
 | |
| ** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()]
 | |
| ** interface.
 | |
| **
 | |
| ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
 | |
| ** opcode causes the xFileControl method to write the current state of
 | |
| ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
 | |
| ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
 | |
| ** into an integer that the pArg argument points to. This capability
 | |
| ** is used during testing and only needs to be supported when SQLITE_TEST
 | |
| ** is defined.
 | |
| */
 | |
| #define SQLITE_FCNTL_LOCKSTATE        1
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Mutex Handle {F17110}
 | |
| **
 | |
| ** The mutex module within SQLite defines [sqlite3_mutex] to be an
 | |
| ** abstract type for a mutex object.  The SQLite core never looks
 | |
| ** at the internal representation of an [sqlite3_mutex].  It only
 | |
| ** deals with pointers to the [sqlite3_mutex] object.
 | |
| **
 | |
| ** Mutexes are created using [sqlite3_mutex_alloc()].
 | |
| */
 | |
| typedef struct sqlite3_mutex sqlite3_mutex;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: OS Interface Object {F11140}
 | |
| **
 | |
| ** An instance of this object defines the interface between the
 | |
| ** SQLite core and the underlying operating system.  The "vfs"
 | |
| ** in the name of the object stands for "virtual file system".
 | |
| **
 | |
| ** The iVersion field is initially 1 but may be larger for future
 | |
| ** versions of SQLite.  Additional fields may be appended to this
 | |
| ** object when the iVersion value is increased.
 | |
| **
 | |
| ** The szOsFile field is the size of the subclassed [sqlite3_file]
 | |
| ** structure used by this VFS.  mxPathname is the maximum length of
 | |
| ** a pathname in this VFS.
 | |
| **
 | |
| ** Registered sqlite3_vfs objects are kept on a linked list formed by
 | |
| ** the pNext pointer.  The [sqlite3_vfs_register()]
 | |
| ** and [sqlite3_vfs_unregister()] interfaces manage this list
 | |
| ** in a thread-safe way.  The [sqlite3_vfs_find()] interface
 | |
| ** searches the list.
 | |
| **
 | |
| ** The pNext field is the only field in the sqlite3_vfs 
 | |
| ** structure that SQLite will ever modify.  SQLite will only access
 | |
| ** or modify this field while holding a particular static mutex.
 | |
| ** The application should never modify anything within the sqlite3_vfs
 | |
| ** object once the object has been registered.
 | |
| **
 | |
| ** The zName field holds the name of the VFS module.  The name must
 | |
| ** be unique across all VFS modules.
 | |
| **
 | |
| ** {F11141} SQLite will guarantee that the zFilename string passed to
 | |
| ** xOpen() is a full pathname as generated by xFullPathname() and
 | |
| ** that the string will be valid and unchanged until xClose() is
 | |
| ** called.  {END} So the [sqlite3_file] can store a pointer to the
 | |
| ** filename if it needs to remember the filename for some reason.
 | |
| **
 | |
| ** {F11142} The flags argument to xOpen() includes all bits set in
 | |
| ** the flags argument to [sqlite3_open_v2()].  Or if [sqlite3_open()]
 | |
| ** or [sqlite3_open16()] is used, then flags includes at least
 | |
| ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END}
 | |
| ** If xOpen() opens a file read-only then it sets *pOutFlags to
 | |
| ** include [SQLITE_OPEN_READONLY].  Other bits in *pOutFlags may be
 | |
| ** set.
 | |
| ** 
 | |
| ** {F11143} SQLite will also add one of the following flags to the xOpen()
 | |
| ** call, depending on the object being opened:
 | |
| ** 
 | |
| ** <ul>
 | |
| ** <li>  [SQLITE_OPEN_MAIN_DB]
 | |
| ** <li>  [SQLITE_OPEN_MAIN_JOURNAL]
 | |
| ** <li>  [SQLITE_OPEN_TEMP_DB]
 | |
| ** <li>  [SQLITE_OPEN_TEMP_JOURNAL]
 | |
| ** <li>  [SQLITE_OPEN_TRANSIENT_DB]
 | |
| ** <li>  [SQLITE_OPEN_SUBJOURNAL]
 | |
| ** <li>  [SQLITE_OPEN_MASTER_JOURNAL]
 | |
| ** </ul> {END}
 | |
| **
 | |
| ** The file I/O implementation can use the object type flags to
 | |
| ** changes the way it deals with files.  For example, an application
 | |
| ** that does not care about crash recovery or rollback might make
 | |
| ** the open of a journal file a no-op.  Writes to this journal would
 | |
| ** also be no-ops, and any attempt to read the journal would return 
 | |
| ** SQLITE_IOERR.  Or the implementation might recognize that a database 
 | |
| ** file will be doing page-aligned sector reads and writes in a random 
 | |
| ** order and set up its I/O subsystem accordingly.
 | |
| ** 
 | |
| ** SQLite might also add one of the following flags to the xOpen
 | |
| ** method:
 | |
| ** 
 | |
| ** <ul>
 | |
| ** <li> [SQLITE_OPEN_DELETEONCLOSE]
 | |
| ** <li> [SQLITE_OPEN_EXCLUSIVE]
 | |
| ** </ul>
 | |
| ** 
 | |
| ** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
 | |
| ** deleted when it is closed.  {F11146} The [SQLITE_OPEN_DELETEONCLOSE]
 | |
| ** will be set for TEMP  databases, journals and for subjournals. 
 | |
| ** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened
 | |
| ** for exclusive access.  This flag is set for all files except
 | |
| ** for the main database file. {END}
 | |
| ** 
 | |
| ** {F11148} At least szOsFile bytes of memory are allocated by SQLite 
 | |
| ** to hold the  [sqlite3_file] structure passed as the third 
 | |
| ** argument to xOpen.  {END}  The xOpen method does not have to
 | |
| ** allocate the structure; it should just fill it in.
 | |
| ** 
 | |
| ** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] 
 | |
| ** to test for the existance of a file,
 | |
| ** or [SQLITE_ACCESS_READWRITE] to test to see
 | |
| ** if a file is readable and writable, or [SQLITE_ACCESS_READ]
 | |
| ** to test to see if a file is at least readable.  {END} The file can be a 
 | |
| ** directory.
 | |
| ** 
 | |
| ** {F11150} SQLite will always allocate at least mxPathname+1 bytes for
 | |
| ** the output buffers for xGetTempname and xFullPathname. {F11151} The exact
 | |
| ** size of the output buffer is also passed as a parameter to both 
 | |
| ** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN
 | |
| ** should be returned. As this is handled as a fatal error by SQLite,
 | |
| ** vfs implementations should endeavor to prevent this by setting 
 | |
| ** mxPathname to a sufficiently large value.
 | |
| ** 
 | |
| ** The xRandomness(), xSleep(), and xCurrentTime() interfaces
 | |
| ** are not strictly a part of the filesystem, but they are
 | |
| ** included in the VFS structure for completeness.
 | |
| ** The xRandomness() function attempts to return nBytes bytes
 | |
| ** of good-quality randomness into zOut.  The return value is
 | |
| ** the actual number of bytes of randomness obtained.  The
 | |
| ** xSleep() method causes the calling thread to sleep for at
 | |
| ** least the number of microseconds given.  The xCurrentTime()
 | |
| ** method returns a Julian Day Number for the current date and
 | |
| ** time.
 | |
| */
 | |
| typedef struct sqlite3_vfs sqlite3_vfs;
 | |
| struct sqlite3_vfs {
 | |
|   int iVersion;            /* Structure version number */
 | |
|   int szOsFile;            /* Size of subclassed sqlite3_file */
 | |
|   int mxPathname;          /* Maximum file pathname length */
 | |
|   sqlite3_vfs *pNext;      /* Next registered VFS */
 | |
|   const char *zName;       /* Name of this virtual file system */
 | |
|   void *pAppData;          /* Pointer to application-specific data */
 | |
|   int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
 | |
|                int flags, int *pOutFlags);
 | |
|   int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
 | |
|   int (*xAccess)(sqlite3_vfs*, const char *zName, int flags);
 | |
|   int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut);
 | |
|   int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
 | |
|   void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
 | |
|   void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
 | |
|   void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol);
 | |
|   void (*xDlClose)(sqlite3_vfs*, void*);
 | |
|   int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
 | |
|   int (*xSleep)(sqlite3_vfs*, int microseconds);
 | |
|   int (*xCurrentTime)(sqlite3_vfs*, double*);
 | |
|   /* New fields may be appended in figure versions.  The iVersion
 | |
|   ** value will increment whenever this happens. */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Flags for the xAccess VFS method {F11190}
 | |
| **
 | |
| ** {F11191} These integer constants can be used as the third parameter to
 | |
| ** the xAccess method of an [sqlite3_vfs] object. {END}  They determine
 | |
| ** what kind of permissions the xAccess method is
 | |
| ** looking for.  {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method
 | |
| ** simply checks to see if the file exists. {F11193} With
 | |
| ** SQLITE_ACCESS_READWRITE, the xAccess method checks to see
 | |
| ** if the file is both readable and writable.  {F11194} With
 | |
| ** SQLITE_ACCESS_READ the xAccess method
 | |
| ** checks to see if the file is readable.
 | |
| */
 | |
| #define SQLITE_ACCESS_EXISTS    0
 | |
| #define SQLITE_ACCESS_READWRITE 1
 | |
| #define SQLITE_ACCESS_READ      2
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Enable Or Disable Extended Result Codes {F12200}
 | |
| **
 | |
| ** The sqlite3_extended_result_codes() routine enables or disables the
 | |
| ** [SQLITE_IOERR_READ | extended result codes] feature of SQLite.
 | |
| ** The extended result codes are disabled by default for historical
 | |
| ** compatibility.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12201} Each new [database connection] has the 
 | |
| **          [extended result codes] feature
 | |
| **          disabled by default.
 | |
| **
 | |
| ** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable
 | |
| **          [extended result codes] for the 
 | |
| **          [database connection] D if the F parameter
 | |
| **          is true, or disable them if F is false.
 | |
| */
 | |
| SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Last Insert Rowid {F12220}
 | |
| **
 | |
| ** Each entry in an SQLite table has a unique 64-bit signed
 | |
| ** integer key called the "rowid". The rowid is always available
 | |
| ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
 | |
| ** names are not also used by explicitly declared columns. If
 | |
| ** the table has a column of type INTEGER PRIMARY KEY then that column
 | |
| ** is another alias for the rowid.
 | |
| **
 | |
| ** This routine returns the rowid of the most recent
 | |
| ** successful INSERT into the database from the database connection
 | |
| ** shown in the first argument.  If no successful inserts
 | |
| ** have ever occurred on this database connection, zero is returned.
 | |
| **
 | |
| ** If an INSERT occurs within a trigger, then the rowid of the
 | |
| ** inserted row is returned by this routine as long as the trigger
 | |
| ** is running.  But once the trigger terminates, the value returned
 | |
| ** by this routine reverts to the last value inserted before the
 | |
| ** trigger fired.
 | |
| **
 | |
| ** An INSERT that fails due to a constraint violation is not a
 | |
| ** successful insert and does not change the value returned by this
 | |
| ** routine.  Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
 | |
| ** and INSERT OR ABORT make no changes to the return value of this
 | |
| ** routine when their insertion fails.  When INSERT OR REPLACE 
 | |
| ** encounters a constraint violation, it does not fail.  The
 | |
| ** INSERT continues to completion after deleting rows that caused
 | |
| ** the constraint problem so INSERT OR REPLACE will always change
 | |
| ** the return value of this interface. 
 | |
| **
 | |
| ** For the purposes of this routine, an insert is considered to
 | |
| ** be successful even if it is subsequently rolled back.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12221} The [sqlite3_last_insert_rowid()] function returns the
 | |
| **          rowid of the most recent successful insert done
 | |
| **          on the same database connection and within the same
 | |
| **          trigger context, or zero if there have
 | |
| **          been no qualifying inserts on that connection.
 | |
| **
 | |
| ** {F12223} The [sqlite3_last_insert_rowid()] function returns
 | |
| **          same value when called from the same trigger context
 | |
| **          immediately before and after a ROLLBACK.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12232} If a separate thread does a new insert on the same
 | |
| **          database connection while the [sqlite3_last_insert_rowid()]
 | |
| **          function is running and thus changes the last insert rowid,
 | |
| **          then the value returned by [sqlite3_last_insert_rowid()] is
 | |
| **          unpredictable and might not equal either the old or the new
 | |
| **          last insert rowid.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Count The Number Of Rows Modified {F12240}
 | |
| **
 | |
| ** This function returns the number of database rows that were changed
 | |
| ** or inserted or deleted by the most recently completed SQL statement
 | |
| ** on the connection specified by the first parameter.  Only
 | |
| ** changes that are directly specified by the INSERT, UPDATE, or
 | |
| ** DELETE statement are counted.  Auxiliary changes caused by
 | |
| ** triggers are not counted. Use the [sqlite3_total_changes()] function
 | |
| ** to find the total number of changes including changes caused by triggers.
 | |
| **
 | |
| ** A "row change" is a change to a single row of a single table
 | |
| ** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
 | |
| ** are changed as side effects of REPLACE constraint resolution,
 | |
| ** rollback, ABORT processing, DROP TABLE, or by any other
 | |
| ** mechanisms do not count as direct row changes.
 | |
| **
 | |
| ** A "trigger context" is a scope of execution that begins and
 | |
| ** ends with the script of a trigger.  Most SQL statements are
 | |
| ** evaluated outside of any trigger.  This is the "top level"
 | |
| ** trigger context.  If a trigger fires from the top level, a
 | |
| ** new trigger context is entered for the duration of that one
 | |
| ** trigger.  Subtriggers create subcontexts for their duration.
 | |
| **
 | |
| ** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
 | |
| ** not create a new trigger context.
 | |
| **
 | |
| ** This function returns the number of direct row changes in the
 | |
| ** most recent INSERT, UPDATE, or DELETE statement within the same
 | |
| ** trigger context.
 | |
| **
 | |
| ** So when called from the top level, this function returns the
 | |
| ** number of changes in the most recent INSERT, UPDATE, or DELETE
 | |
| ** that also occurred at the top level.
 | |
| ** Within the body of a trigger, the sqlite3_changes() interface
 | |
| ** can be called to find the number of
 | |
| ** changes in the most recently completed INSERT, UPDATE, or DELETE
 | |
| ** statement within the body of the same trigger.
 | |
| ** However, the number returned does not include in changes
 | |
| ** caused by subtriggers since they have their own context.
 | |
| **
 | |
| ** SQLite implements the command "DELETE FROM table" without
 | |
| ** a WHERE clause by dropping and recreating the table.  (This is much
 | |
| ** faster than going through and deleting individual elements from the
 | |
| ** table.)  Because of this optimization, the deletions in
 | |
| ** "DELETE FROM table" are not row changes and will not be counted
 | |
| ** by the sqlite3_changes() or [sqlite3_total_changes()] functions.
 | |
| ** To get an accurate count of the number of rows deleted, use
 | |
| ** "DELETE FROM table WHERE 1" instead.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12241} The [sqlite3_changes()] function returns the number of
 | |
| **          row changes caused by the most recent INSERT, UPDATE,
 | |
| **          or DELETE statement on the same database connection and
 | |
| **          within the same trigger context, or zero if there have
 | |
| **          not been any qualifying row changes.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12252} If a separate thread makes changes on the same database connection
 | |
| **          while [sqlite3_changes()] is running then the value returned
 | |
| **          is unpredictable and unmeaningful.
 | |
| */
 | |
| SQLITE_API int sqlite3_changes(sqlite3*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Total Number Of Rows Modified {F12260}
 | |
| ***
 | |
| ** This function returns the number of row changes caused
 | |
| ** by INSERT, UPDATE or DELETE statements since the database handle
 | |
| ** was opened.  The count includes all changes from all trigger
 | |
| ** contexts.  But the count does not include changes used to
 | |
| ** implement REPLACE constraints, do rollbacks or ABORT processing,
 | |
| ** or DROP table processing.
 | |
| ** The changes
 | |
| ** are counted as soon as the statement that makes them is completed 
 | |
| ** (when the statement handle is passed to [sqlite3_reset()] or 
 | |
| ** [sqlite3_finalize()]).
 | |
| **
 | |
| ** SQLite implements the command "DELETE FROM table" without
 | |
| ** a WHERE clause by dropping and recreating the table.  (This is much
 | |
| ** faster than going
 | |
| ** through and deleting individual elements from the table.)  Because of
 | |
| ** this optimization, the change count for "DELETE FROM table" will be
 | |
| ** zero regardless of the number of elements that were originally in the
 | |
| ** table. To get an accurate count of the number of rows deleted, use
 | |
| ** "DELETE FROM table WHERE 1" instead.
 | |
| **
 | |
| ** See also the [sqlite3_changes()] interface.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| ** 
 | |
| ** {F12261} The [sqlite3_total_changes()] returns the total number
 | |
| **          of row changes caused by INSERT, UPDATE, and/or DELETE
 | |
| **          statements on the same [database connection], in any
 | |
| **          trigger context, since the database connection was
 | |
| **          created.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12264} If a separate thread makes changes on the same database connection
 | |
| **          while [sqlite3_total_changes()] is running then the value 
 | |
| **          returned is unpredictable and unmeaningful.
 | |
| */
 | |
| SQLITE_API int sqlite3_total_changes(sqlite3*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Interrupt A Long-Running Query {F12270}
 | |
| **
 | |
| ** This function causes any pending database operation to abort and
 | |
| ** return at its earliest opportunity. This routine is typically
 | |
| ** called in response to a user action such as pressing "Cancel"
 | |
| ** or Ctrl-C where the user wants a long query operation to halt
 | |
| ** immediately.
 | |
| **
 | |
| ** It is safe to call this routine from a thread different from the
 | |
| ** thread that is currently running the database operation.  But it
 | |
| ** is not safe to call this routine with a database connection that
 | |
| ** is closed or might close before sqlite3_interrupt() returns.
 | |
| **
 | |
| ** If an SQL is very nearly finished at the time when sqlite3_interrupt()
 | |
| ** is called, then it might not have an opportunity to be interrupted.
 | |
| ** It might continue to completion.
 | |
| ** An SQL operation that is interrupted will return
 | |
| ** [SQLITE_INTERRUPT].  If the interrupted SQL operation is an
 | |
| ** INSERT, UPDATE, or DELETE that is inside an explicit transaction, 
 | |
| ** then the entire transaction will be rolled back automatically.
 | |
| ** A call to sqlite3_interrupt() has no effect on SQL statements
 | |
| ** that are started after sqlite3_interrupt() returns.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12271} The [sqlite3_interrupt()] interface will force all running
 | |
| **          SQL statements associated with the same database connection
 | |
| **          to halt after processing at most one additional row of
 | |
| **          data.
 | |
| **
 | |
| ** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()]
 | |
| **          will return [SQLITE_INTERRUPT].
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12279} If the database connection closes while [sqlite3_interrupt()]
 | |
| **          is running then bad things will likely happen.
 | |
| */
 | |
| SQLITE_API void sqlite3_interrupt(sqlite3*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Determine If An SQL Statement Is Complete {F10510}
 | |
| **
 | |
| ** These routines are useful for command-line input to determine if the
 | |
| ** currently entered text seems to form complete a SQL statement or
 | |
| ** if additional input is needed before sending the text into
 | |
| ** SQLite for parsing.  These routines return true if the input string
 | |
| ** appears to be a complete SQL statement.  A statement is judged to be
 | |
| ** complete if it ends with a semicolon token and is not a fragment of a
 | |
| ** CREATE TRIGGER statement.  Semicolons that are embedded within
 | |
| ** string literals or quoted identifier names or comments are not
 | |
| ** independent tokens (they are part of the token in which they are
 | |
| ** embedded) and thus do not count as a statement terminator.
 | |
| **
 | |
| ** These routines do not parse the SQL and
 | |
| ** so will not detect syntactically incorrect SQL.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10511} The sqlite3_complete() and sqlite3_complete16() functions
 | |
| **          return true (non-zero) if and only if the last
 | |
| **          non-whitespace token in their input is a semicolon that
 | |
| **          is not in between the BEGIN and END of a CREATE TRIGGER
 | |
| **          statement.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U10512} The input to sqlite3_complete() must be a zero-terminated
 | |
| **          UTF-8 string.
 | |
| **
 | |
| ** {U10513} The input to sqlite3_complete16() must be a zero-terminated
 | |
| **          UTF-16 string in native byte order.
 | |
| */
 | |
| SQLITE_API int sqlite3_complete(const char *sql);
 | |
| SQLITE_API int sqlite3_complete16(const void *sql);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310}
 | |
| **
 | |
| ** This routine identifies a callback function that might be
 | |
| ** invoked whenever an attempt is made to open a database table 
 | |
| ** that another thread or process has locked.
 | |
| ** If the busy callback is NULL, then [SQLITE_BUSY]
 | |
| ** or [SQLITE_IOERR_BLOCKED]
 | |
| ** is returned immediately upon encountering the lock.
 | |
| ** If the busy callback is not NULL, then the
 | |
| ** callback will be invoked with two arguments.  The
 | |
| ** first argument to the handler is a copy of the void* pointer which
 | |
| ** is the third argument to this routine.  The second argument to
 | |
| ** the handler is the number of times that the busy handler has
 | |
| ** been invoked for this locking event.   If the
 | |
| ** busy callback returns 0, then no additional attempts are made to
 | |
| ** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
 | |
| ** If the callback returns non-zero, then another attempt
 | |
| ** is made to open the database for reading and the cycle repeats.
 | |
| **
 | |
| ** The presence of a busy handler does not guarantee that
 | |
| ** it will be invoked when there is lock contention.
 | |
| ** If SQLite determines that invoking the busy handler could result in
 | |
| ** a deadlock, it will go ahead and return [SQLITE_BUSY] or
 | |
| ** [SQLITE_IOERR_BLOCKED] instead of invoking the
 | |
| ** busy handler.
 | |
| ** Consider a scenario where one process is holding a read lock that
 | |
| ** it is trying to promote to a reserved lock and
 | |
| ** a second process is holding a reserved lock that it is trying
 | |
| ** to promote to an exclusive lock.  The first process cannot proceed
 | |
| ** because it is blocked by the second and the second process cannot
 | |
| ** proceed because it is blocked by the first.  If both processes
 | |
| ** invoke the busy handlers, neither will make any progress.  Therefore,
 | |
| ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
 | |
| ** will induce the first process to release its read lock and allow
 | |
| ** the second process to proceed.
 | |
| **
 | |
| ** The default busy callback is NULL.
 | |
| **
 | |
| ** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
 | |
| ** when SQLite is in the middle of a large transaction where all the
 | |
| ** changes will not fit into the in-memory cache.  SQLite will
 | |
| ** already hold a RESERVED lock on the database file, but it needs
 | |
| ** to promote this lock to EXCLUSIVE so that it can spill cache
 | |
| ** pages into the database file without harm to concurrent
 | |
| ** readers.  If it is unable to promote the lock, then the in-memory
 | |
| ** cache will be left in an inconsistent state and so the error
 | |
| ** code is promoted from the relatively benign [SQLITE_BUSY] to
 | |
| ** the more severe [SQLITE_IOERR_BLOCKED].  This error code promotion
 | |
| ** forces an automatic rollback of the changes.  See the
 | |
| ** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError">
 | |
| ** CorruptionFollowingBusyError</a> wiki page for a discussion of why
 | |
| ** this is important.
 | |
| **	
 | |
| ** There can only be a single busy handler defined for each database
 | |
| ** connection.  Setting a new busy handler clears any previous one. 
 | |
| ** Note that calling [sqlite3_busy_timeout()] will also set or clear
 | |
| ** the busy handler.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler
 | |
| **          callback in the database connection identified by the 1st
 | |
| **          parameter with a new busy handler identified by the 2nd and 3rd
 | |
| **          parameters.
 | |
| **
 | |
| ** {F12312} The default busy handler for new database connections is NULL.
 | |
| **
 | |
| ** {F12314} When two or more database connection share a common cache,
 | |
| **          the busy handler for the database connection currently using
 | |
| **          the cache is invoked when the cache encounters a lock.
 | |
| **
 | |
| ** {F12316} If a busy handler callback returns zero, then the SQLite
 | |
| **          interface that provoked the locking event will return
 | |
| **          [SQLITE_BUSY].
 | |
| **
 | |
| ** {F12318} SQLite will invokes the busy handler with two argument which
 | |
| **          are a copy of the pointer supplied by the 3rd parameter to
 | |
| **          [sqlite3_busy_handler()] and a count of the number of prior
 | |
| **          invocations of the busy handler for the same locking event.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U12319} A busy handler should not call close the database connection
 | |
| **          or prepared statement that invoked the busy handler.
 | |
| */
 | |
| SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Set A Busy Timeout {F12340}
 | |
| **
 | |
| ** This routine sets a [sqlite3_busy_handler | busy handler]
 | |
| ** that sleeps for a while when a
 | |
| ** table is locked.  The handler will sleep multiple times until 
 | |
| ** at least "ms" milliseconds of sleeping have been done. {F12343} After
 | |
| ** "ms" milliseconds of sleeping, the handler returns 0 which
 | |
| ** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
 | |
| **
 | |
| ** Calling this routine with an argument less than or equal to zero
 | |
| ** turns off all busy handlers.
 | |
| **
 | |
| ** There can only be a single busy handler for a particular database
 | |
| ** connection.  If another busy handler was defined  
 | |
| ** (using [sqlite3_busy_handler()]) prior to calling
 | |
| ** this routine, that other busy handler is cleared.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12341} The [sqlite3_busy_timeout()] function overrides any prior
 | |
| **          [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting
 | |
| **          on the same database connection.
 | |
| **
 | |
| ** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than
 | |
| **          or equal to zero, then the busy handler is cleared so that
 | |
| **          all subsequent locking events immediately return [SQLITE_BUSY].
 | |
| **
 | |
| ** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive
 | |
| **          number N, then a busy handler is set that repeatedly calls
 | |
| **          the xSleep() method in the VFS interface until either the
 | |
| **          lock clears or until the cumulative sleep time reported back
 | |
| **          by xSleep() exceeds N milliseconds.
 | |
| */
 | |
| SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Convenience Routines For Running Queries {F12370}
 | |
| **
 | |
| ** Definition: A <b>result table</b> is memory data structure created by the
 | |
| ** [sqlite3_get_table()] interface.  A result table records the
 | |
| ** complete query results from one or more queries.
 | |
| **
 | |
| ** The table conceptually has a number of rows and columns.  But
 | |
| ** these numbers are not part of the result table itself.  These
 | |
| ** numbers are obtained separately.  Let N be the number of rows
 | |
| ** and M be the number of columns.
 | |
| **
 | |
| ** A result table is an array of pointers to zero-terminated
 | |
| ** UTF-8 strings.  There are (N+1)*M elements in the array.  
 | |
| ** The first M pointers point to zero-terminated strings that 
 | |
| ** contain the names of the columns.
 | |
| ** The remaining entries all point to query results.  NULL
 | |
| ** values are give a NULL pointer.  All other values are in
 | |
| ** their UTF-8 zero-terminated string representation as returned by
 | |
| ** [sqlite3_column_text()].
 | |
| **
 | |
| ** A result table might consists of one or more memory allocations.
 | |
| ** It is not safe to pass a result table directly to [sqlite3_free()].
 | |
| ** A result table should be deallocated using [sqlite3_free_table()].
 | |
| **
 | |
| ** As an example of the result table format, suppose a query result
 | |
| ** is as follows:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **        Name        | Age
 | |
| **        -----------------------
 | |
| **        Alice       | 43
 | |
| **        Bob         | 28
 | |
| **        Cindy       | 21
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** There are two column (M==2) and three rows (N==3).  Thus the
 | |
| ** result table has 8 entries.  Suppose the result table is stored
 | |
| ** in an array names azResult.  Then azResult holds this content:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **        azResult[0] = "Name";
 | |
| **        azResult[1] = "Age";
 | |
| **        azResult[2] = "Alice";
 | |
| **        azResult[3] = "43";
 | |
| **        azResult[4] = "Bob";
 | |
| **        azResult[5] = "28";
 | |
| **        azResult[6] = "Cindy";
 | |
| **        azResult[7] = "21";
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** The sqlite3_get_table() function evaluates one or more
 | |
| ** semicolon-separated SQL statements in the zero-terminated UTF-8
 | |
| ** string of its 2nd parameter.  It returns a result table to the
 | |
| ** pointer given in its 3rd parameter.
 | |
| **
 | |
| ** After the calling function has finished using the result, it should 
 | |
| ** pass the pointer to the result table to sqlite3_free_table() in order to 
 | |
| ** release the memory that was malloc-ed.  Because of the way the 
 | |
| ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
 | |
| ** function must not try to call [sqlite3_free()] directly.  Only 
 | |
| ** [sqlite3_free_table()] is able to release the memory properly and safely.
 | |
| **
 | |
| ** The sqlite3_get_table() interface is implemented as a wrapper around
 | |
| ** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
 | |
| ** to any internal data structures of SQLite.  It uses only the public
 | |
| ** interface defined here.  As a consequence, errors that occur in the
 | |
| ** wrapper layer outside of the internal [sqlite3_exec()] call are not
 | |
| ** reflected in subsequent calls to [sqlite3_errcode()] or
 | |
| ** [sqlite3_errmsg()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then
 | |
| **          it frees the result table under construction, aborts the
 | |
| **          query in process, skips any subsequent queries, sets the
 | |
| **          *resultp output pointer to NULL and returns [SQLITE_NOMEM].
 | |
| **
 | |
| ** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL
 | |
| **          then [sqlite3_get_table()] write the number of columns in the
 | |
| **          result set of the query into *ncolumn if the query is
 | |
| **          successful (if the function returns SQLITE_OK).
 | |
| **
 | |
| ** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL
 | |
| **          then [sqlite3_get_table()] write the number of rows in the
 | |
| **          result set of the query into *nrow if the query is
 | |
| **          successful (if the function returns SQLITE_OK).
 | |
| **
 | |
| ** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value
 | |
| **          to the number of columns in the result set of the query in the
 | |
| **          sql parameter, or to zero if the query in sql has an empty
 | |
| **          result set.
 | |
| */
 | |
| SQLITE_API int sqlite3_get_table(
 | |
|   sqlite3*,             /* An open database */
 | |
|   const char *sql,      /* SQL to be evaluated */
 | |
|   char ***pResult,      /* Results of the query */
 | |
|   int *nrow,            /* Number of result rows written here */
 | |
|   int *ncolumn,         /* Number of result columns written here */
 | |
|   char **errmsg         /* Error msg written here */
 | |
| );
 | |
| SQLITE_API void sqlite3_free_table(char **result);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Formatted String Printing Functions {F17400}
 | |
| **
 | |
| ** These routines are workalikes of the "printf()" family of functions
 | |
| ** from the standard C library.
 | |
| **
 | |
| ** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
 | |
| ** results into memory obtained from [sqlite3_malloc()].
 | |
| ** The strings returned by these two routines should be
 | |
| ** released by [sqlite3_free()].   Both routines return a
 | |
| ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
 | |
| ** memory to hold the resulting string.
 | |
| **
 | |
| ** In sqlite3_snprintf() routine is similar to "snprintf()" from
 | |
| ** the standard C library.  The result is written into the
 | |
| ** buffer supplied as the second parameter whose size is given by
 | |
| ** the first parameter. Note that the order of the
 | |
| ** first two parameters is reversed from snprintf().  This is an
 | |
| ** historical accident that cannot be fixed without breaking
 | |
| ** backwards compatibility.  Note also that sqlite3_snprintf()
 | |
| ** returns a pointer to its buffer instead of the number of
 | |
| ** characters actually written into the buffer.  We admit that
 | |
| ** the number of characters written would be a more useful return
 | |
| ** value but we cannot change the implementation of sqlite3_snprintf()
 | |
| ** now without breaking compatibility.
 | |
| **
 | |
| ** As long as the buffer size is greater than zero, sqlite3_snprintf()
 | |
| ** guarantees that the buffer is always zero-terminated.  The first
 | |
| ** parameter "n" is the total size of the buffer, including space for
 | |
| ** the zero terminator.  So the longest string that can be completely
 | |
| ** written will be n-1 characters.
 | |
| **
 | |
| ** These routines all implement some additional formatting
 | |
| ** options that are useful for constructing SQL statements.
 | |
| ** All of the usual printf formatting options apply.  In addition, there
 | |
| ** is are "%q", "%Q", and "%z" options.
 | |
| **
 | |
| ** The %q option works like %s in that it substitutes a null-terminated
 | |
| ** string from the argument list.  But %q also doubles every '\'' character.
 | |
| ** %q is designed for use inside a string literal.  By doubling each '\''
 | |
| ** character it escapes that character and allows it to be inserted into
 | |
| ** the string.
 | |
| **
 | |
| ** For example, so some string variable contains text as follows:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **  char *zText = "It's a happy day!";
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** One can use this text in an SQL statement as follows:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
 | |
| **  sqlite3_exec(db, zSQL, 0, 0, 0);
 | |
| **  sqlite3_free(zSQL);
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** Because the %q format string is used, the '\'' character in zText
 | |
| ** is escaped and the SQL generated is as follows:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **  INSERT INTO table1 VALUES('It''s a happy day!')
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** This is correct.  Had we used %s instead of %q, the generated SQL
 | |
| ** would have looked like this:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **  INSERT INTO table1 VALUES('It's a happy day!');
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** This second example is an SQL syntax error.  As a general rule you
 | |
| ** should always use %q instead of %s when inserting text into a string 
 | |
| ** literal.
 | |
| **
 | |
| ** The %Q option works like %q except it also adds single quotes around
 | |
| ** the outside of the total string.  Or if the parameter in the argument
 | |
| ** list is a NULL pointer, %Q substitutes the text "NULL" (without single
 | |
| ** quotes) in place of the %Q option. {END}  So, for example, one could say:
 | |
| **
 | |
| ** <blockquote><pre>
 | |
| **  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
 | |
| **  sqlite3_exec(db, zSQL, 0, 0, 0);
 | |
| **  sqlite3_free(zSQL);
 | |
| ** </pre></blockquote>
 | |
| **
 | |
| ** The code above will render a correct SQL statement in the zSQL
 | |
| ** variable even if the zText variable is a NULL pointer.
 | |
| **
 | |
| ** The "%z" formatting option works exactly like "%s" with the
 | |
| ** addition that after the string has been read and copied into
 | |
| ** the result, [sqlite3_free()] is called on the input string. {END}
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17403}  The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces
 | |
| **           return either pointers to zero-terminated UTF-8 strings held in
 | |
| **           memory obtained from [sqlite3_malloc()] or NULL pointers if
 | |
| **           a call to [sqlite3_malloc()] fails.
 | |
| **
 | |
| ** {F17406}  The [sqlite3_snprintf()] interface writes a zero-terminated
 | |
| **           UTF-8 string into the buffer pointed to by the second parameter
 | |
| **           provided that the first parameter is greater than zero.
 | |
| **
 | |
| ** {F17407}  The [sqlite3_snprintf()] interface does not writes slots of
 | |
| **           its output buffer (the second parameter) outside the range
 | |
| **           of 0 through N-1 (where N is the first parameter)
 | |
| **           regardless of the length of the string
 | |
| **           requested by the format specification.
 | |
| **   
 | |
| */
 | |
| SQLITE_API char *sqlite3_mprintf(const char*,...);
 | |
| SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
 | |
| SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Memory Allocation Subsystem {F17300}
 | |
| **
 | |
| ** The SQLite core  uses these three routines for all of its own
 | |
| ** internal memory allocation needs. "Core" in the previous sentence
 | |
| ** does not include operating-system specific VFS implementation.  The
 | |
| ** windows VFS uses native malloc and free for some operations.
 | |
| **
 | |
| ** The sqlite3_malloc() routine returns a pointer to a block
 | |
| ** of memory at least N bytes in length, where N is the parameter.
 | |
| ** If sqlite3_malloc() is unable to obtain sufficient free
 | |
| ** memory, it returns a NULL pointer.  If the parameter N to
 | |
| ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
 | |
| ** a NULL pointer.
 | |
| **
 | |
| ** Calling sqlite3_free() with a pointer previously returned
 | |
| ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
 | |
| ** that it might be reused.  The sqlite3_free() routine is
 | |
| ** a no-op if is called with a NULL pointer.  Passing a NULL pointer
 | |
| ** to sqlite3_free() is harmless.  After being freed, memory
 | |
| ** should neither be read nor written.  Even reading previously freed
 | |
| ** memory might result in a segmentation fault or other severe error.
 | |
| ** Memory corruption, a segmentation fault, or other severe error
 | |
| ** might result if sqlite3_free() is called with a non-NULL pointer that
 | |
| ** was not obtained from sqlite3_malloc() or sqlite3_free().
 | |
| **
 | |
| ** The sqlite3_realloc() interface attempts to resize a
 | |
| ** prior memory allocation to be at least N bytes, where N is the
 | |
| ** second parameter.  The memory allocation to be resized is the first
 | |
| ** parameter.  If the first parameter to sqlite3_realloc()
 | |
| ** is a NULL pointer then its behavior is identical to calling
 | |
| ** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
 | |
| ** If the second parameter to sqlite3_realloc() is zero or
 | |
| ** negative then the behavior is exactly the same as calling
 | |
| ** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
 | |
| ** Sqlite3_realloc() returns a pointer to a memory allocation
 | |
| ** of at least N bytes in size or NULL if sufficient memory is unavailable.
 | |
| ** If M is the size of the prior allocation, then min(N,M) bytes
 | |
| ** of the prior allocation are copied into the beginning of buffer returned
 | |
| ** by sqlite3_realloc() and the prior allocation is freed.
 | |
| ** If sqlite3_realloc() returns NULL, then the prior allocation
 | |
| ** is not freed.
 | |
| **
 | |
| ** The memory returned by sqlite3_malloc() and sqlite3_realloc()
 | |
| ** is always aligned to at least an 8 byte boundary. {END}
 | |
| **
 | |
| ** The default implementation
 | |
| ** of the memory allocation subsystem uses the malloc(), realloc()
 | |
| ** and free() provided by the standard C library. {F17382} However, if 
 | |
| ** SQLite is compiled with the following C preprocessor macro
 | |
| **
 | |
| ** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote>
 | |
| **
 | |
| ** where <i>NNN</i> is an integer, then SQLite create a static
 | |
| ** array of at least <i>NNN</i> bytes in size and use that array
 | |
| ** for all of its dynamic memory allocation needs. {END}  Additional
 | |
| ** memory allocator options may be added in future releases.
 | |
| **
 | |
| ** In SQLite version 3.5.0 and 3.5.1, it was possible to define
 | |
| ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
 | |
| ** implementation of these routines to be omitted.  That capability
 | |
| ** is no longer provided.  Only built-in memory allocators can be
 | |
| ** used.
 | |
| **
 | |
| ** The windows OS interface layer calls
 | |
| ** the system malloc() and free() directly when converting
 | |
| ** filenames between the UTF-8 encoding used by SQLite
 | |
| ** and whatever filename encoding is used by the particular windows
 | |
| ** installation.  Memory allocation errors are detected, but
 | |
| ** they are reported back as [SQLITE_CANTOPEN] or
 | |
| ** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17303}  The [sqlite3_malloc(N)] interface returns either a pointer to 
 | |
| **           newly checked-out block of at least N bytes of memory
 | |
| **           that is 8-byte aligned, 
 | |
| **           or it returns NULL if it is unable to fulfill the request.
 | |
| **
 | |
| ** {F17304}  The [sqlite3_malloc(N)] interface returns a NULL pointer if
 | |
| **           N is less than or equal to zero.
 | |
| **
 | |
| ** {F17305}  The [sqlite3_free(P)] interface releases memory previously
 | |
| **           returned from [sqlite3_malloc()] or [sqlite3_realloc()],
 | |
| **           making it available for reuse.
 | |
| **
 | |
| ** {F17306}  A call to [sqlite3_free(NULL)] is a harmless no-op.
 | |
| **
 | |
| ** {F17310}  A call to [sqlite3_realloc(0,N)] is equivalent to a call
 | |
| **           to [sqlite3_malloc(N)].
 | |
| **
 | |
| ** {F17312}  A call to [sqlite3_realloc(P,0)] is equivalent to a call
 | |
| **           to [sqlite3_free(P)].
 | |
| **
 | |
| ** {F17315}  The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()],
 | |
| **           and [sqlite3_free()] for all of its memory allocation and
 | |
| **           deallocation needs.
 | |
| **
 | |
| ** {F17318}  The [sqlite3_realloc(P,N)] interface returns either a pointer
 | |
| **           to a block of checked-out memory of at least N bytes in size
 | |
| **           that is 8-byte aligned, or a NULL pointer.
 | |
| **
 | |
| ** {F17321}  When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
 | |
| **           copies the first K bytes of content from P into the newly allocated
 | |
| **           where K is the lessor of N and the size of the buffer P.
 | |
| **
 | |
| ** {F17322}  When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first
 | |
| **           releases the buffer P.
 | |
| **
 | |
| ** {F17323}  When [sqlite3_realloc(P,N)] returns NULL, the buffer P is
 | |
| **           not modified or released.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U17350}  The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
 | |
| **           must be either NULL or else a pointer obtained from a prior
 | |
| **           invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has
 | |
| **           not been released.
 | |
| **
 | |
| ** {U17351}  The application must not read or write any part of 
 | |
| **           a block of memory after it has been released using
 | |
| **           [sqlite3_free()] or [sqlite3_realloc()].
 | |
| **
 | |
| */
 | |
| SQLITE_API void *sqlite3_malloc(int);
 | |
| SQLITE_API void *sqlite3_realloc(void*, int);
 | |
| SQLITE_API void sqlite3_free(void*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Memory Allocator Statistics {F17370}
 | |
| **
 | |
| ** SQLite provides these two interfaces for reporting on the status
 | |
| ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
 | |
| ** the memory allocation subsystem included within the SQLite.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17371} The [sqlite3_memory_used()] routine returns the
 | |
| **          number of bytes of memory currently outstanding 
 | |
| **          (malloced but not freed).
 | |
| **
 | |
| ** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum
 | |
| **          value of [sqlite3_memory_used()] 
 | |
| **          since the highwater mark was last reset.
 | |
| **
 | |
| ** {F17374} The values returned by [sqlite3_memory_used()] and
 | |
| **          [sqlite3_memory_highwater()] include any overhead
 | |
| **          added by SQLite in its implementation of [sqlite3_malloc()],
 | |
| **          but not overhead added by the any underlying system library
 | |
| **          routines that [sqlite3_malloc()] may call.
 | |
| ** 
 | |
| ** {F17375} The memory highwater mark is reset to the current value of
 | |
| **          [sqlite3_memory_used()] if and only if the parameter to
 | |
| **          [sqlite3_memory_highwater()] is true.  The value returned
 | |
| **          by [sqlite3_memory_highwater(1)] is the highwater mark
 | |
| **          prior to the reset.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Compile-Time Authorization Callbacks {F12500}
 | |
| **
 | |
| ** This routine registers a authorizer callback with a particular
 | |
| ** database connection, supplied in the first argument.
 | |
| ** The authorizer callback is invoked as SQL statements are being compiled
 | |
| ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
 | |
| ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  At various
 | |
| ** points during the compilation process, as logic is being created
 | |
| ** to perform various actions, the authorizer callback is invoked to
 | |
| ** see if those actions are allowed.  The authorizer callback should
 | |
| ** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the
 | |
| ** specific action but allow the SQL statement to continue to be
 | |
| ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
 | |
| ** rejected with an error.   If the authorizer callback returns
 | |
| ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
 | |
| ** then [sqlite3_prepare_v2()] or equivalent call that triggered
 | |
| ** the authorizer will fail with an error message.
 | |
| **
 | |
| ** When the callback returns [SQLITE_OK], that means the operation
 | |
| ** requested is ok.  When the callback returns [SQLITE_DENY], the
 | |
| ** [sqlite3_prepare_v2()] or equivalent call that triggered the
 | |
| ** authorizer will fail with an error message explaining that
 | |
| ** access is denied.  If the authorizer code is [SQLITE_READ]
 | |
| ** and the callback returns [SQLITE_IGNORE] then the prepared
 | |
| ** statement is constructed to insert a NULL value in place of
 | |
| ** the table column that would have
 | |
| ** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
 | |
| ** return can be used to deny an untrusted user access to individual
 | |
| ** columns of a table.
 | |
| **
 | |
| ** The first parameter to the authorizer callback is a copy of
 | |
| ** the third parameter to the sqlite3_set_authorizer() interface.
 | |
| ** The second parameter to the callback is an integer 
 | |
| ** [SQLITE_COPY | action code] that specifies the particular action
 | |
| ** to be authorized. The third through sixth
 | |
| ** parameters to the callback are zero-terminated strings that contain 
 | |
| ** additional details about the action to be authorized.
 | |
| **
 | |
| ** An authorizer is used when preparing SQL statements from an untrusted
 | |
| ** source, to ensure that the SQL statements do not try to access data
 | |
| ** that they are not allowed to see, or that they do not try to
 | |
| ** execute malicious statements that damage the database.  For
 | |
| ** example, an application may allow a user to enter arbitrary
 | |
| ** SQL queries for evaluation by a database.  But the application does
 | |
| ** not want the user to be able to make arbitrary changes to the
 | |
| ** database.  An authorizer could then be put in place while the
 | |
| ** user-entered SQL is being prepared that disallows everything
 | |
| ** except SELECT statements.  
 | |
| **
 | |
| ** Only a single authorizer can be in place on a database connection
 | |
| ** at a time.  Each call to sqlite3_set_authorizer overrides the
 | |
| ** previous call.  Disable the authorizer by installing a NULL callback.
 | |
| ** The authorizer is disabled by default.
 | |
| **
 | |
| ** Note that the authorizer callback is invoked only during 
 | |
| ** [sqlite3_prepare()] or its variants.  Authorization is not
 | |
| ** performed during statement evaluation in [sqlite3_step()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a
 | |
| **          authorizer callback with database connection D.
 | |
| **
 | |
| ** {F12502} The authorizer callback is invoked as SQL statements are
 | |
| **          being compiled
 | |
| **
 | |
| ** {F12503} If the authorizer callback returns any value other than
 | |
| **          [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then
 | |
| **          the [sqlite3_prepare_v2()] or equivalent call that caused
 | |
| **          the authorizer callback to run shall fail with an
 | |
| **          [SQLITE_ERROR] error code and an appropriate error message.
 | |
| **
 | |
| ** {F12504} When the authorizer callback returns [SQLITE_OK], the operation
 | |
| **          described is coded normally.
 | |
| **
 | |
| ** {F12505} When the authorizer callback returns [SQLITE_DENY], the
 | |
| **          [sqlite3_prepare_v2()] or equivalent call that caused the
 | |
| **          authorizer callback to run shall fail
 | |
| **          with an [SQLITE_ERROR] error code and an error message
 | |
| **          explaining that access is denied.
 | |
| **
 | |
| ** {F12506} If the authorizer code (the 2nd parameter to the authorizer
 | |
| **          callback) is [SQLITE_READ] and the authorizer callback returns
 | |
| **          [SQLITE_IGNORE] then the prepared statement is constructed to
 | |
| **          insert a NULL value in place of the table column that would have
 | |
| **          been read if [SQLITE_OK] had been returned.
 | |
| **
 | |
| ** {F12507} If the authorizer code (the 2nd parameter to the authorizer
 | |
| **          callback) is anything other than [SQLITE_READ], then
 | |
| **          a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. 
 | |
| **
 | |
| ** {F12510} The first parameter to the authorizer callback is a copy of
 | |
| **          the third parameter to the [sqlite3_set_authorizer()] interface.
 | |
| **
 | |
| ** {F12511} The second parameter to the callback is an integer 
 | |
| **          [SQLITE_COPY | action code] that specifies the particular action
 | |
| **          to be authorized.
 | |
| **
 | |
| ** {F12512} The third through sixth parameters to the callback are
 | |
| **          zero-terminated strings that contain 
 | |
| **          additional details about the action to be authorized.
 | |
| **
 | |
| ** {F12520} Each call to [sqlite3_set_authorizer()] overrides the
 | |
| **          any previously installed authorizer.
 | |
| **
 | |
| ** {F12521} A NULL authorizer means that no authorization
 | |
| **          callback is invoked.
 | |
| **
 | |
| ** {F12522} The default authorizer is NULL.
 | |
| */
 | |
| SQLITE_API int sqlite3_set_authorizer(
 | |
|   sqlite3*,
 | |
|   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
 | |
|   void *pUserData
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Authorizer Return Codes {F12590}
 | |
| **
 | |
| ** The [sqlite3_set_authorizer | authorizer callback function] must
 | |
| ** return either [SQLITE_OK] or one of these two constants in order
 | |
| ** to signal SQLite whether or not the action is permitted.  See the
 | |
| ** [sqlite3_set_authorizer | authorizer documentation] for additional
 | |
| ** information.
 | |
| */
 | |
| #define SQLITE_DENY   1   /* Abort the SQL statement with an error */
 | |
| #define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Authorizer Action Codes {F12550}
 | |
| **
 | |
| ** The [sqlite3_set_authorizer()] interface registers a callback function
 | |
| ** that is invoked to authorizer certain SQL statement actions.  The
 | |
| ** second parameter to the callback is an integer code that specifies
 | |
| ** what action is being authorized.  These are the integer action codes that
 | |
| ** the authorizer callback may be passed.
 | |
| **
 | |
| ** These action code values signify what kind of operation is to be 
 | |
| ** authorized.  The 3rd and 4th parameters to the authorization
 | |
| ** callback function will be parameters or NULL depending on which of these
 | |
| ** codes is used as the second parameter.  The 5th parameter to the
 | |
| ** authorizer callback is the name of the database ("main", "temp", 
 | |
| ** etc.) if applicable.  The 6th parameter to the authorizer callback
 | |
| ** is the name of the inner-most trigger or view that is responsible for
 | |
| ** the access attempt or NULL if this access attempt is directly from 
 | |
| ** top-level SQL code.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12551} The second parameter to an 
 | |
| **          [sqlite3_set_authorizer | authorizer callback is always an integer
 | |
| **          [SQLITE_COPY | authorizer code] that specifies what action
 | |
| **          is being authorized.
 | |
| **
 | |
| ** {F12552} The 3rd and 4th parameters to the 
 | |
| **          [sqlite3_set_authorizer | authorization callback function]
 | |
| **          will be parameters or NULL depending on which 
 | |
| **          [SQLITE_COPY | authorizer code] is used as the second parameter.
 | |
| **
 | |
| ** {F12553} The 5th parameter to the
 | |
| **          [sqlite3_set_authorizer | authorizer callback] is the name
 | |
| **          of the database (example: "main", "temp", etc.) if applicable.
 | |
| **
 | |
| ** {F12554} The 6th parameter to the
 | |
| **          [sqlite3_set_authorizer | authorizer callback] is the name
 | |
| **          of the inner-most trigger or view that is responsible for
 | |
| **          the access attempt or NULL if this access attempt is directly from 
 | |
| **          top-level SQL code.
 | |
| */
 | |
| /******************************************* 3rd ************ 4th ***********/
 | |
| #define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
 | |
| #define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
 | |
| #define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
 | |
| #define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
 | |
| #define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
 | |
| #define SQLITE_CREATE_TEMP_VIEW      6   /* View Name       NULL            */
 | |
| #define SQLITE_CREATE_TRIGGER        7   /* Trigger Name    Table Name      */
 | |
| #define SQLITE_CREATE_VIEW           8   /* View Name       NULL            */
 | |
| #define SQLITE_DELETE                9   /* Table Name      NULL            */
 | |
| #define SQLITE_DROP_INDEX           10   /* Index Name      Table Name      */
 | |
| #define SQLITE_DROP_TABLE           11   /* Table Name      NULL            */
 | |
| #define SQLITE_DROP_TEMP_INDEX      12   /* Index Name      Table Name      */
 | |
| #define SQLITE_DROP_TEMP_TABLE      13   /* Table Name      NULL            */
 | |
| #define SQLITE_DROP_TEMP_TRIGGER    14   /* Trigger Name    Table Name      */
 | |
| #define SQLITE_DROP_TEMP_VIEW       15   /* View Name       NULL            */
 | |
| #define SQLITE_DROP_TRIGGER         16   /* Trigger Name    Table Name      */
 | |
| #define SQLITE_DROP_VIEW            17   /* View Name       NULL            */
 | |
| #define SQLITE_INSERT               18   /* Table Name      NULL            */
 | |
| #define SQLITE_PRAGMA               19   /* Pragma Name     1st arg or NULL */
 | |
| #define SQLITE_READ                 20   /* Table Name      Column Name     */
 | |
| #define SQLITE_SELECT               21   /* NULL            NULL            */
 | |
| #define SQLITE_TRANSACTION          22   /* NULL            NULL            */
 | |
| #define SQLITE_UPDATE               23   /* Table Name      Column Name     */
 | |
| #define SQLITE_ATTACH               24   /* Filename        NULL            */
 | |
| #define SQLITE_DETACH               25   /* Database Name   NULL            */
 | |
| #define SQLITE_ALTER_TABLE          26   /* Database Name   Table Name      */
 | |
| #define SQLITE_REINDEX              27   /* Index Name      NULL            */
 | |
| #define SQLITE_ANALYZE              28   /* Table Name      NULL            */
 | |
| #define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
 | |
| #define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
 | |
| #define SQLITE_FUNCTION             31   /* Function Name   NULL            */
 | |
| #define SQLITE_COPY                  0   /* No longer used */
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Tracing And Profiling Functions {F12280}
 | |
| **
 | |
| ** These routines register callback functions that can be used for
 | |
| ** tracing and profiling the execution of SQL statements.
 | |
| **
 | |
| ** The callback function registered by sqlite3_trace() is invoked at
 | |
| ** various times when an SQL statement is being run by [sqlite3_step()].
 | |
| ** The callback returns a UTF-8 rendering of the SQL statement text
 | |
| ** as the statement first begins executing.  Additional callbacks occur
 | |
| ** as each triggersubprogram is entered.  The callbacks for triggers
 | |
| ** contain a UTF-8 SQL comment that identifies the trigger.
 | |
| ** 
 | |
| ** The callback function registered by sqlite3_profile() is invoked
 | |
| ** as each SQL statement finishes.  The profile callback contains
 | |
| ** the original statement text and an estimate of wall-clock time
 | |
| ** of how long that statement took to run.
 | |
| **
 | |
| ** The sqlite3_profile() API is currently considered experimental and
 | |
| ** is subject to change or removal in a future release.
 | |
| **
 | |
| ** The trigger reporting feature of the trace callback is considered
 | |
| ** experimental and is subject to change or removal in future releases.
 | |
| ** Future versions of SQLite might also add new trace callback 
 | |
| ** invocations.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12281} The callback function registered by [sqlite3_trace()] is
 | |
| **          whenever an SQL statement first begins to execute and
 | |
| **          whenever a trigger subprogram first begins to run.
 | |
| **
 | |
| ** {F12282} Each call to [sqlite3_trace()] overrides the previously
 | |
| **          registered trace callback.
 | |
| **
 | |
| ** {F12283} A NULL trace callback disables tracing.
 | |
| **
 | |
| ** {F12284} The first argument to the trace callback is a copy of
 | |
| **          the pointer which was the 3rd argument to [sqlite3_trace()].
 | |
| **
 | |
| ** {F12285} The second argument to the trace callback is a
 | |
| **          zero-terminated UTF8 string containing the original text
 | |
| **          of the SQL statement as it was passed into [sqlite3_prepare_v2()]
 | |
| **          or the equivalent, or an SQL comment indicating the beginning
 | |
| **          of a trigger subprogram.
 | |
| **
 | |
| ** {F12287} The callback function registered by [sqlite3_profile()] is invoked
 | |
| **          as each SQL statement finishes.
 | |
| **
 | |
| ** {F12288} The first parameter to the profile callback is a copy of
 | |
| **          the 3rd parameter to [sqlite3_profile()].
 | |
| **
 | |
| ** {F12289} The second parameter to the profile callback is a
 | |
| **          zero-terminated UTF-8 string that contains the complete text of
 | |
| **          the SQL statement as it was processed by [sqlite3_prepare_v2()]
 | |
| **          or the equivalent.
 | |
| **
 | |
| ** {F12290} The third parameter to the profile  callback is an estimate
 | |
| **          of the number of nanoseconds of wall-clock time required to
 | |
| **          run the SQL statement from start to finish.
 | |
| */
 | |
| SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
 | |
| SQLITE_API void *sqlite3_profile(sqlite3*,
 | |
|    void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Query Progress Callbacks {F12910}
 | |
| **
 | |
| ** This routine configures a callback function - the
 | |
| ** progress callback - that is invoked periodically during long
 | |
| ** running calls to [sqlite3_exec()], [sqlite3_step()] and
 | |
| ** [sqlite3_get_table()].   An example use for this 
 | |
| ** interface is to keep a GUI updated during a large query.
 | |
| **
 | |
| ** If the progress callback returns non-zero, the opertion is
 | |
| ** interrupted.  This feature can be used to implement a
 | |
| ** "Cancel" button on a GUI dialog box.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12911} The callback function registered by [sqlite3_progress_handler()]
 | |
| **          is invoked periodically during long running calls to
 | |
| **          [sqlite3_step()].
 | |
| **
 | |
| ** {F12912} The progress callback is invoked once for every N virtual
 | |
| **          machine opcodes, where N is the second argument to 
 | |
| **          the [sqlite3_progress_handler()] call that registered
 | |
| **          the callback.  <todo>What if N is less than 1?</todo>
 | |
| **
 | |
| ** {F12913} The progress callback itself is identified by the third
 | |
| **          argument to [sqlite3_progress_handler()].
 | |
| **
 | |
| ** {F12914} The fourth argument [sqlite3_progress_handler()] is a
 | |
| ***         void pointer passed to the progress callback
 | |
| **          function each time it is invoked.
 | |
| **
 | |
| ** {F12915} If a call to [sqlite3_step()] results in fewer than
 | |
| **          N opcodes being executed,
 | |
| **          then the progress callback is never invoked. {END}
 | |
| ** 
 | |
| ** {F12916} Every call to [sqlite3_progress_handler()]
 | |
| **          overwrites any previously registere progress handler.
 | |
| **
 | |
| ** {F12917} If the progress handler callback is NULL then no progress
 | |
| **          handler is invoked.
 | |
| **
 | |
| ** {F12918} If the progress callback returns a result other than 0, then
 | |
| **          the behavior is a if [sqlite3_interrupt()] had been called.
 | |
| */
 | |
| SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Opening A New Database Connection {F12700}
 | |
| **
 | |
| ** These routines open an SQLite database file whose name
 | |
| ** is given by the filename argument.
 | |
| ** The filename argument is interpreted as UTF-8
 | |
| ** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
 | |
| ** in the native byte order for [sqlite3_open16()].
 | |
| ** An [sqlite3*] handle is usually returned in *ppDb, even
 | |
| ** if an error occurs.  The only exception is if SQLite is unable
 | |
| ** to allocate memory to hold the [sqlite3] object, a NULL will
 | |
| ** be written into *ppDb instead of a pointer to the [sqlite3] object.
 | |
| ** If the database is opened (and/or created)
 | |
| ** successfully, then [SQLITE_OK] is returned.  Otherwise an
 | |
| ** error code is returned.  The
 | |
| ** [sqlite3_errmsg()] or [sqlite3_errmsg16()]  routines can be used to obtain
 | |
| ** an English language description of the error.
 | |
| **
 | |
| ** The default encoding for the database will be UTF-8 if
 | |
| ** [sqlite3_open()] or [sqlite3_open_v2()] is called and
 | |
| ** UTF-16 in the native byte order if [sqlite3_open16()] is used.
 | |
| **
 | |
| ** Whether or not an error occurs when it is opened, resources
 | |
| ** associated with the [sqlite3*] handle should be released by passing it
 | |
| ** to [sqlite3_close()] when it is no longer required.
 | |
| **
 | |
| ** The [sqlite3_open_v2()] interface works like [sqlite3_open()] 
 | |
| ** except that it acccepts two additional parameters for additional control
 | |
| ** over the new database connection.  The flags parameter can be
 | |
| ** one of:
 | |
| **
 | |
| ** <ol>
 | |
| ** <li>  [SQLITE_OPEN_READONLY]
 | |
| ** <li>  [SQLITE_OPEN_READWRITE]
 | |
| ** <li>  [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]
 | |
| ** </ol>
 | |
| **
 | |
| ** The first value opens the database read-only. 
 | |
| ** If the database does not previously exist, an error is returned.
 | |
| ** The second option opens
 | |
| ** the database for reading and writing if possible, or reading only if
 | |
| ** if the file is write protected.  In either case the database
 | |
| ** must already exist or an error is returned.  The third option
 | |
| ** opens the database for reading and writing and creates it if it does
 | |
| ** not already exist.
 | |
| ** The third options is behavior that is always used for [sqlite3_open()]
 | |
| ** and [sqlite3_open16()].
 | |
| **
 | |
| ** If the filename is ":memory:", then an private
 | |
| ** in-memory database is created for the connection.  This in-memory
 | |
| ** database will vanish when the database connection is closed.  Future
 | |
| ** version of SQLite might make use of additional special filenames
 | |
| ** that begin with the ":" character.  It is recommended that 
 | |
| ** when a database filename really does begin with
 | |
| ** ":" that you prefix the filename with a pathname like "./" to
 | |
| ** avoid ambiguity.
 | |
| **
 | |
| ** If the filename is an empty string, then a private temporary
 | |
| ** on-disk database will be created.  This private database will be
 | |
| ** automatically deleted as soon as the database connection is closed.
 | |
| **
 | |
| ** The fourth parameter to sqlite3_open_v2() is the name of the
 | |
| ** [sqlite3_vfs] object that defines the operating system 
 | |
| ** interface that the new database connection should use.  If the
 | |
| ** fourth parameter is a NULL pointer then the default [sqlite3_vfs]
 | |
| ** object is used.
 | |
| **
 | |
| ** <b>Note to windows users:</b>  The encoding used for the filename argument
 | |
| ** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever
 | |
| ** codepage is currently defined.  Filenames containing international
 | |
| ** characters must be converted to UTF-8 prior to passing them into
 | |
| ** [sqlite3_open()] or [sqlite3_open_v2()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12701} The [sqlite3_open()], [sqlite3_open16()], and
 | |
| **          [sqlite3_open_v2()] interfaces create a new
 | |
| **          [database connection] associated with
 | |
| **          the database file given in their first parameter.
 | |
| **
 | |
| ** {F12702} The filename argument is interpreted as UTF-8
 | |
| **          for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16
 | |
| **          in the native byte order for [sqlite3_open16()].
 | |
| **
 | |
| ** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()], 
 | |
| **          or [sqlite3_open_v2()] writes a pointer to a new
 | |
| **          [database connection] into *ppDb.
 | |
| **
 | |
| ** {F12704} The [sqlite3_open()], [sqlite3_open16()], and
 | |
| **          [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success,
 | |
| **          or an appropriate [error code] on failure.
 | |
| **
 | |
| ** {F12706} The default text encoding for a new database created using
 | |
| **          [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8.
 | |
| **
 | |
| ** {F12707} The default text encoding for a new database created using
 | |
| **          [sqlite3_open16()] will be UTF-16.
 | |
| **
 | |
| ** {F12709} The [sqlite3_open(F,D)] interface is equivalent to
 | |
| **          [sqlite3_open_v2(F,D,G,0)] where the G parameter is
 | |
| **          [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE].
 | |
| **
 | |
| ** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
 | |
| **          bit value [SQLITE_OPEN_READONLY] then the database is opened
 | |
| **          for reading only.
 | |
| **
 | |
| ** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the
 | |
| **          bit value [SQLITE_OPEN_READWRITE] then the database is opened
 | |
| **          reading and writing if possible, or for reading only if the
 | |
| **          file is write protected by the operating system.
 | |
| **
 | |
| ** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the
 | |
| **          bit value [SQLITE_OPEN_CREATE] and the database does not
 | |
| **          previously exist, an error is returned.
 | |
| **
 | |
| ** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the
 | |
| **          bit value [SQLITE_OPEN_CREATE] and the database does not
 | |
| **          previously exist, then an attempt is made to create and
 | |
| **          initialize the database.
 | |
| **
 | |
| ** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()],
 | |
| **          or [sqlite3_open_v2()] is ":memory:", then an private,
 | |
| **          ephemeral, in-memory database is created for the connection.
 | |
| **          <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
 | |
| **          in sqlite3_open_v2()?</todo>
 | |
| **
 | |
| ** {F12719} If the filename is NULL or an empty string, then a private,
 | |
| **          ephermeral on-disk database will be created.
 | |
| **          <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required
 | |
| **          in sqlite3_open_v2()?</todo>
 | |
| **
 | |
| ** {F12721} The [database connection] created by 
 | |
| **          [sqlite3_open_v2(F,D,G,V)] will use the
 | |
| **          [sqlite3_vfs] object identified by the V parameter, or
 | |
| **          the default [sqlite3_vfs] object is V is a NULL pointer.
 | |
| */
 | |
| SQLITE_API int sqlite3_open(
 | |
|   const char *filename,   /* Database filename (UTF-8) */
 | |
|   sqlite3 **ppDb          /* OUT: SQLite db handle */
 | |
| );
 | |
| SQLITE_API int sqlite3_open16(
 | |
|   const void *filename,   /* Database filename (UTF-16) */
 | |
|   sqlite3 **ppDb          /* OUT: SQLite db handle */
 | |
| );
 | |
| SQLITE_API int sqlite3_open_v2(
 | |
|   const char *filename,   /* Database filename (UTF-8) */
 | |
|   sqlite3 **ppDb,         /* OUT: SQLite db handle */
 | |
|   int flags,              /* Flags */
 | |
|   const char *zVfs        /* Name of VFS module to use */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Error Codes And Messages {F12800}
 | |
| **
 | |
| ** The sqlite3_errcode() interface returns the numeric
 | |
| ** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code]
 | |
| ** for the most recent failed sqlite3_* API call associated
 | |
| ** with [sqlite3] handle 'db'. If a prior API call failed but the
 | |
| ** most recent API call succeeded, the return value from sqlite3_errcode()
 | |
| ** is undefined.
 | |
| **
 | |
| ** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
 | |
| ** text that describes the error, as either UTF8 or UTF16 respectively.
 | |
| ** Memory to hold the error message string is managed internally.
 | |
| ** The application does not need to worry with freeing the result.
 | |
| ** However, the error string might be overwritten or deallocated by
 | |
| ** subsequent calls to other SQLite interface functions.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12801} The [sqlite3_errcode(D)] interface returns the numeric
 | |
| **          [SQLITE_OK | result code] or
 | |
| **          [SQLITE_IOERR_READ | extended result code]
 | |
| **          for the most recently failed interface call associated
 | |
| **          with [database connection] D.
 | |
| **
 | |
| ** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)]
 | |
| **          interfaces return English-language text that describes
 | |
| **          the error in the mostly recently failed interface call,
 | |
| **          encoded as either UTF8 or UTF16 respectively.
 | |
| **
 | |
| ** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()]
 | |
| **          are valid until the next SQLite interface call.
 | |
| **
 | |
| ** {F12808} Calls to API routines that do not return an error code
 | |
| **          (example: [sqlite3_data_count()]) do not
 | |
| **          change the error code or message returned by
 | |
| **          [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
 | |
| **
 | |
| ** {F12809} Interfaces that are not associated with a specific
 | |
| **          [database connection] (examples:
 | |
| **          [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()]
 | |
| **          do not change the values returned by
 | |
| **          [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()].
 | |
| */
 | |
| SQLITE_API int sqlite3_errcode(sqlite3 *db);
 | |
| SQLITE_API const char *sqlite3_errmsg(sqlite3*);
 | |
| SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: SQL Statement Object {F13000}
 | |
| ** KEYWORDS: {prepared statement} {prepared statements}
 | |
| **
 | |
| ** An instance of this object represent single SQL statements.  This
 | |
| ** object is variously known as a "prepared statement" or a 
 | |
| ** "compiled SQL statement" or simply as a "statement".
 | |
| ** 
 | |
| ** The life of a statement object goes something like this:
 | |
| **
 | |
| ** <ol>
 | |
| ** <li> Create the object using [sqlite3_prepare_v2()] or a related
 | |
| **      function.
 | |
| ** <li> Bind values to host parameters using
 | |
| **      [sqlite3_bind_blob | sqlite3_bind_* interfaces].
 | |
| ** <li> Run the SQL by calling [sqlite3_step()] one or more times.
 | |
| ** <li> Reset the statement using [sqlite3_reset()] then go back
 | |
| **      to step 2.  Do this zero or more times.
 | |
| ** <li> Destroy the object using [sqlite3_finalize()].
 | |
| ** </ol>
 | |
| **
 | |
| ** Refer to documentation on individual methods above for additional
 | |
| ** information.
 | |
| */
 | |
| typedef struct sqlite3_stmt sqlite3_stmt;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Compiling An SQL Statement {F13010}
 | |
| **
 | |
| ** To execute an SQL query, it must first be compiled into a byte-code
 | |
| ** program using one of these routines. 
 | |
| **
 | |
| ** The first argument "db" is an [database connection] 
 | |
| ** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()]
 | |
| ** or [sqlite3_open16()]. 
 | |
| ** The second argument "zSql" is the statement to be compiled, encoded
 | |
| ** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
 | |
| ** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2()
 | |
| ** use UTF-16. {END}
 | |
| **
 | |
| ** If the nByte argument is less
 | |
| ** than zero, then zSql is read up to the first zero terminator.
 | |
| ** If nByte is non-negative, then it is the maximum number of 
 | |
| ** bytes read from zSql.  When nByte is non-negative, the
 | |
| ** zSql string ends at either the first '\000' or '\u0000' character or 
 | |
| ** until the nByte-th byte, whichever comes first. {END}
 | |
| **
 | |
| ** *pzTail is made to point to the first byte past the end of the
 | |
| ** first SQL statement in zSql.  These routines only compiles the first
 | |
| ** statement in zSql, so *pzTail is left pointing to what remains
 | |
| ** uncompiled.
 | |
| **
 | |
| ** *ppStmt is left pointing to a compiled [prepared statement] that can be
 | |
| ** executed using [sqlite3_step()].  Or if there is an error, *ppStmt is
 | |
| ** set to NULL.  If the input text contains no SQL (if the input
 | |
| ** is and empty string or a comment) then *ppStmt is set to NULL.
 | |
| ** {U13018} The calling procedure is responsible for deleting the
 | |
| ** compiled SQL statement
 | |
| ** using [sqlite3_finalize()] after it has finished with it.
 | |
| **
 | |
| ** On success, [SQLITE_OK] is returned.  Otherwise an 
 | |
| ** [error code] is returned.
 | |
| **
 | |
| ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
 | |
| ** recommended for all new programs. The two older interfaces are retained
 | |
| ** for backwards compatibility, but their use is discouraged.
 | |
| ** In the "v2" interfaces, the prepared statement
 | |
| ** that is returned (the [sqlite3_stmt] object) contains a copy of the 
 | |
| ** original SQL text. {END} This causes the [sqlite3_step()] interface to
 | |
| ** behave a differently in two ways:
 | |
| **
 | |
| ** <ol>
 | |
| ** <li>
 | |
| ** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
 | |
| ** always used to do, [sqlite3_step()] will automatically recompile the SQL
 | |
| ** statement and try to run it again.  If the schema has changed in
 | |
| ** a way that makes the statement no longer valid, [sqlite3_step()] will still
 | |
| ** return [SQLITE_SCHEMA].  But unlike the legacy behavior, 
 | |
| ** [SQLITE_SCHEMA] is now a fatal error.  Calling
 | |
| ** [sqlite3_prepare_v2()] again will not make the
 | |
| ** error go away.  Note: use [sqlite3_errmsg()] to find the text
 | |
| ** of the parsing error that results in an [SQLITE_SCHEMA] return. {END}
 | |
| ** </li>
 | |
| **
 | |
| ** <li>
 | |
| ** When an error occurs, 
 | |
| ** [sqlite3_step()] will return one of the detailed 
 | |
| ** [error codes] or [extended error codes]. 
 | |
| ** The legacy behavior was that [sqlite3_step()] would only return a generic
 | |
| ** [SQLITE_ERROR] result code and you would have to make a second call to
 | |
| ** [sqlite3_reset()] in order to find the underlying cause of the problem.
 | |
| ** With the "v2" prepare interfaces, the underlying reason for the error is
 | |
| ** returned immediately.
 | |
| ** </li>
 | |
| ** </ol>
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13011} The [sqlite3_prepare(db,zSql,...)] and
 | |
| **          [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the
 | |
| **          text in their zSql parameter as UTF-8.
 | |
| **
 | |
| ** {F13012} The [sqlite3_prepare16(db,zSql,...)] and
 | |
| **          [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the
 | |
| **          text in their zSql parameter as UTF-16 in the native byte order.
 | |
| **
 | |
| ** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
 | |
| **          and its variants is less than zero, then SQL text is
 | |
| **          read from zSql is read up to the first zero terminator.
 | |
| **
 | |
| ** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)]
 | |
| **          and its variants is non-negative, then nBytes bytes
 | |
| **          SQL text is read from zSql.
 | |
| **
 | |
| ** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants
 | |
| **          if the zSql input text contains more than one SQL statement
 | |
| **          and pzTail is not NULL, then *pzTail is made to point to the
 | |
| **          first byte past the end of the first SQL statement in zSql.
 | |
| **          <todo>What does *pzTail point to if there is one statement?</todo>
 | |
| **
 | |
| ** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)]
 | |
| **          or one of its variants writes into *ppStmt a pointer to a new
 | |
| **          [prepared statement] or a pointer to NULL
 | |
| **          if zSql contains nothing other than whitespace or comments. 
 | |
| **
 | |
| ** {F13019} The [sqlite3_prepare_v2()] interface and its variants return
 | |
| **          [SQLITE_OK] or an appropriate [error code] upon failure.
 | |
| **
 | |
| ** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its
 | |
| **          variants returns an error (any value other than [SQLITE_OK])
 | |
| **          it first sets *ppStmt to NULL.
 | |
| */
 | |
| SQLITE_API int sqlite3_prepare(
 | |
|   sqlite3 *db,            /* Database handle */
 | |
|   const char *zSql,       /* SQL statement, UTF-8 encoded */
 | |
|   int nByte,              /* Maximum length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
 | |
|   const char **pzTail     /* OUT: Pointer to unused portion of zSql */
 | |
| );
 | |
| SQLITE_API int sqlite3_prepare_v2(
 | |
|   sqlite3 *db,            /* Database handle */
 | |
|   const char *zSql,       /* SQL statement, UTF-8 encoded */
 | |
|   int nByte,              /* Maximum length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
 | |
|   const char **pzTail     /* OUT: Pointer to unused portion of zSql */
 | |
| );
 | |
| SQLITE_API int sqlite3_prepare16(
 | |
|   sqlite3 *db,            /* Database handle */
 | |
|   const void *zSql,       /* SQL statement, UTF-16 encoded */
 | |
|   int nByte,              /* Maximum length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
 | |
|   const void **pzTail     /* OUT: Pointer to unused portion of zSql */
 | |
| );
 | |
| SQLITE_API int sqlite3_prepare16_v2(
 | |
|   sqlite3 *db,            /* Database handle */
 | |
|   const void *zSql,       /* SQL statement, UTF-16 encoded */
 | |
|   int nByte,              /* Maximum length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
 | |
|   const void **pzTail     /* OUT: Pointer to unused portion of zSql */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPIREF: Retrieving Statement SQL {F13100}
 | |
| **
 | |
| ** This intereface can be used to retrieve a saved copy of the original
 | |
| ** SQL text used to create a [prepared statement].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13101} If the [prepared statement] passed as 
 | |
| **          the an argument to [sqlite3_sql()] was compiled
 | |
| **          compiled using either [sqlite3_prepare_v2()] or
 | |
| **          [sqlite3_prepare16_v2()],
 | |
| **          then [sqlite3_sql()] function returns a pointer to a
 | |
| **          zero-terminated string containing a UTF-8 rendering
 | |
| **          of the original SQL statement.
 | |
| **
 | |
| ** {F13102} If the [prepared statement] passed as 
 | |
| **          the an argument to [sqlite3_sql()] was compiled
 | |
| **          compiled using either [sqlite3_prepare()] or
 | |
| **          [sqlite3_prepare16()],
 | |
| **          then [sqlite3_sql()] function returns a NULL pointer.
 | |
| **
 | |
| ** {F13103} The string returned by [sqlite3_sql(S)] is valid until the
 | |
| **          [prepared statement] S is deleted using [sqlite3_finalize(S)].
 | |
| */
 | |
| SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Dynamically Typed Value Object  {F15000}
 | |
| **
 | |
| ** SQLite uses the sqlite3_value object to represent all values
 | |
| ** that are or can be stored in a database table.
 | |
| ** SQLite uses dynamic typing for the values it stores.  
 | |
| ** Values stored in sqlite3_value objects can be
 | |
| ** be integers, floating point values, strings, BLOBs, or NULL.
 | |
| */
 | |
| typedef struct Mem sqlite3_value;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  SQL Function Context Object {F16001}
 | |
| **
 | |
| ** The context in which an SQL function executes is stored in an
 | |
| ** sqlite3_context object.  A pointer to an sqlite3_context
 | |
| ** object is always first parameter to application-defined SQL functions.
 | |
| */
 | |
| typedef struct sqlite3_context sqlite3_context;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Binding Values To Prepared Statements {F13500}
 | |
| **
 | |
| ** In the SQL strings input to [sqlite3_prepare_v2()] and its
 | |
| ** variants, literals may be replace by a parameter in one
 | |
| ** of these forms:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li>  ?
 | |
| ** <li>  ?NNN
 | |
| ** <li>  :VVV
 | |
| ** <li>  @VVV
 | |
| ** <li>  $VVV
 | |
| ** </ul>
 | |
| **
 | |
| ** In the parameter forms shown above NNN is an integer literal,
 | |
| ** VVV alpha-numeric parameter name.
 | |
| ** The values of these parameters (also called "host parameter names"
 | |
| ** or "SQL parameters")
 | |
| ** can be set using the sqlite3_bind_*() routines defined here.
 | |
| **
 | |
| ** The first argument to the sqlite3_bind_*() routines always
 | |
| ** is a pointer to the [sqlite3_stmt] object returned from
 | |
| ** [sqlite3_prepare_v2()] or its variants. The second
 | |
| ** argument is the index of the parameter to be set. The
 | |
| ** first parameter has an index of 1.  When the same named
 | |
| ** parameter is used more than once, second and subsequent
 | |
| ** occurrences have the same index as the first occurrence. 
 | |
| ** The index for named parameters can be looked up using the
 | |
| ** [sqlite3_bind_parameter_name()] API if desired.  The index
 | |
| ** for "?NNN" parameters is the value of NNN.
 | |
| ** The NNN value must be between 1 and the compile-time
 | |
| ** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999).
 | |
| **
 | |
| ** The third argument is the value to bind to the parameter.
 | |
| **
 | |
| ** In those
 | |
| ** routines that have a fourth argument, its value is the number of bytes
 | |
| ** in the parameter.  To be clear: the value is the number of <u>bytes</u>
 | |
| ** in the value, not the number of characters.   The number
 | |
| ** of bytes does not include the zero-terminator at the end of strings.
 | |
| ** If the fourth parameter is negative, the length of the string is
 | |
| ** number of bytes up to the first zero terminator.
 | |
| **
 | |
| ** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
 | |
| ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
 | |
| ** string after SQLite has finished with it. If the fifth argument is
 | |
| ** the special value [SQLITE_STATIC], then SQLite assumes that the
 | |
| ** information is in static, unmanaged space and does not need to be freed.
 | |
| ** If the fifth argument has the value [SQLITE_TRANSIENT], then
 | |
| ** SQLite makes its own private copy of the data immediately, before
 | |
| ** the sqlite3_bind_*() routine returns.
 | |
| **
 | |
| ** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
 | |
| ** is filled with zeros.  A zeroblob uses a fixed amount of memory
 | |
| ** (just an integer to hold it size) while it is being processed.
 | |
| ** Zeroblobs are intended to serve as place-holders for BLOBs whose
 | |
| ** content is later written using 
 | |
| ** [sqlite3_blob_open | increment BLOB I/O] routines. A negative
 | |
| ** value for the zeroblob results in a zero-length BLOB.
 | |
| **
 | |
| ** The sqlite3_bind_*() routines must be called after
 | |
| ** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
 | |
| ** before [sqlite3_step()].
 | |
| ** Bindings are not cleared by the [sqlite3_reset()] routine.
 | |
| ** Unbound parameters are interpreted as NULL.
 | |
| **
 | |
| ** These routines return [SQLITE_OK] on success or an error code if
 | |
| ** anything goes wrong.  [SQLITE_RANGE] is returned if the parameter
 | |
| ** index is out of range.  [SQLITE_NOMEM] is returned if malloc fails.
 | |
| ** [SQLITE_MISUSE] might be returned if these routines are called on a
 | |
| ** virtual machine that is the wrong state or which has already been finalized.
 | |
| ** Detection of misuse is unreliable.  Applications should not depend
 | |
| ** on SQLITE_MISUSE returns.  SQLITE_MISUSE is intended to indicate a
 | |
| ** a logic error in the application.  Future versions of SQLite might
 | |
| ** panic rather than return SQLITE_MISUSE.
 | |
| **
 | |
| ** See also: [sqlite3_bind_parameter_count()],
 | |
| ** [sqlite3_bind_parameter_name()], and
 | |
| ** [sqlite3_bind_parameter_index()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes
 | |
| **          tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV"
 | |
| **          as SQL parameters, where NNN is any sequence of one or more
 | |
| **          digits and where VVV is any sequence of one or more 
 | |
| **          alphanumeric characters or "::" optionally followed by
 | |
| **          a string containing no spaces and contained within parentheses.
 | |
| **
 | |
| ** {F13509} The initial value of an SQL parameter is NULL.
 | |
| **
 | |
| ** {F13512} The index of an "?" SQL parameter is one larger than the
 | |
| **          largest index of SQL parameter to the left, or 1 if
 | |
| **          the "?" is the leftmost SQL parameter.
 | |
| **
 | |
| ** {F13515} The index of an "?NNN" SQL parameter is the integer NNN.
 | |
| **
 | |
| ** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is
 | |
| **          the same as the index of leftmost occurances of the same
 | |
| **          parameter, or one more than the largest index over all
 | |
| **          parameters to the left if this is the first occurrance
 | |
| **          of this parameter, or 1 if this is the leftmost parameter.
 | |
| **
 | |
| ** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with
 | |
| **          an [SQLITE_RANGE] error if the index of an SQL parameter
 | |
| **          is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER.
 | |
| **
 | |
| ** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)]
 | |
| **          associate the value V with all SQL parameters having an
 | |
| **          index of N in the [prepared statement] S.
 | |
| **
 | |
| ** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)]
 | |
| **          override prior calls with the same values of S and N.
 | |
| **
 | |
| ** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)]
 | |
| **          persist across calls to [sqlite3_reset(S)].
 | |
| **
 | |
| ** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
 | |
| **          [sqlite3_bind_text(S,N,V,L,D)], or
 | |
| **          [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L
 | |
| **          bytes of the blob or string pointed to by V, when L
 | |
| **          is non-negative.
 | |
| **
 | |
| ** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or
 | |
| **          [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters
 | |
| **          from V through the first zero character when L is negative.
 | |
| **
 | |
| ** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
 | |
| **          [sqlite3_bind_text(S,N,V,L,D)], or
 | |
| **          [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
 | |
| **          constant [SQLITE_STATIC], SQLite assumes that the value V
 | |
| **          is held in static unmanaged space that will not change
 | |
| **          during the lifetime of the binding.
 | |
| **
 | |
| ** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
 | |
| **          [sqlite3_bind_text(S,N,V,L,D)], or
 | |
| **          [sqlite3_bind_text16(S,N,V,L,D)] when D is the special
 | |
| **          constant [SQLITE_TRANSIENT], the routine makes a 
 | |
| **          private copy of V value before it returns.
 | |
| **
 | |
| ** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)],
 | |
| **          [sqlite3_bind_text(S,N,V,L,D)], or
 | |
| **          [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to
 | |
| **          a function, SQLite invokes that function to destroy the
 | |
| **          V value after it has finished using the V value.
 | |
| **
 | |
| ** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound
 | |
| **          is a blob of L bytes, or a zero-length blob if L is negative.
 | |
| */
 | |
| SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
 | |
| SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
 | |
| SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
 | |
| SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
 | |
| SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
 | |
| SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
 | |
| SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
 | |
| SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
 | |
| SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Number Of SQL Parameters {F13600}
 | |
| **
 | |
| ** This routine can be used to find the number of SQL parameters
 | |
| ** in a prepared statement.  SQL parameters are tokens of the
 | |
| ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
 | |
| ** place-holders for values that are [sqlite3_bind_blob | bound]
 | |
| ** to the parameters at a later time.
 | |
| **
 | |
| ** This routine actually returns the index of the largest parameter.
 | |
| ** For all forms except ?NNN, this will correspond to the number of
 | |
| ** unique parameters.  If parameters of the ?NNN are used, there may
 | |
| ** be gaps in the list.
 | |
| **
 | |
| ** See also: [sqlite3_bind_blob|sqlite3_bind()],
 | |
| ** [sqlite3_bind_parameter_name()], and
 | |
| ** [sqlite3_bind_parameter_index()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns
 | |
| **          the largest index of all SQL parameters in the
 | |
| **          [prepared statement] S, or 0 if S
 | |
| **          contains no SQL parameters.
 | |
| */
 | |
| SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Name Of A Host Parameter {F13620}
 | |
| **
 | |
| ** This routine returns a pointer to the name of the n-th
 | |
| ** SQL parameter in a [prepared statement].
 | |
| ** SQL parameters of the form ":AAA" or "@AAA" or "$AAA" have a name
 | |
| ** which is the string ":AAA" or "@AAA" or "$VVV". 
 | |
| ** In other words, the initial ":" or "$" or "@"
 | |
| ** is included as part of the name.
 | |
| ** Parameters of the form "?" or "?NNN" have no name.
 | |
| **
 | |
| ** The first host parameter has an index of 1, not 0.
 | |
| **
 | |
| ** If the value n is out of range or if the n-th parameter is
 | |
| ** nameless, then NULL is returned.  The returned string is
 | |
| ** always in the UTF-8 encoding even if the named parameter was
 | |
| ** originally specified as UTF-16 in [sqlite3_prepare16()] or
 | |
| ** [sqlite3_prepare16_v2()].
 | |
| **
 | |
| ** See also: [sqlite3_bind_blob|sqlite3_bind()],
 | |
| ** [sqlite3_bind_parameter_count()], and
 | |
| ** [sqlite3_bind_parameter_index()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns
 | |
| **          a UTF-8 rendering of the name of the SQL parameter in
 | |
| **          [prepared statement] S having index N, or
 | |
| **          NULL if there is no SQL parameter with index N or if the
 | |
| **          parameter with index N is an anonymous parameter "?" or
 | |
| **          a numbered parameter "?NNN".
 | |
| */
 | |
| SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Index Of A Parameter With A Given Name {F13640}
 | |
| **
 | |
| ** Return the index of an SQL parameter given its name.  The
 | |
| ** index value returned is suitable for use as the second
 | |
| ** parameter to [sqlite3_bind_blob|sqlite3_bind()].  A zero
 | |
| ** is returned if no matching parameter is found.  The parameter
 | |
| ** name must be given in UTF-8 even if the original statement
 | |
| ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
 | |
| **
 | |
| ** See also: [sqlite3_bind_blob|sqlite3_bind()],
 | |
| ** [sqlite3_bind_parameter_count()], and
 | |
| ** [sqlite3_bind_parameter_index()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns
 | |
| **          the index of SQL parameter in [prepared statement]
 | |
| **          S whose name matches the UTF-8 string N, or 0 if there is
 | |
| **          no match.
 | |
| */
 | |
| SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660}
 | |
| **
 | |
| ** Contrary to the intuition of many, [sqlite3_reset()] does not
 | |
| ** reset the [sqlite3_bind_blob | bindings] on a 
 | |
| ** [prepared statement].  Use this routine to
 | |
| ** reset all host parameters to NULL.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13661} The [sqlite3_clear_bindings(S)] interface resets all
 | |
| **          SQL parameter bindings in [prepared statement] S
 | |
| **          back to NULL.
 | |
| */
 | |
| SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Number Of Columns In A Result Set {F13710}
 | |
| **
 | |
| ** Return the number of columns in the result set returned by the 
 | |
| ** [prepared statement]. This routine returns 0
 | |
| ** if pStmt is an SQL statement that does not return data (for 
 | |
| ** example an UPDATE).
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13711} The [sqlite3_column_count(S)] interface returns the number of
 | |
| **          columns in the result set generated by the
 | |
| **          [prepared statement] S, or 0 if S does not generate
 | |
| **          a result set.
 | |
| */
 | |
| SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Column Names In A Result Set {F13720}
 | |
| **
 | |
| ** These routines return the name assigned to a particular column
 | |
| ** in the result set of a SELECT statement.  The sqlite3_column_name()
 | |
| ** interface returns a pointer to a zero-terminated UTF8 string
 | |
| ** and sqlite3_column_name16() returns a pointer to a zero-terminated
 | |
| ** UTF16 string.  The first parameter is the
 | |
| ** [prepared statement] that implements the SELECT statement.
 | |
| ** The second parameter is the column number.  The left-most column is
 | |
| ** number 0.
 | |
| **
 | |
| ** The returned string pointer is valid until either the 
 | |
| ** [prepared statement] is destroyed by [sqlite3_finalize()]
 | |
| ** or until the next call sqlite3_column_name() or sqlite3_column_name16()
 | |
| ** on the same column.
 | |
| **
 | |
| ** If sqlite3_malloc() fails during the processing of either routine
 | |
| ** (for example during a conversion from UTF-8 to UTF-16) then a
 | |
| ** NULL pointer is returned.
 | |
| **
 | |
| ** The name of a result column is the value of the "AS" clause for
 | |
| ** that column, if there is an AS clause.  If there is no AS clause
 | |
| ** then the name of the column is unspecified and may change from
 | |
| ** one release of SQLite to the next.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13721} A successful invocation of the [sqlite3_column_name(S,N)]
 | |
| **          interface returns the name
 | |
| **          of the Nth column (where 0 is the left-most column) for the
 | |
| **          result set of [prepared statement] S as a
 | |
| **          zero-terminated UTF-8 string.
 | |
| **
 | |
| ** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)]
 | |
| **          interface returns the name
 | |
| **          of the Nth column (where 0 is the left-most column) for the
 | |
| **          result set of [prepared statement] S as a
 | |
| **          zero-terminated UTF-16 string in the native byte order.
 | |
| **
 | |
| ** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()]
 | |
| **          interfaces return a NULL pointer if they are unable to
 | |
| **          allocate memory memory to hold there normal return strings.
 | |
| **
 | |
| ** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or
 | |
| **          [sqlite3_column_name16(S,N)] is out of range, then the
 | |
| **          interfaces returns a NULL pointer.
 | |
| ** 
 | |
| ** {F13726} The strings returned by [sqlite3_column_name(S,N)] and
 | |
| **          [sqlite3_column_name16(S,N)] are valid until the next
 | |
| **          call to either routine with the same S and N parameters
 | |
| **          or until [sqlite3_finalize(S)] is called.
 | |
| **
 | |
| ** {F13727} When a result column of a [SELECT] statement contains
 | |
| **          an AS clause, the name of that column is the indentifier
 | |
| **          to the right of the AS keyword.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
 | |
| SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Source Of Data In A Query Result {F13740}
 | |
| **
 | |
| ** These routines provide a means to determine what column of what
 | |
| ** table in which database a result of a SELECT statement comes from.
 | |
| ** The name of the database or table or column can be returned as
 | |
| ** either a UTF8 or UTF16 string.  The _database_ routines return
 | |
| ** the database name, the _table_ routines return the table name, and
 | |
| ** the origin_ routines return the column name.
 | |
| ** The returned string is valid until
 | |
| ** the [prepared statement] is destroyed using
 | |
| ** [sqlite3_finalize()] or until the same information is requested
 | |
| ** again in a different encoding.
 | |
| **
 | |
| ** The names returned are the original un-aliased names of the
 | |
| ** database, table, and column.
 | |
| **
 | |
| ** The first argument to the following calls is a [prepared statement].
 | |
| ** These functions return information about the Nth column returned by 
 | |
| ** the statement, where N is the second function argument.
 | |
| **
 | |
| ** If the Nth column returned by the statement is an expression
 | |
| ** or subquery and is not a column value, then all of these functions
 | |
| ** return NULL.  These routine might also return NULL if a memory
 | |
| ** allocation error occurs.  Otherwise, they return the 
 | |
| ** name of the attached database, table and column that query result
 | |
| ** column was extracted from.
 | |
| **
 | |
| ** As with all other SQLite APIs, those postfixed with "16" return
 | |
| ** UTF-16 encoded strings, the other functions return UTF-8. {END}
 | |
| **
 | |
| ** These APIs are only available if the library was compiled with the 
 | |
| ** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
 | |
| **
 | |
| ** {U13751}
 | |
| ** If two or more threads call one or more of these routines against the same
 | |
| ** prepared statement and column at the same time then the results are
 | |
| ** undefined.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either
 | |
| **          the UTF-8 zero-terminated name of the database from which the 
 | |
| **          Nth result column of [prepared statement] S 
 | |
| **          is extracted, or NULL if the the Nth column of S is a
 | |
| **          general expression or if unable to allocate memory
 | |
| **          to store the name.
 | |
| **          
 | |
| ** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either
 | |
| **          the UTF-16 native byte order
 | |
| **          zero-terminated name of the database from which the 
 | |
| **          Nth result column of [prepared statement] S 
 | |
| **          is extracted, or NULL if the the Nth column of S is a
 | |
| **          general expression or if unable to allocate memory
 | |
| **          to store the name.
 | |
| **          
 | |
| ** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either
 | |
| **          the UTF-8 zero-terminated name of the table from which the 
 | |
| **          Nth result column of [prepared statement] S 
 | |
| **          is extracted, or NULL if the the Nth column of S is a
 | |
| **          general expression or if unable to allocate memory
 | |
| **          to store the name.
 | |
| **          
 | |
| ** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either
 | |
| **          the UTF-16 native byte order
 | |
| **          zero-terminated name of the table from which the 
 | |
| **          Nth result column of [prepared statement] S 
 | |
| **          is extracted, or NULL if the the Nth column of S is a
 | |
| **          general expression or if unable to allocate memory
 | |
| **          to store the name.
 | |
| **          
 | |
| ** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either
 | |
| **          the UTF-8 zero-terminated name of the table column from which the 
 | |
| **          Nth result column of [prepared statement] S 
 | |
| **          is extracted, or NULL if the the Nth column of S is a
 | |
| **          general expression or if unable to allocate memory
 | |
| **          to store the name.
 | |
| **          
 | |
| ** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either
 | |
| **          the UTF-16 native byte order
 | |
| **          zero-terminated name of the table column from which the 
 | |
| **          Nth result column of [prepared statement] S 
 | |
| **          is extracted, or NULL if the the Nth column of S is a
 | |
| **          general expression or if unable to allocate memory
 | |
| **          to store the name.
 | |
| **          
 | |
| ** {F13748} The return values from
 | |
| **          [sqlite3_column_database_name|column metadata interfaces]
 | |
| **          are valid
 | |
| **          for the lifetime of the [prepared statement]
 | |
| **          or until the encoding is changed by another metadata
 | |
| **          interface call for the same prepared statement and column.
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| **
 | |
| ** {U13751} If two or more threads call one or more
 | |
| **          [sqlite3_column_database_name|column metadata interfaces]
 | |
| **          the same [prepared statement] and result column
 | |
| **          at the same time then the results are undefined.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
 | |
| SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
 | |
| SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
 | |
| SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
 | |
| SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
 | |
| SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Declared Datatype Of A Query Result {F13760}
 | |
| **
 | |
| ** The first parameter is a [prepared statement]. 
 | |
| ** If this statement is a SELECT statement and the Nth column of the 
 | |
| ** returned result set of that SELECT is a table column (not an
 | |
| ** expression or subquery) then the declared type of the table
 | |
| ** column is returned.  If the Nth column of the result set is an
 | |
| ** expression or subquery, then a NULL pointer is returned.
 | |
| ** The returned string is always UTF-8 encoded.  {END} 
 | |
| ** For example, in the database schema:
 | |
| **
 | |
| ** CREATE TABLE t1(c1 VARIANT);
 | |
| **
 | |
| ** And the following statement compiled:
 | |
| **
 | |
| ** SELECT c1 + 1, c1 FROM t1;
 | |
| **
 | |
| ** Then this routine would return the string "VARIANT" for the second
 | |
| ** result column (i==1), and a NULL pointer for the first result column
 | |
| ** (i==0).
 | |
| **
 | |
| ** SQLite uses dynamic run-time typing.  So just because a column
 | |
| ** is declared to contain a particular type does not mean that the
 | |
| ** data stored in that column is of the declared type.  SQLite is
 | |
| ** strongly typed, but the typing is dynamic not static.  Type
 | |
| ** is associated with individual values, not with the containers
 | |
| ** used to hold those values.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13761}  A successful call to [sqlite3_column_decltype(S,N)]
 | |
| **           returns a zero-terminated UTF-8 string containing the
 | |
| **           the declared datatype of the table column that appears
 | |
| **           as the Nth column (numbered from 0) of the result set to the
 | |
| **           [prepared statement] S.
 | |
| **
 | |
| ** {F13762}  A successful call to [sqlite3_column_decltype16(S,N)]
 | |
| **           returns a zero-terminated UTF-16 native byte order string
 | |
| **           containing the declared datatype of the table column that appears
 | |
| **           as the Nth column (numbered from 0) of the result set to the
 | |
| **           [prepared statement] S.
 | |
| **
 | |
| ** {F13763}  If N is less than 0 or N is greater than or equal to
 | |
| **           the number of columns in [prepared statement] S
 | |
| **           or if the Nth column of S is an expression or subquery rather
 | |
| **           than a table column or if a memory allocation failure
 | |
| **           occurs during encoding conversions, then
 | |
| **           calls to [sqlite3_column_decltype(S,N)] or
 | |
| **           [sqlite3_column_decltype16(S,N)] return NULL.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
 | |
| SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
 | |
| 
 | |
| /* 
 | |
| ** CAPI3REF:  Evaluate An SQL Statement {F13200}
 | |
| **
 | |
| ** After an [prepared statement] has been prepared with a call
 | |
| ** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of
 | |
| ** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()],
 | |
| ** then this function must be called one or more times to evaluate the 
 | |
| ** statement.
 | |
| **
 | |
| ** The details of the behavior of this sqlite3_step() interface depend
 | |
| ** on whether the statement was prepared using the newer "v2" interface
 | |
| ** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
 | |
| ** interface [sqlite3_prepare()] and [sqlite3_prepare16()].  The use of the
 | |
| ** new "v2" interface is recommended for new applications but the legacy
 | |
| ** interface will continue to be supported.
 | |
| **
 | |
| ** In the lagacy interface, the return value will be either [SQLITE_BUSY], 
 | |
| ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
 | |
| ** With the "v2" interface, any of the other [SQLITE_OK | result code]
 | |
| ** or [SQLITE_IOERR_READ | extended result code] might be returned as
 | |
| ** well.
 | |
| **
 | |
| ** [SQLITE_BUSY] means that the database engine was unable to acquire the
 | |
| ** database locks it needs to do its job.  If the statement is a COMMIT
 | |
| ** or occurs outside of an explicit transaction, then you can retry the
 | |
| ** statement.  If the statement is not a COMMIT and occurs within a
 | |
| ** explicit transaction then you should rollback the transaction before
 | |
| ** continuing.
 | |
| **
 | |
| ** [SQLITE_DONE] means that the statement has finished executing
 | |
| ** successfully.  sqlite3_step() should not be called again on this virtual
 | |
| ** machine without first calling [sqlite3_reset()] to reset the virtual
 | |
| ** machine back to its initial state.
 | |
| **
 | |
| ** If the SQL statement being executed returns any data, then 
 | |
| ** [SQLITE_ROW] is returned each time a new row of data is ready
 | |
| ** for processing by the caller. The values may be accessed using
 | |
| ** the [sqlite3_column_int | column access functions].
 | |
| ** sqlite3_step() is called again to retrieve the next row of data.
 | |
| ** 
 | |
| ** [SQLITE_ERROR] means that a run-time error (such as a constraint
 | |
| ** violation) has occurred.  sqlite3_step() should not be called again on
 | |
| ** the VM. More information may be found by calling [sqlite3_errmsg()].
 | |
| ** With the legacy interface, a more specific error code (example:
 | |
| ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
 | |
| ** can be obtained by calling [sqlite3_reset()] on the
 | |
| ** [prepared statement].  In the "v2" interface,
 | |
| ** the more specific error code is returned directly by sqlite3_step().
 | |
| **
 | |
| ** [SQLITE_MISUSE] means that the this routine was called inappropriately.
 | |
| ** Perhaps it was called on a [prepared statement] that has
 | |
| ** already been [sqlite3_finalize | finalized] or on one that had 
 | |
| ** previously returned [SQLITE_ERROR] or [SQLITE_DONE].  Or it could
 | |
| ** be the case that the same database connection is being used by two or
 | |
| ** more threads at the same moment in time.
 | |
| **
 | |
| ** <b>Goofy Interface Alert:</b>
 | |
| ** In the legacy interface, 
 | |
| ** the sqlite3_step() API always returns a generic error code,
 | |
| ** [SQLITE_ERROR], following any error other than [SQLITE_BUSY]
 | |
| ** and [SQLITE_MISUSE].  You must call [sqlite3_reset()] or
 | |
| ** [sqlite3_finalize()] in order to find one of the specific
 | |
| ** [error codes] that better describes the error.
 | |
| ** We admit that this is a goofy design.  The problem has been fixed
 | |
| ** with the "v2" interface.  If you prepare all of your SQL statements
 | |
| ** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
 | |
| ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the 
 | |
| ** more specific [error codes] are returned directly
 | |
| ** by sqlite3_step().  The use of the "v2" interface is recommended.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13202}  If [prepared statement] S is ready to be
 | |
| **           run, then [sqlite3_step(S)] advances that prepared statement
 | |
| **           until to completion or until it is ready to return another
 | |
| **           row of the result set or an interrupt or run-time error occurs.
 | |
| **
 | |
| ** {F15304}  When a call to [sqlite3_step(S)] causes the 
 | |
| **           [prepared statement] S to run to completion,
 | |
| **           the function returns [SQLITE_DONE].
 | |
| **
 | |
| ** {F15306}  When a call to [sqlite3_step(S)] stops because it is ready
 | |
| **           to return another row of the result set, it returns
 | |
| **           [SQLITE_ROW].
 | |
| **
 | |
| ** {F15308}  If a call to [sqlite3_step(S)] encounters an
 | |
| **           [sqlite3_interrupt|interrupt] or a run-time error,
 | |
| **           it returns an appropraite error code that is not one of
 | |
| **           [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE].
 | |
| **
 | |
| ** {F15310}  If an [sqlite3_interrupt|interrupt] or run-time error
 | |
| **           occurs during a call to [sqlite3_step(S)]
 | |
| **           for a [prepared statement] S created using
 | |
| **           legacy interfaces [sqlite3_prepare()] or
 | |
| **           [sqlite3_prepare16()] then the function returns either
 | |
| **           [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE].
 | |
| */
 | |
| SQLITE_API int sqlite3_step(sqlite3_stmt*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Number of columns in a result set {F13770}
 | |
| **
 | |
| ** Return the number of values in the current row of the result set.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13771}  After a call to [sqlite3_step(S)] that returns
 | |
| **           [SQLITE_ROW], the [sqlite3_data_count(S)] routine
 | |
| **           will return the same value as the
 | |
| **           [sqlite3_column_count(S)] function.
 | |
| **
 | |
| ** {F13772}  After [sqlite3_step(S)] has returned any value other than
 | |
| **           [SQLITE_ROW] or before [sqlite3_step(S)] has been 
 | |
| **           called on the [prepared statement] for
 | |
| **           the first time since it was [sqlite3_prepare|prepared]
 | |
| **           or [sqlite3_reset|reset], the [sqlite3_data_count(S)]
 | |
| **           routine returns zero.
 | |
| */
 | |
| SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Fundamental Datatypes {F10265}
 | |
| ** KEYWORDS: SQLITE_TEXT
 | |
| **
 | |
| ** {F10266}Every value in SQLite has one of five fundamental datatypes:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li> 64-bit signed integer
 | |
| ** <li> 64-bit IEEE floating point number
 | |
| ** <li> string
 | |
| ** <li> BLOB
 | |
| ** <li> NULL
 | |
| ** </ul> {END}
 | |
| **
 | |
| ** These constants are codes for each of those types.
 | |
| **
 | |
| ** Note that the SQLITE_TEXT constant was also used in SQLite version 2
 | |
| ** for a completely different meaning.  Software that links against both
 | |
| ** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not
 | |
| ** SQLITE_TEXT.
 | |
| */
 | |
| #define SQLITE_INTEGER  1
 | |
| #define SQLITE_FLOAT    2
 | |
| #define SQLITE_BLOB     4
 | |
| #define SQLITE_NULL     5
 | |
| #ifdef SQLITE_TEXT
 | |
| # undef SQLITE_TEXT
 | |
| #else
 | |
| # define SQLITE_TEXT     3
 | |
| #endif
 | |
| #define SQLITE3_TEXT     3
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Results Values From A Query {F13800}
 | |
| **
 | |
| ** These routines form the "result set query" interface.
 | |
| **
 | |
| ** These routines return information about
 | |
| ** a single column of the current result row of a query.  In every
 | |
| ** case the first argument is a pointer to the 
 | |
| ** [prepared statement] that is being
 | |
| ** evaluated (the [sqlite3_stmt*] that was returned from 
 | |
| ** [sqlite3_prepare_v2()] or one of its variants) and
 | |
| ** the second argument is the index of the column for which information 
 | |
| ** should be returned.  The left-most column of the result set
 | |
| ** has an index of 0.
 | |
| **
 | |
| ** If the SQL statement is not currently point to a valid row, or if the
 | |
| ** the column index is out of range, the result is undefined. 
 | |
| ** These routines may only be called when the most recent call to
 | |
| ** [sqlite3_step()] has returned [SQLITE_ROW] and neither
 | |
| ** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently.
 | |
| ** If any of these routines are called after [sqlite3_reset()] or
 | |
| ** [sqlite3_finalize()] or after [sqlite3_step()] has returned
 | |
| ** something other than [SQLITE_ROW], the results are undefined.
 | |
| ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
 | |
| ** are called from a different thread while any of these routines
 | |
| ** are pending, then the results are undefined.  
 | |
| **
 | |
| ** The sqlite3_column_type() routine returns 
 | |
| ** [SQLITE_INTEGER | datatype code] for the initial data type
 | |
| ** of the result column.  The returned value is one of [SQLITE_INTEGER],
 | |
| ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].  The value
 | |
| ** returned by sqlite3_column_type() is only meaningful if no type
 | |
| ** conversions have occurred as described below.  After a type conversion,
 | |
| ** the value returned by sqlite3_column_type() is undefined.  Future
 | |
| ** versions of SQLite may change the behavior of sqlite3_column_type()
 | |
| ** following a type conversion.
 | |
| **
 | |
| ** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() 
 | |
| ** routine returns the number of bytes in that BLOB or string.
 | |
| ** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
 | |
| ** the string to UTF-8 and then returns the number of bytes.
 | |
| ** If the result is a numeric value then sqlite3_column_bytes() uses
 | |
| ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
 | |
| ** the number of bytes in that string.
 | |
| ** The value returned does not include the zero terminator at the end
 | |
| ** of the string.  For clarity: the value returned is the number of
 | |
| ** bytes in the string, not the number of characters.
 | |
| **
 | |
| ** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
 | |
| ** even empty strings, are always zero terminated.  The return
 | |
| ** value from sqlite3_column_blob() for a zero-length blob is an arbitrary
 | |
| ** pointer, possibly even a NULL pointer.
 | |
| **
 | |
| ** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
 | |
| ** but leaves the result in UTF-16 in native byte order instead of UTF-8.  
 | |
| ** The zero terminator is not included in this count.
 | |
| **
 | |
| ** These routines attempt to convert the value where appropriate.  For
 | |
| ** example, if the internal representation is FLOAT and a text result
 | |
| ** is requested, [sqlite3_snprintf()] is used internally to do the conversion
 | |
| ** automatically.  The following table details the conversions that
 | |
| ** are applied:
 | |
| **
 | |
| ** <blockquote>
 | |
| ** <table border="1">
 | |
| ** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
 | |
| **
 | |
| ** <tr><td>  NULL    <td> INTEGER   <td> Result is 0
 | |
| ** <tr><td>  NULL    <td>  FLOAT    <td> Result is 0.0
 | |
| ** <tr><td>  NULL    <td>   TEXT    <td> Result is NULL pointer
 | |
| ** <tr><td>  NULL    <td>   BLOB    <td> Result is NULL pointer
 | |
| ** <tr><td> INTEGER  <td>  FLOAT    <td> Convert from integer to float
 | |
| ** <tr><td> INTEGER  <td>   TEXT    <td> ASCII rendering of the integer
 | |
| ** <tr><td> INTEGER  <td>   BLOB    <td> Same as for INTEGER->TEXT
 | |
| ** <tr><td>  FLOAT   <td> INTEGER   <td> Convert from float to integer
 | |
| ** <tr><td>  FLOAT   <td>   TEXT    <td> ASCII rendering of the float
 | |
| ** <tr><td>  FLOAT   <td>   BLOB    <td> Same as FLOAT->TEXT
 | |
| ** <tr><td>  TEXT    <td> INTEGER   <td> Use atoi()
 | |
| ** <tr><td>  TEXT    <td>  FLOAT    <td> Use atof()
 | |
| ** <tr><td>  TEXT    <td>   BLOB    <td> No change
 | |
| ** <tr><td>  BLOB    <td> INTEGER   <td> Convert to TEXT then use atoi()
 | |
| ** <tr><td>  BLOB    <td>  FLOAT    <td> Convert to TEXT then use atof()
 | |
| ** <tr><td>  BLOB    <td>   TEXT    <td> Add a zero terminator if needed
 | |
| ** </table>
 | |
| ** </blockquote>
 | |
| **
 | |
| ** The table above makes reference to standard C library functions atoi()
 | |
| ** and atof().  SQLite does not really use these functions.  It has its
 | |
| ** on equavalent internal routines.  The atoi() and atof() names are
 | |
| ** used in the table for brevity and because they are familiar to most
 | |
| ** C programmers.
 | |
| **
 | |
| ** Note that when type conversions occur, pointers returned by prior
 | |
| ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
 | |
| ** sqlite3_column_text16() may be invalidated. 
 | |
| ** Type conversions and pointer invalidations might occur
 | |
| ** in the following cases:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li><p>  The initial content is a BLOB and sqlite3_column_text() 
 | |
| **          or sqlite3_column_text16() is called.  A zero-terminator might
 | |
| **          need to be added to the string.</p></li>
 | |
| **
 | |
| ** <li><p>  The initial content is UTF-8 text and sqlite3_column_bytes16() or
 | |
| **          sqlite3_column_text16() is called.  The content must be converted
 | |
| **          to UTF-16.</p></li>
 | |
| **
 | |
| ** <li><p>  The initial content is UTF-16 text and sqlite3_column_bytes() or
 | |
| **          sqlite3_column_text() is called.  The content must be converted
 | |
| **          to UTF-8.</p></li>
 | |
| ** </ul>
 | |
| **
 | |
| ** Conversions between UTF-16be and UTF-16le are always done in place and do
 | |
| ** not invalidate a prior pointer, though of course the content of the buffer
 | |
| ** that the prior pointer points to will have been modified.  Other kinds
 | |
| ** of conversion are done in place when it is possible, but sometime it is
 | |
| ** not possible and in those cases prior pointers are invalidated.  
 | |
| **
 | |
| ** The safest and easiest to remember policy is to invoke these routines
 | |
| ** in one of the following ways:
 | |
| **
 | |
| **  <ul>
 | |
| **  <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
 | |
| **  <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
 | |
| **  <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
 | |
| **  </ul>
 | |
| **
 | |
| ** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(),
 | |
| ** or sqlite3_column_text16() first to force the result into the desired
 | |
| ** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to
 | |
| ** find the size of the result.  Do not mix call to sqlite3_column_text() or
 | |
| ** sqlite3_column_blob() with calls to sqlite3_column_bytes16().  And do not
 | |
| ** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes().
 | |
| **
 | |
| ** The pointers returned are valid until a type conversion occurs as
 | |
| ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
 | |
| ** [sqlite3_finalize()] is called.  The memory space used to hold strings
 | |
| ** and blobs is freed automatically.  Do <b>not</b> pass the pointers returned
 | |
| ** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into 
 | |
| ** [sqlite3_free()].
 | |
| **
 | |
| ** If a memory allocation error occurs during the evaluation of any
 | |
| ** of these routines, a default value is returned.  The default value
 | |
| ** is either the integer 0, the floating point number 0.0, or a NULL
 | |
| ** pointer.  Subsequent calls to [sqlite3_errcode()] will return
 | |
| ** [SQLITE_NOMEM].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13803} The [sqlite3_column_blob(S,N)] interface converts the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S into a blob and then returns a
 | |
| **          pointer to the converted value.
 | |
| **
 | |
| ** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the
 | |
| **          number of bytes in the blob or string (exclusive of the
 | |
| **          zero terminator on the string) that was returned by the
 | |
| **          most recent call to [sqlite3_column_blob(S,N)] or
 | |
| **          [sqlite3_column_text(S,N)].
 | |
| **
 | |
| ** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the
 | |
| **          number of bytes in the string (exclusive of the
 | |
| **          zero terminator on the string) that was returned by the
 | |
| **          most recent call to [sqlite3_column_text16(S,N)].
 | |
| **
 | |
| ** {F13812} The [sqlite3_column_double(S,N)] interface converts the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S into a floating point value and
 | |
| **          returns a copy of that value.
 | |
| **
 | |
| ** {F13815} The [sqlite3_column_int(S,N)] interface converts the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S into a 64-bit signed integer and
 | |
| **          returns the lower 32 bits of that integer.
 | |
| **
 | |
| ** {F13818} The [sqlite3_column_int64(S,N)] interface converts the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S into a 64-bit signed integer and
 | |
| **          returns a copy of that integer.
 | |
| **
 | |
| ** {F13821} The [sqlite3_column_text(S,N)] interface converts the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S into a zero-terminated UTF-8 
 | |
| **          string and returns a pointer to that string.
 | |
| **
 | |
| ** {F13824} The [sqlite3_column_text16(S,N)] interface converts the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S into a zero-terminated 2-byte
 | |
| **          aligned UTF-16 native byte order
 | |
| **          string and returns a pointer to that string.
 | |
| **
 | |
| ** {F13827} The [sqlite3_column_type(S,N)] interface returns
 | |
| **          one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
 | |
| **          [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
 | |
| **          the Nth column in the current row of the result set for
 | |
| **          [prepared statement] S.
 | |
| **
 | |
| ** {F13830} The [sqlite3_column_value(S,N)] interface returns a
 | |
| **          pointer to the [sqlite3_value] object that for the
 | |
| **          Nth column in the current row of the result set for
 | |
| **          [prepared statement] S.
 | |
| */
 | |
| SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
 | |
| SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Destroy A Prepared Statement Object {F13300}
 | |
| **
 | |
| ** The sqlite3_finalize() function is called to delete a 
 | |
| ** [prepared statement]. If the statement was
 | |
| ** executed successfully, or not executed at all, then SQLITE_OK is returned.
 | |
| ** If execution of the statement failed then an 
 | |
| ** [error code] or [extended error code]
 | |
| ** is returned. 
 | |
| **
 | |
| ** This routine can be called at any point during the execution of the
 | |
| ** [prepared statement].  If the virtual machine has not 
 | |
| ** completed execution when this routine is called, that is like
 | |
| ** encountering an error or an interrupt.  (See [sqlite3_interrupt()].) 
 | |
| ** Incomplete updates may be rolled back and transactions cancelled,  
 | |
| ** depending on the circumstances, and the 
 | |
| ** [error code] returned will be [SQLITE_ABORT].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F11302} The [sqlite3_finalize(S)] interface destroys the
 | |
| **          [prepared statement] S and releases all
 | |
| **          memory and file resources held by that object.
 | |
| **
 | |
| ** {F11304} If the most recent call to [sqlite3_step(S)] for the
 | |
| **          [prepared statement] S returned an error,
 | |
| **          then [sqlite3_finalize(S)] returns that same error.
 | |
| */
 | |
| SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Reset A Prepared Statement Object {F13330}
 | |
| **
 | |
| ** The sqlite3_reset() function is called to reset a 
 | |
| ** [prepared statement] object.
 | |
| ** back to its initial state, ready to be re-executed.
 | |
| ** Any SQL statement variables that had values bound to them using
 | |
| ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
 | |
| ** Use [sqlite3_clear_bindings()] to reset the bindings.
 | |
| **
 | |
| ** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
 | |
| **          back to the beginning of its program.
 | |
| **
 | |
| ** {F11334} If the most recent call to [sqlite3_step(S)] for 
 | |
| **          [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
 | |
| **          or if [sqlite3_step(S)] has never before been called on S,
 | |
| **          then [sqlite3_reset(S)] returns [SQLITE_OK].
 | |
| **
 | |
| ** {F11336} If the most recent call to [sqlite3_step(S)] for
 | |
| **          [prepared statement] S indicated an error, then
 | |
| **          [sqlite3_reset(S)] returns an appropriate [error code].
 | |
| **
 | |
| ** {F11338} The [sqlite3_reset(S)] interface does not change the values
 | |
| **          of any [sqlite3_bind_blob|bindings] on [prepared statement] S.
 | |
| */
 | |
| SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Create Or Redefine SQL Functions {F16100}
 | |
| ** KEYWORDS: {function creation routines} 
 | |
| **
 | |
| ** These two functions (collectively known as
 | |
| ** "function creation routines") are used to add SQL functions or aggregates
 | |
| ** or to redefine the behavior of existing SQL functions or aggregates.  The
 | |
| ** difference only between the two is that the second parameter, the
 | |
| ** name of the (scalar) function or aggregate, is encoded in UTF-8 for
 | |
| ** sqlite3_create_function() and UTF-16 for sqlite3_create_function16().
 | |
| **
 | |
| ** The first parameter is the [database connection] to which the SQL
 | |
| ** function is to be added.  If a single
 | |
| ** program uses more than one [database connection] internally, then SQL
 | |
| ** functions must be added individually to each [database connection].
 | |
| **
 | |
| ** The second parameter is the name of the SQL function to be created
 | |
| ** or redefined.
 | |
| ** The length of the name is limited to 255 bytes, exclusive of the 
 | |
| ** zero-terminator.  Note that the name length limit is in bytes, not
 | |
| ** characters.  Any attempt to create a function with a longer name
 | |
| ** will result in an SQLITE_ERROR error.
 | |
| **
 | |
| ** The third parameter is the number of arguments that the SQL function or
 | |
| ** aggregate takes. If this parameter is negative, then the SQL function or
 | |
| ** aggregate may take any number of arguments.
 | |
| **
 | |
| ** The fourth parameter, eTextRep, specifies what 
 | |
| ** [SQLITE_UTF8 | text encoding] this SQL function prefers for
 | |
| ** its parameters.  Any SQL function implementation should be able to work
 | |
| ** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
 | |
| ** more efficient with one encoding than another.  It is allowed to
 | |
| ** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
 | |
| ** times with the same function but with different values of eTextRep.
 | |
| ** When multiple implementations of the same function are available, SQLite
 | |
| ** will pick the one that involves the least amount of data conversion.
 | |
| ** If there is only a single implementation which does not care what
 | |
| ** text encoding is used, then the fourth argument should be
 | |
| ** [SQLITE_ANY].
 | |
| **
 | |
| ** The fifth parameter is an arbitrary pointer.  The implementation
 | |
| ** of the function can gain access to this pointer using
 | |
| ** [sqlite3_user_data()].
 | |
| **
 | |
| ** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
 | |
| ** pointers to C-language functions that implement the SQL
 | |
| ** function or aggregate. A scalar SQL function requires an implementation of
 | |
| ** the xFunc callback only, NULL pointers should be passed as the xStep
 | |
| ** and xFinal parameters. An aggregate SQL function requires an implementation
 | |
| ** of xStep and xFinal and NULL should be passed for xFunc. To delete an
 | |
| ** existing SQL function or aggregate, pass NULL for all three function
 | |
| ** callback.
 | |
| **
 | |
| ** It is permitted to register multiple implementations of the same
 | |
| ** functions with the same name but with either differing numbers of
 | |
| ** arguments or differing perferred text encodings.  SQLite will use
 | |
| ** the implementation most closely matches the way in which the
 | |
| ** SQL function is used.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16103} The [sqlite3_create_function16()] interface behaves exactly
 | |
| **          like [sqlite3_create_function()] in every way except that it
 | |
| **          interprets the zFunctionName argument as
 | |
| **          zero-terminated UTF-16 native byte order instead of as a
 | |
| **          zero-terminated UTF-8.
 | |
| **
 | |
| ** {F16106} A successful invocation of
 | |
| **          the [sqlite3_create_function(D,X,N,E,...)] interface registers
 | |
| **          or replaces callback functions in [database connection] D
 | |
| **          used to implement the SQL function named X with N parameters
 | |
| **          and having a perferred text encoding of E.
 | |
| **
 | |
| ** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)]
 | |
| **          replaces the P, F, S, and L values from any prior calls with
 | |
| **          the same D, X, N, and E values.
 | |
| **
 | |
| ** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with
 | |
| **          a return code of [SQLITE_ERROR] if the SQL function name X is
 | |
| **          longer than 255 bytes exclusive of the zero terminator.
 | |
| **
 | |
| ** {F16118} Either F must be NULL and S and L are non-NULL or else F
 | |
| **          is non-NULL and S and L are NULL, otherwise
 | |
| **          [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR].
 | |
| **
 | |
| ** {F16121} The [sqlite3_create_function(D,...)] interface fails with an
 | |
| **          error code of [SQLITE_BUSY] if there exist [prepared statements]
 | |
| **          associated with the [database connection] D.
 | |
| **
 | |
| ** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an
 | |
| **          error code of [SQLITE_ERROR] if parameter N (specifying the number
 | |
| **          of arguments to the SQL function being registered) is less
 | |
| **          than -1 or greater than 127.
 | |
| **
 | |
| ** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)]
 | |
| **          interface causes callbacks to be invoked for the SQL function
 | |
| **          named X when the number of arguments to the SQL function is
 | |
| **          exactly N.
 | |
| **
 | |
| ** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)]
 | |
| **          interface causes callbacks to be invoked for the SQL function
 | |
| **          named X with any number of arguments.
 | |
| **
 | |
| ** {F16133} When calls to [sqlite3_create_function(D,X,N,...)]
 | |
| **          specify multiple implementations of the same function X
 | |
| **          and when one implementation has N>=0 and the other has N=(-1)
 | |
| **          the implementation with a non-zero N is preferred.
 | |
| **
 | |
| ** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)]
 | |
| **          specify multiple implementations of the same function X with
 | |
| **          the same number of arguments N but with different
 | |
| **          encodings E, then the implementation where E matches the
 | |
| **          database encoding is preferred.
 | |
| **
 | |
| ** {F16139} For an aggregate SQL function created using
 | |
| **          [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer
 | |
| **          function L will always be invoked exactly once if the
 | |
| **          step function S is called one or more times.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_function(
 | |
|   sqlite3 *db,
 | |
|   const char *zFunctionName,
 | |
|   int nArg,
 | |
|   int eTextRep,
 | |
|   void *pApp,
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void (*xFinal)(sqlite3_context*)
 | |
| );
 | |
| SQLITE_API int sqlite3_create_function16(
 | |
|   sqlite3 *db,
 | |
|   const void *zFunctionName,
 | |
|   int nArg,
 | |
|   int eTextRep,
 | |
|   void *pApp,
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void (*xFinal)(sqlite3_context*)
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Text Encodings {F10267}
 | |
| **
 | |
| ** These constant define integer codes that represent the various
 | |
| ** text encodings supported by SQLite.
 | |
| */
 | |
| #define SQLITE_UTF8           1
 | |
| #define SQLITE_UTF16LE        2
 | |
| #define SQLITE_UTF16BE        3
 | |
| #define SQLITE_UTF16          4    /* Use native byte order */
 | |
| #define SQLITE_ANY            5    /* sqlite3_create_function only */
 | |
| #define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Obsolete Functions
 | |
| **
 | |
| ** These functions are all now obsolete.  In order to maintain
 | |
| ** backwards compatibility with older code, we continue to support
 | |
| ** these functions.  However, new development projects should avoid
 | |
| ** the use of these functions.  To help encourage people to avoid
 | |
| ** using these functions, we are not going to tell you want they do.
 | |
| */
 | |
| SQLITE_API int sqlite3_aggregate_count(sqlite3_context*);
 | |
| SQLITE_API int sqlite3_expired(sqlite3_stmt*);
 | |
| SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
 | |
| SQLITE_API int sqlite3_global_recover(void);
 | |
| SQLITE_API void sqlite3_thread_cleanup(void);
 | |
| SQLITE_API int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Obtaining SQL Function Parameter Values {F15100}
 | |
| **
 | |
| ** The C-language implementation of SQL functions and aggregates uses
 | |
| ** this set of interface routines to access the parameter values on
 | |
| ** the function or aggregate.
 | |
| **
 | |
| ** The xFunc (for scalar functions) or xStep (for aggregates) parameters
 | |
| ** to [sqlite3_create_function()] and [sqlite3_create_function16()]
 | |
| ** define callbacks that implement the SQL functions and aggregates.
 | |
| ** The 4th parameter to these callbacks is an array of pointers to
 | |
| ** [sqlite3_value] objects.  There is one [sqlite3_value] object for
 | |
| ** each parameter to the SQL function.  These routines are used to
 | |
| ** extract values from the [sqlite3_value] objects.
 | |
| **
 | |
| ** These routines work just like the corresponding 
 | |
| ** [sqlite3_column_blob | sqlite3_column_* routines] except that 
 | |
| ** these routines take a single [sqlite3_value*] pointer instead
 | |
| ** of an [sqlite3_stmt*] pointer and an integer column number.
 | |
| **
 | |
| ** The sqlite3_value_text16() interface extracts a UTF16 string
 | |
| ** in the native byte-order of the host machine.  The
 | |
| ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
 | |
| ** extract UTF16 strings as big-endian and little-endian respectively.
 | |
| **
 | |
| ** The sqlite3_value_numeric_type() interface attempts to apply
 | |
| ** numeric affinity to the value.  This means that an attempt is
 | |
| ** made to convert the value to an integer or floating point.  If
 | |
| ** such a conversion is possible without loss of information (in other
 | |
| ** words if the value is a string that looks like a number)
 | |
| ** then the conversion is done.  Otherwise no conversion occurs.  The 
 | |
| ** [SQLITE_INTEGER | datatype] after conversion is returned.
 | |
| **
 | |
| ** Please pay particular attention to the fact that the pointer that
 | |
| ** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or
 | |
| ** [sqlite3_value_text16()] can be invalidated by a subsequent call to
 | |
| ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
 | |
| ** or [sqlite3_value_text16()].  
 | |
| **
 | |
| ** These routines must be called from the same thread as
 | |
| ** the SQL function that supplied the sqlite3_value* parameters.
 | |
| ** Or, if the sqlite3_value* argument comes from the [sqlite3_column_value()]
 | |
| ** interface, then these routines should be called from the same thread
 | |
| ** that ran [sqlite3_column_value()].
 | |
| **
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F15103} The [sqlite3_value_blob(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a blob and then returns a
 | |
| **          pointer to the converted value.
 | |
| **
 | |
| ** {F15106} The [sqlite3_value_bytes(V)] interface returns the
 | |
| **          number of bytes in the blob or string (exclusive of the
 | |
| **          zero terminator on the string) that was returned by the
 | |
| **          most recent call to [sqlite3_value_blob(V)] or
 | |
| **          [sqlite3_value_text(V)].
 | |
| **
 | |
| ** {F15109} The [sqlite3_value_bytes16(V)] interface returns the
 | |
| **          number of bytes in the string (exclusive of the
 | |
| **          zero terminator on the string) that was returned by the
 | |
| **          most recent call to [sqlite3_value_text16(V)],
 | |
| **          [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)].
 | |
| **
 | |
| ** {F15112} The [sqlite3_value_double(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a floating point value and
 | |
| **          returns a copy of that value.
 | |
| **
 | |
| ** {F15115} The [sqlite3_value_int(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a 64-bit signed integer and
 | |
| **          returns the lower 32 bits of that integer.
 | |
| **
 | |
| ** {F15118} The [sqlite3_value_int64(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a 64-bit signed integer and
 | |
| **          returns a copy of that integer.
 | |
| **
 | |
| ** {F15121} The [sqlite3_value_text(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a zero-terminated UTF-8 
 | |
| **          string and returns a pointer to that string.
 | |
| **
 | |
| ** {F15124} The [sqlite3_value_text16(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a zero-terminated 2-byte
 | |
| **          aligned UTF-16 native byte order
 | |
| **          string and returns a pointer to that string.
 | |
| **
 | |
| ** {F15127} The [sqlite3_value_text16be(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a zero-terminated 2-byte
 | |
| **          aligned UTF-16 big-endian
 | |
| **          string and returns a pointer to that string.
 | |
| **
 | |
| ** {F15130} The [sqlite3_value_text16le(V)] interface converts the
 | |
| **          [sqlite3_value] object V into a zero-terminated 2-byte
 | |
| **          aligned UTF-16 little-endian
 | |
| **          string and returns a pointer to that string.
 | |
| **
 | |
| ** {F15133} The [sqlite3_value_type(V)] interface returns
 | |
| **          one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT],
 | |
| **          [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for
 | |
| **          the [sqlite3_value] object V.
 | |
| **
 | |
| ** {F15136} The [sqlite3_value_numeric_type(V)] interface converts
 | |
| **          the [sqlite3_value] object V into either an integer or
 | |
| **          a floating point value if it can do so without loss of
 | |
| **          information, and returns one of [SQLITE_NULL],
 | |
| **          [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or
 | |
| **          [SQLITE_BLOB] as appropriate for
 | |
| **          the [sqlite3_value] object V after the conversion attempt.
 | |
| */
 | |
| SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
 | |
| SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
 | |
| SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
 | |
| SQLITE_API double sqlite3_value_double(sqlite3_value*);
 | |
| SQLITE_API int sqlite3_value_int(sqlite3_value*);
 | |
| SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
 | |
| SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
 | |
| SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
 | |
| SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
 | |
| SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
 | |
| SQLITE_API int sqlite3_value_type(sqlite3_value*);
 | |
| SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Obtain Aggregate Function Context {F16210}
 | |
| **
 | |
| ** The implementation of aggregate SQL functions use this routine to allocate
 | |
| ** a structure for storing their state.  
 | |
| ** The first time the sqlite3_aggregate_context() routine is
 | |
| ** is called for a particular aggregate, SQLite allocates nBytes of memory
 | |
| ** zeros that memory, and returns a pointer to it.
 | |
| ** On second and subsequent calls to sqlite3_aggregate_context()
 | |
| ** for the same aggregate function index, the same buffer is returned.
 | |
| ** The implementation
 | |
| ** of the aggregate can use the returned buffer to accumulate data.
 | |
| **
 | |
| ** SQLite automatically frees the allocated buffer when the aggregate
 | |
| ** query concludes.
 | |
| **
 | |
| ** The first parameter should be a copy of the 
 | |
| ** [sqlite3_context | SQL function context] that is the first
 | |
| ** parameter to the callback routine that implements the aggregate
 | |
| ** function.
 | |
| **
 | |
| ** This routine must be called from the same thread in which
 | |
| ** the aggregate SQL function is running.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for
 | |
| **          a particular instance of an aggregate function (for a particular
 | |
| **          context C) causes SQLite to allocation N bytes of memory,
 | |
| **          zero that memory, and return a pointer to the allocationed
 | |
| **          memory.
 | |
| **
 | |
| ** {F16213} If a memory allocation error occurs during
 | |
| **          [sqlite3_aggregate_context(C,N)] then the function returns 0.
 | |
| **
 | |
| ** {F16215} Second and subsequent invocations of
 | |
| **          [sqlite3_aggregate_context(C,N)] for the same context pointer C
 | |
| **          ignore the N parameter and return a pointer to the same
 | |
| **          block of memory returned by the first invocation.
 | |
| **
 | |
| ** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is
 | |
| **          automatically freed on the next call to [sqlite3_reset()]
 | |
| **          or [sqlite3_finalize()] for the [prepared statement] containing
 | |
| **          the aggregate function associated with context C.
 | |
| */
 | |
| SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: User Data For Functions {F16240}
 | |
| **
 | |
| ** The sqlite3_user_data() interface returns a copy of
 | |
| ** the pointer that was the pUserData parameter (the 5th parameter)
 | |
| ** of the the [sqlite3_create_function()]
 | |
| ** and [sqlite3_create_function16()] routines that originally
 | |
| ** registered the application defined function. {END}
 | |
| **
 | |
| ** This routine must be called from the same thread in which
 | |
| ** the application-defined function is running.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the
 | |
| **          P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)]
 | |
| **          or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that
 | |
| **          registered the SQL function associated with 
 | |
| **          [sqlite3_context] C.
 | |
| */
 | |
| SQLITE_API void *sqlite3_user_data(sqlite3_context*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Function Auxiliary Data {F16270}
 | |
| **
 | |
| ** The following two functions may be used by scalar SQL functions to
 | |
| ** associate meta-data with argument values. If the same value is passed to
 | |
| ** multiple invocations of the same SQL function during query execution, under
 | |
| ** some circumstances the associated meta-data may be preserved. This may
 | |
| ** be used, for example, to add a regular-expression matching scalar
 | |
| ** function. The compiled version of the regular expression is stored as
 | |
| ** meta-data associated with the SQL value passed as the regular expression
 | |
| ** pattern.  The compiled regular expression can be reused on multiple
 | |
| ** invocations of the same function so that the original pattern string
 | |
| ** does not need to be recompiled on each invocation.
 | |
| **
 | |
| ** The sqlite3_get_auxdata() interface returns a pointer to the meta-data
 | |
| ** associated by the sqlite3_set_auxdata() function with the Nth argument
 | |
| ** value to the application-defined function.
 | |
| ** If no meta-data has been ever been set for the Nth
 | |
| ** argument of the function, or if the cooresponding function parameter
 | |
| ** has changed since the meta-data was set, then sqlite3_get_auxdata()
 | |
| ** returns a NULL pointer.
 | |
| **
 | |
| ** The sqlite3_set_auxdata() interface saves the meta-data
 | |
| ** pointed to by its 3rd parameter as the meta-data for the N-th
 | |
| ** argument of the application-defined function.  Subsequent
 | |
| ** calls to sqlite3_get_auxdata() might return this data, if it has
 | |
| ** not been destroyed. 
 | |
| ** If it is not NULL, SQLite will invoke the destructor 
 | |
| ** function given by the 4th parameter to sqlite3_set_auxdata() on
 | |
| ** the meta-data when the corresponding function parameter changes
 | |
| ** or when the SQL statement completes, whichever comes first.
 | |
| **
 | |
| ** SQLite is free to call the destructor and drop meta-data on
 | |
| ** any parameter of any function at any time.  The only guarantee
 | |
| ** is that the destructor will be called before the metadata is
 | |
| ** dropped.
 | |
| **
 | |
| ** In practice, meta-data is preserved between function calls for
 | |
| ** expressions that are constant at compile time. This includes literal
 | |
| ** values and SQL variables.
 | |
| **
 | |
| ** These routines must be called from the same thread in which
 | |
| ** the SQL function is running.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer
 | |
| **          to metadata associated with the Nth parameter of the SQL function
 | |
| **          whose context is C, or NULL if there is no metadata associated
 | |
| **          with that parameter.
 | |
| **
 | |
| ** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata
 | |
| **          pointer P to the Nth parameter of the SQL function with context
 | |
| **          C.
 | |
| **
 | |
| ** {F16276} SQLite will invoke the destructor D with a single argument
 | |
| **          which is the metadata pointer P following a call to
 | |
| **          [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold
 | |
| **          the metadata.
 | |
| **
 | |
| ** {F16277} SQLite ceases to hold metadata for an SQL function parameter
 | |
| **          when the value of that parameter changes.
 | |
| **
 | |
| ** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor
 | |
| **          is called for any prior metadata associated with the same function
 | |
| **          context C and parameter N.
 | |
| **
 | |
| ** {F16279} SQLite will call destructors for any metadata it is holding
 | |
| **          in a particular [prepared statement] S when either
 | |
| **          [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called.
 | |
| */
 | |
| SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
 | |
| SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Constants Defining Special Destructor Behavior {F10280}
 | |
| **
 | |
| ** These are special value for the destructor that is passed in as the
 | |
| ** final argument to routines like [sqlite3_result_blob()].  If the destructor
 | |
| ** argument is SQLITE_STATIC, it means that the content pointer is constant
 | |
| ** and will never change.  It does not need to be destroyed.  The 
 | |
| ** SQLITE_TRANSIENT value means that the content will likely change in
 | |
| ** the near future and that SQLite should make its own private copy of
 | |
| ** the content before returning.
 | |
| **
 | |
| ** The typedef is necessary to work around problems in certain
 | |
| ** C++ compilers.  See ticket #2191.
 | |
| */
 | |
| typedef void (*sqlite3_destructor_type)(void*);
 | |
| #define SQLITE_STATIC      ((sqlite3_destructor_type)0)
 | |
| #define SQLITE_TRANSIENT   ((sqlite3_destructor_type)-1)
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Setting The Result Of An SQL Function {F16400}
 | |
| **
 | |
| ** These routines are used by the xFunc or xFinal callbacks that
 | |
| ** implement SQL functions and aggregates.  See
 | |
| ** [sqlite3_create_function()] and [sqlite3_create_function16()]
 | |
| ** for additional information.
 | |
| **
 | |
| ** These functions work very much like the 
 | |
| ** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used
 | |
| ** to bind values to host parameters in prepared statements.
 | |
| ** Refer to the
 | |
| ** [sqlite3_bind_blob | sqlite3_bind_* documentation] for
 | |
| ** additional information.
 | |
| **
 | |
| ** The sqlite3_result_blob() interface sets the result from
 | |
| ** an application defined function to be the BLOB whose content is pointed
 | |
| ** to by the second parameter and which is N bytes long where N is the
 | |
| ** third parameter. 
 | |
| ** The sqlite3_result_zeroblob() inerfaces set the result of
 | |
| ** the application defined function to be a BLOB containing all zero
 | |
| ** bytes and N bytes in size, where N is the value of the 2nd parameter.
 | |
| **
 | |
| ** The sqlite3_result_double() interface sets the result from
 | |
| ** an application defined function to be a floating point value specified
 | |
| ** by its 2nd argument.
 | |
| **
 | |
| ** The sqlite3_result_error() and sqlite3_result_error16() functions
 | |
| ** cause the implemented SQL function to throw an exception.
 | |
| ** SQLite uses the string pointed to by the
 | |
| ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
 | |
| ** as the text of an error message.  SQLite interprets the error
 | |
| ** message string from sqlite3_result_error() as UTF8. SQLite
 | |
| ** interprets the string from sqlite3_result_error16() as UTF16 in native
 | |
| ** byte order.  If the third parameter to sqlite3_result_error()
 | |
| ** or sqlite3_result_error16() is negative then SQLite takes as the error
 | |
| ** message all text up through the first zero character.
 | |
| ** If the third parameter to sqlite3_result_error() or
 | |
| ** sqlite3_result_error16() is non-negative then SQLite takes that many
 | |
| ** bytes (not characters) from the 2nd parameter as the error message.
 | |
| ** The sqlite3_result_error() and sqlite3_result_error16()
 | |
| ** routines make a copy private copy of the error message text before
 | |
| ** they return.  Hence, the calling function can deallocate or
 | |
| ** modify the text after they return without harm.
 | |
| ** The sqlite3_result_error_code() function changes the error code
 | |
| ** returned by SQLite as a result of an error in a function.  By default,
 | |
| ** the error code is SQLITE_ERROR. 
 | |
| **
 | |
| ** The sqlite3_result_toobig() interface causes SQLite
 | |
| ** to throw an error indicating that a string or BLOB is to long
 | |
| ** to represent.  The sqlite3_result_nomem() interface
 | |
| ** causes SQLite to throw an exception indicating that the a
 | |
| ** memory allocation failed.
 | |
| **
 | |
| ** The sqlite3_result_int() interface sets the return value
 | |
| ** of the application-defined function to be the 32-bit signed integer
 | |
| ** value given in the 2nd argument.
 | |
| ** The sqlite3_result_int64() interface sets the return value
 | |
| ** of the application-defined function to be the 64-bit signed integer
 | |
| ** value given in the 2nd argument.
 | |
| **
 | |
| ** The sqlite3_result_null() interface sets the return value
 | |
| ** of the application-defined function to be NULL.
 | |
| **
 | |
| ** The sqlite3_result_text(), sqlite3_result_text16(), 
 | |
| ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
 | |
| ** set the return value of the application-defined function to be
 | |
| ** a text string which is represented as UTF-8, UTF-16 native byte order,
 | |
| ** UTF-16 little endian, or UTF-16 big endian, respectively.
 | |
| ** SQLite takes the text result from the application from
 | |
| ** the 2nd parameter of the sqlite3_result_text* interfaces.
 | |
| ** If the 3rd parameter to the sqlite3_result_text* interfaces
 | |
| ** is negative, then SQLite takes result text from the 2nd parameter 
 | |
| ** through the first zero character.
 | |
| ** If the 3rd parameter to the sqlite3_result_text* interfaces
 | |
| ** is non-negative, then as many bytes (not characters) of the text
 | |
| ** pointed to by the 2nd parameter are taken as the application-defined
 | |
| ** function result.
 | |
| ** If the 4th parameter to the sqlite3_result_text* interfaces
 | |
| ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
 | |
| ** function as the destructor on the text or blob result when it has
 | |
| ** finished using that result.
 | |
| ** If the 4th parameter to the sqlite3_result_text* interfaces
 | |
| ** or sqlite3_result_blob is the special constant SQLITE_STATIC, then
 | |
| ** SQLite assumes that the text or blob result is constant space and
 | |
| ** does not copy the space or call a destructor when it has
 | |
| ** finished using that result.
 | |
| ** If the 4th parameter to the sqlite3_result_text* interfaces
 | |
| ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
 | |
| ** then SQLite makes a copy of the result into space obtained from
 | |
| ** from [sqlite3_malloc()] before it returns.
 | |
| **
 | |
| ** The sqlite3_result_value() interface sets the result of
 | |
| ** the application-defined function to be a copy the [sqlite3_value]
 | |
| ** object specified by the 2nd parameter.  The
 | |
| ** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
 | |
| ** so that [sqlite3_value] specified in the parameter may change or
 | |
| ** be deallocated after sqlite3_result_value() returns without harm.
 | |
| **
 | |
| ** If these routines are called from within the different thread 
 | |
| ** than the one containing the application-defined function that recieved
 | |
| ** the [sqlite3_context] pointer, the results are undefined.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16403} The default return value from any SQL function is NULL.
 | |
| **
 | |
| ** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the
 | |
| **          return value of function C to be a blob that is N bytes
 | |
| **          in length and with content pointed to by V.
 | |
| **
 | |
| ** {F16409} The [sqlite3_result_double(C,V)] interface changes the
 | |
| **          return value of function C to be the floating point value V.
 | |
| **
 | |
| ** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return
 | |
| **          value of function C to be an exception with error code
 | |
| **          [SQLITE_ERROR] and a UTF8 error message copied from V up to the
 | |
| **          first zero byte or until N bytes are read if N is positive.
 | |
| **
 | |
| ** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return
 | |
| **          value of function C to be an exception with error code
 | |
| **          [SQLITE_ERROR] and a UTF16 native byte order error message
 | |
| **          copied from V up to the first zero terminator or until N bytes
 | |
| **          are read if N is positive.
 | |
| **
 | |
| ** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return
 | |
| **          value of the function C to be an exception with error code
 | |
| **          [SQLITE_TOOBIG] and an appropriate error message.
 | |
| **
 | |
| ** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return
 | |
| **          value of the function C to be an exception with error code
 | |
| **          [SQLITE_NOMEM] and an appropriate error message.
 | |
| **
 | |
| ** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return
 | |
| **          value of the function C to be an exception with error code E.
 | |
| **          The error message text is unchanged.
 | |
| **
 | |
| ** {F16427} The [sqlite3_result_int(C,V)] interface changes the
 | |
| **          return value of function C to be the 32-bit integer value V.
 | |
| **
 | |
| ** {F16430} The [sqlite3_result_int64(C,V)] interface changes the
 | |
| **          return value of function C to be the 64-bit integer value V.
 | |
| **
 | |
| ** {F16433} The [sqlite3_result_null(C)] interface changes the
 | |
| **          return value of function C to be NULL.
 | |
| **
 | |
| ** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the
 | |
| **          return value of function C to be the UTF8 string
 | |
| **          V up through the first zero or until N bytes are read if N
 | |
| **          is positive.
 | |
| **
 | |
| ** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the
 | |
| **          return value of function C to be the UTF16 native byte order
 | |
| **          string  V up through the first zero or until N bytes are read if N
 | |
| **          is positive.
 | |
| **
 | |
| ** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the
 | |
| **          return value of function C to be the UTF16 big-endian
 | |
| **          string  V up through the first zero or until N bytes are read if N
 | |
| **          is positive.
 | |
| **
 | |
| ** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the
 | |
| **          return value of function C to be the UTF16 little-endian
 | |
| **          string  V up through the first zero or until N bytes are read if N
 | |
| **          is positive.
 | |
| **
 | |
| ** {F16448} The [sqlite3_result_value(C,V)] interface changes the
 | |
| **          return value of function C to be [sqlite3_value] object V.
 | |
| **
 | |
| ** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the
 | |
| **          return value of function C to be an N-byte blob of all zeros.
 | |
| **
 | |
| ** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()]
 | |
| **          interfaces make a copy of their error message strings before
 | |
| **          returning.
 | |
| **
 | |
| ** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
 | |
| **          [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
 | |
| **          [sqlite3_result_text16be(C,V,N,D)], or
 | |
| **          [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC]
 | |
| **          then no destructor is ever called on the pointer V and SQLite
 | |
| **          assumes that V is immutable.
 | |
| **
 | |
| ** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
 | |
| **          [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
 | |
| **          [sqlite3_result_text16be(C,V,N,D)], or
 | |
| **          [sqlite3_result_text16le(C,V,N,D)] is the constant
 | |
| **          [SQLITE_TRANSIENT] then the interfaces makes a copy of the
 | |
| **          content of V and retains the copy.
 | |
| **
 | |
| ** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)],
 | |
| **          [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)],
 | |
| **          [sqlite3_result_text16be(C,V,N,D)], or
 | |
| **          [sqlite3_result_text16le(C,V,N,D)] is some value other than
 | |
| **          the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then 
 | |
| **          SQLite will invoke the destructor D with V as its only argument
 | |
| **          when it has finished with the V value.
 | |
| */
 | |
| SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
 | |
| SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
 | |
| SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
 | |
| SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
 | |
| SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
 | |
| SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
 | |
| SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
 | |
| SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
 | |
| SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
 | |
| SQLITE_API void sqlite3_result_null(sqlite3_context*);
 | |
| SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
 | |
| SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
 | |
| SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
 | |
| SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
 | |
| SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
 | |
| SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Define New Collating Sequences {F16600}
 | |
| **
 | |
| ** These functions are used to add new collation sequences to the
 | |
| ** [sqlite3*] handle specified as the first argument. 
 | |
| **
 | |
| ** The name of the new collation sequence is specified as a UTF-8 string
 | |
| ** for sqlite3_create_collation() and sqlite3_create_collation_v2()
 | |
| ** and a UTF-16 string for sqlite3_create_collation16(). In all cases
 | |
| ** the name is passed as the second function argument.
 | |
| **
 | |
| ** The third argument may be one of the constants [SQLITE_UTF8],
 | |
| ** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied
 | |
| ** routine expects to be passed pointers to strings encoded using UTF-8,
 | |
| ** UTF-16 little-endian or UTF-16 big-endian respectively. The
 | |
| ** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that
 | |
| ** the routine expects pointers to 16-bit word aligned strings
 | |
| ** of UTF16 in the native byte order of the host computer.
 | |
| **
 | |
| ** A pointer to the user supplied routine must be passed as the fifth
 | |
| ** argument.  If it is NULL, this is the same as deleting the collation
 | |
| ** sequence (so that SQLite cannot call it anymore).
 | |
| ** Each time the application
 | |
| ** supplied function is invoked, it is passed a copy of the void* passed as
 | |
| ** the fourth argument to sqlite3_create_collation() or
 | |
| ** sqlite3_create_collation16() as its first parameter.
 | |
| **
 | |
| ** The remaining arguments to the application-supplied routine are two strings,
 | |
| ** each represented by a (length, data) pair and encoded in the encoding
 | |
| ** that was passed as the third argument when the collation sequence was
 | |
| ** registered. {END} The application defined collation routine should
 | |
| ** return negative, zero or positive if
 | |
| ** the first string is less than, equal to, or greater than the second
 | |
| ** string. i.e. (STRING1 - STRING2).
 | |
| **
 | |
| ** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
 | |
| ** excapt that it takes an extra argument which is a destructor for
 | |
| ** the collation.  The destructor is called when the collation is
 | |
| ** destroyed and is passed a copy of the fourth parameter void* pointer
 | |
| ** of the sqlite3_create_collation_v2().
 | |
| ** Collations are destroyed when
 | |
| ** they are overridden by later calls to the collation creation functions
 | |
| ** or when the [sqlite3*] database handle is closed using [sqlite3_close()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16603} A successful call to the
 | |
| **          [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface
 | |
| **          registers function F as the comparison function used to
 | |
| **          implement collation X on [database connection] B for
 | |
| **          databases having encoding E.
 | |
| **
 | |
| ** {F16604} SQLite understands the X parameter to
 | |
| **          [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated
 | |
| **          UTF-8 string in which case is ignored for ASCII characters and
 | |
| **          is significant for non-ASCII characters.
 | |
| **
 | |
| ** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)]
 | |
| **          with the same values for B, X, and E, override prior values
 | |
| **          of P, F, and D.
 | |
| **
 | |
| ** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
 | |
| **          is not NULL then it is called with argument P when the
 | |
| **          collating function is dropped by SQLite.
 | |
| **
 | |
| ** {F16612} A collating function is dropped when it is overloaded.
 | |
| **
 | |
| ** {F16615} A collating function is dropped when the database connection
 | |
| **          is closed using [sqlite3_close()].
 | |
| **
 | |
| ** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)]
 | |
| **          is passed through as the first parameter to the comparison
 | |
| **          function F for all subsequent invocations of F.
 | |
| **
 | |
| ** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly
 | |
| **          the same as a call to [sqlite3_create_collation_v2()] with
 | |
| **          the same parameters and a NULL destructor.
 | |
| **
 | |
| ** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)],
 | |
| **          SQLite uses the comparison function F for all text comparison
 | |
| **          operations on [database connection] B on text values that
 | |
| **          use the collating sequence name X.
 | |
| **
 | |
| ** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same
 | |
| **          as [sqlite3_create_collation(B,X,E,P,F)] except that the
 | |
| **          collation name X is understood as UTF-16 in native byte order
 | |
| **          instead of UTF-8.
 | |
| **
 | |
| ** {F16630} When multiple comparison functions are available for the same
 | |
| **          collating sequence, SQLite chooses the one whose text encoding
 | |
| **          requires the least amount of conversion from the default
 | |
| **          text encoding of the database.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_collation(
 | |
|   sqlite3*, 
 | |
|   const char *zName, 
 | |
|   int eTextRep, 
 | |
|   void*,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*)
 | |
| );
 | |
| SQLITE_API int sqlite3_create_collation_v2(
 | |
|   sqlite3*, 
 | |
|   const char *zName, 
 | |
|   int eTextRep, 
 | |
|   void*,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*),
 | |
|   void(*xDestroy)(void*)
 | |
| );
 | |
| SQLITE_API int sqlite3_create_collation16(
 | |
|   sqlite3*, 
 | |
|   const char *zName, 
 | |
|   int eTextRep, 
 | |
|   void*,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*)
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Collation Needed Callbacks {F16700}
 | |
| **
 | |
| ** To avoid having to register all collation sequences before a database
 | |
| ** can be used, a single callback function may be registered with the
 | |
| ** database handle to be called whenever an undefined collation sequence is
 | |
| ** required.
 | |
| **
 | |
| ** If the function is registered using the sqlite3_collation_needed() API,
 | |
| ** then it is passed the names of undefined collation sequences as strings
 | |
| ** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names
 | |
| ** are passed as UTF-16 in machine native byte order. A call to either
 | |
| ** function replaces any existing callback.
 | |
| **
 | |
| ** When the callback is invoked, the first argument passed is a copy
 | |
| ** of the second argument to sqlite3_collation_needed() or
 | |
| ** sqlite3_collation_needed16().  The second argument is the database
 | |
| ** handle.  The third argument is one of [SQLITE_UTF8],
 | |
| ** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most
 | |
| ** desirable form of the collation sequence function required.
 | |
| ** The fourth parameter is the name of the
 | |
| ** required collation sequence.
 | |
| **
 | |
| ** The callback function should register the desired collation using
 | |
| ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
 | |
| ** [sqlite3_create_collation_v2()].
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)]
 | |
| **          or [sqlite3_collation_needed16(D,P,F)] causes
 | |
| **          the [database connection] D to invoke callback F with first
 | |
| **          parameter P whenever it needs a comparison function for a
 | |
| **          collating sequence that it does not know about.
 | |
| **
 | |
| ** {F16704} Each successful call to [sqlite3_collation_needed()] or
 | |
| **          [sqlite3_collation_needed16()] overrides the callback registered
 | |
| **          on the same [database connection] by prior calls to either
 | |
| **          interface.
 | |
| **
 | |
| ** {F16706} The name of the requested collating function passed in the
 | |
| **          4th parameter to the callback is in UTF-8 if the callback
 | |
| **          was registered using [sqlite3_collation_needed()] and
 | |
| **          is in UTF-16 native byte order if the callback was
 | |
| **          registered using [sqlite3_collation_needed16()].
 | |
| **
 | |
| ** 
 | |
| */
 | |
| SQLITE_API int sqlite3_collation_needed(
 | |
|   sqlite3*, 
 | |
|   void*, 
 | |
|   void(*)(void*,sqlite3*,int eTextRep,const char*)
 | |
| );
 | |
| SQLITE_API int sqlite3_collation_needed16(
 | |
|   sqlite3*, 
 | |
|   void*,
 | |
|   void(*)(void*,sqlite3*,int eTextRep,const void*)
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** Specify the key for an encrypted database.  This routine should be
 | |
| ** called right after sqlite3_open().
 | |
| **
 | |
| ** The code to implement this API is not available in the public release
 | |
| ** of SQLite.
 | |
| */
 | |
| SQLITE_API int sqlite3_key(
 | |
|   sqlite3 *db,                   /* Database to be rekeyed */
 | |
|   const void *pKey, int nKey     /* The key */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** Change the key on an open database.  If the current database is not
 | |
| ** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
 | |
| ** database is decrypted.
 | |
| **
 | |
| ** The code to implement this API is not available in the public release
 | |
| ** of SQLite.
 | |
| */
 | |
| SQLITE_API int sqlite3_rekey(
 | |
|   sqlite3 *db,                   /* Database to be rekeyed */
 | |
|   const void *pKey, int nKey     /* The new key */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Suspend Execution For A Short Time {F10530}
 | |
| **
 | |
| ** The sqlite3_sleep() function
 | |
| ** causes the current thread to suspend execution
 | |
| ** for at least a number of milliseconds specified in its parameter.
 | |
| **
 | |
| ** If the operating system does not support sleep requests with 
 | |
| ** millisecond time resolution, then the time will be rounded up to 
 | |
| ** the nearest second. The number of milliseconds of sleep actually 
 | |
| ** requested from the operating system is returned.
 | |
| **
 | |
| ** SQLite implements this interface by calling the xSleep()
 | |
| ** method of the default [sqlite3_vfs] object.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep
 | |
| **          method of the default [sqlite3_vfs|VFS] in order to
 | |
| **          suspend execution of the current thread for at least
 | |
| **          M milliseconds.
 | |
| **
 | |
| ** {F10536} The [sqlite3_sleep(M)] interface returns the number of
 | |
| **          milliseconds of sleep actually requested of the operating
 | |
| **          system, which might be larger than the parameter M.
 | |
| */
 | |
| SQLITE_API int sqlite3_sleep(int);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Name Of The Folder Holding Temporary Files {F10310}
 | |
| **
 | |
| ** If this global variable is made to point to a string which is
 | |
| ** the name of a folder (a.ka. directory), then all temporary files
 | |
| ** created by SQLite will be placed in that directory.  If this variable
 | |
| ** is NULL pointer, then SQLite does a search for an appropriate temporary
 | |
| ** file directory.
 | |
| **
 | |
| ** It is not safe to modify this variable once a database connection
 | |
| ** has been opened.  It is intended that this variable be set once
 | |
| ** as part of process initialization and before any SQLite interface
 | |
| ** routines have been call and remain unchanged thereafter.
 | |
| */
 | |
| SQLITE_API char *sqlite3_temp_directory;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Test To See If The Database Is In Auto-Commit Mode {F12930}
 | |
| **
 | |
| ** The sqlite3_get_autocommit() interfaces returns non-zero or
 | |
| ** zero if the given database connection is or is not in autocommit mode,
 | |
| ** respectively.   Autocommit mode is on
 | |
| ** by default.  Autocommit mode is disabled by a [BEGIN] statement.
 | |
| ** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK].
 | |
| **
 | |
| ** If certain kinds of errors occur on a statement within a multi-statement
 | |
| ** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], 
 | |
| ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
 | |
| ** transaction might be rolled back automatically.  The only way to
 | |
| ** find out if SQLite automatically rolled back the transaction after
 | |
| ** an error is to use this function.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or
 | |
| **          zero if the [database connection] D is or is not in autocommit
 | |
| **          mode, respectively.
 | |
| **
 | |
| ** {F12932} Autocommit mode is on by default.
 | |
| **
 | |
| ** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement.
 | |
| **
 | |
| ** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK]
 | |
| **          statement.
 | |
| ** 
 | |
| **
 | |
| ** LIMITATIONS:
 | |
| ***
 | |
| ** {U12936} If another thread changes the autocommit status of the database
 | |
| **          connection while this routine is running, then the return value
 | |
| **          is undefined.
 | |
| */
 | |
| SQLITE_API int sqlite3_get_autocommit(sqlite3*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Find The Database Handle Of A Prepared Statement {F13120}
 | |
| **
 | |
| ** The sqlite3_db_handle interface
 | |
| ** returns the [sqlite3*] database handle to which a
 | |
| ** [prepared statement] belongs.
 | |
| ** The database handle returned by sqlite3_db_handle
 | |
| ** is the same database handle that was
 | |
| ** the first argument to the [sqlite3_prepare_v2()] or its variants
 | |
| ** that was used to create the statement in the first place.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer
 | |
| **          to the [database connection] associated with
 | |
| **          [prepared statement] S.
 | |
| */
 | |
| SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Commit And Rollback Notification Callbacks {F12950}
 | |
| **
 | |
| ** The sqlite3_commit_hook() interface registers a callback
 | |
| ** function to be invoked whenever a transaction is committed.
 | |
| ** Any callback set by a previous call to sqlite3_commit_hook()
 | |
| ** for the same database connection is overridden.
 | |
| ** The sqlite3_rollback_hook() interface registers a callback
 | |
| ** function to be invoked whenever a transaction is committed.
 | |
| ** Any callback set by a previous call to sqlite3_commit_hook()
 | |
| ** for the same database connection is overridden.
 | |
| ** The pArg argument is passed through
 | |
| ** to the callback.  If the callback on a commit hook function 
 | |
| ** returns non-zero, then the commit is converted into a rollback.
 | |
| **
 | |
| ** If another function was previously registered, its
 | |
| ** pArg value is returned.  Otherwise NULL is returned.
 | |
| **
 | |
| ** Registering a NULL function disables the callback.
 | |
| **
 | |
| ** For the purposes of this API, a transaction is said to have been 
 | |
| ** rolled back if an explicit "ROLLBACK" statement is executed, or
 | |
| ** an error or constraint causes an implicit rollback to occur.
 | |
| ** The rollback callback is not invoked if a transaction is
 | |
| ** automatically rolled back because the database connection is closed.
 | |
| ** The rollback callback is not invoked if a transaction is
 | |
| ** rolled back because a commit callback returned non-zero.
 | |
| ** <todo> Check on this </todo>
 | |
| **
 | |
| ** These are experimental interfaces and are subject to change.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the
 | |
| **          callback function F to be invoked with argument P whenever
 | |
| **          a transaction commits on [database connection] D.
 | |
| **
 | |
| ** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P
 | |
| **          argument from the previous call with the same 
 | |
| **          [database connection ] D , or NULL on the first call
 | |
| **          for a particular [database connection] D.
 | |
| **
 | |
| ** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback
 | |
| **          registered by prior calls.
 | |
| **
 | |
| ** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL
 | |
| **          then the commit hook callback is cancelled and no callback
 | |
| **          is invoked when a transaction commits.
 | |
| **
 | |
| ** {F12955} If the commit callback returns non-zero then the commit is
 | |
| **          converted into a rollback.
 | |
| **
 | |
| ** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the
 | |
| **          callback function F to be invoked with argument P whenever
 | |
| **          a transaction rolls back on [database connection] D.
 | |
| **
 | |
| ** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P
 | |
| **          argument from the previous call with the same 
 | |
| **          [database connection ] D , or NULL on the first call
 | |
| **          for a particular [database connection] D.
 | |
| **
 | |
| ** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback
 | |
| **          registered by prior calls.
 | |
| **
 | |
| ** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL
 | |
| **          then the rollback hook callback is cancelled and no callback
 | |
| **          is invoked when a transaction rolls back.
 | |
| */
 | |
| SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
 | |
| SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Data Change Notification Callbacks {F12970}
 | |
| **
 | |
| ** The sqlite3_update_hook() interface
 | |
| ** registers a callback function with the database connection identified by the 
 | |
| ** first argument to be invoked whenever a row is updated, inserted or deleted.
 | |
| ** Any callback set by a previous call to this function for the same 
 | |
| ** database connection is overridden.
 | |
| **
 | |
| ** The second argument is a pointer to the function to invoke when a 
 | |
| ** row is updated, inserted or deleted. 
 | |
| ** The first argument to the callback is
 | |
| ** a copy of the third argument to sqlite3_update_hook().
 | |
| ** The second callback 
 | |
| ** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
 | |
| ** depending on the operation that caused the callback to be invoked.
 | |
| ** The third and 
 | |
| ** fourth arguments to the callback contain pointers to the database and 
 | |
| ** table name containing the affected row.
 | |
| ** The final callback parameter is 
 | |
| ** the rowid of the row.
 | |
| ** In the case of an update, this is the rowid after 
 | |
| ** the update takes place.
 | |
| **
 | |
| ** The update hook is not invoked when internal system tables are
 | |
| ** modified (i.e. sqlite_master and sqlite_sequence).
 | |
| **
 | |
| ** If another function was previously registered, its pArg value
 | |
| ** is returned.  Otherwise NULL is returned.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback
 | |
| **          function F to be invoked with first parameter P whenever
 | |
| **          a table row is modified, inserted, or deleted on
 | |
| **          [database connection] D.
 | |
| **
 | |
| ** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value
 | |
| **          of P for the previous call on the same [database connection] D,
 | |
| **          or NULL for the first call.
 | |
| **
 | |
| ** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)]
 | |
| **          is NULL then the no update callbacks are made.
 | |
| **
 | |
| ** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls
 | |
| **          to the same interface on the same [database connection] D.
 | |
| **
 | |
| ** {F12979} The update hook callback is not invoked when internal system
 | |
| **          tables such as sqlite_master and sqlite_sequence are modified.
 | |
| **
 | |
| ** {F12981} The second parameter to the update callback 
 | |
| **          is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE],
 | |
| **          depending on the operation that caused the callback to be invoked.
 | |
| **
 | |
| ** {F12983} The third and fourth arguments to the callback contain pointers
 | |
| **          to zero-terminated UTF-8 strings which are the names of the
 | |
| **          database and table that is being updated.
 | |
| 
 | |
| ** {F12985} The final callback parameter is the rowid of the row after
 | |
| **          the change occurs.
 | |
| */
 | |
| SQLITE_API void *sqlite3_update_hook(
 | |
|   sqlite3*, 
 | |
|   void(*)(void *,int ,char const *,char const *,sqlite3_int64),
 | |
|   void*
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Enable Or Disable Shared Pager Cache {F10330}
 | |
| **
 | |
| ** This routine enables or disables the sharing of the database cache
 | |
| ** and schema data structures between connections to the same database.
 | |
| ** Sharing is enabled if the argument is true and disabled if the argument
 | |
| ** is false.
 | |
| **
 | |
| ** Cache sharing is enabled and disabled
 | |
| ** for an entire process. {END} This is a change as of SQLite version 3.5.0.
 | |
| ** In prior versions of SQLite, sharing was
 | |
| ** enabled or disabled for each thread separately.
 | |
| **
 | |
| ** The cache sharing mode set by this interface effects all subsequent
 | |
| ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
 | |
| ** Existing database connections continue use the sharing mode
 | |
| ** that was in effect at the time they were opened.
 | |
| **
 | |
| ** Virtual tables cannot be used with a shared cache.   When shared
 | |
| ** cache is enabled, the [sqlite3_create_module()] API used to register
 | |
| ** virtual tables will always return an error.
 | |
| **
 | |
| ** This routine returns [SQLITE_OK] if shared cache was
 | |
| ** enabled or disabled successfully.  An [error code]
 | |
| ** is returned otherwise.
 | |
| **
 | |
| ** Shared cache is disabled by default. But this might change in
 | |
| ** future releases of SQLite.  Applications that care about shared
 | |
| ** cache setting should set it explicitly.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| ** 
 | |
| ** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)]
 | |
| **          will enable or disable shared cache mode for any subsequently
 | |
| **          created [database connection] in the same process.
 | |
| **
 | |
| ** {F10336} When shared cache is enabled, the [sqlite3_create_module()]
 | |
| **          interface will always return an error.
 | |
| **
 | |
| ** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns
 | |
| **          [SQLITE_OK] if shared cache was enabled or disabled successfully.
 | |
| **
 | |
| ** {F10339} Shared cache is disabled by default.
 | |
| */
 | |
| SQLITE_API int sqlite3_enable_shared_cache(int);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Attempt To Free Heap Memory {F17340}
 | |
| **
 | |
| ** The sqlite3_release_memory() interface attempts to
 | |
| ** free N bytes of heap memory by deallocating non-essential memory
 | |
| ** allocations held by the database labrary. {END}  Memory used
 | |
| ** to cache database pages to improve performance is an example of
 | |
| ** non-essential memory.  Sqlite3_release_memory() returns
 | |
| ** the number of bytes actually freed, which might be more or less
 | |
| ** than the amount requested.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17341} The [sqlite3_release_memory(N)] interface attempts to
 | |
| **          free N bytes of heap memory by deallocating non-essential
 | |
| **          memory allocations held by the database labrary.
 | |
| **
 | |
| ** {F16342} The [sqlite3_release_memory(N)] returns the number
 | |
| **          of bytes actually freed, which might be more or less
 | |
| **          than the amount requested.
 | |
| */
 | |
| SQLITE_API int sqlite3_release_memory(int);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Impose A Limit On Heap Size {F17350}
 | |
| **
 | |
| ** The sqlite3_soft_heap_limit() interface
 | |
| ** places a "soft" limit on the amount of heap memory that may be allocated
 | |
| ** by SQLite. If an internal allocation is requested 
 | |
| ** that would exceed the soft heap limit, [sqlite3_release_memory()] is
 | |
| ** invoked one or more times to free up some space before the allocation
 | |
| ** is made.
 | |
| **
 | |
| ** The limit is called "soft", because if
 | |
| ** [sqlite3_release_memory()] cannot
 | |
| ** free sufficient memory to prevent the limit from being exceeded,
 | |
| ** the memory is allocated anyway and the current operation proceeds.
 | |
| **
 | |
| ** A negative or zero value for N means that there is no soft heap limit and
 | |
| ** [sqlite3_release_memory()] will only be called when memory is exhausted.
 | |
| ** The default value for the soft heap limit is zero.
 | |
| **
 | |
| ** SQLite makes a best effort to honor the soft heap limit.  
 | |
| ** But if the soft heap limit cannot honored, execution will
 | |
| ** continue without error or notification.  This is why the limit is 
 | |
| ** called a "soft" limit.  It is advisory only.
 | |
| **
 | |
| ** Prior to SQLite version 3.5.0, this routine only constrained the memory
 | |
| ** allocated by a single thread - the same thread in which this routine
 | |
| ** runs.  Beginning with SQLite version 3.5.0, the soft heap limit is
 | |
| ** applied to all threads. The value specified for the soft heap limit
 | |
| ** is an upper bound on the total memory allocation for all threads. In
 | |
| ** version 3.5.0 there is no mechanism for limiting the heap usage for
 | |
| ** individual threads.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit
 | |
| **          of N bytes on the amount of heap memory that may be allocated
 | |
| **          using [sqlite3_malloc()] or [sqlite3_realloc()] at any point
 | |
| **          in time.
 | |
| **
 | |
| ** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would
 | |
| **          cause the total amount of allocated memory to exceed the
 | |
| **          soft heap limit, then [sqlite3_release_memory()] is invoked
 | |
| **          in an attempt to reduce the memory usage prior to proceeding
 | |
| **          with the memory allocation attempt.
 | |
| **
 | |
| ** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger
 | |
| **          attempts to reduce memory usage through the soft heap limit
 | |
| **          mechanism continue even if the attempt to reduce memory
 | |
| **          usage is unsuccessful.
 | |
| **
 | |
| ** {F16354} A negative or zero value for N in a call to
 | |
| **          [sqlite3_soft_heap_limit(N)] means that there is no soft
 | |
| **          heap limit and [sqlite3_release_memory()] will only be
 | |
| **          called when memory is completely exhausted.
 | |
| **
 | |
| ** {F16355} The default value for the soft heap limit is zero.
 | |
| **
 | |
| ** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the
 | |
| **          values set by all prior calls.
 | |
| */
 | |
| SQLITE_API void sqlite3_soft_heap_limit(int);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Extract Metadata About A Column Of A Table {F12850}
 | |
| **
 | |
| ** This routine
 | |
| ** returns meta-data about a specific column of a specific database
 | |
| ** table accessible using the connection handle passed as the first function 
 | |
| ** argument.
 | |
| **
 | |
| ** The column is identified by the second, third and fourth parameters to 
 | |
| ** this function. The second parameter is either the name of the database
 | |
| ** (i.e. "main", "temp" or an attached database) containing the specified
 | |
| ** table or NULL. If it is NULL, then all attached databases are searched
 | |
| ** for the table using the same algorithm as the database engine uses to 
 | |
| ** resolve unqualified table references.
 | |
| **
 | |
| ** The third and fourth parameters to this function are the table and column 
 | |
| ** name of the desired column, respectively. Neither of these parameters 
 | |
| ** may be NULL.
 | |
| **
 | |
| ** Meta information is returned by writing to the memory locations passed as
 | |
| ** the 5th and subsequent parameters to this function. Any of these 
 | |
| ** arguments may be NULL, in which case the corresponding element of meta 
 | |
| ** information is ommitted.
 | |
| **
 | |
| ** <pre>
 | |
| ** Parameter     Output Type      Description
 | |
| ** -----------------------------------
 | |
| **
 | |
| **   5th         const char*      Data type
 | |
| **   6th         const char*      Name of the default collation sequence 
 | |
| **   7th         int              True if the column has a NOT NULL constraint
 | |
| **   8th         int              True if the column is part of the PRIMARY KEY
 | |
| **   9th         int              True if the column is AUTOINCREMENT
 | |
| ** </pre>
 | |
| **
 | |
| **
 | |
| ** The memory pointed to by the character pointers returned for the 
 | |
| ** declaration type and collation sequence is valid only until the next 
 | |
| ** call to any sqlite API function.
 | |
| **
 | |
| ** If the specified table is actually a view, then an error is returned.
 | |
| **
 | |
| ** If the specified column is "rowid", "oid" or "_rowid_" and an 
 | |
| ** INTEGER PRIMARY KEY column has been explicitly declared, then the output 
 | |
| ** parameters are set for the explicitly declared column. If there is no
 | |
| ** explicitly declared IPK column, then the output parameters are set as 
 | |
| ** follows:
 | |
| **
 | |
| ** <pre>
 | |
| **     data type: "INTEGER"
 | |
| **     collation sequence: "BINARY"
 | |
| **     not null: 0
 | |
| **     primary key: 1
 | |
| **     auto increment: 0
 | |
| ** </pre>
 | |
| **
 | |
| ** This function may load one or more schemas from database files. If an
 | |
| ** error occurs during this process, or if the requested table or column
 | |
| ** cannot be found, an SQLITE error code is returned and an error message
 | |
| ** left in the database handle (to be retrieved using sqlite3_errmsg()).
 | |
| **
 | |
| ** This API is only available if the library was compiled with the
 | |
| ** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined.
 | |
| */
 | |
| SQLITE_API int sqlite3_table_column_metadata(
 | |
|   sqlite3 *db,                /* Connection handle */
 | |
|   const char *zDbName,        /* Database name or NULL */
 | |
|   const char *zTableName,     /* Table name */
 | |
|   const char *zColumnName,    /* Column name */
 | |
|   char const **pzDataType,    /* OUTPUT: Declared data type */
 | |
|   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
 | |
|   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
 | |
|   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
 | |
|   int *pAutoinc               /* OUTPUT: True if column is auto-increment */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Load An Extension {F12600}
 | |
| **
 | |
| ** {F12601} The sqlite3_load_extension() interface
 | |
| ** attempts to load an SQLite extension library contained in the file
 | |
| ** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0
 | |
| ** in which case the name of the entry point defaults
 | |
| ** to "sqlite3_extension_init".
 | |
| **
 | |
| ** {F12604} The sqlite3_load_extension() interface shall
 | |
| ** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
 | |
| **
 | |
| ** {F12605}
 | |
| ** If an error occurs and pzErrMsg is not 0, then the
 | |
| ** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with 
 | |
| ** error message text stored in memory obtained from [sqlite3_malloc()].
 | |
| ** {END}  The calling function should free this memory
 | |
| ** by calling [sqlite3_free()].
 | |
| **
 | |
| ** {F12606}
 | |
| ** Extension loading must be enabled using [sqlite3_enable_load_extension()]
 | |
| ** prior to calling this API or an error will be returned.
 | |
| */
 | |
| SQLITE_API int sqlite3_load_extension(
 | |
|   sqlite3 *db,          /* Load the extension into this database connection */
 | |
|   const char *zFile,    /* Name of the shared library containing extension */
 | |
|   const char *zProc,    /* Entry point.  Derived from zFile if 0 */
 | |
|   char **pzErrMsg       /* Put error message here if not 0 */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Enable Or Disable Extension Loading {F12620}
 | |
| **
 | |
| ** So as not to open security holes in older applications that are
 | |
| ** unprepared to deal with extension loading, and as a means of disabling
 | |
| ** extension loading while evaluating user-entered SQL, the following
 | |
| ** API is provided to turn the [sqlite3_load_extension()] mechanism on and
 | |
| ** off.  {F12622} It is off by default. {END} See ticket #1863.
 | |
| **
 | |
| ** {F12621} Call the sqlite3_enable_load_extension() routine
 | |
| ** with onoff==1 to turn extension loading on
 | |
| ** and call it with onoff==0 to turn it back off again. {END}
 | |
| */
 | |
| SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640}
 | |
| **
 | |
| ** {F12641} This function
 | |
| ** registers an extension entry point that is automatically invoked
 | |
| ** whenever a new database connection is opened using
 | |
| ** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END}
 | |
| **
 | |
| ** This API can be invoked at program startup in order to register
 | |
| ** one or more statically linked extensions that will be available
 | |
| ** to all new database connections.
 | |
| **
 | |
| ** {F12642} Duplicate extensions are detected so calling this routine multiple
 | |
| ** times with the same extension is harmless.
 | |
| **
 | |
| ** {F12643} This routine stores a pointer to the extension in an array
 | |
| ** that is obtained from sqlite_malloc(). {END} If you run a memory leak
 | |
| ** checker on your program and it reports a leak because of this
 | |
| ** array, then invoke [sqlite3_reset_auto_extension()] prior
 | |
| ** to shutdown to free the memory.
 | |
| **
 | |
| ** {F12644} Automatic extensions apply across all threads. {END}
 | |
| **
 | |
| ** This interface is experimental and is subject to change or
 | |
| ** removal in future releases of SQLite.
 | |
| */
 | |
| SQLITE_API int sqlite3_auto_extension(void *xEntryPoint);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Reset Automatic Extension Loading {F12660}
 | |
| **
 | |
| ** {F12661} This function disables all previously registered
 | |
| ** automatic extensions. {END}  This
 | |
| ** routine undoes the effect of all prior [sqlite3_auto_extension()]
 | |
| ** calls.
 | |
| **
 | |
| ** {F12662} This call disabled automatic extensions in all threads. {END}
 | |
| **
 | |
| ** This interface is experimental and is subject to change or
 | |
| ** removal in future releases of SQLite.
 | |
| */
 | |
| SQLITE_API void sqlite3_reset_auto_extension(void);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ****** EXPERIMENTAL - subject to change without notice **************
 | |
| **
 | |
| ** The interface to the virtual-table mechanism is currently considered
 | |
| ** to be experimental.  The interface might change in incompatible ways.
 | |
| ** If this is a problem for you, do not use the interface at this time.
 | |
| **
 | |
| ** When the virtual-table mechanism stablizes, we will declare the
 | |
| ** interface fixed, support it indefinitely, and remove this comment.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Structures used by the virtual table interface
 | |
| */
 | |
| typedef struct sqlite3_vtab sqlite3_vtab;
 | |
| typedef struct sqlite3_index_info sqlite3_index_info;
 | |
| typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
 | |
| typedef struct sqlite3_module sqlite3_module;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Virtual Table Object {F18000}
 | |
| ** KEYWORDS: sqlite3_module
 | |
| **
 | |
| ** A module is a class of virtual tables.  Each module is defined
 | |
| ** by an instance of the following structure.  This structure consists
 | |
| ** mostly of methods for the module.
 | |
| */
 | |
| struct sqlite3_module {
 | |
|   int iVersion;
 | |
|   int (*xCreate)(sqlite3*, void *pAux,
 | |
|                int argc, const char *const*argv,
 | |
|                sqlite3_vtab **ppVTab, char**);
 | |
|   int (*xConnect)(sqlite3*, void *pAux,
 | |
|                int argc, const char *const*argv,
 | |
|                sqlite3_vtab **ppVTab, char**);
 | |
|   int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
 | |
|   int (*xDisconnect)(sqlite3_vtab *pVTab);
 | |
|   int (*xDestroy)(sqlite3_vtab *pVTab);
 | |
|   int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
 | |
|   int (*xClose)(sqlite3_vtab_cursor*);
 | |
|   int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
 | |
|                 int argc, sqlite3_value **argv);
 | |
|   int (*xNext)(sqlite3_vtab_cursor*);
 | |
|   int (*xEof)(sqlite3_vtab_cursor*);
 | |
|   int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
 | |
|   int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
 | |
|   int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
 | |
|   int (*xBegin)(sqlite3_vtab *pVTab);
 | |
|   int (*xSync)(sqlite3_vtab *pVTab);
 | |
|   int (*xCommit)(sqlite3_vtab *pVTab);
 | |
|   int (*xRollback)(sqlite3_vtab *pVTab);
 | |
|   int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
 | |
|                        void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
 | |
|                        void **ppArg);
 | |
| 
 | |
|   int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Virtual Table Indexing Information {F18100}
 | |
| ** KEYWORDS: sqlite3_index_info
 | |
| **
 | |
| ** The sqlite3_index_info structure and its substructures is used to
 | |
| ** pass information into and receive the reply from the xBestIndex
 | |
| ** method of an sqlite3_module.  The fields under **Inputs** are the
 | |
| ** inputs to xBestIndex and are read-only.  xBestIndex inserts its
 | |
| ** results into the **Outputs** fields.
 | |
| **
 | |
| ** The aConstraint[] array records WHERE clause constraints of the
 | |
| ** form:
 | |
| **
 | |
| **         column OP expr
 | |
| **
 | |
| ** Where OP is =, <, <=, >, or >=.  
 | |
| ** The particular operator is stored
 | |
| ** in aConstraint[].op.  The index of the column is stored in 
 | |
| ** aConstraint[].iColumn.  aConstraint[].usable is TRUE if the
 | |
| ** expr on the right-hand side can be evaluated (and thus the constraint
 | |
| ** is usable) and false if it cannot.
 | |
| **
 | |
| ** The optimizer automatically inverts terms of the form "expr OP column"
 | |
| ** and makes other simplifications to the WHERE clause in an attempt to
 | |
| ** get as many WHERE clause terms into the form shown above as possible.
 | |
| ** The aConstraint[] array only reports WHERE clause terms in the correct
 | |
| ** form that refer to the particular virtual table being queried.
 | |
| **
 | |
| ** Information about the ORDER BY clause is stored in aOrderBy[].
 | |
| ** Each term of aOrderBy records a column of the ORDER BY clause.
 | |
| **
 | |
| ** The xBestIndex method must fill aConstraintUsage[] with information
 | |
| ** about what parameters to pass to xFilter.  If argvIndex>0 then
 | |
| ** the right-hand side of the corresponding aConstraint[] is evaluated
 | |
| ** and becomes the argvIndex-th entry in argv.  If aConstraintUsage[].omit
 | |
| ** is true, then the constraint is assumed to be fully handled by the
 | |
| ** virtual table and is not checked again by SQLite.
 | |
| **
 | |
| ** The idxNum and idxPtr values are recorded and passed into xFilter.
 | |
| ** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true.
 | |
| **
 | |
| ** The orderByConsumed means that output from xFilter will occur in
 | |
| ** the correct order to satisfy the ORDER BY clause so that no separate
 | |
| ** sorting step is required.
 | |
| **
 | |
| ** The estimatedCost value is an estimate of the cost of doing the
 | |
| ** particular lookup.  A full scan of a table with N entries should have
 | |
| ** a cost of N.  A binary search of a table of N entries should have a
 | |
| ** cost of approximately log(N).
 | |
| */
 | |
| struct sqlite3_index_info {
 | |
|   /* Inputs */
 | |
|   int nConstraint;           /* Number of entries in aConstraint */
 | |
|   struct sqlite3_index_constraint {
 | |
|      int iColumn;              /* Column on left-hand side of constraint */
 | |
|      unsigned char op;         /* Constraint operator */
 | |
|      unsigned char usable;     /* True if this constraint is usable */
 | |
|      int iTermOffset;          /* Used internally - xBestIndex should ignore */
 | |
|   } *aConstraint;            /* Table of WHERE clause constraints */
 | |
|   int nOrderBy;              /* Number of terms in the ORDER BY clause */
 | |
|   struct sqlite3_index_orderby {
 | |
|      int iColumn;              /* Column number */
 | |
|      unsigned char desc;       /* True for DESC.  False for ASC. */
 | |
|   } *aOrderBy;               /* The ORDER BY clause */
 | |
| 
 | |
|   /* Outputs */
 | |
|   struct sqlite3_index_constraint_usage {
 | |
|     int argvIndex;           /* if >0, constraint is part of argv to xFilter */
 | |
|     unsigned char omit;      /* Do not code a test for this constraint */
 | |
|   } *aConstraintUsage;
 | |
|   int idxNum;                /* Number used to identify the index */
 | |
|   char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
 | |
|   int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
 | |
|   int orderByConsumed;       /* True if output is already ordered */
 | |
|   double estimatedCost;      /* Estimated cost of using this index */
 | |
| };
 | |
| #define SQLITE_INDEX_CONSTRAINT_EQ    2
 | |
| #define SQLITE_INDEX_CONSTRAINT_GT    4
 | |
| #define SQLITE_INDEX_CONSTRAINT_LE    8
 | |
| #define SQLITE_INDEX_CONSTRAINT_LT    16
 | |
| #define SQLITE_INDEX_CONSTRAINT_GE    32
 | |
| #define SQLITE_INDEX_CONSTRAINT_MATCH 64
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Register A Virtual Table Implementation {F18200}
 | |
| **
 | |
| ** This routine is used to register a new module name with an SQLite
 | |
| ** connection.  Module names must be registered before creating new
 | |
| ** virtual tables on the module, or before using preexisting virtual
 | |
| ** tables of the module.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_module(
 | |
|   sqlite3 *db,               /* SQLite connection to register module with */
 | |
|   const char *zName,         /* Name of the module */
 | |
|   const sqlite3_module *,    /* Methods for the module */
 | |
|   void *                     /* Client data for xCreate/xConnect */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Register A Virtual Table Implementation {F18210}
 | |
| **
 | |
| ** This routine is identical to the sqlite3_create_module() method above,
 | |
| ** except that it allows a destructor function to be specified. It is
 | |
| ** even more experimental than the rest of the virtual tables API.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_module_v2(
 | |
|   sqlite3 *db,               /* SQLite connection to register module with */
 | |
|   const char *zName,         /* Name of the module */
 | |
|   const sqlite3_module *,    /* Methods for the module */
 | |
|   void *,                    /* Client data for xCreate/xConnect */
 | |
|   void(*xDestroy)(void*)     /* Module destructor function */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Virtual Table Instance Object {F18010}
 | |
| ** KEYWORDS: sqlite3_vtab
 | |
| **
 | |
| ** Every module implementation uses a subclass of the following structure
 | |
| ** to describe a particular instance of the module.  Each subclass will
 | |
| ** be tailored to the specific needs of the module implementation.   The
 | |
| ** purpose of this superclass is to define certain fields that are common
 | |
| ** to all module implementations.
 | |
| **
 | |
| ** Virtual tables methods can set an error message by assigning a
 | |
| ** string obtained from sqlite3_mprintf() to zErrMsg.  The method should
 | |
| ** take care that any prior string is freed by a call to sqlite3_free()
 | |
| ** prior to assigning a new string to zErrMsg.  After the error message
 | |
| ** is delivered up to the client application, the string will be automatically
 | |
| ** freed by sqlite3_free() and the zErrMsg field will be zeroed.  Note
 | |
| ** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field
 | |
| ** since virtual tables are commonly implemented in loadable extensions which
 | |
| ** do not have access to sqlite3MPrintf() or sqlite3Free().
 | |
| */
 | |
| struct sqlite3_vtab {
 | |
|   const sqlite3_module *pModule;  /* The module for this virtual table */
 | |
|   int nRef;                       /* Used internally */
 | |
|   char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
 | |
|   /* Virtual table implementations will typically add additional fields */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Virtual Table Cursor Object  {F18020}
 | |
| ** KEYWORDS: sqlite3_vtab_cursor
 | |
| **
 | |
| ** Every module implementation uses a subclass of the following structure
 | |
| ** to describe cursors that point into the virtual table and are used
 | |
| ** to loop through the virtual table.  Cursors are created using the
 | |
| ** xOpen method of the module.  Each module implementation will define
 | |
| ** the content of a cursor structure to suit its own needs.
 | |
| **
 | |
| ** This superclass exists in order to define fields of the cursor that
 | |
| ** are common to all implementations.
 | |
| */
 | |
| struct sqlite3_vtab_cursor {
 | |
|   sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
 | |
|   /* Virtual table implementations will typically add additional fields */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Declare The Schema Of A Virtual Table {F18280}
 | |
| **
 | |
| ** The xCreate and xConnect methods of a module use the following API
 | |
| ** to declare the format (the names and datatypes of the columns) of
 | |
| ** the virtual tables they implement.
 | |
| */
 | |
| SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Overload A Function For A Virtual Table {F18300}
 | |
| **
 | |
| ** Virtual tables can provide alternative implementations of functions
 | |
| ** using the xFindFunction method.  But global versions of those functions
 | |
| ** must exist in order to be overloaded.
 | |
| **
 | |
| ** This API makes sure a global version of a function with a particular
 | |
| ** name and number of parameters exists.  If no such function exists
 | |
| ** before this API is called, a new function is created.  The implementation
 | |
| ** of the new function always causes an exception to be thrown.  So
 | |
| ** the new function is not good for anything by itself.  Its only
 | |
| ** purpose is to be a place-holder function that can be overloaded
 | |
| ** by virtual tables.
 | |
| **
 | |
| ** This API should be considered part of the virtual table interface,
 | |
| ** which is experimental and subject to change.
 | |
| */
 | |
| SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
 | |
| 
 | |
| /*
 | |
| ** The interface to the virtual-table mechanism defined above (back up
 | |
| ** to a comment remarkably similar to this one) is currently considered
 | |
| ** to be experimental.  The interface might change in incompatible ways.
 | |
| ** If this is a problem for you, do not use the interface at this time.
 | |
| **
 | |
| ** When the virtual-table mechanism stabilizes, we will declare the
 | |
| ** interface fixed, support it indefinitely, and remove this comment.
 | |
| **
 | |
| ****** EXPERIMENTAL - subject to change without notice **************
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: A Handle To An Open BLOB {F17800}
 | |
| **
 | |
| ** An instance of this object represents an open BLOB on which
 | |
| ** incremental I/O can be preformed.
 | |
| ** Objects of this type are created by
 | |
| ** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()].
 | |
| ** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
 | |
| ** can be used to read or write small subsections of the blob.
 | |
| ** The [sqlite3_blob_bytes()] interface returns the size of the
 | |
| ** blob in bytes.
 | |
| */
 | |
| typedef struct sqlite3_blob sqlite3_blob;
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Open A BLOB For Incremental I/O {F17810}
 | |
| **
 | |
| ** This interfaces opens a handle to the blob located
 | |
| ** in row iRow,, column zColumn, table zTable in database zDb;
 | |
| ** in other words,  the same blob that would be selected by:
 | |
| **
 | |
| ** <pre>
 | |
| **     SELECT zColumn FROM zDb.zTable WHERE rowid = iRow;
 | |
| ** </pre> {END}
 | |
| **
 | |
| ** If the flags parameter is non-zero, the blob is opened for 
 | |
| ** read and write access. If it is zero, the blob is opened for read 
 | |
| ** access.
 | |
| **
 | |
| ** On success, [SQLITE_OK] is returned and the new 
 | |
| ** [sqlite3_blob | blob handle] is written to *ppBlob. 
 | |
| ** Otherwise an error code is returned and 
 | |
| ** any value written to *ppBlob should not be used by the caller.
 | |
| ** This function sets the database-handle error code and message
 | |
| ** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()].
 | |
| ** 
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)]
 | |
| **          interface opens an [sqlite3_blob] object P on the blob
 | |
| **          in column C of table T in database B on [database connection] D.
 | |
| **
 | |
| ** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts
 | |
| **          a new transaction on [database connection] D if that connection
 | |
| **          is not already in a transaction.
 | |
| **
 | |
| ** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob
 | |
| **          for read and write access if and only if the F parameter
 | |
| **          is non-zero.
 | |
| **
 | |
| ** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on 
 | |
| **          success and an appropriate [error code] on failure.
 | |
| **
 | |
| ** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)]
 | |
| **          then subsequent calls to [sqlite3_errcode(D)],
 | |
| **          [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
 | |
| **          information approprate for that error.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_open(
 | |
|   sqlite3*,
 | |
|   const char *zDb,
 | |
|   const char *zTable,
 | |
|   const char *zColumn,
 | |
|   sqlite3_int64 iRow,
 | |
|   int flags,
 | |
|   sqlite3_blob **ppBlob
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Close A BLOB Handle {F17830}
 | |
| **
 | |
| ** Close an open [sqlite3_blob | blob handle].
 | |
| **
 | |
| ** Closing a BLOB shall cause the current transaction to commit
 | |
| ** if there are no other BLOBs, no pending prepared statements, and the
 | |
| ** database connection is in autocommit mode.
 | |
| ** If any writes were made to the BLOB, they might be held in cache
 | |
| ** until the close operation if they will fit. {END}
 | |
| ** Closing the BLOB often forces the changes
 | |
| ** out to disk and so if any I/O errors occur, they will likely occur
 | |
| ** at the time when the BLOB is closed.  {F17833} Any errors that occur during
 | |
| ** closing are reported as a non-zero return value.
 | |
| **
 | |
| ** The BLOB is closed unconditionally.  Even if this routine returns
 | |
| ** an error code, the BLOB is still closed.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17833} The [sqlite3_blob_close(P)] interface closes an
 | |
| **          [sqlite3_blob] object P previously opened using
 | |
| **          [sqlite3_blob_open()].
 | |
| **
 | |
| ** {F17836} Closing an [sqlite3_blob] object using
 | |
| **          [sqlite3_blob_close()] shall cause the current transaction to
 | |
| **          commit if there are no other open [sqlite3_blob] objects
 | |
| **          or [prepared statements] on the same [database connection] and
 | |
| **          the [database connection] is in
 | |
| **          [sqlite3_get_autocommit | autocommit mode].
 | |
| **
 | |
| ** {F17839} The [sqlite3_blob_close(P)] interfaces closes the 
 | |
| **          [sqlite3_blob] object P unconditionally, even if
 | |
| **          [sqlite3_blob_close(P)] returns something other than [SQLITE_OK].
 | |
| **          
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Return The Size Of An Open BLOB {F17840}
 | |
| **
 | |
| ** Return the size in bytes of the blob accessible via the open 
 | |
| ** [sqlite3_blob] object in its only argument.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size
 | |
| **          in bytes of the BLOB that the [sqlite3_blob] object P
 | |
| **          refers to.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Read Data From A BLOB Incrementally {F17850}
 | |
| **
 | |
| ** This function is used to read data from an open 
 | |
| ** [sqlite3_blob | blob-handle] into a caller supplied buffer.
 | |
| ** N bytes of data are copied into buffer
 | |
| ** Z from the open blob, starting at offset iOffset.
 | |
| **
 | |
| ** If offset iOffset is less than N bytes from the end of the blob, 
 | |
| ** [SQLITE_ERROR] is returned and no data is read.  If N or iOffset is
 | |
| ** less than zero [SQLITE_ERROR] is returned and no data is read.
 | |
| **
 | |
| ** On success, SQLITE_OK is returned. Otherwise, an 
 | |
| ** [error code] or an [extended error code] is returned.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes
 | |
| **          beginning at offset X from
 | |
| **          the blob that [sqlite3_blob] object P refers to
 | |
| **          and writes those N bytes into buffer Z.
 | |
| **
 | |
| ** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob
 | |
| **          is less than N+X bytes, then the function returns [SQLITE_ERROR]
 | |
| **          and nothing is read from the blob.
 | |
| **
 | |
| ** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero
 | |
| **          then the function returns [SQLITE_ERROR]
 | |
| **          and nothing is read from the blob.
 | |
| **
 | |
| ** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK]
 | |
| **          if N bytes where successfully read into buffer Z.
 | |
| **
 | |
| ** {F17865} If the requested read could not be completed,
 | |
| **          the [sqlite3_blob_read(P,Z,N,X)] interface returns an
 | |
| **          appropriate [error code] or [extended error code].
 | |
| **
 | |
| ** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(D,...)]
 | |
| **          then subsequent calls to [sqlite3_errcode(D)],
 | |
| **          [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
 | |
| **          information approprate for that error.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Write Data Into A BLOB Incrementally {F17870}
 | |
| **
 | |
| ** This function is used to write data into an open 
 | |
| ** [sqlite3_blob | blob-handle] from a user supplied buffer.
 | |
| ** n bytes of data are copied from the buffer
 | |
| ** pointed to by z into the open blob, starting at offset iOffset.
 | |
| **
 | |
| ** If the [sqlite3_blob | blob-handle] passed as the first argument
 | |
| ** was not opened for writing (the flags parameter to [sqlite3_blob_open()]
 | |
| *** was zero), this function returns [SQLITE_READONLY].
 | |
| **
 | |
| ** This function may only modify the contents of the blob; it is
 | |
| ** not possible to increase the size of a blob using this API.
 | |
| ** If offset iOffset is less than n bytes from the end of the blob, 
 | |
| ** [SQLITE_ERROR] is returned and no data is written.  If n is
 | |
| ** less than zero [SQLITE_ERROR] is returned and no data is written.
 | |
| **
 | |
| ** On success, SQLITE_OK is returned. Otherwise, an 
 | |
| ** [error code] or an [extended error code] is returned.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes
 | |
| **          from buffer Z into
 | |
| **          the blob that [sqlite3_blob] object P refers to
 | |
| **          beginning at an offset of X into the blob.
 | |
| **
 | |
| ** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns
 | |
| **          [SQLITE_READONLY] if the [sqlite3_blob] object P was
 | |
| **          [sqlite3_blob_open | opened] for reading only.
 | |
| **
 | |
| ** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob
 | |
| **          is less than N+X bytes, then the function returns [SQLITE_ERROR]
 | |
| **          and nothing is written into the blob.
 | |
| **
 | |
| ** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero
 | |
| **          then the function returns [SQLITE_ERROR]
 | |
| **          and nothing is written into the blob.
 | |
| **
 | |
| ** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK]
 | |
| **          if N bytes where successfully written into blob.
 | |
| **
 | |
| ** {F17885} If the requested write could not be completed,
 | |
| **          the [sqlite3_blob_write(P,Z,N,X)] interface returns an
 | |
| **          appropriate [error code] or [extended error code].
 | |
| **
 | |
| ** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)]
 | |
| **          then subsequent calls to [sqlite3_errcode(D)],
 | |
| **          [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return
 | |
| **          information approprate for that error.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF:  Virtual File System Objects {F11200}
 | |
| **
 | |
| ** A virtual filesystem (VFS) is an [sqlite3_vfs] object
 | |
| ** that SQLite uses to interact
 | |
| ** with the underlying operating system.  Most SQLite builds come with a
 | |
| ** single default VFS that is appropriate for the host computer.
 | |
| ** New VFSes can be registered and existing VFSes can be unregistered.
 | |
| ** The following interfaces are provided.
 | |
| **
 | |
| ** The sqlite3_vfs_find() interface returns a pointer to 
 | |
| ** a VFS given its name.  Names are case sensitive.
 | |
| ** Names are zero-terminated UTF-8 strings.
 | |
| ** If there is no match, a NULL
 | |
| ** pointer is returned.  If zVfsName is NULL then the default 
 | |
| ** VFS is returned. 
 | |
| **
 | |
| ** New VFSes are registered with sqlite3_vfs_register().
 | |
| ** Each new VFS becomes the default VFS if the makeDflt flag is set.
 | |
| ** The same VFS can be registered multiple times without injury.
 | |
| ** To make an existing VFS into the default VFS, register it again
 | |
| ** with the makeDflt flag set.  If two different VFSes with the
 | |
| ** same name are registered, the behavior is undefined.  If a
 | |
| ** VFS is registered with a name that is NULL or an empty string,
 | |
| ** then the behavior is undefined.
 | |
| ** 
 | |
| ** Unregister a VFS with the sqlite3_vfs_unregister() interface.
 | |
| ** If the default VFS is unregistered, another VFS is chosen as
 | |
| ** the default.  The choice for the new VFS is arbitrary.
 | |
| **
 | |
| ** INVARIANTS:
 | |
| **
 | |
| ** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the
 | |
| **          registered [sqlite3_vfs] object whose name exactly matches
 | |
| **          the zero-terminated UTF-8 string N, or it returns NULL if
 | |
| **          there is no match.
 | |
| **
 | |
| ** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then
 | |
| **          the function returns a pointer to the default [sqlite3_vfs]
 | |
| **          object if there is one, or NULL if there is no default 
 | |
| **          [sqlite3_vfs] object.
 | |
| **
 | |
| ** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the
 | |
| **          well-formed [sqlite3_vfs] object P using the name given
 | |
| **          by the zName field of the object.
 | |
| **
 | |
| ** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register
 | |
| **          the same [sqlite3_vfs] object multiple times is a harmless no-op.
 | |
| **
 | |
| ** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the
 | |
| **          the [sqlite3_vfs] object P the default [sqlite3_vfs] object
 | |
| **          if F is non-zero.
 | |
| **
 | |
| ** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the
 | |
| **          [sqlite3_vfs] object P so that it is no longer returned by
 | |
| **          subsequent calls to [sqlite3_vfs_find()].
 | |
| */
 | |
| SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
 | |
| SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
 | |
| SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Mutexes {F17000}
 | |
| **
 | |
| ** The SQLite core uses these routines for thread
 | |
| ** synchronization.  Though they are intended for internal
 | |
| ** use by SQLite, code that links against SQLite is
 | |
| ** permitted to use any of these routines.
 | |
| **
 | |
| ** The SQLite source code contains multiple implementations 
 | |
| ** of these mutex routines.  An appropriate implementation
 | |
| ** is selected automatically at compile-time.  The following
 | |
| ** implementations are available in the SQLite core:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li>   SQLITE_MUTEX_OS2
 | |
| ** <li>   SQLITE_MUTEX_PTHREAD
 | |
| ** <li>   SQLITE_MUTEX_W32
 | |
| ** <li>   SQLITE_MUTEX_NOOP
 | |
| ** </ul>
 | |
| **
 | |
| ** The SQLITE_MUTEX_NOOP implementation is a set of routines 
 | |
| ** that does no real locking and is appropriate for use in 
 | |
| ** a single-threaded application.  The SQLITE_MUTEX_OS2,
 | |
| ** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
 | |
| ** are appropriate for use on os/2, unix, and windows.
 | |
| ** 
 | |
| ** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
 | |
| ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
 | |
| ** implementation is included with the library.  The
 | |
| ** mutex interface routines defined here become external
 | |
| ** references in the SQLite library for which implementations
 | |
| ** must be provided by the application.  This facility allows an
 | |
| ** application that links against SQLite to provide its own mutex
 | |
| ** implementation without having to modify the SQLite core.
 | |
| **
 | |
| ** {F17011} The sqlite3_mutex_alloc() routine allocates a new
 | |
| ** mutex and returns a pointer to it. {F17012} If it returns NULL
 | |
| ** that means that a mutex could not be allocated. {F17013} SQLite
 | |
| ** will unwind its stack and return an error. {F17014} The argument
 | |
| ** to sqlite3_mutex_alloc() is one of these integer constants:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li>  SQLITE_MUTEX_FAST
 | |
| ** <li>  SQLITE_MUTEX_RECURSIVE
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MASTER
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MEM
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MEM2
 | |
| ** <li>  SQLITE_MUTEX_STATIC_PRNG
 | |
| ** <li>  SQLITE_MUTEX_STATIC_LRU
 | |
| ** </ul> {END}
 | |
| **
 | |
| ** {F17015} The first two constants cause sqlite3_mutex_alloc() to create
 | |
| ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
 | |
| ** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
 | |
| ** The mutex implementation does not need to make a distinction
 | |
| ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
 | |
| ** not want to.  {F17016} But SQLite will only request a recursive mutex in
 | |
| ** cases where it really needs one.  {END} If a faster non-recursive mutex
 | |
| ** implementation is available on the host platform, the mutex subsystem
 | |
| ** might return such a mutex in response to SQLITE_MUTEX_FAST.
 | |
| **
 | |
| ** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return
 | |
| ** a pointer to a static preexisting mutex. {END}  Four static mutexes are
 | |
| ** used by the current version of SQLite.  Future versions of SQLite
 | |
| ** may add additional static mutexes.  Static mutexes are for internal
 | |
| ** use by SQLite only.  Applications that use SQLite mutexes should
 | |
| ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
 | |
| ** SQLITE_MUTEX_RECURSIVE.
 | |
| **
 | |
| ** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
 | |
| ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
 | |
| ** returns a different mutex on every call.  {F17034} But for the static 
 | |
| ** mutex types, the same mutex is returned on every call that has
 | |
| ** the same type number. {END}
 | |
| **
 | |
| ** {F17019} The sqlite3_mutex_free() routine deallocates a previously
 | |
| ** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every
 | |
| ** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in 
 | |
| ** use when they are deallocated. {U17022} Attempting to deallocate a static
 | |
| ** mutex results in undefined behavior. {F17023} SQLite never deallocates
 | |
| ** a static mutex. {END}
 | |
| **
 | |
| ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
 | |
| ** to enter a mutex. {F17024} If another thread is already within the mutex,
 | |
| ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
 | |
| ** SQLITE_BUSY. {F17025}  The sqlite3_mutex_try() interface returns SQLITE_OK
 | |
| ** upon successful entry.  {F17026} Mutexes created using
 | |
| ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
 | |
| ** {F17027} In such cases the,
 | |
| ** mutex must be exited an equal number of times before another thread
 | |
| ** can enter.  {U17028} If the same thread tries to enter any other
 | |
| ** kind of mutex more than once, the behavior is undefined.
 | |
| ** {F17029} SQLite will never exhibit
 | |
| ** such behavior in its own use of mutexes. {END}
 | |
| **
 | |
| ** Some systems (ex: windows95) do not the operation implemented by
 | |
| ** sqlite3_mutex_try().  On those systems, sqlite3_mutex_try() will
 | |
| ** always return SQLITE_BUSY.  {F17030} The SQLite core only ever uses
 | |
| ** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END}
 | |
| **
 | |
| ** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was
 | |
| ** previously entered by the same thread.  {U17032} The behavior
 | |
| ** is undefined if the mutex is not currently entered by the
 | |
| ** calling thread or is not currently allocated.  {F17033} SQLite will
 | |
| ** never do either. {END}
 | |
| **
 | |
| ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
 | |
| */
 | |
| SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
 | |
| SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
 | |
| SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
 | |
| SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
 | |
| SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Mutex Verifcation Routines {F17080}
 | |
| **
 | |
| ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
 | |
| ** are intended for use inside assert() statements. {F17081} The SQLite core
 | |
| ** never uses these routines except inside an assert() and applications
 | |
| ** are advised to follow the lead of the core.  {F17082} The core only
 | |
| ** provides implementations for these routines when it is compiled
 | |
| ** with the SQLITE_DEBUG flag.  {U17087} External mutex implementations
 | |
| ** are only required to provide these routines if SQLITE_DEBUG is
 | |
| ** defined and if NDEBUG is not defined.
 | |
| **
 | |
| ** {F17083} These routines should return true if the mutex in their argument
 | |
| ** is held or not held, respectively, by the calling thread. {END}
 | |
| **
 | |
| ** {X17084} The implementation is not required to provided versions of these
 | |
| ** routines that actually work.
 | |
| ** If the implementation does not provide working
 | |
| ** versions of these routines, it should at least provide stubs
 | |
| ** that always return true so that one does not get spurious
 | |
| ** assertion failures. {END}
 | |
| **
 | |
| ** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
 | |
| ** the routine should return 1.  {END} This seems counter-intuitive since
 | |
| ** clearly the mutex cannot be held if it does not exist.  But the
 | |
| ** the reason the mutex does not exist is because the build is not
 | |
| ** using mutexes.  And we do not want the assert() containing the
 | |
| ** call to sqlite3_mutex_held() to fail, so a non-zero return is
 | |
| ** the appropriate thing to do.  {F17086} The sqlite3_mutex_notheld() 
 | |
| ** interface should also return 1 when given a NULL pointer.
 | |
| */
 | |
| SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
 | |
| SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Mutex Types {F17001}
 | |
| **
 | |
| ** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument
 | |
| ** which is one of these integer constants. {END}
 | |
| */
 | |
| #define SQLITE_MUTEX_FAST             0
 | |
| #define SQLITE_MUTEX_RECURSIVE        1
 | |
| #define SQLITE_MUTEX_STATIC_MASTER    2
 | |
| #define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite3_malloc() */
 | |
| #define SQLITE_MUTEX_STATIC_MEM2      4  /* sqlite3_release_memory() */
 | |
| #define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
 | |
| #define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Low-Level Control Of Database Files {F11300}
 | |
| **
 | |
| ** {F11301} The [sqlite3_file_control()] interface makes a direct call to the
 | |
| ** xFileControl method for the [sqlite3_io_methods] object associated
 | |
| ** with a particular database identified by the second argument. {F11302} The
 | |
| ** name of the database is the name assigned to the database by the
 | |
| ** <a href="lang_attach.html">ATTACH</a> SQL command that opened the
 | |
| ** database. {F11303} To control the main database file, use the name "main"
 | |
| ** or a NULL pointer. {F11304} The third and fourth parameters to this routine
 | |
| ** are passed directly through to the second and third parameters of
 | |
| ** the xFileControl method.  {F11305} The return value of the xFileControl
 | |
| ** method becomes the return value of this routine.
 | |
| **
 | |
| ** {F11306} If the second parameter (zDbName) does not match the name of any
 | |
| ** open database file, then SQLITE_ERROR is returned. {F11307} This error
 | |
| ** code is not remembered and will not be recalled by [sqlite3_errcode()]
 | |
| ** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might
 | |
| ** also return SQLITE_ERROR.  {U11309} There is no way to distinguish between
 | |
| ** an incorrect zDbName and an SQLITE_ERROR return from the underlying
 | |
| ** xFileControl method. {END}
 | |
| **
 | |
| ** See also: [SQLITE_FCNTL_LOCKSTATE]
 | |
| */
 | |
| SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Testing Interface {F11400}
 | |
| **
 | |
| ** The sqlite3_test_control() interface is used to read out internal
 | |
| ** state of SQLite and to inject faults into SQLite for testing
 | |
| ** purposes.  The first parameter a operation code that determines
 | |
| ** the number, meaning, and operation of all subsequent parameters.
 | |
| **
 | |
| ** This interface is not for use by applications.  It exists solely
 | |
| ** for verifying the correct operation of the SQLite library.  Depending
 | |
| ** on how the SQLite library is compiled, this interface might not exist.
 | |
| **
 | |
| ** The details of the operation codes, their meanings, the parameters
 | |
| ** they take, and what they do are all subject to change without notice.
 | |
| ** Unlike most of the SQLite API, this function is not guaranteed to
 | |
| ** operate consistently from one release to the next.
 | |
| */
 | |
| SQLITE_API int sqlite3_test_control(int op, ...);
 | |
| 
 | |
| /*
 | |
| ** CAPI3REF: Testing Interface Operation Codes {F11410}
 | |
| **
 | |
| ** These constants are the valid operation code parameters used
 | |
| ** as the first argument to [sqlite3_test_control()].
 | |
| **
 | |
| ** These parameters and their meansing are subject to change
 | |
| ** without notice.  These values are for testing purposes only.
 | |
| ** Applications should not use any of these parameters or the
 | |
| ** [sqlite3_test_control()] interface.
 | |
| */
 | |
| #define SQLITE_TESTCTRL_FAULT_CONFIG             1
 | |
| #define SQLITE_TESTCTRL_FAULT_FAILURES           2
 | |
| #define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES    3
 | |
| #define SQLITE_TESTCTRL_FAULT_PENDING            4
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Undo the hack that converts floating point types to integer for
 | |
| ** builds on processors without floating point support.
 | |
| */
 | |
| #ifdef SQLITE_OMIT_FLOATING_POINT
 | |
| # undef double
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| }  /* End of the 'extern "C"' block */
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /************** End of sqlite3.h *********************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| /************** Include hash.h in the middle of sqliteInt.h ******************/
 | |
| /************** Begin file hash.h ********************************************/
 | |
| /*
 | |
| ** 2001 September 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This is the header file for the generic hash-table implemenation
 | |
| ** used in SQLite.
 | |
| **
 | |
| ** $Id: hash.h,v 1.11 2007/09/04 14:31:47 danielk1977 Exp $
 | |
| */
 | |
| #ifndef _SQLITE_HASH_H_
 | |
| #define _SQLITE_HASH_H_
 | |
| 
 | |
| /* Forward declarations of structures. */
 | |
| typedef struct Hash Hash;
 | |
| typedef struct HashElem HashElem;
 | |
| 
 | |
| /* A complete hash table is an instance of the following structure.
 | |
| ** The internals of this structure are intended to be opaque -- client
 | |
| ** code should not attempt to access or modify the fields of this structure
 | |
| ** directly.  Change this structure only by using the routines below.
 | |
| ** However, many of the "procedures" and "functions" for modifying and
 | |
| ** accessing this structure are really macros, so we can't really make
 | |
| ** this structure opaque.
 | |
| */
 | |
| struct Hash {
 | |
|   char keyClass;          /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
 | |
|   char copyKey;           /* True if copy of key made on insert */
 | |
|   int count;              /* Number of entries in this table */
 | |
|   int htsize;             /* Number of buckets in the hash table */
 | |
|   HashElem *first;        /* The first element of the array */
 | |
|   struct _ht {            /* the hash table */
 | |
|     int count;               /* Number of entries with this hash */
 | |
|     HashElem *chain;         /* Pointer to first entry with this hash */
 | |
|   } *ht;
 | |
| };
 | |
| 
 | |
| /* Each element in the hash table is an instance of the following 
 | |
| ** structure.  All elements are stored on a single doubly-linked list.
 | |
| **
 | |
| ** Again, this structure is intended to be opaque, but it can't really
 | |
| ** be opaque because it is used by macros.
 | |
| */
 | |
| struct HashElem {
 | |
|   HashElem *next, *prev;   /* Next and previous elements in the table */
 | |
|   void *data;              /* Data associated with this element */
 | |
|   void *pKey; int nKey;    /* Key associated with this element */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** There are 4 different modes of operation for a hash table:
 | |
| **
 | |
| **   SQLITE_HASH_INT         nKey is used as the key and pKey is ignored.
 | |
| **
 | |
| **   SQLITE_HASH_POINTER     pKey is used as the key and nKey is ignored.
 | |
| **
 | |
| **   SQLITE_HASH_STRING      pKey points to a string that is nKey bytes long
 | |
| **                           (including the null-terminator, if any).  Case
 | |
| **                           is ignored in comparisons.
 | |
| **
 | |
| **   SQLITE_HASH_BINARY      pKey points to binary data nKey bytes long. 
 | |
| **                           memcmp() is used to compare keys.
 | |
| **
 | |
| ** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
 | |
| ** if the copyKey parameter to HashInit is 1.  
 | |
| */
 | |
| /* #define SQLITE_HASH_INT       1 // NOT USED */
 | |
| /* #define SQLITE_HASH_POINTER   2 // NOT USED */
 | |
| #define SQLITE_HASH_STRING    3
 | |
| #define SQLITE_HASH_BINARY    4
 | |
| 
 | |
| /*
 | |
| ** Access routines.  To delete, insert a NULL pointer.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3HashInit(Hash*, int keytype, int copyKey);
 | |
| SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData);
 | |
| SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const void *pKey, int nKey);
 | |
| SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey);
 | |
| SQLITE_PRIVATE void sqlite3HashClear(Hash*);
 | |
| 
 | |
| /*
 | |
| ** Macros for looping over all elements of a hash table.  The idiom is
 | |
| ** like this:
 | |
| **
 | |
| **   Hash h;
 | |
| **   HashElem *p;
 | |
| **   ...
 | |
| **   for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
 | |
| **     SomeStructure *pData = sqliteHashData(p);
 | |
| **     // do something with pData
 | |
| **   }
 | |
| */
 | |
| #define sqliteHashFirst(H)  ((H)->first)
 | |
| #define sqliteHashNext(E)   ((E)->next)
 | |
| #define sqliteHashData(E)   ((E)->data)
 | |
| #define sqliteHashKey(E)    ((E)->pKey)
 | |
| #define sqliteHashKeysize(E) ((E)->nKey)
 | |
| 
 | |
| /*
 | |
| ** Number of entries in a hash table
 | |
| */
 | |
| #define sqliteHashCount(H)  ((H)->count)
 | |
| 
 | |
| #endif /* _SQLITE_HASH_H_ */
 | |
| 
 | |
| /************** End of hash.h ************************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| /************** Include parse.h in the middle of sqliteInt.h *****************/
 | |
| /************** Begin file parse.h *******************************************/
 | |
| #define TK_SEMI                            1
 | |
| #define TK_EXPLAIN                         2
 | |
| #define TK_QUERY                           3
 | |
| #define TK_PLAN                            4
 | |
| #define TK_BEGIN                           5
 | |
| #define TK_TRANSACTION                     6
 | |
| #define TK_DEFERRED                        7
 | |
| #define TK_IMMEDIATE                       8
 | |
| #define TK_EXCLUSIVE                       9
 | |
| #define TK_COMMIT                         10
 | |
| #define TK_END                            11
 | |
| #define TK_ROLLBACK                       12
 | |
| #define TK_CREATE                         13
 | |
| #define TK_TABLE                          14
 | |
| #define TK_IF                             15
 | |
| #define TK_NOT                            16
 | |
| #define TK_EXISTS                         17
 | |
| #define TK_TEMP                           18
 | |
| #define TK_LP                             19
 | |
| #define TK_RP                             20
 | |
| #define TK_AS                             21
 | |
| #define TK_COMMA                          22
 | |
| #define TK_ID                             23
 | |
| #define TK_ABORT                          24
 | |
| #define TK_AFTER                          25
 | |
| #define TK_ANALYZE                        26
 | |
| #define TK_ASC                            27
 | |
| #define TK_ATTACH                         28
 | |
| #define TK_BEFORE                         29
 | |
| #define TK_CASCADE                        30
 | |
| #define TK_CAST                           31
 | |
| #define TK_CONFLICT                       32
 | |
| #define TK_DATABASE                       33
 | |
| #define TK_DESC                           34
 | |
| #define TK_DETACH                         35
 | |
| #define TK_EACH                           36
 | |
| #define TK_FAIL                           37
 | |
| #define TK_FOR                            38
 | |
| #define TK_IGNORE                         39
 | |
| #define TK_INITIALLY                      40
 | |
| #define TK_INSTEAD                        41
 | |
| #define TK_LIKE_KW                        42
 | |
| #define TK_MATCH                          43
 | |
| #define TK_KEY                            44
 | |
| #define TK_OF                             45
 | |
| #define TK_OFFSET                         46
 | |
| #define TK_PRAGMA                         47
 | |
| #define TK_RAISE                          48
 | |
| #define TK_REPLACE                        49
 | |
| #define TK_RESTRICT                       50
 | |
| #define TK_ROW                            51
 | |
| #define TK_TRIGGER                        52
 | |
| #define TK_VACUUM                         53
 | |
| #define TK_VIEW                           54
 | |
| #define TK_VIRTUAL                        55
 | |
| #define TK_REINDEX                        56
 | |
| #define TK_RENAME                         57
 | |
| #define TK_CTIME_KW                       58
 | |
| #define TK_ANY                            59
 | |
| #define TK_OR                             60
 | |
| #define TK_AND                            61
 | |
| #define TK_IS                             62
 | |
| #define TK_BETWEEN                        63
 | |
| #define TK_IN                             64
 | |
| #define TK_ISNULL                         65
 | |
| #define TK_NOTNULL                        66
 | |
| #define TK_NE                             67
 | |
| #define TK_EQ                             68
 | |
| #define TK_GT                             69
 | |
| #define TK_LE                             70
 | |
| #define TK_LT                             71
 | |
| #define TK_GE                             72
 | |
| #define TK_ESCAPE                         73
 | |
| #define TK_BITAND                         74
 | |
| #define TK_BITOR                          75
 | |
| #define TK_LSHIFT                         76
 | |
| #define TK_RSHIFT                         77
 | |
| #define TK_PLUS                           78
 | |
| #define TK_MINUS                          79
 | |
| #define TK_STAR                           80
 | |
| #define TK_SLASH                          81
 | |
| #define TK_REM                            82
 | |
| #define TK_CONCAT                         83
 | |
| #define TK_COLLATE                        84
 | |
| #define TK_UMINUS                         85
 | |
| #define TK_UPLUS                          86
 | |
| #define TK_BITNOT                         87
 | |
| #define TK_STRING                         88
 | |
| #define TK_JOIN_KW                        89
 | |
| #define TK_CONSTRAINT                     90
 | |
| #define TK_DEFAULT                        91
 | |
| #define TK_NULL                           92
 | |
| #define TK_PRIMARY                        93
 | |
| #define TK_UNIQUE                         94
 | |
| #define TK_CHECK                          95
 | |
| #define TK_REFERENCES                     96
 | |
| #define TK_AUTOINCR                       97
 | |
| #define TK_ON                             98
 | |
| #define TK_DELETE                         99
 | |
| #define TK_UPDATE                         100
 | |
| #define TK_INSERT                         101
 | |
| #define TK_SET                            102
 | |
| #define TK_DEFERRABLE                     103
 | |
| #define TK_FOREIGN                        104
 | |
| #define TK_DROP                           105
 | |
| #define TK_UNION                          106
 | |
| #define TK_ALL                            107
 | |
| #define TK_EXCEPT                         108
 | |
| #define TK_INTERSECT                      109
 | |
| #define TK_SELECT                         110
 | |
| #define TK_DISTINCT                       111
 | |
| #define TK_DOT                            112
 | |
| #define TK_FROM                           113
 | |
| #define TK_JOIN                           114
 | |
| #define TK_USING                          115
 | |
| #define TK_ORDER                          116
 | |
| #define TK_BY                             117
 | |
| #define TK_GROUP                          118
 | |
| #define TK_HAVING                         119
 | |
| #define TK_LIMIT                          120
 | |
| #define TK_WHERE                          121
 | |
| #define TK_INTO                           122
 | |
| #define TK_VALUES                         123
 | |
| #define TK_INTEGER                        124
 | |
| #define TK_FLOAT                          125
 | |
| #define TK_BLOB                           126
 | |
| #define TK_REGISTER                       127
 | |
| #define TK_VARIABLE                       128
 | |
| #define TK_CASE                           129
 | |
| #define TK_WHEN                           130
 | |
| #define TK_THEN                           131
 | |
| #define TK_ELSE                           132
 | |
| #define TK_INDEX                          133
 | |
| #define TK_ALTER                          134
 | |
| #define TK_TO                             135
 | |
| #define TK_ADD                            136
 | |
| #define TK_COLUMNKW                       137
 | |
| #define TK_TO_TEXT                        138
 | |
| #define TK_TO_BLOB                        139
 | |
| #define TK_TO_NUMERIC                     140
 | |
| #define TK_TO_INT                         141
 | |
| #define TK_TO_REAL                        142
 | |
| #define TK_END_OF_FILE                    143
 | |
| #define TK_ILLEGAL                        144
 | |
| #define TK_SPACE                          145
 | |
| #define TK_UNCLOSED_STRING                146
 | |
| #define TK_COMMENT                        147
 | |
| #define TK_FUNCTION                       148
 | |
| #define TK_COLUMN                         149
 | |
| #define TK_AGG_FUNCTION                   150
 | |
| #define TK_AGG_COLUMN                     151
 | |
| #define TK_CONST_FUNC                     152
 | |
| 
 | |
| /************** End of parse.h ***********************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include <stddef.h>
 | |
| 
 | |
| #define sqlite3_isnan(X)  ((X)!=(X))
 | |
| 
 | |
| /*
 | |
| ** If compiling for a processor that lacks floating point support,
 | |
| ** substitute integer for floating-point
 | |
| */
 | |
| #ifdef SQLITE_OMIT_FLOATING_POINT
 | |
| # define double sqlite_int64
 | |
| # define LONGDOUBLE_TYPE sqlite_int64
 | |
| # ifndef SQLITE_BIG_DBL
 | |
| #   define SQLITE_BIG_DBL (0x7fffffffffffffff)
 | |
| # endif
 | |
| # define SQLITE_OMIT_DATETIME_FUNCS 1
 | |
| # define SQLITE_OMIT_TRACE 1
 | |
| # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
 | |
| #endif
 | |
| #ifndef SQLITE_BIG_DBL
 | |
| # define SQLITE_BIG_DBL (1e99)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
 | |
| ** afterward. Having this macro allows us to cause the C compiler 
 | |
| ** to omit code used by TEMP tables without messy #ifndef statements.
 | |
| */
 | |
| #ifdef SQLITE_OMIT_TEMPDB
 | |
| #define OMIT_TEMPDB 1
 | |
| #else
 | |
| #define OMIT_TEMPDB 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If the following macro is set to 1, then NULL values are considered
 | |
| ** distinct when determining whether or not two entries are the same
 | |
| ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
 | |
| ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
 | |
| ** is the way things are suppose to work.
 | |
| **
 | |
| ** If the following macro is set to 0, the NULLs are indistinct for
 | |
| ** a UNIQUE index.  In this mode, you can only have a single NULL entry
 | |
| ** for a column declared UNIQUE.  This is the way Informix and SQL Server
 | |
| ** work.
 | |
| */
 | |
| #define NULL_DISTINCT_FOR_UNIQUE 1
 | |
| 
 | |
| /*
 | |
| ** The "file format" number is an integer that is incremented whenever
 | |
| ** the VDBE-level file format changes.  The following macros define the
 | |
| ** the default file format for new databases and the maximum file format
 | |
| ** that the library can read.
 | |
| */
 | |
| #define SQLITE_MAX_FILE_FORMAT 4
 | |
| #ifndef SQLITE_DEFAULT_FILE_FORMAT
 | |
| # define SQLITE_DEFAULT_FILE_FORMAT 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Provide a default value for TEMP_STORE in case it is not specified
 | |
| ** on the command-line
 | |
| */
 | |
| #ifndef TEMP_STORE
 | |
| # define TEMP_STORE 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** GCC does not define the offsetof() macro so we'll have to do it
 | |
| ** ourselves.
 | |
| */
 | |
| #ifndef offsetof
 | |
| #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
 | |
| ** not, there are still machines out there that use EBCDIC.)
 | |
| */
 | |
| #if 'A' == '\301'
 | |
| # define SQLITE_EBCDIC 1
 | |
| #else
 | |
| # define SQLITE_ASCII 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Integers of known sizes.  These typedefs might change for architectures
 | |
| ** where the sizes very.  Preprocessor macros are available so that the
 | |
| ** types can be conveniently redefined at compile-type.  Like this:
 | |
| **
 | |
| **         cc '-DUINTPTR_TYPE=long long int' ...
 | |
| */
 | |
| #ifndef UINT32_TYPE
 | |
| # ifdef HAVE_UINT32_T
 | |
| #  define UINT32_TYPE uint32_t
 | |
| # else
 | |
| #  define UINT32_TYPE unsigned int
 | |
| # endif
 | |
| #endif
 | |
| #ifndef UINT16_TYPE
 | |
| # ifdef HAVE_UINT16_T
 | |
| #  define UINT16_TYPE uint16_t
 | |
| # else
 | |
| #  define UINT16_TYPE unsigned short int
 | |
| # endif
 | |
| #endif
 | |
| #ifndef INT16_TYPE
 | |
| # ifdef HAVE_INT16_T
 | |
| #  define INT16_TYPE int16_t
 | |
| # else
 | |
| #  define INT16_TYPE short int
 | |
| # endif
 | |
| #endif
 | |
| #ifndef UINT8_TYPE
 | |
| # ifdef HAVE_UINT8_T
 | |
| #  define UINT8_TYPE uint8_t
 | |
| # else
 | |
| #  define UINT8_TYPE unsigned char
 | |
| # endif
 | |
| #endif
 | |
| #ifndef INT8_TYPE
 | |
| # ifdef HAVE_INT8_T
 | |
| #  define INT8_TYPE int8_t
 | |
| # else
 | |
| #  define INT8_TYPE signed char
 | |
| # endif
 | |
| #endif
 | |
| #ifndef LONGDOUBLE_TYPE
 | |
| # define LONGDOUBLE_TYPE long double
 | |
| #endif
 | |
| typedef sqlite_int64 i64;          /* 8-byte signed integer */
 | |
| typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
 | |
| typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
 | |
| typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
 | |
| typedef INT16_TYPE i16;            /* 2-byte signed integer */
 | |
| typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
 | |
| typedef UINT8_TYPE i8;             /* 1-byte signed integer */
 | |
| 
 | |
| /*
 | |
| ** Macros to determine whether the machine is big or little endian,
 | |
| ** evaluated at runtime.
 | |
| */
 | |
| #ifdef SQLITE_AMALGAMATION
 | |
| SQLITE_PRIVATE const int sqlite3one;
 | |
| #else
 | |
| SQLITE_PRIVATE const int sqlite3one;
 | |
| #endif
 | |
| #if defined(i386) || defined(__i386__) || defined(_M_IX86)
 | |
| # define SQLITE_BIGENDIAN    0
 | |
| # define SQLITE_LITTLEENDIAN 1
 | |
| # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
 | |
| #else
 | |
| # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
 | |
| # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
 | |
| # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure is used to store the busy-handler
 | |
| ** callback for a given sqlite handle. 
 | |
| **
 | |
| ** The sqlite.busyHandler member of the sqlite struct contains the busy
 | |
| ** callback for the database handle. Each pager opened via the sqlite
 | |
| ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
 | |
| ** callback is currently invoked only from within pager.c.
 | |
| */
 | |
| typedef struct BusyHandler BusyHandler;
 | |
| struct BusyHandler {
 | |
|   int (*xFunc)(void *,int);  /* The busy callback */
 | |
|   void *pArg;                /* First arg to busy callback */
 | |
|   int nBusy;                 /* Incremented with each busy call */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Name of the master database table.  The master database table
 | |
| ** is a special table that holds the names and attributes of all
 | |
| ** user tables and indices.
 | |
| */
 | |
| #define MASTER_NAME       "sqlite_master"
 | |
| #define TEMP_MASTER_NAME  "sqlite_temp_master"
 | |
| 
 | |
| /*
 | |
| ** The root-page of the master database table.
 | |
| */
 | |
| #define MASTER_ROOT       1
 | |
| 
 | |
| /*
 | |
| ** The name of the schema table.
 | |
| */
 | |
| #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
 | |
| 
 | |
| /*
 | |
| ** A convenience macro that returns the number of elements in
 | |
| ** an array.
 | |
| */
 | |
| #define ArraySize(X)    (sizeof(X)/sizeof(X[0]))
 | |
| 
 | |
| /*
 | |
| ** Forward references to structures
 | |
| */
 | |
| typedef struct AggInfo AggInfo;
 | |
| typedef struct AuthContext AuthContext;
 | |
| typedef struct Bitvec Bitvec;
 | |
| typedef struct CollSeq CollSeq;
 | |
| typedef struct Column Column;
 | |
| typedef struct Db Db;
 | |
| typedef struct Schema Schema;
 | |
| typedef struct Expr Expr;
 | |
| typedef struct ExprList ExprList;
 | |
| typedef struct FKey FKey;
 | |
| typedef struct FuncDef FuncDef;
 | |
| typedef struct IdList IdList;
 | |
| typedef struct Index Index;
 | |
| typedef struct KeyClass KeyClass;
 | |
| typedef struct KeyInfo KeyInfo;
 | |
| typedef struct Module Module;
 | |
| typedef struct NameContext NameContext;
 | |
| typedef struct Parse Parse;
 | |
| typedef struct Select Select;
 | |
| typedef struct SrcList SrcList;
 | |
| typedef struct StrAccum StrAccum;
 | |
| typedef struct Table Table;
 | |
| typedef struct TableLock TableLock;
 | |
| typedef struct Token Token;
 | |
| typedef struct TriggerStack TriggerStack;
 | |
| typedef struct TriggerStep TriggerStep;
 | |
| typedef struct Trigger Trigger;
 | |
| typedef struct WhereInfo WhereInfo;
 | |
| typedef struct WhereLevel WhereLevel;
 | |
| 
 | |
| /*
 | |
| ** Defer sourcing vdbe.h and btree.h until after the "u8" and 
 | |
| ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
 | |
| ** pointer types (i.e. FuncDef) defined above.
 | |
| */
 | |
| /************** Include btree.h in the middle of sqliteInt.h *****************/
 | |
| /************** Begin file btree.h *******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This header file defines the interface that the sqlite B-Tree file
 | |
| ** subsystem.  See comments in the source code for a detailed description
 | |
| ** of what each interface routine does.
 | |
| **
 | |
| ** @(#) $Id: btree.h,v 1.94 2007/12/07 18:55:28 drh Exp $
 | |
| */
 | |
| #ifndef _BTREE_H_
 | |
| #define _BTREE_H_
 | |
| 
 | |
| /* TODO: This definition is just included so other modules compile. It
 | |
| ** needs to be revisited.
 | |
| */
 | |
| #define SQLITE_N_BTREE_META 10
 | |
| 
 | |
| /*
 | |
| ** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
 | |
| ** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
 | |
| */
 | |
| #ifndef SQLITE_DEFAULT_AUTOVACUUM
 | |
|   #define SQLITE_DEFAULT_AUTOVACUUM 0
 | |
| #endif
 | |
| 
 | |
| #define BTREE_AUTOVACUUM_NONE 0        /* Do not do auto-vacuum */
 | |
| #define BTREE_AUTOVACUUM_FULL 1        /* Do full auto-vacuum */
 | |
| #define BTREE_AUTOVACUUM_INCR 2        /* Incremental vacuum */
 | |
| 
 | |
| /*
 | |
| ** Forward declarations of structure
 | |
| */
 | |
| typedef struct Btree Btree;
 | |
| typedef struct BtCursor BtCursor;
 | |
| typedef struct BtShared BtShared;
 | |
| typedef struct BtreeMutexArray BtreeMutexArray;
 | |
| 
 | |
| /*
 | |
| ** This structure records all of the Btrees that need to hold
 | |
| ** a mutex before we enter sqlite3VdbeExec().  The Btrees are
 | |
| ** are placed in aBtree[] in order of aBtree[]->pBt.  That way,
 | |
| ** we can always lock and unlock them all quickly.
 | |
| */
 | |
| struct BtreeMutexArray {
 | |
|   int nMutex;
 | |
|   Btree *aBtree[SQLITE_MAX_ATTACHED+1];
 | |
| };
 | |
| 
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreeOpen(
 | |
|   const char *zFilename,   /* Name of database file to open */
 | |
|   sqlite3 *db,             /* Associated database connection */
 | |
|   Btree **,                /* Return open Btree* here */
 | |
|   int flags,               /* Flags */
 | |
|   int vfsFlags             /* Flags passed through to VFS open */
 | |
| );
 | |
| 
 | |
| /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the
 | |
| ** following values.
 | |
| **
 | |
| ** NOTE:  These values must match the corresponding PAGER_ values in
 | |
| ** pager.h.
 | |
| */
 | |
| #define BTREE_OMIT_JOURNAL  1  /* Do not use journal.  No argument */
 | |
| #define BTREE_NO_READLOCK   2  /* Omit readlocks on readonly files */
 | |
| #define BTREE_MEMORY        4  /* In-memory DB.  No argument */
 | |
| #define BTREE_READONLY      8  /* Open the database in read-only mode */
 | |
| #define BTREE_READWRITE    16  /* Open for both reading and writing */
 | |
| #define BTREE_CREATE       32  /* Create the database if it does not exist */
 | |
| 
 | |
| /* Additional values for the 4th argument of sqlite3BtreeOpen that
 | |
| ** are not associated with PAGER_ values.
 | |
| */
 | |
| #define BTREE_PRIVATE      64  /* Never share with other connections */
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree*,int,int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
 | |
| SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags);
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*);
 | |
| SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));
 | |
| SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *);
 | |
| SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8);
 | |
| 
 | |
| SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *);
 | |
| SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *);
 | |
| SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *);
 | |
| SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *);
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *);
 | |
| 
 | |
| /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
 | |
| ** of the following flags:
 | |
| */
 | |
| #define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
 | |
| #define BTREE_ZERODATA   2    /* Table has keys only - no data */
 | |
| #define BTREE_LEAFDATA   4    /* Data stored in leaves only.  Implies INTKEY */
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue);
 | |
| SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value);
 | |
| SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int);
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreeCursor(
 | |
|   Btree*,                              /* BTree containing table to open */
 | |
|   int iTable,                          /* Index of root page */
 | |
|   int wrFlag,                          /* 1 for writing.  0 for read-only */
 | |
|   int(*)(void*,int,const void*,int,const void*),  /* Key comparison function */
 | |
|   void*,                               /* First argument to compare function */
 | |
|   BtCursor **ppCursor                  /* Returned cursor */
 | |
| );
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeMoveto(BtCursor*,const void *pKey,i64 nKey,int bias,int *pRes);
 | |
| SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
 | |
|                                   const void *pData, int nData,
 | |
|                                   int nZero, int bias);
 | |
| SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes);
 | |
| SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes);
 | |
| SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes);
 | |
| SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor*);
 | |
| SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes);
 | |
| SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize);
 | |
| SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
 | |
| SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor*);
 | |
| SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt);
 | |
| SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt);
 | |
| SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize);
 | |
| SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);
 | |
| 
 | |
| SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
 | |
| SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
 | |
| SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int);
 | |
| SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*);
 | |
| SQLITE_PRIVATE int sqlite3BtreePageDump(Btree*, int, int recursive);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If we are not using shared cache, then there is no need to
 | |
| ** use mutexes to access the BtShared structures.  So make the
 | |
| ** Enter and Leave procedures no-ops.
 | |
| */
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
 | |
| SQLITE_PRIVATE   void sqlite3BtreeEnter(Btree*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeLeave(Btree*);
 | |
| SQLITE_PRIVATE   int sqlite3BtreeHoldsMutex(Btree*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeEnterCursor(BtCursor*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeLeaveCursor(BtCursor*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeEnterAll(sqlite3*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeLeaveAll(sqlite3*);
 | |
| SQLITE_PRIVATE   int sqlite3BtreeHoldsAllMutexes(sqlite3*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*);
 | |
| SQLITE_PRIVATE   void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*);
 | |
| #else
 | |
| # define sqlite3BtreeEnter(X)
 | |
| # define sqlite3BtreeLeave(X)
 | |
| # define sqlite3BtreeHoldsMutex(X) 1
 | |
| # define sqlite3BtreeEnterCursor(X)
 | |
| # define sqlite3BtreeLeaveCursor(X)
 | |
| # define sqlite3BtreeEnterAll(X)
 | |
| # define sqlite3BtreeLeaveAll(X)
 | |
| # define sqlite3BtreeHoldsAllMutexes(X) 1
 | |
| # define sqlite3BtreeMutexArrayEnter(X)
 | |
| # define sqlite3BtreeMutexArrayLeave(X)
 | |
| # define sqlite3BtreeMutexArrayInsert(X,Y)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #endif /* _BTREE_H_ */
 | |
| 
 | |
| /************** End of btree.h ***********************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| /************** Include vdbe.h in the middle of sqliteInt.h ******************/
 | |
| /************** Begin file vdbe.h ********************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Header file for the Virtual DataBase Engine (VDBE)
 | |
| **
 | |
| ** This header defines the interface to the virtual database engine
 | |
| ** or VDBE.  The VDBE implements an abstract machine that runs a
 | |
| ** simple program to access and modify the underlying database.
 | |
| **
 | |
| ** $Id: vdbe.h,v 1.125 2008/01/17 17:27:31 drh Exp $
 | |
| */
 | |
| #ifndef _SQLITE_VDBE_H_
 | |
| #define _SQLITE_VDBE_H_
 | |
| 
 | |
| /*
 | |
| ** A single VDBE is an opaque structure named "Vdbe".  Only routines
 | |
| ** in the source file sqliteVdbe.c are allowed to see the insides
 | |
| ** of this structure.
 | |
| */
 | |
| typedef struct Vdbe Vdbe;
 | |
| 
 | |
| /*
 | |
| ** The names of the following types declared in vdbeInt.h are required
 | |
| ** for the VdbeOp definition.
 | |
| */
 | |
| typedef struct VdbeFunc VdbeFunc;
 | |
| typedef struct Mem Mem;
 | |
| 
 | |
| /*
 | |
| ** A single instruction of the virtual machine has an opcode
 | |
| ** and as many as three operands.  The instruction is recorded
 | |
| ** as an instance of the following structure:
 | |
| */
 | |
| struct VdbeOp {
 | |
|   u8 opcode;          /* What operation to perform */
 | |
|   signed char p4type; /* One of the P4_xxx constants for p4 */
 | |
|   u8 flags;           /* Flags for internal use */
 | |
|   u8 p5;              /* Fifth parameter is an unsigned character */
 | |
|   int p1;             /* First operand */
 | |
|   int p2;             /* Second parameter (often the jump destination) */
 | |
|   int p3;             /* The third parameter */
 | |
|   union {             /* forth parameter */
 | |
|     int i;                 /* Integer value if p4type==P4_INT32 */
 | |
|     void *p;               /* Generic pointer */
 | |
|     char *z;               /* Pointer to data for string (char array) types */
 | |
|     i64 *pI64;             /* Used when p4type is P4_INT64 */
 | |
|     double *pReal;         /* Used when p4type is P4_REAL */
 | |
|     FuncDef *pFunc;        /* Used when p4type is P4_FUNCDEF */
 | |
|     VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
 | |
|     CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
 | |
|     Mem *pMem;             /* Used when p4type is P4_MEM */
 | |
|     sqlite3_vtab *pVtab;   /* Used when p4type is P4_VTAB */
 | |
|     KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
 | |
|   } p4;
 | |
| #ifdef SQLITE_DEBUG
 | |
|   char *zComment;     /* Comment to improve readability */
 | |
| #endif
 | |
| #ifdef VDBE_PROFILE
 | |
|   int cnt;            /* Number of times this instruction was executed */
 | |
|   long long cycles;   /* Total time spend executing this instruction */
 | |
| #endif
 | |
| };
 | |
| typedef struct VdbeOp VdbeOp;
 | |
| 
 | |
| /*
 | |
| ** A smaller version of VdbeOp used for the VdbeAddOpList() function because
 | |
| ** it takes up less space.
 | |
| */
 | |
| struct VdbeOpList {
 | |
|   u8 opcode;          /* What operation to perform */
 | |
|   signed char p1;     /* First operand */
 | |
|   signed char p2;     /* Second parameter (often the jump destination) */
 | |
|   signed char p3;     /* Third parameter */
 | |
| };
 | |
| typedef struct VdbeOpList VdbeOpList;
 | |
| 
 | |
| /*
 | |
| ** Allowed values of VdbeOp.p3type
 | |
| */
 | |
| #define P4_NOTUSED    0   /* The P4 parameter is not used */
 | |
| #define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
 | |
| #define P4_STATIC   (-2)  /* Pointer to a static string */
 | |
| #define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
 | |
| #define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
 | |
| #define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
 | |
| #define P4_VDBEFUNC (-7)  /* P4 is a pointer to a VdbeFunc structure */
 | |
| #define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
 | |
| #define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */
 | |
| #define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
 | |
| #define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
 | |
| #define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
 | |
| #define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
 | |
| #define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
 | |
| 
 | |
| /* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
 | |
| ** is made.  That copy is freed when the Vdbe is finalized.  But if the
 | |
| ** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
 | |
| ** gets freed when the Vdbe is finalized so it still should be obtained
 | |
| ** from a single sqliteMalloc().  But no copy is made and the calling
 | |
| ** function should *not* try to free the KeyInfo.
 | |
| */
 | |
| #define P4_KEYINFO_HANDOFF (-9)
 | |
| 
 | |
| /*
 | |
| ** The Vdbe.aColName array contains 5n Mem structures, where n is the 
 | |
| ** number of columns of data returned by the statement.
 | |
| */
 | |
| #define COLNAME_NAME     0
 | |
| #define COLNAME_DECLTYPE 1
 | |
| #define COLNAME_DATABASE 2
 | |
| #define COLNAME_TABLE    3
 | |
| #define COLNAME_COLUMN   4
 | |
| #define COLNAME_N        5      /* Number of COLNAME_xxx symbols */
 | |
| 
 | |
| /*
 | |
| ** The following macro converts a relative address in the p2 field
 | |
| ** of a VdbeOp structure into a negative number so that 
 | |
| ** sqlite3VdbeAddOpList() knows that the address is relative.  Calling
 | |
| ** the macro again restores the address.
 | |
| */
 | |
| #define ADDR(X)  (-1-(X))
 | |
| 
 | |
| /*
 | |
| ** The makefile scans the vdbe.c source file and creates the "opcodes.h"
 | |
| ** header file that defines a number for each opcode used by the VDBE.
 | |
| */
 | |
| /************** Include opcodes.h in the middle of vdbe.h ********************/
 | |
| /************** Begin file opcodes.h *****************************************/
 | |
| /* Automatically generated.  Do not edit */
 | |
| /* See the mkopcodeh.awk script for details */
 | |
| #define OP_VNext                                1
 | |
| #define OP_Column                               2
 | |
| #define OP_SetCookie                            3
 | |
| #define OP_Real                               125   /* same as TK_FLOAT    */
 | |
| #define OP_Sequence                             4
 | |
| #define OP_MoveGt                               5
 | |
| #define OP_Ge                                  72   /* same as TK_GE       */
 | |
| #define OP_RowKey                               6
 | |
| #define OP_SCopy                                7
 | |
| #define OP_Eq                                  68   /* same as TK_EQ       */
 | |
| #define OP_OpenWrite                            8
 | |
| #define OP_NotNull                             66   /* same as TK_NOTNULL  */
 | |
| #define OP_If                                   9
 | |
| #define OP_ToInt                              141   /* same as TK_TO_INT   */
 | |
| #define OP_String8                             88   /* same as TK_STRING   */
 | |
| #define OP_VRowid                              10
 | |
| #define OP_CollSeq                             11
 | |
| #define OP_OpenRead                            12
 | |
| #define OP_Expire                              13
 | |
| #define OP_AutoCommit                          14
 | |
| #define OP_Gt                                  69   /* same as TK_GT       */
 | |
| #define OP_IntegrityCk                         15
 | |
| #define OP_Sort                                17
 | |
| #define OP_Copy                                18
 | |
| #define OP_Trace                               19
 | |
| #define OP_Function                            20
 | |
| #define OP_IfNeg                               21
 | |
| #define OP_And                                 61   /* same as TK_AND      */
 | |
| #define OP_Subtract                            79   /* same as TK_MINUS    */
 | |
| #define OP_Noop                                22
 | |
| #define OP_Return                              23
 | |
| #define OP_Remainder                           82   /* same as TK_REM      */
 | |
| #define OP_NewRowid                            24
 | |
| #define OP_Multiply                            80   /* same as TK_STAR     */
 | |
| #define OP_Variable                            25
 | |
| #define OP_String                              26
 | |
| #define OP_RealAffinity                        27
 | |
| #define OP_VRename                             28
 | |
| #define OP_ParseSchema                         29
 | |
| #define OP_VOpen                               30
 | |
| #define OP_Close                               31
 | |
| #define OP_CreateIndex                         32
 | |
| #define OP_IsUnique                            33
 | |
| #define OP_NotFound                            34
 | |
| #define OP_Int64                               35
 | |
| #define OP_MustBeInt                           36
 | |
| #define OP_Halt                                37
 | |
| #define OP_Rowid                               38
 | |
| #define OP_IdxLT                               39
 | |
| #define OP_AddImm                              40
 | |
| #define OP_Statement                           41
 | |
| #define OP_RowData                             42
 | |
| #define OP_MemMax                              43
 | |
| #define OP_Or                                  60   /* same as TK_OR       */
 | |
| #define OP_NotExists                           44
 | |
| #define OP_Gosub                               45
 | |
| #define OP_Divide                              81   /* same as TK_SLASH    */
 | |
| #define OP_Integer                             46
 | |
| #define OP_ToNumeric                          140   /* same as TK_TO_NUMERIC*/
 | |
| #define OP_Prev                                47
 | |
| #define OP_Concat                              83   /* same as TK_CONCAT   */
 | |
| #define OP_BitAnd                              74   /* same as TK_BITAND   */
 | |
| #define OP_VColumn                             48
 | |
| #define OP_CreateTable                         49
 | |
| #define OP_Last                                50
 | |
| #define OP_IsNull                              65   /* same as TK_ISNULL   */
 | |
| #define OP_IncrVacuum                          51
 | |
| #define OP_IdxRowid                            52
 | |
| #define OP_ShiftRight                          77   /* same as TK_RSHIFT   */
 | |
| #define OP_ResetCount                          53
 | |
| #define OP_FifoWrite                           54
 | |
| #define OP_ContextPush                         55
 | |
| #define OP_DropTrigger                         56
 | |
| #define OP_DropIndex                           57
 | |
| #define OP_IdxGE                               58
 | |
| #define OP_IdxDelete                           59
 | |
| #define OP_Vacuum                              62
 | |
| #define OP_MoveLe                              63
 | |
| #define OP_IfNot                               64
 | |
| #define OP_DropTable                           73
 | |
| #define OP_MakeRecord                          84
 | |
| #define OP_ToBlob                             139   /* same as TK_TO_BLOB  */
 | |
| #define OP_ResultRow                           85
 | |
| #define OP_Delete                              86
 | |
| #define OP_AggFinal                            89
 | |
| #define OP_ShiftLeft                           76   /* same as TK_LSHIFT   */
 | |
| #define OP_Goto                                90
 | |
| #define OP_TableLock                           91
 | |
| #define OP_FifoRead                            92
 | |
| #define OP_Clear                               93
 | |
| #define OP_MoveLt                              94
 | |
| #define OP_Le                                  70   /* same as TK_LE       */
 | |
| #define OP_VerifyCookie                        95
 | |
| #define OP_AggStep                             96
 | |
| #define OP_ToText                             138   /* same as TK_TO_TEXT  */
 | |
| #define OP_Not                                 16   /* same as TK_NOT      */
 | |
| #define OP_ToReal                             142   /* same as TK_TO_REAL  */
 | |
| #define OP_SetNumColumns                       97
 | |
| #define OP_Transaction                         98
 | |
| #define OP_VFilter                             99
 | |
| #define OP_Ne                                  67   /* same as TK_NE       */
 | |
| #define OP_VDestroy                           100
 | |
| #define OP_ContextPop                         101
 | |
| #define OP_BitOr                               75   /* same as TK_BITOR    */
 | |
| #define OP_Next                               102
 | |
| #define OP_IdxInsert                          103
 | |
| #define OP_Lt                                  71   /* same as TK_LT       */
 | |
| #define OP_Insert                             104
 | |
| #define OP_Destroy                            105
 | |
| #define OP_ReadCookie                         106
 | |
| #define OP_ForceInt                           107
 | |
| #define OP_LoadAnalysis                       108
 | |
| #define OP_Explain                            109
 | |
| #define OP_OpenPseudo                         110
 | |
| #define OP_OpenEphemeral                      111
 | |
| #define OP_Null                               112
 | |
| #define OP_Move                               113
 | |
| #define OP_Blob                               114
 | |
| #define OP_Add                                 78   /* same as TK_PLUS     */
 | |
| #define OP_Rewind                             115
 | |
| #define OP_MoveGe                             116
 | |
| #define OP_VBegin                             117
 | |
| #define OP_VUpdate                            118
 | |
| #define OP_IfZero                             119
 | |
| #define OP_BitNot                              87   /* same as TK_BITNOT   */
 | |
| #define OP_VCreate                            120
 | |
| #define OP_Found                              121
 | |
| #define OP_IfPos                              122
 | |
| #define OP_NullRow                            123
 | |
| 
 | |
| /* The following opcode values are never used */
 | |
| #define OP_NotUsed_124                        124
 | |
| #define OP_NotUsed_126                        126
 | |
| #define OP_NotUsed_127                        127
 | |
| #define OP_NotUsed_128                        128
 | |
| #define OP_NotUsed_129                        129
 | |
| #define OP_NotUsed_130                        130
 | |
| #define OP_NotUsed_131                        131
 | |
| #define OP_NotUsed_132                        132
 | |
| #define OP_NotUsed_133                        133
 | |
| #define OP_NotUsed_134                        134
 | |
| #define OP_NotUsed_135                        135
 | |
| #define OP_NotUsed_136                        136
 | |
| #define OP_NotUsed_137                        137
 | |
| 
 | |
| 
 | |
| /* Properties such as "out2" or "jump" that are specified in
 | |
| ** comments following the "case" for each opcode in the vdbe.c
 | |
| ** are encoded into bitvectors as follows:
 | |
| */
 | |
| #define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
 | |
| #define OPFLG_OUT2_PRERELEASE 0x0002  /* out2-prerelease: */
 | |
| #define OPFLG_IN1             0x0004  /* in1:   P1 is an input */
 | |
| #define OPFLG_IN2             0x0008  /* in2:   P2 is an input */
 | |
| #define OPFLG_IN3             0x0010  /* in3:   P3 is an input */
 | |
| #define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
 | |
| #define OPFLG_INITIALIZER {\
 | |
| /*   0 */ 0x00, 0x01, 0x00, 0x10, 0x02, 0x11, 0x00, 0x00,\
 | |
| /*   8 */ 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\
 | |
| /*  16 */ 0x04, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00,\
 | |
| /*  24 */ 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00, 0x00,\
 | |
| /*  32 */ 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02, 0x11,\
 | |
| /*  40 */ 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01, 0x02, 0x01,\
 | |
| /*  48 */ 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04, 0x00,\
 | |
| /*  56 */ 0x00, 0x00, 0x11, 0x08, 0x2c, 0x2c, 0x00, 0x11,\
 | |
| /*  64 */ 0x05, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\
 | |
| /*  72 */ 0x15, 0x00, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\
 | |
| /*  80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\
 | |
| /*  88 */ 0x02, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11, 0x00,\
 | |
| /*  96 */ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01, 0x08,\
 | |
| /* 104 */ 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00, 0x00,\
 | |
| /* 112 */ 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00, 0x05,\
 | |
| /* 120 */ 0x00, 0x11, 0x05, 0x00, 0x00, 0x02, 0x00, 0x00,\
 | |
| /* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
 | |
| /* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,}
 | |
| 
 | |
| /************** End of opcodes.h *********************************************/
 | |
| /************** Continuing where we left off in vdbe.h ***********************/
 | |
| 
 | |
| /*
 | |
| ** Prototypes for the VDBE interface.  See comments on the implementation
 | |
| ** for a description of what each of these routines does.
 | |
| */
 | |
| SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
 | |
| SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr);
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
 | |
| SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int);
 | |
| SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*);
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE   void sqlite3VdbeTrace(Vdbe*,FILE*);
 | |
| #endif
 | |
| SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int);
 | |
| SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*);
 | |
| SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n);
 | |
| SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| SQLITE_PRIVATE   void sqlite3VdbeComment(Vdbe*, const char*, ...);
 | |
| # define VdbeComment(X)  sqlite3VdbeComment X
 | |
| #else
 | |
| # define VdbeComment(X)
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /************** End of vdbe.h ************************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| /************** Include pager.h in the middle of sqliteInt.h *****************/
 | |
| /************** Begin file pager.h *******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This header file defines the interface that the sqlite page cache
 | |
| ** subsystem.  The page cache subsystem reads and writes a file a page
 | |
| ** at a time and provides a journal for rollback.
 | |
| **
 | |
| ** @(#) $Id: pager.h,v 1.69 2008/02/02 20:47:38 drh Exp $
 | |
| */
 | |
| 
 | |
| #ifndef _PAGER_H_
 | |
| #define _PAGER_H_
 | |
| 
 | |
| /*
 | |
| ** The type used to represent a page number.  The first page in a file
 | |
| ** is called page 1.  0 is used to represent "not a page".
 | |
| */
 | |
| typedef unsigned int Pgno;
 | |
| 
 | |
| /*
 | |
| ** Each open file is managed by a separate instance of the "Pager" structure.
 | |
| */
 | |
| typedef struct Pager Pager;
 | |
| 
 | |
| /*
 | |
| ** Handle type for pages.
 | |
| */
 | |
| typedef struct PgHdr DbPage;
 | |
| 
 | |
| /*
 | |
| ** Allowed values for the flags parameter to sqlite3PagerOpen().
 | |
| **
 | |
| ** NOTE: This values must match the corresponding BTREE_ values in btree.h.
 | |
| */
 | |
| #define PAGER_OMIT_JOURNAL  0x0001    /* Do not use a rollback journal */
 | |
| #define PAGER_NO_READLOCK   0x0002    /* Omit readlocks on readonly files */
 | |
| 
 | |
| /*
 | |
| ** Valid values for the second argument to sqlite3PagerLockingMode().
 | |
| */
 | |
| #define PAGER_LOCKINGMODE_QUERY      -1
 | |
| #define PAGER_LOCKINGMODE_NORMAL      0
 | |
| #define PAGER_LOCKINGMODE_EXCLUSIVE   1
 | |
| 
 | |
| /*
 | |
| ** See source code comments for a detailed description of the following
 | |
| ** routines:
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int);
 | |
| SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler);
 | |
| SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int));
 | |
| SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int));
 | |
| SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*);
 | |
| SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
 | |
| SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*);
 | |
| SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
 | |
| SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager);
 | |
| SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
 | |
| #define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
 | |
| SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
 | |
| SQLITE_PRIVATE int sqlite3PagerRef(DbPage*);
 | |
| SQLITE_PRIVATE int sqlite3PagerUnref(DbPage*);
 | |
| SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
 | |
| SQLITE_PRIVATE int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void*);
 | |
| SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerTruncate(Pager*,Pgno);
 | |
| SQLITE_PRIVATE int sqlite3PagerBegin(DbPage*, int exFlag);
 | |
| SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno);
 | |
| SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerRollback(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager*);
 | |
| SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage*);
 | |
| SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*);
 | |
| SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
 | |
| SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int);
 | |
| SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*);
 | |
| SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
 | |
| SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
 | |
| SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager*);
 | |
| SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
 | |
| SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno);
 | |
| SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); 
 | |
| SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); 
 | |
| SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
 | |
| SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
 | |
| 
 | |
| #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
 | |
| SQLITE_PRIVATE   int sqlite3PagerReleaseMemory(int);
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_HAS_CODEC
 | |
| SQLITE_PRIVATE   void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*);
 | |
| #endif
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(SQLITE_TEST)
 | |
| SQLITE_PRIVATE   Pgno sqlite3PagerPagenumber(DbPage*);
 | |
| SQLITE_PRIVATE   int sqlite3PagerIswriteable(DbPage*);
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_PRIVATE   int *sqlite3PagerStats(Pager*);
 | |
| SQLITE_PRIVATE   void sqlite3PagerRefdump(Pager*);
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| void disable_simulated_io_errors(void);
 | |
| void enable_simulated_io_errors(void);
 | |
| #else
 | |
| # define disable_simulated_io_errors()
 | |
| # define enable_simulated_io_errors()
 | |
| #endif
 | |
| 
 | |
| #endif /* _PAGER_H_ */
 | |
| 
 | |
| /************** End of pager.h ***********************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| 
 | |
| /************** Include os.h in the middle of sqliteInt.h ********************/
 | |
| /************** Begin file os.h **********************************************/
 | |
| /*
 | |
| ** 2001 September 16
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This header file (together with is companion C source-code file
 | |
| ** "os.c") attempt to abstract the underlying operating system so that
 | |
| ** the SQLite library will work on both POSIX and windows systems.
 | |
| **
 | |
| ** This header file is #include-ed by sqliteInt.h and thus ends up
 | |
| ** being included by every source file.
 | |
| */
 | |
| #ifndef _SQLITE_OS_H_
 | |
| #define _SQLITE_OS_H_
 | |
| 
 | |
| /*
 | |
| ** Figure out if we are dealing with Unix, Windows, or some other
 | |
| ** operating system.  After the following block of preprocess macros,
 | |
| ** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either
 | |
| ** 1 or 0.  One of the four will be 1.  The other three will be 0.
 | |
| */
 | |
| #if defined(OS_OTHER)
 | |
| # if OS_OTHER==1
 | |
| #   undef OS_UNIX
 | |
| #   define OS_UNIX 0
 | |
| #   undef OS_WIN
 | |
| #   define OS_WIN 0
 | |
| #   undef OS_OS2
 | |
| #   define OS_OS2 0
 | |
| # else
 | |
| #   undef OS_OTHER
 | |
| # endif
 | |
| #endif
 | |
| #if !defined(OS_UNIX) && !defined(OS_OTHER)
 | |
| # define OS_OTHER 0
 | |
| # ifndef OS_WIN
 | |
| #   if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
 | |
| #     define OS_WIN 1
 | |
| #     define OS_UNIX 0
 | |
| #     define OS_OS2 0
 | |
| #   elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
 | |
| #     define OS_WIN 0
 | |
| #     define OS_UNIX 0
 | |
| #     define OS_OS2 1
 | |
| #   else
 | |
| #     define OS_WIN 0
 | |
| #     define OS_UNIX 1
 | |
| #     define OS_OS2 0
 | |
| #  endif
 | |
| # else
 | |
| #  define OS_UNIX 0
 | |
| #  define OS_OS2 0
 | |
| # endif
 | |
| #else
 | |
| # ifndef OS_WIN
 | |
| #  define OS_WIN 0
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Define the maximum size of a temporary filename
 | |
| */
 | |
| #if OS_WIN
 | |
| # include <windows.h>
 | |
| # define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
 | |
| #elif OS_OS2
 | |
| # if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
 | |
| #  include <os2safe.h> /* has to be included before os2.h for linking to work */
 | |
| # endif
 | |
| # define INCL_DOSDATETIME
 | |
| # define INCL_DOSFILEMGR
 | |
| # define INCL_DOSERRORS
 | |
| # define INCL_DOSMISC
 | |
| # define INCL_DOSPROCESS
 | |
| # define INCL_DOSMODULEMGR
 | |
| # define INCL_DOSSEMAPHORES
 | |
| # include <os2.h>
 | |
| # define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP)
 | |
| #else
 | |
| # define SQLITE_TEMPNAME_SIZE 200
 | |
| #endif
 | |
| 
 | |
| /* If the SET_FULLSYNC macro is not defined above, then make it
 | |
| ** a no-op
 | |
| */
 | |
| #ifndef SET_FULLSYNC
 | |
| # define SET_FULLSYNC(x,y)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The default size of a disk sector
 | |
| */
 | |
| #ifndef SQLITE_DEFAULT_SECTOR_SIZE
 | |
| # define SQLITE_DEFAULT_SECTOR_SIZE 512
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Temporary files are named starting with this prefix followed by 16 random
 | |
| ** alphanumeric characters, and no file extension. They are stored in the
 | |
| ** OS's standard temporary file directory, and are deleted prior to exit.
 | |
| ** If sqlite is being embedded in another program, you may wish to change the
 | |
| ** prefix to reflect your program's name, so that if your program exits
 | |
| ** prematurely, old temporary files can be easily identified. This can be done
 | |
| ** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line.
 | |
| **
 | |
| ** 2006-10-31:  The default prefix used to be "sqlite_".  But then
 | |
| ** Mcafee started using SQLite in their anti-virus product and it
 | |
| ** started putting files with the "sqlite" name in the c:/temp folder.
 | |
| ** This annoyed many windows users.  Those users would then do a 
 | |
| ** Google search for "sqlite", find the telephone numbers of the
 | |
| ** developers and call to wake them up at night and complain.
 | |
| ** For this reason, the default name prefix is changed to be "sqlite" 
 | |
| ** spelled backwards.  So the temp files are still identified, but
 | |
| ** anybody smart enough to figure out the code is also likely smart
 | |
| ** enough to know that calling the developer will not help get rid
 | |
| ** of the file.
 | |
| */
 | |
| #ifndef SQLITE_TEMP_FILE_PREFIX
 | |
| # define SQLITE_TEMP_FILE_PREFIX "etilqs_"
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The following values may be passed as the second argument to
 | |
| ** sqlite3OsLock(). The various locks exhibit the following semantics:
 | |
| **
 | |
| ** SHARED:    Any number of processes may hold a SHARED lock simultaneously.
 | |
| ** RESERVED:  A single process may hold a RESERVED lock on a file at
 | |
| **            any time. Other processes may hold and obtain new SHARED locks.
 | |
| ** PENDING:   A single process may hold a PENDING lock on a file at
 | |
| **            any one time. Existing SHARED locks may persist, but no new
 | |
| **            SHARED locks may be obtained by other processes.
 | |
| ** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks.
 | |
| **
 | |
| ** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a
 | |
| ** process that requests an EXCLUSIVE lock may actually obtain a PENDING
 | |
| ** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to
 | |
| ** sqlite3OsLock().
 | |
| */
 | |
| #define NO_LOCK         0
 | |
| #define SHARED_LOCK     1
 | |
| #define RESERVED_LOCK   2
 | |
| #define PENDING_LOCK    3
 | |
| #define EXCLUSIVE_LOCK  4
 | |
| 
 | |
| /*
 | |
| ** File Locking Notes:  (Mostly about windows but also some info for Unix)
 | |
| **
 | |
| ** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
 | |
| ** those functions are not available.  So we use only LockFile() and
 | |
| ** UnlockFile().
 | |
| **
 | |
| ** LockFile() prevents not just writing but also reading by other processes.
 | |
| ** A SHARED_LOCK is obtained by locking a single randomly-chosen 
 | |
| ** byte out of a specific range of bytes. The lock byte is obtained at 
 | |
| ** random so two separate readers can probably access the file at the 
 | |
| ** same time, unless they are unlucky and choose the same lock byte.
 | |
| ** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range.
 | |
| ** There can only be one writer.  A RESERVED_LOCK is obtained by locking
 | |
| ** a single byte of the file that is designated as the reserved lock byte.
 | |
| ** A PENDING_LOCK is obtained by locking a designated byte different from
 | |
| ** the RESERVED_LOCK byte.
 | |
| **
 | |
| ** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
 | |
| ** which means we can use reader/writer locks.  When reader/writer locks
 | |
| ** are used, the lock is placed on the same range of bytes that is used
 | |
| ** for probabilistic locking in Win95/98/ME.  Hence, the locking scheme
 | |
| ** will support two or more Win95 readers or two or more WinNT readers.
 | |
| ** But a single Win95 reader will lock out all WinNT readers and a single
 | |
| ** WinNT reader will lock out all other Win95 readers.
 | |
| **
 | |
| ** The following #defines specify the range of bytes used for locking.
 | |
| ** SHARED_SIZE is the number of bytes available in the pool from which
 | |
| ** a random byte is selected for a shared lock.  The pool of bytes for
 | |
| ** shared locks begins at SHARED_FIRST. 
 | |
| **
 | |
| ** These #defines are available in sqlite_aux.h so that adaptors for
 | |
| ** connecting SQLite to other operating systems can use the same byte
 | |
| ** ranges for locking.  In particular, the same locking strategy and
 | |
| ** byte ranges are used for Unix.  This leaves open the possiblity of having
 | |
| ** clients on win95, winNT, and unix all talking to the same shared file
 | |
| ** and all locking correctly.  To do so would require that samba (or whatever
 | |
| ** tool is being used for file sharing) implements locks correctly between
 | |
| ** windows and unix.  I'm guessing that isn't likely to happen, but by
 | |
| ** using the same locking range we are at least open to the possibility.
 | |
| **
 | |
| ** Locking in windows is manditory.  For this reason, we cannot store
 | |
| ** actual data in the bytes used for locking.  The pager never allocates
 | |
| ** the pages involved in locking therefore.  SHARED_SIZE is selected so
 | |
| ** that all locks will fit on a single page even at the minimum page size.
 | |
| ** PENDING_BYTE defines the beginning of the locks.  By default PENDING_BYTE
 | |
| ** is set high so that we don't have to allocate an unused page except
 | |
| ** for very large databases.  But one should test the page skipping logic 
 | |
| ** by setting PENDING_BYTE low and running the entire regression suite.
 | |
| **
 | |
| ** Changing the value of PENDING_BYTE results in a subtly incompatible
 | |
| ** file format.  Depending on how it is changed, you might not notice
 | |
| ** the incompatibility right away, even running a full regression test.
 | |
| ** The default location of PENDING_BYTE is the first byte past the
 | |
| ** 1GB boundary.
 | |
| **
 | |
| */
 | |
| #ifndef SQLITE_TEST
 | |
| #define PENDING_BYTE      0x40000000  /* First byte past the 1GB boundary */
 | |
| #else
 | |
| SQLITE_API extern unsigned int sqlite3_pending_byte;
 | |
| #define PENDING_BYTE sqlite3_pending_byte
 | |
| #endif
 | |
| 
 | |
| #define RESERVED_BYTE     (PENDING_BYTE+1)
 | |
| #define SHARED_FIRST      (PENDING_BYTE+2)
 | |
| #define SHARED_SIZE       510
 | |
| 
 | |
| /* 
 | |
| ** Functions for accessing sqlite3_file methods 
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*);
 | |
| SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset);
 | |
| SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset);
 | |
| SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size);
 | |
| SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int);
 | |
| SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize);
 | |
| SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int);
 | |
| SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int);
 | |
| SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id);
 | |
| SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*);
 | |
| SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id);
 | |
| SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id);
 | |
| 
 | |
| /* 
 | |
| ** Functions for accessing sqlite3_vfs methods 
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *);
 | |
| SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int);
 | |
| SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int);
 | |
| SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *);
 | |
| SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *);
 | |
| SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *);
 | |
| SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *);
 | |
| SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *);
 | |
| SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *);
 | |
| SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *);
 | |
| SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int);
 | |
| SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*);
 | |
| 
 | |
| /*
 | |
| ** Convenience functions for opening and closing files using 
 | |
| ** sqlite3_malloc() to obtain space for the file-handle structure.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*);
 | |
| SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *);
 | |
| 
 | |
| /*
 | |
| ** Each OS-specific backend defines an instance of the following
 | |
| ** structure for returning a pointer to its sqlite3_vfs.  If OS_OTHER
 | |
| ** is defined (meaning that the application-defined OS interface layer
 | |
| ** is used) then there is no default VFS.   The application must
 | |
| ** register one or more VFS structures using sqlite3_vfs_register()
 | |
| ** before attempting to use SQLite.
 | |
| */
 | |
| #if OS_UNIX || OS_WIN || OS_OS2
 | |
| SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void);
 | |
| #else
 | |
| # define sqlite3OsDefaultVfs(X) 0
 | |
| #endif
 | |
| 
 | |
| #endif /* _SQLITE_OS_H_ */
 | |
| 
 | |
| /************** End of os.h **************************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| /************** Include mutex.h in the middle of sqliteInt.h *****************/
 | |
| /************** Begin file mutex.h *******************************************/
 | |
| /*
 | |
| ** 2007 August 28
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file contains the common header for all mutex implementations.
 | |
| ** The sqliteInt.h header #includes this file so that it is available
 | |
| ** to all source files.  We break it out in an effort to keep the code
 | |
| ** better organized.
 | |
| **
 | |
| ** NOTE:  source files should *not* #include this header file directly.
 | |
| ** Source files should #include the sqliteInt.h file and let that file
 | |
| ** include this one indirectly.
 | |
| **
 | |
| ** $Id: mutex.h,v 1.2 2007/08/30 14:10:30 drh Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifdef SQLITE_MUTEX_APPDEF
 | |
| /*
 | |
| ** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
 | |
| ** omitted and equivalent functionality must be provided by the
 | |
| ** application that links against the SQLite library.
 | |
| */
 | |
| #else
 | |
| /*
 | |
| ** Figure out what version of the code to use.  The choices are
 | |
| **
 | |
| **   SQLITE_MUTEX_NOOP         For single-threaded applications that
 | |
| **                             do not desire error checking.
 | |
| **
 | |
| **   SQLITE_MUTEX_NOOP_DEBUG   For single-threaded applications with
 | |
| **                             error checking to help verify that mutexes
 | |
| **                             are being used correctly even though they
 | |
| **                             are not needed.  Used when SQLITE_DEBUG is
 | |
| **                             defined on single-threaded builds.
 | |
| **
 | |
| **   SQLITE_MUTEX_PTHREADS     For multi-threaded applications on Unix.
 | |
| **
 | |
| **   SQLITE_MUTEX_W32          For multi-threaded applications on Win32.
 | |
| **
 | |
| **   SQLITE_MUTEX_OS2          For multi-threaded applications on OS/2.
 | |
| */
 | |
| #define SQLITE_MUTEX_NOOP 1   /* The default */
 | |
| #if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
 | |
| # undef SQLITE_MUTEX_NOOP
 | |
| # define SQLITE_MUTEX_NOOP_DEBUG
 | |
| #endif
 | |
| #if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
 | |
| # undef SQLITE_MUTEX_NOOP
 | |
| # define SQLITE_MUTEX_PTHREADS
 | |
| #endif
 | |
| #if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
 | |
| # undef SQLITE_MUTEX_NOOP
 | |
| # define SQLITE_MUTEX_W32
 | |
| #endif
 | |
| #if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2
 | |
| # undef SQLITE_MUTEX_NOOP
 | |
| # define SQLITE_MUTEX_OS2
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_MUTEX_NOOP
 | |
| /*
 | |
| ** If this is a no-op implementation, implement everything as macros.
 | |
| */
 | |
| #define sqlite3_mutex_alloc(X)    ((sqlite3_mutex*)8)
 | |
| #define sqlite3_mutex_free(X)
 | |
| #define sqlite3_mutex_enter(X)
 | |
| #define sqlite3_mutex_try(X)      SQLITE_OK
 | |
| #define sqlite3_mutex_leave(X)
 | |
| #define sqlite3_mutex_held(X)     1
 | |
| #define sqlite3_mutex_notheld(X)  1
 | |
| #endif
 | |
| 
 | |
| #endif /* SQLITE_MUTEX_APPDEF */
 | |
| 
 | |
| /************** End of mutex.h ***********************************************/
 | |
| /************** Continuing where we left off in sqliteInt.h ******************/
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Each database file to be accessed by the system is an instance
 | |
| ** of the following structure.  There are normally two of these structures
 | |
| ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
 | |
| ** aDb[1] is the database file used to hold temporary tables.  Additional
 | |
| ** databases may be attached.
 | |
| */
 | |
| struct Db {
 | |
|   char *zName;         /* Name of this database */
 | |
|   Btree *pBt;          /* The B*Tree structure for this database file */
 | |
|   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
 | |
|   u8 safety_level;     /* How aggressive at synching data to disk */
 | |
|   void *pAux;               /* Auxiliary data.  Usually NULL */
 | |
|   void (*xFreeAux)(void*);  /* Routine to free pAux */
 | |
|   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure stores a database schema.
 | |
| **
 | |
| ** If there are no virtual tables configured in this schema, the
 | |
| ** Schema.db variable is set to NULL. After the first virtual table
 | |
| ** has been added, it is set to point to the database connection 
 | |
| ** used to create the connection. Once a virtual table has been
 | |
| ** added to the Schema structure and the Schema.db variable populated, 
 | |
| ** only that database connection may use the Schema to prepare 
 | |
| ** statements.
 | |
| */
 | |
| struct Schema {
 | |
|   int schema_cookie;   /* Database schema version number for this file */
 | |
|   Hash tblHash;        /* All tables indexed by name */
 | |
|   Hash idxHash;        /* All (named) indices indexed by name */
 | |
|   Hash trigHash;       /* All triggers indexed by name */
 | |
|   Hash aFKey;          /* Foreign keys indexed by to-table */
 | |
|   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
 | |
|   u8 file_format;      /* Schema format version for this file */
 | |
|   u8 enc;              /* Text encoding used by this database */
 | |
|   u16 flags;           /* Flags associated with this schema */
 | |
|   int cache_size;      /* Number of pages to use in the cache */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   sqlite3 *db;         /* "Owner" connection. See comment above */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** These macros can be used to test, set, or clear bits in the 
 | |
| ** Db.flags field.
 | |
| */
 | |
| #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
 | |
| #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
 | |
| #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
 | |
| #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
 | |
| 
 | |
| /*
 | |
| ** Allowed values for the DB.flags field.
 | |
| **
 | |
| ** The DB_SchemaLoaded flag is set after the database schema has been
 | |
| ** read into internal hash tables.
 | |
| **
 | |
| ** DB_UnresetViews means that one or more views have column names that
 | |
| ** have been filled out.  If the schema changes, these column names might
 | |
| ** changes and so the view will need to be reset.
 | |
| */
 | |
| #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
 | |
| #define DB_UnresetViews    0x0002  /* Some views have defined column names */
 | |
| #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Each database is an instance of the following structure.
 | |
| **
 | |
| ** The sqlite.lastRowid records the last insert rowid generated by an
 | |
| ** insert statement.  Inserts on views do not affect its value.  Each
 | |
| ** trigger has its own context, so that lastRowid can be updated inside
 | |
| ** triggers as usual.  The previous value will be restored once the trigger
 | |
| ** exits.  Upon entering a before or instead of trigger, lastRowid is no
 | |
| ** longer (since after version 2.8.12) reset to -1.
 | |
| **
 | |
| ** The sqlite.nChange does not count changes within triggers and keeps no
 | |
| ** context.  It is reset at start of sqlite3_exec.
 | |
| ** The sqlite.lsChange represents the number of changes made by the last
 | |
| ** insert, update, or delete statement.  It remains constant throughout the
 | |
| ** length of a statement and is then updated by OP_SetCounts.  It keeps a
 | |
| ** context stack just like lastRowid so that the count of changes
 | |
| ** within a trigger is not seen outside the trigger.  Changes to views do not
 | |
| ** affect the value of lsChange.
 | |
| ** The sqlite.csChange keeps track of the number of current changes (since
 | |
| ** the last statement) and is used to update sqlite_lsChange.
 | |
| **
 | |
| ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
 | |
| ** store the most recent error code and, if applicable, string. The
 | |
| ** internal function sqlite3Error() is used to set these variables
 | |
| ** consistently.
 | |
| */
 | |
| struct sqlite3 {
 | |
|   sqlite3_vfs *pVfs;            /* OS Interface */
 | |
|   int nDb;                      /* Number of backends currently in use */
 | |
|   Db *aDb;                      /* All backends */
 | |
|   int flags;                    /* Miscellanous flags. See below */
 | |
|   int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
 | |
|   int errCode;                  /* Most recent error code (SQLITE_*) */
 | |
|   int errMask;                  /* & result codes with this before returning */
 | |
|   u8 autoCommit;                /* The auto-commit flag. */
 | |
|   u8 temp_store;                /* 1: file 2: memory 0: default */
 | |
|   u8 mallocFailed;              /* True if we have seen a malloc failure */
 | |
|   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
 | |
|   int nTable;                   /* Number of tables in the database */
 | |
|   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
 | |
|   i64 lastRowid;                /* ROWID of most recent insert (see above) */
 | |
|   i64 priorNewRowid;            /* Last randomly generated ROWID */
 | |
|   int magic;                    /* Magic number for detect library misuse */
 | |
|   int nChange;                  /* Value returned by sqlite3_changes() */
 | |
|   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
 | |
|   sqlite3_mutex *mutex;         /* Connection mutex */
 | |
|   struct sqlite3InitInfo {      /* Information used during initialization */
 | |
|     int iDb;                    /* When back is being initialized */
 | |
|     int newTnum;                /* Rootpage of table being initialized */
 | |
|     u8 busy;                    /* TRUE if currently initializing */
 | |
|   } init;
 | |
|   int nExtension;               /* Number of loaded extensions */
 | |
|   void **aExtension;            /* Array of shared libraray handles */
 | |
|   struct Vdbe *pVdbe;           /* List of active virtual machines */
 | |
|   int activeVdbeCnt;            /* Number of vdbes currently executing */
 | |
|   void (*xTrace)(void*,const char*);        /* Trace function */
 | |
|   void *pTraceArg;                          /* Argument to the trace function */
 | |
|   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
 | |
|   void *pProfileArg;                        /* Argument to profile function */
 | |
|   void *pCommitArg;                 /* Argument to xCommitCallback() */   
 | |
|   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
 | |
|   void *pRollbackArg;               /* Argument to xRollbackCallback() */   
 | |
|   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
 | |
|   void *pUpdateArg;
 | |
|   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
 | |
|   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
 | |
|   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
 | |
|   void *pCollNeededArg;
 | |
|   sqlite3_value *pErr;          /* Most recent error message */
 | |
|   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
 | |
|   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
 | |
|   union {
 | |
|     int isInterrupted;          /* True if sqlite3_interrupt has been called */
 | |
|     double notUsed1;            /* Spacer */
 | |
|   } u1;
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
 | |
|                                 /* Access authorization function */
 | |
|   void *pAuthArg;               /* 1st argument to the access auth function */
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
|   int (*xProgress)(void *);     /* The progress callback */
 | |
|   void *pProgressArg;           /* Argument to the progress callback */
 | |
|   int nProgressOps;             /* Number of opcodes for progress callback */
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   Hash aModule;                 /* populated by sqlite3_create_module() */
 | |
|   Table *pVTab;                 /* vtab with active Connect/Create method */
 | |
|   sqlite3_vtab **aVTrans;       /* Virtual tables with open transactions */
 | |
|   int nVTrans;                  /* Allocated size of aVTrans */
 | |
| #endif
 | |
|   Hash aFunc;                   /* All functions that can be in SQL exprs */
 | |
|   Hash aCollSeq;                /* All collating sequences */
 | |
|   BusyHandler busyHandler;      /* Busy callback */
 | |
|   int busyTimeout;              /* Busy handler timeout, in msec */
 | |
|   Db aDbStatic[2];              /* Static space for the 2 default backends */
 | |
| #ifdef SQLITE_SSE
 | |
|   sqlite3_stmt *pFetch;         /* Used by SSE to fetch stored statements */
 | |
| #endif
 | |
|   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A macro to discover the encoding of a database.
 | |
| */
 | |
| #define ENC(db) ((db)->aDb[0].pSchema->enc)
 | |
| 
 | |
| /*
 | |
| ** Possible values for the sqlite.flags and or Db.flags fields.
 | |
| **
 | |
| ** On sqlite.flags, the SQLITE_InTrans value means that we have
 | |
| ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
 | |
| ** transaction is active on that particular database file.
 | |
| */
 | |
| #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
 | |
| #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
 | |
| #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
 | |
| #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
 | |
| #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
 | |
| #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
 | |
|                                           /*   DELETE, or UPDATE and return */
 | |
|                                           /*   the count using a callback. */
 | |
| #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
 | |
|                                           /*   result set is empty */
 | |
| #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
 | |
| #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
 | |
| #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
 | |
| #define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when 
 | |
|                                           ** accessing read-only databases */
 | |
| #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
 | |
| #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
 | |
| #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
 | |
| #define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
 | |
| #define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */
 | |
| 
 | |
| #define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
 | |
| #define SQLITE_SharedCache    0x00080000  /* Cache sharing is enabled */
 | |
| #define SQLITE_Vtab           0x00100000  /* There exists a virtual table */
 | |
| 
 | |
| /*
 | |
| ** Possible values for the sqlite.magic field.
 | |
| ** The numbers are obtained at random and have no special meaning, other
 | |
| ** than being distinct from one another.
 | |
| */
 | |
| #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
 | |
| #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
 | |
| #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
 | |
| #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
 | |
| #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
 | |
| 
 | |
| /*
 | |
| ** Each SQL function is defined by an instance of the following
 | |
| ** structure.  A pointer to this structure is stored in the sqlite.aFunc
 | |
| ** hash table.  When multiple functions have the same name, the hash table
 | |
| ** points to a linked list of these structures.
 | |
| */
 | |
| struct FuncDef {
 | |
|   i16 nArg;            /* Number of arguments.  -1 means unlimited */
 | |
|   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
 | |
|   u8 needCollSeq;      /* True if sqlite3GetFuncCollSeq() might be called */
 | |
|   u8 flags;            /* Some combination of SQLITE_FUNC_* */
 | |
|   void *pUserData;     /* User data parameter */
 | |
|   FuncDef *pNext;      /* Next function with same name */
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
 | |
|   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
 | |
|   void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
 | |
|   char zName[1];       /* SQL name of the function.  MUST BE LAST */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Each SQLite module (virtual table definition) is defined by an
 | |
| ** instance of the following structure, stored in the sqlite3.aModule
 | |
| ** hash table.
 | |
| */
 | |
| struct Module {
 | |
|   const sqlite3_module *pModule;       /* Callback pointers */
 | |
|   const char *zName;                   /* Name passed to create_module() */
 | |
|   void *pAux;                          /* pAux passed to create_module() */
 | |
|   void (*xDestroy)(void *);            /* Module destructor function */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Possible values for FuncDef.flags
 | |
| */
 | |
| #define SQLITE_FUNC_LIKE   0x01  /* Candidate for the LIKE optimization */
 | |
| #define SQLITE_FUNC_CASE   0x02  /* Case-sensitive LIKE-type function */
 | |
| #define SQLITE_FUNC_EPHEM  0x04  /* Ephermeral.  Delete with VDBE */
 | |
| 
 | |
| /*
 | |
| ** information about each column of an SQL table is held in an instance
 | |
| ** of this structure.
 | |
| */
 | |
| struct Column {
 | |
|   char *zName;     /* Name of this column */
 | |
|   Expr *pDflt;     /* Default value of this column */
 | |
|   char *zType;     /* Data type for this column */
 | |
|   char *zColl;     /* Collating sequence.  If NULL, use the default */
 | |
|   u8 notNull;      /* True if there is a NOT NULL constraint */
 | |
|   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
 | |
|   char affinity;   /* One of the SQLITE_AFF_... values */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   u8 isHidden;     /* True if this column is 'hidden' */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A "Collating Sequence" is defined by an instance of the following
 | |
| ** structure. Conceptually, a collating sequence consists of a name and
 | |
| ** a comparison routine that defines the order of that sequence.
 | |
| **
 | |
| ** There may two seperate implementations of the collation function, one
 | |
| ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
 | |
| ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
 | |
| ** native byte order. When a collation sequence is invoked, SQLite selects
 | |
| ** the version that will require the least expensive encoding
 | |
| ** translations, if any.
 | |
| **
 | |
| ** The CollSeq.pUser member variable is an extra parameter that passed in
 | |
| ** as the first argument to the UTF-8 comparison function, xCmp.
 | |
| ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
 | |
| ** xCmp16.
 | |
| **
 | |
| ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
 | |
| ** collating sequence is undefined.  Indices built on an undefined
 | |
| ** collating sequence may not be read or written.
 | |
| */
 | |
| struct CollSeq {
 | |
|   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
 | |
|   u8 enc;               /* Text encoding handled by xCmp() */
 | |
|   u8 type;              /* One of the SQLITE_COLL_... values below */
 | |
|   void *pUser;          /* First argument to xCmp() */
 | |
|   int (*xCmp)(void*,int, const void*, int, const void*);
 | |
|   void (*xDel)(void*);  /* Destructor for pUser */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Allowed values of CollSeq flags:
 | |
| */
 | |
| #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
 | |
| #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
 | |
| #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
 | |
| #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
 | |
| 
 | |
| /*
 | |
| ** A sort order can be either ASC or DESC.
 | |
| */
 | |
| #define SQLITE_SO_ASC       0  /* Sort in ascending order */
 | |
| #define SQLITE_SO_DESC      1  /* Sort in ascending order */
 | |
| 
 | |
| /*
 | |
| ** Column affinity types.
 | |
| **
 | |
| ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
 | |
| ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
 | |
| ** the speed a little by number the values consecutively.  
 | |
| **
 | |
| ** But rather than start with 0 or 1, we begin with 'a'.  That way,
 | |
| ** when multiple affinity types are concatenated into a string and
 | |
| ** used as the P4 operand, they will be more readable.
 | |
| **
 | |
| ** Note also that the numeric types are grouped together so that testing
 | |
| ** for a numeric type is a single comparison.
 | |
| */
 | |
| #define SQLITE_AFF_TEXT     'a'
 | |
| #define SQLITE_AFF_NONE     'b'
 | |
| #define SQLITE_AFF_NUMERIC  'c'
 | |
| #define SQLITE_AFF_INTEGER  'd'
 | |
| #define SQLITE_AFF_REAL     'e'
 | |
| 
 | |
| #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
 | |
| 
 | |
| /*
 | |
| ** The SQLITE_AFF_MASK values masks off the significant bits of an
 | |
| ** affinity value. 
 | |
| */
 | |
| #define SQLITE_AFF_MASK     0x67
 | |
| 
 | |
| /*
 | |
| ** Additional bit values that can be ORed with an affinity without
 | |
| ** changing the affinity.
 | |
| */
 | |
| #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
 | |
| #define SQLITE_NULLEQUAL    0x10  /* compare NULLs equal */
 | |
| #define SQLITE_STOREP2      0x80  /* Store result in reg[P2] rather than jump */
 | |
| 
 | |
| /*
 | |
| ** Each SQL table is represented in memory by an instance of the
 | |
| ** following structure.
 | |
| **
 | |
| ** Table.zName is the name of the table.  The case of the original
 | |
| ** CREATE TABLE statement is stored, but case is not significant for
 | |
| ** comparisons.
 | |
| **
 | |
| ** Table.nCol is the number of columns in this table.  Table.aCol is a
 | |
| ** pointer to an array of Column structures, one for each column.
 | |
| **
 | |
| ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
 | |
| ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
 | |
| ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
 | |
| ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
 | |
| ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
 | |
| ** is generated for each row of the table.  Table.hasPrimKey is true if
 | |
| ** the table has any PRIMARY KEY, INTEGER or otherwise.
 | |
| **
 | |
| ** Table.tnum is the page number for the root BTree page of the table in the
 | |
| ** database file.  If Table.iDb is the index of the database table backend
 | |
| ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
 | |
| ** holds temporary tables and indices.  If Table.isEphem
 | |
| ** is true, then the table is stored in a file that is automatically deleted
 | |
| ** when the VDBE cursor to the table is closed.  In this case Table.tnum 
 | |
| ** refers VDBE cursor number that holds the table open, not to the root
 | |
| ** page number.  Transient tables are used to hold the results of a
 | |
| ** sub-query that appears instead of a real table name in the FROM clause 
 | |
| ** of a SELECT statement.
 | |
| */
 | |
| struct Table {
 | |
|   char *zName;     /* Name of the table */
 | |
|   int nCol;        /* Number of columns in this table */
 | |
|   Column *aCol;    /* Information about each column */
 | |
|   int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
 | |
|   Index *pIndex;   /* List of SQL indexes on this table. */
 | |
|   int tnum;        /* Root BTree node for this table (see note above) */
 | |
|   Select *pSelect; /* NULL for tables.  Points to definition if a view. */
 | |
|   int nRef;          /* Number of pointers to this Table */
 | |
|   Trigger *pTrigger; /* List of SQL triggers on this table */
 | |
|   FKey *pFKey;       /* Linked list of all foreign keys in this table */
 | |
|   char *zColAff;     /* String defining the affinity of each column */
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   Expr *pCheck;      /* The AND of all CHECK constraints */
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_ALTERTABLE
 | |
|   int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
 | |
| #endif
 | |
|   u8 readOnly;     /* True if this table should not be written by the user */
 | |
|   u8 isEphem;      /* True if created using OP_OpenEphermeral */
 | |
|   u8 hasPrimKey;   /* True if there exists a primary key */
 | |
|   u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
 | |
|   u8 autoInc;      /* True if the integer primary key is autoincrement */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   u8 isVirtual;             /* True if this is a virtual table */
 | |
|   u8 isCommit;              /* True once the CREATE TABLE has been committed */
 | |
|   Module *pMod;             /* Pointer to the implementation of the module */
 | |
|   sqlite3_vtab *pVtab;      /* Pointer to the module instance */
 | |
|   int nModuleArg;           /* Number of arguments to the module */
 | |
|   char **azModuleArg;       /* Text of all module args. [0] is module name */
 | |
| #endif
 | |
|   Schema *pSchema;          /* Schema that contains this table */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Test to see whether or not a table is a virtual table.  This is
 | |
| ** done as a macro so that it will be optimized out when virtual
 | |
| ** table support is omitted from the build.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| #  define IsVirtual(X)      ((X)->isVirtual)
 | |
| #  define IsHiddenColumn(X) ((X)->isHidden)
 | |
| #else
 | |
| #  define IsVirtual(X)      0
 | |
| #  define IsHiddenColumn(X) 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Each foreign key constraint is an instance of the following structure.
 | |
| **
 | |
| ** A foreign key is associated with two tables.  The "from" table is
 | |
| ** the table that contains the REFERENCES clause that creates the foreign
 | |
| ** key.  The "to" table is the table that is named in the REFERENCES clause.
 | |
| ** Consider this example:
 | |
| **
 | |
| **     CREATE TABLE ex1(
 | |
| **       a INTEGER PRIMARY KEY,
 | |
| **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
 | |
| **     );
 | |
| **
 | |
| ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
 | |
| **
 | |
| ** Each REFERENCES clause generates an instance of the following structure
 | |
| ** which is attached to the from-table.  The to-table need not exist when
 | |
| ** the from-table is created.  The existance of the to-table is not checked
 | |
| ** until an attempt is made to insert data into the from-table.
 | |
| **
 | |
| ** The sqlite.aFKey hash table stores pointers to this structure
 | |
| ** given the name of a to-table.  For each to-table, all foreign keys
 | |
| ** associated with that table are on a linked list using the FKey.pNextTo
 | |
| ** field.
 | |
| */
 | |
| struct FKey {
 | |
|   Table *pFrom;     /* The table that constains the REFERENCES clause */
 | |
|   FKey *pNextFrom;  /* Next foreign key in pFrom */
 | |
|   char *zTo;        /* Name of table that the key points to */
 | |
|   FKey *pNextTo;    /* Next foreign key that points to zTo */
 | |
|   int nCol;         /* Number of columns in this key */
 | |
|   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
 | |
|     int iFrom;         /* Index of column in pFrom */
 | |
|     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
 | |
|   } *aCol;          /* One entry for each of nCol column s */
 | |
|   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
 | |
|   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
 | |
|   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
 | |
|   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** SQLite supports many different ways to resolve a constraint
 | |
| ** error.  ROLLBACK processing means that a constraint violation
 | |
| ** causes the operation in process to fail and for the current transaction
 | |
| ** to be rolled back.  ABORT processing means the operation in process
 | |
| ** fails and any prior changes from that one operation are backed out,
 | |
| ** but the transaction is not rolled back.  FAIL processing means that
 | |
| ** the operation in progress stops and returns an error code.  But prior
 | |
| ** changes due to the same operation are not backed out and no rollback
 | |
| ** occurs.  IGNORE means that the particular row that caused the constraint
 | |
| ** error is not inserted or updated.  Processing continues and no error
 | |
| ** is returned.  REPLACE means that preexisting database rows that caused
 | |
| ** a UNIQUE constraint violation are removed so that the new insert or
 | |
| ** update can proceed.  Processing continues and no error is reported.
 | |
| **
 | |
| ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
 | |
| ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
 | |
| ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
 | |
| ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
 | |
| ** referenced table row is propagated into the row that holds the
 | |
| ** foreign key.
 | |
| ** 
 | |
| ** The following symbolic values are used to record which type
 | |
| ** of action to take.
 | |
| */
 | |
| #define OE_None     0   /* There is no constraint to check */
 | |
| #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
 | |
| #define OE_Abort    2   /* Back out changes but do no rollback transaction */
 | |
| #define OE_Fail     3   /* Stop the operation but leave all prior changes */
 | |
| #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
 | |
| #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
 | |
| 
 | |
| #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
 | |
| #define OE_SetNull  7   /* Set the foreign key value to NULL */
 | |
| #define OE_SetDflt  8   /* Set the foreign key value to its default */
 | |
| #define OE_Cascade  9   /* Cascade the changes */
 | |
| 
 | |
| #define OE_Default  99  /* Do whatever the default action is */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure is passed as the first
 | |
| ** argument to sqlite3VdbeKeyCompare and is used to control the 
 | |
| ** comparison of the two index keys.
 | |
| **
 | |
| ** If the KeyInfo.incrKey value is true and the comparison would
 | |
| ** otherwise be equal, then return a result as if the second key
 | |
| ** were larger.
 | |
| */
 | |
| struct KeyInfo {
 | |
|   sqlite3 *db;        /* The database connection */
 | |
|   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
 | |
|   u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
 | |
|   u8 prefixIsEqual;   /* Treat a prefix as equal */
 | |
|   int nField;         /* Number of entries in aColl[] */
 | |
|   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
 | |
|   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Each SQL index is represented in memory by an
 | |
| ** instance of the following structure.
 | |
| **
 | |
| ** The columns of the table that are to be indexed are described
 | |
| ** by the aiColumn[] field of this structure.  For example, suppose
 | |
| ** we have the following table and index:
 | |
| **
 | |
| **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
 | |
| **     CREATE INDEX Ex2 ON Ex1(c3,c1);
 | |
| **
 | |
| ** In the Table structure describing Ex1, nCol==3 because there are
 | |
| ** three columns in the table.  In the Index structure describing
 | |
| ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
 | |
| ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the 
 | |
| ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
 | |
| ** The second column to be indexed (c1) has an index of 0 in
 | |
| ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
 | |
| **
 | |
| ** The Index.onError field determines whether or not the indexed columns
 | |
| ** must be unique and what to do if they are not.  When Index.onError=OE_None,
 | |
| ** it means this is not a unique index.  Otherwise it is a unique index
 | |
| ** and the value of Index.onError indicate the which conflict resolution 
 | |
| ** algorithm to employ whenever an attempt is made to insert a non-unique
 | |
| ** element.
 | |
| */
 | |
| struct Index {
 | |
|   char *zName;     /* Name of this index */
 | |
|   int nColumn;     /* Number of columns in the table used by this index */
 | |
|   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
 | |
|   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
 | |
|   Table *pTable;   /* The SQL table being indexed */
 | |
|   int tnum;        /* Page containing root of this index in database file */
 | |
|   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
 | |
|   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
 | |
|   char *zColAff;   /* String defining the affinity of each column */
 | |
|   Index *pNext;    /* The next index associated with the same table */
 | |
|   Schema *pSchema; /* Schema containing this index */
 | |
|   u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
 | |
|   char **azColl;   /* Array of collation sequence names for index */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Each token coming out of the lexer is an instance of
 | |
| ** this structure.  Tokens are also used as part of an expression.
 | |
| **
 | |
| ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
 | |
| ** may contain random values.  Do not make any assuptions about Token.dyn
 | |
| ** and Token.n when Token.z==0.
 | |
| */
 | |
| struct Token {
 | |
|   const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
 | |
|   unsigned dyn  : 1;      /* True for malloced memory, false for static */
 | |
|   unsigned n    : 31;     /* Number of characters in this token */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure contains information needed to generate
 | |
| ** code for a SELECT that contains aggregate functions.
 | |
| **
 | |
| ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
 | |
| ** pointer to this structure.  The Expr.iColumn field is the index in
 | |
| ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
 | |
| ** code for that node.
 | |
| **
 | |
| ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
 | |
| ** original Select structure that describes the SELECT statement.  These
 | |
| ** fields do not need to be freed when deallocating the AggInfo structure.
 | |
| */
 | |
| struct AggInfo {
 | |
|   u8 directMode;          /* Direct rendering mode means take data directly
 | |
|                           ** from source tables rather than from accumulators */
 | |
|   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
 | |
|                           ** than the source table */
 | |
|   int sortingIdx;         /* Cursor number of the sorting index */
 | |
|   ExprList *pGroupBy;     /* The group by clause */
 | |
|   int nSortingColumn;     /* Number of columns in the sorting index */
 | |
|   struct AggInfo_col {    /* For each column used in source tables */
 | |
|     Table *pTab;             /* Source table */
 | |
|     int iTable;              /* Cursor number of the source table */
 | |
|     int iColumn;             /* Column number within the source table */
 | |
|     int iSorterColumn;       /* Column number in the sorting index */
 | |
|     int iMem;                /* Memory location that acts as accumulator */
 | |
|     Expr *pExpr;             /* The original expression */
 | |
|   } *aCol;
 | |
|   int nColumn;            /* Number of used entries in aCol[] */
 | |
|   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
 | |
|   int nAccumulator;       /* Number of columns that show through to the output.
 | |
|                           ** Additional columns are used only as parameters to
 | |
|                           ** aggregate functions */
 | |
|   struct AggInfo_func {   /* For each aggregate function */
 | |
|     Expr *pExpr;             /* Expression encoding the function */
 | |
|     FuncDef *pFunc;          /* The aggregate function implementation */
 | |
|     int iMem;                /* Memory location that acts as accumulator */
 | |
|     int iDistinct;           /* Ephermeral table used to enforce DISTINCT */
 | |
|   } *aFunc;
 | |
|   int nFunc;              /* Number of entries in aFunc[] */
 | |
|   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Each node of an expression in the parse tree is an instance
 | |
| ** of this structure.
 | |
| **
 | |
| ** Expr.op is the opcode.  The integer parser token codes are reused
 | |
| ** as opcodes here.  For example, the parser defines TK_GE to be an integer
 | |
| ** code representing the ">=" operator.  This same integer code is reused
 | |
| ** to represent the greater-than-or-equal-to operator in the expression
 | |
| ** tree.
 | |
| **
 | |
| ** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
 | |
| ** of argument if the expression is a function.
 | |
| **
 | |
| ** Expr.token is the operator token for this node.  For some expressions
 | |
| ** that have subexpressions, Expr.token can be the complete text that gave
 | |
| ** rise to the Expr.  In the latter case, the token is marked as being
 | |
| ** a compound token.
 | |
| **
 | |
| ** An expression of the form ID or ID.ID refers to a column in a table.
 | |
| ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
 | |
| ** the integer cursor number of a VDBE cursor pointing to that table and
 | |
| ** Expr.iColumn is the column number for the specific column.  If the
 | |
| ** expression is used as a result in an aggregate SELECT, then the
 | |
| ** value is also stored in the Expr.iAgg column in the aggregate so that
 | |
| ** it can be accessed after all aggregates are computed.
 | |
| **
 | |
| ** If the expression is a function, the Expr.iTable is an integer code
 | |
| ** representing which function.  If the expression is an unbound variable
 | |
| ** marker (a question mark character '?' in the original SQL) then the
 | |
| ** Expr.iTable holds the index number for that variable.
 | |
| **
 | |
| ** If the expression is a subquery then Expr.iColumn holds an integer
 | |
| ** register number containing the result of the subquery.  If the
 | |
| ** subquery gives a constant result, then iTable is -1.  If the subquery
 | |
| ** gives a different answer at different times during statement processing
 | |
| ** then iTable is the address of a subroutine that computes the subquery.
 | |
| **
 | |
| ** The Expr.pSelect field points to a SELECT statement.  The SELECT might
 | |
| ** be the right operand of an IN operator.  Or, if a scalar SELECT appears
 | |
| ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
 | |
| ** operand.
 | |
| **
 | |
| ** If the Expr is of type OP_Column, and the table it is selecting from
 | |
| ** is a disk table or the "old.*" pseudo-table, then pTab points to the
 | |
| ** corresponding table definition.
 | |
| */
 | |
| struct Expr {
 | |
|   u8 op;                 /* Operation performed by this node */
 | |
|   char affinity;         /* The affinity of the column or 0 if not a column */
 | |
|   u16 flags;             /* Various flags.  See below */
 | |
|   CollSeq *pColl;        /* The collation type of the column or 0 */
 | |
|   Expr *pLeft, *pRight;  /* Left and right subnodes */
 | |
|   ExprList *pList;       /* A list of expressions used as function arguments
 | |
|                          ** or in "<expr> IN (<expr-list)" */
 | |
|   Token token;           /* An operand token */
 | |
|   Token span;            /* Complete text of the expression */
 | |
|   int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
 | |
|                          ** iColumn-th field of the iTable-th table. */
 | |
|   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
 | |
|   int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
 | |
|   int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
 | |
|   Select *pSelect;       /* When the expression is a sub-select.  Also the
 | |
|                          ** right side of "<expr> IN (<select>)" */
 | |
|   Table *pTab;           /* Table for OP_Column expressions. */
 | |
| /*  Schema *pSchema; */
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
|   int nHeight;           /* Height of the tree headed by this node */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The following are the meanings of bits in the Expr.flags field.
 | |
| */
 | |
| #define EP_FromJoin     0x01  /* Originated in ON or USING clause of a join */
 | |
| #define EP_Agg          0x02  /* Contains one or more aggregate functions */
 | |
| #define EP_Resolved     0x04  /* IDs have been resolved to COLUMNs */
 | |
| #define EP_Error        0x08  /* Expression contains one or more errors */
 | |
| #define EP_Distinct     0x10  /* Aggregate function with DISTINCT keyword */
 | |
| #define EP_VarSelect    0x20  /* pSelect is correlated, not constant */
 | |
| #define EP_Dequoted     0x40  /* True if the string has been dequoted */
 | |
| #define EP_InfixFunc    0x80  /* True for an infix function: LIKE, GLOB, etc */
 | |
| #define EP_ExpCollate  0x100  /* Collating sequence specified explicitly */
 | |
| 
 | |
| /*
 | |
| ** These macros can be used to test, set, or clear bits in the 
 | |
| ** Expr.flags field.
 | |
| */
 | |
| #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
 | |
| #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
 | |
| #define ExprSetProperty(E,P)     (E)->flags|=(P)
 | |
| #define ExprClearProperty(E,P)   (E)->flags&=~(P)
 | |
| 
 | |
| /*
 | |
| ** A list of expressions.  Each expression may optionally have a
 | |
| ** name.  An expr/name combination can be used in several ways, such
 | |
| ** as the list of "expr AS ID" fields following a "SELECT" or in the
 | |
| ** list of "ID = expr" items in an UPDATE.  A list of expressions can
 | |
| ** also be used as the argument to a function, in which case the a.zName
 | |
| ** field is not used.
 | |
| */
 | |
| struct ExprList {
 | |
|   int nExpr;             /* Number of expressions on the list */
 | |
|   int nAlloc;            /* Number of entries allocated below */
 | |
|   int iECursor;          /* VDBE Cursor associated with this ExprList */
 | |
|   struct ExprList_item {
 | |
|     Expr *pExpr;           /* The list of expressions */
 | |
|     char *zName;           /* Token associated with this expression */
 | |
|     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
 | |
|     u8 isAgg;              /* True if this is an aggregate like count(*) */
 | |
|     u8 done;               /* A flag to indicate when processing is finished */
 | |
|   } *a;                  /* One entry for each expression */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure can hold a simple list of identifiers,
 | |
| ** such as the list "a,b,c" in the following statements:
 | |
| **
 | |
| **      INSERT INTO t(a,b,c) VALUES ...;
 | |
| **      CREATE INDEX idx ON t(a,b,c);
 | |
| **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
 | |
| **
 | |
| ** The IdList.a.idx field is used when the IdList represents the list of
 | |
| ** column names after a table name in an INSERT statement.  In the statement
 | |
| **
 | |
| **     INSERT INTO t(a,b,c) ...
 | |
| **
 | |
| ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
 | |
| */
 | |
| struct IdList {
 | |
|   struct IdList_item {
 | |
|     char *zName;      /* Name of the identifier */
 | |
|     int idx;          /* Index in some Table.aCol[] of a column named zName */
 | |
|   } *a;
 | |
|   int nId;         /* Number of identifiers on the list */
 | |
|   int nAlloc;      /* Number of entries allocated for a[] below */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The bitmask datatype defined below is used for various optimizations.
 | |
| **
 | |
| ** Changing this from a 64-bit to a 32-bit type limits the number of
 | |
| ** tables in a join to 32 instead of 64.  But it also reduces the size
 | |
| ** of the library by 738 bytes on ix86.
 | |
| */
 | |
| typedef u64 Bitmask;
 | |
| 
 | |
| /*
 | |
| ** The following structure describes the FROM clause of a SELECT statement.
 | |
| ** Each table or subquery in the FROM clause is a separate element of
 | |
| ** the SrcList.a[] array.
 | |
| **
 | |
| ** With the addition of multiple database support, the following structure
 | |
| ** can also be used to describe a particular table such as the table that
 | |
| ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
 | |
| ** such a table must be a simple name: ID.  But in SQLite, the table can
 | |
| ** now be identified by a database name, a dot, then the table name: ID.ID.
 | |
| **
 | |
| ** The jointype starts out showing the join type between the current table
 | |
| ** and the next table on the list.  The parser builds the list this way.
 | |
| ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
 | |
| ** jointype expresses the join between the table and the previous table.
 | |
| */
 | |
| struct SrcList {
 | |
|   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
 | |
|   i16 nAlloc;      /* Number of entries allocated in a[] below */
 | |
|   struct SrcList_item {
 | |
|     char *zDatabase;  /* Name of database holding this table */
 | |
|     char *zName;      /* Name of the table */
 | |
|     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
 | |
|     Table *pTab;      /* An SQL table corresponding to zName */
 | |
|     Select *pSelect;  /* A SELECT statement used in place of a table name */
 | |
|     u8 isPopulated;   /* Temporary table associated with SELECT is populated */
 | |
|     u8 jointype;      /* Type of join between this able and the previous */
 | |
|     int iCursor;      /* The VDBE cursor number used to access this table */
 | |
|     Expr *pOn;        /* The ON clause of a join */
 | |
|     IdList *pUsing;   /* The USING clause of a join */
 | |
|     Bitmask colUsed;  /* Bit N (1<<N) set if column N or pTab is used */
 | |
|   } a[1];             /* One entry for each identifier on the list */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Permitted values of the SrcList.a.jointype field
 | |
| */
 | |
| #define JT_INNER     0x0001    /* Any kind of inner or cross join */
 | |
| #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
 | |
| #define JT_NATURAL   0x0004    /* True for a "natural" join */
 | |
| #define JT_LEFT      0x0008    /* Left outer join */
 | |
| #define JT_RIGHT     0x0010    /* Right outer join */
 | |
| #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
 | |
| #define JT_ERROR     0x0040    /* unknown or unsupported join type */
 | |
| 
 | |
| /*
 | |
| ** For each nested loop in a WHERE clause implementation, the WhereInfo
 | |
| ** structure contains a single instance of this structure.  This structure
 | |
| ** is intended to be private the the where.c module and should not be
 | |
| ** access or modified by other modules.
 | |
| **
 | |
| ** The pIdxInfo and pBestIdx fields are used to help pick the best
 | |
| ** index on a virtual table.  The pIdxInfo pointer contains indexing
 | |
| ** information for the i-th table in the FROM clause before reordering.
 | |
| ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
 | |
| ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
 | |
| ** FROM clause ordering.  This is a little confusing so I will repeat
 | |
| ** it in different words.  WhereInfo.a[i].pIdxInfo is index information 
 | |
| ** for WhereInfo.pTabList.a[i].  WhereInfo.a[i].pBestInfo is the
 | |
| ** index information for the i-th loop of the join.  pBestInfo is always
 | |
| ** either NULL or a copy of some pIdxInfo.  So for cleanup it is 
 | |
| ** sufficient to free all of the pIdxInfo pointers.
 | |
| ** 
 | |
| */
 | |
| struct WhereLevel {
 | |
|   int iFrom;            /* Which entry in the FROM clause */
 | |
|   int flags;            /* Flags associated with this level */
 | |
|   int iMem;             /* First memory cell used by this level */
 | |
|   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
 | |
|   Index *pIdx;          /* Index used.  NULL if no index */
 | |
|   int iTabCur;          /* The VDBE cursor used to access the table */
 | |
|   int iIdxCur;          /* The VDBE cursor used to acesss pIdx */
 | |
|   int brk;              /* Jump here to break out of the loop */
 | |
|   int nxt;              /* Jump here to start the next IN combination */
 | |
|   int cont;             /* Jump here to continue with the next loop cycle */
 | |
|   int top;              /* First instruction of interior of the loop */
 | |
|   int op, p1, p2;       /* Opcode used to terminate the loop */
 | |
|   int nEq;              /* Number of == or IN constraints on this loop */
 | |
|   int nIn;              /* Number of IN operators constraining this loop */
 | |
|   struct InLoop {
 | |
|     int iCur;              /* The VDBE cursor used by this IN operator */
 | |
|     int topAddr;           /* Top of the IN loop */
 | |
|   } *aInLoop;           /* Information about each nested IN operator */
 | |
|   sqlite3_index_info *pBestIdx;  /* Index information for this level */
 | |
| 
 | |
|   /* The following field is really not part of the current level.  But
 | |
|   ** we need a place to cache index information for each table in the
 | |
|   ** FROM clause and the WhereLevel structure is a convenient place.
 | |
|   */
 | |
|   sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
 | |
| };
 | |
| 
 | |
| #define ORDERBY_NORMAL 0
 | |
| #define ORDERBY_MIN    1
 | |
| #define ORDERBY_MAX    2
 | |
| 
 | |
| /*
 | |
| ** The WHERE clause processing routine has two halves.  The
 | |
| ** first part does the start of the WHERE loop and the second
 | |
| ** half does the tail of the WHERE loop.  An instance of
 | |
| ** this structure is returned by the first half and passed
 | |
| ** into the second half to give some continuity.
 | |
| */
 | |
| struct WhereInfo {
 | |
|   Parse *pParse;
 | |
|   SrcList *pTabList;   /* List of tables in the join */
 | |
|   int iTop;            /* The very beginning of the WHERE loop */
 | |
|   int iContinue;       /* Jump here to continue with next record */
 | |
|   int iBreak;          /* Jump here to break out of the loop */
 | |
|   int nLevel;          /* Number of nested loop */
 | |
|   sqlite3_index_info **apInfo;  /* Array of pointers to index info structures */
 | |
|   WhereLevel a[1];     /* Information about each nest loop in the WHERE */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A NameContext defines a context in which to resolve table and column
 | |
| ** names.  The context consists of a list of tables (the pSrcList) field and
 | |
| ** a list of named expression (pEList).  The named expression list may
 | |
| ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
 | |
| ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
 | |
| ** pEList corresponds to the result set of a SELECT and is NULL for
 | |
| ** other statements.
 | |
| **
 | |
| ** NameContexts can be nested.  When resolving names, the inner-most 
 | |
| ** context is searched first.  If no match is found, the next outer
 | |
| ** context is checked.  If there is still no match, the next context
 | |
| ** is checked.  This process continues until either a match is found
 | |
| ** or all contexts are check.  When a match is found, the nRef member of
 | |
| ** the context containing the match is incremented. 
 | |
| **
 | |
| ** Each subquery gets a new NameContext.  The pNext field points to the
 | |
| ** NameContext in the parent query.  Thus the process of scanning the
 | |
| ** NameContext list corresponds to searching through successively outer
 | |
| ** subqueries looking for a match.
 | |
| */
 | |
| struct NameContext {
 | |
|   Parse *pParse;       /* The parser */
 | |
|   SrcList *pSrcList;   /* One or more tables used to resolve names */
 | |
|   ExprList *pEList;    /* Optional list of named expressions */
 | |
|   int nRef;            /* Number of names resolved by this context */
 | |
|   int nErr;            /* Number of errors encountered while resolving names */
 | |
|   u8 allowAgg;         /* Aggregate functions allowed here */
 | |
|   u8 hasAgg;           /* True if aggregates are seen */
 | |
|   u8 isCheck;          /* True if resolving names in a CHECK constraint */
 | |
|   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
 | |
|   AggInfo *pAggInfo;   /* Information about aggregates at this level */
 | |
|   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure contains all information
 | |
| ** needed to generate code for a single SELECT statement.
 | |
| **
 | |
| ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
 | |
| ** If there is a LIMIT clause, the parser sets nLimit to the value of the
 | |
| ** limit and nOffset to the value of the offset (or 0 if there is not
 | |
| ** offset).  But later on, nLimit and nOffset become the memory locations
 | |
| ** in the VDBE that record the limit and offset counters.
 | |
| **
 | |
| ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
 | |
| ** These addresses must be stored so that we can go back and fill in
 | |
| ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
 | |
| ** the number of columns in P2 can be computed at the same time
 | |
| ** as the OP_OpenEphm instruction is coded because not
 | |
| ** enough information about the compound query is known at that point.
 | |
| ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
 | |
| ** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
 | |
| ** sequences for the ORDER BY clause.
 | |
| */
 | |
| struct Select {
 | |
|   ExprList *pEList;      /* The fields of the result */
 | |
|   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
 | |
|   u8 isDistinct;         /* True if the DISTINCT keyword is present */
 | |
|   u8 isResolved;         /* True once sqlite3SelectResolve() has run. */
 | |
|   u8 isAgg;              /* True if this is an aggregate query */
 | |
|   u8 usesEphm;           /* True if uses an OpenEphemeral opcode */
 | |
|   u8 disallowOrderBy;    /* Do not allow an ORDER BY to be attached if TRUE */
 | |
|   char affinity;         /* MakeRecord with this affinity for SRT_Set */
 | |
|   SrcList *pSrc;         /* The FROM clause */
 | |
|   Expr *pWhere;          /* The WHERE clause */
 | |
|   ExprList *pGroupBy;    /* The GROUP BY clause */
 | |
|   Expr *pHaving;         /* The HAVING clause */
 | |
|   ExprList *pOrderBy;    /* The ORDER BY clause */
 | |
|   Select *pPrior;        /* Prior select in a compound select statement */
 | |
|   Select *pNext;         /* Next select to the left in a compound */
 | |
|   Select *pRightmost;    /* Right-most select in a compound select statement */
 | |
|   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
 | |
|   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
 | |
|   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
 | |
|   int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The results of a select can be distributed in several ways.
 | |
| */
 | |
| #define SRT_Union        1  /* Store result as keys in an index */
 | |
| #define SRT_Except       2  /* Remove result from a UNION index */
 | |
| #define SRT_Exists       3  /* Store 1 if the result is not empty */
 | |
| #define SRT_Discard      4  /* Do not save the results anywhere */
 | |
| 
 | |
| /* The ORDER BY clause is ignored for all of the above */
 | |
| #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
 | |
| 
 | |
| #define SRT_Callback     5  /* Invoke a callback with each row of result */
 | |
| #define SRT_Mem          6  /* Store result in a memory cell */
 | |
| #define SRT_Set          7  /* Store non-null results as keys in an index */
 | |
| #define SRT_Table        8  /* Store result as data with an automatic rowid */
 | |
| #define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
 | |
| #define SRT_Subroutine  10  /* Call a subroutine to handle results */
 | |
| 
 | |
| /*
 | |
| ** A structure used to customize the behaviour of sqlite3Select(). See
 | |
| ** comments above sqlite3Select() for details.
 | |
| */
 | |
| typedef struct SelectDest SelectDest;
 | |
| struct SelectDest {
 | |
|   u8 eDest;         /* How to dispose of the results */
 | |
|   u8 affinity;      /* Affinity used when eDest==SRT_Set */
 | |
|   int iParm;        /* A parameter used by the eDest disposal method */
 | |
|   int iMem;         /* Base register where results are written */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An SQL parser context.  A copy of this structure is passed through
 | |
| ** the parser and down into all the parser action routine in order to
 | |
| ** carry around information that is global to the entire parse.
 | |
| **
 | |
| ** The structure is divided into two parts.  When the parser and code
 | |
| ** generate call themselves recursively, the first part of the structure
 | |
| ** is constant but the second part is reset at the beginning and end of
 | |
| ** each recursion.
 | |
| **
 | |
| ** The nTableLock and aTableLock variables are only used if the shared-cache 
 | |
| ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
 | |
| ** used to store the set of table-locks required by the statement being
 | |
| ** compiled. Function sqlite3TableLock() is used to add entries to the
 | |
| ** list.
 | |
| */
 | |
| struct Parse {
 | |
|   sqlite3 *db;         /* The main database structure */
 | |
|   int rc;              /* Return code from execution */
 | |
|   char *zErrMsg;       /* An error message */
 | |
|   Vdbe *pVdbe;         /* An engine for executing database bytecode */
 | |
|   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
 | |
|   u8 nameClash;        /* A permanent table name clashes with temp table name */
 | |
|   u8 checkSchema;      /* Causes schema cookie check after an error */
 | |
|   u8 nested;           /* Number of nested calls to the parser/code generator */
 | |
|   u8 parseError;       /* True after a parsing error.  Ticket #1794 */
 | |
|   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
 | |
|   u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
 | |
|   int aTempReg[8];     /* Holding area for temporary registers */
 | |
|   int nRangeReg;       /* Size of the temporary register block */
 | |
|   int iRangeReg;       /* First register in temporary register block */
 | |
|   int nErr;            /* Number of errors seen */
 | |
|   int nTab;            /* Number of previously allocated VDBE cursors */
 | |
|   int nMem;            /* Number of memory cells used so far */
 | |
|   int nSet;            /* Number of sets used so far */
 | |
|   int ckBase;          /* Base register of data during check constraints */
 | |
|   u32 writeMask;       /* Start a write transaction on these databases */
 | |
|   u32 cookieMask;      /* Bitmask of schema verified databases */
 | |
|   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
 | |
|   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   int nTableLock;        /* Number of locks in aTableLock */
 | |
|   TableLock *aTableLock; /* Required table locks for shared-cache mode */
 | |
| #endif
 | |
|   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
 | |
|   int regRoot;         /* Register holding root page number for new objects */
 | |
| 
 | |
|   /* Above is constant between recursions.  Below is reset before and after
 | |
|   ** each recursion */
 | |
| 
 | |
|   int nVar;            /* Number of '?' variables seen in the SQL so far */
 | |
|   int nVarExpr;        /* Number of used slots in apVarExpr[] */
 | |
|   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
 | |
|   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
 | |
|   u8 explain;          /* True if the EXPLAIN flag is found on the query */
 | |
|   Token sErrToken;     /* The token at which the error occurred */
 | |
|   Token sNameToken;    /* Token with unqualified schema object name */
 | |
|   Token sLastToken;    /* The last token parsed */
 | |
|   const char *zSql;    /* All SQL text */
 | |
|   const char *zTail;   /* All SQL text past the last semicolon parsed */
 | |
|   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
 | |
|   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
 | |
|   TriggerStack *trigStack;  /* Trigger actions being coded */
 | |
|   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   Token sArg;                /* Complete text of a module argument */
 | |
|   u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
 | |
|   Table *pVirtualLock;       /* Require virtual table lock on this table */
 | |
| #endif
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
|   int nHeight;            /* Expression tree height of current sub-select */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef SQLITE_OMIT_VIRTUALTABLE
 | |
|   #define IN_DECLARE_VTAB 0
 | |
| #else
 | |
|   #define IN_DECLARE_VTAB (pParse->declareVtab)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure can be declared on a stack and used
 | |
| ** to save the Parse.zAuthContext value so that it can be restored later.
 | |
| */
 | |
| struct AuthContext {
 | |
|   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
 | |
|   Parse *pParse;              /* The Parse structure */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Bitfield flags for P2 value in OP_Insert and OP_Delete
 | |
| */
 | |
| #define OPFLAG_NCHANGE   1    /* Set to update db->nChange */
 | |
| #define OPFLAG_LASTROWID 2    /* Set to update db->lastRowid */
 | |
| #define OPFLAG_ISUPDATE  4    /* This OP_Insert is an sql UPDATE */
 | |
| #define OPFLAG_APPEND    8    /* This is likely to be an append */
 | |
| 
 | |
| /*
 | |
|  * Each trigger present in the database schema is stored as an instance of
 | |
|  * struct Trigger. 
 | |
|  *
 | |
|  * Pointers to instances of struct Trigger are stored in two ways.
 | |
|  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
 | |
|  *    database). This allows Trigger structures to be retrieved by name.
 | |
|  * 2. All triggers associated with a single table form a linked list, using the
 | |
|  *    pNext member of struct Trigger. A pointer to the first element of the
 | |
|  *    linked list is stored as the "pTrigger" member of the associated
 | |
|  *    struct Table.
 | |
|  *
 | |
|  * The "step_list" member points to the first element of a linked list
 | |
|  * containing the SQL statements specified as the trigger program.
 | |
|  */
 | |
| struct Trigger {
 | |
|   char *name;             /* The name of the trigger                        */
 | |
|   char *table;            /* The table or view to which the trigger applies */
 | |
|   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
 | |
|   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
 | |
|   Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
 | |
|   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
 | |
|                              the <column-list> is stored here */
 | |
|   Token nameToken;        /* Token containing zName. Use during parsing only */
 | |
|   Schema *pSchema;        /* Schema containing the trigger */
 | |
|   Schema *pTabSchema;     /* Schema containing the table */
 | |
|   TriggerStep *step_list; /* Link list of trigger program steps             */
 | |
|   Trigger *pNext;         /* Next trigger associated with the table */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
 | |
| ** determine which. 
 | |
| **
 | |
| ** If there are multiple triggers, you might of some BEFORE and some AFTER.
 | |
| ** In that cases, the constants below can be ORed together.
 | |
| */
 | |
| #define TRIGGER_BEFORE  1
 | |
| #define TRIGGER_AFTER   2
 | |
| 
 | |
| /*
 | |
|  * An instance of struct TriggerStep is used to store a single SQL statement
 | |
|  * that is a part of a trigger-program. 
 | |
|  *
 | |
|  * Instances of struct TriggerStep are stored in a singly linked list (linked
 | |
|  * using the "pNext" member) referenced by the "step_list" member of the 
 | |
|  * associated struct Trigger instance. The first element of the linked list is
 | |
|  * the first step of the trigger-program.
 | |
|  * 
 | |
|  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
 | |
|  * "SELECT" statement. The meanings of the other members is determined by the 
 | |
|  * value of "op" as follows:
 | |
|  *
 | |
|  * (op == TK_INSERT)
 | |
|  * orconf    -> stores the ON CONFLICT algorithm
 | |
|  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
 | |
|  *              this stores a pointer to the SELECT statement. Otherwise NULL.
 | |
|  * target    -> A token holding the name of the table to insert into.
 | |
|  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
 | |
|  *              this stores values to be inserted. Otherwise NULL.
 | |
|  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ... 
 | |
|  *              statement, then this stores the column-names to be
 | |
|  *              inserted into.
 | |
|  *
 | |
|  * (op == TK_DELETE)
 | |
|  * target    -> A token holding the name of the table to delete from.
 | |
|  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
 | |
|  *              Otherwise NULL.
 | |
|  * 
 | |
|  * (op == TK_UPDATE)
 | |
|  * target    -> A token holding the name of the table to update rows of.
 | |
|  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
 | |
|  *              Otherwise NULL.
 | |
|  * pExprList -> A list of the columns to update and the expressions to update
 | |
|  *              them to. See sqlite3Update() documentation of "pChanges"
 | |
|  *              argument.
 | |
|  * 
 | |
|  */
 | |
| struct TriggerStep {
 | |
|   int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
 | |
|   int orconf;          /* OE_Rollback etc. */
 | |
|   Trigger *pTrig;      /* The trigger that this step is a part of */
 | |
| 
 | |
|   Select *pSelect;     /* Valid for SELECT and sometimes 
 | |
|                           INSERT steps (when pExprList == 0) */
 | |
|   Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
 | |
|   Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
 | |
|   ExprList *pExprList; /* Valid for UPDATE statements and sometimes 
 | |
|                            INSERT steps (when pSelect == 0)         */
 | |
|   IdList *pIdList;     /* Valid for INSERT statements only */
 | |
|   TriggerStep *pNext;  /* Next in the link-list */
 | |
|   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * An instance of struct TriggerStack stores information required during code
 | |
|  * generation of a single trigger program. While the trigger program is being
 | |
|  * coded, its associated TriggerStack instance is pointed to by the
 | |
|  * "pTriggerStack" member of the Parse structure.
 | |
|  *
 | |
|  * The pTab member points to the table that triggers are being coded on. The 
 | |
|  * newIdx member contains the index of the vdbe cursor that points at the temp
 | |
|  * table that stores the new.* references. If new.* references are not valid
 | |
|  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
 | |
|  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
 | |
|  *
 | |
|  * The ON CONFLICT policy to be used for the trigger program steps is stored 
 | |
|  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 
 | |
|  * specified for individual triggers steps is used.
 | |
|  *
 | |
|  * struct TriggerStack has a "pNext" member, to allow linked lists to be
 | |
|  * constructed. When coding nested triggers (triggers fired by other triggers)
 | |
|  * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 
 | |
|  * pointer. Once the nested trigger has been coded, the pNext value is restored
 | |
|  * to the pTriggerStack member of the Parse stucture and coding of the parent
 | |
|  * trigger continues.
 | |
|  *
 | |
|  * Before a nested trigger is coded, the linked list pointed to by the 
 | |
|  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
 | |
|  * recursively. If this condition is detected, the nested trigger is not coded.
 | |
|  */
 | |
| struct TriggerStack {
 | |
|   Table *pTab;         /* Table that triggers are currently being coded on */
 | |
|   int newIdx;          /* Index of vdbe cursor to "new" temp table */
 | |
|   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
 | |
|   u32 newColMask;
 | |
|   u32 oldColMask;
 | |
|   int orconf;          /* Current orconf policy */
 | |
|   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
 | |
|   Trigger *pTrigger;   /* The trigger currently being coded */
 | |
|   TriggerStack *pNext; /* Next trigger down on the trigger stack */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The following structure contains information used by the sqliteFix...
 | |
| ** routines as they walk the parse tree to make database references
 | |
| ** explicit.  
 | |
| */
 | |
| typedef struct DbFixer DbFixer;
 | |
| struct DbFixer {
 | |
|   Parse *pParse;      /* The parsing context.  Error messages written here */
 | |
|   const char *zDb;    /* Make sure all objects are contained in this database */
 | |
|   const char *zType;  /* Type of the container - used for error messages */
 | |
|   const Token *pName; /* Name of the container - used for error messages */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An objected used to accumulate the text of a string where we
 | |
| ** do not necessarily know how big the string will be in the end.
 | |
| */
 | |
| struct StrAccum {
 | |
|   char *zBase;     /* A base allocation.  Not from malloc. */
 | |
|   char *zText;     /* The string collected so far */
 | |
|   int  nChar;      /* Length of the string so far */
 | |
|   int  nAlloc;     /* Amount of space allocated in zText */
 | |
|   u8   mallocFailed;   /* Becomes true if any memory allocation fails */
 | |
|   u8   useMalloc;      /* True if zText is enlargable using realloc */
 | |
|   u8   tooBig;         /* Becomes true if string size exceeds limits */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A pointer to this structure is used to communicate information
 | |
| ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
 | |
| */
 | |
| typedef struct {
 | |
|   sqlite3 *db;        /* The database being initialized */
 | |
|   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
 | |
|   char **pzErrMsg;    /* Error message stored here */
 | |
|   int rc;             /* Result code stored here */
 | |
| } InitData;
 | |
| 
 | |
| /*
 | |
| ** Assuming zIn points to the first byte of a UTF-8 character,
 | |
| ** advance zIn to point to the first byte of the next UTF-8 character.
 | |
| */
 | |
| #define SQLITE_SKIP_UTF8(zIn) {                        \
 | |
|   if( (*(zIn++))>=0xc0 ){                              \
 | |
|     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
 | |
|   }                                                    \
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
 | |
| ** builds) or a function call (for debugging).  If it is a function call,
 | |
| ** it allows the operator to set a breakpoint at the spot where database
 | |
| ** corruption is first detected.
 | |
| */
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE   int sqlite3Corrupt(void);
 | |
| # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
 | |
| # define DEBUGONLY(X)        X
 | |
| #else
 | |
| # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
 | |
| # define DEBUGONLY(X)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Internal function prototypes
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *);
 | |
| SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int);
 | |
| SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8);
 | |
| 
 | |
| SQLITE_PRIVATE void *sqlite3MallocZero(unsigned);
 | |
| SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, unsigned);
 | |
| SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, unsigned);
 | |
| SQLITE_PRIVATE char *sqlite3StrDup(const char*);
 | |
| SQLITE_PRIVATE char *sqlite3StrNDup(const char*, int);
 | |
| SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*);
 | |
| SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int);
 | |
| SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
 | |
| SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int);
 | |
| SQLITE_PRIVATE int sqlite3MallocSize(void *);
 | |
| 
 | |
| SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
 | |
| SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
 | |
| #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
 | |
| SQLITE_PRIVATE   void sqlite3DebugPrintf(const char*, ...);
 | |
| #endif
 | |
| #if defined(SQLITE_TEST)
 | |
| SQLITE_PRIVATE   void *sqlite3TextToPtr(const char*);
 | |
| #endif
 | |
| SQLITE_PRIVATE void sqlite3SetString(char **, ...);
 | |
| SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
 | |
| SQLITE_PRIVATE void sqlite3ErrorClear(Parse*);
 | |
| SQLITE_PRIVATE void sqlite3Dequote(char*);
 | |
| SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3*, Expr*);
 | |
| SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
 | |
| SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **);
 | |
| SQLITE_PRIVATE void sqlite3FinishCoding(Parse*);
 | |
| SQLITE_PRIVATE int sqlite3GetTempReg(Parse*);
 | |
| SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int);
 | |
| SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int);
 | |
| SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int);
 | |
| SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
 | |
| SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
 | |
| SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse*,Token*);
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3ExprSpan(Expr*,Token*,Token*);
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
 | |
| SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3ExprDelete(Expr*);
 | |
| SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
 | |
| SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList*);
 | |
| SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
 | |
| SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
 | |
| SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
 | |
| SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int);
 | |
| SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
 | |
| SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*);
 | |
| SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
 | |
| SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
 | |
| SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
 | |
| SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
 | |
| SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
 | |
| SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
 | |
| SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
 | |
| SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*);
 | |
| SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
 | |
| SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*);
 | |
| 
 | |
| SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32);
 | |
| SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32);
 | |
| SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32);
 | |
| SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32);
 | |
| SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*);
 | |
| 
 | |
| SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
 | |
| SQLITE_PRIVATE   int sqlite3ViewGetColumnNames(Parse*,Table*);
 | |
| #else
 | |
| # define sqlite3ViewGetColumnNames(A,B) 0
 | |
| #endif
 | |
| 
 | |
| SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3DeleteTable(Table*);
 | |
| SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
 | |
| SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
 | |
| SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
 | |
| SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*);
 | |
| SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
 | |
| SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*,
 | |
|                                       Select*, Expr*, IdList*);
 | |
| SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*);
 | |
| SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*);
 | |
| SQLITE_PRIVATE void sqlite3IdListDelete(IdList*);
 | |
| SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList*);
 | |
| SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
 | |
|                         Token*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int);
 | |
| SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*, char *aff);
 | |
| SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
 | |
|                          Expr*,ExprList*,int,Expr*,Expr*);
 | |
| SQLITE_PRIVATE void sqlite3SelectDelete(Select*);
 | |
| SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*);
 | |
| SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
 | |
| SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
 | |
| SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
 | |
| SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
 | |
| SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
 | |
| SQLITE_PRIVATE void sqlite3ExprCodeGetColumn(Vdbe*, Table*, int, int, int);
 | |
| SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int);
 | |
| SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
 | |
| SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
 | |
| SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int);
 | |
| SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
 | |
| SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*);
 | |
| SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
 | |
| SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
 | |
| SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
 | |
| SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
 | |
| SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
 | |
| SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
 | |
| SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
 | |
| SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
 | |
| SQLITE_PRIVATE int sqlite3ExprResolveNames(NameContext *, Expr *);
 | |
| SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
 | |
| SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
 | |
| SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char*);
 | |
| SQLITE_PRIVATE void sqlite3Randomness(int, void*);
 | |
| SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*);
 | |
| SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
 | |
| SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
 | |
| SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
 | |
| SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
 | |
| SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
 | |
| SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
 | |
| SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
 | |
| SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
 | |
| SQLITE_PRIVATE int sqlite3IsRowid(const char*);
 | |
| SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
 | |
| SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
 | |
| SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
 | |
|                                      int*,int,int,int,int);
 | |
| SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
 | |
| SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*);
 | |
| SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3*,Token*, Token*);
 | |
| SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
 | |
| SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
 | |
| SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
 | |
| SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*);
 | |
| SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
 | |
| SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*);
 | |
| SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3*);
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE   int sqlite3SafetyOn(sqlite3*);
 | |
| SQLITE_PRIVATE   int sqlite3SafetyOff(sqlite3*);
 | |
| #else
 | |
| # define sqlite3SafetyOn(A) 0
 | |
| # define sqlite3SafetyOff(A) 0
 | |
| #endif
 | |
| SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
 | |
| SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
 | |
| SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int);
 | |
| SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Select*, Expr*, u32, int);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| SQLITE_PRIVATE   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
 | |
|                            Expr*,int, int);
 | |
| SQLITE_PRIVATE   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
 | |
| SQLITE_PRIVATE   void sqlite3DropTrigger(Parse*, SrcList*, int);
 | |
| SQLITE_PRIVATE   void sqlite3DropTriggerPtr(Parse*, Trigger*);
 | |
| SQLITE_PRIVATE   int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
 | |
| SQLITE_PRIVATE   int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 
 | |
|                            int, int, u32*, u32*);
 | |
|   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
 | |
| SQLITE_PRIVATE   void sqlite3DeleteTriggerStep(TriggerStep*);
 | |
| SQLITE_PRIVATE   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
 | |
| SQLITE_PRIVATE   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
 | |
|                                         ExprList*,Select*,int);
 | |
| SQLITE_PRIVATE   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
 | |
| SQLITE_PRIVATE   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
 | |
| SQLITE_PRIVATE   void sqlite3DeleteTrigger(Trigger*);
 | |
| SQLITE_PRIVATE   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
 | |
| SQLITE_PRIVATE   void sqlite3SelectMask(Parse *, Select *, u32);
 | |
| #else
 | |
| # define sqlite3TriggersExist(A,B,C,D,E,F) 0
 | |
| # define sqlite3DeleteTrigger(A)
 | |
| # define sqlite3DropTriggerPtr(A,B)
 | |
| # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
 | |
| # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
 | |
| # define sqlite3SelectMask(A, B, C)
 | |
| #endif
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*);
 | |
| SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
 | |
| SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int);
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
| SQLITE_PRIVATE   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
 | |
| SQLITE_PRIVATE   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
 | |
| SQLITE_PRIVATE   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
 | |
| SQLITE_PRIVATE   void sqlite3AuthContextPop(AuthContext*);
 | |
| #else
 | |
| # define sqlite3AuthRead(a,b,c,d)
 | |
| # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
 | |
| # define sqlite3AuthContextPush(a,b,c)
 | |
| # define sqlite3AuthContextPop(a)  ((void)(a))
 | |
| #endif
 | |
| SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*);
 | |
| SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
 | |
|                        int omitJournal, int nCache, int flags, Btree **ppBtree);
 | |
| SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
 | |
| SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*);
 | |
| SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*);
 | |
| SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*);
 | |
| SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*);
 | |
| SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
 | |
| SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*);
 | |
| SQLITE_API char *sqlite3_snprintf(int,char*,const char*,...);
 | |
| SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*);
 | |
| SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int);
 | |
| SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar);
 | |
| SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte);
 | |
| SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8*, const u8**);
 | |
| SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *, u64);
 | |
| SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *, u64 *);
 | |
| SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *, u32 *);
 | |
| SQLITE_PRIVATE int sqlite3VarintLen(u64 v);
 | |
| SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *);
 | |
| SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *);
 | |
| SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2);
 | |
| SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
 | |
| SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr);
 | |
| SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*);
 | |
| SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...);
 | |
| SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
 | |
| SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
 | |
| SQLITE_PRIVATE const char *sqlite3ErrStr(int);
 | |
| SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
 | |
| SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
 | |
| SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
 | |
| SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
 | |
| SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
 | |
| SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
 | |
| SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
 | |
| 
 | |
| SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8);
 | |
| SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8);
 | |
| SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
 | |
|                         void(*)(void*));
 | |
| SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
 | |
| SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
 | |
| SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int);
 | |
| SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
 | |
| SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
 | |
| #ifndef SQLITE_AMALGAMATION
 | |
| SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
 | |
| #endif
 | |
| SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
 | |
| SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3*);
 | |
| SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
 | |
| SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
 | |
| SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
 | |
| SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*);
 | |
| SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *);
 | |
| SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *);
 | |
| SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int);
 | |
| SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *);
 | |
| SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
 | |
| SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
 | |
| SQLITE_PRIVATE char sqlite3AffinityType(const Token*);
 | |
| SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*);
 | |
| SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*);
 | |
| SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*);
 | |
| SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB);
 | |
| SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*);
 | |
| SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int);
 | |
| SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
 | |
| SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *);
 | |
| SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int);
 | |
| SQLITE_PRIVATE void sqlite3SchemaFree(void *);
 | |
| SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
 | |
| SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
 | |
| SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
 | |
| SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
 | |
|   void (*)(sqlite3_context*,int,sqlite3_value **),
 | |
|   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
 | |
| SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int);
 | |
| SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *);
 | |
| 
 | |
| SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int);
 | |
| SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*);
 | |
| SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*);
 | |
| SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int);
 | |
| 
 | |
| /*
 | |
| ** The interface to the LEMON-generated parser
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t));
 | |
| SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*));
 | |
| SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| SQLITE_PRIVATE   void sqlite3CloseExtensions(sqlite3*);
 | |
| SQLITE_PRIVATE   int sqlite3AutoLoadExtensions(sqlite3*);
 | |
| #else
 | |
| # define sqlite3CloseExtensions(X)
 | |
| # define sqlite3AutoLoadExtensions(X)  SQLITE_OK
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| SQLITE_PRIVATE   void sqlite3TableLock(Parse *, int, int, u8, const char *);
 | |
| #else
 | |
|   #define sqlite3TableLock(v,w,x,y,z)
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_PRIVATE   int sqlite3Utf8To8(unsigned char*);
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_VIRTUALTABLE
 | |
| #  define sqlite3VtabClear(X)
 | |
| #  define sqlite3VtabSync(X,Y) (Y)
 | |
| #  define sqlite3VtabRollback(X)
 | |
| #  define sqlite3VtabCommit(X)
 | |
| #else
 | |
| SQLITE_PRIVATE    void sqlite3VtabClear(Table*);
 | |
| SQLITE_PRIVATE    int sqlite3VtabSync(sqlite3 *db, int rc);
 | |
| SQLITE_PRIVATE    int sqlite3VtabRollback(sqlite3 *db);
 | |
| SQLITE_PRIVATE    int sqlite3VtabCommit(sqlite3 *db);
 | |
| #endif
 | |
| SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab*);
 | |
| SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
 | |
| SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
 | |
| SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*);
 | |
| SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*);
 | |
| SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*);
 | |
| SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
 | |
| SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*);
 | |
| SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
 | |
| SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
 | |
| SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
 | |
| SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
 | |
| SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
 | |
| SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, int, const char*);
 | |
| SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Available fault injectors.  Should be numbered beginning with 0.
 | |
| */
 | |
| #define SQLITE_FAULTINJECTOR_MALLOC     0
 | |
| #define SQLITE_FAULTINJECTOR_COUNT      1
 | |
| 
 | |
| /*
 | |
| ** The interface to the fault injector subsystem.  If the fault injector
 | |
| ** mechanism is disabled at compile-time then set up macros so that no
 | |
| ** unnecessary code is generated.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_FAULTINJECTOR
 | |
| SQLITE_PRIVATE   void sqlite3FaultConfig(int,int,int);
 | |
| SQLITE_PRIVATE   int sqlite3FaultFailures(int);
 | |
| SQLITE_PRIVATE   int sqlite3FaultBenignFailures(int);
 | |
| SQLITE_PRIVATE   int sqlite3FaultPending(int);
 | |
| SQLITE_PRIVATE   void sqlite3FaultBenign(int,int);
 | |
| SQLITE_PRIVATE   int sqlite3FaultStep(int);
 | |
| #else
 | |
| # define sqlite3FaultConfig(A,B,C)
 | |
| # define sqlite3FaultFailures(A)         0
 | |
| # define sqlite3FaultBenignFailures(A)   0
 | |
| # define sqlite3FaultPending(A)          (-1)
 | |
| # define sqlite3FaultBenign(A,B)
 | |
| # define sqlite3FaultStep(A)             0
 | |
| #endif
 | |
|   
 | |
|   
 | |
| 
 | |
| #define IN_INDEX_ROWID           1
 | |
| #define IN_INDEX_EPH             2
 | |
| #define IN_INDEX_INDEX           3
 | |
| SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int);
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_ATOMIC_WRITE
 | |
| SQLITE_PRIVATE   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
 | |
| SQLITE_PRIVATE   int sqlite3JournalSize(sqlite3_vfs *);
 | |
| SQLITE_PRIVATE   int sqlite3JournalCreate(sqlite3_file *);
 | |
| #else
 | |
|   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
 | |
| #endif
 | |
| 
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
| SQLITE_PRIVATE   void sqlite3ExprSetHeight(Expr *);
 | |
| SQLITE_PRIVATE   int sqlite3SelectExprHeight(Select *);
 | |
| #else
 | |
|   #define sqlite3ExprSetHeight(x)
 | |
| #endif
 | |
| 
 | |
| SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
 | |
| SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);
 | |
| 
 | |
| #ifdef SQLITE_SSE
 | |
| #include "sseInt.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE   void sqlite3ParserTrace(FILE*, char *);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If the SQLITE_ENABLE IOTRACE exists then the global variable
 | |
| ** sqlite3IoTrace is a pointer to a printf-like routine used to
 | |
| ** print I/O tracing messages. 
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_IOTRACE
 | |
| # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
 | |
| SQLITE_PRIVATE   void sqlite3VdbeIOTraceSql(Vdbe*);
 | |
| #else
 | |
| # define IOTRACE(A)
 | |
| # define sqlite3VdbeIOTraceSql(X)
 | |
| #endif
 | |
| SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /************** End of sqliteInt.h *******************************************/
 | |
| /************** Begin file date.c ********************************************/
 | |
| /*
 | |
| ** 2003 October 31
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement date and time
 | |
| ** functions for SQLite.  
 | |
| **
 | |
| ** There is only one exported symbol in this file - the function
 | |
| ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
 | |
| ** All other code has file scope.
 | |
| **
 | |
| ** $Id: date.c,v 1.76 2008/02/21 20:40:44 drh Exp $
 | |
| **
 | |
| ** SQLite processes all times and dates as Julian Day numbers.  The
 | |
| ** dates and times are stored as the number of days since noon
 | |
| ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
 | |
| ** calendar system. 
 | |
| **
 | |
| ** 1970-01-01 00:00:00 is JD 2440587.5
 | |
| ** 2000-01-01 00:00:00 is JD 2451544.5
 | |
| **
 | |
| ** This implemention requires years to be expressed as a 4-digit number
 | |
| ** which means that only dates between 0000-01-01 and 9999-12-31 can
 | |
| ** be represented, even though julian day numbers allow a much wider
 | |
| ** range of dates.
 | |
| **
 | |
| ** The Gregorian calendar system is used for all dates and times,
 | |
| ** even those that predate the Gregorian calendar.  Historians usually
 | |
| ** use the Julian calendar for dates prior to 1582-10-15 and for some
 | |
| ** dates afterwards, depending on locale.  Beware of this difference.
 | |
| **
 | |
| ** The conversion algorithms are implemented based on descriptions
 | |
| ** in the following text:
 | |
| **
 | |
| **      Jean Meeus
 | |
| **      Astronomical Algorithms, 2nd Edition, 1998
 | |
| **      ISBM 0-943396-61-1
 | |
| **      Willmann-Bell, Inc
 | |
| **      Richmond, Virginia (USA)
 | |
| */
 | |
| #include <ctype.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #ifndef SQLITE_OMIT_DATETIME_FUNCS
 | |
| 
 | |
| /*
 | |
| ** A structure for holding a single date and time.
 | |
| */
 | |
| typedef struct DateTime DateTime;
 | |
| struct DateTime {
 | |
|   double rJD;      /* The julian day number */
 | |
|   int Y, M, D;     /* Year, month, and day */
 | |
|   int h, m;        /* Hour and minutes */
 | |
|   int tz;          /* Timezone offset in minutes */
 | |
|   double s;        /* Seconds */
 | |
|   char validYMD;   /* True if Y,M,D are valid */
 | |
|   char validHMS;   /* True if h,m,s are valid */
 | |
|   char validJD;    /* True if rJD is valid */
 | |
|   char validTZ;    /* True if tz is valid */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Convert zDate into one or more integers.  Additional arguments
 | |
| ** come in groups of 5 as follows:
 | |
| **
 | |
| **       N       number of digits in the integer
 | |
| **       min     minimum allowed value of the integer
 | |
| **       max     maximum allowed value of the integer
 | |
| **       nextC   first character after the integer
 | |
| **       pVal    where to write the integers value.
 | |
| **
 | |
| ** Conversions continue until one with nextC==0 is encountered.
 | |
| ** The function returns the number of successful conversions.
 | |
| */
 | |
| static int getDigits(const char *zDate, ...){
 | |
|   va_list ap;
 | |
|   int val;
 | |
|   int N;
 | |
|   int min;
 | |
|   int max;
 | |
|   int nextC;
 | |
|   int *pVal;
 | |
|   int cnt = 0;
 | |
|   va_start(ap, zDate);
 | |
|   do{
 | |
|     N = va_arg(ap, int);
 | |
|     min = va_arg(ap, int);
 | |
|     max = va_arg(ap, int);
 | |
|     nextC = va_arg(ap, int);
 | |
|     pVal = va_arg(ap, int*);
 | |
|     val = 0;
 | |
|     while( N-- ){
 | |
|       if( !isdigit(*(u8*)zDate) ){
 | |
|         goto end_getDigits;
 | |
|       }
 | |
|       val = val*10 + *zDate - '0';
 | |
|       zDate++;
 | |
|     }
 | |
|     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
 | |
|       goto end_getDigits;
 | |
|     }
 | |
|     *pVal = val;
 | |
|     zDate++;
 | |
|     cnt++;
 | |
|   }while( nextC );
 | |
| end_getDigits:
 | |
|   va_end(ap);
 | |
|   return cnt;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read text from z[] and convert into a floating point number.  Return
 | |
| ** the number of digits converted.
 | |
| */
 | |
| #define getValue sqlite3AtoF
 | |
| 
 | |
| /*
 | |
| ** Parse a timezone extension on the end of a date-time.
 | |
| ** The extension is of the form:
 | |
| **
 | |
| **        (+/-)HH:MM
 | |
| **
 | |
| ** Or the "zulu" notation:
 | |
| **
 | |
| **        Z
 | |
| **
 | |
| ** If the parse is successful, write the number of minutes
 | |
| ** of change in p->tz and return 0.  If a parser error occurs,
 | |
| ** return non-zero.
 | |
| **
 | |
| ** A missing specifier is not considered an error.
 | |
| */
 | |
| static int parseTimezone(const char *zDate, DateTime *p){
 | |
|   int sgn = 0;
 | |
|   int nHr, nMn;
 | |
|   int c;
 | |
|   while( isspace(*(u8*)zDate) ){ zDate++; }
 | |
|   p->tz = 0;
 | |
|   c = *zDate;
 | |
|   if( c=='-' ){
 | |
|     sgn = -1;
 | |
|   }else if( c=='+' ){
 | |
|     sgn = +1;
 | |
|   }else if( c=='Z' || c=='z' ){
 | |
|     zDate++;
 | |
|     goto zulu_time;
 | |
|   }else{
 | |
|     return c!=0;
 | |
|   }
 | |
|   zDate++;
 | |
|   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
 | |
|     return 1;
 | |
|   }
 | |
|   zDate += 5;
 | |
|   p->tz = sgn*(nMn + nHr*60);
 | |
| zulu_time:
 | |
|   while( isspace(*(u8*)zDate) ){ zDate++; }
 | |
|   return *zDate!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
 | |
| ** The HH, MM, and SS must each be exactly 2 digits.  The
 | |
| ** fractional seconds FFFF can be one or more digits.
 | |
| **
 | |
| ** Return 1 if there is a parsing error and 0 on success.
 | |
| */
 | |
| static int parseHhMmSs(const char *zDate, DateTime *p){
 | |
|   int h, m, s;
 | |
|   double ms = 0.0;
 | |
|   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
 | |
|     return 1;
 | |
|   }
 | |
|   zDate += 5;
 | |
|   if( *zDate==':' ){
 | |
|     zDate++;
 | |
|     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
 | |
|       return 1;
 | |
|     }
 | |
|     zDate += 2;
 | |
|     if( *zDate=='.' && isdigit((u8)zDate[1]) ){
 | |
|       double rScale = 1.0;
 | |
|       zDate++;
 | |
|       while( isdigit(*(u8*)zDate) ){
 | |
|         ms = ms*10.0 + *zDate - '0';
 | |
|         rScale *= 10.0;
 | |
|         zDate++;
 | |
|       }
 | |
|       ms /= rScale;
 | |
|     }
 | |
|   }else{
 | |
|     s = 0;
 | |
|   }
 | |
|   p->validJD = 0;
 | |
|   p->validHMS = 1;
 | |
|   p->h = h;
 | |
|   p->m = m;
 | |
|   p->s = s + ms;
 | |
|   if( parseTimezone(zDate, p) ) return 1;
 | |
|   p->validTZ = p->tz!=0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
 | |
| ** that the YYYY-MM-DD is according to the Gregorian calendar.
 | |
| **
 | |
| ** Reference:  Meeus page 61
 | |
| */
 | |
| static void computeJD(DateTime *p){
 | |
|   int Y, M, D, A, B, X1, X2;
 | |
| 
 | |
|   if( p->validJD ) return;
 | |
|   if( p->validYMD ){
 | |
|     Y = p->Y;
 | |
|     M = p->M;
 | |
|     D = p->D;
 | |
|   }else{
 | |
|     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
 | |
|     M = 1;
 | |
|     D = 1;
 | |
|   }
 | |
|   if( M<=2 ){
 | |
|     Y--;
 | |
|     M += 12;
 | |
|   }
 | |
|   A = Y/100;
 | |
|   B = 2 - A + (A/4);
 | |
|   X1 = 365.25*(Y+4716);
 | |
|   X2 = 30.6001*(M+1);
 | |
|   p->rJD = X1 + X2 + D + B - 1524.5;
 | |
|   p->validJD = 1;
 | |
|   if( p->validHMS ){
 | |
|     p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
 | |
|     if( p->validTZ ){
 | |
|       p->rJD -= p->tz*60/86400.0;
 | |
|       p->validYMD = 0;
 | |
|       p->validHMS = 0;
 | |
|       p->validTZ = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parse dates of the form
 | |
| **
 | |
| **     YYYY-MM-DD HH:MM:SS.FFF
 | |
| **     YYYY-MM-DD HH:MM:SS
 | |
| **     YYYY-MM-DD HH:MM
 | |
| **     YYYY-MM-DD
 | |
| **
 | |
| ** Write the result into the DateTime structure and return 0
 | |
| ** on success and 1 if the input string is not a well-formed
 | |
| ** date.
 | |
| */
 | |
| static int parseYyyyMmDd(const char *zDate, DateTime *p){
 | |
|   int Y, M, D, neg;
 | |
| 
 | |
|   if( zDate[0]=='-' ){
 | |
|     zDate++;
 | |
|     neg = 1;
 | |
|   }else{
 | |
|     neg = 0;
 | |
|   }
 | |
|   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
 | |
|     return 1;
 | |
|   }
 | |
|   zDate += 10;
 | |
|   while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
 | |
|   if( parseHhMmSs(zDate, p)==0 ){
 | |
|     /* We got the time */
 | |
|   }else if( *zDate==0 ){
 | |
|     p->validHMS = 0;
 | |
|   }else{
 | |
|     return 1;
 | |
|   }
 | |
|   p->validJD = 0;
 | |
|   p->validYMD = 1;
 | |
|   p->Y = neg ? -Y : Y;
 | |
|   p->M = M;
 | |
|   p->D = D;
 | |
|   if( p->validTZ ){
 | |
|     computeJD(p);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt to parse the given string into a Julian Day Number.  Return
 | |
| ** the number of errors.
 | |
| **
 | |
| ** The following are acceptable forms for the input string:
 | |
| **
 | |
| **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
 | |
| **      DDDD.DD 
 | |
| **      now
 | |
| **
 | |
| ** In the first form, the +/-HH:MM is always optional.  The fractional
 | |
| ** seconds extension (the ".FFF") is optional.  The seconds portion
 | |
| ** (":SS.FFF") is option.  The year and date can be omitted as long
 | |
| ** as there is a time string.  The time string can be omitted as long
 | |
| ** as there is a year and date.
 | |
| */
 | |
| static int parseDateOrTime(
 | |
|   sqlite3_context *context, 
 | |
|   const char *zDate, 
 | |
|   DateTime *p
 | |
| ){
 | |
|   memset(p, 0, sizeof(*p));
 | |
|   if( parseYyyyMmDd(zDate,p)==0 ){
 | |
|     return 0;
 | |
|   }else if( parseHhMmSs(zDate, p)==0 ){
 | |
|     return 0;
 | |
|   }else if( sqlite3StrICmp(zDate,"now")==0){
 | |
|     double r;
 | |
|     sqlite3OsCurrentTime((sqlite3_vfs *)sqlite3_user_data(context), &r);
 | |
|     p->rJD = r;
 | |
|     p->validJD = 1;
 | |
|     return 0;
 | |
|   }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
 | |
|     getValue(zDate, &p->rJD);
 | |
|     p->validJD = 1;
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the Year, Month, and Day from the julian day number.
 | |
| */
 | |
| static void computeYMD(DateTime *p){
 | |
|   int Z, A, B, C, D, E, X1;
 | |
|   if( p->validYMD ) return;
 | |
|   if( !p->validJD ){
 | |
|     p->Y = 2000;
 | |
|     p->M = 1;
 | |
|     p->D = 1;
 | |
|   }else{
 | |
|     Z = p->rJD + 0.5;
 | |
|     A = (Z - 1867216.25)/36524.25;
 | |
|     A = Z + 1 + A - (A/4);
 | |
|     B = A + 1524;
 | |
|     C = (B - 122.1)/365.25;
 | |
|     D = 365.25*C;
 | |
|     E = (B-D)/30.6001;
 | |
|     X1 = 30.6001*E;
 | |
|     p->D = B - D - X1;
 | |
|     p->M = E<14 ? E-1 : E-13;
 | |
|     p->Y = p->M>2 ? C - 4716 : C - 4715;
 | |
|   }
 | |
|   p->validYMD = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the Hour, Minute, and Seconds from the julian day number.
 | |
| */
 | |
| static void computeHMS(DateTime *p){
 | |
|   int Z, s;
 | |
|   if( p->validHMS ) return;
 | |
|   computeJD(p);
 | |
|   Z = p->rJD + 0.5;
 | |
|   s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
 | |
|   p->s = 0.001*s;
 | |
|   s = p->s;
 | |
|   p->s -= s;
 | |
|   p->h = s/3600;
 | |
|   s -= p->h*3600;
 | |
|   p->m = s/60;
 | |
|   p->s += s - p->m*60;
 | |
|   p->validHMS = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute both YMD and HMS
 | |
| */
 | |
| static void computeYMD_HMS(DateTime *p){
 | |
|   computeYMD(p);
 | |
|   computeHMS(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the YMD and HMS and the TZ
 | |
| */
 | |
| static void clearYMD_HMS_TZ(DateTime *p){
 | |
|   p->validYMD = 0;
 | |
|   p->validHMS = 0;
 | |
|   p->validTZ = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
 | |
| ** for the time value p where p is in UTC.
 | |
| */
 | |
| static double localtimeOffset(DateTime *p){
 | |
|   DateTime x, y;
 | |
|   time_t t;
 | |
|   x = *p;
 | |
|   computeYMD_HMS(&x);
 | |
|   if( x.Y<1971 || x.Y>=2038 ){
 | |
|     x.Y = 2000;
 | |
|     x.M = 1;
 | |
|     x.D = 1;
 | |
|     x.h = 0;
 | |
|     x.m = 0;
 | |
|     x.s = 0.0;
 | |
|   } else {
 | |
|     int s = x.s + 0.5;
 | |
|     x.s = s;
 | |
|   }
 | |
|   x.tz = 0;
 | |
|   x.validJD = 0;
 | |
|   computeJD(&x);
 | |
|   t = (x.rJD-2440587.5)*86400.0 + 0.5;
 | |
| #ifdef HAVE_LOCALTIME_R
 | |
|   {
 | |
|     struct tm sLocal;
 | |
|     localtime_r(&t, &sLocal);
 | |
|     y.Y = sLocal.tm_year + 1900;
 | |
|     y.M = sLocal.tm_mon + 1;
 | |
|     y.D = sLocal.tm_mday;
 | |
|     y.h = sLocal.tm_hour;
 | |
|     y.m = sLocal.tm_min;
 | |
|     y.s = sLocal.tm_sec;
 | |
|   }
 | |
| #else
 | |
|   {
 | |
|     struct tm *pTm;
 | |
|     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
 | |
|     pTm = localtime(&t);
 | |
|     y.Y = pTm->tm_year + 1900;
 | |
|     y.M = pTm->tm_mon + 1;
 | |
|     y.D = pTm->tm_mday;
 | |
|     y.h = pTm->tm_hour;
 | |
|     y.m = pTm->tm_min;
 | |
|     y.s = pTm->tm_sec;
 | |
|     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
 | |
|   }
 | |
| #endif
 | |
|   y.validYMD = 1;
 | |
|   y.validHMS = 1;
 | |
|   y.validJD = 0;
 | |
|   y.validTZ = 0;
 | |
|   computeJD(&y);
 | |
|   return y.rJD - x.rJD;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Process a modifier to a date-time stamp.  The modifiers are
 | |
| ** as follows:
 | |
| **
 | |
| **     NNN days
 | |
| **     NNN hours
 | |
| **     NNN minutes
 | |
| **     NNN.NNNN seconds
 | |
| **     NNN months
 | |
| **     NNN years
 | |
| **     start of month
 | |
| **     start of year
 | |
| **     start of week
 | |
| **     start of day
 | |
| **     weekday N
 | |
| **     unixepoch
 | |
| **     localtime
 | |
| **     utc
 | |
| **
 | |
| ** Return 0 on success and 1 if there is any kind of error.
 | |
| */
 | |
| static int parseModifier(const char *zMod, DateTime *p){
 | |
|   int rc = 1;
 | |
|   int n;
 | |
|   double r;
 | |
|   char *z, zBuf[30];
 | |
|   z = zBuf;
 | |
|   for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
 | |
|     z[n] = tolower(zMod[n]);
 | |
|   }
 | |
|   z[n] = 0;
 | |
|   switch( z[0] ){
 | |
|     case 'l': {
 | |
|       /*    localtime
 | |
|       **
 | |
|       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
 | |
|       ** show local time.
 | |
|       */
 | |
|       if( strcmp(z, "localtime")==0 ){
 | |
|         computeJD(p);
 | |
|         p->rJD += localtimeOffset(p);
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 'u': {
 | |
|       /*
 | |
|       **    unixepoch
 | |
|       **
 | |
|       ** Treat the current value of p->rJD as the number of
 | |
|       ** seconds since 1970.  Convert to a real julian day number.
 | |
|       */
 | |
|       if( strcmp(z, "unixepoch")==0 && p->validJD ){
 | |
|         p->rJD = p->rJD/86400.0 + 2440587.5;
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         rc = 0;
 | |
|       }else if( strcmp(z, "utc")==0 ){
 | |
|         double c1;
 | |
|         computeJD(p);
 | |
|         c1 = localtimeOffset(p);
 | |
|         p->rJD -= c1;
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         p->rJD += c1 - localtimeOffset(p);
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 'w': {
 | |
|       /*
 | |
|       **    weekday N
 | |
|       **
 | |
|       ** Move the date to the same time on the next occurrence of
 | |
|       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
 | |
|       ** date is already on the appropriate weekday, this is a no-op.
 | |
|       */
 | |
|       if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
 | |
|                  && (n=r)==r && n>=0 && r<7 ){
 | |
|         int Z;
 | |
|         computeYMD_HMS(p);
 | |
|         p->validTZ = 0;
 | |
|         p->validJD = 0;
 | |
|         computeJD(p);
 | |
|         Z = p->rJD + 1.5;
 | |
|         Z %= 7;
 | |
|         if( Z>n ) Z -= 7;
 | |
|         p->rJD += n - Z;
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case 's': {
 | |
|       /*
 | |
|       **    start of TTTTT
 | |
|       **
 | |
|       ** Move the date backwards to the beginning of the current day,
 | |
|       ** or month or year.
 | |
|       */
 | |
|       if( strncmp(z, "start of ", 9)!=0 ) break;
 | |
|       z += 9;
 | |
|       computeYMD(p);
 | |
|       p->validHMS = 1;
 | |
|       p->h = p->m = 0;
 | |
|       p->s = 0.0;
 | |
|       p->validTZ = 0;
 | |
|       p->validJD = 0;
 | |
|       if( strcmp(z,"month")==0 ){
 | |
|         p->D = 1;
 | |
|         rc = 0;
 | |
|       }else if( strcmp(z,"year")==0 ){
 | |
|         computeYMD(p);
 | |
|         p->M = 1;
 | |
|         p->D = 1;
 | |
|         rc = 0;
 | |
|       }else if( strcmp(z,"day")==0 ){
 | |
|         rc = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case '+':
 | |
|     case '-':
 | |
|     case '0':
 | |
|     case '1':
 | |
|     case '2':
 | |
|     case '3':
 | |
|     case '4':
 | |
|     case '5':
 | |
|     case '6':
 | |
|     case '7':
 | |
|     case '8':
 | |
|     case '9': {
 | |
|       n = getValue(z, &r);
 | |
|       assert( n>=1 );
 | |
|       if( z[n]==':' ){
 | |
|         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
 | |
|         ** specified number of hours, minutes, seconds, and fractional seconds
 | |
|         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
 | |
|         ** omitted.
 | |
|         */
 | |
|         const char *z2 = z;
 | |
|         DateTime tx;
 | |
|         int day;
 | |
|         if( !isdigit(*(u8*)z2) ) z2++;
 | |
|         memset(&tx, 0, sizeof(tx));
 | |
|         if( parseHhMmSs(z2, &tx) ) break;
 | |
|         computeJD(&tx);
 | |
|         tx.rJD -= 0.5;
 | |
|         day = (int)tx.rJD;
 | |
|         tx.rJD -= day;
 | |
|         if( z[0]=='-' ) tx.rJD = -tx.rJD;
 | |
|         computeJD(p);
 | |
|         clearYMD_HMS_TZ(p);
 | |
|         p->rJD += tx.rJD;
 | |
|         rc = 0;
 | |
|         break;
 | |
|       }
 | |
|       z += n;
 | |
|       while( isspace(*(u8*)z) ) z++;
 | |
|       n = strlen(z);
 | |
|       if( n>10 || n<3 ) break;
 | |
|       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
 | |
|       computeJD(p);
 | |
|       rc = 0;
 | |
|       if( n==3 && strcmp(z,"day")==0 ){
 | |
|         p->rJD += r;
 | |
|       }else if( n==4 && strcmp(z,"hour")==0 ){
 | |
|         p->rJD += r/24.0;
 | |
|       }else if( n==6 && strcmp(z,"minute")==0 ){
 | |
|         p->rJD += r/(24.0*60.0);
 | |
|       }else if( n==6 && strcmp(z,"second")==0 ){
 | |
|         p->rJD += r/(24.0*60.0*60.0);
 | |
|       }else if( n==5 && strcmp(z,"month")==0 ){
 | |
|         int x, y;
 | |
|         computeYMD_HMS(p);
 | |
|         p->M += r;
 | |
|         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
 | |
|         p->Y += x;
 | |
|         p->M -= x*12;
 | |
|         p->validJD = 0;
 | |
|         computeJD(p);
 | |
|         y = r;
 | |
|         if( y!=r ){
 | |
|           p->rJD += (r - y)*30.0;
 | |
|         }
 | |
|       }else if( n==4 && strcmp(z,"year")==0 ){
 | |
|         computeYMD_HMS(p);
 | |
|         p->Y += r;
 | |
|         p->validJD = 0;
 | |
|         computeJD(p);
 | |
|       }else{
 | |
|         rc = 1;
 | |
|       }
 | |
|       clearYMD_HMS_TZ(p);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Process time function arguments.  argv[0] is a date-time stamp.
 | |
| ** argv[1] and following are modifiers.  Parse them all and write
 | |
| ** the resulting time into the DateTime structure p.  Return 0
 | |
| ** on success and 1 if there are any errors.
 | |
| **
 | |
| ** If there are zero parameters (if even argv[0] is undefined)
 | |
| ** then assume a default value of "now" for argv[0].
 | |
| */
 | |
| static int isDate(
 | |
|   sqlite3_context *context, 
 | |
|   int argc, 
 | |
|   sqlite3_value **argv, 
 | |
|   DateTime *p
 | |
| ){
 | |
|   int i;
 | |
|   const unsigned char *z;
 | |
|   static const unsigned char zDflt[] = "now";
 | |
|   if( argc==0 ){
 | |
|     z = zDflt;
 | |
|   }else{
 | |
|     z = sqlite3_value_text(argv[0]);
 | |
|   }
 | |
|   if( !z || parseDateOrTime(context, (char*)z, p) ){
 | |
|     return 1;
 | |
|   }
 | |
|   for(i=1; i<argc; i++){
 | |
|     if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following routines implement the various date and time functions
 | |
| ** of SQLite.
 | |
| */
 | |
| 
 | |
| /*
 | |
| **    julianday( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return the julian day number of the date specified in the arguments
 | |
| */
 | |
| static void juliandayFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(context, argc, argv, &x)==0 ){
 | |
|     computeJD(&x);
 | |
|     sqlite3_result_double(context, x.rJD);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    datetime( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return YYYY-MM-DD HH:MM:SS
 | |
| */
 | |
| static void datetimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(context, argc, argv, &x)==0 ){
 | |
|     char zBuf[100];
 | |
|     computeYMD_HMS(&x);
 | |
|     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
 | |
|                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
 | |
|     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    time( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return HH:MM:SS
 | |
| */
 | |
| static void timeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(context, argc, argv, &x)==0 ){
 | |
|     char zBuf[100];
 | |
|     computeHMS(&x);
 | |
|     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
 | |
|     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    date( TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return YYYY-MM-DD
 | |
| */
 | |
| static void dateFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   if( isDate(context, argc, argv, &x)==0 ){
 | |
|     char zBuf[100];
 | |
|     computeYMD(&x);
 | |
|     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
 | |
|     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
 | |
| **
 | |
| ** Return a string described by FORMAT.  Conversions as follows:
 | |
| **
 | |
| **   %d  day of month
 | |
| **   %f  ** fractional seconds  SS.SSS
 | |
| **   %H  hour 00-24
 | |
| **   %j  day of year 000-366
 | |
| **   %J  ** Julian day number
 | |
| **   %m  month 01-12
 | |
| **   %M  minute 00-59
 | |
| **   %s  seconds since 1970-01-01
 | |
| **   %S  seconds 00-59
 | |
| **   %w  day of week 0-6  sunday==0
 | |
| **   %W  week of year 00-53
 | |
| **   %Y  year 0000-9999
 | |
| **   %%  %
 | |
| */
 | |
| static void strftimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   DateTime x;
 | |
|   u64 n;
 | |
|   int i, j;
 | |
|   char *z;
 | |
|   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
 | |
|   char zBuf[100];
 | |
|   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
 | |
|   for(i=0, n=1; zFmt[i]; i++, n++){
 | |
|     if( zFmt[i]=='%' ){
 | |
|       switch( zFmt[i+1] ){
 | |
|         case 'd':
 | |
|         case 'H':
 | |
|         case 'm':
 | |
|         case 'M':
 | |
|         case 'S':
 | |
|         case 'W':
 | |
|           n++;
 | |
|           /* fall thru */
 | |
|         case 'w':
 | |
|         case '%':
 | |
|           break;
 | |
|         case 'f':
 | |
|           n += 8;
 | |
|           break;
 | |
|         case 'j':
 | |
|           n += 3;
 | |
|           break;
 | |
|         case 'Y':
 | |
|           n += 8;
 | |
|           break;
 | |
|         case 's':
 | |
|         case 'J':
 | |
|           n += 50;
 | |
|           break;
 | |
|         default:
 | |
|           return;  /* ERROR.  return a NULL */
 | |
|       }
 | |
|       i++;
 | |
|     }
 | |
|   }
 | |
|   if( n<sizeof(zBuf) ){
 | |
|     z = zBuf;
 | |
|   }else if( n>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|     return;
 | |
|   }else{
 | |
|     z = sqlite3_malloc( n );
 | |
|     if( z==0 ){
 | |
|       sqlite3_result_error_nomem(context);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   computeJD(&x);
 | |
|   computeYMD_HMS(&x);
 | |
|   for(i=j=0; zFmt[i]; i++){
 | |
|     if( zFmt[i]!='%' ){
 | |
|       z[j++] = zFmt[i];
 | |
|     }else{
 | |
|       i++;
 | |
|       switch( zFmt[i] ){
 | |
|         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
 | |
|         case 'f': {
 | |
|           double s = x.s;
 | |
|           if( s>59.999 ) s = 59.999;
 | |
|           sqlite3_snprintf(7, &z[j],"%06.3f", s);
 | |
|           j += strlen(&z[j]);
 | |
|           break;
 | |
|         }
 | |
|         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
 | |
|         case 'W': /* Fall thru */
 | |
|         case 'j': {
 | |
|           int nDay;             /* Number of days since 1st day of year */
 | |
|           DateTime y = x;
 | |
|           y.validJD = 0;
 | |
|           y.M = 1;
 | |
|           y.D = 1;
 | |
|           computeJD(&y);
 | |
|           nDay = x.rJD - y.rJD + 0.5;
 | |
|           if( zFmt[i]=='W' ){
 | |
|             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
 | |
|             wd = ((int)(x.rJD+0.5)) % 7;
 | |
|             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
 | |
|             j += 2;
 | |
|           }else{
 | |
|             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
 | |
|             j += 3;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|         case 'J': {
 | |
|           sqlite3_snprintf(20, &z[j],"%.16g",x.rJD);
 | |
|           j+=strlen(&z[j]);
 | |
|           break;
 | |
|         }
 | |
|         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
 | |
|         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
 | |
|         case 's': {
 | |
|           sqlite3_snprintf(30,&z[j],"%d",
 | |
|                            (int)((x.rJD-2440587.5)*86400.0 + 0.5));
 | |
|           j += strlen(&z[j]);
 | |
|           break;
 | |
|         }
 | |
|         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
 | |
|         case 'w':  z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
 | |
|         case 'Y':  sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break;
 | |
|         default:   z[j++] = '%'; break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   z[j] = 0;
 | |
|   sqlite3_result_text(context, z, -1,
 | |
|                       z==zBuf ? SQLITE_TRANSIENT : sqlite3_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** current_time()
 | |
| **
 | |
| ** This function returns the same value as time('now').
 | |
| */
 | |
| static void ctimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   timeFunc(context, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** current_date()
 | |
| **
 | |
| ** This function returns the same value as date('now').
 | |
| */
 | |
| static void cdateFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   dateFunc(context, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** current_timestamp()
 | |
| **
 | |
| ** This function returns the same value as datetime('now').
 | |
| */
 | |
| static void ctimestampFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   datetimeFunc(context, 0, 0);
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
 | |
| 
 | |
| #ifdef SQLITE_OMIT_DATETIME_FUNCS
 | |
| /*
 | |
| ** If the library is compiled to omit the full-scale date and time
 | |
| ** handling (to get a smaller binary), the following minimal version
 | |
| ** of the functions current_time(), current_date() and current_timestamp()
 | |
| ** are included instead. This is to support column declarations that
 | |
| ** include "DEFAULT CURRENT_TIME" etc.
 | |
| **
 | |
| ** This function uses the C-library functions time(), gmtime()
 | |
| ** and strftime(). The format string to pass to strftime() is supplied
 | |
| ** as the user-data for the function.
 | |
| */
 | |
| static void currentTimeFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   time_t t;
 | |
|   char *zFormat = (char *)sqlite3_user_data(context);
 | |
|   char zBuf[20];
 | |
| 
 | |
|   time(&t);
 | |
| #ifdef SQLITE_TEST
 | |
|   {
 | |
|     extern int sqlite3_current_time;  /* See os_XXX.c */
 | |
|     if( sqlite3_current_time ){
 | |
|       t = sqlite3_current_time;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef HAVE_GMTIME_R
 | |
|   {
 | |
|     struct tm sNow;
 | |
|     gmtime_r(&t, &sNow);
 | |
|     strftime(zBuf, 20, zFormat, &sNow);
 | |
|   }
 | |
| #else
 | |
|   {
 | |
|     struct tm *pTm;
 | |
|     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
 | |
|     pTm = gmtime(&t);
 | |
|     strftime(zBuf, 20, zFormat, pTm);
 | |
|     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This function registered all of the above C functions as SQL
 | |
| ** functions.  This should be the only routine in this file with
 | |
| ** external linkage.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
 | |
| #ifndef SQLITE_OMIT_DATETIME_FUNCS
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      int nArg;
 | |
|      void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
 | |
|   } aFuncs[] = {
 | |
|     { "julianday", -1, juliandayFunc   },
 | |
|     { "date",      -1, dateFunc        },
 | |
|     { "time",      -1, timeFunc        },
 | |
|     { "datetime",  -1, datetimeFunc    },
 | |
|     { "strftime",  -1, strftimeFunc    },
 | |
|     { "current_time",       0, ctimeFunc      },
 | |
|     { "current_timestamp",  0, ctimestampFunc },
 | |
|     { "current_date",       0, cdateFunc      },
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
 | |
|         SQLITE_UTF8, (void *)(db->pVfs), aFuncs[i].xFunc, 0, 0);
 | |
|   }
 | |
| #else
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      char *zFormat;
 | |
|   } aFuncs[] = {
 | |
|     { "current_time", "%H:%M:%S" },
 | |
|     { "current_date", "%Y-%m-%d" },
 | |
|     { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8, 
 | |
|         aFuncs[i].zFormat, currentTimeFunc, 0, 0);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /************** End of date.c ************************************************/
 | |
| /************** Begin file os.c **********************************************/
 | |
| /*
 | |
| ** 2005 November 29
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains OS interface code that is common to all
 | |
| ** architectures.
 | |
| */
 | |
| #define _SQLITE_OS_C_ 1
 | |
| #undef _SQLITE_OS_C_
 | |
| 
 | |
| /*
 | |
| ** The default SQLite sqlite3_vfs implementations do not allocate
 | |
| ** memory (actually, os_unix.c allocates a small amount of memory
 | |
| ** from within OsOpen()), but some third-party implementations may.
 | |
| ** So we test the effects of a malloc() failing and the sqlite3OsXXX()
 | |
| ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
 | |
| **
 | |
| ** The following functions are instrumented for malloc() failure 
 | |
| ** testing:
 | |
| **
 | |
| **     sqlite3OsOpen()
 | |
| **     sqlite3OsRead()
 | |
| **     sqlite3OsWrite()
 | |
| **     sqlite3OsSync()
 | |
| **     sqlite3OsLock()
 | |
| **
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
|   #define DO_OS_MALLOC_TEST if (1) {            \
 | |
|     void *pTstAlloc = sqlite3_malloc(10);       \
 | |
|     if (!pTstAlloc) return SQLITE_IOERR_NOMEM;  \
 | |
|     sqlite3_free(pTstAlloc);                    \
 | |
|   }
 | |
| #else
 | |
|   #define DO_OS_MALLOC_TEST
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The following routines are convenience wrappers around methods
 | |
| ** of the sqlite3_file object.  This is mostly just syntactic sugar. All
 | |
| ** of this would be completely automatic if SQLite were coded using
 | |
| ** C++ instead of plain old C.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pId->pMethods ){
 | |
|     rc = pId->pMethods->xClose(pId);
 | |
|     pId->pMethods = 0;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
 | |
|   DO_OS_MALLOC_TEST;
 | |
|   return id->pMethods->xRead(id, pBuf, amt, offset);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
 | |
|   DO_OS_MALLOC_TEST;
 | |
|   return id->pMethods->xWrite(id, pBuf, amt, offset);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){
 | |
|   return id->pMethods->xTruncate(id, size);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){
 | |
|   DO_OS_MALLOC_TEST;
 | |
|   return id->pMethods->xSync(id, flags);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
 | |
|   return id->pMethods->xFileSize(id, pSize);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){
 | |
|   DO_OS_MALLOC_TEST;
 | |
|   return id->pMethods->xLock(id, lockType);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){
 | |
|   return id->pMethods->xUnlock(id, lockType);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id){
 | |
|   return id->pMethods->xCheckReservedLock(id);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
 | |
|   return id->pMethods->xFileControl(id,op,pArg);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){
 | |
|   int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
 | |
|   return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
 | |
|   return id->pMethods->xDeviceCharacteristics(id);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The next group of routines are convenience wrappers around the
 | |
| ** VFS methods.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OsOpen(
 | |
|   sqlite3_vfs *pVfs, 
 | |
|   const char *zPath, 
 | |
|   sqlite3_file *pFile, 
 | |
|   int flags, 
 | |
|   int *pFlagsOut
 | |
| ){
 | |
|   DO_OS_MALLOC_TEST;
 | |
|   return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
 | |
|   return pVfs->xDelete(pVfs, zPath, dirSync);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
 | |
|   return pVfs->xAccess(pVfs, zPath, flags);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){
 | |
|   return pVfs->xGetTempname(pVfs, nBufOut, zBufOut);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsFullPathname(
 | |
|   sqlite3_vfs *pVfs, 
 | |
|   const char *zPath, 
 | |
|   int nPathOut, 
 | |
|   char *zPathOut
 | |
| ){
 | |
|   return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
 | |
| }
 | |
| SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
 | |
|   return pVfs->xDlOpen(pVfs, zPath);
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
 | |
|   pVfs->xDlError(pVfs, nByte, zBufOut);
 | |
| }
 | |
| SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
 | |
|   return pVfs->xDlSym(pVfs, pHandle, zSymbol);
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
 | |
|   pVfs->xDlClose(pVfs, pHandle);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
 | |
|   return pVfs->xRandomness(pVfs, nByte, zBufOut);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
 | |
|   return pVfs->xSleep(pVfs, nMicro);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
 | |
|   return pVfs->xCurrentTime(pVfs, pTimeOut);
 | |
| }
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3OsOpenMalloc(
 | |
|   sqlite3_vfs *pVfs, 
 | |
|   const char *zFile, 
 | |
|   sqlite3_file **ppFile, 
 | |
|   int flags,
 | |
|   int *pOutFlags
 | |
| ){
 | |
|   int rc = SQLITE_NOMEM;
 | |
|   sqlite3_file *pFile;
 | |
|   pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile);
 | |
|   if( pFile ){
 | |
|     rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3_free(pFile);
 | |
|     }else{
 | |
|       *ppFile = pFile;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pFile ){
 | |
|     rc = sqlite3OsClose(pFile);
 | |
|     sqlite3_free(pFile);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The list of all registered VFS implementations.  This list is
 | |
| ** initialized to the single VFS returned by sqlite3OsDefaultVfs()
 | |
| ** upon the first call to sqlite3_vfs_find().
 | |
| */
 | |
| static sqlite3_vfs *vfsList = 0;
 | |
| 
 | |
| /*
 | |
| ** Locate a VFS by name.  If no name is given, simply return the
 | |
| ** first VFS on the list.
 | |
| */
 | |
| SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
 | |
| #ifndef SQLITE_MUTEX_NOOP
 | |
|   sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
| #endif
 | |
|   sqlite3_vfs *pVfs = 0;
 | |
|   static int isInit = 0;
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   if( !isInit ){
 | |
|     vfsList = sqlite3OsDefaultVfs();
 | |
|     isInit = 1;
 | |
|   }
 | |
|   for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
 | |
|     if( zVfs==0 ) break;
 | |
|     if( strcmp(zVfs, pVfs->zName)==0 ) break;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mutex);
 | |
|   return pVfs;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlink a VFS from the linked list
 | |
| */
 | |
| static void vfsUnlink(sqlite3_vfs *pVfs){
 | |
|   assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) );
 | |
|   if( pVfs==0 ){
 | |
|     /* No-op */
 | |
|   }else if( vfsList==pVfs ){
 | |
|     vfsList = pVfs->pNext;
 | |
|   }else if( vfsList ){
 | |
|     sqlite3_vfs *p = vfsList;
 | |
|     while( p->pNext && p->pNext!=pVfs ){
 | |
|       p = p->pNext;
 | |
|     }
 | |
|     if( p->pNext==pVfs ){
 | |
|       p->pNext = pVfs->pNext;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register a VFS with the system.  It is harmless to register the same
 | |
| ** VFS multiple times.  The new VFS becomes the default if makeDflt is
 | |
| ** true.
 | |
| */
 | |
| SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
 | |
| #ifndef SQLITE_MUTEX_NOOP
 | |
|   sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
| #endif
 | |
|   sqlite3_vfs_find(0);  /* Make sure we are initialized */
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   vfsUnlink(pVfs);
 | |
|   if( makeDflt || vfsList==0 ){
 | |
|     pVfs->pNext = vfsList;
 | |
|     vfsList = pVfs;
 | |
|   }else{
 | |
|     pVfs->pNext = vfsList->pNext;
 | |
|     vfsList->pNext = pVfs;
 | |
|   }
 | |
|   assert(vfsList);
 | |
|   sqlite3_mutex_leave(mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unregister a VFS so that it is no longer accessible.
 | |
| */
 | |
| SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
 | |
| #ifndef SQLITE_MUTEX_NOOP
 | |
|   sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
| #endif
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   vfsUnlink(pVfs);
 | |
|   sqlite3_mutex_leave(mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /************** End of os.c **************************************************/
 | |
| /************** Begin file fault.c *******************************************/
 | |
| /*
 | |
| ** 2008 Jan 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code to implement a fault-injector used for
 | |
| ** testing and verification of SQLite.
 | |
| **
 | |
| ** Subsystems within SQLite can call sqlite3FaultStep() to see if
 | |
| ** they should simulate a fault.  sqlite3FaultStep() normally returns
 | |
| ** zero but will return non-zero if a fault should be simulated.
 | |
| ** Fault injectors can be used, for example, to simulate memory
 | |
| ** allocation failures or I/O errors.
 | |
| **
 | |
| ** The fault injector is omitted from the code if SQLite is
 | |
| ** compiled with -DSQLITE_OMIT_FAULTINJECTOR=1.  There is a very
 | |
| ** small performance hit for leaving the fault injector in the code.
 | |
| ** Commerical products will probably want to omit the fault injector
 | |
| ** from production builds.  But safety-critical systems who work
 | |
| ** under the motto "fly what you test and test what you fly" may
 | |
| ** choose to leave the fault injector enabled even in production.
 | |
| */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_FAULTINJECTOR
 | |
| 
 | |
| /*
 | |
| ** There can be various kinds of faults.  For example, there can be
 | |
| ** a memory allocation failure.  Or an I/O failure.  For each different
 | |
| ** fault type, there is a separate FaultInjector structure to keep track
 | |
| ** of the status of that fault.
 | |
| */
 | |
| static struct FaultInjector {
 | |
|   int iCountdown;   /* Number of pending successes before we hit a failure */
 | |
|   int nRepeat;      /* Number of times to repeat the failure */
 | |
|   int nBenign;      /* Number of benign failures seen since last config */
 | |
|   int nFail;        /* Number of failures seen since last config */
 | |
|   u8 enable;        /* True if enabled */
 | |
|   u8 benign;        /* Ture if next failure will be benign */
 | |
| } aFault[SQLITE_FAULTINJECTOR_COUNT];
 | |
| 
 | |
| /*
 | |
| ** This routine configures and enables a fault injector.  After
 | |
| ** calling this routine, aFaultStep() will return false (zero)
 | |
| ** nDelay times, then it will return true nRepeat times,
 | |
| ** then it will again begin returning false.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3FaultConfig(int id, int nDelay, int nRepeat){
 | |
|   assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
 | |
|   aFault[id].iCountdown = nDelay;
 | |
|   aFault[id].nRepeat = nRepeat;
 | |
|   aFault[id].nBenign = 0;
 | |
|   aFault[id].nFail = 0;
 | |
|   aFault[id].enable = nDelay>=0;
 | |
|   aFault[id].benign = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of faults (both hard and benign faults) that have
 | |
| ** occurred since the injector was last configured.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FaultFailures(int id){
 | |
|   assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
 | |
|   return aFault[id].nFail;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of benign faults that have occurred since the
 | |
| ** injector was last configured.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FaultBenignFailures(int id){
 | |
|   assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
 | |
|   return aFault[id].nBenign;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of successes that will occur before the next failure.
 | |
| ** If no failures are scheduled, return -1.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FaultPending(int id){
 | |
|   assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
 | |
|   if( aFault[id].enable ){
 | |
|     return aFault[id].iCountdown;
 | |
|   }else{
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** After this routine causes subsequent faults to be either benign
 | |
| ** or hard (not benign), according to the "enable" parameter.
 | |
| **
 | |
| ** Most faults are hard.  In other words, most faults cause
 | |
| ** an error to be propagated back up to the application interface.
 | |
| ** However, sometimes a fault is easily recoverable.  For example,
 | |
| ** if a malloc fails while resizing a hash table, this is completely
 | |
| ** recoverable simply by not carrying out the resize.  The hash table
 | |
| ** will continue to function normally.  So a malloc failure during
 | |
| ** a hash table resize is a benign fault.  
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3FaultBenign(int id, int enable){
 | |
|   assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
 | |
|   aFault[id].benign = enable;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine exists as a place to set a breakpoint that will
 | |
| ** fire on any simulated fault.
 | |
| */
 | |
| static void sqlite3Fault(void){
 | |
|   static int cnt = 0;
 | |
|   cnt++;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check to see if a fault should be simulated.  Return true to simulate
 | |
| ** the fault.  Return false if the fault should not be simulated.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FaultStep(int id){
 | |
|   assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT );
 | |
|   if( likely(!aFault[id].enable) ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( aFault[id].iCountdown>0 ){
 | |
|     aFault[id].iCountdown--;
 | |
|     return 0;
 | |
|   }
 | |
|   sqlite3Fault();
 | |
|   aFault[id].nFail++;
 | |
|   if( aFault[id].benign ){
 | |
|     aFault[id].nBenign++;
 | |
|   }
 | |
|   aFault[id].nRepeat--;
 | |
|   if( aFault[id].nRepeat<=0 ){
 | |
|     aFault[id].enable = 0;
 | |
|   }
 | |
|   return 1;  
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_FAULTINJECTOR */
 | |
| 
 | |
| /************** End of fault.c ***********************************************/
 | |
| /************** Begin file mem1.c ********************************************/
 | |
| /*
 | |
| ** 2007 August 14
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement a memory
 | |
| ** allocation subsystem for use by SQLite.  
 | |
| **
 | |
| ** $Id: mem1.c,v 1.16 2008/02/14 23:26:56 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This version of the memory allocator is the default.  It is
 | |
| ** used when no other memory allocator is specified using compile-time
 | |
| ** macros.
 | |
| */
 | |
| #ifdef SQLITE_SYSTEM_MALLOC
 | |
| 
 | |
| /*
 | |
| ** All of the static variables used by this module are collected
 | |
| ** into a single structure named "mem".  This is to keep the
 | |
| ** static variables organized and to reduce namespace pollution
 | |
| ** when this module is combined with other in the amalgamation.
 | |
| */
 | |
| static struct {
 | |
|   /*
 | |
|   ** The alarm callback and its arguments.  The mem.mutex lock will
 | |
|   ** be held while the callback is running.  Recursive calls into
 | |
|   ** the memory subsystem are allowed, but no new callbacks will be
 | |
|   ** issued.  The alarmBusy variable is set to prevent recursive
 | |
|   ** callbacks.
 | |
|   */
 | |
|   sqlite3_int64 alarmThreshold;
 | |
|   void (*alarmCallback)(void*, sqlite3_int64,int);
 | |
|   void *alarmArg;
 | |
|   int alarmBusy;
 | |
|   
 | |
|   /*
 | |
|   ** Mutex to control access to the memory allocation subsystem.
 | |
|   */
 | |
|   sqlite3_mutex *mutex;
 | |
|   
 | |
|   /*
 | |
|   ** Current allocation and high-water mark.
 | |
|   */
 | |
|   sqlite3_int64 nowUsed;
 | |
|   sqlite3_int64 mxUsed;
 | |
|   
 | |
|  
 | |
| } mem;
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
 | |
| */
 | |
| static void enterMem(void){
 | |
|   if( mem.mutex==0 ){
 | |
|     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
 | |
|   }
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the amount of memory currently checked out.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
 | |
|   sqlite3_int64 n;
 | |
|   enterMem();
 | |
|   n = mem.nowUsed;
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum amount of memory that has ever been
 | |
| ** checked out since either the beginning of this process
 | |
| ** or since the most recent reset.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
 | |
|   sqlite3_int64 n;
 | |
|   enterMem();
 | |
|   n = mem.mxUsed;
 | |
|   if( resetFlag ){
 | |
|     mem.mxUsed = mem.nowUsed;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the alarm callback
 | |
| */
 | |
| SQLITE_API int sqlite3_memory_alarm(
 | |
|   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
 | |
|   void *pArg,
 | |
|   sqlite3_int64 iThreshold
 | |
| ){
 | |
|   enterMem();
 | |
|   mem.alarmCallback = xCallback;
 | |
|   mem.alarmArg = pArg;
 | |
|   mem.alarmThreshold = iThreshold;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Trigger the alarm 
 | |
| */
 | |
| static void sqlite3MemsysAlarm(int nByte){
 | |
|   void (*xCallback)(void*,sqlite3_int64,int);
 | |
|   sqlite3_int64 nowUsed;
 | |
|   void *pArg;
 | |
|   if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
 | |
|   mem.alarmBusy = 1;
 | |
|   xCallback = mem.alarmCallback;
 | |
|   nowUsed = mem.nowUsed;
 | |
|   pArg = mem.alarmArg;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   xCallback(pArg, nowUsed, nByte);
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.alarmBusy = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nBytes of memory
 | |
| */
 | |
| SQLITE_API void *sqlite3_malloc(int nBytes){
 | |
|   sqlite3_int64 *p = 0;
 | |
|   if( nBytes>0 ){
 | |
|     enterMem();
 | |
|     if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
 | |
|       sqlite3MemsysAlarm(nBytes);
 | |
|     }
 | |
|     p = malloc(nBytes+8);
 | |
|     if( p==0 ){
 | |
|       sqlite3MemsysAlarm(nBytes);
 | |
|       p = malloc(nBytes+8);
 | |
|     }
 | |
|     if( p ){
 | |
|       p[0] = nBytes;
 | |
|       p++;
 | |
|       mem.nowUsed += nBytes;
 | |
|       if( mem.nowUsed>mem.mxUsed ){
 | |
|         mem.mxUsed = mem.nowUsed;
 | |
|       }
 | |
|     }
 | |
|     sqlite3_mutex_leave(mem.mutex);
 | |
|   }
 | |
|   return (void*)p; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free memory.
 | |
| */
 | |
| SQLITE_API void sqlite3_free(void *pPrior){
 | |
|   sqlite3_int64 *p;
 | |
|   int nByte;
 | |
|   if( pPrior==0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   p = pPrior;
 | |
|   p--;
 | |
|   nByte = (int)*p;
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.nowUsed -= nByte;
 | |
|   free(p);
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of bytes allocated at p.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3MallocSize(void *p){
 | |
|   sqlite3_int64 *pInt;
 | |
|   if( !p ) return 0;
 | |
|   pInt = p;
 | |
|   return pInt[-1];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the size of an existing memory allocation
 | |
| */
 | |
| SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
 | |
|   int nOld;
 | |
|   sqlite3_int64 *p;
 | |
|   if( pPrior==0 ){
 | |
|     return sqlite3_malloc(nBytes);
 | |
|   }
 | |
|   if( nBytes<=0 ){
 | |
|     sqlite3_free(pPrior);
 | |
|     return 0;
 | |
|   }
 | |
|   p = pPrior;
 | |
|   p--;
 | |
|   nOld = (int)p[0];
 | |
|   assert( mem.mutex!=0 );
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
 | |
|     sqlite3MemsysAlarm(nBytes-nOld);
 | |
|   }
 | |
|   p = realloc(p, nBytes+8);
 | |
|   if( p==0 ){
 | |
|     sqlite3MemsysAlarm(nBytes);
 | |
|     p = pPrior;
 | |
|     p--;
 | |
|     p = realloc(p, nBytes+8);
 | |
|   }
 | |
|   if( p ){
 | |
|     p[0] = nBytes;
 | |
|     p++;
 | |
|     mem.nowUsed += nBytes-nOld;
 | |
|     if( mem.nowUsed>mem.mxUsed ){
 | |
|       mem.mxUsed = mem.nowUsed;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return (void*)p;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_SYSTEM_MALLOC */
 | |
| 
 | |
| /************** End of mem1.c ************************************************/
 | |
| /************** Begin file mem2.c ********************************************/
 | |
| /*
 | |
| ** 2007 August 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement a memory
 | |
| ** allocation subsystem for use by SQLite.  
 | |
| **
 | |
| ** $Id: mem2.c,v 1.22 2008/02/19 15:15:16 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This version of the memory allocator is used only if the
 | |
| ** SQLITE_MEMDEBUG macro is defined
 | |
| */
 | |
| #ifdef SQLITE_MEMDEBUG
 | |
| 
 | |
| /*
 | |
| ** The backtrace functionality is only available with GLIBC
 | |
| */
 | |
| #ifdef __GLIBC__
 | |
|   extern int backtrace(void**,int);
 | |
|   extern void backtrace_symbols_fd(void*const*,int,int);
 | |
| #else
 | |
| # define backtrace(A,B) 0
 | |
| # define backtrace_symbols_fd(A,B,C)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Each memory allocation looks like this:
 | |
| **
 | |
| **  ------------------------------------------------------------------------
 | |
| **  | Title |  backtrace pointers |  MemBlockHdr |  allocation |  EndGuard |
 | |
| **  ------------------------------------------------------------------------
 | |
| **
 | |
| ** The application code sees only a pointer to the allocation.  We have
 | |
| ** to back up from the allocation pointer to find the MemBlockHdr.  The
 | |
| ** MemBlockHdr tells us the size of the allocation and the number of
 | |
| ** backtrace pointers.  There is also a guard word at the end of the
 | |
| ** MemBlockHdr.
 | |
| */
 | |
| struct MemBlockHdr {
 | |
|   struct MemBlockHdr *pNext, *pPrev;  /* Linked list of all unfreed memory */
 | |
|   int iSize;                          /* Size of this allocation */
 | |
|   char nBacktrace;                    /* Number of backtraces on this alloc */
 | |
|   char nBacktraceSlots;               /* Available backtrace slots */
 | |
|   short nTitle;                       /* Bytes of title; includes '\0' */
 | |
|   int iForeGuard;                     /* Guard word for sanity */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Guard words
 | |
| */
 | |
| #define FOREGUARD 0x80F5E153
 | |
| #define REARGUARD 0xE4676B53
 | |
| 
 | |
| /*
 | |
| ** Number of malloc size increments to track.
 | |
| */
 | |
| #define NCSIZE  1000
 | |
| 
 | |
| /*
 | |
| ** All of the static variables used by this module are collected
 | |
| ** into a single structure named "mem".  This is to keep the
 | |
| ** static variables organized and to reduce namespace pollution
 | |
| ** when this module is combined with other in the amalgamation.
 | |
| */
 | |
| static struct {
 | |
|   /*
 | |
|   ** The alarm callback and its arguments.  The mem.mutex lock will
 | |
|   ** be held while the callback is running.  Recursive calls into
 | |
|   ** the memory subsystem are allowed, but no new callbacks will be
 | |
|   ** issued.  The alarmBusy variable is set to prevent recursive
 | |
|   ** callbacks.
 | |
|   */
 | |
|   sqlite3_int64 alarmThreshold;
 | |
|   void (*alarmCallback)(void*, sqlite3_int64, int);
 | |
|   void *alarmArg;
 | |
|   int alarmBusy;
 | |
|   
 | |
|   /*
 | |
|   ** Mutex to control access to the memory allocation subsystem.
 | |
|   */
 | |
|   sqlite3_mutex *mutex;
 | |
|   
 | |
|   /*
 | |
|   ** Current allocation and high-water mark.
 | |
|   */
 | |
|   sqlite3_int64 nowUsed;
 | |
|   sqlite3_int64 mxUsed;
 | |
|   
 | |
|   /*
 | |
|   ** Head and tail of a linked list of all outstanding allocations
 | |
|   */
 | |
|   struct MemBlockHdr *pFirst;
 | |
|   struct MemBlockHdr *pLast;
 | |
|   
 | |
|   /*
 | |
|   ** The number of levels of backtrace to save in new allocations.
 | |
|   */
 | |
|   int nBacktrace;
 | |
| 
 | |
|   /*
 | |
|   ** Title text to insert in front of each block
 | |
|   */
 | |
|   int nTitle;        /* Bytes of zTitle to save.  Includes '\0' and padding */
 | |
|   char zTitle[100];  /* The title text */
 | |
| 
 | |
|   /* 
 | |
|   ** sqlite3MallocDisallow() increments the following counter.
 | |
|   ** sqlite3MallocAllow() decrements it.
 | |
|   */
 | |
|   int disallow; /* Do not allow memory allocation */
 | |
| 
 | |
|   /*
 | |
|   ** Gather statistics on the sizes of memory allocations.
 | |
|   ** sizeCnt[i] is the number of allocation attempts of i*8
 | |
|   ** bytes.  i==NCSIZE is the number of allocation attempts for
 | |
|   ** sizes more than NCSIZE*8 bytes.
 | |
|   */
 | |
|   int sizeCnt[NCSIZE];
 | |
| 
 | |
| } mem;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
 | |
| */
 | |
| static void enterMem(void){
 | |
|   if( mem.mutex==0 ){
 | |
|     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
 | |
|   }
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the amount of memory currently checked out.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
 | |
|   sqlite3_int64 n;
 | |
|   enterMem();
 | |
|   n = mem.nowUsed;
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum amount of memory that has ever been
 | |
| ** checked out since either the beginning of this process
 | |
| ** or since the most recent reset.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
 | |
|   sqlite3_int64 n;
 | |
|   enterMem();
 | |
|   n = mem.mxUsed;
 | |
|   if( resetFlag ){
 | |
|     mem.mxUsed = mem.nowUsed;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the alarm callback
 | |
| */
 | |
| SQLITE_API int sqlite3_memory_alarm(
 | |
|   void(*xCallback)(void *pArg, sqlite3_int64 used, int N),
 | |
|   void *pArg,
 | |
|   sqlite3_int64 iThreshold
 | |
| ){
 | |
|   enterMem();
 | |
|   mem.alarmCallback = xCallback;
 | |
|   mem.alarmArg = pArg;
 | |
|   mem.alarmThreshold = iThreshold;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Trigger the alarm 
 | |
| */
 | |
| static void sqlite3MemsysAlarm(int nByte){
 | |
|   void (*xCallback)(void*,sqlite3_int64,int);
 | |
|   sqlite3_int64 nowUsed;
 | |
|   void *pArg;
 | |
|   if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
 | |
|   mem.alarmBusy = 1;
 | |
|   xCallback = mem.alarmCallback;
 | |
|   nowUsed = mem.nowUsed;
 | |
|   pArg = mem.alarmArg;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   xCallback(pArg, nowUsed, nByte);
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.alarmBusy = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given an allocation, find the MemBlockHdr for that allocation.
 | |
| **
 | |
| ** This routine checks the guards at either end of the allocation and
 | |
| ** if they are incorrect it asserts.
 | |
| */
 | |
| static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){
 | |
|   struct MemBlockHdr *p;
 | |
|   int *pInt;
 | |
| 
 | |
|   p = (struct MemBlockHdr*)pAllocation;
 | |
|   p--;
 | |
|   assert( p->iForeGuard==FOREGUARD );
 | |
|   assert( (p->iSize & 3)==0 );
 | |
|   pInt = (int*)pAllocation;
 | |
|   assert( pInt[p->iSize/sizeof(int)]==REARGUARD );
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of bytes currently allocated at address p.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3MallocSize(void *p){
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   if( !p ){
 | |
|     return 0;
 | |
|   }
 | |
|   pHdr = sqlite3MemsysGetHeader(p);
 | |
|   return pHdr->iSize;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nByte bytes of memory.
 | |
| */
 | |
| SQLITE_API void *sqlite3_malloc(int nByte){
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   void **pBt;
 | |
|   char *z;
 | |
|   int *pInt;
 | |
|   void *p = 0;
 | |
|   int totalSize;
 | |
| 
 | |
|   if( nByte>0 ){
 | |
|     enterMem();
 | |
|     assert( mem.disallow==0 );
 | |
|     if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){
 | |
|       sqlite3MemsysAlarm(nByte);
 | |
|     }
 | |
|     nByte = (nByte+3)&~3;
 | |
|     if( nByte/8>NCSIZE-1 ){
 | |
|       mem.sizeCnt[NCSIZE-1]++;
 | |
|     }else{
 | |
|       mem.sizeCnt[nByte/8]++;
 | |
|     }
 | |
|     totalSize = nByte + sizeof(*pHdr) + sizeof(int) +
 | |
|                  mem.nBacktrace*sizeof(void*) + mem.nTitle;
 | |
|     if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){
 | |
|       p = 0;
 | |
|     }else{
 | |
|       p = malloc(totalSize);
 | |
|       if( p==0 ){
 | |
|         sqlite3MemsysAlarm(nByte);
 | |
|         p = malloc(totalSize);
 | |
|       }
 | |
|     }
 | |
|     if( p ){
 | |
|       z = p;
 | |
|       pBt = (void**)&z[mem.nTitle];
 | |
|       pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
 | |
|       pHdr->pNext = 0;
 | |
|       pHdr->pPrev = mem.pLast;
 | |
|       if( mem.pLast ){
 | |
|         mem.pLast->pNext = pHdr;
 | |
|       }else{
 | |
|         mem.pFirst = pHdr;
 | |
|       }
 | |
|       mem.pLast = pHdr;
 | |
|       pHdr->iForeGuard = FOREGUARD;
 | |
|       pHdr->nBacktraceSlots = mem.nBacktrace;
 | |
|       pHdr->nTitle = mem.nTitle;
 | |
|       if( mem.nBacktrace ){
 | |
|         void *aAddr[40];
 | |
|         pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
 | |
|         memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
 | |
|       }else{
 | |
|         pHdr->nBacktrace = 0;
 | |
|       }
 | |
|       if( mem.nTitle ){
 | |
|         memcpy(z, mem.zTitle, mem.nTitle);
 | |
|       }
 | |
|       pHdr->iSize = nByte;
 | |
|       pInt = (int*)&pHdr[1];
 | |
|       pInt[nByte/sizeof(int)] = REARGUARD;
 | |
|       memset(pInt, 0x65, nByte);
 | |
|       mem.nowUsed += nByte;
 | |
|       if( mem.nowUsed>mem.mxUsed ){
 | |
|         mem.mxUsed = mem.nowUsed;
 | |
|       }
 | |
|       p = (void*)pInt;
 | |
|     }
 | |
|     sqlite3_mutex_leave(mem.mutex);
 | |
|   }
 | |
|   return p; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free memory.
 | |
| */
 | |
| SQLITE_API void sqlite3_free(void *pPrior){
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   void **pBt;
 | |
|   char *z;
 | |
|   if( pPrior==0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   pHdr = sqlite3MemsysGetHeader(pPrior);
 | |
|   pBt = (void**)pHdr;
 | |
|   pBt -= pHdr->nBacktraceSlots;
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.nowUsed -= pHdr->iSize;
 | |
|   if( pHdr->pPrev ){
 | |
|     assert( pHdr->pPrev->pNext==pHdr );
 | |
|     pHdr->pPrev->pNext = pHdr->pNext;
 | |
|   }else{
 | |
|     assert( mem.pFirst==pHdr );
 | |
|     mem.pFirst = pHdr->pNext;
 | |
|   }
 | |
|   if( pHdr->pNext ){
 | |
|     assert( pHdr->pNext->pPrev==pHdr );
 | |
|     pHdr->pNext->pPrev = pHdr->pPrev;
 | |
|   }else{
 | |
|     assert( mem.pLast==pHdr );
 | |
|     mem.pLast = pHdr->pPrev;
 | |
|   }
 | |
|   z = (char*)pBt;
 | |
|   z -= pHdr->nTitle;
 | |
|   memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) +
 | |
|                   pHdr->iSize + sizeof(int) + pHdr->nTitle);
 | |
|   free(z);
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the size of an existing memory allocation.
 | |
| **
 | |
| ** For this debugging implementation, we *always* make a copy of the
 | |
| ** allocation into a new place in memory.  In this way, if the 
 | |
| ** higher level code is using pointer to the old allocation, it is 
 | |
| ** much more likely to break and we are much more liking to find
 | |
| ** the error.
 | |
| */
 | |
| SQLITE_API void *sqlite3_realloc(void *pPrior, int nByte){
 | |
|   struct MemBlockHdr *pOldHdr;
 | |
|   void *pNew;
 | |
|   if( pPrior==0 ){
 | |
|     return sqlite3_malloc(nByte);
 | |
|   }
 | |
|   if( nByte<=0 ){
 | |
|     sqlite3_free(pPrior);
 | |
|     return 0;
 | |
|   }
 | |
|   assert( mem.disallow==0 );
 | |
|   pOldHdr = sqlite3MemsysGetHeader(pPrior);
 | |
|   pNew = sqlite3_malloc(nByte);
 | |
|   if( pNew ){
 | |
|     memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize);
 | |
|     if( nByte>pOldHdr->iSize ){
 | |
|       memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize);
 | |
|     }
 | |
|     sqlite3_free(pPrior);
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the number of backtrace levels kept for each allocation.
 | |
| ** A value of zero turns of backtracing.  The number is always rounded
 | |
| ** up to a multiple of 2.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){
 | |
|   if( depth<0 ){ depth = 0; }
 | |
|   if( depth>20 ){ depth = 20; }
 | |
|   depth = (depth+1)&0xfe;
 | |
|   mem.nBacktrace = depth;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the title string for subsequent allocations.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){
 | |
|   int n = strlen(zTitle) + 1;
 | |
|   enterMem();
 | |
|   if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1;
 | |
|   memcpy(mem.zTitle, zTitle, n);
 | |
|   mem.zTitle[n] = 0;
 | |
|   mem.nTitle = (n+3)&~3;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the file indicated and write a log of all unfreed memory 
 | |
| ** allocations into that log.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
 | |
|   FILE *out;
 | |
|   struct MemBlockHdr *pHdr;
 | |
|   void **pBt;
 | |
|   int i;
 | |
|   out = fopen(zFilename, "w");
 | |
|   if( out==0 ){
 | |
|     fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
 | |
|                     zFilename);
 | |
|     return;
 | |
|   }
 | |
|   for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
 | |
|     char *z = (char*)pHdr;
 | |
|     z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle;
 | |
|     fprintf(out, "**** %d bytes at %p from %s ****\n", 
 | |
|             pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???");
 | |
|     if( pHdr->nBacktrace ){
 | |
|       fflush(out);
 | |
|       pBt = (void**)pHdr;
 | |
|       pBt -= pHdr->nBacktraceSlots;
 | |
|       backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
 | |
|       fprintf(out, "\n");
 | |
|     }
 | |
|   }
 | |
|   fprintf(out, "COUNTS:\n");
 | |
|   for(i=0; i<NCSIZE-1; i++){
 | |
|     if( mem.sizeCnt[i] ){
 | |
|       fprintf(out, "   %3d: %d\n", i*8+8, mem.sizeCnt[i]);
 | |
|     }
 | |
|   }
 | |
|   if( mem.sizeCnt[NCSIZE-1] ){
 | |
|     fprintf(out, "  >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]);
 | |
|   }
 | |
|   fclose(out);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of times sqlite3_malloc() has been called.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){
 | |
|   int i;
 | |
|   int nTotal = 0;
 | |
|   for(i=0; i<NCSIZE; i++){
 | |
|     nTotal += mem.sizeCnt[i];
 | |
|   }
 | |
|   return nTotal;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* SQLITE_MEMDEBUG */
 | |
| 
 | |
| /************** End of mem2.c ************************************************/
 | |
| /************** Begin file mem3.c ********************************************/
 | |
| /*
 | |
| ** 2007 October 14
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement a memory
 | |
| ** allocation subsystem for use by SQLite. 
 | |
| **
 | |
| ** This version of the memory allocation subsystem omits all
 | |
| ** use of malloc().  All dynamically allocatable memory is
 | |
| ** contained in a static array, mem.aPool[].  The size of this
 | |
| ** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
 | |
| **
 | |
| ** This version of the memory allocation subsystem is used if
 | |
| ** and only if SQLITE_MEMORY_SIZE is defined.
 | |
| **
 | |
| ** $Id: mem3.c,v 1.12 2008/02/19 15:15:16 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This version of the memory allocator is used only when 
 | |
| ** SQLITE_MEMORY_SIZE is defined.
 | |
| */
 | |
| #ifdef SQLITE_MEMORY_SIZE
 | |
| 
 | |
| /*
 | |
| ** Maximum size (in Mem3Blocks) of a "small" chunk.
 | |
| */
 | |
| #define MX_SMALL 10
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Number of freelist hash slots
 | |
| */
 | |
| #define N_HASH  61
 | |
| 
 | |
| /*
 | |
| ** A memory allocation (also called a "chunk") consists of two or 
 | |
| ** more blocks where each block is 8 bytes.  The first 8 bytes are 
 | |
| ** a header that is not returned to the user.
 | |
| **
 | |
| ** A chunk is two or more blocks that is either checked out or
 | |
| ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
 | |
| ** size of the allocation in blocks if the allocation is free.
 | |
| ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
 | |
| ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
 | |
| ** is true if the previous chunk is checked out and false if the
 | |
| ** previous chunk is free.  The u.hdr.prevSize field is the size of
 | |
| ** the previous chunk in blocks if the previous chunk is on the
 | |
| ** freelist. If the previous chunk is checked out, then
 | |
| ** u.hdr.prevSize can be part of the data for that chunk and should
 | |
| ** not be read or written.
 | |
| **
 | |
| ** We often identify a chunk by its index in mem.aPool[].  When
 | |
| ** this is done, the chunk index refers to the second block of
 | |
| ** the chunk.  In this way, the first chunk has an index of 1.
 | |
| ** A chunk index of 0 means "no such chunk" and is the equivalent
 | |
| ** of a NULL pointer.
 | |
| **
 | |
| ** The second block of free chunks is of the form u.list.  The
 | |
| ** two fields form a double-linked list of chunks of related sizes.
 | |
| ** Pointers to the head of the list are stored in mem.aiSmall[] 
 | |
| ** for smaller chunks and mem.aiHash[] for larger chunks.
 | |
| **
 | |
| ** The second block of a chunk is user data if the chunk is checked 
 | |
| ** out.  If a chunk is checked out, the user data may extend into
 | |
| ** the u.hdr.prevSize value of the following chunk.
 | |
| */
 | |
| typedef struct Mem3Block Mem3Block;
 | |
| struct Mem3Block {
 | |
|   union {
 | |
|     struct {
 | |
|       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
 | |
|       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
 | |
|     } hdr;
 | |
|     struct {
 | |
|       u32 next;       /* Index in mem.aPool[] of next free chunk */
 | |
|       u32 prev;       /* Index in mem.aPool[] of previous free chunk */
 | |
|     } list;
 | |
|   } u;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** All of the static variables used by this module are collected
 | |
| ** into a single structure named "mem".  This is to keep the
 | |
| ** static variables organized and to reduce namespace pollution
 | |
| ** when this module is combined with other in the amalgamation.
 | |
| */
 | |
| static struct {
 | |
|   /*
 | |
|   ** True if we are evaluating an out-of-memory callback.
 | |
|   */
 | |
|   int alarmBusy;
 | |
|   
 | |
|   /*
 | |
|   ** Mutex to control access to the memory allocation subsystem.
 | |
|   */
 | |
|   sqlite3_mutex *mutex;
 | |
|   
 | |
|   /*
 | |
|   ** The minimum amount of free space that we have seen.
 | |
|   */
 | |
|   u32 mnMaster;
 | |
| 
 | |
|   /*
 | |
|   ** iMaster is the index of the master chunk.  Most new allocations
 | |
|   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
 | |
|   ** of the current master.  iMaster is 0 if there is not master chunk.
 | |
|   ** The master chunk is not in either the aiHash[] or aiSmall[].
 | |
|   */
 | |
|   u32 iMaster;
 | |
|   u32 szMaster;
 | |
| 
 | |
|   /*
 | |
|   ** Array of lists of free blocks according to the block size 
 | |
|   ** for smaller chunks, or a hash on the block size for larger
 | |
|   ** chunks.
 | |
|   */
 | |
|   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
 | |
|   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
 | |
| 
 | |
|   /*
 | |
|   ** Memory available for allocation
 | |
|   */
 | |
|   Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
 | |
| } mem;
 | |
| 
 | |
| /*
 | |
| ** Unlink the chunk at mem.aPool[i] from list it is currently
 | |
| ** on.  *pRoot is the list that i is a member of.
 | |
| */
 | |
| static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
 | |
|   u32 next = mem.aPool[i].u.list.next;
 | |
|   u32 prev = mem.aPool[i].u.list.prev;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   if( prev==0 ){
 | |
|     *pRoot = next;
 | |
|   }else{
 | |
|     mem.aPool[prev].u.list.next = next;
 | |
|   }
 | |
|   if( next ){
 | |
|     mem.aPool[next].u.list.prev = prev;
 | |
|   }
 | |
|   mem.aPool[i].u.list.next = 0;
 | |
|   mem.aPool[i].u.list.prev = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlink the chunk at index i from 
 | |
| ** whatever list is currently a member of.
 | |
| */
 | |
| static void memsys3Unlink(u32 i){
 | |
|   u32 size, hash;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
 | |
|   assert( i>=1 );
 | |
|   size = mem.aPool[i-1].u.hdr.size4x/4;
 | |
|   assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
 | |
|   assert( size>=2 );
 | |
|   if( size <= MX_SMALL ){
 | |
|     memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
 | |
|   }else{
 | |
|     hash = size % N_HASH;
 | |
|     memsys3UnlinkFromList(i, &mem.aiHash[hash]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Link the chunk at mem.aPool[i] so that is on the list rooted
 | |
| ** at *pRoot.
 | |
| */
 | |
| static void memsys3LinkIntoList(u32 i, u32 *pRoot){
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   mem.aPool[i].u.list.next = *pRoot;
 | |
|   mem.aPool[i].u.list.prev = 0;
 | |
|   if( *pRoot ){
 | |
|     mem.aPool[*pRoot].u.list.prev = i;
 | |
|   }
 | |
|   *pRoot = i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Link the chunk at index i into either the appropriate
 | |
| ** small chunk list, or into the large chunk hash table.
 | |
| */
 | |
| static void memsys3Link(u32 i){
 | |
|   u32 size, hash;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( i>=1 );
 | |
|   assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
 | |
|   size = mem.aPool[i-1].u.hdr.size4x/4;
 | |
|   assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
 | |
|   assert( size>=2 );
 | |
|   if( size <= MX_SMALL ){
 | |
|     memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
 | |
|   }else{
 | |
|     hash = size % N_HASH;
 | |
|     memsys3LinkIntoList(i, &mem.aiHash[hash]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
 | |
| **
 | |
| ** Also:  Initialize the memory allocation subsystem the first time
 | |
| ** this routine is called.
 | |
| */
 | |
| static void memsys3Enter(void){
 | |
|   if( mem.mutex==0 ){
 | |
|     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
 | |
|     mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2;
 | |
|     mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
 | |
|     mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1;
 | |
|     mem.iMaster = 1;
 | |
|     mem.szMaster = SQLITE_MEMORY_SIZE/8;
 | |
|     mem.mnMaster = mem.szMaster;
 | |
|   }
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the amount of memory currently checked out.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
 | |
|   sqlite3_int64 n;
 | |
|   memsys3Enter();
 | |
|   n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum amount of memory that has ever been
 | |
| ** checked out since either the beginning of this process
 | |
| ** or since the most recent reset.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
 | |
|   sqlite3_int64 n;
 | |
|   memsys3Enter();
 | |
|   n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
 | |
|   if( resetFlag ){
 | |
|     mem.mnMaster = mem.szMaster;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the alarm callback.
 | |
| **
 | |
| ** This is a no-op for the static memory allocator.  The purpose
 | |
| ** of the memory alarm is to support sqlite3_soft_heap_limit().
 | |
| ** But with this memory allocator, the soft_heap_limit is really
 | |
| ** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
 | |
| */
 | |
| SQLITE_API int sqlite3_memory_alarm(
 | |
|   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
 | |
|   void *pArg,
 | |
|   sqlite3_int64 iThreshold
 | |
| ){
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Called when we are unable to satisfy an allocation of nBytes.
 | |
| */
 | |
| static void memsys3OutOfMemory(int nByte){
 | |
|   if( !mem.alarmBusy ){
 | |
|     mem.alarmBusy = 1;
 | |
|     assert( sqlite3_mutex_held(mem.mutex) );
 | |
|     sqlite3_mutex_leave(mem.mutex);
 | |
|     sqlite3_release_memory(nByte);
 | |
|     sqlite3_mutex_enter(mem.mutex);
 | |
|     mem.alarmBusy = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the size of an outstanding allocation, in bytes.  The
 | |
| ** size returned omits the 8-byte header overhead.  This only
 | |
| ** works for chunks that are currently checked out.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3MallocSize(void *p){
 | |
|   int iSize = 0;
 | |
|   if( p ){
 | |
|     Mem3Block *pBlock = (Mem3Block*)p;
 | |
|     assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
 | |
|     iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
 | |
|   }
 | |
|   return iSize;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Chunk i is a free chunk that has been unlinked.  Adjust its 
 | |
| ** size parameters for check-out and return a pointer to the 
 | |
| ** user portion of the chunk.
 | |
| */
 | |
| static void *memsys3Checkout(u32 i, int nBlock){
 | |
|   u32 x;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( i>=1 );
 | |
|   assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
 | |
|   assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
 | |
|   x = mem.aPool[i-1].u.hdr.size4x;
 | |
|   mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
 | |
|   mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
 | |
|   mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
 | |
|   return &mem.aPool[i];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Carve a piece off of the end of the mem.iMaster free chunk.
 | |
| ** Return a pointer to the new allocation.  Or, if the master chunk
 | |
| ** is not large enough, return 0.
 | |
| */
 | |
| static void *memsys3FromMaster(int nBlock){
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( mem.szMaster>=nBlock );
 | |
|   if( nBlock>=mem.szMaster-1 ){
 | |
|     /* Use the entire master */
 | |
|     void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
 | |
|     mem.iMaster = 0;
 | |
|     mem.szMaster = 0;
 | |
|     mem.mnMaster = 0;
 | |
|     return p;
 | |
|   }else{
 | |
|     /* Split the master block.  Return the tail. */
 | |
|     u32 newi, x;
 | |
|     newi = mem.iMaster + mem.szMaster - nBlock;
 | |
|     assert( newi > mem.iMaster+1 );
 | |
|     mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
 | |
|     mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
 | |
|     mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
 | |
|     mem.szMaster -= nBlock;
 | |
|     mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
 | |
|     x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
 | |
|     mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
 | |
|     if( mem.szMaster < mem.mnMaster ){
 | |
|       mem.mnMaster = mem.szMaster;
 | |
|     }
 | |
|     return (void*)&mem.aPool[newi];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** *pRoot is the head of a list of free chunks of the same size
 | |
| ** or same size hash.  In other words, *pRoot is an entry in either
 | |
| ** mem.aiSmall[] or mem.aiHash[].  
 | |
| **
 | |
| ** This routine examines all entries on the given list and tries
 | |
| ** to coalesce each entries with adjacent free chunks.  
 | |
| **
 | |
| ** If it sees a chunk that is larger than mem.iMaster, it replaces 
 | |
| ** the current mem.iMaster with the new larger chunk.  In order for
 | |
| ** this mem.iMaster replacement to work, the master chunk must be
 | |
| ** linked into the hash tables.  That is not the normal state of
 | |
| ** affairs, of course.  The calling routine must link the master
 | |
| ** chunk before invoking this routine, then must unlink the (possibly
 | |
| ** changed) master chunk once this routine has finished.
 | |
| */
 | |
| static void memsys3Merge(u32 *pRoot){
 | |
|   u32 iNext, prev, size, i, x;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   for(i=*pRoot; i>0; i=iNext){
 | |
|     iNext = mem.aPool[i].u.list.next;
 | |
|     size = mem.aPool[i-1].u.hdr.size4x;
 | |
|     assert( (size&1)==0 );
 | |
|     if( (size&2)==0 ){
 | |
|       memsys3UnlinkFromList(i, pRoot);
 | |
|       assert( i > mem.aPool[i-1].u.hdr.prevSize );
 | |
|       prev = i - mem.aPool[i-1].u.hdr.prevSize;
 | |
|       if( prev==iNext ){
 | |
|         iNext = mem.aPool[prev].u.list.next;
 | |
|       }
 | |
|       memsys3Unlink(prev);
 | |
|       size = i + size/4 - prev;
 | |
|       x = mem.aPool[prev-1].u.hdr.size4x & 2;
 | |
|       mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
 | |
|       mem.aPool[prev+size-1].u.hdr.prevSize = size;
 | |
|       memsys3Link(prev);
 | |
|       i = prev;
 | |
|     }else{
 | |
|       size /= 4;
 | |
|     }
 | |
|     if( size>mem.szMaster ){
 | |
|       mem.iMaster = i;
 | |
|       mem.szMaster = size;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a block of memory of at least nBytes in size.
 | |
| ** Return NULL if unable.
 | |
| */
 | |
| static void *memsys3Malloc(int nByte){
 | |
|   u32 i;
 | |
|   int nBlock;
 | |
|   int toFree;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( sizeof(Mem3Block)==8 );
 | |
|   if( nByte<=12 ){
 | |
|     nBlock = 2;
 | |
|   }else{
 | |
|     nBlock = (nByte + 11)/8;
 | |
|   }
 | |
|   assert( nBlock >= 2 );
 | |
| 
 | |
|   /* STEP 1:
 | |
|   ** Look for an entry of the correct size in either the small
 | |
|   ** chunk table or in the large chunk hash table.  This is
 | |
|   ** successful most of the time (about 9 times out of 10).
 | |
|   */
 | |
|   if( nBlock <= MX_SMALL ){
 | |
|     i = mem.aiSmall[nBlock-2];
 | |
|     if( i>0 ){
 | |
|       memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
 | |
|       return memsys3Checkout(i, nBlock);
 | |
|     }
 | |
|   }else{
 | |
|     int hash = nBlock % N_HASH;
 | |
|     for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
 | |
|       if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
 | |
|         memsys3UnlinkFromList(i, &mem.aiHash[hash]);
 | |
|         return memsys3Checkout(i, nBlock);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* STEP 2:
 | |
|   ** Try to satisfy the allocation by carving a piece off of the end
 | |
|   ** of the master chunk.  This step usually works if step 1 fails.
 | |
|   */
 | |
|   if( mem.szMaster>=nBlock ){
 | |
|     return memsys3FromMaster(nBlock);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* STEP 3:  
 | |
|   ** Loop through the entire memory pool.  Coalesce adjacent free
 | |
|   ** chunks.  Recompute the master chunk as the largest free chunk.
 | |
|   ** Then try again to satisfy the allocation by carving a piece off
 | |
|   ** of the end of the master chunk.  This step happens very
 | |
|   ** rarely (we hope!)
 | |
|   */
 | |
|   for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
 | |
|     memsys3OutOfMemory(toFree);
 | |
|     if( mem.iMaster ){
 | |
|       memsys3Link(mem.iMaster);
 | |
|       mem.iMaster = 0;
 | |
|       mem.szMaster = 0;
 | |
|     }
 | |
|     for(i=0; i<N_HASH; i++){
 | |
|       memsys3Merge(&mem.aiHash[i]);
 | |
|     }
 | |
|     for(i=0; i<MX_SMALL-1; i++){
 | |
|       memsys3Merge(&mem.aiSmall[i]);
 | |
|     }
 | |
|     if( mem.szMaster ){
 | |
|       memsys3Unlink(mem.iMaster);
 | |
|       if( mem.szMaster>=nBlock ){
 | |
|         return memsys3FromMaster(nBlock);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If none of the above worked, then we fail. */
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free an outstanding memory allocation.
 | |
| */
 | |
| void memsys3Free(void *pOld){
 | |
|   Mem3Block *p = (Mem3Block*)pOld;
 | |
|   int i;
 | |
|   u32 size, x;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
 | |
|   i = p - mem.aPool;
 | |
|   assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
 | |
|   size = mem.aPool[i-1].u.hdr.size4x/4;
 | |
|   assert( i+size<=SQLITE_MEMORY_SIZE/8+1 );
 | |
|   mem.aPool[i-1].u.hdr.size4x &= ~1;
 | |
|   mem.aPool[i+size-1].u.hdr.prevSize = size;
 | |
|   mem.aPool[i+size-1].u.hdr.size4x &= ~2;
 | |
|   memsys3Link(i);
 | |
| 
 | |
|   /* Try to expand the master using the newly freed chunk */
 | |
|   if( mem.iMaster ){
 | |
|     while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
 | |
|       size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
 | |
|       mem.iMaster -= size;
 | |
|       mem.szMaster += size;
 | |
|       memsys3Unlink(mem.iMaster);
 | |
|       x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
 | |
|       mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
 | |
|       mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
 | |
|     }
 | |
|     x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
 | |
|     while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
 | |
|       memsys3Unlink(mem.iMaster+mem.szMaster);
 | |
|       mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
 | |
|       mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
 | |
|       mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nBytes of memory
 | |
| */
 | |
| SQLITE_API void *sqlite3_malloc(int nBytes){
 | |
|   sqlite3_int64 *p = 0;
 | |
|   if( nBytes>0 ){
 | |
|     memsys3Enter();
 | |
|     p = memsys3Malloc(nBytes);
 | |
|     sqlite3_mutex_leave(mem.mutex);
 | |
|   }
 | |
|   return (void*)p; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free memory.
 | |
| */
 | |
| SQLITE_API void sqlite3_free(void *pPrior){
 | |
|   if( pPrior==0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   memsys3Free(pPrior);
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the size of an existing memory allocation
 | |
| */
 | |
| SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
 | |
|   int nOld;
 | |
|   void *p;
 | |
|   if( pPrior==0 ){
 | |
|     return sqlite3_malloc(nBytes);
 | |
|   }
 | |
|   if( nBytes<=0 ){
 | |
|     sqlite3_free(pPrior);
 | |
|     return 0;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   nOld = sqlite3MallocSize(pPrior);
 | |
|   if( nBytes<=nOld && nBytes>=nOld-128 ){
 | |
|     return pPrior;
 | |
|   }
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   p = memsys3Malloc(nBytes);
 | |
|   if( p ){
 | |
|     if( nOld<nBytes ){
 | |
|       memcpy(p, pPrior, nOld);
 | |
|     }else{
 | |
|       memcpy(p, pPrior, nBytes);
 | |
|     }
 | |
|     memsys3Free(pPrior);
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the file indicated and write a log of all unfreed memory 
 | |
| ** allocations into that log.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
 | |
| #ifdef SQLITE_DEBUG
 | |
|   FILE *out;
 | |
|   int i, j;
 | |
|   u32 size;
 | |
|   if( zFilename==0 || zFilename[0]==0 ){
 | |
|     out = stdout;
 | |
|   }else{
 | |
|     out = fopen(zFilename, "w");
 | |
|     if( out==0 ){
 | |
|       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
 | |
|                       zFilename);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   memsys3Enter();
 | |
|   fprintf(out, "CHUNKS:\n");
 | |
|   for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
 | |
|     size = mem.aPool[i-1].u.hdr.size4x;
 | |
|     if( size/4<=1 ){
 | |
|       fprintf(out, "%p size error\n", &mem.aPool[i]);
 | |
|       assert( 0 );
 | |
|       break;
 | |
|     }
 | |
|     if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
 | |
|       fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
 | |
|       assert( 0 );
 | |
|       break;
 | |
|     }
 | |
|     if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
 | |
|       fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
 | |
|       assert( 0 );
 | |
|       break;
 | |
|     }
 | |
|     if( size&1 ){
 | |
|       fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
 | |
|     }else{
 | |
|       fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
 | |
|                   i==mem.iMaster ? " **master**" : "");
 | |
|     }
 | |
|   }
 | |
|   for(i=0; i<MX_SMALL-1; i++){
 | |
|     if( mem.aiSmall[i]==0 ) continue;
 | |
|     fprintf(out, "small(%2d):", i);
 | |
|     for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
 | |
|       fprintf(out, " %p(%d)", &mem.aPool[j],
 | |
|               (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
 | |
|     }
 | |
|     fprintf(out, "\n"); 
 | |
|   }
 | |
|   for(i=0; i<N_HASH; i++){
 | |
|     if( mem.aiHash[i]==0 ) continue;
 | |
|     fprintf(out, "hash(%2d):", i);
 | |
|     for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
 | |
|       fprintf(out, " %p(%d)", &mem.aPool[j],
 | |
|               (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
 | |
|     }
 | |
|     fprintf(out, "\n"); 
 | |
|   }
 | |
|   fprintf(out, "master=%d\n", mem.iMaster);
 | |
|   fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
 | |
|   fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   if( out==stdout ){
 | |
|     fflush(stdout);
 | |
|   }else{
 | |
|     fclose(out);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* !SQLITE_MEMORY_SIZE */
 | |
| 
 | |
| /************** End of mem3.c ************************************************/
 | |
| /************** Begin file mem5.c ********************************************/
 | |
| /*
 | |
| ** 2007 October 14
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement a memory
 | |
| ** allocation subsystem for use by SQLite. 
 | |
| **
 | |
| ** This version of the memory allocation subsystem omits all
 | |
| ** use of malloc().  All dynamically allocatable memory is
 | |
| ** contained in a static array, mem.aPool[].  The size of this
 | |
| ** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
 | |
| **
 | |
| ** This version of the memory allocation subsystem is used if
 | |
| ** and only if SQLITE_POW2_MEMORY_SIZE is defined.
 | |
| **
 | |
| ** $Id: mem5.c,v 1.4 2008/02/19 15:15:16 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This version of the memory allocator is used only when 
 | |
| ** SQLITE_POW2_MEMORY_SIZE is defined.
 | |
| */
 | |
| #ifdef SQLITE_POW2_MEMORY_SIZE
 | |
| 
 | |
| /*
 | |
| ** Log2 of the minimum size of an allocation.  For example, if
 | |
| ** 4 then all allocations will be rounded up to at least 16 bytes.
 | |
| ** If 5 then all allocations will be rounded up to at least 32 bytes.
 | |
| */
 | |
| #ifndef SQLITE_POW2_LOGMIN
 | |
| # define SQLITE_POW2_LOGMIN 6
 | |
| #endif
 | |
| #define POW2_MIN (1<<SQLITE_POW2_LOGMIN)
 | |
| 
 | |
| /*
 | |
| ** Log2 of the maximum size of an allocation.
 | |
| */
 | |
| #ifndef SQLITE_POW2_LOGMAX
 | |
| # define SQLITE_POW2_LOGMAX 18
 | |
| #endif
 | |
| #define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
 | |
| 
 | |
| /*
 | |
| ** Number of distinct allocation sizes.
 | |
| */
 | |
| #define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
 | |
| 
 | |
| /*
 | |
| ** A minimum allocation is an instance of the following structure.
 | |
| ** Larger allocations are an array of these structures where the
 | |
| ** size of the array is a power of 2.
 | |
| */
 | |
| typedef struct Mem5Block Mem5Block;
 | |
| struct Mem5Block {
 | |
|   union {
 | |
|     char aData[POW2_MIN];
 | |
|     struct {
 | |
|       int next;       /* Index in mem.aPool[] of next free chunk */
 | |
|       int prev;       /* Index in mem.aPool[] of previous free chunk */
 | |
|     } list;
 | |
|   } u;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Number of blocks of memory available for allocation.
 | |
| */
 | |
| #define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN)
 | |
| 
 | |
| /*
 | |
| ** The size in blocks of an POW2_MAX allocation
 | |
| */
 | |
| #define SZ_MAX (1<<(NSIZE-1))
 | |
| 
 | |
| /*
 | |
| ** Masks used for mem.aCtrl[] elements.
 | |
| */
 | |
| #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
 | |
| #define CTRL_FREE     0x20    /* True if not checked out */
 | |
| 
 | |
| /*
 | |
| ** All of the static variables used by this module are collected
 | |
| ** into a single structure named "mem".  This is to keep the
 | |
| ** static variables organized and to reduce namespace pollution
 | |
| ** when this module is combined with other in the amalgamation.
 | |
| */
 | |
| static struct {
 | |
|   /*
 | |
|   ** The alarm callback and its arguments.  The mem.mutex lock will
 | |
|   ** be held while the callback is running.  Recursive calls into
 | |
|   ** the memory subsystem are allowed, but no new callbacks will be
 | |
|   ** issued.  The alarmBusy variable is set to prevent recursive
 | |
|   ** callbacks.
 | |
|   */
 | |
|   sqlite3_int64 alarmThreshold;
 | |
|   void (*alarmCallback)(void*, sqlite3_int64,int);
 | |
|   void *alarmArg;
 | |
|   int alarmBusy;
 | |
|   
 | |
|   /*
 | |
|   ** Mutex to control access to the memory allocation subsystem.
 | |
|   */
 | |
|   sqlite3_mutex *mutex;
 | |
| 
 | |
|   /*
 | |
|   ** Performance statistics
 | |
|   */
 | |
|   u64 nAlloc;         /* Total number of calls to malloc */
 | |
|   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
 | |
|   u64 totalExcess;    /* Total internal fragmentation */
 | |
|   u32 currentOut;     /* Current checkout, including internal fragmentation */
 | |
|   u32 currentCount;   /* Current number of distinct checkouts */
 | |
|   u32 maxOut;         /* Maximum instantaneous currentOut */
 | |
|   u32 maxCount;       /* Maximum instantaneous currentCount */
 | |
|   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
 | |
|   
 | |
|   /*
 | |
|   ** Lists of free blocks of various sizes.
 | |
|   */
 | |
|   int aiFreelist[NSIZE];
 | |
| 
 | |
|   /*
 | |
|   ** Space for tracking which blocks are checked out and the size
 | |
|   ** of each block.  One byte per block.
 | |
|   */
 | |
|   u8 aCtrl[NBLOCK];
 | |
| 
 | |
|   /*
 | |
|   ** Memory available for allocation
 | |
|   */
 | |
|   Mem5Block aPool[NBLOCK];
 | |
| } mem;
 | |
| 
 | |
| /*
 | |
| ** Unlink the chunk at mem.aPool[i] from list it is currently
 | |
| ** on.  It should be found on mem.aiFreelist[iLogsize].
 | |
| */
 | |
| static void memsys5Unlink(int i, int iLogsize){
 | |
|   int next, prev;
 | |
|   assert( i>=0 && i<NBLOCK );
 | |
|   assert( iLogsize>=0 && iLogsize<NSIZE );
 | |
|   assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
| 
 | |
|   next = mem.aPool[i].u.list.next;
 | |
|   prev = mem.aPool[i].u.list.prev;
 | |
|   if( prev<0 ){
 | |
|     mem.aiFreelist[iLogsize] = next;
 | |
|   }else{
 | |
|     mem.aPool[prev].u.list.next = next;
 | |
|   }
 | |
|   if( next>=0 ){
 | |
|     mem.aPool[next].u.list.prev = prev;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Link the chunk at mem.aPool[i] so that is on the iLogsize
 | |
| ** free list.
 | |
| */
 | |
| static void memsys5Link(int i, int iLogsize){
 | |
|   int x;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( i>=0 && i<NBLOCK );
 | |
|   assert( iLogsize>=0 && iLogsize<NSIZE );
 | |
|   assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
 | |
| 
 | |
|   mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize];
 | |
|   mem.aPool[i].u.list.prev = -1;
 | |
|   if( x>=0 ){
 | |
|     assert( x<NBLOCK );
 | |
|     mem.aPool[x].u.list.prev = i;
 | |
|   }
 | |
|   mem.aiFreelist[iLogsize] = i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
 | |
| **
 | |
| ** Also:  Initialize the memory allocation subsystem the first time
 | |
| ** this routine is called.
 | |
| */
 | |
| static void memsys5Enter(void){
 | |
|   if( mem.mutex==0 ){
 | |
|     int i;
 | |
|     assert( sizeof(Mem5Block)==POW2_MIN );
 | |
|     assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 );
 | |
|     assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX );
 | |
|     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
 | |
|     sqlite3_mutex_enter(mem.mutex);
 | |
|     for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1;
 | |
|     for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){
 | |
|       mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE;
 | |
|       memsys5Link(i, NSIZE-1);
 | |
|     }
 | |
|   }else{
 | |
|     sqlite3_mutex_enter(mem.mutex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the amount of memory currently checked out.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
 | |
|   return mem.currentOut;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum amount of memory that has ever been
 | |
| ** checked out since either the beginning of this process
 | |
| ** or since the most recent reset.
 | |
| */
 | |
| SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
 | |
|   sqlite3_int64 n;
 | |
|   memsys5Enter();
 | |
|   n = mem.maxOut;
 | |
|   if( resetFlag ){
 | |
|     mem.maxOut = mem.currentOut;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Trigger the alarm 
 | |
| */
 | |
| static void memsys5Alarm(int nByte){
 | |
|   void (*xCallback)(void*,sqlite3_int64,int);
 | |
|   sqlite3_int64 nowUsed;
 | |
|   void *pArg;
 | |
|   if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
 | |
|   mem.alarmBusy = 1;
 | |
|   xCallback = mem.alarmCallback;
 | |
|   nowUsed = mem.currentOut;
 | |
|   pArg = mem.alarmArg;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   xCallback(pArg, nowUsed, nByte);
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   mem.alarmBusy = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the alarm callback.
 | |
| **
 | |
| ** This is a no-op for the static memory allocator.  The purpose
 | |
| ** of the memory alarm is to support sqlite3_soft_heap_limit().
 | |
| ** But with this memory allocator, the soft_heap_limit is really
 | |
| ** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
 | |
| */
 | |
| SQLITE_API int sqlite3_memory_alarm(
 | |
|   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
 | |
|   void *pArg,
 | |
|   sqlite3_int64 iThreshold
 | |
| ){
 | |
|   memsys5Enter();
 | |
|   mem.alarmCallback = xCallback;
 | |
|   mem.alarmArg = pArg;
 | |
|   mem.alarmThreshold = iThreshold;
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the size of an outstanding allocation, in bytes.  The
 | |
| ** size returned omits the 8-byte header overhead.  This only
 | |
| ** works for chunks that are currently checked out.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3MallocSize(void *p){
 | |
|   int iSize = 0;
 | |
|   if( p ){
 | |
|     int i = ((Mem5Block*)p) - mem.aPool;
 | |
|     assert( i>=0 && i<NBLOCK );
 | |
|     iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN);
 | |
|   }
 | |
|   return iSize;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Find the first entry on the freelist iLogsize.  Unlink that
 | |
| ** entry and return its index. 
 | |
| */
 | |
| static int memsys5UnlinkFirst(int iLogsize){
 | |
|   int i;
 | |
|   int iFirst;
 | |
| 
 | |
|   assert( iLogsize>=0 && iLogsize<NSIZE );
 | |
|   i = iFirst = mem.aiFreelist[iLogsize];
 | |
|   assert( iFirst>=0 );
 | |
|   while( i>0 ){
 | |
|     if( i<iFirst ) iFirst = i;
 | |
|     i = mem.aPool[i].u.list.next;
 | |
|   }
 | |
|   memsys5Unlink(iFirst, iLogsize);
 | |
|   return iFirst;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a block of memory of at least nBytes in size.
 | |
| ** Return NULL if unable.
 | |
| */
 | |
| static void *memsys5Malloc(int nByte){
 | |
|   int i;           /* Index of a mem.aPool[] slot */
 | |
|   int iBin;        /* Index into mem.aiFreelist[] */
 | |
|   int iFullSz;     /* Size of allocation rounded up to power of 2 */
 | |
|   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
 | |
| 
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
| 
 | |
|   /* Keep track of the maximum allocation request.  Even unfulfilled
 | |
|   ** requests are counted */
 | |
|   if( nByte>mem.maxRequest ){
 | |
|     mem.maxRequest = nByte;
 | |
|   }
 | |
| 
 | |
|   /* Simulate a memory allocation fault */
 | |
|   if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ) return 0;
 | |
| 
 | |
|   /* Round nByte up to the next valid power of two */
 | |
|   if( nByte>POW2_MAX ) return 0;
 | |
|   for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
 | |
| 
 | |
|   /* If we will be over the memory alarm threshold after this allocation,
 | |
|   ** then trigger the memory overflow alarm */
 | |
|   if( mem.alarmCallback!=0 && mem.currentOut+iFullSz>=mem.alarmThreshold ){
 | |
|     memsys5Alarm(iFullSz);
 | |
|   }
 | |
| 
 | |
|   /* Make sure mem.aiFreelist[iLogsize] contains at least one free
 | |
|   ** block.  If not, then split a block of the next larger power of
 | |
|   ** two in order to create a new free block of size iLogsize.
 | |
|   */
 | |
|   for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){}
 | |
|   if( iBin>=NSIZE ) return 0;
 | |
|   i = memsys5UnlinkFirst(iBin);
 | |
|   while( iBin>iLogsize ){
 | |
|     int newSize;
 | |
| 
 | |
|     iBin--;
 | |
|     newSize = 1 << iBin;
 | |
|     mem.aCtrl[i+newSize] = CTRL_FREE | iBin;
 | |
|     memsys5Link(i+newSize, iBin);
 | |
|   }
 | |
|   mem.aCtrl[i] = iLogsize;
 | |
| 
 | |
|   /* Update allocator performance statistics. */
 | |
|   mem.nAlloc++;
 | |
|   mem.totalAlloc += iFullSz;
 | |
|   mem.totalExcess += iFullSz - nByte;
 | |
|   mem.currentCount++;
 | |
|   mem.currentOut += iFullSz;
 | |
|   if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount;
 | |
|   if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut;
 | |
| 
 | |
|   /* Return a pointer to the allocated memory. */
 | |
|   return (void*)&mem.aPool[i];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free an outstanding memory allocation.
 | |
| */
 | |
| void memsys5Free(void *pOld){
 | |
|   u32 size, iLogsize;
 | |
|   int i;
 | |
| 
 | |
|   i = ((Mem5Block*)pOld) - mem.aPool;
 | |
|   assert( sqlite3_mutex_held(mem.mutex) );
 | |
|   assert( i>=0 && i<NBLOCK );
 | |
|   assert( (mem.aCtrl[i] & CTRL_FREE)==0 );
 | |
|   iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE;
 | |
|   size = 1<<iLogsize;
 | |
|   assert( i+size-1<NBLOCK );
 | |
|   mem.aCtrl[i] |= CTRL_FREE;
 | |
|   mem.aCtrl[i+size-1] |= CTRL_FREE;
 | |
|   assert( mem.currentCount>0 );
 | |
|   assert( mem.currentOut>=0 );
 | |
|   mem.currentCount--;
 | |
|   mem.currentOut -= size*POW2_MIN;
 | |
|   assert( mem.currentOut>0 || mem.currentCount==0 );
 | |
|   assert( mem.currentCount>0 || mem.currentOut==0 );
 | |
| 
 | |
|   mem.aCtrl[i] = CTRL_FREE | iLogsize;
 | |
|   while( iLogsize<NSIZE-1 ){
 | |
|     int iBuddy;
 | |
| 
 | |
|     if( (i>>iLogsize) & 1 ){
 | |
|       iBuddy = i - size;
 | |
|     }else{
 | |
|       iBuddy = i + size;
 | |
|     }
 | |
|     assert( iBuddy>=0 && iBuddy<NBLOCK );
 | |
|     if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
 | |
|     memsys5Unlink(iBuddy, iLogsize);
 | |
|     iLogsize++;
 | |
|     if( iBuddy<i ){
 | |
|       mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
 | |
|       mem.aCtrl[i] = 0;
 | |
|       i = iBuddy;
 | |
|     }else{
 | |
|       mem.aCtrl[i] = CTRL_FREE | iLogsize;
 | |
|       mem.aCtrl[iBuddy] = 0;
 | |
|     }
 | |
|     size *= 2;
 | |
|   }
 | |
|   memsys5Link(i, iLogsize);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nBytes of memory
 | |
| */
 | |
| SQLITE_API void *sqlite3_malloc(int nBytes){
 | |
|   sqlite3_int64 *p = 0;
 | |
|   if( nBytes>0 ){
 | |
|     memsys5Enter();
 | |
|     p = memsys5Malloc(nBytes);
 | |
|     sqlite3_mutex_leave(mem.mutex);
 | |
|   }
 | |
|   return (void*)p; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free memory.
 | |
| */
 | |
| SQLITE_API void sqlite3_free(void *pPrior){
 | |
|   if( pPrior==0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   memsys5Free(pPrior);
 | |
|   sqlite3_mutex_leave(mem.mutex);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the size of an existing memory allocation
 | |
| */
 | |
| SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){
 | |
|   int nOld;
 | |
|   void *p;
 | |
|   if( pPrior==0 ){
 | |
|     return sqlite3_malloc(nBytes);
 | |
|   }
 | |
|   if( nBytes<=0 ){
 | |
|     sqlite3_free(pPrior);
 | |
|     return 0;
 | |
|   }
 | |
|   assert( mem.mutex!=0 );
 | |
|   nOld = sqlite3MallocSize(pPrior);
 | |
|   if( nBytes<=nOld ){
 | |
|     return pPrior;
 | |
|   }
 | |
|   sqlite3_mutex_enter(mem.mutex);
 | |
|   p = memsys5Malloc(nBytes);
 | |
|   if( p ){
 | |
|     memcpy(p, pPrior, nOld);
 | |
|     memsys5Free(pPrior);
 | |
|   }
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the file indicated and write a log of all unfreed memory 
 | |
| ** allocations into that log.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){
 | |
| #ifdef SQLITE_DEBUG
 | |
|   FILE *out;
 | |
|   int i, j, n;
 | |
| 
 | |
|   if( zFilename==0 || zFilename[0]==0 ){
 | |
|     out = stdout;
 | |
|   }else{
 | |
|     out = fopen(zFilename, "w");
 | |
|     if( out==0 ){
 | |
|       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
 | |
|                       zFilename);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   memsys5Enter();
 | |
|   for(i=0; i<NSIZE; i++){
 | |
|     for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){}
 | |
|     fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n);
 | |
|   }
 | |
|   fprintf(out, "mem.nAlloc       = %llu\n", mem.nAlloc);
 | |
|   fprintf(out, "mem.totalAlloc   = %llu\n", mem.totalAlloc);
 | |
|   fprintf(out, "mem.totalExcess  = %llu\n", mem.totalExcess);
 | |
|   fprintf(out, "mem.currentOut   = %u\n", mem.currentOut);
 | |
|   fprintf(out, "mem.currentCount = %u\n", mem.currentCount);
 | |
|   fprintf(out, "mem.maxOut       = %u\n", mem.maxOut);
 | |
|   fprintf(out, "mem.maxCount     = %u\n", mem.maxCount);
 | |
|   fprintf(out, "mem.maxRequest   = %u\n", mem.maxRequest);
 | |
|   sqlite3_mutex_leave(mem.mutex);
 | |
|   if( out==stdout ){
 | |
|     fflush(stdout);
 | |
|   }else{
 | |
|     fclose(out);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* !SQLITE_POW2_MEMORY_SIZE */
 | |
| 
 | |
| /************** End of mem5.c ************************************************/
 | |
| /************** Begin file mutex.c *******************************************/
 | |
| /*
 | |
| ** 2007 August 14
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement mutexes.
 | |
| **
 | |
| ** The implementation in this file does not provide any mutual
 | |
| ** exclusion and is thus suitable for use only in applications
 | |
| ** that use SQLite in a single thread.  But this implementation
 | |
| ** does do a lot of error checking on mutexes to make sure they
 | |
| ** are called correctly and at appropriate times.  Hence, this
 | |
| ** implementation is suitable for testing.
 | |
| ** debugging purposes
 | |
| **
 | |
| ** $Id: mutex.c,v 1.16 2007/09/10 16:13:00 danielk1977 Exp $
 | |
| */
 | |
| 
 | |
| #ifdef SQLITE_MUTEX_NOOP_DEBUG
 | |
| /*
 | |
| ** In this implementation, mutexes do not provide any mutual exclusion.
 | |
| ** But the error checking is provided.  This implementation is useful
 | |
| ** for test purposes.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The mutex object
 | |
| */
 | |
| struct sqlite3_mutex {
 | |
|   int id;     /* The mutex type */
 | |
|   int cnt;    /* Number of entries without a matching leave */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_alloc() routine allocates a new
 | |
| ** mutex and returns a pointer to it.  If it returns NULL
 | |
| ** that means that a mutex could not be allocated. 
 | |
| */
 | |
| SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
 | |
|   static sqlite3_mutex aStatic[5];
 | |
|   sqlite3_mutex *pNew = 0;
 | |
|   switch( id ){
 | |
|     case SQLITE_MUTEX_FAST:
 | |
|     case SQLITE_MUTEX_RECURSIVE: {
 | |
|       pNew = sqlite3_malloc(sizeof(*pNew));
 | |
|       if( pNew ){
 | |
|         pNew->id = id;
 | |
|         pNew->cnt = 0;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       assert( id-2 >= 0 );
 | |
|       assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) );
 | |
|       pNew = &aStatic[id-2];
 | |
|       pNew->id = id;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine deallocates a previously allocated mutex.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->cnt==0 );
 | |
|   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
 | |
| ** to enter a mutex.  If another thread is already within the mutex,
 | |
| ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
 | |
| ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
 | |
| ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
 | |
| ** be entered multiple times by the same thread.  In such cases the,
 | |
| ** mutex must be exited an equal number of times before another thread
 | |
| ** can enter.  If the same thread tries to enter any other kind of mutex
 | |
| ** more than once, the behavior is undefined.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
|   p->cnt++;
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
|   p->cnt++;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_leave() routine exits a mutex that was
 | |
| ** previously entered by the same thread.  The behavior
 | |
| ** is undefined if the mutex is not currently entered or
 | |
| ** is not currently allocated.  SQLite will never do either.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( sqlite3_mutex_held(p) );
 | |
|   p->cnt--;
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
 | |
| ** intended for use inside assert() statements.
 | |
| */
 | |
| SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
 | |
|   return p==0 || p->cnt>0;
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
 | |
|   return p==0 || p->cnt==0;
 | |
| }
 | |
| #endif /* SQLITE_MUTEX_NOOP_DEBUG */
 | |
| 
 | |
| /************** End of mutex.c ***********************************************/
 | |
| /************** Begin file mutex_os2.c ***************************************/
 | |
| /*
 | |
| ** 2007 August 28
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement mutexes for OS/2
 | |
| **
 | |
| ** $Id: mutex_os2.c,v 1.5 2008/02/01 19:42:38 pweilbacher Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
 | |
| ** See the mutex.h file for details.
 | |
| */
 | |
| #ifdef SQLITE_MUTEX_OS2
 | |
| 
 | |
| /********************** OS/2 Mutex Implementation **********************
 | |
| **
 | |
| ** This implementation of mutexes is built using the OS/2 API.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The mutex object
 | |
| ** Each recursive mutex is an instance of the following structure.
 | |
| */
 | |
| struct sqlite3_mutex {
 | |
|   HMTX mutex;       /* Mutex controlling the lock */
 | |
|   int  id;          /* Mutex type */
 | |
|   int  nRef;        /* Number of references */
 | |
|   TID  owner;       /* Thread holding this mutex */
 | |
| };
 | |
| 
 | |
| #define OS2_MUTEX_INITIALIZER   0,0,0,0
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_alloc() routine allocates a new
 | |
| ** mutex and returns a pointer to it.  If it returns NULL
 | |
| ** that means that a mutex could not be allocated. 
 | |
| ** SQLite will unwind its stack and return an error.  The argument
 | |
| ** to sqlite3_mutex_alloc() is one of these integer constants:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li>  SQLITE_MUTEX_FAST               0
 | |
| ** <li>  SQLITE_MUTEX_RECURSIVE          1
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MASTER      2
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MEM         3
 | |
| ** <li>  SQLITE_MUTEX_STATIC_PRNG        4
 | |
| ** </ul>
 | |
| **
 | |
| ** The first two constants cause sqlite3_mutex_alloc() to create
 | |
| ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
 | |
| ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
 | |
| ** The mutex implementation does not need to make a distinction
 | |
| ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
 | |
| ** not want to.  But SQLite will only request a recursive mutex in
 | |
| ** cases where it really needs one.  If a faster non-recursive mutex
 | |
| ** implementation is available on the host platform, the mutex subsystem
 | |
| ** might return such a mutex in response to SQLITE_MUTEX_FAST.
 | |
| **
 | |
| ** The other allowed parameters to sqlite3_mutex_alloc() each return
 | |
| ** a pointer to a static preexisting mutex.  Three static mutexes are
 | |
| ** used by the current version of SQLite.  Future versions of SQLite
 | |
| ** may add additional static mutexes.  Static mutexes are for internal
 | |
| ** use by SQLite only.  Applications that use SQLite mutexes should
 | |
| ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
 | |
| ** SQLITE_MUTEX_RECURSIVE.
 | |
| **
 | |
| ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
 | |
| ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
 | |
| ** returns a different mutex on every call.  But for the static
 | |
| ** mutex types, the same mutex is returned on every call that has
 | |
| ** the same type number.
 | |
| */
 | |
| SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
 | |
|   sqlite3_mutex *p = NULL;
 | |
|   switch( iType ){
 | |
|     case SQLITE_MUTEX_FAST:
 | |
|     case SQLITE_MUTEX_RECURSIVE: {
 | |
|       p = sqlite3MallocZero( sizeof(*p) );
 | |
|       if( p ){
 | |
|         p->id = iType;
 | |
|         if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
 | |
|           sqlite3_free( p );
 | |
|           p = NULL;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       static volatile int isInit = 0;
 | |
|       static sqlite3_mutex staticMutexes[] = {
 | |
|         { OS2_MUTEX_INITIALIZER, },
 | |
|         { OS2_MUTEX_INITIALIZER, },
 | |
|         { OS2_MUTEX_INITIALIZER, },
 | |
|         { OS2_MUTEX_INITIALIZER, },
 | |
|         { OS2_MUTEX_INITIALIZER, },
 | |
|       };
 | |
|       if ( !isInit ){
 | |
|         APIRET rc;
 | |
|         PTIB ptib;
 | |
|         PPIB ppib;
 | |
|         HMTX mutex;
 | |
|         char name[32];
 | |
|         DosGetInfoBlocks( &ptib, &ppib );
 | |
|         sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
 | |
|                           ppib->pib_ulpid );
 | |
|         while( !isInit ){
 | |
|           mutex = 0;
 | |
|           rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
 | |
|           if( rc == NO_ERROR ){
 | |
|             int i;
 | |
|             if( !isInit ){
 | |
|               for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
 | |
|                 DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
 | |
|               }
 | |
|               isInit = 1;
 | |
|             }
 | |
|             DosCloseMutexSem( mutex );
 | |
|           }else if( rc == ERROR_DUPLICATE_NAME ){
 | |
|             DosSleep( 1 );
 | |
|           }else{
 | |
|             return p;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       assert( iType-2 >= 0 );
 | |
|       assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
 | |
|       p = &staticMutexes[iType-2];
 | |
|       p->id = iType;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine deallocates a previously allocated mutex.
 | |
| ** SQLite is careful to deallocate every mutex that it allocates.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->nRef==0 );
 | |
|   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
|   DosCloseMutexSem( p->mutex );
 | |
|   sqlite3_free( p );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
 | |
| ** to enter a mutex.  If another thread is already within the mutex,
 | |
| ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
 | |
| ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
 | |
| ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
 | |
| ** be entered multiple times by the same thread.  In such cases the,
 | |
| ** mutex must be exited an equal number of times before another thread
 | |
| ** can enter.  If the same thread tries to enter any other kind of mutex
 | |
| ** more than once, the behavior is undefined.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
 | |
|   TID tid;
 | |
|   PID holder1;
 | |
|   ULONG holder2;
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
|   DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
 | |
|   DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
 | |
|   p->owner = tid;
 | |
|   p->nRef++;
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
 | |
|   int rc;
 | |
|   TID tid;
 | |
|   PID holder1;
 | |
|   ULONG holder2;
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
|   if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) {
 | |
|     DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
 | |
|     p->owner = tid;
 | |
|     p->nRef++;
 | |
|     rc = SQLITE_OK;
 | |
|   } else {
 | |
|     rc = SQLITE_BUSY;
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_leave() routine exits a mutex that was
 | |
| ** previously entered by the same thread.  The behavior
 | |
| ** is undefined if the mutex is not currently entered or
 | |
| ** is not currently allocated.  SQLite will never do either.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
 | |
|   TID tid;
 | |
|   PID holder1;
 | |
|   ULONG holder2;
 | |
|   assert( p->nRef>0 );
 | |
|   DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2);
 | |
|   assert( p->owner==tid );
 | |
|   p->nRef--;
 | |
|   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
|   DosReleaseMutexSem(p->mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
 | |
| ** intended for use inside assert() statements.
 | |
| */
 | |
| SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
 | |
|   TID tid;
 | |
|   PID pid;
 | |
|   ULONG ulCount;
 | |
|   PTIB ptib;
 | |
|   if( p!=0 ) {
 | |
|     DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
 | |
|   } else {
 | |
|     DosGetInfoBlocks(&ptib, NULL);
 | |
|     tid = ptib->tib_ptib2->tib2_ultid;
 | |
|   }
 | |
|   return p==0 || (p->nRef!=0 && p->owner==tid);
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
 | |
|   TID tid;
 | |
|   PID pid;
 | |
|   ULONG ulCount;
 | |
|   PTIB ptib;
 | |
|   if( p!= 0 ) {
 | |
|     DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
 | |
|   } else {
 | |
|     DosGetInfoBlocks(&ptib, NULL);
 | |
|     tid = ptib->tib_ptib2->tib2_ultid;
 | |
|   }
 | |
|   return p==0 || p->nRef==0 || p->owner!=tid;
 | |
| }
 | |
| #endif /* SQLITE_MUTEX_OS2 */
 | |
| 
 | |
| /************** End of mutex_os2.c *******************************************/
 | |
| /************** Begin file mutex_unix.c **************************************/
 | |
| /*
 | |
| ** 2007 August 28
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement mutexes for pthreads
 | |
| **
 | |
| ** $Id: mutex_unix.c,v 1.5 2007/11/28 14:04:57 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only used if we are compiling threadsafe
 | |
| ** under unix with pthreads.
 | |
| **
 | |
| ** Note that this implementation requires a version of pthreads that
 | |
| ** supports recursive mutexes.
 | |
| */
 | |
| #ifdef SQLITE_MUTEX_PTHREADS
 | |
| 
 | |
| #include <pthread.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Each recursive mutex is an instance of the following structure.
 | |
| */
 | |
| struct sqlite3_mutex {
 | |
|   pthread_mutex_t mutex;     /* Mutex controlling the lock */
 | |
|   int id;                    /* Mutex type */
 | |
|   int nRef;                  /* Number of entrances */
 | |
|   pthread_t owner;           /* Thread that is within this mutex */
 | |
| #ifdef SQLITE_DEBUG
 | |
|   int trace;                 /* True to trace changes */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_alloc() routine allocates a new
 | |
| ** mutex and returns a pointer to it.  If it returns NULL
 | |
| ** that means that a mutex could not be allocated.  SQLite
 | |
| ** will unwind its stack and return an error.  The argument
 | |
| ** to sqlite3_mutex_alloc() is one of these integer constants:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li>  SQLITE_MUTEX_FAST
 | |
| ** <li>  SQLITE_MUTEX_RECURSIVE
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MASTER
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MEM
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MEM2
 | |
| ** <li>  SQLITE_MUTEX_STATIC_PRNG
 | |
| ** <li>  SQLITE_MUTEX_STATIC_LRU
 | |
| ** </ul>
 | |
| **
 | |
| ** The first two constants cause sqlite3_mutex_alloc() to create
 | |
| ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
 | |
| ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
 | |
| ** The mutex implementation does not need to make a distinction
 | |
| ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
 | |
| ** not want to.  But SQLite will only request a recursive mutex in
 | |
| ** cases where it really needs one.  If a faster non-recursive mutex
 | |
| ** implementation is available on the host platform, the mutex subsystem
 | |
| ** might return such a mutex in response to SQLITE_MUTEX_FAST.
 | |
| **
 | |
| ** The other allowed parameters to sqlite3_mutex_alloc() each return
 | |
| ** a pointer to a static preexisting mutex.  Three static mutexes are
 | |
| ** used by the current version of SQLite.  Future versions of SQLite
 | |
| ** may add additional static mutexes.  Static mutexes are for internal
 | |
| ** use by SQLite only.  Applications that use SQLite mutexes should
 | |
| ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
 | |
| ** SQLITE_MUTEX_RECURSIVE.
 | |
| **
 | |
| ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
 | |
| ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
 | |
| ** returns a different mutex on every call.  But for the static 
 | |
| ** mutex types, the same mutex is returned on every call that has
 | |
| ** the same type number.
 | |
| */
 | |
| SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
 | |
|   static sqlite3_mutex staticMutexes[] = {
 | |
|     { PTHREAD_MUTEX_INITIALIZER, },
 | |
|     { PTHREAD_MUTEX_INITIALIZER, },
 | |
|     { PTHREAD_MUTEX_INITIALIZER, },
 | |
|     { PTHREAD_MUTEX_INITIALIZER, },
 | |
|     { PTHREAD_MUTEX_INITIALIZER, },
 | |
|   };
 | |
|   sqlite3_mutex *p;
 | |
|   switch( iType ){
 | |
|     case SQLITE_MUTEX_RECURSIVE: {
 | |
|       p = sqlite3MallocZero( sizeof(*p) );
 | |
|       if( p ){
 | |
| #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
 | |
|         /* If recursive mutexes are not available, we will have to
 | |
|         ** build our own.  See below. */
 | |
|         pthread_mutex_init(&p->mutex, 0);
 | |
| #else
 | |
|         /* Use a recursive mutex if it is available */
 | |
|         pthread_mutexattr_t recursiveAttr;
 | |
|         pthread_mutexattr_init(&recursiveAttr);
 | |
|         pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
 | |
|         pthread_mutex_init(&p->mutex, &recursiveAttr);
 | |
|         pthread_mutexattr_destroy(&recursiveAttr);
 | |
| #endif
 | |
|         p->id = iType;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_MUTEX_FAST: {
 | |
|       p = sqlite3MallocZero( sizeof(*p) );
 | |
|       if( p ){
 | |
|         p->id = iType;
 | |
|         pthread_mutex_init(&p->mutex, 0);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       assert( iType-2 >= 0 );
 | |
|       assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
 | |
|       p = &staticMutexes[iType-2];
 | |
|       p->id = iType;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine deallocates a previously
 | |
| ** allocated mutex.  SQLite is careful to deallocate every
 | |
| ** mutex that it allocates.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->nRef==0 );
 | |
|   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
|   pthread_mutex_destroy(&p->mutex);
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
 | |
| ** to enter a mutex.  If another thread is already within the mutex,
 | |
| ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
 | |
| ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
 | |
| ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
 | |
| ** be entered multiple times by the same thread.  In such cases the,
 | |
| ** mutex must be exited an equal number of times before another thread
 | |
| ** can enter.  If the same thread tries to enter any other kind of mutex
 | |
| ** more than once, the behavior is undefined.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
| 
 | |
| #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
 | |
|   /* If recursive mutexes are not available, then we have to grow
 | |
|   ** our own.  This implementation assumes that pthread_equal()
 | |
|   ** is atomic - that it cannot be deceived into thinking self
 | |
|   ** and p->owner are equal if p->owner changes between two values
 | |
|   ** that are not equal to self while the comparison is taking place.
 | |
|   ** This implementation also assumes a coherent cache - that 
 | |
|   ** separate processes cannot read different values from the same
 | |
|   ** address at the same time.  If either of these two conditions
 | |
|   ** are not met, then the mutexes will fail and problems will result.
 | |
|   */
 | |
|   {
 | |
|     pthread_t self = pthread_self();
 | |
|     if( p->nRef>0 && pthread_equal(p->owner, self) ){
 | |
|       p->nRef++;
 | |
|     }else{
 | |
|       pthread_mutex_lock(&p->mutex);
 | |
|       assert( p->nRef==0 );
 | |
|       p->owner = self;
 | |
|       p->nRef = 1;
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   /* Use the built-in recursive mutexes if they are available.
 | |
|   */
 | |
|   pthread_mutex_lock(&p->mutex);
 | |
|   p->owner = pthread_self();
 | |
|   p->nRef++;
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( p->trace ){
 | |
|     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
 | |
|   int rc;
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
| 
 | |
| #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
 | |
|   /* If recursive mutexes are not available, then we have to grow
 | |
|   ** our own.  This implementation assumes that pthread_equal()
 | |
|   ** is atomic - that it cannot be deceived into thinking self
 | |
|   ** and p->owner are equal if p->owner changes between two values
 | |
|   ** that are not equal to self while the comparison is taking place.
 | |
|   ** This implementation also assumes a coherent cache - that 
 | |
|   ** separate processes cannot read different values from the same
 | |
|   ** address at the same time.  If either of these two conditions
 | |
|   ** are not met, then the mutexes will fail and problems will result.
 | |
|   */
 | |
|   {
 | |
|     pthread_t self = pthread_self();
 | |
|     if( p->nRef>0 && pthread_equal(p->owner, self) ){
 | |
|       p->nRef++;
 | |
|       rc = SQLITE_OK;
 | |
|     }else if( pthread_mutex_lock(&p->mutex)==0 ){
 | |
|       assert( p->nRef==0 );
 | |
|       p->owner = self;
 | |
|       p->nRef = 1;
 | |
|       rc = SQLITE_OK;
 | |
|     }else{
 | |
|       rc = SQLITE_BUSY;
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   /* Use the built-in recursive mutexes if they are available.
 | |
|   */
 | |
|   if( pthread_mutex_trylock(&p->mutex)==0 ){
 | |
|     p->owner = pthread_self();
 | |
|     p->nRef++;
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     rc = SQLITE_BUSY;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( rc==SQLITE_OK && p->trace ){
 | |
|     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
 | |
|   }
 | |
| #endif
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_leave() routine exits a mutex that was
 | |
| ** previously entered by the same thread.  The behavior
 | |
| ** is undefined if the mutex is not currently entered or
 | |
| ** is not currently allocated.  SQLite will never do either.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( sqlite3_mutex_held(p) );
 | |
|   p->nRef--;
 | |
|   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
| 
 | |
| #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
 | |
|   if( p->nRef==0 ){
 | |
|     pthread_mutex_unlock(&p->mutex);
 | |
|   }
 | |
| #else
 | |
|   pthread_mutex_unlock(&p->mutex);
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( p->trace ){
 | |
|     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
 | |
| ** intended for use only inside assert() statements.  On some platforms,
 | |
| ** there might be race conditions that can cause these routines to
 | |
| ** deliver incorrect results.  In particular, if pthread_equal() is
 | |
| ** not an atomic operation, then these routines might delivery
 | |
| ** incorrect results.  On most platforms, pthread_equal() is a 
 | |
| ** comparison of two integers and is therefore atomic.  But we are
 | |
| ** told that HPUX is not such a platform.  If so, then these routines
 | |
| ** will not always work correctly on HPUX.
 | |
| **
 | |
| ** On those platforms where pthread_equal() is not atomic, SQLite
 | |
| ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
 | |
| ** make sure no assert() statements are evaluated and hence these
 | |
| ** routines are never called.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
 | |
|   return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
 | |
|   return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
 | |
| }
 | |
| #endif
 | |
| #endif /* SQLITE_MUTEX_PTHREAD */
 | |
| 
 | |
| /************** End of mutex_unix.c ******************************************/
 | |
| /************** Begin file mutex_w32.c ***************************************/
 | |
| /*
 | |
| ** 2007 August 14
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement mutexes for win32
 | |
| **
 | |
| ** $Id: mutex_w32.c,v 1.5 2007/10/05 15:08:01 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only used if we are compiling multithreaded
 | |
| ** on a win32 system.
 | |
| */
 | |
| #ifdef SQLITE_MUTEX_W32
 | |
| 
 | |
| /*
 | |
| ** Each recursive mutex is an instance of the following structure.
 | |
| */
 | |
| struct sqlite3_mutex {
 | |
|   CRITICAL_SECTION mutex;    /* Mutex controlling the lock */
 | |
|   int id;                    /* Mutex type */
 | |
|   int nRef;                  /* Number of enterances */
 | |
|   DWORD owner;               /* Thread holding this mutex */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
 | |
| ** or WinCE.  Return false (zero) for Win95, Win98, or WinME.
 | |
| **
 | |
| ** Here is an interesting observation:  Win95, Win98, and WinME lack
 | |
| ** the LockFileEx() API.  But we can still statically link against that
 | |
| ** API as long as we don't call it win running Win95/98/ME.  A call to
 | |
| ** this routine is used to determine if the host is Win95/98/ME or
 | |
| ** WinNT/2K/XP so that we will know whether or not we can safely call
 | |
| ** the LockFileEx() API.
 | |
| */
 | |
| #if OS_WINCE
 | |
| # define mutexIsNT()  (1)
 | |
| #else
 | |
|   static int mutexIsNT(void){
 | |
|     static int osType = 0;
 | |
|     if( osType==0 ){
 | |
|       OSVERSIONINFO sInfo;
 | |
|       sInfo.dwOSVersionInfoSize = sizeof(sInfo);
 | |
|       GetVersionEx(&sInfo);
 | |
|       osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
 | |
|     }
 | |
|     return osType==2;
 | |
|   }
 | |
| #endif /* OS_WINCE */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_alloc() routine allocates a new
 | |
| ** mutex and returns a pointer to it.  If it returns NULL
 | |
| ** that means that a mutex could not be allocated.  SQLite
 | |
| ** will unwind its stack and return an error.  The argument
 | |
| ** to sqlite3_mutex_alloc() is one of these integer constants:
 | |
| **
 | |
| ** <ul>
 | |
| ** <li>  SQLITE_MUTEX_FAST               0
 | |
| ** <li>  SQLITE_MUTEX_RECURSIVE          1
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MASTER      2
 | |
| ** <li>  SQLITE_MUTEX_STATIC_MEM         3
 | |
| ** <li>  SQLITE_MUTEX_STATIC_PRNG        4
 | |
| ** </ul>
 | |
| **
 | |
| ** The first two constants cause sqlite3_mutex_alloc() to create
 | |
| ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
 | |
| ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
 | |
| ** The mutex implementation does not need to make a distinction
 | |
| ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
 | |
| ** not want to.  But SQLite will only request a recursive mutex in
 | |
| ** cases where it really needs one.  If a faster non-recursive mutex
 | |
| ** implementation is available on the host platform, the mutex subsystem
 | |
| ** might return such a mutex in response to SQLITE_MUTEX_FAST.
 | |
| **
 | |
| ** The other allowed parameters to sqlite3_mutex_alloc() each return
 | |
| ** a pointer to a static preexisting mutex.  Three static mutexes are
 | |
| ** used by the current version of SQLite.  Future versions of SQLite
 | |
| ** may add additional static mutexes.  Static mutexes are for internal
 | |
| ** use by SQLite only.  Applications that use SQLite mutexes should
 | |
| ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
 | |
| ** SQLITE_MUTEX_RECURSIVE.
 | |
| **
 | |
| ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
 | |
| ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
 | |
| ** returns a different mutex on every call.  But for the static 
 | |
| ** mutex types, the same mutex is returned on every call that has
 | |
| ** the same type number.
 | |
| */
 | |
| SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){
 | |
|   sqlite3_mutex *p;
 | |
| 
 | |
|   switch( iType ){
 | |
|     case SQLITE_MUTEX_FAST:
 | |
|     case SQLITE_MUTEX_RECURSIVE: {
 | |
|       p = sqlite3MallocZero( sizeof(*p) );
 | |
|       if( p ){
 | |
|         p->id = iType;
 | |
|         InitializeCriticalSection(&p->mutex);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       static sqlite3_mutex staticMutexes[5];
 | |
|       static int isInit = 0;
 | |
|       while( !isInit ){
 | |
|         static long lock = 0;
 | |
|         if( InterlockedIncrement(&lock)==1 ){
 | |
|           int i;
 | |
|           for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
 | |
|             InitializeCriticalSection(&staticMutexes[i].mutex);
 | |
|           }
 | |
|           isInit = 1;
 | |
|         }else{
 | |
|           Sleep(1);
 | |
|         }
 | |
|       }
 | |
|       assert( iType-2 >= 0 );
 | |
|       assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
 | |
|       p = &staticMutexes[iType-2];
 | |
|       p->id = iType;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine deallocates a previously
 | |
| ** allocated mutex.  SQLite is careful to deallocate every
 | |
| ** mutex that it allocates.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->nRef==0 );
 | |
|   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
|   DeleteCriticalSection(&p->mutex);
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
 | |
| ** to enter a mutex.  If another thread is already within the mutex,
 | |
| ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
 | |
| ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
 | |
| ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
 | |
| ** be entered multiple times by the same thread.  In such cases the,
 | |
| ** mutex must be exited an equal number of times before another thread
 | |
| ** can enter.  If the same thread tries to enter any other kind of mutex
 | |
| ** more than once, the behavior is undefined.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
|   EnterCriticalSection(&p->mutex);
 | |
|   p->owner = GetCurrentThreadId(); 
 | |
|   p->nRef++;
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
 | |
|   int rc = SQLITE_BUSY;
 | |
|   assert( p );
 | |
|   assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) );
 | |
|   /*
 | |
|   ** The sqlite3_mutex_try() routine is very rarely used, and when it
 | |
|   ** is used it is merely an optimization.  So it is OK for it to always
 | |
|   ** fail.  
 | |
|   **
 | |
|   ** The TryEnterCriticalSection() interface is only available on WinNT.
 | |
|   ** And some windows compilers complain if you try to use it without
 | |
|   ** first doing some #defines that prevent SQLite from building on Win98.
 | |
|   ** For that reason, we will omit this optimization for now.  See
 | |
|   ** ticket #2685.
 | |
|   */
 | |
| #if 0
 | |
|   if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){
 | |
|     p->owner = GetCurrentThreadId();
 | |
|     p->nRef++;
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
| #endif
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_leave() routine exits a mutex that was
 | |
| ** previously entered by the same thread.  The behavior
 | |
| ** is undefined if the mutex is not currently entered or
 | |
| ** is not currently allocated.  SQLite will never do either.
 | |
| */
 | |
| SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
 | |
|   assert( p->nRef>0 );
 | |
|   assert( p->owner==GetCurrentThreadId() );
 | |
|   p->nRef--;
 | |
|   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
 | |
|   LeaveCriticalSection(&p->mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
 | |
| ** intended for use only inside assert() statements.
 | |
| */
 | |
| SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
 | |
|   return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
 | |
| }
 | |
| SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
 | |
|   return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
 | |
| }
 | |
| #endif /* SQLITE_MUTEX_W32 */
 | |
| 
 | |
| /************** End of mutex_w32.c *******************************************/
 | |
| /************** Begin file malloc.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Memory allocation functions used throughout sqlite.
 | |
| **
 | |
| **
 | |
| ** $Id: malloc.c,v 1.14 2007/10/20 16:36:31 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This routine runs when the memory allocator sees that the
 | |
| ** total memory allocation is about to exceed the soft heap
 | |
| ** limit.
 | |
| */
 | |
| static void softHeapLimitEnforcer(
 | |
|   void *NotUsed, 
 | |
|   sqlite3_int64 inUse,
 | |
|   int allocSize
 | |
| ){
 | |
|   sqlite3_release_memory(allocSize);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the soft heap-size limit for the current thread. Passing a
 | |
| ** zero or negative value indicates no limit.
 | |
| */
 | |
| SQLITE_API void sqlite3_soft_heap_limit(int n){
 | |
|   sqlite3_uint64 iLimit;
 | |
|   int overage;
 | |
|   if( n<0 ){
 | |
|     iLimit = 0;
 | |
|   }else{
 | |
|     iLimit = n;
 | |
|   }
 | |
|   if( iLimit>0 ){
 | |
|     sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
 | |
|   }else{
 | |
|     sqlite3_memory_alarm(0, 0, 0);
 | |
|   }
 | |
|   overage = sqlite3_memory_used() - n;
 | |
|   if( overage>0 ){
 | |
|     sqlite3_release_memory(overage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release memory held by SQLite instances created by the current thread.
 | |
| */
 | |
| SQLITE_API int sqlite3_release_memory(int n){
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   return sqlite3PagerReleaseMemory(n);
 | |
| #else
 | |
|   return SQLITE_OK;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Allocate and zero memory.
 | |
| */ 
 | |
| SQLITE_PRIVATE void *sqlite3MallocZero(unsigned n){
 | |
|   void *p = sqlite3_malloc(n);
 | |
|   if( p ){
 | |
|     memset(p, 0, n);
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate and zero memory.  If the allocation fails, make
 | |
| ** the mallocFailed flag in the connection pointer.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){
 | |
|   void *p = sqlite3DbMallocRaw(db, n);
 | |
|   if( p ){
 | |
|     memset(p, 0, n);
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate and zero memory.  If the allocation fails, make
 | |
| ** the mallocFailed flag in the connection pointer.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){
 | |
|   void *p = 0;
 | |
|   if( !db || db->mallocFailed==0 ){
 | |
|     p = sqlite3_malloc(n);
 | |
|     if( !p && db ){
 | |
|       db->mallocFailed = 1;
 | |
|     }
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Resize the block of memory pointed to by p to n bytes. If the
 | |
| ** resize fails, set the mallocFailed flag inthe connection object.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
 | |
|   void *pNew = 0;
 | |
|   if( db->mallocFailed==0 ){
 | |
|     pNew = sqlite3_realloc(p, n);
 | |
|     if( !pNew ){
 | |
|       db->mallocFailed = 1;
 | |
|     }
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt to reallocate p.  If the reallocation fails, then free p
 | |
| ** and set the mallocFailed flag in the database connection.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
 | |
|   void *pNew;
 | |
|   pNew = sqlite3DbRealloc(db, p, n);
 | |
|   if( !pNew ){
 | |
|     sqlite3_free(p);
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a copy of a string in memory obtained from sqliteMalloc(). These 
 | |
| ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
 | |
| ** is because when memory debugging is turned on, these two functions are 
 | |
| ** called via macros that record the current file and line number in the
 | |
| ** ThreadData structure.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3StrDup(const char *z){
 | |
|   char *zNew;
 | |
|   int n;
 | |
|   if( z==0 ) return 0;
 | |
|   n = strlen(z)+1;
 | |
|   zNew = sqlite3_malloc(n);
 | |
|   if( zNew ) memcpy(zNew, z, n);
 | |
|   return zNew;
 | |
| }
 | |
| SQLITE_PRIVATE char *sqlite3StrNDup(const char *z, int n){
 | |
|   char *zNew;
 | |
|   if( z==0 ) return 0;
 | |
|   zNew = sqlite3_malloc(n+1);
 | |
|   if( zNew ){
 | |
|     memcpy(zNew, z, n);
 | |
|     zNew[n] = 0;
 | |
|   }
 | |
|   return zNew;
 | |
| }
 | |
| 
 | |
| SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){
 | |
|   char *zNew = sqlite3StrDup(z);
 | |
|   if( z && !zNew ){
 | |
|     db->mallocFailed = 1;
 | |
|   }
 | |
|   return zNew;
 | |
| }
 | |
| SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
 | |
|   char *zNew = sqlite3StrNDup(z, n);
 | |
|   if( z && !zNew ){
 | |
|     db->mallocFailed = 1;
 | |
|   }
 | |
|   return zNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a string from the 2nd and subsequent arguments (up to the
 | |
| ** first NULL argument), store the string in memory obtained from
 | |
| ** sqliteMalloc() and make the pointer indicated by the 1st argument
 | |
| ** point to that string.  The 1st argument must either be NULL or 
 | |
| ** point to memory obtained from sqliteMalloc().
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SetString(char **pz, ...){
 | |
|   va_list ap;
 | |
|   int nByte;
 | |
|   const char *z;
 | |
|   char *zResult;
 | |
| 
 | |
|   assert( pz!=0 );
 | |
|   nByte = 1;
 | |
|   va_start(ap, pz);
 | |
|   while( (z = va_arg(ap, const char*))!=0 ){
 | |
|     nByte += strlen(z);
 | |
|   }
 | |
|   va_end(ap);
 | |
|   sqlite3_free(*pz);
 | |
|   *pz = zResult = sqlite3_malloc(nByte);
 | |
|   if( zResult==0 ){
 | |
|     return;
 | |
|   }
 | |
|   *zResult = 0;
 | |
|   va_start(ap, pz);
 | |
|   while( (z = va_arg(ap, const char*))!=0 ){
 | |
|     int n = strlen(z);
 | |
|     memcpy(zResult, z, n);
 | |
|     zResult += n;
 | |
|   }
 | |
|   zResult[0] = 0;
 | |
|   va_end(ap);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function must be called before exiting any API function (i.e. 
 | |
| ** returning control to the user) that has called sqlite3_malloc or
 | |
| ** sqlite3_realloc.
 | |
| **
 | |
| ** The returned value is normally a copy of the second argument to this
 | |
| ** function. However, if a malloc() failure has occured since the previous
 | |
| ** invocation SQLITE_NOMEM is returned instead. 
 | |
| **
 | |
| ** If the first argument, db, is not NULL and a malloc() error has occured,
 | |
| ** then the connection error-code (the value returned by sqlite3_errcode())
 | |
| ** is set to SQLITE_NOMEM.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){
 | |
|   /* If the db handle is not NULL, then we must hold the connection handle
 | |
|   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 
 | |
|   ** is unsafe, as is the call to sqlite3Error().
 | |
|   */
 | |
|   assert( !db || sqlite3_mutex_held(db->mutex) );
 | |
|   if( db && db->mallocFailed ){
 | |
|     sqlite3Error(db, SQLITE_NOMEM, 0);
 | |
|     db->mallocFailed = 0;
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   return rc & (db ? db->errMask : 0xff);
 | |
| }
 | |
| 
 | |
| /************** End of malloc.c **********************************************/
 | |
| /************** Begin file printf.c ******************************************/
 | |
| /*
 | |
| ** The "printf" code that follows dates from the 1980's.  It is in
 | |
| ** the public domain.  The original comments are included here for
 | |
| ** completeness.  They are very out-of-date but might be useful as
 | |
| ** an historical reference.  Most of the "enhancements" have been backed
 | |
| ** out so that the functionality is now the same as standard printf().
 | |
| **
 | |
| **************************************************************************
 | |
| **
 | |
| ** The following modules is an enhanced replacement for the "printf" subroutines
 | |
| ** found in the standard C library.  The following enhancements are
 | |
| ** supported:
 | |
| **
 | |
| **      +  Additional functions.  The standard set of "printf" functions
 | |
| **         includes printf, fprintf, sprintf, vprintf, vfprintf, and
 | |
| **         vsprintf.  This module adds the following:
 | |
| **
 | |
| **           *  snprintf -- Works like sprintf, but has an extra argument
 | |
| **                          which is the size of the buffer written to.
 | |
| **
 | |
| **           *  mprintf --  Similar to sprintf.  Writes output to memory
 | |
| **                          obtained from malloc.
 | |
| **
 | |
| **           *  xprintf --  Calls a function to dispose of output.
 | |
| **
 | |
| **           *  nprintf --  No output, but returns the number of characters
 | |
| **                          that would have been output by printf.
 | |
| **
 | |
| **           *  A v- version (ex: vsnprintf) of every function is also
 | |
| **              supplied.
 | |
| **
 | |
| **      +  A few extensions to the formatting notation are supported:
 | |
| **
 | |
| **           *  The "=" flag (similar to "-") causes the output to be
 | |
| **              be centered in the appropriately sized field.
 | |
| **
 | |
| **           *  The %b field outputs an integer in binary notation.
 | |
| **
 | |
| **           *  The %c field now accepts a precision.  The character output
 | |
| **              is repeated by the number of times the precision specifies.
 | |
| **
 | |
| **           *  The %' field works like %c, but takes as its character the
 | |
| **              next character of the format string, instead of the next
 | |
| **              argument.  For example,  printf("%.78'-")  prints 78 minus
 | |
| **              signs, the same as  printf("%.78c",'-').
 | |
| **
 | |
| **      +  When compiled using GCC on a SPARC, this version of printf is
 | |
| **         faster than the library printf for SUN OS 4.1.
 | |
| **
 | |
| **      +  All functions are fully reentrant.
 | |
| **
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Conversion types fall into various categories as defined by the
 | |
| ** following enumeration.
 | |
| */
 | |
| #define etRADIX       1 /* Integer types.  %d, %x, %o, and so forth */
 | |
| #define etFLOAT       2 /* Floating point.  %f */
 | |
| #define etEXP         3 /* Exponentional notation. %e and %E */
 | |
| #define etGENERIC     4 /* Floating or exponential, depending on exponent. %g */
 | |
| #define etSIZE        5 /* Return number of characters processed so far. %n */
 | |
| #define etSTRING      6 /* Strings. %s */
 | |
| #define etDYNSTRING   7 /* Dynamically allocated strings. %z */
 | |
| #define etPERCENT     8 /* Percent symbol. %% */
 | |
| #define etCHARX       9 /* Characters. %c */
 | |
| /* The rest are extensions, not normally found in printf() */
 | |
| #define etCHARLIT    10 /* Literal characters.  %' */
 | |
| #define etSQLESCAPE  11 /* Strings with '\'' doubled.  %q */
 | |
| #define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
 | |
|                           NULL pointers replaced by SQL NULL.  %Q */
 | |
| #define etTOKEN      13 /* a pointer to a Token structure */
 | |
| #define etSRCLIST    14 /* a pointer to a SrcList */
 | |
| #define etPOINTER    15 /* The %p conversion */
 | |
| #define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */
 | |
| #define etORDINAL    17 /* %r -> 1st, 2nd, 3rd, 4th, etc.  English only */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** An "etByte" is an 8-bit unsigned value.
 | |
| */
 | |
| typedef unsigned char etByte;
 | |
| 
 | |
| /*
 | |
| ** Each builtin conversion character (ex: the 'd' in "%d") is described
 | |
| ** by an instance of the following structure
 | |
| */
 | |
| typedef struct et_info {   /* Information about each format field */
 | |
|   char fmttype;            /* The format field code letter */
 | |
|   etByte base;             /* The base for radix conversion */
 | |
|   etByte flags;            /* One or more of FLAG_ constants below */
 | |
|   etByte type;             /* Conversion paradigm */
 | |
|   etByte charset;          /* Offset into aDigits[] of the digits string */
 | |
|   etByte prefix;           /* Offset into aPrefix[] of the prefix string */
 | |
| } et_info;
 | |
| 
 | |
| /*
 | |
| ** Allowed values for et_info.flags
 | |
| */
 | |
| #define FLAG_SIGNED  1     /* True if the value to convert is signed */
 | |
| #define FLAG_INTERN  2     /* True if for internal use only */
 | |
| #define FLAG_STRING  4     /* Allow infinity precision */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following table is searched linearly, so it is good to put the
 | |
| ** most frequently used conversion types first.
 | |
| */
 | |
| static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
 | |
| static const char aPrefix[] = "-x0\000X0";
 | |
| static const et_info fmtinfo[] = {
 | |
|   {  'd', 10, 1, etRADIX,      0,  0 },
 | |
|   {  's',  0, 4, etSTRING,     0,  0 },
 | |
|   {  'g',  0, 1, etGENERIC,    30, 0 },
 | |
|   {  'z',  0, 4, etDYNSTRING,  0,  0 },
 | |
|   {  'q',  0, 4, etSQLESCAPE,  0,  0 },
 | |
|   {  'Q',  0, 4, etSQLESCAPE2, 0,  0 },
 | |
|   {  'w',  0, 4, etSQLESCAPE3, 0,  0 },
 | |
|   {  'c',  0, 0, etCHARX,      0,  0 },
 | |
|   {  'o',  8, 0, etRADIX,      0,  2 },
 | |
|   {  'u', 10, 0, etRADIX,      0,  0 },
 | |
|   {  'x', 16, 0, etRADIX,      16, 1 },
 | |
|   {  'X', 16, 0, etRADIX,      0,  4 },
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|   {  'f',  0, 1, etFLOAT,      0,  0 },
 | |
|   {  'e',  0, 1, etEXP,        30, 0 },
 | |
|   {  'E',  0, 1, etEXP,        14, 0 },
 | |
|   {  'G',  0, 1, etGENERIC,    14, 0 },
 | |
| #endif
 | |
|   {  'i', 10, 1, etRADIX,      0,  0 },
 | |
|   {  'n',  0, 0, etSIZE,       0,  0 },
 | |
|   {  '%',  0, 0, etPERCENT,    0,  0 },
 | |
|   {  'p', 16, 0, etPOINTER,    0,  1 },
 | |
|   {  'T',  0, 2, etTOKEN,      0,  0 },
 | |
|   {  'S',  0, 2, etSRCLIST,    0,  0 },
 | |
|   {  'r', 10, 3, etORDINAL,    0,  0 },
 | |
| };
 | |
| #define etNINFO  (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
 | |
| 
 | |
| /*
 | |
| ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
 | |
| ** conversions will work.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
| /*
 | |
| ** "*val" is a double such that 0.1 <= *val < 10.0
 | |
| ** Return the ascii code for the leading digit of *val, then
 | |
| ** multiply "*val" by 10.0 to renormalize.
 | |
| **
 | |
| ** Example:
 | |
| **     input:     *val = 3.14159
 | |
| **     output:    *val = 1.4159    function return = '3'
 | |
| **
 | |
| ** The counter *cnt is incremented each time.  After counter exceeds
 | |
| ** 16 (the number of significant digits in a 64-bit float) '0' is
 | |
| ** always returned.
 | |
| */
 | |
| static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
 | |
|   int digit;
 | |
|   LONGDOUBLE_TYPE d;
 | |
|   if( (*cnt)++ >= 16 ) return '0';
 | |
|   digit = (int)*val;
 | |
|   d = digit;
 | |
|   digit += '0';
 | |
|   *val = (*val - d)*10.0;
 | |
|   return digit;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_FLOATING_POINT */
 | |
| 
 | |
| /*
 | |
| ** Append N space characters to the given string buffer.
 | |
| */
 | |
| static void appendSpace(StrAccum *pAccum, int N){
 | |
|   static const char zSpaces[] = "                             ";
 | |
|   while( N>=sizeof(zSpaces)-1 ){
 | |
|     sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1);
 | |
|     N -= sizeof(zSpaces)-1;
 | |
|   }
 | |
|   if( N>0 ){
 | |
|     sqlite3StrAccumAppend(pAccum, zSpaces, N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** On machines with a small stack size, you can redefine the
 | |
| ** SQLITE_PRINT_BUF_SIZE to be less than 350.  But beware - for
 | |
| ** smaller values some %f conversions may go into an infinite loop.
 | |
| */
 | |
| #ifndef SQLITE_PRINT_BUF_SIZE
 | |
| # define SQLITE_PRINT_BUF_SIZE 350
 | |
| #endif
 | |
| #define etBUFSIZE SQLITE_PRINT_BUF_SIZE  /* Size of the output buffer */
 | |
| 
 | |
| /*
 | |
| ** The root program.  All variations call this core.
 | |
| **
 | |
| ** INPUTS:
 | |
| **   func   This is a pointer to a function taking three arguments
 | |
| **            1. A pointer to anything.  Same as the "arg" parameter.
 | |
| **            2. A pointer to the list of characters to be output
 | |
| **               (Note, this list is NOT null terminated.)
 | |
| **            3. An integer number of characters to be output.
 | |
| **               (Note: This number might be zero.)
 | |
| **
 | |
| **   arg    This is the pointer to anything which will be passed as the
 | |
| **          first argument to "func".  Use it for whatever you like.
 | |
| **
 | |
| **   fmt    This is the format string, as in the usual print.
 | |
| **
 | |
| **   ap     This is a pointer to a list of arguments.  Same as in
 | |
| **          vfprint.
 | |
| **
 | |
| ** OUTPUTS:
 | |
| **          The return value is the total number of characters sent to
 | |
| **          the function "func".  Returns -1 on a error.
 | |
| **
 | |
| ** Note that the order in which automatic variables are declared below
 | |
| ** seems to make a big difference in determining how fast this beast
 | |
| ** will run.
 | |
| */
 | |
| static void vxprintf(
 | |
|   StrAccum *pAccum,                  /* Accumulate results here */
 | |
|   int useExtended,                   /* Allow extended %-conversions */
 | |
|   const char *fmt,                   /* Format string */
 | |
|   va_list ap                         /* arguments */
 | |
| ){
 | |
|   int c;                     /* Next character in the format string */
 | |
|   char *bufpt;               /* Pointer to the conversion buffer */
 | |
|   int precision;             /* Precision of the current field */
 | |
|   int length;                /* Length of the field */
 | |
|   int idx;                   /* A general purpose loop counter */
 | |
|   int width;                 /* Width of the current field */
 | |
|   etByte flag_leftjustify;   /* True if "-" flag is present */
 | |
|   etByte flag_plussign;      /* True if "+" flag is present */
 | |
|   etByte flag_blanksign;     /* True if " " flag is present */
 | |
|   etByte flag_alternateform; /* True if "#" flag is present */
 | |
|   etByte flag_altform2;      /* True if "!" flag is present */
 | |
|   etByte flag_zeropad;       /* True if field width constant starts with zero */
 | |
|   etByte flag_long;          /* True if "l" flag is present */
 | |
|   etByte flag_longlong;      /* True if the "ll" flag is present */
 | |
|   etByte done;               /* Loop termination flag */
 | |
|   sqlite_uint64 longvalue;   /* Value for integer types */
 | |
|   LONGDOUBLE_TYPE realvalue; /* Value for real types */
 | |
|   const et_info *infop;      /* Pointer to the appropriate info structure */
 | |
|   char buf[etBUFSIZE];       /* Conversion buffer */
 | |
|   char prefix;               /* Prefix character.  "+" or "-" or " " or '\0'. */
 | |
|   etByte errorflag = 0;      /* True if an error is encountered */
 | |
|   etByte xtype;              /* Conversion paradigm */
 | |
|   char *zExtra;              /* Extra memory used for etTCLESCAPE conversions */
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|   int  exp, e2;              /* exponent of real numbers */
 | |
|   double rounder;            /* Used for rounding floating point values */
 | |
|   etByte flag_dp;            /* True if decimal point should be shown */
 | |
|   etByte flag_rtz;           /* True if trailing zeros should be removed */
 | |
|   etByte flag_exp;           /* True to force display of the exponent */
 | |
|   int nsd;                   /* Number of significant digits returned */
 | |
| #endif
 | |
| 
 | |
|   length = 0;
 | |
|   bufpt = 0;
 | |
|   for(; (c=(*fmt))!=0; ++fmt){
 | |
|     if( c!='%' ){
 | |
|       int amt;
 | |
|       bufpt = (char *)fmt;
 | |
|       amt = 1;
 | |
|       while( (c=(*++fmt))!='%' && c!=0 ) amt++;
 | |
|       sqlite3StrAccumAppend(pAccum, bufpt, amt);
 | |
|       if( c==0 ) break;
 | |
|     }
 | |
|     if( (c=(*++fmt))==0 ){
 | |
|       errorflag = 1;
 | |
|       sqlite3StrAccumAppend(pAccum, "%", 1);
 | |
|       break;
 | |
|     }
 | |
|     /* Find out what flags are present */
 | |
|     flag_leftjustify = flag_plussign = flag_blanksign = 
 | |
|      flag_alternateform = flag_altform2 = flag_zeropad = 0;
 | |
|     done = 0;
 | |
|     do{
 | |
|       switch( c ){
 | |
|         case '-':   flag_leftjustify = 1;     break;
 | |
|         case '+':   flag_plussign = 1;        break;
 | |
|         case ' ':   flag_blanksign = 1;       break;
 | |
|         case '#':   flag_alternateform = 1;   break;
 | |
|         case '!':   flag_altform2 = 1;        break;
 | |
|         case '0':   flag_zeropad = 1;         break;
 | |
|         default:    done = 1;                 break;
 | |
|       }
 | |
|     }while( !done && (c=(*++fmt))!=0 );
 | |
|     /* Get the field width */
 | |
|     width = 0;
 | |
|     if( c=='*' ){
 | |
|       width = va_arg(ap,int);
 | |
|       if( width<0 ){
 | |
|         flag_leftjustify = 1;
 | |
|         width = -width;
 | |
|       }
 | |
|       c = *++fmt;
 | |
|     }else{
 | |
|       while( c>='0' && c<='9' ){
 | |
|         width = width*10 + c - '0';
 | |
|         c = *++fmt;
 | |
|       }
 | |
|     }
 | |
|     if( width > etBUFSIZE-10 ){
 | |
|       width = etBUFSIZE-10;
 | |
|     }
 | |
|     /* Get the precision */
 | |
|     if( c=='.' ){
 | |
|       precision = 0;
 | |
|       c = *++fmt;
 | |
|       if( c=='*' ){
 | |
|         precision = va_arg(ap,int);
 | |
|         if( precision<0 ) precision = -precision;
 | |
|         c = *++fmt;
 | |
|       }else{
 | |
|         while( c>='0' && c<='9' ){
 | |
|           precision = precision*10 + c - '0';
 | |
|           c = *++fmt;
 | |
|         }
 | |
|       }
 | |
|     }else{
 | |
|       precision = -1;
 | |
|     }
 | |
|     /* Get the conversion type modifier */
 | |
|     if( c=='l' ){
 | |
|       flag_long = 1;
 | |
|       c = *++fmt;
 | |
|       if( c=='l' ){
 | |
|         flag_longlong = 1;
 | |
|         c = *++fmt;
 | |
|       }else{
 | |
|         flag_longlong = 0;
 | |
|       }
 | |
|     }else{
 | |
|       flag_long = flag_longlong = 0;
 | |
|     }
 | |
|     /* Fetch the info entry for the field */
 | |
|     infop = 0;
 | |
|     for(idx=0; idx<etNINFO; idx++){
 | |
|       if( c==fmtinfo[idx].fmttype ){
 | |
|         infop = &fmtinfo[idx];
 | |
|         if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
 | |
|           xtype = infop->type;
 | |
|         }else{
 | |
|           return;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     zExtra = 0;
 | |
|     if( infop==0 ){
 | |
|       return;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Limit the precision to prevent overflowing buf[] during conversion */
 | |
|     if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){
 | |
|       precision = etBUFSIZE-40;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     ** At this point, variables are initialized as follows:
 | |
|     **
 | |
|     **   flag_alternateform          TRUE if a '#' is present.
 | |
|     **   flag_altform2               TRUE if a '!' is present.
 | |
|     **   flag_plussign               TRUE if a '+' is present.
 | |
|     **   flag_leftjustify            TRUE if a '-' is present or if the
 | |
|     **                               field width was negative.
 | |
|     **   flag_zeropad                TRUE if the width began with 0.
 | |
|     **   flag_long                   TRUE if the letter 'l' (ell) prefixed
 | |
|     **                               the conversion character.
 | |
|     **   flag_longlong               TRUE if the letter 'll' (ell ell) prefixed
 | |
|     **                               the conversion character.
 | |
|     **   flag_blanksign              TRUE if a ' ' is present.
 | |
|     **   width                       The specified field width.  This is
 | |
|     **                               always non-negative.  Zero is the default.
 | |
|     **   precision                   The specified precision.  The default
 | |
|     **                               is -1.
 | |
|     **   xtype                       The class of the conversion.
 | |
|     **   infop                       Pointer to the appropriate info struct.
 | |
|     */
 | |
|     switch( xtype ){
 | |
|       case etPOINTER:
 | |
|         flag_longlong = sizeof(char*)==sizeof(i64);
 | |
|         flag_long = sizeof(char*)==sizeof(long int);
 | |
|         /* Fall through into the next case */
 | |
|       case etORDINAL:
 | |
|       case etRADIX:
 | |
|         if( infop->flags & FLAG_SIGNED ){
 | |
|           i64 v;
 | |
|           if( flag_longlong )   v = va_arg(ap,i64);
 | |
|           else if( flag_long )  v = va_arg(ap,long int);
 | |
|           else                  v = va_arg(ap,int);
 | |
|           if( v<0 ){
 | |
|             longvalue = -v;
 | |
|             prefix = '-';
 | |
|           }else{
 | |
|             longvalue = v;
 | |
|             if( flag_plussign )        prefix = '+';
 | |
|             else if( flag_blanksign )  prefix = ' ';
 | |
|             else                       prefix = 0;
 | |
|           }
 | |
|         }else{
 | |
|           if( flag_longlong )   longvalue = va_arg(ap,u64);
 | |
|           else if( flag_long )  longvalue = va_arg(ap,unsigned long int);
 | |
|           else                  longvalue = va_arg(ap,unsigned int);
 | |
|           prefix = 0;
 | |
|         }
 | |
|         if( longvalue==0 ) flag_alternateform = 0;
 | |
|         if( flag_zeropad && precision<width-(prefix!=0) ){
 | |
|           precision = width-(prefix!=0);
 | |
|         }
 | |
|         bufpt = &buf[etBUFSIZE-1];
 | |
|         if( xtype==etORDINAL ){
 | |
|           static const char zOrd[] = "thstndrd";
 | |
|           int x = longvalue % 10;
 | |
|           if( x>=4 || (longvalue/10)%10==1 ){
 | |
|             x = 0;
 | |
|           }
 | |
|           buf[etBUFSIZE-3] = zOrd[x*2];
 | |
|           buf[etBUFSIZE-2] = zOrd[x*2+1];
 | |
|           bufpt -= 2;
 | |
|         }
 | |
|         {
 | |
|           register const char *cset;      /* Use registers for speed */
 | |
|           register int base;
 | |
|           cset = &aDigits[infop->charset];
 | |
|           base = infop->base;
 | |
|           do{                                           /* Convert to ascii */
 | |
|             *(--bufpt) = cset[longvalue%base];
 | |
|             longvalue = longvalue/base;
 | |
|           }while( longvalue>0 );
 | |
|         }
 | |
|         length = &buf[etBUFSIZE-1]-bufpt;
 | |
|         for(idx=precision-length; idx>0; idx--){
 | |
|           *(--bufpt) = '0';                             /* Zero pad */
 | |
|         }
 | |
|         if( prefix ) *(--bufpt) = prefix;               /* Add sign */
 | |
|         if( flag_alternateform && infop->prefix ){      /* Add "0" or "0x" */
 | |
|           const char *pre;
 | |
|           char x;
 | |
|           pre = &aPrefix[infop->prefix];
 | |
|           if( *bufpt!=pre[0] ){
 | |
|             for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
 | |
|           }
 | |
|         }
 | |
|         length = &buf[etBUFSIZE-1]-bufpt;
 | |
|         break;
 | |
|       case etFLOAT:
 | |
|       case etEXP:
 | |
|       case etGENERIC:
 | |
|         realvalue = va_arg(ap,double);
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|         if( precision<0 ) precision = 6;         /* Set default precision */
 | |
|         if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10;
 | |
|         if( realvalue<0.0 ){
 | |
|           realvalue = -realvalue;
 | |
|           prefix = '-';
 | |
|         }else{
 | |
|           if( flag_plussign )          prefix = '+';
 | |
|           else if( flag_blanksign )    prefix = ' ';
 | |
|           else                         prefix = 0;
 | |
|         }
 | |
|         if( xtype==etGENERIC && precision>0 ) precision--;
 | |
| #if 0
 | |
|         /* Rounding works like BSD when the constant 0.4999 is used.  Wierd! */
 | |
|         for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
 | |
| #else
 | |
|         /* It makes more sense to use 0.5 */
 | |
|         for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){}
 | |
| #endif
 | |
|         if( xtype==etFLOAT ) realvalue += rounder;
 | |
|         /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
 | |
|         exp = 0;
 | |
|         if( sqlite3_isnan(realvalue) ){
 | |
|           bufpt = "NaN";
 | |
|           length = 3;
 | |
|           break;
 | |
|         }
 | |
|         if( realvalue>0.0 ){
 | |
|           while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }
 | |
|           while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
 | |
|           while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
 | |
|           while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
 | |
|           while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
 | |
|           if( exp>350 || exp<-350 ){
 | |
|             if( prefix=='-' ){
 | |
|               bufpt = "-Inf";
 | |
|             }else if( prefix=='+' ){
 | |
|               bufpt = "+Inf";
 | |
|             }else{
 | |
|               bufpt = "Inf";
 | |
|             }
 | |
|             length = strlen(bufpt);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         bufpt = buf;
 | |
|         /*
 | |
|         ** If the field type is etGENERIC, then convert to either etEXP
 | |
|         ** or etFLOAT, as appropriate.
 | |
|         */
 | |
|         flag_exp = xtype==etEXP;
 | |
|         if( xtype!=etFLOAT ){
 | |
|           realvalue += rounder;
 | |
|           if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
 | |
|         }
 | |
|         if( xtype==etGENERIC ){
 | |
|           flag_rtz = !flag_alternateform;
 | |
|           if( exp<-4 || exp>precision ){
 | |
|             xtype = etEXP;
 | |
|           }else{
 | |
|             precision = precision - exp;
 | |
|             xtype = etFLOAT;
 | |
|           }
 | |
|         }else{
 | |
|           flag_rtz = 0;
 | |
|         }
 | |
|         if( xtype==etEXP ){
 | |
|           e2 = 0;
 | |
|         }else{
 | |
|           e2 = exp;
 | |
|         }
 | |
|         nsd = 0;
 | |
|         flag_dp = (precision>0) | flag_alternateform | flag_altform2;
 | |
|         /* The sign in front of the number */
 | |
|         if( prefix ){
 | |
|           *(bufpt++) = prefix;
 | |
|         }
 | |
|         /* Digits prior to the decimal point */
 | |
|         if( e2<0 ){
 | |
|           *(bufpt++) = '0';
 | |
|         }else{
 | |
|           for(; e2>=0; e2--){
 | |
|             *(bufpt++) = et_getdigit(&realvalue,&nsd);
 | |
|           }
 | |
|         }
 | |
|         /* The decimal point */
 | |
|         if( flag_dp ){
 | |
|           *(bufpt++) = '.';
 | |
|         }
 | |
|         /* "0" digits after the decimal point but before the first
 | |
|         ** significant digit of the number */
 | |
|         for(e2++; e2<0 && precision>0; precision--, e2++){
 | |
|           *(bufpt++) = '0';
 | |
|         }
 | |
|         /* Significant digits after the decimal point */
 | |
|         while( (precision--)>0 ){
 | |
|           *(bufpt++) = et_getdigit(&realvalue,&nsd);
 | |
|         }
 | |
|         /* Remove trailing zeros and the "." if no digits follow the "." */
 | |
|         if( flag_rtz && flag_dp ){
 | |
|           while( bufpt[-1]=='0' ) *(--bufpt) = 0;
 | |
|           assert( bufpt>buf );
 | |
|           if( bufpt[-1]=='.' ){
 | |
|             if( flag_altform2 ){
 | |
|               *(bufpt++) = '0';
 | |
|             }else{
 | |
|               *(--bufpt) = 0;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         /* Add the "eNNN" suffix */
 | |
|         if( flag_exp || (xtype==etEXP && exp) ){
 | |
|           *(bufpt++) = aDigits[infop->charset];
 | |
|           if( exp<0 ){
 | |
|             *(bufpt++) = '-'; exp = -exp;
 | |
|           }else{
 | |
|             *(bufpt++) = '+';
 | |
|           }
 | |
|           if( exp>=100 ){
 | |
|             *(bufpt++) = (exp/100)+'0';                /* 100's digit */
 | |
|             exp %= 100;
 | |
|           }
 | |
|           *(bufpt++) = exp/10+'0';                     /* 10's digit */
 | |
|           *(bufpt++) = exp%10+'0';                     /* 1's digit */
 | |
|         }
 | |
|         *bufpt = 0;
 | |
| 
 | |
|         /* The converted number is in buf[] and zero terminated. Output it.
 | |
|         ** Note that the number is in the usual order, not reversed as with
 | |
|         ** integer conversions. */
 | |
|         length = bufpt-buf;
 | |
|         bufpt = buf;
 | |
| 
 | |
|         /* Special case:  Add leading zeros if the flag_zeropad flag is
 | |
|         ** set and we are not left justified */
 | |
|         if( flag_zeropad && !flag_leftjustify && length < width){
 | |
|           int i;
 | |
|           int nPad = width - length;
 | |
|           for(i=width; i>=nPad; i--){
 | |
|             bufpt[i] = bufpt[i-nPad];
 | |
|           }
 | |
|           i = prefix!=0;
 | |
|           while( nPad-- ) bufpt[i++] = '0';
 | |
|           length = width;
 | |
|         }
 | |
| #endif
 | |
|         break;
 | |
|       case etSIZE:
 | |
|         *(va_arg(ap,int*)) = pAccum->nChar;
 | |
|         length = width = 0;
 | |
|         break;
 | |
|       case etPERCENT:
 | |
|         buf[0] = '%';
 | |
|         bufpt = buf;
 | |
|         length = 1;
 | |
|         break;
 | |
|       case etCHARLIT:
 | |
|       case etCHARX:
 | |
|         c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
 | |
|         if( precision>=0 ){
 | |
|           for(idx=1; idx<precision; idx++) buf[idx] = c;
 | |
|           length = precision;
 | |
|         }else{
 | |
|           length =1;
 | |
|         }
 | |
|         bufpt = buf;
 | |
|         break;
 | |
|       case etSTRING:
 | |
|       case etDYNSTRING:
 | |
|         bufpt = va_arg(ap,char*);
 | |
|         if( bufpt==0 ){
 | |
|           bufpt = "";
 | |
|         }else if( xtype==etDYNSTRING ){
 | |
|           zExtra = bufpt;
 | |
|         }
 | |
|         length = strlen(bufpt);
 | |
|         if( precision>=0 && precision<length ) length = precision;
 | |
|         break;
 | |
|       case etSQLESCAPE:
 | |
|       case etSQLESCAPE2:
 | |
|       case etSQLESCAPE3: {
 | |
|         int i, j, n, ch, isnull;
 | |
|         int needQuote;
 | |
|         char q = ((xtype==etSQLESCAPE3)?'"':'\'');   /* Quote character */
 | |
|         char *escarg = va_arg(ap,char*);
 | |
|         isnull = escarg==0;
 | |
|         if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
 | |
|         for(i=n=0; (ch=escarg[i])!=0; i++){
 | |
|           if( ch==q )  n++;
 | |
|         }
 | |
|         needQuote = !isnull && xtype==etSQLESCAPE2;
 | |
|         n += i + 1 + needQuote*2;
 | |
|         if( n>etBUFSIZE ){
 | |
|           bufpt = zExtra = sqlite3_malloc( n );
 | |
|           if( bufpt==0 ) return;
 | |
|         }else{
 | |
|           bufpt = buf;
 | |
|         }
 | |
|         j = 0;
 | |
|         if( needQuote ) bufpt[j++] = q;
 | |
|         for(i=0; (ch=escarg[i])!=0; i++){
 | |
|           bufpt[j++] = ch;
 | |
|           if( ch==q ) bufpt[j++] = ch;
 | |
|         }
 | |
|         if( needQuote ) bufpt[j++] = q;
 | |
|         bufpt[j] = 0;
 | |
|         length = j;
 | |
|         /* The precision is ignored on %q and %Q */
 | |
|         /* if( precision>=0 && precision<length ) length = precision; */
 | |
|         break;
 | |
|       }
 | |
|       case etTOKEN: {
 | |
|         Token *pToken = va_arg(ap, Token*);
 | |
|         if( pToken && pToken->z ){
 | |
|           sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n);
 | |
|         }
 | |
|         length = width = 0;
 | |
|         break;
 | |
|       }
 | |
|       case etSRCLIST: {
 | |
|         SrcList *pSrc = va_arg(ap, SrcList*);
 | |
|         int k = va_arg(ap, int);
 | |
|         struct SrcList_item *pItem = &pSrc->a[k];
 | |
|         assert( k>=0 && k<pSrc->nSrc );
 | |
|         if( pItem->zDatabase && pItem->zDatabase[0] ){
 | |
|           sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1);
 | |
|           sqlite3StrAccumAppend(pAccum, ".", 1);
 | |
|         }
 | |
|         sqlite3StrAccumAppend(pAccum, pItem->zName, -1);
 | |
|         length = width = 0;
 | |
|         break;
 | |
|       }
 | |
|     }/* End switch over the format type */
 | |
|     /*
 | |
|     ** The text of the conversion is pointed to by "bufpt" and is
 | |
|     ** "length" characters long.  The field width is "width".  Do
 | |
|     ** the output.
 | |
|     */
 | |
|     if( !flag_leftjustify ){
 | |
|       register int nspace;
 | |
|       nspace = width-length;
 | |
|       if( nspace>0 ){
 | |
|         appendSpace(pAccum, nspace);
 | |
|       }
 | |
|     }
 | |
|     if( length>0 ){
 | |
|       sqlite3StrAccumAppend(pAccum, bufpt, length);
 | |
|     }
 | |
|     if( flag_leftjustify ){
 | |
|       register int nspace;
 | |
|       nspace = width-length;
 | |
|       if( nspace>0 ){
 | |
|         appendSpace(pAccum, nspace);
 | |
|       }
 | |
|     }
 | |
|     if( zExtra ){
 | |
|       sqlite3_free(zExtra);
 | |
|     }
 | |
|   }/* End for loop over the format string */
 | |
| } /* End of function */
 | |
| 
 | |
| /*
 | |
| ** Append N bytes of text from z to the StrAccum object.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
 | |
|   if( p->tooBig | p->mallocFailed ){
 | |
|     return;
 | |
|   }
 | |
|   if( N<0 ){
 | |
|     N = strlen(z);
 | |
|   }
 | |
|   if( N==0 ){
 | |
|     return;
 | |
|   }
 | |
|   if( p->nChar+N >= p->nAlloc ){
 | |
|     char *zNew;
 | |
|     if( !p->useMalloc ){
 | |
|       p->tooBig = 1;
 | |
|       N = p->nAlloc - p->nChar - 1;
 | |
|       if( N<=0 ){
 | |
|         return;
 | |
|       }
 | |
|     }else{
 | |
|       p->nAlloc += p->nAlloc + N + 1;
 | |
|       if( p->nAlloc > SQLITE_MAX_LENGTH ){
 | |
|         p->nAlloc = SQLITE_MAX_LENGTH;
 | |
|         if( p->nChar+N >= p->nAlloc ){
 | |
|           sqlite3StrAccumReset(p);
 | |
|           p->tooBig = 1;
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       zNew = sqlite3_malloc( p->nAlloc );
 | |
|       if( zNew ){
 | |
|         memcpy(zNew, p->zText, p->nChar);
 | |
|         sqlite3StrAccumReset(p);
 | |
|         p->zText = zNew;
 | |
|       }else{
 | |
|         p->mallocFailed = 1;
 | |
|         sqlite3StrAccumReset(p);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   memcpy(&p->zText[p->nChar], z, N);
 | |
|   p->nChar += N;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Finish off a string by making sure it is zero-terminated.
 | |
| ** Return a pointer to the resulting string.  Return a NULL
 | |
| ** pointer if any kind of error was encountered.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
 | |
|   if( p->zText ){
 | |
|     p->zText[p->nChar] = 0;
 | |
|     if( p->useMalloc && p->zText==p->zBase ){
 | |
|       p->zText = sqlite3_malloc( p->nChar+1 );
 | |
|       if( p->zText ){
 | |
|         memcpy(p->zText, p->zBase, p->nChar+1);
 | |
|       }else{
 | |
|         p->mallocFailed = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return p->zText;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Reset an StrAccum string.  Reclaim all malloced memory.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
 | |
|   if( p->zText!=p->zBase ){
 | |
|     sqlite3_free(p->zText);
 | |
|     p->zText = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize a string accumulator
 | |
| */
 | |
| static void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n){
 | |
|   p->zText = p->zBase = zBase;
 | |
|   p->nChar = 0;
 | |
|   p->nAlloc = n;
 | |
|   p->useMalloc = 1;
 | |
|   p->tooBig = 0;
 | |
|   p->mallocFailed = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print into memory obtained from sqliteMalloc().  Use the internal
 | |
| ** %-conversion extensions.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
 | |
|   char *z;
 | |
|   char zBase[SQLITE_PRINT_BUF_SIZE];
 | |
|   StrAccum acc;
 | |
|   sqlite3StrAccumInit(&acc, zBase, sizeof(zBase));
 | |
|   vxprintf(&acc, 1, zFormat, ap);
 | |
|   z = sqlite3StrAccumFinish(&acc);
 | |
|   if( acc.mallocFailed && db ){
 | |
|     db->mallocFailed = 1;
 | |
|   }
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print into memory obtained from sqliteMalloc().  Use the internal
 | |
| ** %-conversion extensions.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   char *z;
 | |
|   va_start(ap, zFormat);
 | |
|   z = sqlite3VMPrintf(db, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print into memory obtained from sqlite3_malloc().  Omit the internal
 | |
| ** %-conversion extensions.
 | |
| */
 | |
| SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
 | |
|   char *z;
 | |
|   char zBase[SQLITE_PRINT_BUF_SIZE];
 | |
|   StrAccum acc;
 | |
|   sqlite3StrAccumInit(&acc, zBase, sizeof(zBase));
 | |
|   vxprintf(&acc, 0, zFormat, ap);
 | |
|   z = sqlite3StrAccumFinish(&acc);
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Print into memory obtained from sqlite3_malloc()().  Omit the internal
 | |
| ** %-conversion extensions.
 | |
| */
 | |
| SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   char *z;
 | |
|   va_start(ap, zFormat);
 | |
|   z = sqlite3_vmprintf(zFormat, ap);
 | |
|   va_end(ap);
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** sqlite3_snprintf() works like snprintf() except that it ignores the
 | |
| ** current locale settings.  This is important for SQLite because we
 | |
| ** are not able to use a "," as the decimal point in place of "." as
 | |
| ** specified by some locales.
 | |
| */
 | |
| SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
 | |
|   char *z;
 | |
|   va_list ap;
 | |
|   StrAccum acc;
 | |
| 
 | |
|   if( n<=0 ){
 | |
|     return zBuf;
 | |
|   }
 | |
|   sqlite3StrAccumInit(&acc, zBuf, n);
 | |
|   acc.useMalloc = 0;
 | |
|   va_start(ap,zFormat);
 | |
|   vxprintf(&acc, 0, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   z = sqlite3StrAccumFinish(&acc);
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG)
 | |
| /*
 | |
| ** A version of printf() that understands %lld.  Used for debugging.
 | |
| ** The printf() built into some versions of windows does not understand %lld
 | |
| ** and segfaults if you give it a long long int.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   StrAccum acc;
 | |
|   char zBuf[500];
 | |
|   sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf));
 | |
|   acc.useMalloc = 0;
 | |
|   va_start(ap,zFormat);
 | |
|   vxprintf(&acc, 0, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   sqlite3StrAccumFinish(&acc);
 | |
|   fprintf(stdout,"%s", zBuf);
 | |
|   fflush(stdout);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /************** End of printf.c **********************************************/
 | |
| /************** Begin file random.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code to implement a pseudo-random number
 | |
| ** generator (PRNG) for SQLite.
 | |
| **
 | |
| ** Random numbers are used by some of the database backends in order
 | |
| ** to generate random integer keys for tables or random filenames.
 | |
| **
 | |
| ** $Id: random.c,v 1.21 2008/01/16 17:46:38 drh Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| /* All threads share a single random number generator.
 | |
| ** This structure is the current state of the generator.
 | |
| */
 | |
| static struct sqlite3PrngType {
 | |
|   unsigned char isInit;          /* True if initialized */
 | |
|   unsigned char i, j;            /* State variables */
 | |
|   unsigned char s[256];          /* State variables */
 | |
| } sqlite3Prng;
 | |
| 
 | |
| /*
 | |
| ** Get a single 8-bit random value from the RC4 PRNG.  The Mutex
 | |
| ** must be held while executing this routine.
 | |
| **
 | |
| ** Why not just use a library random generator like lrand48() for this?
 | |
| ** Because the OP_NewRowid opcode in the VDBE depends on having a very
 | |
| ** good source of random numbers.  The lrand48() library function may
 | |
| ** well be good enough.  But maybe not.  Or maybe lrand48() has some
 | |
| ** subtle problems on some systems that could cause problems.  It is hard
 | |
| ** to know.  To minimize the risk of problems due to bad lrand48()
 | |
| ** implementations, SQLite uses this random number generator based
 | |
| ** on RC4, which we know works very well.
 | |
| **
 | |
| ** (Later):  Actually, OP_NewRowid does not depend on a good source of
 | |
| ** randomness any more.  But we will leave this code in all the same.
 | |
| */
 | |
| static int randomByte(void){
 | |
|   unsigned char t;
 | |
| 
 | |
| 
 | |
|   /* Initialize the state of the random number generator once,
 | |
|   ** the first time this routine is called.  The seed value does
 | |
|   ** not need to contain a lot of randomness since we are not
 | |
|   ** trying to do secure encryption or anything like that...
 | |
|   **
 | |
|   ** Nothing in this file or anywhere else in SQLite does any kind of
 | |
|   ** encryption.  The RC4 algorithm is being used as a PRNG (pseudo-random
 | |
|   ** number generator) not as an encryption device.
 | |
|   */
 | |
|   if( !sqlite3Prng.isInit ){
 | |
|     int i;
 | |
|     char k[256];
 | |
|     sqlite3Prng.j = 0;
 | |
|     sqlite3Prng.i = 0;
 | |
|     sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k);
 | |
|     for(i=0; i<256; i++){
 | |
|       sqlite3Prng.s[i] = i;
 | |
|     }
 | |
|     for(i=0; i<256; i++){
 | |
|       sqlite3Prng.j += sqlite3Prng.s[i] + k[i];
 | |
|       t = sqlite3Prng.s[sqlite3Prng.j];
 | |
|       sqlite3Prng.s[sqlite3Prng.j] = sqlite3Prng.s[i];
 | |
|       sqlite3Prng.s[i] = t;
 | |
|     }
 | |
|     sqlite3Prng.isInit = 1;
 | |
|   }
 | |
| 
 | |
|   /* Generate and return single random byte
 | |
|   */
 | |
|   sqlite3Prng.i++;
 | |
|   t = sqlite3Prng.s[sqlite3Prng.i];
 | |
|   sqlite3Prng.j += t;
 | |
|   sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j];
 | |
|   sqlite3Prng.s[sqlite3Prng.j] = t;
 | |
|   t += sqlite3Prng.s[sqlite3Prng.i];
 | |
|   return sqlite3Prng.s[t];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return N random bytes.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Randomness(int N, void *pBuf){
 | |
|   unsigned char *zBuf = pBuf;
 | |
|   static sqlite3_mutex *mutex = 0;
 | |
|   if( mutex==0 ){
 | |
|     mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG);
 | |
|   }
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   while( N-- ){
 | |
|     *(zBuf++) = randomByte();
 | |
|   }
 | |
|   sqlite3_mutex_leave(mutex);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** For testing purposes, we sometimes want to preserve the state of
 | |
| ** PRNG and restore the PRNG to its saved state at a later time.
 | |
| */
 | |
| static struct sqlite3PrngType sqlite3SavedPrng;
 | |
| SQLITE_PRIVATE void sqlite3SavePrngState(void){
 | |
|   memcpy(&sqlite3SavedPrng, &sqlite3Prng, sizeof(sqlite3Prng));
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3RestorePrngState(void){
 | |
|   memcpy(&sqlite3Prng, &sqlite3SavedPrng, sizeof(sqlite3Prng));
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3ResetPrngState(void){
 | |
|   sqlite3Prng.isInit = 0;
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| /************** End of random.c **********************************************/
 | |
| /************** Begin file utf.c *********************************************/
 | |
| /*
 | |
| ** 2004 April 13
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains routines used to translate between UTF-8, 
 | |
| ** UTF-16, UTF-16BE, and UTF-16LE.
 | |
| **
 | |
| ** $Id: utf.c,v 1.60 2008/02/13 18:25:27 danielk1977 Exp $
 | |
| **
 | |
| ** Notes on UTF-8:
 | |
| **
 | |
| **   Byte-0    Byte-1    Byte-2    Byte-3    Value
 | |
| **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
 | |
| **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
 | |
| **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
 | |
| **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
 | |
| **
 | |
| **
 | |
| ** Notes on UTF-16:  (with wwww+1==uuuuu)
 | |
| **
 | |
| **      Word-0               Word-1          Value
 | |
| **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
 | |
| **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
 | |
| **
 | |
| **
 | |
| ** BOM or Byte Order Mark:
 | |
| **     0xff 0xfe   little-endian utf-16 follows
 | |
| **     0xfe 0xff   big-endian utf-16 follows
 | |
| **
 | |
| */
 | |
| /************** Include vdbeInt.h in the middle of utf.c *********************/
 | |
| /************** Begin file vdbeInt.h *****************************************/
 | |
| /*
 | |
| ** 2003 September 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This is the header file for information that is private to the
 | |
| ** VDBE.  This information used to all be at the top of the single
 | |
| ** source code file "vdbe.c".  When that file became too big (over
 | |
| ** 6000 lines long) it was split up into several smaller files and
 | |
| ** this header information was factored out.
 | |
| */
 | |
| #ifndef _VDBEINT_H_
 | |
| #define _VDBEINT_H_
 | |
| 
 | |
| /*
 | |
| ** intToKey() and keyToInt() used to transform the rowid.  But with
 | |
| ** the latest versions of the design they are no-ops.
 | |
| */
 | |
| #define keyToInt(X)   (X)
 | |
| #define intToKey(X)   (X)
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** SQL is translated into a sequence of instructions to be
 | |
| ** executed by a virtual machine.  Each instruction is an instance
 | |
| ** of the following structure.
 | |
| */
 | |
| typedef struct VdbeOp Op;
 | |
| 
 | |
| /*
 | |
| ** Boolean values
 | |
| */
 | |
| typedef unsigned char Bool;
 | |
| 
 | |
| /*
 | |
| ** A cursor is a pointer into a single BTree within a database file.
 | |
| ** The cursor can seek to a BTree entry with a particular key, or
 | |
| ** loop over all entries of the Btree.  You can also insert new BTree
 | |
| ** entries or retrieve the key or data from the entry that the cursor
 | |
| ** is currently pointing to.
 | |
| ** 
 | |
| ** Every cursor that the virtual machine has open is represented by an
 | |
| ** instance of the following structure.
 | |
| **
 | |
| ** If the Cursor.isTriggerRow flag is set it means that this cursor is
 | |
| ** really a single row that represents the NEW or OLD pseudo-table of
 | |
| ** a row trigger.  The data for the row is stored in Cursor.pData and
 | |
| ** the rowid is in Cursor.iKey.
 | |
| */
 | |
| struct Cursor {
 | |
|   BtCursor *pCursor;    /* The cursor structure of the backend */
 | |
|   int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
 | |
|   i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
 | |
|   i64 nextRowid;        /* Next rowid returned by OP_NewRowid */
 | |
|   Bool zeroed;          /* True if zeroed out and ready for reuse */
 | |
|   Bool rowidIsValid;    /* True if lastRowid is valid */
 | |
|   Bool atFirst;         /* True if pointing to first entry */
 | |
|   Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
 | |
|   Bool nullRow;         /* True if pointing to a row with no data */
 | |
|   Bool nextRowidValid;  /* True if the nextRowid field is valid */
 | |
|   Bool pseudoTable;     /* This is a NEW or OLD pseudo-tables of a trigger */
 | |
|   Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
 | |
|   Bool isTable;         /* True if a table requiring integer keys */
 | |
|   Bool isIndex;         /* True if an index containing keys only - no data */
 | |
|   u8 bogusIncrKey;      /* Something for pIncrKey to point to if pKeyInfo==0 */
 | |
|   i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
 | |
|   Btree *pBt;           /* Separate file holding temporary table */
 | |
|   int nData;            /* Number of bytes in pData */
 | |
|   char *pData;          /* Data for a NEW or OLD pseudo-table */
 | |
|   i64 iKey;             /* Key for the NEW or OLD pseudo-table row */
 | |
|   u8 *pIncrKey;         /* Pointer to pKeyInfo->incrKey */
 | |
|   KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
 | |
|   int nField;           /* Number of fields in the header */
 | |
|   i64 seqCount;         /* Sequence counter */
 | |
|   sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
 | |
|   const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */
 | |
| 
 | |
|   /* Cached information about the header for the data record that the
 | |
|   ** cursor is currently pointing to.  Only valid if cacheValid is true.
 | |
|   ** aRow might point to (ephemeral) data for the current row, or it might
 | |
|   ** be NULL.
 | |
|   */
 | |
|   int cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
 | |
|   int payloadSize;      /* Total number of bytes in the record */
 | |
|   u32 *aType;           /* Type values for all entries in the record */
 | |
|   u32 *aOffset;         /* Cached offsets to the start of each columns data */
 | |
|   u8 *aRow;             /* Data for the current row, if all on one page */
 | |
| };
 | |
| typedef struct Cursor Cursor;
 | |
| 
 | |
| /*
 | |
| ** A value for Cursor.cacheValid that means the cache is always invalid.
 | |
| */
 | |
| #define CACHE_STALE 0
 | |
| 
 | |
| /*
 | |
| ** Internally, the vdbe manipulates nearly all SQL values as Mem
 | |
| ** structures. Each Mem struct may cache multiple representations (string,
 | |
| ** integer etc.) of the same value.  A value (and therefore Mem structure)
 | |
| ** has the following properties:
 | |
| **
 | |
| ** Each value has a manifest type. The manifest type of the value stored
 | |
| ** in a Mem struct is returned by the MemType(Mem*) macro. The type is
 | |
| ** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or
 | |
| ** SQLITE_BLOB.
 | |
| */
 | |
| struct Mem {
 | |
|   union {
 | |
|     i64 i;              /* Integer value. Or FuncDef* when flags==MEM_Agg */
 | |
|     FuncDef *pDef;      /* Used only when flags==MEM_Agg */
 | |
|   } u;
 | |
|   double r;           /* Real value */
 | |
|   sqlite3 *db;        /* The associated database connection */
 | |
|   char *z;            /* String or BLOB value */
 | |
|   int n;              /* Number of characters in string value, excluding '\0' */
 | |
|   u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
 | |
|   u8  type;           /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */
 | |
|   u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
 | |
|   void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
 | |
| };
 | |
| 
 | |
| /* One or more of the following flags are set to indicate the validOK
 | |
| ** representations of the value stored in the Mem struct.
 | |
| **
 | |
| ** If the MEM_Null flag is set, then the value is an SQL NULL value.
 | |
| ** No other flags may be set in this case.
 | |
| **
 | |
| ** If the MEM_Str flag is set then Mem.z points at a string representation.
 | |
| ** Usually this is encoded in the same unicode encoding as the main
 | |
| ** database (see below for exceptions). If the MEM_Term flag is also
 | |
| ** set, then the string is nul terminated. The MEM_Int and MEM_Real 
 | |
| ** flags may coexist with the MEM_Str flag.
 | |
| **
 | |
| ** Multiple of these values can appear in Mem.flags.  But only one
 | |
| ** at a time can appear in Mem.type.
 | |
| */
 | |
| #define MEM_Null      0x0001   /* Value is NULL */
 | |
| #define MEM_Str       0x0002   /* Value is a string */
 | |
| #define MEM_Int       0x0004   /* Value is an integer */
 | |
| #define MEM_Real      0x0008   /* Value is a real number */
 | |
| #define MEM_Blob      0x0010   /* Value is a BLOB */
 | |
| 
 | |
| #define MemSetTypeFlag(p, f) \
 | |
|   ((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f)
 | |
| 
 | |
| /* Whenever Mem contains a valid string or blob representation, one of
 | |
| ** the following flags must be set to determine the memory management
 | |
| ** policy for Mem.z.  The MEM_Term flag tells us whether or not the
 | |
| ** string is \000 or \u0000 terminated
 | |
| */
 | |
| #define MEM_Term      0x0020   /* String rep is nul terminated */
 | |
| #define MEM_Dyn       0x0040   /* Need to call sqliteFree() on Mem.z */
 | |
| #define MEM_Static    0x0080   /* Mem.z points to a static string */
 | |
| #define MEM_Ephem     0x0100   /* Mem.z points to an ephemeral string */
 | |
| #define MEM_Agg       0x0400   /* Mem.z points to an agg function context */
 | |
| #define MEM_Zero      0x0800   /* Mem.i contains count of 0s appended to blob */
 | |
| 
 | |
| #ifdef SQLITE_OMIT_INCRBLOB
 | |
|   #undef MEM_Zero
 | |
|   #define MEM_Zero 0x0000
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains
 | |
| ** additional information about auxiliary information bound to arguments
 | |
| ** of the function.  This is used to implement the sqlite3_get_auxdata()
 | |
| ** and sqlite3_set_auxdata() APIs.  The "auxdata" is some auxiliary data
 | |
| ** that can be associated with a constant argument to a function.  This
 | |
| ** allows functions such as "regexp" to compile their constant regular
 | |
| ** expression argument once and reused the compiled code for multiple
 | |
| ** invocations.
 | |
| */
 | |
| struct VdbeFunc {
 | |
|   FuncDef *pFunc;               /* The definition of the function */
 | |
|   int nAux;                     /* Number of entries allocated for apAux[] */
 | |
|   struct AuxData {
 | |
|     void *pAux;                   /* Aux data for the i-th argument */
 | |
|     void (*xDelete)(void *);      /* Destructor for the aux data */
 | |
|   } apAux[1];                   /* One slot for each function argument */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The "context" argument for a installable function.  A pointer to an
 | |
| ** instance of this structure is the first argument to the routines used
 | |
| ** implement the SQL functions.
 | |
| **
 | |
| ** There is a typedef for this structure in sqlite.h.  So all routines,
 | |
| ** even the public interface to SQLite, can use a pointer to this structure.
 | |
| ** But this file is the only place where the internal details of this
 | |
| ** structure are known.
 | |
| **
 | |
| ** This structure is defined inside of vdbeInt.h because it uses substructures
 | |
| ** (Mem) which are only defined there.
 | |
| */
 | |
| struct sqlite3_context {
 | |
|   FuncDef *pFunc;       /* Pointer to function information.  MUST BE FIRST */
 | |
|   VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
 | |
|   Mem s;                /* The return value is stored here */
 | |
|   Mem *pMem;            /* Memory cell used to store aggregate context */
 | |
|   int isError;          /* Error code returned by the function. */
 | |
|   CollSeq *pColl;       /* Collating sequence */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A Set structure is used for quick testing to see if a value
 | |
| ** is part of a small set.  Sets are used to implement code like
 | |
| ** this:
 | |
| **            x.y IN ('hi','hoo','hum')
 | |
| */
 | |
| typedef struct Set Set;
 | |
| struct Set {
 | |
|   Hash hash;             /* A set is just a hash table */
 | |
|   HashElem *prev;        /* Previously accessed hash elemen */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A FifoPage structure holds a single page of valves.  Pages are arranged
 | |
| ** in a list.
 | |
| */
 | |
| typedef struct FifoPage FifoPage;
 | |
| struct FifoPage {
 | |
|   int nSlot;         /* Number of entries aSlot[] */
 | |
|   int iWrite;        /* Push the next value into this entry in aSlot[] */
 | |
|   int iRead;         /* Read the next value from this entry in aSlot[] */
 | |
|   FifoPage *pNext;   /* Next page in the fifo */
 | |
|   i64 aSlot[1];      /* One or more slots for rowid values */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The Fifo structure is typedef-ed in vdbeInt.h.  But the implementation
 | |
| ** of that structure is private to this file.
 | |
| **
 | |
| ** The Fifo structure describes the entire fifo.  
 | |
| */
 | |
| typedef struct Fifo Fifo;
 | |
| struct Fifo {
 | |
|   int nEntry;         /* Total number of entries */
 | |
|   FifoPage *pFirst;   /* First page on the list */
 | |
|   FifoPage *pLast;    /* Last page on the list */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A Context stores the last insert rowid, the last statement change count,
 | |
| ** and the current statement change count (i.e. changes since last statement).
 | |
| ** The current keylist is also stored in the context.
 | |
| ** Elements of Context structure type make up the ContextStack, which is
 | |
| ** updated by the ContextPush and ContextPop opcodes (used by triggers).
 | |
| ** The context is pushed before executing a trigger a popped when the
 | |
| ** trigger finishes.
 | |
| */
 | |
| typedef struct Context Context;
 | |
| struct Context {
 | |
|   i64 lastRowid;    /* Last insert rowid (sqlite3.lastRowid) */
 | |
|   int nChange;      /* Statement changes (Vdbe.nChanges)     */
 | |
|   Fifo sFifo;       /* Records that will participate in a DELETE or UPDATE */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the virtual machine.  This structure contains the complete
 | |
| ** state of the virtual machine.
 | |
| **
 | |
| ** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile()
 | |
| ** is really a pointer to an instance of this structure.
 | |
| **
 | |
| ** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
 | |
| ** any virtual table method invocations made by the vdbe program. It is
 | |
| ** set to 2 for xDestroy method calls and 1 for all other methods. This
 | |
| ** variable is used for two purposes: to allow xDestroy methods to execute
 | |
| ** "DROP TABLE" statements and to prevent some nasty side effects of
 | |
| ** malloc failure when SQLite is invoked recursively by a virtual table 
 | |
| ** method function.
 | |
| */
 | |
| struct Vdbe {
 | |
|   sqlite3 *db;        /* The whole database */
 | |
|   Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
 | |
|   int nOp;            /* Number of instructions in the program */
 | |
|   int nOpAlloc;       /* Number of slots allocated for aOp[] */
 | |
|   Op *aOp;            /* Space to hold the virtual machine's program */
 | |
|   int nLabel;         /* Number of labels used */
 | |
|   int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
 | |
|   int *aLabel;        /* Space to hold the labels */
 | |
|   Mem **apArg;        /* Arguments to currently executing user function */
 | |
|   Mem *aColName;      /* Column names to return */
 | |
|   int nCursor;        /* Number of slots in apCsr[] */
 | |
|   Cursor **apCsr;     /* One element of this array for each open cursor */
 | |
|   int nVar;           /* Number of entries in aVar[] */
 | |
|   Mem *aVar;          /* Values for the OP_Variable opcode. */
 | |
|   char **azVar;       /* Name of variables */
 | |
|   int okVar;          /* True if azVar[] has been initialized */
 | |
|   int magic;              /* Magic number for sanity checking */
 | |
|   int nMem;               /* Number of memory locations currently allocated */
 | |
|   Mem *aMem;              /* The memory locations */
 | |
|   int nCallback;          /* Number of callbacks invoked so far */
 | |
|   int cacheCtr;           /* Cursor row cache generation counter */
 | |
|   Fifo sFifo;             /* A list of ROWIDs */
 | |
|   int contextStackTop;    /* Index of top element in the context stack */
 | |
|   int contextStackDepth;  /* The size of the "context" stack */
 | |
|   Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
 | |
|   int pc;                 /* The program counter */
 | |
|   int rc;                 /* Value to return */
 | |
|   unsigned uniqueCnt;     /* Used by OP_MakeRecord when P2!=0 */
 | |
|   int errorAction;        /* Recovery action to do in case of an error */
 | |
|   int inTempTrans;        /* True if temp database is transactioned */
 | |
|   int returnStack[25];    /* Return address stack for OP_Gosub & OP_Return */
 | |
|   int returnDepth;        /* Next unused element in returnStack[] */
 | |
|   int nResColumn;         /* Number of columns in one row of the result set */
 | |
|   char **azResColumn;     /* Values for one row of result */ 
 | |
|   char *zErrMsg;          /* Error message written here */
 | |
|   Mem *pResultSet;        /* Pointer to an array of results */
 | |
|   u8 explain;             /* True if EXPLAIN present on SQL command */
 | |
|   u8 changeCntOn;         /* True to update the change-counter */
 | |
|   u8 aborted;             /* True if ROLLBACK in another VM causes an abort */
 | |
|   u8 expired;             /* True if the VM needs to be recompiled */
 | |
|   u8 minWriteFileFormat;  /* Minimum file format for writable database files */
 | |
|   u8 inVtabMethod;        /* See comments above */
 | |
|   int nChange;            /* Number of db changes made since last reset */
 | |
|   i64 startTime;          /* Time when query started - used for profiling */
 | |
|   int btreeMask;          /* Bitmask of db->aDb[] entries referenced */
 | |
|   BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */
 | |
|   int nSql;             /* Number of bytes in zSql */
 | |
|   char *zSql;           /* Text of the SQL statement that generated this */
 | |
| #ifdef SQLITE_DEBUG
 | |
|   FILE *trace;        /* Write an execution trace here, if not NULL */
 | |
| #endif
 | |
|   int openedStatement;  /* True if this VM has opened a statement journal */
 | |
| #ifdef SQLITE_SSE
 | |
|   int fetchId;          /* Statement number used by sqlite3_fetch_statement */
 | |
|   int lru;              /* Counter used for LRU cache replacement */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The following are allowed values for Vdbe.magic
 | |
| */
 | |
| #define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
 | |
| #define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
 | |
| #define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
 | |
| #define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */
 | |
| 
 | |
| /*
 | |
| ** Function prototypes
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, Cursor*);
 | |
| void sqliteVdbePopStack(Vdbe*,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor*);
 | |
| #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
 | |
| SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
 | |
| #endif
 | |
| SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32);
 | |
| SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int);
 | |
| 
 | |
| int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
 | |
| SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor*,int,const unsigned char*,int*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
 | |
| SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeRecordCompare(void*,int,const void*,int, const void*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int);
 | |
| SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*);
 | |
| SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
 | |
| SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int);
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| SQLITE_PRIVATE   void sqlite3VdbeMemSanity(Mem*);
 | |
| #endif
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8);
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE   void sqlite3VdbePrintSql(Vdbe*);
 | |
| SQLITE_PRIVATE   void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
 | |
| #endif
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem);
 | |
| SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*);
 | |
| SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo*, i64);
 | |
| SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo*, i64*);
 | |
| SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo*);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| SQLITE_PRIVATE   int sqlite3VdbeMemExpandBlob(Mem *);
 | |
| #else
 | |
|   #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK
 | |
| #endif
 | |
| 
 | |
| #endif /* !defined(_VDBEINT_H_) */
 | |
| 
 | |
| /************** End of vdbeInt.h *********************************************/
 | |
| /************** Continuing where we left off in utf.c ************************/
 | |
| 
 | |
| /*
 | |
| ** The following constant value is used by the SQLITE_BIGENDIAN and
 | |
| ** SQLITE_LITTLEENDIAN macros.
 | |
| */
 | |
| SQLITE_PRIVATE const int sqlite3one = 1;
 | |
| 
 | |
| /*
 | |
| ** This lookup table is used to help decode the first byte of
 | |
| ** a multi-byte UTF8 character.
 | |
| */
 | |
| static const unsigned char sqlite3UtfTrans1[] = {
 | |
|   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 | |
|   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 | |
|   0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 | |
|   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 | |
|   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 | |
|   0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
 | |
| };
 | |
| 
 | |
| 
 | |
| #define WRITE_UTF8(zOut, c) {                          \
 | |
|   if( c<0x00080 ){                                     \
 | |
|     *zOut++ = (c&0xFF);                                \
 | |
|   }                                                    \
 | |
|   else if( c<0x00800 ){                                \
 | |
|     *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
 | |
|     *zOut++ = 0x80 + (c & 0x3F);                       \
 | |
|   }                                                    \
 | |
|   else if( c<0x10000 ){                                \
 | |
|     *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
 | |
|     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
 | |
|     *zOut++ = 0x80 + (c & 0x3F);                       \
 | |
|   }else{                                               \
 | |
|     *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
 | |
|     *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
 | |
|     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
 | |
|     *zOut++ = 0x80 + (c & 0x3F);                       \
 | |
|   }                                                    \
 | |
| }
 | |
| 
 | |
| #define WRITE_UTF16LE(zOut, c) {                                \
 | |
|   if( c<=0xFFFF ){                                              \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|     *zOut++ = ((c>>8)&0x00FF);                                  \
 | |
|   }else{                                                        \
 | |
|     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
 | |
|     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
 | |
|   }                                                             \
 | |
| }
 | |
| 
 | |
| #define WRITE_UTF16BE(zOut, c) {                                \
 | |
|   if( c<=0xFFFF ){                                              \
 | |
|     *zOut++ = ((c>>8)&0x00FF);                                  \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|   }else{                                                        \
 | |
|     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
 | |
|     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
 | |
|     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
 | |
|     *zOut++ = (c&0x00FF);                                       \
 | |
|   }                                                             \
 | |
| }
 | |
| 
 | |
| #define READ_UTF16LE(zIn, c){                                         \
 | |
|   c = (*zIn++);                                                       \
 | |
|   c += ((*zIn++)<<8);                                                 \
 | |
|   if( c>=0xD800 && c<0xE000 ){                                       \
 | |
|     int c2 = (*zIn++);                                                \
 | |
|     c2 += ((*zIn++)<<8);                                              \
 | |
|     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
 | |
|     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
 | |
|   }                                                                   \
 | |
| }
 | |
| 
 | |
| #define READ_UTF16BE(zIn, c){                                         \
 | |
|   c = ((*zIn++)<<8);                                                  \
 | |
|   c += (*zIn++);                                                      \
 | |
|   if( c>=0xD800 && c<0xE000 ){                                       \
 | |
|     int c2 = ((*zIn++)<<8);                                           \
 | |
|     c2 += (*zIn++);                                                   \
 | |
|     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
 | |
|     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
 | |
|   }                                                                   \
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Translate a single UTF-8 character.  Return the unicode value.
 | |
| **
 | |
| ** During translation, assume that the byte that zTerm points
 | |
| ** is a 0x00.
 | |
| **
 | |
| ** Write a pointer to the next unread byte back into *pzNext.
 | |
| **
 | |
| ** Notes On Invalid UTF-8:
 | |
| **
 | |
| **  *  This routine never allows a 7-bit character (0x00 through 0x7f) to
 | |
| **     be encoded as a multi-byte character.  Any multi-byte character that
 | |
| **     attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
 | |
| **
 | |
| **  *  This routine never allows a UTF16 surrogate value to be encoded.
 | |
| **     If a multi-byte character attempts to encode a value between
 | |
| **     0xd800 and 0xe000 then it is rendered as 0xfffd.
 | |
| **
 | |
| **  *  Bytes in the range of 0x80 through 0xbf which occur as the first
 | |
| **     byte of a character are interpreted as single-byte characters
 | |
| **     and rendered as themselves even though they are technically
 | |
| **     invalid characters.
 | |
| **
 | |
| **  *  This routine accepts an infinite number of different UTF8 encodings
 | |
| **     for unicode values 0x80 and greater.  It do not change over-length
 | |
| **     encodings to 0xfffd as some systems recommend.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Utf8Read(
 | |
|   const unsigned char *z,         /* First byte of UTF-8 character */
 | |
|   const unsigned char *zTerm,     /* Pretend this byte is 0x00 */
 | |
|   const unsigned char **pzNext    /* Write first byte past UTF-8 char here */
 | |
| ){
 | |
|   int c = *(z++);
 | |
|   if( c>=0xc0 ){
 | |
|     c = sqlite3UtfTrans1[c-0xc0];
 | |
|     while( z!=zTerm && (*z & 0xc0)==0x80 ){
 | |
|       c = (c<<6) + (0x3f & *(z++));
 | |
|     }
 | |
|     if( c<0x80
 | |
|         || (c&0xFFFFF800)==0xD800
 | |
|         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }
 | |
|   }
 | |
|   *pzNext = z;
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
 | |
| ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
 | |
| */ 
 | |
| /* #define TRANSLATE_TRACE 1 */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** This routine transforms the internal text encoding used by pMem to
 | |
| ** desiredEnc. It is an error if the string is already of the desired
 | |
| ** encoding, or if *pMem does not contain a string value.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
 | |
|   int len;                    /* Maximum length of output string in bytes */
 | |
|   unsigned char *zOut;                  /* Output buffer */
 | |
|   unsigned char *zIn;                   /* Input iterator */
 | |
|   unsigned char *zTerm;                 /* End of input */
 | |
|   unsigned char *z;                     /* Output iterator */
 | |
|   unsigned int c;
 | |
| 
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   assert( pMem->flags&MEM_Str );
 | |
|   assert( pMem->enc!=desiredEnc );
 | |
|   assert( pMem->enc!=0 );
 | |
|   assert( pMem->n>=0 );
 | |
| 
 | |
| #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
 | |
|   {
 | |
|     char zBuf[100];
 | |
|     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
 | |
|     fprintf(stderr, "INPUT:  %s\n", zBuf);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If the translation is between UTF-16 little and big endian, then 
 | |
|   ** all that is required is to swap the byte order. This case is handled
 | |
|   ** differently from the others.
 | |
|   */
 | |
|   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
 | |
|     u8 temp;
 | |
|     int rc;
 | |
|     rc = sqlite3VdbeMemMakeWriteable(pMem);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       assert( rc==SQLITE_NOMEM );
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     zIn = (u8*)pMem->z;
 | |
|     zTerm = &zIn[pMem->n];
 | |
|     while( zIn<zTerm ){
 | |
|       temp = *zIn;
 | |
|       *zIn = *(zIn+1);
 | |
|       zIn++;
 | |
|       *zIn++ = temp;
 | |
|     }
 | |
|     pMem->enc = desiredEnc;
 | |
|     goto translate_out;
 | |
|   }
 | |
| 
 | |
|   /* Set len to the maximum number of bytes required in the output buffer. */
 | |
|   if( desiredEnc==SQLITE_UTF8 ){
 | |
|     /* When converting from UTF-16, the maximum growth results from
 | |
|     ** translating a 2-byte character to a 4-byte UTF-8 character.
 | |
|     ** A single byte is required for the output string
 | |
|     ** nul-terminator.
 | |
|     */
 | |
|     len = pMem->n * 2 + 1;
 | |
|   }else{
 | |
|     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
 | |
|     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
 | |
|     ** character. Two bytes are required in the output buffer for the
 | |
|     ** nul-terminator.
 | |
|     */
 | |
|     len = pMem->n * 2 + 2;
 | |
|   }
 | |
| 
 | |
|   /* Set zIn to point at the start of the input buffer and zTerm to point 1
 | |
|   ** byte past the end.
 | |
|   **
 | |
|   ** Variable zOut is set to point at the output buffer, space obtained
 | |
|   ** from sqlite3_malloc().
 | |
|   */
 | |
|   zIn = (u8*)pMem->z;
 | |
|   zTerm = &zIn[pMem->n];
 | |
|   zOut = sqlite3DbMallocRaw(pMem->db, len);
 | |
|   if( !zOut ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   z = zOut;
 | |
| 
 | |
|   if( pMem->enc==SQLITE_UTF8 ){
 | |
|     if( desiredEnc==SQLITE_UTF16LE ){
 | |
|       /* UTF-8 -> UTF-16 Little-endian */
 | |
|       while( zIn<zTerm ){
 | |
|         c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
 | |
|         WRITE_UTF16LE(z, c);
 | |
|       }
 | |
|     }else{
 | |
|       assert( desiredEnc==SQLITE_UTF16BE );
 | |
|       /* UTF-8 -> UTF-16 Big-endian */
 | |
|       while( zIn<zTerm ){
 | |
|         c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
 | |
|         WRITE_UTF16BE(z, c);
 | |
|       }
 | |
|     }
 | |
|     pMem->n = z - zOut;
 | |
|     *z++ = 0;
 | |
|   }else{
 | |
|     assert( desiredEnc==SQLITE_UTF8 );
 | |
|     if( pMem->enc==SQLITE_UTF16LE ){
 | |
|       /* UTF-16 Little-endian -> UTF-8 */
 | |
|       while( zIn<zTerm ){
 | |
|         READ_UTF16LE(zIn, c); 
 | |
|         WRITE_UTF8(z, c);
 | |
|       }
 | |
|     }else{
 | |
|       /* UTF-16 Little-endian -> UTF-8 */
 | |
|       while( zIn<zTerm ){
 | |
|         READ_UTF16BE(zIn, c); 
 | |
|         WRITE_UTF8(z, c);
 | |
|       }
 | |
|     }
 | |
|     pMem->n = z - zOut;
 | |
|   }
 | |
|   *z = 0;
 | |
|   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
 | |
| 
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
 | |
|   pMem->enc = desiredEnc;
 | |
|   pMem->flags |= (MEM_Term|MEM_Dyn);
 | |
|   pMem->z = (char*)zOut;
 | |
| 
 | |
| translate_out:
 | |
| #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
 | |
|   {
 | |
|     char zBuf[100];
 | |
|     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
 | |
|     fprintf(stderr, "OUTPUT: %s\n", zBuf);
 | |
|   }
 | |
| #endif
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine checks for a byte-order mark at the beginning of the 
 | |
| ** UTF-16 string stored in *pMem. If one is present, it is removed and
 | |
| ** the encoding of the Mem adjusted. This routine does not do any
 | |
| ** byte-swapping, it just sets Mem.enc appropriately.
 | |
| **
 | |
| ** The allocation (static, dynamic etc.) and encoding of the Mem may be
 | |
| ** changed by this function.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){
 | |
|   int rc = SQLITE_OK;
 | |
|   u8 bom = 0;
 | |
| 
 | |
|   if( pMem->n<0 || pMem->n>1 ){
 | |
|     u8 b1 = *(u8 *)pMem->z;
 | |
|     u8 b2 = *(((u8 *)pMem->z) + 1);
 | |
|     if( b1==0xFE && b2==0xFF ){
 | |
|       bom = SQLITE_UTF16BE;
 | |
|     }
 | |
|     if( b1==0xFF && b2==0xFE ){
 | |
|       bom = SQLITE_UTF16LE;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if( bom ){
 | |
|     rc = sqlite3VdbeMemMakeWriteable(pMem);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pMem->n -= 2;
 | |
|       memmove(pMem->z, &pMem->z[2], pMem->n);
 | |
|       pMem->z[pMem->n] = '\0';
 | |
|       pMem->z[pMem->n+1] = '\0';
 | |
|       pMem->flags |= MEM_Term;
 | |
|       pMem->enc = bom;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
 | |
| ** return the number of unicode characters in pZ up to (but not including)
 | |
| ** the first 0x00 byte. If nByte is not less than zero, return the
 | |
| ** number of unicode characters in the first nByte of pZ (or up to 
 | |
| ** the first 0x00, whichever comes first).
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){
 | |
|   int r = 0;
 | |
|   const u8 *z = (const u8*)zIn;
 | |
|   const u8 *zTerm;
 | |
|   if( nByte>=0 ){
 | |
|     zTerm = &z[nByte];
 | |
|   }else{
 | |
|     zTerm = (const u8*)(-1);
 | |
|   }
 | |
|   assert( z<=zTerm );
 | |
|   while( *z!=0 && z<zTerm ){
 | |
|     SQLITE_SKIP_UTF8(z);
 | |
|     r++;
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /* This test function is not currently used by the automated test-suite. 
 | |
| ** Hence it is only available in debug builds.
 | |
| */
 | |
| #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
 | |
| /*
 | |
| ** Translate UTF-8 to UTF-8.
 | |
| **
 | |
| ** This has the effect of making sure that the string is well-formed
 | |
| ** UTF-8.  Miscoded characters are removed.
 | |
| **
 | |
| ** The translation is done in-place (since it is impossible for the
 | |
| ** correct UTF-8 encoding to be longer than a malformed encoding).
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){
 | |
|   unsigned char *zOut = zIn;
 | |
|   unsigned char *zStart = zIn;
 | |
|   unsigned char *zTerm;
 | |
|   u32 c;
 | |
| 
 | |
|   while( zIn[0] ){
 | |
|     c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
 | |
|     if( c!=0xfffd ){
 | |
|       WRITE_UTF8(zOut, c);
 | |
|     }
 | |
|   }
 | |
|   *zOut = 0;
 | |
|   return zOut - zStart;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
 | |
| ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
 | |
| ** be freed by the calling function.
 | |
| **
 | |
| ** NULL is returned if there is an allocation error.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
 | |
|   Mem m;
 | |
|   memset(&m, 0, sizeof(m));
 | |
|   m.db = db;
 | |
|   sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
 | |
|   sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
 | |
|   if( db->mallocFailed ){
 | |
|     sqlite3VdbeMemRelease(&m);
 | |
|     m.z = 0;
 | |
|   }
 | |
|   assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
 | |
|   assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
 | |
|   return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
 | |
| ** return the number of bytes up to (but not including), the first pair
 | |
| ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
 | |
| ** then return the number of bytes in the first nChar unicode characters
 | |
| ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){
 | |
|   unsigned int c = 1;
 | |
|   char const *z = zIn;
 | |
|   int n = 0;
 | |
|   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
 | |
|     /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
 | |
|     ** and in other parts of this file means that at one branch will
 | |
|     ** not be covered by coverage testing on any single host. But coverage
 | |
|     ** will be complete if the tests are run on both a little-endian and 
 | |
|     ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
 | |
|     ** macros are constant at compile time the compiler can determine
 | |
|     ** which branch will be followed. It is therefore assumed that no runtime
 | |
|     ** penalty is paid for this "if" statement.
 | |
|     */
 | |
|     while( c && ((nChar<0) || n<nChar) ){
 | |
|       READ_UTF16BE(z, c);
 | |
|       n++;
 | |
|     }
 | |
|   }else{
 | |
|     while( c && ((nChar<0) || n<nChar) ){
 | |
|       READ_UTF16LE(z, c);
 | |
|       n++;
 | |
|     }
 | |
|   }
 | |
|   return (z-(char const *)zIn)-((c==0)?2:0);
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_TEST)
 | |
| /*
 | |
| ** This routine is called from the TCL test function "translate_selftest".
 | |
| ** It checks that the primitives for serializing and deserializing
 | |
| ** characters in each encoding are inverses of each other.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3UtfSelfTest(){
 | |
|   unsigned int i, t;
 | |
|   unsigned char zBuf[20];
 | |
|   unsigned char *z;
 | |
|   unsigned char *zTerm;
 | |
|   int n;
 | |
|   unsigned int c;
 | |
| 
 | |
|   for(i=0; i<0x00110000; i++){
 | |
|     z = zBuf;
 | |
|     WRITE_UTF8(z, i);
 | |
|     n = z-zBuf;
 | |
|     z[0] = 0;
 | |
|     zTerm = z;
 | |
|     z = zBuf;
 | |
|     c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
 | |
|     t = i;
 | |
|     if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
 | |
|     if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
 | |
|     assert( c==t );
 | |
|     assert( (z-zBuf)==n );
 | |
|   }
 | |
|   for(i=0; i<0x00110000; i++){
 | |
|     if( i>=0xD800 && i<0xE000 ) continue;
 | |
|     z = zBuf;
 | |
|     WRITE_UTF16LE(z, i);
 | |
|     n = z-zBuf;
 | |
|     z[0] = 0;
 | |
|     z = zBuf;
 | |
|     READ_UTF16LE(z, c);
 | |
|     assert( c==i );
 | |
|     assert( (z-zBuf)==n );
 | |
|   }
 | |
|   for(i=0; i<0x00110000; i++){
 | |
|     if( i>=0xD800 && i<0xE000 ) continue;
 | |
|     z = zBuf;
 | |
|     WRITE_UTF16BE(z, i);
 | |
|     n = z-zBuf;
 | |
|     z[0] = 0;
 | |
|     z = zBuf;
 | |
|     READ_UTF16BE(z, c);
 | |
|     assert( c==i );
 | |
|     assert( (z-zBuf)==n );
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /************** End of utf.c *************************************************/
 | |
| /************** Begin file util.c ********************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Utility functions used throughout sqlite.
 | |
| **
 | |
| ** This file contains functions for allocating memory, comparing
 | |
| ** strings, and stuff like that.
 | |
| **
 | |
| ** $Id: util.c,v 1.216 2008/01/23 03:03:05 drh Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Set the most recent error code and error string for the sqlite
 | |
| ** handle "db". The error code is set to "err_code".
 | |
| **
 | |
| ** If it is not NULL, string zFormat specifies the format of the
 | |
| ** error string in the style of the printf functions: The following
 | |
| ** format characters are allowed:
 | |
| **
 | |
| **      %s      Insert a string
 | |
| **      %z      A string that should be freed after use
 | |
| **      %d      Insert an integer
 | |
| **      %T      Insert a token
 | |
| **      %S      Insert the first element of a SrcList
 | |
| **
 | |
| ** zFormat and any string tokens that follow it are assumed to be
 | |
| ** encoded in UTF-8.
 | |
| **
 | |
| ** To clear the most recent error for sqlite handle "db", sqlite3Error
 | |
| ** should be called with err_code set to SQLITE_OK and zFormat set
 | |
| ** to NULL.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
 | |
|   if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
 | |
|     db->errCode = err_code;
 | |
|     if( zFormat ){
 | |
|       char *z;
 | |
|       va_list ap;
 | |
|       va_start(ap, zFormat);
 | |
|       z = sqlite3VMPrintf(db, zFormat, ap);
 | |
|       va_end(ap);
 | |
|       sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free);
 | |
|     }else{
 | |
|       sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
 | |
| ** The following formatting characters are allowed:
 | |
| **
 | |
| **      %s      Insert a string
 | |
| **      %z      A string that should be freed after use
 | |
| **      %d      Insert an integer
 | |
| **      %T      Insert a token
 | |
| **      %S      Insert the first element of a SrcList
 | |
| **
 | |
| ** This function should be used to report any error that occurs whilst
 | |
| ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
 | |
| ** last thing the sqlite3_prepare() function does is copy the error
 | |
| ** stored by this function into the database handle using sqlite3Error().
 | |
| ** Function sqlite3Error() should be used during statement execution
 | |
| ** (sqlite3_step() etc.).
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   pParse->nErr++;
 | |
|   sqlite3_free(pParse->zErrMsg);
 | |
|   va_start(ap, zFormat);
 | |
|   pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   if( pParse->rc==SQLITE_OK ){
 | |
|     pParse->rc = SQLITE_ERROR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the error message in pParse, if any
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){
 | |
|   sqlite3_free(pParse->zErrMsg);
 | |
|   pParse->zErrMsg = 0;
 | |
|   pParse->nErr = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert an SQL-style quoted string into a normal string by removing
 | |
| ** the quote characters.  The conversion is done in-place.  If the
 | |
| ** input does not begin with a quote character, then this routine
 | |
| ** is a no-op.
 | |
| **
 | |
| ** 2002-Feb-14: This routine is extended to remove MS-Access style
 | |
| ** brackets from around identifers.  For example:  "[a-b-c]" becomes
 | |
| ** "a-b-c".
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Dequote(char *z){
 | |
|   int quote;
 | |
|   int i, j;
 | |
|   if( z==0 ) return;
 | |
|   quote = z[0];
 | |
|   switch( quote ){
 | |
|     case '\'':  break;
 | |
|     case '"':   break;
 | |
|     case '`':   break;                /* For MySQL compatibility */
 | |
|     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
 | |
|     default:    return;
 | |
|   }
 | |
|   for(i=1, j=0; z[i]; i++){
 | |
|     if( z[i]==quote ){
 | |
|       if( z[i+1]==quote ){
 | |
|         z[j++] = quote;
 | |
|         i++;
 | |
|       }else{
 | |
|         z[j++] = 0;
 | |
|         break;
 | |
|       }
 | |
|     }else{
 | |
|       z[j++] = z[i];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* An array to map all upper-case characters into their corresponding
 | |
| ** lower-case character. 
 | |
| */
 | |
| SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = {
 | |
| #ifdef SQLITE_ASCII
 | |
|       0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
 | |
|      18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
 | |
|      36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 | |
|      54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
 | |
|     104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
 | |
|     122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
 | |
|     108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
 | |
|     126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
 | |
|     144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
 | |
|     162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
 | |
|     180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
 | |
|     198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
 | |
|     216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
 | |
|     234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
 | |
|     252,253,254,255
 | |
| #endif
 | |
| #ifdef SQLITE_EBCDIC
 | |
|       0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, /* 0x */
 | |
|      16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
 | |
|      32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
 | |
|      48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
 | |
|      64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
 | |
|      80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
 | |
|      96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
 | |
|     112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
 | |
|     128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
 | |
|     144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
 | |
|     160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
 | |
|     176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
 | |
|     192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
 | |
|     208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
 | |
|     224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
 | |
|     239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
 | |
| #endif
 | |
| };
 | |
| #define UpperToLower sqlite3UpperToLower
 | |
| 
 | |
| /*
 | |
| ** Some systems have stricmp().  Others have strcasecmp().  Because
 | |
| ** there is no consistency, we will define our own.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){
 | |
|   register unsigned char *a, *b;
 | |
|   a = (unsigned char *)zLeft;
 | |
|   b = (unsigned char *)zRight;
 | |
|   while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
 | |
|   return UpperToLower[*a] - UpperToLower[*b];
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
 | |
|   register unsigned char *a, *b;
 | |
|   a = (unsigned char *)zLeft;
 | |
|   b = (unsigned char *)zRight;
 | |
|   while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
 | |
|   return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if z is a pure numeric string.  Return FALSE if the
 | |
| ** string contains any character which is not part of a number. If
 | |
| ** the string is numeric and contains the '.' character, set *realnum
 | |
| ** to TRUE (otherwise FALSE).
 | |
| **
 | |
| ** An empty string is considered non-numeric.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
 | |
|   int incr = (enc==SQLITE_UTF8?1:2);
 | |
|   if( enc==SQLITE_UTF16BE ) z++;
 | |
|   if( *z=='-' || *z=='+' ) z += incr;
 | |
|   if( !isdigit(*(u8*)z) ){
 | |
|     return 0;
 | |
|   }
 | |
|   z += incr;
 | |
|   if( realnum ) *realnum = 0;
 | |
|   while( isdigit(*(u8*)z) ){ z += incr; }
 | |
|   if( *z=='.' ){
 | |
|     z += incr;
 | |
|     if( !isdigit(*(u8*)z) ) return 0;
 | |
|     while( isdigit(*(u8*)z) ){ z += incr; }
 | |
|     if( realnum ) *realnum = 1;
 | |
|   }
 | |
|   if( *z=='e' || *z=='E' ){
 | |
|     z += incr;
 | |
|     if( *z=='+' || *z=='-' ) z += incr;
 | |
|     if( !isdigit(*(u8*)z) ) return 0;
 | |
|     while( isdigit(*(u8*)z) ){ z += incr; }
 | |
|     if( realnum ) *realnum = 1;
 | |
|   }
 | |
|   return *z==0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The string z[] is an ascii representation of a real number.
 | |
| ** Convert this string to a double.
 | |
| **
 | |
| ** This routine assumes that z[] really is a valid number.  If it
 | |
| ** is not, the result is undefined.
 | |
| **
 | |
| ** This routine is used instead of the library atof() function because
 | |
| ** the library atof() might want to use "," as the decimal point instead
 | |
| ** of "." depending on how locale is set.  But that would cause problems
 | |
| ** for SQL.  So this routine always uses "." regardless of locale.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|   int sign = 1;
 | |
|   const char *zBegin = z;
 | |
|   LONGDOUBLE_TYPE v1 = 0.0;
 | |
|   while( isspace(*(u8*)z) ) z++;
 | |
|   if( *z=='-' ){
 | |
|     sign = -1;
 | |
|     z++;
 | |
|   }else if( *z=='+' ){
 | |
|     z++;
 | |
|   }
 | |
|   while( isdigit(*(u8*)z) ){
 | |
|     v1 = v1*10.0 + (*z - '0');
 | |
|     z++;
 | |
|   }
 | |
|   if( *z=='.' ){
 | |
|     LONGDOUBLE_TYPE divisor = 1.0;
 | |
|     z++;
 | |
|     while( isdigit(*(u8*)z) ){
 | |
|       v1 = v1*10.0 + (*z - '0');
 | |
|       divisor *= 10.0;
 | |
|       z++;
 | |
|     }
 | |
|     v1 /= divisor;
 | |
|   }
 | |
|   if( *z=='e' || *z=='E' ){
 | |
|     int esign = 1;
 | |
|     int eval = 0;
 | |
|     LONGDOUBLE_TYPE scale = 1.0;
 | |
|     z++;
 | |
|     if( *z=='-' ){
 | |
|       esign = -1;
 | |
|       z++;
 | |
|     }else if( *z=='+' ){
 | |
|       z++;
 | |
|     }
 | |
|     while( isdigit(*(u8*)z) ){
 | |
|       eval = eval*10 + *z - '0';
 | |
|       z++;
 | |
|     }
 | |
|     while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
 | |
|     while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
 | |
|     while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
 | |
|     while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
 | |
|     if( esign<0 ){
 | |
|       v1 /= scale;
 | |
|     }else{
 | |
|       v1 *= scale;
 | |
|     }
 | |
|   }
 | |
|   *pResult = sign<0 ? -v1 : v1;
 | |
|   return z - zBegin;
 | |
| #else
 | |
|   return sqlite3Atoi64(z, pResult);
 | |
| #endif /* SQLITE_OMIT_FLOATING_POINT */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the 19-character string zNum against the text representation
 | |
| ** value 2^63:  9223372036854775808.  Return negative, zero, or positive
 | |
| ** if zNum is less than, equal to, or greater than the string.
 | |
| **
 | |
| ** Unlike memcmp() this routine is guaranteed to return the difference
 | |
| ** in the values of the last digit if the only difference is in the
 | |
| ** last digit.  So, for example,
 | |
| **
 | |
| **      compare2pow63("9223372036854775800")
 | |
| **
 | |
| ** will return -8.
 | |
| */
 | |
| static int compare2pow63(const char *zNum){
 | |
|   int c;
 | |
|   c = memcmp(zNum,"922337203685477580",18);
 | |
|   if( c==0 ){
 | |
|     c = zNum[18] - '8';
 | |
|   }
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if zNum is a 64-bit signed integer and write
 | |
| ** the value of the integer into *pNum.  If zNum is not an integer
 | |
| ** or is an integer that is too large to be expressed with 64 bits,
 | |
| ** then return false.
 | |
| **
 | |
| ** When this routine was originally written it dealt with only
 | |
| ** 32-bit numbers.  At that time, it was much faster than the
 | |
| ** atoi() library routine in RedHat 7.2.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){
 | |
|   i64 v = 0;
 | |
|   int neg;
 | |
|   int i, c;
 | |
|   while( isspace(*(u8*)zNum) ) zNum++;
 | |
|   if( *zNum=='-' ){
 | |
|     neg = 1;
 | |
|     zNum++;
 | |
|   }else if( *zNum=='+' ){
 | |
|     neg = 0;
 | |
|     zNum++;
 | |
|   }else{
 | |
|     neg = 0;
 | |
|   }
 | |
|   while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
 | |
|   for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
 | |
|     v = v*10 + c - '0';
 | |
|   }
 | |
|   *pNum = neg ? -v : v;
 | |
|   if( c!=0 || i==0 || i>19 ){
 | |
|     /* zNum is empty or contains non-numeric text or is longer
 | |
|     ** than 19 digits (thus guaranting that it is too large) */
 | |
|     return 0;
 | |
|   }else if( i<19 ){
 | |
|     /* Less than 19 digits, so we know that it fits in 64 bits */
 | |
|     return 1;
 | |
|   }else{
 | |
|     /* 19-digit numbers must be no larger than 9223372036854775807 if positive
 | |
|     ** or 9223372036854775808 if negative.  Note that 9223372036854665808
 | |
|     ** is 2^63. */
 | |
|     return compare2pow63(zNum)<neg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The string zNum represents an integer.  There might be some other
 | |
| ** information following the integer too, but that part is ignored.
 | |
| ** If the integer that the prefix of zNum represents will fit in a
 | |
| ** 64-bit signed integer, return TRUE.  Otherwise return FALSE.
 | |
| **
 | |
| ** This routine returns FALSE for the string -9223372036854775808 even that
 | |
| ** that number will, in theory fit in a 64-bit integer.  Positive
 | |
| ** 9223373036854775808 will not fit in 64 bits.  So it seems safer to return
 | |
| ** false.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
 | |
|   int i, c;
 | |
|   int neg = 0;
 | |
|   if( *zNum=='-' ){
 | |
|     neg = 1;
 | |
|     zNum++;
 | |
|   }else if( *zNum=='+' ){
 | |
|     zNum++;
 | |
|   }
 | |
|   if( negFlag ) neg = 1-neg;
 | |
|   while( *zNum=='0' ){
 | |
|     zNum++;   /* Skip leading zeros.  Ticket #2454 */
 | |
|   }
 | |
|   for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
 | |
|   if( i<19 ){
 | |
|     /* Guaranteed to fit if less than 19 digits */
 | |
|     return 1;
 | |
|   }else if( i>19 ){
 | |
|     /* Guaranteed to be too big if greater than 19 digits */
 | |
|     return 0;
 | |
|   }else{
 | |
|     /* Compare against 2^63. */
 | |
|     return compare2pow63(zNum)<neg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If zNum represents an integer that will fit in 32-bits, then set
 | |
| ** *pValue to that integer and return true.  Otherwise return false.
 | |
| **
 | |
| ** Any non-numeric characters that following zNum are ignored.
 | |
| ** This is different from sqlite3Atoi64() which requires the
 | |
| ** input number to be zero-terminated.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){
 | |
|   sqlite_int64 v = 0;
 | |
|   int i, c;
 | |
|   int neg = 0;
 | |
|   if( zNum[0]=='-' ){
 | |
|     neg = 1;
 | |
|     zNum++;
 | |
|   }else if( zNum[0]=='+' ){
 | |
|     zNum++;
 | |
|   }
 | |
|   while( zNum[0]=='0' ) zNum++;
 | |
|   for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
 | |
|     v = v*10 + c;
 | |
|   }
 | |
| 
 | |
|   /* The longest decimal representation of a 32 bit integer is 10 digits:
 | |
|   **
 | |
|   **             1234567890
 | |
|   **     2^31 -> 2147483648
 | |
|   */
 | |
|   if( i>10 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( v-neg>2147483647 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( neg ){
 | |
|     v = -v;
 | |
|   }
 | |
|   *pValue = (int)v;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The variable-length integer encoding is as follows:
 | |
| **
 | |
| ** KEY:
 | |
| **         A = 0xxxxxxx    7 bits of data and one flag bit
 | |
| **         B = 1xxxxxxx    7 bits of data and one flag bit
 | |
| **         C = xxxxxxxx    8 bits of data
 | |
| **
 | |
| **  7 bits - A
 | |
| ** 14 bits - BA
 | |
| ** 21 bits - BBA
 | |
| ** 28 bits - BBBA
 | |
| ** 35 bits - BBBBA
 | |
| ** 42 bits - BBBBBA
 | |
| ** 49 bits - BBBBBBA
 | |
| ** 56 bits - BBBBBBBA
 | |
| ** 64 bits - BBBBBBBBC
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Write a 64-bit variable-length integer to memory starting at p[0].
 | |
| ** The length of data write will be between 1 and 9 bytes.  The number
 | |
| ** of bytes written is returned.
 | |
| **
 | |
| ** A variable-length integer consists of the lower 7 bits of each byte
 | |
| ** for all bytes that have the 8th bit set and one byte with the 8th
 | |
| ** bit clear.  Except, if we get to the 9th byte, it stores the full
 | |
| ** 8 bits and is the last byte.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){
 | |
|   int i, j, n;
 | |
|   u8 buf[10];
 | |
|   if( v & (((u64)0xff000000)<<32) ){
 | |
|     p[8] = v;
 | |
|     v >>= 8;
 | |
|     for(i=7; i>=0; i--){
 | |
|       p[i] = (v & 0x7f) | 0x80;
 | |
|       v >>= 7;
 | |
|     }
 | |
|     return 9;
 | |
|   }    
 | |
|   n = 0;
 | |
|   do{
 | |
|     buf[n++] = (v & 0x7f) | 0x80;
 | |
|     v >>= 7;
 | |
|   }while( v!=0 );
 | |
|   buf[0] &= 0x7f;
 | |
|   assert( n<=9 );
 | |
|   for(i=0, j=n-1; j>=0; j--, i++){
 | |
|     p[i] = buf[j];
 | |
|   }
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read a 64-bit variable-length integer from memory starting at p[0].
 | |
| ** Return the number of bytes read.  The value is stored in *v.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *p, u64 *v){
 | |
|   u32 x;
 | |
|   u64 x64;
 | |
|   int n;
 | |
|   unsigned char c;
 | |
|   if( ((c = p[0]) & 0x80)==0 ){
 | |
|     *v = c;
 | |
|     return 1;
 | |
|   }
 | |
|   x = c & 0x7f;
 | |
|   if( ((c = p[1]) & 0x80)==0 ){
 | |
|     *v = (x<<7) | c;
 | |
|     return 2;
 | |
|   }
 | |
|   x = (x<<7) | (c&0x7f);
 | |
|   if( ((c = p[2]) & 0x80)==0 ){
 | |
|     *v = (x<<7) | c;
 | |
|     return 3;
 | |
|   }
 | |
|   x = (x<<7) | (c&0x7f);
 | |
|   if( ((c = p[3]) & 0x80)==0 ){
 | |
|     *v = (x<<7) | c;
 | |
|     return 4;
 | |
|   }
 | |
|   x64 = (x<<7) | (c&0x7f);
 | |
|   n = 4;
 | |
|   do{
 | |
|     c = p[n++];
 | |
|     if( n==9 ){
 | |
|       x64 = (x64<<8) | c;
 | |
|       break;
 | |
|     }
 | |
|     x64 = (x64<<7) | (c&0x7f);
 | |
|   }while( (c & 0x80)!=0 );
 | |
|   *v = x64;
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read a 32-bit variable-length integer from memory starting at p[0].
 | |
| ** Return the number of bytes read.  The value is stored in *v.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *p, u32 *v){
 | |
|   u32 x;
 | |
|   int n;
 | |
|   unsigned char c;
 | |
|   if( ((signed char*)p)[0]>=0 ){
 | |
|     *v = p[0];
 | |
|     return 1;
 | |
|   }
 | |
|   x = p[0] & 0x7f;
 | |
|   if( ((signed char*)p)[1]>=0 ){
 | |
|     *v = (x<<7) | p[1];
 | |
|     return 2;
 | |
|   }
 | |
|   x = (x<<7) | (p[1] & 0x7f);
 | |
|   n = 2;
 | |
|   do{
 | |
|     x = (x<<7) | ((c = p[n++])&0x7f);
 | |
|   }while( (c & 0x80)!=0 && n<9 );
 | |
|   *v = x;
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of bytes that will be needed to store the given
 | |
| ** 64-bit integer.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VarintLen(u64 v){
 | |
|   int i = 0;
 | |
|   do{
 | |
|     i++;
 | |
|     v >>= 7;
 | |
|   }while( v!=0 && i<9 );
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Read or write a four-byte big-endian integer value.
 | |
| */
 | |
| SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){
 | |
|   return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){
 | |
|   p[0] = v>>24;
 | |
|   p[1] = v>>16;
 | |
|   p[2] = v>>8;
 | |
|   p[3] = v;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \
 | |
|     || defined(SQLITE_TEST)
 | |
| /*
 | |
| ** Translate a single byte of Hex into an integer.
 | |
| */
 | |
| static int hexToInt(int h){
 | |
|   if( h>='0' && h<='9' ){
 | |
|     return h - '0';
 | |
|   }else if( h>='a' && h<='f' ){
 | |
|     return h - 'a' + 10;
 | |
|   }else{
 | |
|     assert( h>='A' && h<='F' );
 | |
|     return h - 'A' + 10;
 | |
|   }
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
 | |
| /*
 | |
| ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
 | |
| ** value.  Return a pointer to its binary value.  Space to hold the
 | |
| ** binary value has been obtained from malloc and must be freed by
 | |
| ** the calling routine.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
 | |
|   char *zBlob;
 | |
|   int i;
 | |
| 
 | |
|   zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
 | |
|   n--;
 | |
|   if( zBlob ){
 | |
|     for(i=0; i<n; i+=2){
 | |
|       zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
 | |
|     }
 | |
|     zBlob[i/2] = 0;
 | |
|   }
 | |
|   return zBlob;
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
 | |
| ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
 | |
| ** when this routine is called.
 | |
| **
 | |
| ** This routine is called when entering an SQLite API.  The SQLITE_MAGIC_OPEN
 | |
| ** value indicates that the database connection passed into the API is
 | |
| ** open and is not being used by another thread.  By changing the value
 | |
| ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use.
 | |
| ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN
 | |
| ** when the API exits. 
 | |
| **
 | |
| ** This routine is a attempt to detect if two threads use the
 | |
| ** same sqlite* pointer at the same time.  There is a race 
 | |
| ** condition so it is possible that the error is not detected.
 | |
| ** But usually the problem will be seen.  The result will be an
 | |
| ** error which can be used to debug the application that is
 | |
| ** using SQLite incorrectly.
 | |
| **
 | |
| ** Ticket #202:  If db->magic is not a valid open value, take care not
 | |
| ** to modify the db structure at all.  It could be that db is a stale
 | |
| ** pointer.  In other words, it could be that there has been a prior
 | |
| ** call to sqlite3_close(db) and db has been deallocated.  And we do
 | |
| ** not want to write into deallocated memory.
 | |
| */
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *db){
 | |
|   if( db->magic==SQLITE_MAGIC_OPEN ){
 | |
|     db->magic = SQLITE_MAGIC_BUSY;
 | |
|     return 0;
 | |
|   }else if( db->magic==SQLITE_MAGIC_BUSY ){
 | |
|     db->magic = SQLITE_MAGIC_ERROR;
 | |
|     db->u1.isInterrupted = 1;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
 | |
| ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
 | |
| ** when this routine is called.
 | |
| */
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){
 | |
|   if( db->magic==SQLITE_MAGIC_BUSY ){
 | |
|     db->magic = SQLITE_MAGIC_OPEN;
 | |
|     return 0;
 | |
|   }else{
 | |
|     db->magic = SQLITE_MAGIC_ERROR;
 | |
|     db->u1.isInterrupted = 1;
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Check to make sure we have a valid db pointer.  This test is not
 | |
| ** foolproof but it does provide some measure of protection against
 | |
| ** misuse of the interface such as passing in db pointers that are
 | |
| ** NULL or which have been previously closed.  If this routine returns
 | |
| ** 1 it means that the db pointer is valid and 0 if it should not be
 | |
| ** dereferenced for any reason.  The calling function should invoke
 | |
| ** SQLITE_MISUSE immediately.
 | |
| **
 | |
| ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
 | |
| ** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
 | |
| ** open properly and is not fit for general use but which can be
 | |
| ** used as an argument to sqlite3_errmsg() or sqlite3_close().
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){
 | |
|   int magic;
 | |
|   if( db==0 ) return 0;
 | |
|   magic = db->magic;
 | |
|   if( magic!=SQLITE_MAGIC_OPEN &&
 | |
|       magic!=SQLITE_MAGIC_BUSY ) return 0;
 | |
|   return 1;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
 | |
|   int magic;
 | |
|   if( db==0 ) return 0;
 | |
|   magic = db->magic;
 | |
|   if( magic!=SQLITE_MAGIC_SICK &&
 | |
|       magic!=SQLITE_MAGIC_OPEN &&
 | |
|       magic!=SQLITE_MAGIC_BUSY ) return 0;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /************** End of util.c ************************************************/
 | |
| /************** Begin file hash.c ********************************************/
 | |
| /*
 | |
| ** 2001 September 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This is the implementation of generic hash-tables
 | |
| ** used in SQLite.
 | |
| **
 | |
| ** $Id: hash.c,v 1.26 2008/02/18 22:24:58 drh Exp $
 | |
| */
 | |
| 
 | |
| /* Turn bulk memory into a hash table object by initializing the
 | |
| ** fields of the Hash structure.
 | |
| **
 | |
| ** "pNew" is a pointer to the hash table that is to be initialized.
 | |
| ** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
 | |
| ** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING.  The value of keyClass 
 | |
| ** determines what kind of key the hash table will use.  "copyKey" is
 | |
| ** true if the hash table should make its own private copy of keys and
 | |
| ** false if it should just use the supplied pointer.  CopyKey only makes
 | |
| ** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
 | |
| ** for other key classes.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
 | |
|   assert( pNew!=0 );
 | |
|   assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
 | |
|   pNew->keyClass = keyClass;
 | |
| #if 0
 | |
|   if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
 | |
| #endif
 | |
|   pNew->copyKey = copyKey;
 | |
|   pNew->first = 0;
 | |
|   pNew->count = 0;
 | |
|   pNew->htsize = 0;
 | |
|   pNew->ht = 0;
 | |
| }
 | |
| 
 | |
| /* Remove all entries from a hash table.  Reclaim all memory.
 | |
| ** Call this routine to delete a hash table or to reset a hash table
 | |
| ** to the empty state.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){
 | |
|   HashElem *elem;         /* For looping over all elements of the table */
 | |
| 
 | |
|   assert( pH!=0 );
 | |
|   elem = pH->first;
 | |
|   pH->first = 0;
 | |
|   if( pH->ht ) sqlite3_free(pH->ht);
 | |
|   pH->ht = 0;
 | |
|   pH->htsize = 0;
 | |
|   while( elem ){
 | |
|     HashElem *next_elem = elem->next;
 | |
|     if( pH->copyKey && elem->pKey ){
 | |
|       sqlite3_free(elem->pKey);
 | |
|     }
 | |
|     sqlite3_free(elem);
 | |
|     elem = next_elem;
 | |
|   }
 | |
|   pH->count = 0;
 | |
| }
 | |
| 
 | |
| #if 0 /* NOT USED */
 | |
| /*
 | |
| ** Hash and comparison functions when the mode is SQLITE_HASH_INT
 | |
| */
 | |
| static int intHash(const void *pKey, int nKey){
 | |
|   return nKey ^ (nKey<<8) ^ (nKey>>8);
 | |
| }
 | |
| static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
 | |
|   return n2 - n1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if 0 /* NOT USED */
 | |
| /*
 | |
| ** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
 | |
| */
 | |
| static int ptrHash(const void *pKey, int nKey){
 | |
|   uptr x = Addr(pKey);
 | |
|   return x ^ (x<<8) ^ (x>>8);
 | |
| }
 | |
| static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
 | |
|   if( pKey1==pKey2 ) return 0;
 | |
|   if( pKey1<pKey2 ) return -1;
 | |
|   return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Hash and comparison functions when the mode is SQLITE_HASH_STRING
 | |
| */
 | |
| static int strHash(const void *pKey, int nKey){
 | |
|   const char *z = (const char *)pKey;
 | |
|   int h = 0;
 | |
|   if( nKey<=0 ) nKey = strlen(z);
 | |
|   while( nKey > 0  ){
 | |
|     h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
 | |
|     nKey--;
 | |
|   }
 | |
|   return h & 0x7fffffff;
 | |
| }
 | |
| static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
 | |
|   if( n1!=n2 ) return 1;
 | |
|   return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
 | |
| */
 | |
| static int binHash(const void *pKey, int nKey){
 | |
|   int h = 0;
 | |
|   const char *z = (const char *)pKey;
 | |
|   while( nKey-- > 0 ){
 | |
|     h = (h<<3) ^ h ^ *(z++);
 | |
|   }
 | |
|   return h & 0x7fffffff;
 | |
| }
 | |
| static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
 | |
|   if( n1!=n2 ) return 1;
 | |
|   return memcmp(pKey1,pKey2,n1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the appropriate hash function given the key class.
 | |
| **
 | |
| ** The C syntax in this function definition may be unfamilar to some 
 | |
| ** programmers, so we provide the following additional explanation:
 | |
| **
 | |
| ** The name of the function is "hashFunction".  The function takes a
 | |
| ** single parameter "keyClass".  The return value of hashFunction()
 | |
| ** is a pointer to another function.  Specifically, the return value
 | |
| ** of hashFunction() is a pointer to a function that takes two parameters
 | |
| ** with types "const void*" and "int" and returns an "int".
 | |
| */
 | |
| static int (*hashFunction(int keyClass))(const void*,int){
 | |
| #if 0  /* HASH_INT and HASH_POINTER are never used */
 | |
|   switch( keyClass ){
 | |
|     case SQLITE_HASH_INT:     return &intHash;
 | |
|     case SQLITE_HASH_POINTER: return &ptrHash;
 | |
|     case SQLITE_HASH_STRING:  return &strHash;
 | |
|     case SQLITE_HASH_BINARY:  return &binHash;;
 | |
|     default: break;
 | |
|   }
 | |
|   return 0;
 | |
| #else
 | |
|   if( keyClass==SQLITE_HASH_STRING ){
 | |
|     return &strHash;
 | |
|   }else{
 | |
|     assert( keyClass==SQLITE_HASH_BINARY );
 | |
|     return &binHash;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the appropriate hash function given the key class.
 | |
| **
 | |
| ** For help in interpreted the obscure C code in the function definition,
 | |
| ** see the header comment on the previous function.
 | |
| */
 | |
| static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
 | |
| #if 0 /* HASH_INT and HASH_POINTER are never used */
 | |
|   switch( keyClass ){
 | |
|     case SQLITE_HASH_INT:     return &intCompare;
 | |
|     case SQLITE_HASH_POINTER: return &ptrCompare;
 | |
|     case SQLITE_HASH_STRING:  return &strCompare;
 | |
|     case SQLITE_HASH_BINARY:  return &binCompare;
 | |
|     default: break;
 | |
|   }
 | |
|   return 0;
 | |
| #else
 | |
|   if( keyClass==SQLITE_HASH_STRING ){
 | |
|     return &strCompare;
 | |
|   }else{
 | |
|     assert( keyClass==SQLITE_HASH_BINARY );
 | |
|     return &binCompare;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Link an element into the hash table
 | |
| */
 | |
| static void insertElement(
 | |
|   Hash *pH,              /* The complete hash table */
 | |
|   struct _ht *pEntry,    /* The entry into which pNew is inserted */
 | |
|   HashElem *pNew         /* The element to be inserted */
 | |
| ){
 | |
|   HashElem *pHead;       /* First element already in pEntry */
 | |
|   pHead = pEntry->chain;
 | |
|   if( pHead ){
 | |
|     pNew->next = pHead;
 | |
|     pNew->prev = pHead->prev;
 | |
|     if( pHead->prev ){ pHead->prev->next = pNew; }
 | |
|     else             { pH->first = pNew; }
 | |
|     pHead->prev = pNew;
 | |
|   }else{
 | |
|     pNew->next = pH->first;
 | |
|     if( pH->first ){ pH->first->prev = pNew; }
 | |
|     pNew->prev = 0;
 | |
|     pH->first = pNew;
 | |
|   }
 | |
|   pEntry->count++;
 | |
|   pEntry->chain = pNew;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Resize the hash table so that it cantains "new_size" buckets.
 | |
| ** "new_size" must be a power of 2.  The hash table might fail 
 | |
| ** to resize if sqlite3_malloc() fails.
 | |
| */
 | |
| static void rehash(Hash *pH, int new_size){
 | |
|   struct _ht *new_ht;            /* The new hash table */
 | |
|   HashElem *elem, *next_elem;    /* For looping over existing elements */
 | |
|   int (*xHash)(const void*,int); /* The hash function */
 | |
| 
 | |
| #ifdef SQLITE_MALLOC_SOFT_LIMIT
 | |
|   if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
 | |
|     new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
 | |
|   }
 | |
|   if( new_size==pH->htsize ) return;
 | |
| #endif
 | |
| 
 | |
|   /* There is a call to sqlite3_malloc() inside rehash(). If there is
 | |
|   ** already an allocation at pH->ht, then if this malloc() fails it
 | |
|   ** is benign (since failing to resize a hash table is a performance
 | |
|   ** hit only, not a fatal error).
 | |
|   */
 | |
|   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pH->htsize>0);
 | |
|   new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
 | |
|   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
 | |
| 
 | |
|   if( new_ht==0 ) return;
 | |
|   if( pH->ht ) sqlite3_free(pH->ht);
 | |
|   pH->ht = new_ht;
 | |
|   pH->htsize = new_size;
 | |
|   xHash = hashFunction(pH->keyClass);
 | |
|   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
 | |
|     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
 | |
|     next_elem = elem->next;
 | |
|     insertElement(pH, &new_ht[h], elem);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* This function (for internal use only) locates an element in an
 | |
| ** hash table that matches the given key.  The hash for this key has
 | |
| ** already been computed and is passed as the 4th parameter.
 | |
| */
 | |
| static HashElem *findElementGivenHash(
 | |
|   const Hash *pH,     /* The pH to be searched */
 | |
|   const void *pKey,   /* The key we are searching for */
 | |
|   int nKey,
 | |
|   int h               /* The hash for this key. */
 | |
| ){
 | |
|   HashElem *elem;                /* Used to loop thru the element list */
 | |
|   int count;                     /* Number of elements left to test */
 | |
|   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
 | |
| 
 | |
|   if( pH->ht ){
 | |
|     struct _ht *pEntry = &pH->ht[h];
 | |
|     elem = pEntry->chain;
 | |
|     count = pEntry->count;
 | |
|     xCompare = compareFunction(pH->keyClass);
 | |
|     while( count-- && elem ){
 | |
|       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
 | |
|         return elem;
 | |
|       }
 | |
|       elem = elem->next;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a single entry from the hash table given a pointer to that
 | |
| ** element and a hash on the element's key.
 | |
| */
 | |
| static void removeElementGivenHash(
 | |
|   Hash *pH,         /* The pH containing "elem" */
 | |
|   HashElem* elem,   /* The element to be removed from the pH */
 | |
|   int h             /* Hash value for the element */
 | |
| ){
 | |
|   struct _ht *pEntry;
 | |
|   if( elem->prev ){
 | |
|     elem->prev->next = elem->next; 
 | |
|   }else{
 | |
|     pH->first = elem->next;
 | |
|   }
 | |
|   if( elem->next ){
 | |
|     elem->next->prev = elem->prev;
 | |
|   }
 | |
|   pEntry = &pH->ht[h];
 | |
|   if( pEntry->chain==elem ){
 | |
|     pEntry->chain = elem->next;
 | |
|   }
 | |
|   pEntry->count--;
 | |
|   if( pEntry->count<=0 ){
 | |
|     pEntry->chain = 0;
 | |
|   }
 | |
|   if( pH->copyKey ){
 | |
|     sqlite3_free(elem->pKey);
 | |
|   }
 | |
|   sqlite3_free( elem );
 | |
|   pH->count--;
 | |
|   if( pH->count<=0 ){
 | |
|     assert( pH->first==0 );
 | |
|     assert( pH->count==0 );
 | |
|     sqlite3HashClear(pH);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Attempt to locate an element of the hash table pH with a key
 | |
| ** that matches pKey,nKey.  Return a pointer to the corresponding 
 | |
| ** HashElem structure for this element if it is found, or NULL
 | |
| ** otherwise.
 | |
| */
 | |
| SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
 | |
|   int h;             /* A hash on key */
 | |
|   HashElem *elem;    /* The element that matches key */
 | |
|   int (*xHash)(const void*,int);  /* The hash function */
 | |
| 
 | |
|   if( pH==0 || pH->ht==0 ) return 0;
 | |
|   xHash = hashFunction(pH->keyClass);
 | |
|   assert( xHash!=0 );
 | |
|   h = (*xHash)(pKey,nKey);
 | |
|   elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
 | |
|   return elem;
 | |
| }
 | |
| 
 | |
| /* Attempt to locate an element of the hash table pH with a key
 | |
| ** that matches pKey,nKey.  Return the data for this element if it is
 | |
| ** found, or NULL if there is no match.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
 | |
|   HashElem *elem;    /* The element that matches key */
 | |
|   elem = sqlite3HashFindElem(pH, pKey, nKey);
 | |
|   return elem ? elem->data : 0;
 | |
| }
 | |
| 
 | |
| /* Insert an element into the hash table pH.  The key is pKey,nKey
 | |
| ** and the data is "data".
 | |
| **
 | |
| ** If no element exists with a matching key, then a new
 | |
| ** element is created.  A copy of the key is made if the copyKey
 | |
| ** flag is set.  NULL is returned.
 | |
| **
 | |
| ** If another element already exists with the same key, then the
 | |
| ** new data replaces the old data and the old data is returned.
 | |
| ** The key is not copied in this instance.  If a malloc fails, then
 | |
| ** the new data is returned and the hash table is unchanged.
 | |
| **
 | |
| ** If the "data" parameter to this function is NULL, then the
 | |
| ** element corresponding to "key" is removed from the hash table.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
 | |
|   int hraw;             /* Raw hash value of the key */
 | |
|   int h;                /* the hash of the key modulo hash table size */
 | |
|   HashElem *elem;       /* Used to loop thru the element list */
 | |
|   HashElem *new_elem;   /* New element added to the pH */
 | |
|   int (*xHash)(const void*,int);  /* The hash function */
 | |
| 
 | |
|   assert( pH!=0 );
 | |
|   xHash = hashFunction(pH->keyClass);
 | |
|   assert( xHash!=0 );
 | |
|   hraw = (*xHash)(pKey, nKey);
 | |
|   if( pH->htsize ){
 | |
|     h = hraw % pH->htsize;
 | |
|     elem = findElementGivenHash(pH,pKey,nKey,h);
 | |
|     if( elem ){
 | |
|       void *old_data = elem->data;
 | |
|       if( data==0 ){
 | |
|         removeElementGivenHash(pH,elem,h);
 | |
|       }else{
 | |
|         elem->data = data;
 | |
|         if( !pH->copyKey ){
 | |
|           elem->pKey = (void *)pKey;
 | |
|         }
 | |
|         assert(nKey==elem->nKey);
 | |
|       }
 | |
|       return old_data;
 | |
|     }
 | |
|   }
 | |
|   if( data==0 ) return 0;
 | |
|   new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) );
 | |
|   if( new_elem==0 ) return data;
 | |
|   if( pH->copyKey && pKey!=0 ){
 | |
|     new_elem->pKey = sqlite3_malloc( nKey );
 | |
|     if( new_elem->pKey==0 ){
 | |
|       sqlite3_free(new_elem);
 | |
|       return data;
 | |
|     }
 | |
|     memcpy((void*)new_elem->pKey, pKey, nKey);
 | |
|   }else{
 | |
|     new_elem->pKey = (void*)pKey;
 | |
|   }
 | |
|   new_elem->nKey = nKey;
 | |
|   pH->count++;
 | |
|   if( pH->htsize==0 ){
 | |
|     rehash(pH, 128/sizeof(pH->ht[0]));
 | |
|     if( pH->htsize==0 ){
 | |
|       pH->count = 0;
 | |
|       if( pH->copyKey ){
 | |
|         sqlite3_free(new_elem->pKey);
 | |
|       }
 | |
|       sqlite3_free(new_elem);
 | |
|       return data;
 | |
|     }
 | |
|   }
 | |
|   if( pH->count > pH->htsize ){
 | |
|     rehash(pH,pH->htsize*2);
 | |
|   }
 | |
|   assert( pH->htsize>0 );
 | |
|   h = hraw % pH->htsize;
 | |
|   insertElement(pH, &pH->ht[h], new_elem);
 | |
|   new_elem->data = data;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /************** End of hash.c ************************************************/
 | |
| /************** Begin file opcodes.c *****************************************/
 | |
| /* Automatically generated.  Do not edit */
 | |
| /* See the mkopcodec.awk script for details. */
 | |
| #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | |
| SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 | |
|  static const char *const azName[] = { "?",
 | |
|      /*   1 */ "VNext",
 | |
|      /*   2 */ "Column",
 | |
|      /*   3 */ "SetCookie",
 | |
|      /*   4 */ "Sequence",
 | |
|      /*   5 */ "MoveGt",
 | |
|      /*   6 */ "RowKey",
 | |
|      /*   7 */ "SCopy",
 | |
|      /*   8 */ "OpenWrite",
 | |
|      /*   9 */ "If",
 | |
|      /*  10 */ "VRowid",
 | |
|      /*  11 */ "CollSeq",
 | |
|      /*  12 */ "OpenRead",
 | |
|      /*  13 */ "Expire",
 | |
|      /*  14 */ "AutoCommit",
 | |
|      /*  15 */ "IntegrityCk",
 | |
|      /*  16 */ "Not",
 | |
|      /*  17 */ "Sort",
 | |
|      /*  18 */ "Copy",
 | |
|      /*  19 */ "Trace",
 | |
|      /*  20 */ "Function",
 | |
|      /*  21 */ "IfNeg",
 | |
|      /*  22 */ "Noop",
 | |
|      /*  23 */ "Return",
 | |
|      /*  24 */ "NewRowid",
 | |
|      /*  25 */ "Variable",
 | |
|      /*  26 */ "String",
 | |
|      /*  27 */ "RealAffinity",
 | |
|      /*  28 */ "VRename",
 | |
|      /*  29 */ "ParseSchema",
 | |
|      /*  30 */ "VOpen",
 | |
|      /*  31 */ "Close",
 | |
|      /*  32 */ "CreateIndex",
 | |
|      /*  33 */ "IsUnique",
 | |
|      /*  34 */ "NotFound",
 | |
|      /*  35 */ "Int64",
 | |
|      /*  36 */ "MustBeInt",
 | |
|      /*  37 */ "Halt",
 | |
|      /*  38 */ "Rowid",
 | |
|      /*  39 */ "IdxLT",
 | |
|      /*  40 */ "AddImm",
 | |
|      /*  41 */ "Statement",
 | |
|      /*  42 */ "RowData",
 | |
|      /*  43 */ "MemMax",
 | |
|      /*  44 */ "NotExists",
 | |
|      /*  45 */ "Gosub",
 | |
|      /*  46 */ "Integer",
 | |
|      /*  47 */ "Prev",
 | |
|      /*  48 */ "VColumn",
 | |
|      /*  49 */ "CreateTable",
 | |
|      /*  50 */ "Last",
 | |
|      /*  51 */ "IncrVacuum",
 | |
|      /*  52 */ "IdxRowid",
 | |
|      /*  53 */ "ResetCount",
 | |
|      /*  54 */ "FifoWrite",
 | |
|      /*  55 */ "ContextPush",
 | |
|      /*  56 */ "DropTrigger",
 | |
|      /*  57 */ "DropIndex",
 | |
|      /*  58 */ "IdxGE",
 | |
|      /*  59 */ "IdxDelete",
 | |
|      /*  60 */ "Or",
 | |
|      /*  61 */ "And",
 | |
|      /*  62 */ "Vacuum",
 | |
|      /*  63 */ "MoveLe",
 | |
|      /*  64 */ "IfNot",
 | |
|      /*  65 */ "IsNull",
 | |
|      /*  66 */ "NotNull",
 | |
|      /*  67 */ "Ne",
 | |
|      /*  68 */ "Eq",
 | |
|      /*  69 */ "Gt",
 | |
|      /*  70 */ "Le",
 | |
|      /*  71 */ "Lt",
 | |
|      /*  72 */ "Ge",
 | |
|      /*  73 */ "DropTable",
 | |
|      /*  74 */ "BitAnd",
 | |
|      /*  75 */ "BitOr",
 | |
|      /*  76 */ "ShiftLeft",
 | |
|      /*  77 */ "ShiftRight",
 | |
|      /*  78 */ "Add",
 | |
|      /*  79 */ "Subtract",
 | |
|      /*  80 */ "Multiply",
 | |
|      /*  81 */ "Divide",
 | |
|      /*  82 */ "Remainder",
 | |
|      /*  83 */ "Concat",
 | |
|      /*  84 */ "MakeRecord",
 | |
|      /*  85 */ "ResultRow",
 | |
|      /*  86 */ "Delete",
 | |
|      /*  87 */ "BitNot",
 | |
|      /*  88 */ "String8",
 | |
|      /*  89 */ "AggFinal",
 | |
|      /*  90 */ "Goto",
 | |
|      /*  91 */ "TableLock",
 | |
|      /*  92 */ "FifoRead",
 | |
|      /*  93 */ "Clear",
 | |
|      /*  94 */ "MoveLt",
 | |
|      /*  95 */ "VerifyCookie",
 | |
|      /*  96 */ "AggStep",
 | |
|      /*  97 */ "SetNumColumns",
 | |
|      /*  98 */ "Transaction",
 | |
|      /*  99 */ "VFilter",
 | |
|      /* 100 */ "VDestroy",
 | |
|      /* 101 */ "ContextPop",
 | |
|      /* 102 */ "Next",
 | |
|      /* 103 */ "IdxInsert",
 | |
|      /* 104 */ "Insert",
 | |
|      /* 105 */ "Destroy",
 | |
|      /* 106 */ "ReadCookie",
 | |
|      /* 107 */ "ForceInt",
 | |
|      /* 108 */ "LoadAnalysis",
 | |
|      /* 109 */ "Explain",
 | |
|      /* 110 */ "OpenPseudo",
 | |
|      /* 111 */ "OpenEphemeral",
 | |
|      /* 112 */ "Null",
 | |
|      /* 113 */ "Move",
 | |
|      /* 114 */ "Blob",
 | |
|      /* 115 */ "Rewind",
 | |
|      /* 116 */ "MoveGe",
 | |
|      /* 117 */ "VBegin",
 | |
|      /* 118 */ "VUpdate",
 | |
|      /* 119 */ "IfZero",
 | |
|      /* 120 */ "VCreate",
 | |
|      /* 121 */ "Found",
 | |
|      /* 122 */ "IfPos",
 | |
|      /* 123 */ "NullRow",
 | |
|      /* 124 */ "NotUsed_124",
 | |
|      /* 125 */ "Real",
 | |
|      /* 126 */ "NotUsed_126",
 | |
|      /* 127 */ "NotUsed_127",
 | |
|      /* 128 */ "NotUsed_128",
 | |
|      /* 129 */ "NotUsed_129",
 | |
|      /* 130 */ "NotUsed_130",
 | |
|      /* 131 */ "NotUsed_131",
 | |
|      /* 132 */ "NotUsed_132",
 | |
|      /* 133 */ "NotUsed_133",
 | |
|      /* 134 */ "NotUsed_134",
 | |
|      /* 135 */ "NotUsed_135",
 | |
|      /* 136 */ "NotUsed_136",
 | |
|      /* 137 */ "NotUsed_137",
 | |
|      /* 138 */ "ToText",
 | |
|      /* 139 */ "ToBlob",
 | |
|      /* 140 */ "ToNumeric",
 | |
|      /* 141 */ "ToInt",
 | |
|      /* 142 */ "ToReal",
 | |
|   };
 | |
|   return azName[i];
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /************** End of opcodes.c *********************************************/
 | |
| /************** Begin file os_os2.c ******************************************/
 | |
| /*
 | |
| ** 2006 Feb 14
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains code that is specific to OS/2.
 | |
| */
 | |
| 
 | |
| 
 | |
| #if OS_OS2
 | |
| 
 | |
| /*
 | |
| ** A Note About Memory Allocation:
 | |
| **
 | |
| ** This driver uses malloc()/free() directly rather than going through
 | |
| ** the SQLite-wrappers sqlite3_malloc()/sqlite3_free().  Those wrappers
 | |
| ** are designed for use on embedded systems where memory is scarce and
 | |
| ** malloc failures happen frequently.  OS/2 does not typically run on
 | |
| ** embedded systems, and when it does the developers normally have bigger
 | |
| ** problems to worry about than running out of memory.  So there is not
 | |
| ** a compelling need to use the wrappers.
 | |
| **
 | |
| ** But there is a good reason to not use the wrappers.  If we use the
 | |
| ** wrappers then we will get simulated malloc() failures within this
 | |
| ** driver.  And that causes all kinds of problems for our tests.  We
 | |
| ** could enhance SQLite to deal with simulated malloc failures within
 | |
| ** the OS driver, but the code to deal with those failure would not
 | |
| ** be exercised on Linux (which does not need to malloc() in the driver)
 | |
| ** and so we would have difficulty writing coverage tests for that
 | |
| ** code.  Better to leave the code out, we think.
 | |
| **
 | |
| ** The point of this discussion is as follows:  When creating a new
 | |
| ** OS layer for an embedded system, if you use this file as an example,
 | |
| ** avoid the use of malloc()/free().  Those routines work ok on OS/2
 | |
| ** desktops but not so well in embedded systems.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Macros used to determine whether or not to use threads.
 | |
| */
 | |
| #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
 | |
| # define SQLITE_OS2_THREADS 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Include code that is common to all os_*.c files
 | |
| */
 | |
| /************** Include os_common.h in the middle of os_os2.c ****************/
 | |
| /************** Begin file os_common.h ***************************************/
 | |
| /*
 | |
| ** 2004 May 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains macros and a little bit of code that is common to
 | |
| ** all of the platform-specific files (os_*.c) and is #included into those
 | |
| ** files.
 | |
| **
 | |
| ** This file should be #included by the os_*.c files only.  It is not a
 | |
| ** general purpose header file.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
 | |
| ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
 | |
| ** switch.  The following code should catch this problem at compile-time.
 | |
| */
 | |
| #ifdef MEMORY_DEBUG
 | |
| # error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * When testing, this global variable stores the location of the
 | |
|  * pending-byte in the database file.
 | |
|  */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE int sqlite3OSTrace = 0;
 | |
| #define OSTRACE1(X)         if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
 | |
| #define OSTRACE2(X,Y)       if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
 | |
| #define OSTRACE3(X,Y,Z)     if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
 | |
| #define OSTRACE4(X,Y,Z,A)   if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
 | |
| #define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
 | |
| #define OSTRACE6(X,Y,Z,A,B,C) \
 | |
|     if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
 | |
| #define OSTRACE7(X,Y,Z,A,B,C,D) \
 | |
|     if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
 | |
| #else
 | |
| #define OSTRACE1(X)
 | |
| #define OSTRACE2(X,Y)
 | |
| #define OSTRACE3(X,Y,Z)
 | |
| #define OSTRACE4(X,Y,Z,A)
 | |
| #define OSTRACE5(X,Y,Z,A,B)
 | |
| #define OSTRACE6(X,Y,Z,A,B,C)
 | |
| #define OSTRACE7(X,Y,Z,A,B,C,D)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Macros for performance tracing.  Normally turned off.  Only works
 | |
| ** on i486 hardware.
 | |
| */
 | |
| #ifdef SQLITE_PERFORMANCE_TRACE
 | |
| __inline__ unsigned long long int hwtime(void){
 | |
|   unsigned long long int x;
 | |
|   __asm__("rdtsc\n\t"
 | |
|           "mov %%edx, %%ecx\n\t"
 | |
|           :"=A" (x));
 | |
|   return x;
 | |
| }
 | |
| static unsigned long long int g_start;
 | |
| static unsigned int elapse;
 | |
| #define TIMER_START       g_start=hwtime()
 | |
| #define TIMER_END         elapse=hwtime()-g_start
 | |
| #define TIMER_ELAPSED     elapse
 | |
| #else
 | |
| #define TIMER_START
 | |
| #define TIMER_END
 | |
| #define TIMER_ELAPSED     0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If we compile with the SQLITE_TEST macro set, then the following block
 | |
| ** of code will give us the ability to simulate a disk I/O error.  This
 | |
| ** is used for testing the I/O recovery logic.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
 | |
| SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
 | |
| SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
 | |
| SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
 | |
| SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
 | |
| SQLITE_API int sqlite3_diskfull_pending = 0;
 | |
| SQLITE_API int sqlite3_diskfull = 0;
 | |
| #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
 | |
| #define SimulateIOError(CODE)  \
 | |
|   if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
 | |
|        || sqlite3_io_error_pending-- == 1 )  \
 | |
|               { local_ioerr(); CODE; }
 | |
| static void local_ioerr(){
 | |
|   IOTRACE(("IOERR\n"));
 | |
|   sqlite3_io_error_hit++;
 | |
|   if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
 | |
| }
 | |
| #define SimulateDiskfullError(CODE) \
 | |
|    if( sqlite3_diskfull_pending ){ \
 | |
|      if( sqlite3_diskfull_pending == 1 ){ \
 | |
|        local_ioerr(); \
 | |
|        sqlite3_diskfull = 1; \
 | |
|        sqlite3_io_error_hit = 1; \
 | |
|        CODE; \
 | |
|      }else{ \
 | |
|        sqlite3_diskfull_pending--; \
 | |
|      } \
 | |
|    }
 | |
| #else
 | |
| #define SimulateIOErrorBenign(X)
 | |
| #define SimulateIOError(A)
 | |
| #define SimulateDiskfullError(A)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When testing, keep a count of the number of open files.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_open_file_count = 0;
 | |
| #define OpenCounter(X)  sqlite3_open_file_count+=(X)
 | |
| #else
 | |
| #define OpenCounter(X)
 | |
| #endif
 | |
| 
 | |
| /************** End of os_common.h *******************************************/
 | |
| /************** Continuing where we left off in os_os2.c *********************/
 | |
| 
 | |
| /*
 | |
| ** The os2File structure is subclass of sqlite3_file specific for the OS/2
 | |
| ** protability layer.
 | |
| */
 | |
| typedef struct os2File os2File;
 | |
| struct os2File {
 | |
|   const sqlite3_io_methods *pMethod;  /* Always the first entry */
 | |
|   HFILE h;                  /* Handle for accessing the file */
 | |
|   int delOnClose;           /* True if file is to be deleted on close */
 | |
|   char* pathToDel;          /* Name of file to delete on close */
 | |
|   unsigned char locktype;   /* Type of lock currently held on this file */
 | |
| };
 | |
| 
 | |
| /*****************************************************************************
 | |
| ** The next group of routines implement the I/O methods specified
 | |
| ** by the sqlite3_io_methods object.
 | |
| ******************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** Close a file.
 | |
| */
 | |
| int os2Close( sqlite3_file *id ){
 | |
|   APIRET rc = NO_ERROR;
 | |
|   os2File *pFile;
 | |
|   if( id && (pFile = (os2File*)id) != 0 ){
 | |
|     OSTRACE2( "CLOSE %d\n", pFile->h );
 | |
|     rc = DosClose( pFile->h );
 | |
|     pFile->locktype = NO_LOCK;
 | |
|     if( pFile->delOnClose != 0 ){
 | |
|       rc = DosForceDelete( (PSZ)pFile->pathToDel );
 | |
|     }
 | |
|     if( pFile->pathToDel ){
 | |
|       free( pFile->pathToDel );
 | |
|     }
 | |
|     id = 0;
 | |
|     OpenCounter( -1 );
 | |
|   }
 | |
| 
 | |
|   return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read data from a file into a buffer.  Return SQLITE_OK if all
 | |
| ** bytes were read successfully and SQLITE_IOERR if anything goes
 | |
| ** wrong.
 | |
| */
 | |
| int os2Read(
 | |
|   sqlite3_file *id,               /* File to read from */
 | |
|   void *pBuf,                     /* Write content into this buffer */
 | |
|   int amt,                        /* Number of bytes to read */
 | |
|   sqlite3_int64 offset            /* Begin reading at this offset */
 | |
| ){
 | |
|   ULONG fileLocation = 0L;
 | |
|   ULONG got;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   assert( id!=0 );
 | |
|   SimulateIOError( return SQLITE_IOERR_READ );
 | |
|   OSTRACE3( "READ %d lock=%d\n", pFile->h, pFile->locktype );
 | |
|   if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
 | |
|     return SQLITE_IOERR;
 | |
|   }
 | |
|   if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
 | |
|     return SQLITE_IOERR_READ;
 | |
|   }
 | |
|   if( got == (ULONG)amt )
 | |
|     return SQLITE_OK;
 | |
|   else {
 | |
|     memset(&((char*)pBuf)[got], 0, amt-got);
 | |
|     return SQLITE_IOERR_SHORT_READ;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write data from a buffer into a file.  Return SQLITE_OK on success
 | |
| ** or some other error code on failure.
 | |
| */
 | |
| int os2Write(
 | |
|   sqlite3_file *id,               /* File to write into */
 | |
|   const void *pBuf,               /* The bytes to be written */
 | |
|   int amt,                        /* Number of bytes to write */
 | |
|   sqlite3_int64 offset            /* Offset into the file to begin writing at */
 | |
| ){
 | |
|   ULONG fileLocation = 0L;
 | |
|   APIRET rc = NO_ERROR;
 | |
|   ULONG wrote;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   assert( id!=0 );
 | |
|   SimulateIOError( return SQLITE_IOERR_WRITE );
 | |
|   SimulateDiskfullError( return SQLITE_FULL );
 | |
|   OSTRACE3( "WRITE %d lock=%d\n", pFile->h, pFile->locktype );
 | |
|   if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
 | |
|     return SQLITE_IOERR;
 | |
|   }
 | |
|   assert( amt>0 );
 | |
|   while( amt > 0 &&
 | |
|          (rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote )) &&
 | |
|          wrote > 0
 | |
|   ){
 | |
|     amt -= wrote;
 | |
|     pBuf = &((char*)pBuf)[wrote];
 | |
|   }
 | |
| 
 | |
|   return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Truncate an open file to a specified size
 | |
| */
 | |
| int os2Truncate( sqlite3_file *id, i64 nByte ){
 | |
|   APIRET rc = NO_ERROR;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte );
 | |
|   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
 | |
|   rc = DosSetFileSize( pFile->h, nByte );
 | |
|   return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** Count the number of fullsyncs and normal syncs.  This is used to test
 | |
| ** that syncs and fullsyncs are occuring at the right times.
 | |
| */
 | |
| SQLITE_API int sqlite3_sync_count = 0;
 | |
| SQLITE_API int sqlite3_fullsync_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Make sure all writes to a particular file are committed to disk.
 | |
| */
 | |
| int os2Sync( sqlite3_file *id, int flags ){
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype );
 | |
| #ifdef SQLITE_TEST
 | |
|   if( flags & SQLITE_SYNC_FULL){
 | |
|     sqlite3_fullsync_count++;
 | |
|   }
 | |
|   sqlite3_sync_count++;
 | |
| #endif
 | |
|   return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Determine the current size of a file in bytes
 | |
| */
 | |
| int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
 | |
|   APIRET rc = NO_ERROR;
 | |
|   FILESTATUS3 fsts3FileInfo;
 | |
|   memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
 | |
|   assert( id!=0 );
 | |
|   SimulateIOError( return SQLITE_IOERR );
 | |
|   rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
 | |
|   if( rc == NO_ERROR ){
 | |
|     *pSize = fsts3FileInfo.cbFile;
 | |
|     return SQLITE_OK;
 | |
|   }else{
 | |
|     return SQLITE_IOERR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Acquire a reader lock.
 | |
| */
 | |
| static int getReadLock( os2File *pFile ){
 | |
|   FILELOCK  LockArea,
 | |
|             UnlockArea;
 | |
|   APIRET res;
 | |
|   memset(&LockArea, 0, sizeof(LockArea));
 | |
|   memset(&UnlockArea, 0, sizeof(UnlockArea));
 | |
|   LockArea.lOffset = SHARED_FIRST;
 | |
|   LockArea.lRange = SHARED_SIZE;
 | |
|   UnlockArea.lOffset = 0L;
 | |
|   UnlockArea.lRange = 0L;
 | |
|   res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|   OSTRACE3( "GETREADLOCK %d res=%d\n", pFile->h, res );
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Undo a readlock
 | |
| */
 | |
| static int unlockReadLock( os2File *id ){
 | |
|   FILELOCK  LockArea,
 | |
|             UnlockArea;
 | |
|   APIRET res;
 | |
|   memset(&LockArea, 0, sizeof(LockArea));
 | |
|   memset(&UnlockArea, 0, sizeof(UnlockArea));
 | |
|   LockArea.lOffset = 0L;
 | |
|   LockArea.lRange = 0L;
 | |
|   UnlockArea.lOffset = SHARED_FIRST;
 | |
|   UnlockArea.lRange = SHARED_SIZE;
 | |
|   res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|   OSTRACE3( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res );
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lock the file with the lock specified by parameter locktype - one
 | |
| ** of the following:
 | |
| **
 | |
| **     (1) SHARED_LOCK
 | |
| **     (2) RESERVED_LOCK
 | |
| **     (3) PENDING_LOCK
 | |
| **     (4) EXCLUSIVE_LOCK
 | |
| **
 | |
| ** Sometimes when requesting one lock state, additional lock states
 | |
| ** are inserted in between.  The locking might fail on one of the later
 | |
| ** transitions leaving the lock state different from what it started but
 | |
| ** still short of its goal.  The following chart shows the allowed
 | |
| ** transitions and the inserted intermediate states:
 | |
| **
 | |
| **    UNLOCKED -> SHARED
 | |
| **    SHARED -> RESERVED
 | |
| **    SHARED -> (PENDING) -> EXCLUSIVE
 | |
| **    RESERVED -> (PENDING) -> EXCLUSIVE
 | |
| **    PENDING -> EXCLUSIVE
 | |
| **
 | |
| ** This routine will only increase a lock.  The os2Unlock() routine
 | |
| ** erases all locks at once and returns us immediately to locking level 0.
 | |
| ** It is not possible to lower the locking level one step at a time.  You
 | |
| ** must go straight to locking level 0.
 | |
| */
 | |
| int os2Lock( sqlite3_file *id, int locktype ){
 | |
|   int rc = SQLITE_OK;       /* Return code from subroutines */
 | |
|   APIRET res = NO_ERROR;    /* Result of an OS/2 lock call */
 | |
|   int newLocktype;       /* Set pFile->locktype to this value before exiting */
 | |
|   int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
 | |
|   FILELOCK  LockArea,
 | |
|             UnlockArea;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   memset(&LockArea, 0, sizeof(LockArea));
 | |
|   memset(&UnlockArea, 0, sizeof(UnlockArea));
 | |
|   assert( pFile!=0 );
 | |
|   OSTRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype );
 | |
| 
 | |
|   /* If there is already a lock of this type or more restrictive on the
 | |
|   ** os2File, do nothing. Don't use the end_lock: exit path, as
 | |
|   ** sqlite3OsEnterMutex() hasn't been called yet.
 | |
|   */
 | |
|   if( pFile->locktype>=locktype ){
 | |
|     OSTRACE3( "LOCK %d %d ok (already held)\n", pFile->h, locktype );
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the locking sequence is correct
 | |
|   */
 | |
|   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
 | |
|   assert( locktype!=PENDING_LOCK );
 | |
|   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
 | |
| 
 | |
|   /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
 | |
|   ** a SHARED lock.  If we are acquiring a SHARED lock, the acquisition of
 | |
|   ** the PENDING_LOCK byte is temporary.
 | |
|   */
 | |
|   newLocktype = pFile->locktype;
 | |
|   if( pFile->locktype==NO_LOCK
 | |
|       || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
 | |
|   ){
 | |
|     int cnt = 3;
 | |
| 
 | |
|     LockArea.lOffset = PENDING_BYTE;
 | |
|     LockArea.lRange = 1L;
 | |
|     UnlockArea.lOffset = 0L;
 | |
|     UnlockArea.lRange = 0L;
 | |
| 
 | |
|     while( cnt-->0 && ( res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L) )
 | |
|                       != NO_ERROR
 | |
|     ){
 | |
|       /* Try 3 times to get the pending lock.  The pending lock might be
 | |
|       ** held by another reader process who will release it momentarily.
 | |
|       */
 | |
|       OSTRACE2( "LOCK could not get a PENDING lock. cnt=%d\n", cnt );
 | |
|       DosSleep(1);
 | |
|     }
 | |
|     if( res == NO_ERROR){
 | |
|       gotPendingLock = 1;
 | |
|       OSTRACE3( "LOCK %d pending lock boolean set.  res=%d\n", pFile->h, res );
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Acquire a shared lock
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK && res == NO_ERROR ){
 | |
|     assert( pFile->locktype==NO_LOCK );
 | |
|     res = getReadLock(pFile);
 | |
|     if( res == NO_ERROR ){
 | |
|       newLocktype = SHARED_LOCK;
 | |
|     }
 | |
|     OSTRACE3( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res );
 | |
|   }
 | |
| 
 | |
|   /* Acquire a RESERVED lock
 | |
|   */
 | |
|   if( locktype==RESERVED_LOCK && res == NO_ERROR ){
 | |
|     assert( pFile->locktype==SHARED_LOCK );
 | |
|     LockArea.lOffset = RESERVED_BYTE;
 | |
|     LockArea.lRange = 1L;
 | |
|     UnlockArea.lOffset = 0L;
 | |
|     UnlockArea.lRange = 0L;
 | |
|     res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     if( res == NO_ERROR ){
 | |
|       newLocktype = RESERVED_LOCK;
 | |
|     }
 | |
|     OSTRACE3( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res );
 | |
|   }
 | |
| 
 | |
|   /* Acquire a PENDING lock
 | |
|   */
 | |
|   if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
 | |
|     newLocktype = PENDING_LOCK;
 | |
|     gotPendingLock = 0;
 | |
|     OSTRACE2( "LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h );
 | |
|   }
 | |
| 
 | |
|   /* Acquire an EXCLUSIVE lock
 | |
|   */
 | |
|   if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
 | |
|     assert( pFile->locktype>=SHARED_LOCK );
 | |
|     res = unlockReadLock(pFile);
 | |
|     OSTRACE2( "unreadlock = %d\n", res );
 | |
|     LockArea.lOffset = SHARED_FIRST;
 | |
|     LockArea.lRange = SHARED_SIZE;
 | |
|     UnlockArea.lOffset = 0L;
 | |
|     UnlockArea.lRange = 0L;
 | |
|     res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     if( res == NO_ERROR ){
 | |
|       newLocktype = EXCLUSIVE_LOCK;
 | |
|     }else{
 | |
|       OSTRACE2( "OS/2 error-code = %d\n", res );
 | |
|       getReadLock(pFile);
 | |
|     }
 | |
|     OSTRACE3( "LOCK %d acquire exclusive lock.  res=%d\n", pFile->h, res );
 | |
|   }
 | |
| 
 | |
|   /* If we are holding a PENDING lock that ought to be released, then
 | |
|   ** release it now.
 | |
|   */
 | |
|   if( gotPendingLock && locktype==SHARED_LOCK ){
 | |
|     int r;
 | |
|     LockArea.lOffset = 0L;
 | |
|     LockArea.lRange = 0L;
 | |
|     UnlockArea.lOffset = PENDING_BYTE;
 | |
|     UnlockArea.lRange = 1L;
 | |
|     r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     OSTRACE3( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r );
 | |
|   }
 | |
| 
 | |
|   /* Update the state of the lock has held in the file descriptor then
 | |
|   ** return the appropriate result code.
 | |
|   */
 | |
|   if( res == NO_ERROR ){
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     OSTRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
 | |
|               locktype, newLocktype );
 | |
|     rc = SQLITE_BUSY;
 | |
|   }
 | |
|   pFile->locktype = newLocktype;
 | |
|   OSTRACE3( "LOCK %d now %d\n", pFile->h, pFile->locktype );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine checks if there is a RESERVED lock held on the specified
 | |
| ** file by this or any other process. If such a lock is held, return
 | |
| ** non-zero, otherwise zero.
 | |
| */
 | |
| int os2CheckReservedLock( sqlite3_file *id ){
 | |
|   int r = 0;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   assert( pFile!=0 );
 | |
|   if( pFile->locktype>=RESERVED_LOCK ){
 | |
|     r = 1;
 | |
|     OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, r );
 | |
|   }else{
 | |
|     FILELOCK  LockArea,
 | |
|               UnlockArea;
 | |
|     APIRET rc = NO_ERROR;
 | |
|     memset(&LockArea, 0, sizeof(LockArea));
 | |
|     memset(&UnlockArea, 0, sizeof(UnlockArea));
 | |
|     LockArea.lOffset = RESERVED_BYTE;
 | |
|     LockArea.lRange = 1L;
 | |
|     UnlockArea.lOffset = 0L;
 | |
|     UnlockArea.lRange = 0L;
 | |
|     rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     OSTRACE3( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc );
 | |
|     if( rc == NO_ERROR ){
 | |
|       APIRET rcu = NO_ERROR; /* return code for unlocking */
 | |
|       LockArea.lOffset = 0L;
 | |
|       LockArea.lRange = 0L;
 | |
|       UnlockArea.lOffset = RESERVED_BYTE;
 | |
|       UnlockArea.lRange = 1L;
 | |
|       rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|       OSTRACE3( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu );
 | |
|     }
 | |
|     r = !(rc == NO_ERROR);
 | |
|     OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r );
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lower the locking level on file descriptor id to locktype.  locktype
 | |
| ** must be either NO_LOCK or SHARED_LOCK.
 | |
| **
 | |
| ** If the locking level of the file descriptor is already at or below
 | |
| ** the requested locking level, this routine is a no-op.
 | |
| **
 | |
| ** It is not possible for this routine to fail if the second argument
 | |
| ** is NO_LOCK.  If the second argument is SHARED_LOCK then this routine
 | |
| ** might return SQLITE_IOERR;
 | |
| */
 | |
| int os2Unlock( sqlite3_file *id, int locktype ){
 | |
|   int type;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   APIRET rc = SQLITE_OK;
 | |
|   APIRET res = NO_ERROR;
 | |
|   FILELOCK  LockArea,
 | |
|             UnlockArea;
 | |
|   memset(&LockArea, 0, sizeof(LockArea));
 | |
|   memset(&UnlockArea, 0, sizeof(UnlockArea));
 | |
|   assert( pFile!=0 );
 | |
|   assert( locktype<=SHARED_LOCK );
 | |
|   OSTRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype );
 | |
|   type = pFile->locktype;
 | |
|   if( type>=EXCLUSIVE_LOCK ){
 | |
|     LockArea.lOffset = 0L;
 | |
|     LockArea.lRange = 0L;
 | |
|     UnlockArea.lOffset = SHARED_FIRST;
 | |
|     UnlockArea.lRange = SHARED_SIZE;
 | |
|     res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     OSTRACE3( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res );
 | |
|     if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
 | |
|       /* This should never happen.  We should always be able to
 | |
|       ** reacquire the read lock */
 | |
|       OSTRACE3( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype );
 | |
|       rc = SQLITE_IOERR_UNLOCK;
 | |
|     }
 | |
|   }
 | |
|   if( type>=RESERVED_LOCK ){
 | |
|     LockArea.lOffset = 0L;
 | |
|     LockArea.lRange = 0L;
 | |
|     UnlockArea.lOffset = RESERVED_BYTE;
 | |
|     UnlockArea.lRange = 1L;
 | |
|     res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     OSTRACE3( "UNLOCK %d reserved res=%d\n", pFile->h, res );
 | |
|   }
 | |
|   if( locktype==NO_LOCK && type>=SHARED_LOCK ){
 | |
|     res = unlockReadLock(pFile);
 | |
|     OSTRACE5( "UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res );
 | |
|   }
 | |
|   if( type>=PENDING_LOCK ){
 | |
|     LockArea.lOffset = 0L;
 | |
|     LockArea.lRange = 0L;
 | |
|     UnlockArea.lOffset = PENDING_BYTE;
 | |
|     UnlockArea.lRange = 1L;
 | |
|     res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
 | |
|     OSTRACE3( "UNLOCK %d pending res=%d\n", pFile->h, res );
 | |
|   }
 | |
|   pFile->locktype = locktype;
 | |
|   OSTRACE3( "UNLOCK %d now %d\n", pFile->h, pFile->locktype );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Control and query of the open file handle.
 | |
| */
 | |
| static int os2FileControl(sqlite3_file *id, int op, void *pArg){
 | |
|   switch( op ){
 | |
|     case SQLITE_FCNTL_LOCKSTATE: {
 | |
|       *(int*)pArg = ((os2File*)id)->locktype;
 | |
|       OSTRACE3( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype );
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_ERROR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the sector size in bytes of the underlying block device for
 | |
| ** the specified file. This is almost always 512 bytes, but may be
 | |
| ** larger for some devices.
 | |
| **
 | |
| ** SQLite code assumes this function cannot fail. It also assumes that
 | |
| ** if two files are created in the same file-system directory (i.e.
 | |
| ** a database and its journal file) that the sector size will be the
 | |
| ** same for both.
 | |
| */
 | |
| static int os2SectorSize(sqlite3_file *id){
 | |
|   return SQLITE_DEFAULT_SECTOR_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a vector of device characteristics.
 | |
| */
 | |
| static int os2DeviceCharacteristics(sqlite3_file *id){
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an
 | |
| ** sqlite3_file for os2.
 | |
| */
 | |
| static const sqlite3_io_methods os2IoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   os2Close,
 | |
|   os2Read,
 | |
|   os2Write,
 | |
|   os2Truncate,
 | |
|   os2Sync,
 | |
|   os2FileSize,
 | |
|   os2Lock,
 | |
|   os2Unlock,
 | |
|   os2CheckReservedLock,
 | |
|   os2FileControl,
 | |
|   os2SectorSize,
 | |
|   os2DeviceCharacteristics
 | |
| };
 | |
| 
 | |
| /***************************************************************************
 | |
| ** Here ends the I/O methods that form the sqlite3_io_methods object.
 | |
| **
 | |
| ** The next block of code implements the VFS methods.
 | |
| ****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** Open a file.
 | |
| */
 | |
| static int os2Open(
 | |
|   sqlite3_vfs *pVfs,            /* Not used */
 | |
|   const char *zName,            /* Name of the file */
 | |
|   sqlite3_file *id,             /* Write the SQLite file handle here */
 | |
|   int flags,                    /* Open mode flags */
 | |
|   int *pOutFlags                /* Status return flags */
 | |
| ){
 | |
|   HFILE h;
 | |
|   ULONG ulFileAttribute = 0;
 | |
|   ULONG ulOpenFlags = 0;
 | |
|   ULONG ulOpenMode = 0;
 | |
|   os2File *pFile = (os2File*)id;
 | |
|   APIRET rc = NO_ERROR;
 | |
|   ULONG ulAction;
 | |
| 
 | |
|   memset(pFile, 0, sizeof(*pFile));
 | |
| 
 | |
|   OSTRACE2( "OPEN want %d\n", flags );
 | |
| 
 | |
|   //ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY;
 | |
|   if( flags & SQLITE_OPEN_READWRITE ){
 | |
|     ulOpenMode |= OPEN_ACCESS_READWRITE;
 | |
|     OSTRACE1( "OPEN read/write\n" );
 | |
|   }else{
 | |
|     ulOpenMode |= OPEN_ACCESS_READONLY;
 | |
|     OSTRACE1( "OPEN read only\n" );
 | |
|   }
 | |
| 
 | |
|   //ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW;
 | |
|   if( flags & SQLITE_OPEN_CREATE ){
 | |
|     ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW;
 | |
|     OSTRACE1( "OPEN open new/create\n" );
 | |
|   }else{
 | |
|     ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW;
 | |
|     OSTRACE1( "OPEN open existing\n" );
 | |
|   }
 | |
| 
 | |
|   //ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE;
 | |
|   if( flags & SQLITE_OPEN_MAIN_DB ){
 | |
|     ulOpenMode |= OPEN_SHARE_DENYNONE;
 | |
|     OSTRACE1( "OPEN share read/write\n" );
 | |
|   }else{
 | |
|     ulOpenMode |= OPEN_SHARE_DENYWRITE;
 | |
|     OSTRACE1( "OPEN share read only\n" );
 | |
|   }
 | |
| 
 | |
|   if( flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL
 | |
|                | SQLITE_OPEN_SUBJOURNAL) ){
 | |
|     //ulFileAttribute = FILE_HIDDEN;  //for debugging, we want to make sure it is deleted
 | |
|     ulFileAttribute = FILE_NORMAL;
 | |
|     pFile->delOnClose = 1;
 | |
|     pFile->pathToDel = (char*)malloc(sizeof(char) * pVfs->mxPathname);
 | |
|     sqlite3OsFullPathname(pVfs, zName, pVfs->mxPathname, pFile->pathToDel);
 | |
|     OSTRACE1( "OPEN hidden/delete on close file attributes\n" );
 | |
|   }else{
 | |
|     ulFileAttribute = FILE_ARCHIVED | FILE_NORMAL;
 | |
|     pFile->delOnClose = 0;
 | |
|     pFile->pathToDel = NULL;
 | |
|     OSTRACE1( "OPEN normal file attribute\n" );
 | |
|   }
 | |
| 
 | |
|   /* always open in random access mode for possibly better speed */
 | |
|   ulOpenMode |= OPEN_FLAGS_RANDOM;
 | |
|   ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR;
 | |
| 
 | |
|   rc = DosOpen( (PSZ)zName,
 | |
|                 &h,
 | |
|                 &ulAction,
 | |
|                 0L,
 | |
|                 ulFileAttribute,
 | |
|                 ulOpenFlags,
 | |
|                 ulOpenMode,
 | |
|                 (PEAOP2)NULL );
 | |
|   if( rc != NO_ERROR ){
 | |
|     OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
 | |
|               rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode );
 | |
|     if( flags & SQLITE_OPEN_READWRITE ){
 | |
|       OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) );
 | |
|       return os2Open( 0, zName, id,
 | |
|                       ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE),
 | |
|                       pOutFlags );
 | |
|     }else{
 | |
|       return SQLITE_CANTOPEN;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( pOutFlags ){
 | |
|     *pOutFlags = flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
 | |
|   }
 | |
| 
 | |
|   pFile->pMethod = &os2IoMethod;
 | |
|   pFile->h = h;
 | |
|   OpenCounter(+1);
 | |
|   OSTRACE3( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags );
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the named file.
 | |
| */
 | |
| int os2Delete(
 | |
|   sqlite3_vfs *pVfs,                     /* Not used on os2 */
 | |
|   const char *zFilename,                 /* Name of file to delete */
 | |
|   int syncDir                            /* Not used on os2 */
 | |
| ){
 | |
|   APIRET rc = NO_ERROR;
 | |
|   SimulateIOError(return SQLITE_IOERR_DELETE);
 | |
|   rc = DosDelete( (PSZ)zFilename );
 | |
|   OSTRACE2( "DELETE \"%s\"\n", zFilename );
 | |
|   return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check the existance and status of a file.
 | |
| */
 | |
| static int os2Access(
 | |
|   sqlite3_vfs *pVfs,        /* Not used on os2 */
 | |
|   const char *zFilename,    /* Name of file to check */
 | |
|   int flags                 /* Type of test to make on this file */
 | |
| ){
 | |
|   FILESTATUS3 fsts3ConfigInfo;
 | |
|   APIRET rc = NO_ERROR;
 | |
| 
 | |
|   memset(&fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo));
 | |
|   rc = DosQueryPathInfo( (PSZ)zFilename, FIL_STANDARD,
 | |
|                          &fsts3ConfigInfo, sizeof(FILESTATUS3) );
 | |
|   OSTRACE4( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
 | |
|             fsts3ConfigInfo.attrFile, flags, rc );
 | |
|   switch( flags ){
 | |
|     case SQLITE_ACCESS_READ:
 | |
|     case SQLITE_ACCESS_EXISTS:
 | |
|       rc = (rc == NO_ERROR);
 | |
|       OSTRACE3( "ACCESS %s access of read and exists  rc=%d\n", zFilename, rc );
 | |
|       break;
 | |
|     case SQLITE_ACCESS_READWRITE:
 | |
|       rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0;
 | |
|       OSTRACE3( "ACCESS %s access of read/write  rc=%d\n", zFilename, rc );
 | |
|       break;
 | |
|     default:
 | |
|       assert( !"Invalid flags argument" );
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a temporary file name in zBuf.  zBuf must be big enough to
 | |
| ** hold at pVfs->mxPathname characters.
 | |
| */
 | |
| static int os2GetTempname( sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
 | |
|   static const unsigned char zChars[] =
 | |
|     "abcdefghijklmnopqrstuvwxyz"
 | |
|     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|     "0123456789";
 | |
|   int i, j;
 | |
|   char zTempPathBuf[3];
 | |
|   PSZ zTempPath = (PSZ)&zTempPathBuf;
 | |
|   if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){
 | |
|     if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){
 | |
|       if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){
 | |
|            ULONG ulDriveNum = 0, ulDriveMap = 0;
 | |
|            DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
 | |
|            sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) );
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /* strip off a trailing slashes or backslashes, otherwise we would get *
 | |
|    * multiple (back)slashes which causes DosOpen() to fail               */
 | |
|   j = strlen(zTempPath);
 | |
|   while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ) ){
 | |
|     j--;
 | |
|   }
 | |
|   zTempPath[j] = '\0';
 | |
|   sqlite3_snprintf( nBuf-30, zBuf,
 | |
|                     "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath );
 | |
|   j = strlen( zBuf );
 | |
|   sqlite3Randomness( 20, &zBuf[j] );
 | |
|   for( i = 0; i < 20; i++, j++ ){
 | |
|     zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
 | |
|   }
 | |
|   zBuf[j] = 0;
 | |
|   OSTRACE2( "TEMP FILENAME: %s\n", zBuf );
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Turn a relative pathname into a full pathname.  Write the full
 | |
| ** pathname into zFull[].  zFull[] will be at least pVfs->mxPathname
 | |
| ** bytes in size.
 | |
| */
 | |
| static int os2FullPathname(
 | |
|   sqlite3_vfs *pVfs,          /* Pointer to vfs object */
 | |
|   const char *zRelative,      /* Possibly relative input path */
 | |
|   int nFull,                  /* Size of output buffer in bytes */
 | |
|   char *zFull                 /* Output buffer */
 | |
| ){
 | |
|   APIRET rc = DosQueryPathInfo( zRelative, FIL_QUERYFULLNAME, zFull, nFull );
 | |
|   return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| /*
 | |
| ** Interfaces for opening a shared library, finding entry points
 | |
| ** within the shared library, and closing the shared library.
 | |
| */
 | |
| /*
 | |
| ** Interfaces for opening a shared library, finding entry points
 | |
| ** within the shared library, and closing the shared library.
 | |
| */
 | |
| static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
 | |
|   UCHAR loadErr[256];
 | |
|   HMODULE hmod;
 | |
|   APIRET rc;
 | |
|   rc = DosLoadModule((PSZ)loadErr, sizeof(loadErr), zFilename, &hmod);
 | |
|   return rc != NO_ERROR ? 0 : (void*)hmod;
 | |
| }
 | |
| /*
 | |
| ** A no-op since the error code is returned on the DosLoadModule call.
 | |
| ** os2Dlopen returns zero if DosLoadModule is not successful.
 | |
| */
 | |
| static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
 | |
| /* no-op */
 | |
| }
 | |
| void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
 | |
|   PFN pfn;
 | |
|   APIRET rc;
 | |
|   rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn);
 | |
|   if( rc != NO_ERROR ){
 | |
|     /* if the symbol itself was not found, search again for the same
 | |
|      * symbol with an extra underscore, that might be needed depending
 | |
|      * on the calling convention */
 | |
|     char _zSymbol[256] = "_";
 | |
|     strncat(_zSymbol, zSymbol, 255);
 | |
|     rc = DosQueryProcAddr((HMODULE)pHandle, 0L, _zSymbol, &pfn);
 | |
|   }
 | |
|   return rc != NO_ERROR ? 0 : (void*)pfn;
 | |
| }
 | |
| void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
 | |
|   DosFreeModule((HMODULE)pHandle);
 | |
| }
 | |
| #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
 | |
|   #define os2DlOpen 0
 | |
|   #define os2DlError 0
 | |
|   #define os2DlSym 0
 | |
|   #define os2DlClose 0
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Write up to nBuf bytes of randomness into zBuf.
 | |
| */
 | |
| static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
 | |
|   ULONG sizeofULong = sizeof(ULONG);
 | |
|   int n = 0;
 | |
|   if( sizeof(DATETIME) <= nBuf - n ){
 | |
|     DATETIME x;
 | |
|     DosGetDateTime(&x);
 | |
|     memcpy(&zBuf[n], &x, sizeof(x));
 | |
|     n += sizeof(x);
 | |
|   }
 | |
| 
 | |
|   if( sizeofULong <= nBuf - n ){
 | |
|     PPIB ppib;
 | |
|     DosGetInfoBlocks(NULL, &ppib);
 | |
|     memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong);
 | |
|     n += sizeofULong;
 | |
|   }
 | |
| 
 | |
|   if( sizeofULong <= nBuf - n ){
 | |
|     PTIB ptib;
 | |
|     DosGetInfoBlocks(&ptib, NULL);
 | |
|     memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong);
 | |
|     n += sizeofULong;
 | |
|   }
 | |
| 
 | |
|   /* if we still haven't filled the buffer yet the following will */
 | |
|   /* grab everything once instead of making several calls for a single item */
 | |
|   if( sizeofULong <= nBuf - n ){
 | |
|     ULONG ulSysInfo[QSV_MAX];
 | |
|     DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX);
 | |
| 
 | |
|     memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong);
 | |
|     n += sizeofULong;
 | |
| 
 | |
|     if( sizeofULong <= nBuf - n ){
 | |
|       memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong);
 | |
|       n += sizeofULong;
 | |
|     }
 | |
|     if( sizeofULong <= nBuf - n ){
 | |
|       memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong);
 | |
|       n += sizeofULong;
 | |
|     }
 | |
|     if( sizeofULong <= nBuf - n ){
 | |
|       memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong);
 | |
|       n += sizeofULong;
 | |
|     }
 | |
|     if( sizeofULong <= nBuf - n ){
 | |
|       memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong);
 | |
|       n += sizeofULong;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Sleep for a little while.  Return the amount of time slept.
 | |
| ** The argument is the number of microseconds we want to sleep.
 | |
| ** The return value is the number of microseconds of sleep actually
 | |
| ** requested from the underlying operating system, a number which
 | |
| ** might be greater than or equal to the argument, but not less
 | |
| ** than the argument.
 | |
| */
 | |
| static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
 | |
|   DosSleep( (microsec/1000) );
 | |
|   return microsec;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following variable, if set to a non-zero value, becomes the result
 | |
| ** returned from sqlite3OsCurrentTime().  This is used for testing.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_current_time = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Find the current time (in Universal Coordinated Time).  Write the
 | |
| ** current time and date as a Julian Day number into *prNow and
 | |
| ** return 0.  Return 1 if the time and date cannot be found.
 | |
| */
 | |
| int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
 | |
|   double now;
 | |
|   SHORT minute; /* needs to be able to cope with negative timezone offset */
 | |
|   USHORT second, hour,
 | |
|          day, month, year;
 | |
|   DATETIME dt;
 | |
|   DosGetDateTime( &dt );
 | |
|   second = (USHORT)dt.seconds;
 | |
|   minute = (SHORT)dt.minutes + dt.timezone;
 | |
|   hour = (USHORT)dt.hours;
 | |
|   day = (USHORT)dt.day;
 | |
|   month = (USHORT)dt.month;
 | |
|   year = (USHORT)dt.year;
 | |
| 
 | |
|   /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
 | |
|      http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
 | |
|   /* Calculate the Julian days */
 | |
|   now = day - 32076 +
 | |
|     1461*(year + 4800 + (month - 14)/12)/4 +
 | |
|     367*(month - 2 - (month - 14)/12*12)/12 -
 | |
|     3*((year + 4900 + (month - 14)/12)/100)/4;
 | |
| 
 | |
|   /* Add the fractional hours, mins and seconds */
 | |
|   now += (hour + 12.0)/24.0;
 | |
|   now += minute/1440.0;
 | |
|   now += second/86400.0;
 | |
|   *prNow = now;
 | |
| #ifdef SQLITE_TEST
 | |
|   if( sqlite3_current_time ){
 | |
|     *prNow = sqlite3_current_time/86400.0 + 2440587.5;
 | |
|   }
 | |
| #endif
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the sqlite3DefaultVfs structure.   We use
 | |
| ** a function rather than give the structure global scope because
 | |
| ** some compilers (MSVC) do not allow forward declarations of
 | |
| ** initialized structures.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
 | |
|   static sqlite3_vfs os2Vfs = {
 | |
|     1,                 /* iVersion */
 | |
|     sizeof(os2File),   /* szOsFile */
 | |
|     CCHMAXPATH,        /* mxPathname */
 | |
|     0,                 /* pNext */
 | |
|     "os2",             /* zName */
 | |
|     0,                 /* pAppData */
 | |
| 
 | |
|     os2Open,           /* xOpen */
 | |
|     os2Delete,         /* xDelete */
 | |
|     os2Access,         /* xAccess */
 | |
|     os2GetTempname,    /* xGetTempname */
 | |
|     os2FullPathname,   /* xFullPathname */
 | |
|     os2DlOpen,         /* xDlOpen */
 | |
|     os2DlError,        /* xDlError */
 | |
|     os2DlSym,          /* xDlSym */
 | |
|     os2DlClose,        /* xDlClose */
 | |
|     os2Randomness,     /* xRandomness */
 | |
|     os2Sleep,          /* xSleep */
 | |
|     os2CurrentTime     /* xCurrentTime */
 | |
|   };
 | |
| 
 | |
|   return &os2Vfs;
 | |
| }
 | |
| 
 | |
| #endif /* OS_OS2 */
 | |
| 
 | |
| /************** End of os_os2.c **********************************************/
 | |
| /************** Begin file os_unix.c *****************************************/
 | |
| /*
 | |
| ** 2004 May 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains code that is specific to Unix systems.
 | |
| */
 | |
| #if OS_UNIX              /* This file is used on unix only */
 | |
| 
 | |
| /* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
 | |
| 
 | |
| /*
 | |
| ** These #defines should enable >2GB file support on Posix if the
 | |
| ** underlying operating system supports it.  If the OS lacks
 | |
| ** large file support, these should be no-ops.
 | |
| **
 | |
| ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
 | |
| ** on the compiler command line.  This is necessary if you are compiling
 | |
| ** on a recent machine (ex: RedHat 7.2) but you want your code to work
 | |
| ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
 | |
| ** without this option, LFS is enable.  But LFS does not exist in the kernel
 | |
| ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
 | |
| ** portability you should omit LFS.
 | |
| */
 | |
| #ifndef SQLITE_DISABLE_LFS
 | |
| # define _LARGE_FILE       1
 | |
| # ifndef _FILE_OFFSET_BITS
 | |
| #   define _FILE_OFFSET_BITS 64
 | |
| # endif
 | |
| # define _LARGEFILE_SOURCE 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** standard include files.
 | |
| */
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| #include <fcntl.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/time.h>
 | |
| #include <errno.h>
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/param.h>
 | |
| #include <sys/mount.h>
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| 
 | |
| /*
 | |
| ** If we are to be thread-safe, include the pthreads header and define
 | |
| ** the SQLITE_UNIX_THREADS macro.
 | |
| */
 | |
| #if SQLITE_THREADSAFE
 | |
| # define SQLITE_UNIX_THREADS 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Default permissions when creating a new file
 | |
| */
 | |
| #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
 | |
| # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Maximum supported path-length.
 | |
| */
 | |
| #define MAX_PATHNAME 512
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The unixFile structure is subclass of sqlite3_file specific for the unix
 | |
| ** protability layer.
 | |
| */
 | |
| typedef struct unixFile unixFile;
 | |
| struct unixFile {
 | |
|   sqlite3_io_methods const *pMethod;  /* Always the first entry */
 | |
| #ifdef SQLITE_TEST
 | |
|   /* In test mode, increase the size of this structure a bit so that 
 | |
|   ** it is larger than the struct CrashFile defined in test6.c.
 | |
|   */
 | |
|   char aPadding[32];
 | |
| #endif
 | |
|   struct openCnt *pOpen;    /* Info about all open fd's on this inode */
 | |
|   struct lockInfo *pLock;   /* Info about locks on this inode */
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
|   void *lockingContext;     /* Locking style specific state */
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
|   int h;                    /* The file descriptor */
 | |
|   unsigned char locktype;   /* The type of lock held on this fd */
 | |
|   int dirfd;                /* File descriptor for the directory */
 | |
| #if SQLITE_THREADSAFE
 | |
|   pthread_t tid;            /* The thread that "owns" this unixFile */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Include code that is common to all os_*.c files
 | |
| */
 | |
| /************** Include os_common.h in the middle of os_unix.c ***************/
 | |
| /************** Begin file os_common.h ***************************************/
 | |
| /*
 | |
| ** 2004 May 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains macros and a little bit of code that is common to
 | |
| ** all of the platform-specific files (os_*.c) and is #included into those
 | |
| ** files.
 | |
| **
 | |
| ** This file should be #included by the os_*.c files only.  It is not a
 | |
| ** general purpose header file.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
 | |
| ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
 | |
| ** switch.  The following code should catch this problem at compile-time.
 | |
| */
 | |
| #ifdef MEMORY_DEBUG
 | |
| # error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * When testing, this global variable stores the location of the
 | |
|  * pending-byte in the database file.
 | |
|  */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE int sqlite3OSTrace = 0;
 | |
| #define OSTRACE1(X)         if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
 | |
| #define OSTRACE2(X,Y)       if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
 | |
| #define OSTRACE3(X,Y,Z)     if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
 | |
| #define OSTRACE4(X,Y,Z,A)   if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
 | |
| #define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
 | |
| #define OSTRACE6(X,Y,Z,A,B,C) \
 | |
|     if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
 | |
| #define OSTRACE7(X,Y,Z,A,B,C,D) \
 | |
|     if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
 | |
| #else
 | |
| #define OSTRACE1(X)
 | |
| #define OSTRACE2(X,Y)
 | |
| #define OSTRACE3(X,Y,Z)
 | |
| #define OSTRACE4(X,Y,Z,A)
 | |
| #define OSTRACE5(X,Y,Z,A,B)
 | |
| #define OSTRACE6(X,Y,Z,A,B,C)
 | |
| #define OSTRACE7(X,Y,Z,A,B,C,D)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Macros for performance tracing.  Normally turned off.  Only works
 | |
| ** on i486 hardware.
 | |
| */
 | |
| #ifdef SQLITE_PERFORMANCE_TRACE
 | |
| __inline__ unsigned long long int hwtime(void){
 | |
|   unsigned long long int x;
 | |
|   __asm__("rdtsc\n\t"
 | |
|           "mov %%edx, %%ecx\n\t"
 | |
|           :"=A" (x));
 | |
|   return x;
 | |
| }
 | |
| static unsigned long long int g_start;
 | |
| static unsigned int elapse;
 | |
| #define TIMER_START       g_start=hwtime()
 | |
| #define TIMER_END         elapse=hwtime()-g_start
 | |
| #define TIMER_ELAPSED     elapse
 | |
| #else
 | |
| #define TIMER_START
 | |
| #define TIMER_END
 | |
| #define TIMER_ELAPSED     0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If we compile with the SQLITE_TEST macro set, then the following block
 | |
| ** of code will give us the ability to simulate a disk I/O error.  This
 | |
| ** is used for testing the I/O recovery logic.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
 | |
| SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
 | |
| SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
 | |
| SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
 | |
| SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
 | |
| SQLITE_API int sqlite3_diskfull_pending = 0;
 | |
| SQLITE_API int sqlite3_diskfull = 0;
 | |
| #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
 | |
| #define SimulateIOError(CODE)  \
 | |
|   if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
 | |
|        || sqlite3_io_error_pending-- == 1 )  \
 | |
|               { local_ioerr(); CODE; }
 | |
| static void local_ioerr(){
 | |
|   IOTRACE(("IOERR\n"));
 | |
|   sqlite3_io_error_hit++;
 | |
|   if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
 | |
| }
 | |
| #define SimulateDiskfullError(CODE) \
 | |
|    if( sqlite3_diskfull_pending ){ \
 | |
|      if( sqlite3_diskfull_pending == 1 ){ \
 | |
|        local_ioerr(); \
 | |
|        sqlite3_diskfull = 1; \
 | |
|        sqlite3_io_error_hit = 1; \
 | |
|        CODE; \
 | |
|      }else{ \
 | |
|        sqlite3_diskfull_pending--; \
 | |
|      } \
 | |
|    }
 | |
| #else
 | |
| #define SimulateIOErrorBenign(X)
 | |
| #define SimulateIOError(A)
 | |
| #define SimulateDiskfullError(A)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When testing, keep a count of the number of open files.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_open_file_count = 0;
 | |
| #define OpenCounter(X)  sqlite3_open_file_count+=(X)
 | |
| #else
 | |
| #define OpenCounter(X)
 | |
| #endif
 | |
| 
 | |
| /************** End of os_common.h *******************************************/
 | |
| /************** Continuing where we left off in os_unix.c ********************/
 | |
| 
 | |
| /*
 | |
| ** Define various macros that are missing from some systems.
 | |
| */
 | |
| #ifndef O_LARGEFILE
 | |
| # define O_LARGEFILE 0
 | |
| #endif
 | |
| #ifdef SQLITE_DISABLE_LFS
 | |
| # undef O_LARGEFILE
 | |
| # define O_LARGEFILE 0
 | |
| #endif
 | |
| #ifndef O_NOFOLLOW
 | |
| # define O_NOFOLLOW 0
 | |
| #endif
 | |
| #ifndef O_BINARY
 | |
| # define O_BINARY 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The DJGPP compiler environment looks mostly like Unix, but it
 | |
| ** lacks the fcntl() system call.  So redefine fcntl() to be something
 | |
| ** that always succeeds.  This means that locking does not occur under
 | |
| ** DJGPP.  But it is DOS - what did you expect?
 | |
| */
 | |
| #ifdef __DJGPP__
 | |
| # define fcntl(A,B,C) 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The threadid macro resolves to the thread-id or to 0.  Used for
 | |
| ** testing and debugging only.
 | |
| */
 | |
| #if SQLITE_THREADSAFE
 | |
| #define threadid pthread_self()
 | |
| #else
 | |
| #define threadid 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Set or check the unixFile.tid field.  This field is set when an unixFile
 | |
| ** is first opened.  All subsequent uses of the unixFile verify that the
 | |
| ** same thread is operating on the unixFile.  Some operating systems do
 | |
| ** not allow locks to be overridden by other threads and that restriction
 | |
| ** means that sqlite3* database handles cannot be moved from one thread
 | |
| ** to another.  This logic makes sure a user does not try to do that
 | |
| ** by mistake.
 | |
| **
 | |
| ** Version 3.3.1 (2006-01-15):  unixFile can be moved from one thread to
 | |
| ** another as long as we are running on a system that supports threads
 | |
| ** overriding each others locks (which now the most common behavior)
 | |
| ** or if no locks are held.  But the unixFile.pLock field needs to be
 | |
| ** recomputed because its key includes the thread-id.  See the 
 | |
| ** transferOwnership() function below for additional information
 | |
| */
 | |
| #if SQLITE_THREADSAFE
 | |
| # define SET_THREADID(X)   (X)->tid = pthread_self()
 | |
| # define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
 | |
|                             !pthread_equal((X)->tid, pthread_self()))
 | |
| #else
 | |
| # define SET_THREADID(X)
 | |
| # define CHECK_THREADID(X) 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
 | |
| ** section 6.5.2.2 lines 483 through 490 specify that when a process
 | |
| ** sets or clears a lock, that operation overrides any prior locks set
 | |
| ** by the same process.  It does not explicitly say so, but this implies
 | |
| ** that it overrides locks set by the same process using a different
 | |
| ** file descriptor.  Consider this test case:
 | |
| **
 | |
| **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
 | |
| **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
 | |
| **
 | |
| ** Suppose ./file1 and ./file2 are really the same file (because
 | |
| ** one is a hard or symbolic link to the other) then if you set
 | |
| ** an exclusive lock on fd1, then try to get an exclusive lock
 | |
| ** on fd2, it works.  I would have expected the second lock to
 | |
| ** fail since there was already a lock on the file due to fd1.
 | |
| ** But not so.  Since both locks came from the same process, the
 | |
| ** second overrides the first, even though they were on different
 | |
| ** file descriptors opened on different file names.
 | |
| **
 | |
| ** Bummer.  If you ask me, this is broken.  Badly broken.  It means
 | |
| ** that we cannot use POSIX locks to synchronize file access among
 | |
| ** competing threads of the same process.  POSIX locks will work fine
 | |
| ** to synchronize access for threads in separate processes, but not
 | |
| ** threads within the same process.
 | |
| **
 | |
| ** To work around the problem, SQLite has to manage file locks internally
 | |
| ** on its own.  Whenever a new database is opened, we have to find the
 | |
| ** specific inode of the database file (the inode is determined by the
 | |
| ** st_dev and st_ino fields of the stat structure that fstat() fills in)
 | |
| ** and check for locks already existing on that inode.  When locks are
 | |
| ** created or removed, we have to look at our own internal record of the
 | |
| ** locks to see if another thread has previously set a lock on that same
 | |
| ** inode.
 | |
| **
 | |
| ** The sqlite3_file structure for POSIX is no longer just an integer file
 | |
| ** descriptor.  It is now a structure that holds the integer file
 | |
| ** descriptor and a pointer to a structure that describes the internal
 | |
| ** locks on the corresponding inode.  There is one locking structure
 | |
| ** per inode, so if the same inode is opened twice, both unixFile structures
 | |
| ** point to the same locking structure.  The locking structure keeps
 | |
| ** a reference count (so we will know when to delete it) and a "cnt"
 | |
| ** field that tells us its internal lock status.  cnt==0 means the
 | |
| ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
 | |
| ** cnt>0 means there are cnt shared locks on the file.
 | |
| **
 | |
| ** Any attempt to lock or unlock a file first checks the locking
 | |
| ** structure.  The fcntl() system call is only invoked to set a 
 | |
| ** POSIX lock if the internal lock structure transitions between
 | |
| ** a locked and an unlocked state.
 | |
| **
 | |
| ** 2004-Jan-11:
 | |
| ** More recent discoveries about POSIX advisory locks.  (The more
 | |
| ** I discover, the more I realize the a POSIX advisory locks are
 | |
| ** an abomination.)
 | |
| **
 | |
| ** If you close a file descriptor that points to a file that has locks,
 | |
| ** all locks on that file that are owned by the current process are
 | |
| ** released.  To work around this problem, each unixFile structure contains
 | |
| ** a pointer to an openCnt structure.  There is one openCnt structure
 | |
| ** per open inode, which means that multiple unixFile can point to a single
 | |
| ** openCnt.  When an attempt is made to close an unixFile, if there are
 | |
| ** other unixFile open on the same inode that are holding locks, the call
 | |
| ** to close() the file descriptor is deferred until all of the locks clear.
 | |
| ** The openCnt structure keeps a list of file descriptors that need to
 | |
| ** be closed and that list is walked (and cleared) when the last lock
 | |
| ** clears.
 | |
| **
 | |
| ** First, under Linux threads, because each thread has a separate
 | |
| ** process ID, lock operations in one thread do not override locks
 | |
| ** to the same file in other threads.  Linux threads behave like
 | |
| ** separate processes in this respect.  But, if you close a file
 | |
| ** descriptor in linux threads, all locks are cleared, even locks
 | |
| ** on other threads and even though the other threads have different
 | |
| ** process IDs.  Linux threads is inconsistent in this respect.
 | |
| ** (I'm beginning to think that linux threads is an abomination too.)
 | |
| ** The consequence of this all is that the hash table for the lockInfo
 | |
| ** structure has to include the process id as part of its key because
 | |
| ** locks in different threads are treated as distinct.  But the 
 | |
| ** openCnt structure should not include the process id in its
 | |
| ** key because close() clears lock on all threads, not just the current
 | |
| ** thread.  Were it not for this goofiness in linux threads, we could
 | |
| ** combine the lockInfo and openCnt structures into a single structure.
 | |
| **
 | |
| ** 2004-Jun-28:
 | |
| ** On some versions of linux, threads can override each others locks.
 | |
| ** On others not.  Sometimes you can change the behavior on the same
 | |
| ** system by setting the LD_ASSUME_KERNEL environment variable.  The
 | |
| ** POSIX standard is silent as to which behavior is correct, as far
 | |
| ** as I can tell, so other versions of unix might show the same
 | |
| ** inconsistency.  There is no little doubt in my mind that posix
 | |
| ** advisory locks and linux threads are profoundly broken.
 | |
| **
 | |
| ** To work around the inconsistencies, we have to test at runtime 
 | |
| ** whether or not threads can override each others locks.  This test
 | |
| ** is run once, the first time any lock is attempted.  A static 
 | |
| ** variable is set to record the results of this test for future
 | |
| ** use.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure serves as the key used
 | |
| ** to locate a particular lockInfo structure given its inode.
 | |
| **
 | |
| ** If threads cannot override each others locks, then we set the
 | |
| ** lockKey.tid field to the thread ID.  If threads can override
 | |
| ** each others locks then tid is always set to zero.  tid is omitted
 | |
| ** if we compile without threading support.
 | |
| */
 | |
| struct lockKey {
 | |
|   dev_t dev;       /* Device number */
 | |
|   ino_t ino;       /* Inode number */
 | |
| #if SQLITE_THREADSAFE
 | |
|   pthread_t tid;   /* Thread ID or zero if threads can override each other */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure is allocated for each open
 | |
| ** inode on each thread with a different process ID.  (Threads have
 | |
| ** different process IDs on linux, but not on most other unixes.)
 | |
| **
 | |
| ** A single inode can have multiple file descriptors, so each unixFile
 | |
| ** structure contains a pointer to an instance of this object and this
 | |
| ** object keeps a count of the number of unixFile pointing to it.
 | |
| */
 | |
| struct lockInfo {
 | |
|   struct lockKey key;  /* The lookup key */
 | |
|   int cnt;             /* Number of SHARED locks held */
 | |
|   int locktype;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
 | |
|   int nRef;            /* Number of pointers to this structure */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure serves as the key used
 | |
| ** to locate a particular openCnt structure given its inode.  This
 | |
| ** is the same as the lockKey except that the thread ID is omitted.
 | |
| */
 | |
| struct openKey {
 | |
|   dev_t dev;   /* Device number */
 | |
|   ino_t ino;   /* Inode number */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure is allocated for each open
 | |
| ** inode.  This structure keeps track of the number of locks on that
 | |
| ** inode.  If a close is attempted against an inode that is holding
 | |
| ** locks, the close is deferred until all locks clear by adding the
 | |
| ** file descriptor to be closed to the pending list.
 | |
| */
 | |
| struct openCnt {
 | |
|   struct openKey key;   /* The lookup key */
 | |
|   int nRef;             /* Number of pointers to this structure */
 | |
|   int nLock;            /* Number of outstanding locks */
 | |
|   int nPending;         /* Number of pending close() operations */
 | |
|   int *aPending;        /* Malloced space holding fd's awaiting a close() */
 | |
| };
 | |
| 
 | |
| /* 
 | |
| ** These hash tables map inodes and file descriptors (really, lockKey and
 | |
| ** openKey structures) into lockInfo and openCnt structures.  Access to 
 | |
| ** these hash tables must be protected by a mutex.
 | |
| */
 | |
| static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
 | |
| static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0};
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
| /*
 | |
| ** The locking styles are associated with the different file locking
 | |
| ** capabilities supported by different file systems.  
 | |
| **
 | |
| ** POSIX locking style fully supports shared and exclusive byte-range locks 
 | |
| ** ADP locking only supports exclusive byte-range locks
 | |
| ** FLOCK only supports a single file-global exclusive lock
 | |
| ** DOTLOCK isn't a true locking style, it refers to the use of a special
 | |
| **   file named the same as the database file with a '.lock' extension, this
 | |
| **   can be used on file systems that do not offer any reliable file locking
 | |
| ** NO locking means that no locking will be attempted, this is only used for
 | |
| **   read-only file systems currently
 | |
| ** UNSUPPORTED means that no locking will be attempted, this is only used for
 | |
| **   file systems that are known to be unsupported
 | |
| */
 | |
| typedef enum {
 | |
|   posixLockingStyle = 0,       /* standard posix-advisory locks */
 | |
|   afpLockingStyle,             /* use afp locks */
 | |
|   flockLockingStyle,           /* use flock() */
 | |
|   dotlockLockingStyle,         /* use <file>.lock files */
 | |
|   noLockingStyle,              /* useful for read-only file system */
 | |
|   unsupportedLockingStyle      /* indicates unsupported file system */
 | |
| } sqlite3LockingStyle;
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| 
 | |
| /*
 | |
| ** Helper functions to obtain and relinquish the global mutex.
 | |
| */
 | |
| static void enterMutex(){
 | |
|   sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
 | |
| }
 | |
| static void leaveMutex(){
 | |
|   sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER));
 | |
| }
 | |
| 
 | |
| #if SQLITE_THREADSAFE
 | |
| /*
 | |
| ** This variable records whether or not threads can override each others
 | |
| ** locks.
 | |
| **
 | |
| **    0:  No.  Threads cannot override each others locks.
 | |
| **    1:  Yes.  Threads can override each others locks.
 | |
| **   -1:  We don't know yet.
 | |
| **
 | |
| ** On some systems, we know at compile-time if threads can override each
 | |
| ** others locks.  On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
 | |
| ** will be set appropriately.  On other systems, we have to check at
 | |
| ** runtime.  On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
 | |
| ** undefined.
 | |
| **
 | |
| ** This variable normally has file scope only.  But during testing, we make
 | |
| ** it a global so that the test code can change its value in order to verify
 | |
| ** that the right stuff happens in either case.
 | |
| */
 | |
| #ifndef SQLITE_THREAD_OVERRIDE_LOCK
 | |
| # define SQLITE_THREAD_OVERRIDE_LOCK -1
 | |
| #endif
 | |
| #ifdef SQLITE_TEST
 | |
| int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
 | |
| #else
 | |
| static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This structure holds information passed into individual test
 | |
| ** threads by the testThreadLockingBehavior() routine.
 | |
| */
 | |
| struct threadTestData {
 | |
|   int fd;                /* File to be locked */
 | |
|   struct flock lock;     /* The locking operation */
 | |
|   int result;            /* Result of the locking operation */
 | |
| };
 | |
| 
 | |
| #ifdef SQLITE_LOCK_TRACE
 | |
| /*
 | |
| ** Print out information about all locking operations.
 | |
| **
 | |
| ** This routine is used for troubleshooting locks on multithreaded
 | |
| ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
 | |
| ** command-line option on the compiler.  This code is normally
 | |
| ** turned off.
 | |
| */
 | |
| static int lockTrace(int fd, int op, struct flock *p){
 | |
|   char *zOpName, *zType;
 | |
|   int s;
 | |
|   int savedErrno;
 | |
|   if( op==F_GETLK ){
 | |
|     zOpName = "GETLK";
 | |
|   }else if( op==F_SETLK ){
 | |
|     zOpName = "SETLK";
 | |
|   }else{
 | |
|     s = fcntl(fd, op, p);
 | |
|     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
 | |
|     return s;
 | |
|   }
 | |
|   if( p->l_type==F_RDLCK ){
 | |
|     zType = "RDLCK";
 | |
|   }else if( p->l_type==F_WRLCK ){
 | |
|     zType = "WRLCK";
 | |
|   }else if( p->l_type==F_UNLCK ){
 | |
|     zType = "UNLCK";
 | |
|   }else{
 | |
|     assert( 0 );
 | |
|   }
 | |
|   assert( p->l_whence==SEEK_SET );
 | |
|   s = fcntl(fd, op, p);
 | |
|   savedErrno = errno;
 | |
|   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
 | |
|      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
 | |
|      (int)p->l_pid, s);
 | |
|   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
 | |
|     struct flock l2;
 | |
|     l2 = *p;
 | |
|     fcntl(fd, F_GETLK, &l2);
 | |
|     if( l2.l_type==F_RDLCK ){
 | |
|       zType = "RDLCK";
 | |
|     }else if( l2.l_type==F_WRLCK ){
 | |
|       zType = "WRLCK";
 | |
|     }else if( l2.l_type==F_UNLCK ){
 | |
|       zType = "UNLCK";
 | |
|     }else{
 | |
|       assert( 0 );
 | |
|     }
 | |
|     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
 | |
|        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
 | |
|   }
 | |
|   errno = savedErrno;
 | |
|   return s;
 | |
| }
 | |
| #define fcntl lockTrace
 | |
| #endif /* SQLITE_LOCK_TRACE */
 | |
| 
 | |
| /*
 | |
| ** The testThreadLockingBehavior() routine launches two separate
 | |
| ** threads on this routine.  This routine attempts to lock a file
 | |
| ** descriptor then returns.  The success or failure of that attempt
 | |
| ** allows the testThreadLockingBehavior() procedure to determine
 | |
| ** whether or not threads can override each others locks.
 | |
| */
 | |
| static void *threadLockingTest(void *pArg){
 | |
|   struct threadTestData *pData = (struct threadTestData*)pArg;
 | |
|   pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
 | |
|   return pArg;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This procedure attempts to determine whether or not threads
 | |
| ** can override each others locks then sets the 
 | |
| ** threadsOverrideEachOthersLocks variable appropriately.
 | |
| */
 | |
| static void testThreadLockingBehavior(int fd_orig){
 | |
|   int fd;
 | |
|   struct threadTestData d[2];
 | |
|   pthread_t t[2];
 | |
| 
 | |
|   fd = dup(fd_orig);
 | |
|   if( fd<0 ) return;
 | |
|   memset(d, 0, sizeof(d));
 | |
|   d[0].fd = fd;
 | |
|   d[0].lock.l_type = F_RDLCK;
 | |
|   d[0].lock.l_len = 1;
 | |
|   d[0].lock.l_start = 0;
 | |
|   d[0].lock.l_whence = SEEK_SET;
 | |
|   d[1] = d[0];
 | |
|   d[1].lock.l_type = F_WRLCK;
 | |
|   pthread_create(&t[0], 0, threadLockingTest, &d[0]);
 | |
|   pthread_create(&t[1], 0, threadLockingTest, &d[1]);
 | |
|   pthread_join(t[0], 0);
 | |
|   pthread_join(t[1], 0);
 | |
|   close(fd);
 | |
|   threadsOverrideEachOthersLocks =  d[0].result==0 && d[1].result==0;
 | |
| }
 | |
| #endif /* SQLITE_THREADSAFE */
 | |
| 
 | |
| /*
 | |
| ** Release a lockInfo structure previously allocated by findLockInfo().
 | |
| */
 | |
| static void releaseLockInfo(struct lockInfo *pLock){
 | |
|   if (pLock == NULL)
 | |
|     return;
 | |
|   pLock->nRef--;
 | |
|   if( pLock->nRef==0 ){
 | |
|     sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
 | |
|     sqlite3_free(pLock);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release a openCnt structure previously allocated by findLockInfo().
 | |
| */
 | |
| static void releaseOpenCnt(struct openCnt *pOpen){
 | |
|   if (pOpen == NULL)
 | |
|     return;
 | |
|   pOpen->nRef--;
 | |
|   if( pOpen->nRef==0 ){
 | |
|     sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
 | |
|     free(pOpen->aPending);
 | |
|     sqlite3_free(pOpen);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
| /*
 | |
| ** Tests a byte-range locking query to see if byte range locks are 
 | |
| ** supported, if not we fall back to dotlockLockingStyle.
 | |
| */
 | |
| static sqlite3LockingStyle sqlite3TestLockingStyle(
 | |
|   const char *filePath, 
 | |
|   int fd
 | |
| ){
 | |
|   /* test byte-range lock using fcntl */
 | |
|   struct flock lockInfo;
 | |
|   
 | |
|   lockInfo.l_len = 1;
 | |
|   lockInfo.l_start = 0;
 | |
|   lockInfo.l_whence = SEEK_SET;
 | |
|   lockInfo.l_type = F_RDLCK;
 | |
|   
 | |
|   if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
 | |
|     return posixLockingStyle;
 | |
|   } 
 | |
|   
 | |
|   /* testing for flock can give false positives.  So if if the above test
 | |
|   ** fails, then we fall back to using dot-lock style locking.
 | |
|   */  
 | |
|   return dotlockLockingStyle;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Examines the f_fstypename entry in the statfs structure as returned by 
 | |
| ** stat() for the file system hosting the database file, assigns the 
 | |
| ** appropriate locking style based on its value.  These values and 
 | |
| ** assignments are based on Darwin/OSX behavior and have not been tested on 
 | |
| ** other systems.
 | |
| */
 | |
| static sqlite3LockingStyle sqlite3DetectLockingStyle(
 | |
|   const char *filePath, 
 | |
|   int fd
 | |
| ){
 | |
| 
 | |
| #ifdef SQLITE_FIXED_LOCKING_STYLE
 | |
|   return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE;
 | |
| #else
 | |
|   struct statfs fsInfo;
 | |
| 
 | |
|   if( statfs(filePath, &fsInfo) == -1 ){
 | |
|     return sqlite3TestLockingStyle(filePath, fd);
 | |
|   }
 | |
|   if( fsInfo.f_flags & MNT_RDONLY ){
 | |
|     return noLockingStyle;
 | |
|   }
 | |
|   if( strcmp(fsInfo.f_fstypename, "hfs")==0 ||
 | |
|       strcmp(fsInfo.f_fstypename, "ufs")==0 ){
 | |
|     return posixLockingStyle;
 | |
|   }
 | |
|   if( strcmp(fsInfo.f_fstypename, "afpfs")==0 ){
 | |
|     return afpLockingStyle;
 | |
|   }
 | |
|   if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
 | |
|     return sqlite3TestLockingStyle(filePath, fd);
 | |
|   }
 | |
|   if( strcmp(fsInfo.f_fstypename, "smbfs")==0 ){
 | |
|     return flockLockingStyle;
 | |
|   }
 | |
|   if( strcmp(fsInfo.f_fstypename, "msdos")==0 ){
 | |
|     return dotlockLockingStyle;
 | |
|   }
 | |
|   if( strcmp(fsInfo.f_fstypename, "webdav")==0 ){
 | |
|     return unsupportedLockingStyle;
 | |
|   }
 | |
|   return sqlite3TestLockingStyle(filePath, fd);  
 | |
| #endif /* SQLITE_FIXED_LOCKING_STYLE */
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| 
 | |
| /*
 | |
| ** Given a file descriptor, locate lockInfo and openCnt structures that
 | |
| ** describes that file descriptor.  Create new ones if necessary.  The
 | |
| ** return values might be uninitialized if an error occurs.
 | |
| **
 | |
| ** Return the number of errors.
 | |
| */
 | |
| static int findLockInfo(
 | |
|   int fd,                      /* The file descriptor used in the key */
 | |
|   struct lockInfo **ppLock,    /* Return the lockInfo structure here */
 | |
|   struct openCnt **ppOpen      /* Return the openCnt structure here */
 | |
| ){
 | |
|   int rc;
 | |
|   struct lockKey key1;
 | |
|   struct openKey key2;
 | |
|   struct stat statbuf;
 | |
|   struct lockInfo *pLock;
 | |
|   struct openCnt *pOpen;
 | |
|   rc = fstat(fd, &statbuf);
 | |
|   if( rc!=0 ) return 1;
 | |
| 
 | |
|   memset(&key1, 0, sizeof(key1));
 | |
|   key1.dev = statbuf.st_dev;
 | |
|   key1.ino = statbuf.st_ino;
 | |
| #if SQLITE_THREADSAFE
 | |
|   if( threadsOverrideEachOthersLocks<0 ){
 | |
|     testThreadLockingBehavior(fd);
 | |
|   }
 | |
|   key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
 | |
| #endif
 | |
|   memset(&key2, 0, sizeof(key2));
 | |
|   key2.dev = statbuf.st_dev;
 | |
|   key2.ino = statbuf.st_ino;
 | |
|   pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
 | |
|   if( pLock==0 ){
 | |
|     struct lockInfo *pOld;
 | |
|     pLock = sqlite3_malloc( sizeof(*pLock) );
 | |
|     if( pLock==0 ){
 | |
|       rc = 1;
 | |
|       goto exit_findlockinfo;
 | |
|     }
 | |
|     pLock->key = key1;
 | |
|     pLock->nRef = 1;
 | |
|     pLock->cnt = 0;
 | |
|     pLock->locktype = 0;
 | |
|     pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
 | |
|     if( pOld!=0 ){
 | |
|       assert( pOld==pLock );
 | |
|       sqlite3_free(pLock);
 | |
|       rc = 1;
 | |
|       goto exit_findlockinfo;
 | |
|     }
 | |
|   }else{
 | |
|     pLock->nRef++;
 | |
|   }
 | |
|   *ppLock = pLock;
 | |
|   if( ppOpen!=0 ){
 | |
|     pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
 | |
|     if( pOpen==0 ){
 | |
|       struct openCnt *pOld;
 | |
|       pOpen = sqlite3_malloc( sizeof(*pOpen) );
 | |
|       if( pOpen==0 ){
 | |
|         releaseLockInfo(pLock);
 | |
|         rc = 1;
 | |
|         goto exit_findlockinfo;
 | |
|       }
 | |
|       pOpen->key = key2;
 | |
|       pOpen->nRef = 1;
 | |
|       pOpen->nLock = 0;
 | |
|       pOpen->nPending = 0;
 | |
|       pOpen->aPending = 0;
 | |
|       pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
 | |
|       if( pOld!=0 ){
 | |
|         assert( pOld==pOpen );
 | |
|         sqlite3_free(pOpen);
 | |
|         releaseLockInfo(pLock);
 | |
|         rc = 1;
 | |
|         goto exit_findlockinfo;
 | |
|       }
 | |
|     }else{
 | |
|       pOpen->nRef++;
 | |
|     }
 | |
|     *ppOpen = pOpen;
 | |
|   }
 | |
| 
 | |
| exit_findlockinfo:
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Helper function for printing out trace information from debugging
 | |
| ** binaries. This returns the string represetation of the supplied
 | |
| ** integer lock-type.
 | |
| */
 | |
| static const char *locktypeName(int locktype){
 | |
|   switch( locktype ){
 | |
|   case NO_LOCK: return "NONE";
 | |
|   case SHARED_LOCK: return "SHARED";
 | |
|   case RESERVED_LOCK: return "RESERVED";
 | |
|   case PENDING_LOCK: return "PENDING";
 | |
|   case EXCLUSIVE_LOCK: return "EXCLUSIVE";
 | |
|   }
 | |
|   return "ERROR";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If we are currently in a different thread than the thread that the
 | |
| ** unixFile argument belongs to, then transfer ownership of the unixFile
 | |
| ** over to the current thread.
 | |
| **
 | |
| ** A unixFile is only owned by a thread on systems where one thread is
 | |
| ** unable to override locks created by a different thread.  RedHat9 is
 | |
| ** an example of such a system.
 | |
| **
 | |
| ** Ownership transfer is only allowed if the unixFile is currently unlocked.
 | |
| ** If the unixFile is locked and an ownership is wrong, then return
 | |
| ** SQLITE_MISUSE.  SQLITE_OK is returned if everything works.
 | |
| */
 | |
| #if SQLITE_THREADSAFE
 | |
| static int transferOwnership(unixFile *pFile){
 | |
|   int rc;
 | |
|   pthread_t hSelf;
 | |
|   if( threadsOverrideEachOthersLocks ){
 | |
|     /* Ownership transfers not needed on this system */
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   hSelf = pthread_self();
 | |
|   if( pthread_equal(pFile->tid, hSelf) ){
 | |
|     /* We are still in the same thread */
 | |
|     OSTRACE1("No-transfer, same thread\n");
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( pFile->locktype!=NO_LOCK ){
 | |
|     /* We cannot change ownership while we are holding a lock! */
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   OSTRACE4("Transfer ownership of %d from %d to %d\n",
 | |
|             pFile->h, pFile->tid, hSelf);
 | |
|   pFile->tid = hSelf;
 | |
|   if (pFile->pLock != NULL) {
 | |
|     releaseLockInfo(pFile->pLock);
 | |
|     rc = findLockInfo(pFile->h, &pFile->pLock, 0);
 | |
|     OSTRACE5("LOCK    %d is now %s(%s,%d)\n", pFile->h,
 | |
|            locktypeName(pFile->locktype),
 | |
|            locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
 | |
|     return rc;
 | |
|   } else {
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| }
 | |
| #else
 | |
|   /* On single-threaded builds, ownership transfer is a no-op */
 | |
| # define transferOwnership(X) SQLITE_OK
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Seek to the offset passed as the second argument, then read cnt 
 | |
| ** bytes into pBuf. Return the number of bytes actually read.
 | |
| **
 | |
| ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
 | |
| ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
 | |
| ** one system to another.  Since SQLite does not define USE_PREAD
 | |
| ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
 | |
| ** See tickets #2741 and #2681.
 | |
| */
 | |
| static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
 | |
|   int got;
 | |
|   i64 newOffset;
 | |
|   TIMER_START;
 | |
| #if defined(USE_PREAD)
 | |
|   got = pread(id->h, pBuf, cnt, offset);
 | |
|   SimulateIOError( got = -1 );
 | |
| #elif defined(USE_PREAD64)
 | |
|   got = pread64(id->h, pBuf, cnt, offset);
 | |
|   SimulateIOError( got = -1 );
 | |
| #else
 | |
|   newOffset = lseek(id->h, offset, SEEK_SET);
 | |
|   SimulateIOError( newOffset-- );
 | |
|   if( newOffset!=offset ){
 | |
|     return -1;
 | |
|   }
 | |
|   got = read(id->h, pBuf, cnt);
 | |
| #endif
 | |
|   TIMER_END;
 | |
|   OSTRACE5("READ    %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
 | |
|   return got;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read data from a file into a buffer.  Return SQLITE_OK if all
 | |
| ** bytes were read successfully and SQLITE_IOERR if anything goes
 | |
| ** wrong.
 | |
| */
 | |
| static int unixRead(
 | |
|   sqlite3_file *id, 
 | |
|   void *pBuf, 
 | |
|   int amt,
 | |
|   sqlite3_int64 offset
 | |
| ){
 | |
|   int got;
 | |
|   assert( id );
 | |
|   got = seekAndRead((unixFile*)id, offset, pBuf, amt);
 | |
|   if( got==amt ){
 | |
|     return SQLITE_OK;
 | |
|   }else if( got<0 ){
 | |
|     return SQLITE_IOERR_READ;
 | |
|   }else{
 | |
|     memset(&((char*)pBuf)[got], 0, amt-got);
 | |
|     return SQLITE_IOERR_SHORT_READ;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Seek to the offset in id->offset then read cnt bytes into pBuf.
 | |
| ** Return the number of bytes actually read.  Update the offset.
 | |
| */
 | |
| static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
 | |
|   int got;
 | |
|   i64 newOffset;
 | |
|   TIMER_START;
 | |
| #if defined(USE_PREAD)
 | |
|   got = pwrite(id->h, pBuf, cnt, offset);
 | |
| #elif defined(USE_PREAD64)
 | |
|   got = pwrite64(id->h, pBuf, cnt, offset);
 | |
| #else
 | |
|   newOffset = lseek(id->h, offset, SEEK_SET);
 | |
|   if( newOffset!=offset ){
 | |
|     return -1;
 | |
|   }
 | |
|   got = write(id->h, pBuf, cnt);
 | |
| #endif
 | |
|   TIMER_END;
 | |
|   OSTRACE5("WRITE   %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED);
 | |
|   return got;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Write data from a buffer into a file.  Return SQLITE_OK on success
 | |
| ** or some other error code on failure.
 | |
| */
 | |
| static int unixWrite(
 | |
|   sqlite3_file *id, 
 | |
|   const void *pBuf, 
 | |
|   int amt,
 | |
|   sqlite3_int64 offset 
 | |
| ){
 | |
|   int wrote = 0;
 | |
|   assert( id );
 | |
|   assert( amt>0 );
 | |
|   while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
 | |
|     amt -= wrote;
 | |
|     offset += wrote;
 | |
|     pBuf = &((char*)pBuf)[wrote];
 | |
|   }
 | |
|   SimulateIOError(( wrote=(-1), amt=1 ));
 | |
|   SimulateDiskfullError(( wrote=0, amt=1 ));
 | |
|   if( amt>0 ){
 | |
|     if( wrote<0 ){
 | |
|       return SQLITE_IOERR_WRITE;
 | |
|     }else{
 | |
|       return SQLITE_FULL;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** Count the number of fullsyncs and normal syncs.  This is used to test
 | |
| ** that syncs and fullsyncs are occuring at the right times.
 | |
| */
 | |
| SQLITE_API int sqlite3_sync_count = 0;
 | |
| SQLITE_API int sqlite3_fullsync_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
 | |
| ** Otherwise use fsync() in its place.
 | |
| */
 | |
| #ifndef HAVE_FDATASYNC
 | |
| # define fdatasync fsync
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
 | |
| ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
 | |
| ** only available on Mac OS X.  But that could change.
 | |
| */
 | |
| #ifdef F_FULLFSYNC
 | |
| # define HAVE_FULLFSYNC 1
 | |
| #else
 | |
| # define HAVE_FULLFSYNC 0
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The fsync() system call does not work as advertised on many
 | |
| ** unix systems.  The following procedure is an attempt to make
 | |
| ** it work better.
 | |
| **
 | |
| ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
 | |
| ** for testing when we want to run through the test suite quickly.
 | |
| ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
 | |
| ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
 | |
| ** or power failure will likely corrupt the database file.
 | |
| */
 | |
| static int full_fsync(int fd, int fullSync, int dataOnly){
 | |
|   int rc;
 | |
| 
 | |
|   /* Record the number of times that we do a normal fsync() and 
 | |
|   ** FULLSYNC.  This is used during testing to verify that this procedure
 | |
|   ** gets called with the correct arguments.
 | |
|   */
 | |
| #ifdef SQLITE_TEST
 | |
|   if( fullSync ) sqlite3_fullsync_count++;
 | |
|   sqlite3_sync_count++;
 | |
| #endif
 | |
| 
 | |
|   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
 | |
|   ** no-op
 | |
|   */
 | |
| #ifdef SQLITE_NO_SYNC
 | |
|   rc = SQLITE_OK;
 | |
| #else
 | |
| 
 | |
| #if HAVE_FULLFSYNC
 | |
|   if( fullSync ){
 | |
|     rc = fcntl(fd, F_FULLFSYNC, 0);
 | |
|   }else{
 | |
|     rc = 1;
 | |
|   }
 | |
|   /* If the FULLFSYNC failed, fall back to attempting an fsync().
 | |
|    * It shouldn't be possible for fullfsync to fail on the local 
 | |
|    * file system (on OSX), so failure indicates that FULLFSYNC
 | |
|    * isn't supported for this file system. So, attempt an fsync 
 | |
|    * and (for now) ignore the overhead of a superfluous fcntl call.  
 | |
|    * It'd be better to detect fullfsync support once and avoid 
 | |
|    * the fcntl call every time sync is called.
 | |
|    */
 | |
|   if( rc ) rc = fsync(fd);
 | |
| 
 | |
| #else 
 | |
|   if( dataOnly ){
 | |
|     rc = fdatasync(fd);
 | |
|   }else{
 | |
|     rc = fsync(fd);
 | |
|   }
 | |
| #endif /* HAVE_FULLFSYNC */
 | |
| #endif /* defined(SQLITE_NO_SYNC) */
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure all writes to a particular file are committed to disk.
 | |
| **
 | |
| ** If dataOnly==0 then both the file itself and its metadata (file
 | |
| ** size, access time, etc) are synced.  If dataOnly!=0 then only the
 | |
| ** file data is synced.
 | |
| **
 | |
| ** Under Unix, also make sure that the directory entry for the file
 | |
| ** has been created by fsync-ing the directory that contains the file.
 | |
| ** If we do not do this and we encounter a power failure, the directory
 | |
| ** entry for the journal might not exist after we reboot.  The next
 | |
| ** SQLite to access the file will not know that the journal exists (because
 | |
| ** the directory entry for the journal was never created) and the transaction
 | |
| ** will not roll back - possibly leading to database corruption.
 | |
| */
 | |
| static int unixSync(sqlite3_file *id, int flags){
 | |
|   int rc;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
| 
 | |
|   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
 | |
|   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
 | |
| 
 | |
|   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
 | |
|   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
 | |
|       || (flags&0x0F)==SQLITE_SYNC_FULL
 | |
|   );
 | |
| 
 | |
|   assert( pFile );
 | |
|   OSTRACE2("SYNC    %-3d\n", pFile->h);
 | |
|   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
 | |
|   SimulateIOError( rc=1 );
 | |
|   if( rc ){
 | |
|     return SQLITE_IOERR_FSYNC;
 | |
|   }
 | |
|   if( pFile->dirfd>=0 ){
 | |
|     OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
 | |
|             HAVE_FULLFSYNC, isFullsync);
 | |
| #ifndef SQLITE_DISABLE_DIRSYNC
 | |
|     /* The directory sync is only attempted if full_fsync is
 | |
|     ** turned off or unavailable.  If a full_fsync occurred above,
 | |
|     ** then the directory sync is superfluous.
 | |
|     */
 | |
|     if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
 | |
|        /*
 | |
|        ** We have received multiple reports of fsync() returning
 | |
|        ** errors when applied to directories on certain file systems.
 | |
|        ** A failed directory sync is not a big deal.  So it seems
 | |
|        ** better to ignore the error.  Ticket #1657
 | |
|        */
 | |
|        /* return SQLITE_IOERR; */
 | |
|     }
 | |
| #endif
 | |
|     close(pFile->dirfd);  /* Only need to sync once, so close the directory */
 | |
|     pFile->dirfd = -1;    /* when we are done. */
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Truncate an open file to a specified size
 | |
| */
 | |
| static int unixTruncate(sqlite3_file *id, i64 nByte){
 | |
|   int rc;
 | |
|   assert( id );
 | |
|   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
 | |
|   rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
 | |
|   if( rc ){
 | |
|     return SQLITE_IOERR_TRUNCATE;
 | |
|   }else{
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Determine the current size of a file in bytes
 | |
| */
 | |
| static int unixFileSize(sqlite3_file *id, i64 *pSize){
 | |
|   int rc;
 | |
|   struct stat buf;
 | |
|   assert( id );
 | |
|   rc = fstat(((unixFile*)id)->h, &buf);
 | |
|   SimulateIOError( rc=1 );
 | |
|   if( rc!=0 ){
 | |
|     return SQLITE_IOERR_FSTAT;
 | |
|   }
 | |
|   *pSize = buf.st_size;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine checks if there is a RESERVED lock held on the specified
 | |
| ** file by this or any other process. If such a lock is held, return
 | |
| ** non-zero.  If the file is unlocked or holds only SHARED locks, then
 | |
| ** return zero.
 | |
| */
 | |
| static int unixCheckReservedLock(sqlite3_file *id){
 | |
|   int r = 0;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
| 
 | |
|   assert( pFile );
 | |
|   enterMutex(); /* Because pFile->pLock is shared across threads */
 | |
| 
 | |
|   /* Check if a thread in this process holds such a lock */
 | |
|   if( pFile->pLock->locktype>SHARED_LOCK ){
 | |
|     r = 1;
 | |
|   }
 | |
| 
 | |
|   /* Otherwise see if some other process holds it.
 | |
|   */
 | |
|   if( !r ){
 | |
|     struct flock lock;
 | |
|     lock.l_whence = SEEK_SET;
 | |
|     lock.l_start = RESERVED_BYTE;
 | |
|     lock.l_len = 1;
 | |
|     lock.l_type = F_WRLCK;
 | |
|     fcntl(pFile->h, F_GETLK, &lock);
 | |
|     if( lock.l_type!=F_UNLCK ){
 | |
|       r = 1;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   leaveMutex();
 | |
|   OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
 | |
| 
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lock the file with the lock specified by parameter locktype - one
 | |
| ** of the following:
 | |
| **
 | |
| **     (1) SHARED_LOCK
 | |
| **     (2) RESERVED_LOCK
 | |
| **     (3) PENDING_LOCK
 | |
| **     (4) EXCLUSIVE_LOCK
 | |
| **
 | |
| ** Sometimes when requesting one lock state, additional lock states
 | |
| ** are inserted in between.  The locking might fail on one of the later
 | |
| ** transitions leaving the lock state different from what it started but
 | |
| ** still short of its goal.  The following chart shows the allowed
 | |
| ** transitions and the inserted intermediate states:
 | |
| **
 | |
| **    UNLOCKED -> SHARED
 | |
| **    SHARED -> RESERVED
 | |
| **    SHARED -> (PENDING) -> EXCLUSIVE
 | |
| **    RESERVED -> (PENDING) -> EXCLUSIVE
 | |
| **    PENDING -> EXCLUSIVE
 | |
| **
 | |
| ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
 | |
| ** routine to lower a locking level.
 | |
| */
 | |
| static int unixLock(sqlite3_file *id, int locktype){
 | |
|   /* The following describes the implementation of the various locks and
 | |
|   ** lock transitions in terms of the POSIX advisory shared and exclusive
 | |
|   ** lock primitives (called read-locks and write-locks below, to avoid
 | |
|   ** confusion with SQLite lock names). The algorithms are complicated
 | |
|   ** slightly in order to be compatible with windows systems simultaneously
 | |
|   ** accessing the same database file, in case that is ever required.
 | |
|   **
 | |
|   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
 | |
|   ** byte', each single bytes at well known offsets, and the 'shared byte
 | |
|   ** range', a range of 510 bytes at a well known offset.
 | |
|   **
 | |
|   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
 | |
|   ** byte'.  If this is successful, a random byte from the 'shared byte
 | |
|   ** range' is read-locked and the lock on the 'pending byte' released.
 | |
|   **
 | |
|   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
 | |
|   ** A RESERVED lock is implemented by grabbing a write-lock on the
 | |
|   ** 'reserved byte'. 
 | |
|   **
 | |
|   ** A process may only obtain a PENDING lock after it has obtained a
 | |
|   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
 | |
|   ** on the 'pending byte'. This ensures that no new SHARED locks can be
 | |
|   ** obtained, but existing SHARED locks are allowed to persist. A process
 | |
|   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
 | |
|   ** This property is used by the algorithm for rolling back a journal file
 | |
|   ** after a crash.
 | |
|   **
 | |
|   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
 | |
|   ** implemented by obtaining a write-lock on the entire 'shared byte
 | |
|   ** range'. Since all other locks require a read-lock on one of the bytes
 | |
|   ** within this range, this ensures that no other locks are held on the
 | |
|   ** database. 
 | |
|   **
 | |
|   ** The reason a single byte cannot be used instead of the 'shared byte
 | |
|   ** range' is that some versions of windows do not support read-locks. By
 | |
|   ** locking a random byte from a range, concurrent SHARED locks may exist
 | |
|   ** even if the locking primitive used is always a write-lock.
 | |
|   */
 | |
|   int rc = SQLITE_OK;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   struct lockInfo *pLock = pFile->pLock;
 | |
|   struct flock lock;
 | |
|   int s;
 | |
| 
 | |
|   assert( pFile );
 | |
|   OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
 | |
|       locktypeName(locktype), locktypeName(pFile->locktype),
 | |
|       locktypeName(pLock->locktype), pLock->cnt , getpid());
 | |
| 
 | |
|   /* If there is already a lock of this type or more restrictive on the
 | |
|   ** unixFile, do nothing. Don't use the end_lock: exit path, as
 | |
|   ** enterMutex() hasn't been called yet.
 | |
|   */
 | |
|   if( pFile->locktype>=locktype ){
 | |
|     OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
 | |
|             locktypeName(locktype));
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the locking sequence is correct
 | |
|   */
 | |
|   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
 | |
|   assert( locktype!=PENDING_LOCK );
 | |
|   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
 | |
| 
 | |
|   /* This mutex is needed because pFile->pLock is shared across threads
 | |
|   */
 | |
|   enterMutex();
 | |
| 
 | |
|   /* Make sure the current thread owns the pFile.
 | |
|   */
 | |
|   rc = transferOwnership(pFile);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     leaveMutex();
 | |
|     return rc;
 | |
|   }
 | |
|   pLock = pFile->pLock;
 | |
| 
 | |
|   /* If some thread using this PID has a lock via a different unixFile*
 | |
|   ** handle that precludes the requested lock, return BUSY.
 | |
|   */
 | |
|   if( (pFile->locktype!=pLock->locktype && 
 | |
|           (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
 | |
|   ){
 | |
|     rc = SQLITE_BUSY;
 | |
|     goto end_lock;
 | |
|   }
 | |
| 
 | |
|   /* If a SHARED lock is requested, and some thread using this PID already
 | |
|   ** has a SHARED or RESERVED lock, then increment reference counts and
 | |
|   ** return SQLITE_OK.
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK && 
 | |
|       (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
 | |
|     assert( locktype==SHARED_LOCK );
 | |
|     assert( pFile->locktype==0 );
 | |
|     assert( pLock->cnt>0 );
 | |
|     pFile->locktype = SHARED_LOCK;
 | |
|     pLock->cnt++;
 | |
|     pFile->pOpen->nLock++;
 | |
|     goto end_lock;
 | |
|   }
 | |
| 
 | |
|   lock.l_len = 1L;
 | |
| 
 | |
|   lock.l_whence = SEEK_SET;
 | |
| 
 | |
|   /* A PENDING lock is needed before acquiring a SHARED lock and before
 | |
|   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
 | |
|   ** be released.
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK 
 | |
|       || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
 | |
|   ){
 | |
|     lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
 | |
|     lock.l_start = PENDING_BYTE;
 | |
|     s = fcntl(pFile->h, F_SETLK, &lock);
 | |
|     if( s==(-1) ){
 | |
|       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
 | |
|       goto end_lock;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* If control gets to this point, then actually go ahead and make
 | |
|   ** operating system calls for the specified lock.
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK ){
 | |
|     assert( pLock->cnt==0 );
 | |
|     assert( pLock->locktype==0 );
 | |
| 
 | |
|     /* Now get the read-lock */
 | |
|     lock.l_start = SHARED_FIRST;
 | |
|     lock.l_len = SHARED_SIZE;
 | |
|     s = fcntl(pFile->h, F_SETLK, &lock);
 | |
| 
 | |
|     /* Drop the temporary PENDING lock */
 | |
|     lock.l_start = PENDING_BYTE;
 | |
|     lock.l_len = 1L;
 | |
|     lock.l_type = F_UNLCK;
 | |
|     if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
 | |
|       rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
 | |
|       goto end_lock;
 | |
|     }
 | |
|     if( s==(-1) ){
 | |
|       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
 | |
|     }else{
 | |
|       pFile->locktype = SHARED_LOCK;
 | |
|       pFile->pOpen->nLock++;
 | |
|       pLock->cnt = 1;
 | |
|     }
 | |
|   }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
 | |
|     /* We are trying for an exclusive lock but another thread in this
 | |
|     ** same process is still holding a shared lock. */
 | |
|     rc = SQLITE_BUSY;
 | |
|   }else{
 | |
|     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
 | |
|     ** assumed that there is a SHARED or greater lock on the file
 | |
|     ** already.
 | |
|     */
 | |
|     assert( 0!=pFile->locktype );
 | |
|     lock.l_type = F_WRLCK;
 | |
|     switch( locktype ){
 | |
|       case RESERVED_LOCK:
 | |
|         lock.l_start = RESERVED_BYTE;
 | |
|         break;
 | |
|       case EXCLUSIVE_LOCK:
 | |
|         lock.l_start = SHARED_FIRST;
 | |
|         lock.l_len = SHARED_SIZE;
 | |
|         break;
 | |
|       default:
 | |
|         assert(0);
 | |
|     }
 | |
|     s = fcntl(pFile->h, F_SETLK, &lock);
 | |
|     if( s==(-1) ){
 | |
|       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pFile->locktype = locktype;
 | |
|     pLock->locktype = locktype;
 | |
|   }else if( locktype==EXCLUSIVE_LOCK ){
 | |
|     pFile->locktype = PENDING_LOCK;
 | |
|     pLock->locktype = PENDING_LOCK;
 | |
|   }
 | |
| 
 | |
| end_lock:
 | |
|   leaveMutex();
 | |
|   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
 | |
|       rc==SQLITE_OK ? "ok" : "failed");
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lower the locking level on file descriptor pFile to locktype.  locktype
 | |
| ** must be either NO_LOCK or SHARED_LOCK.
 | |
| **
 | |
| ** If the locking level of the file descriptor is already at or below
 | |
| ** the requested locking level, this routine is a no-op.
 | |
| */
 | |
| static int unixUnlock(sqlite3_file *id, int locktype){
 | |
|   struct lockInfo *pLock;
 | |
|   struct flock lock;
 | |
|   int rc = SQLITE_OK;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   int h;
 | |
| 
 | |
|   assert( pFile );
 | |
|   OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
 | |
|       pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
 | |
| 
 | |
|   assert( locktype<=SHARED_LOCK );
 | |
|   if( pFile->locktype<=locktype ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( CHECK_THREADID(pFile) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   enterMutex();
 | |
|   h = pFile->h;
 | |
|   pLock = pFile->pLock;
 | |
|   assert( pLock->cnt!=0 );
 | |
|   if( pFile->locktype>SHARED_LOCK ){
 | |
|     assert( pLock->locktype==pFile->locktype );
 | |
|     SimulateIOErrorBenign(1);
 | |
|     SimulateIOError( h=(-1) )
 | |
|     SimulateIOErrorBenign(0);
 | |
|     if( locktype==SHARED_LOCK ){
 | |
|       lock.l_type = F_RDLCK;
 | |
|       lock.l_whence = SEEK_SET;
 | |
|       lock.l_start = SHARED_FIRST;
 | |
|       lock.l_len = SHARED_SIZE;
 | |
|       if( fcntl(h, F_SETLK, &lock)==(-1) ){
 | |
|         rc = SQLITE_IOERR_RDLOCK;
 | |
|       }
 | |
|     }
 | |
|     lock.l_type = F_UNLCK;
 | |
|     lock.l_whence = SEEK_SET;
 | |
|     lock.l_start = PENDING_BYTE;
 | |
|     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
 | |
|     if( fcntl(h, F_SETLK, &lock)!=(-1) ){
 | |
|       pLock->locktype = SHARED_LOCK;
 | |
|     }else{
 | |
|       rc = SQLITE_IOERR_UNLOCK;
 | |
|     }
 | |
|   }
 | |
|   if( locktype==NO_LOCK ){
 | |
|     struct openCnt *pOpen;
 | |
| 
 | |
|     /* Decrement the shared lock counter.  Release the lock using an
 | |
|     ** OS call only when all threads in this same process have released
 | |
|     ** the lock.
 | |
|     */
 | |
|     pLock->cnt--;
 | |
|     if( pLock->cnt==0 ){
 | |
|       lock.l_type = F_UNLCK;
 | |
|       lock.l_whence = SEEK_SET;
 | |
|       lock.l_start = lock.l_len = 0L;
 | |
|       SimulateIOErrorBenign(1);
 | |
|       SimulateIOError( h=(-1) )
 | |
|       SimulateIOErrorBenign(0);
 | |
|       if( fcntl(h, F_SETLK, &lock)!=(-1) ){
 | |
|         pLock->locktype = NO_LOCK;
 | |
|       }else{
 | |
|         rc = SQLITE_IOERR_UNLOCK;
 | |
|         pLock->cnt = 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Decrement the count of locks against this same file.  When the
 | |
|     ** count reaches zero, close any other file descriptors whose close
 | |
|     ** was deferred because of outstanding locks.
 | |
|     */
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pOpen = pFile->pOpen;
 | |
|       pOpen->nLock--;
 | |
|       assert( pOpen->nLock>=0 );
 | |
|       if( pOpen->nLock==0 && pOpen->nPending>0 ){
 | |
|         int i;
 | |
|         for(i=0; i<pOpen->nPending; i++){
 | |
|           close(pOpen->aPending[i]);
 | |
|         }
 | |
|         free(pOpen->aPending);
 | |
|         pOpen->nPending = 0;
 | |
|         pOpen->aPending = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   leaveMutex();
 | |
|   if( rc==SQLITE_OK ) pFile->locktype = locktype;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a file.
 | |
| */
 | |
| static int unixClose(sqlite3_file *id){
 | |
|   unixFile *pFile = (unixFile *)id;
 | |
|   if( !pFile ) return SQLITE_OK;
 | |
|   unixUnlock(id, NO_LOCK);
 | |
|   if( pFile->dirfd>=0 ) close(pFile->dirfd);
 | |
|   pFile->dirfd = -1;
 | |
|   enterMutex();
 | |
| 
 | |
|   if( pFile->pOpen->nLock ){
 | |
|     /* If there are outstanding locks, do not actually close the file just
 | |
|     ** yet because that would clear those locks.  Instead, add the file
 | |
|     ** descriptor to pOpen->aPending.  It will be automatically closed when
 | |
|     ** the last lock is cleared.
 | |
|     */
 | |
|     int *aNew;
 | |
|     struct openCnt *pOpen = pFile->pOpen;
 | |
|     aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
 | |
|     if( aNew==0 ){
 | |
|       /* If a malloc fails, just leak the file descriptor */
 | |
|     }else{
 | |
|       pOpen->aPending = aNew;
 | |
|       pOpen->aPending[pOpen->nPending] = pFile->h;
 | |
|       pOpen->nPending++;
 | |
|     }
 | |
|   }else{
 | |
|     /* There are no outstanding locks so we can close the file immediately */
 | |
|     close(pFile->h);
 | |
|   }
 | |
|   releaseLockInfo(pFile->pLock);
 | |
|   releaseOpenCnt(pFile->pOpen);
 | |
| 
 | |
|   leaveMutex();
 | |
|   OSTRACE2("CLOSE   %-3d\n", pFile->h);
 | |
|   OpenCounter(-1);
 | |
|   memset(pFile, 0, sizeof(unixFile));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
| #pragma mark AFP Support
 | |
| 
 | |
| /*
 | |
|  ** The afpLockingContext structure contains all afp lock specific state
 | |
|  */
 | |
| typedef struct afpLockingContext afpLockingContext;
 | |
| struct afpLockingContext {
 | |
|   unsigned long long sharedLockByte;
 | |
|   const char *filePath;
 | |
| };
 | |
| 
 | |
| struct ByteRangeLockPB2
 | |
| {
 | |
|   unsigned long long offset;        /* offset to first byte to lock */
 | |
|   unsigned long long length;        /* nbr of bytes to lock */
 | |
|   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
 | |
|   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
 | |
|   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
 | |
|   int fd;                           /* file desc to assoc this lock with */
 | |
| };
 | |
| 
 | |
| #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
 | |
| 
 | |
| /* 
 | |
| ** Return 0 on success, 1 on failure.  To match the behavior of the 
 | |
| ** normal posix file locking (used in unixLock for example), we should 
 | |
| ** provide 'richer' return codes - specifically to differentiate between
 | |
| ** 'file busy' and 'file system error' results.
 | |
| */
 | |
| static int _AFPFSSetLock(
 | |
|   const char *path, 
 | |
|   int fd, 
 | |
|   unsigned long long offset, 
 | |
|   unsigned long long length, 
 | |
|   int setLockFlag
 | |
| ){
 | |
|   struct ByteRangeLockPB2       pb;
 | |
|   int                     err;
 | |
|   
 | |
|   pb.unLockFlag = setLockFlag ? 0 : 1;
 | |
|   pb.startEndFlag = 0;
 | |
|   pb.offset = offset;
 | |
|   pb.length = length; 
 | |
|   pb.fd = fd;
 | |
|   OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", 
 | |
|     (setLockFlag?"ON":"OFF"), fd, offset, length);
 | |
|   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
 | |
|   if ( err==-1 ) {
 | |
|     OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno, 
 | |
|       strerror(errno));
 | |
|     return 1; /* error */
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  ** This routine checks if there is a RESERVED lock held on the specified
 | |
|  ** file by this or any other process. If such a lock is held, return
 | |
|  ** non-zero.  If the file is unlocked or holds only SHARED locks, then
 | |
|  ** return zero.
 | |
|  */
 | |
| static int afpUnixCheckReservedLock(sqlite3_file *id){
 | |
|   int r = 0;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   assert( pFile ); 
 | |
|   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
 | |
|   
 | |
|   /* Check if a thread in this process holds such a lock */
 | |
|   if( pFile->locktype>SHARED_LOCK ){
 | |
|     r = 1;
 | |
|   }
 | |
|   
 | |
|   /* Otherwise see if some other process holds it.
 | |
|    */
 | |
|   if ( !r ) {
 | |
|     /* lock the byte */
 | |
|     int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);  
 | |
|     if (failed) {
 | |
|       /* if we failed to get the lock then someone else must have it */
 | |
|       r = 1;
 | |
|     } else {
 | |
|       /* if we succeeded in taking the reserved lock, unlock it to restore
 | |
|       ** the original state */
 | |
|       _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
 | |
|     }
 | |
|   }
 | |
|   OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
 | |
|   
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /* AFP-style locking following the behavior of unixLock, see the unixLock 
 | |
| ** function comments for details of lock management. */
 | |
| static int afpUnixLock(sqlite3_file *id, int locktype){
 | |
|   int rc = SQLITE_OK;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
 | |
|   int gotPendingLock = 0;
 | |
|   
 | |
|   assert( pFile );
 | |
|   OSTRACE5("LOCK    %d %s was %s pid=%d\n", pFile->h,
 | |
|          locktypeName(locktype), locktypeName(pFile->locktype), getpid());
 | |
| 
 | |
|   /* If there is already a lock of this type or more restrictive on the
 | |
|   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
 | |
|   ** enterMutex() hasn't been called yet.
 | |
|   */
 | |
|   if( pFile->locktype>=locktype ){
 | |
|     OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
 | |
|            locktypeName(locktype));
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the locking sequence is correct
 | |
|   */
 | |
|   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
 | |
|   assert( locktype!=PENDING_LOCK );
 | |
|   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
 | |
|   
 | |
|   /* This mutex is needed because pFile->pLock is shared across threads
 | |
|   */
 | |
|   enterMutex();
 | |
| 
 | |
|   /* Make sure the current thread owns the pFile.
 | |
|   */
 | |
|   rc = transferOwnership(pFile);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     leaveMutex();
 | |
|     return rc;
 | |
|   }
 | |
|     
 | |
|   /* A PENDING lock is needed before acquiring a SHARED lock and before
 | |
|   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
 | |
|   ** be released.
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK 
 | |
|       || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
 | |
|   ){
 | |
|     int failed;
 | |
|     failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
 | |
|     if (failed) {
 | |
|       rc = SQLITE_BUSY;
 | |
|       goto afp_end_lock;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /* If control gets to this point, then actually go ahead and make
 | |
|   ** operating system calls for the specified lock.
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK ){
 | |
|     int lk, failed;
 | |
|     int tries = 0;
 | |
|     
 | |
|     /* Now get the read-lock */
 | |
|     /* note that the quality of the randomness doesn't matter that much */
 | |
|     lk = random(); 
 | |
|     context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
 | |
|     failed = _AFPFSSetLock(context->filePath, pFile->h, 
 | |
|       SHARED_FIRST+context->sharedLockByte, 1, 1);
 | |
|     
 | |
|     /* Drop the temporary PENDING lock */
 | |
|     if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
 | |
|       rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
 | |
|       goto afp_end_lock;
 | |
|     }
 | |
|     
 | |
|     if( failed ){
 | |
|       rc = SQLITE_BUSY;
 | |
|     } else {
 | |
|       pFile->locktype = SHARED_LOCK;
 | |
|     }
 | |
|   }else{
 | |
|     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
 | |
|     ** assumed that there is a SHARED or greater lock on the file
 | |
|     ** already.
 | |
|     */
 | |
|     int failed = 0;
 | |
|     assert( 0!=pFile->locktype );
 | |
|     if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
 | |
|         /* Acquire a RESERVED lock */
 | |
|         failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
 | |
|     }
 | |
|     if (!failed && locktype == EXCLUSIVE_LOCK) {
 | |
|       /* Acquire an EXCLUSIVE lock */
 | |
|         
 | |
|       /* Remove the shared lock before trying the range.  we'll need to 
 | |
|       ** reestablish the shared lock if we can't get the  afpUnixUnlock
 | |
|       */
 | |
|       if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
 | |
|                          context->sharedLockByte, 1, 0)) {
 | |
|         /* now attemmpt to get the exclusive lock range */
 | |
|         failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, 
 | |
|                                SHARED_SIZE, 1);
 | |
|         if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
 | |
|                                     context->sharedLockByte, 1, 1)) {
 | |
|           rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
 | |
|         }
 | |
|       } else {
 | |
|         /* */
 | |
|         rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
 | |
|       }
 | |
|     }
 | |
|     if( failed && rc == SQLITE_OK){
 | |
|       rc = SQLITE_BUSY;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pFile->locktype = locktype;
 | |
|   }else if( locktype==EXCLUSIVE_LOCK ){
 | |
|     pFile->locktype = PENDING_LOCK;
 | |
|   }
 | |
|   
 | |
| afp_end_lock:
 | |
|   leaveMutex();
 | |
|   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
 | |
|          rc==SQLITE_OK ? "ok" : "failed");
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lower the locking level on file descriptor pFile to locktype.  locktype
 | |
| ** must be either NO_LOCK or SHARED_LOCK.
 | |
| **
 | |
| ** If the locking level of the file descriptor is already at or below
 | |
| ** the requested locking level, this routine is a no-op.
 | |
| */
 | |
| static int afpUnixUnlock(sqlite3_file *id, int locktype) {
 | |
|   struct flock lock;
 | |
|   int rc = SQLITE_OK;
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
 | |
| 
 | |
|   assert( pFile );
 | |
|   OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
 | |
|          pFile->locktype, getpid());
 | |
|   
 | |
|   assert( locktype<=SHARED_LOCK );
 | |
|   if( pFile->locktype<=locktype ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( CHECK_THREADID(pFile) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   enterMutex();
 | |
|   if( pFile->locktype>SHARED_LOCK ){
 | |
|     if( locktype==SHARED_LOCK ){
 | |
|       int failed = 0;
 | |
| 
 | |
|       /* unlock the exclusive range - then re-establish the shared lock */
 | |
|       if (pFile->locktype==EXCLUSIVE_LOCK) {
 | |
|         failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, 
 | |
|                                  SHARED_SIZE, 0);
 | |
|         if (!failed) {
 | |
|           /* successfully removed the exclusive lock */
 | |
|           if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
 | |
|                             context->sharedLockByte, 1, 1)) {
 | |
|             /* failed to re-establish our shared lock */
 | |
|             rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
 | |
|           }
 | |
|         } else {
 | |
|           /* This should never happen - failed to unlock the exclusive range */
 | |
|           rc = SQLITE_IOERR_UNLOCK;
 | |
|         } 
 | |
|       }
 | |
|     }
 | |
|     if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
 | |
|       if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
 | |
|         /* failed to release the pending lock */
 | |
|         rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
 | |
|       }
 | |
|     } 
 | |
|     if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
 | |
|       if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
 | |
|         /* failed to release the reserved lock */
 | |
|         rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
 | |
|       }
 | |
|     } 
 | |
|   }
 | |
|   if( locktype==NO_LOCK ){
 | |
|     int failed = _AFPFSSetLock(context->filePath, pFile->h, 
 | |
|                                SHARED_FIRST + context->sharedLockByte, 1, 0);
 | |
|     if (failed) {
 | |
|       rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
 | |
|     }
 | |
|   }
 | |
|   if (rc == SQLITE_OK)
 | |
|     pFile->locktype = locktype;
 | |
|   leaveMutex();
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a file & cleanup AFP specific locking context 
 | |
| */
 | |
| static int afpUnixClose(sqlite3_file *id) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
| 
 | |
|   if( !pFile ) return SQLITE_OK;
 | |
|   afpUnixUnlock(id, NO_LOCK);
 | |
|   sqlite3_free(pFile->lockingContext);
 | |
|   if( pFile->dirfd>=0 ) close(pFile->dirfd);
 | |
|   pFile->dirfd = -1;
 | |
|   enterMutex();
 | |
|   close(pFile->h);
 | |
|   leaveMutex();
 | |
|   OSTRACE2("CLOSE   %-3d\n", pFile->h);
 | |
|   OpenCounter(-1);
 | |
|   memset(pFile, 0, sizeof(unixFile));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| #pragma mark flock() style locking
 | |
| 
 | |
| /*
 | |
| ** The flockLockingContext is not used
 | |
| */
 | |
| typedef void flockLockingContext;
 | |
| 
 | |
| static int flockUnixCheckReservedLock(sqlite3_file *id){
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   if (pFile->locktype == RESERVED_LOCK) {
 | |
|     return 1; /* already have a reserved lock */
 | |
|   } else {
 | |
|     /* attempt to get the lock */
 | |
|     int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
 | |
|     if (!rc) {
 | |
|       /* got the lock, unlock it */
 | |
|       flock(pFile->h, LOCK_UN);
 | |
|       return 0;  /* no one has it reserved */
 | |
|     }
 | |
|     return 1; /* someone else might have it reserved */
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int flockUnixLock(sqlite3_file *id, int locktype) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   /* if we already have a lock, it is exclusive.  
 | |
|   ** Just adjust level and punt on outta here. */
 | |
|   if (pFile->locktype > NO_LOCK) {
 | |
|     pFile->locktype = locktype;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   
 | |
|   /* grab an exclusive lock */
 | |
|   int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
 | |
|   if (rc) {
 | |
|     /* didn't get, must be busy */
 | |
|     return SQLITE_BUSY;
 | |
|   } else {
 | |
|     /* got it, set the type and return ok */
 | |
|     pFile->locktype = locktype;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int flockUnixUnlock(sqlite3_file *id, int locktype) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   assert( locktype<=SHARED_LOCK );
 | |
|   
 | |
|   /* no-op if possible */
 | |
|   if( pFile->locktype==locktype ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   
 | |
|   /* shared can just be set because we always have an exclusive */
 | |
|   if (locktype==SHARED_LOCK) {
 | |
|     pFile->locktype = locktype;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   
 | |
|   /* no, really, unlock. */
 | |
|   int rc = flock(pFile->h, LOCK_UN);
 | |
|   if (rc)
 | |
|     return SQLITE_IOERR_UNLOCK;
 | |
|   else {
 | |
|     pFile->locktype = NO_LOCK;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a file.
 | |
| */
 | |
| static int flockUnixClose(sqlite3_file *id) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   if( !pFile ) return SQLITE_OK;
 | |
|   flockUnixUnlock(id, NO_LOCK);
 | |
|   
 | |
|   if( pFile->dirfd>=0 ) close(pFile->dirfd);
 | |
|   pFile->dirfd = -1;
 | |
| 
 | |
|   enterMutex();
 | |
|   close(pFile->h);  
 | |
|   leaveMutex();
 | |
|   OSTRACE2("CLOSE   %-3d\n", pFile->h);
 | |
|   OpenCounter(-1);
 | |
|   memset(pFile, 0, sizeof(unixFile));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #pragma mark Old-School .lock file based locking
 | |
| 
 | |
| /*
 | |
| ** The dotlockLockingContext structure contains all dotlock (.lock) lock
 | |
| ** specific state
 | |
| */
 | |
| typedef struct dotlockLockingContext dotlockLockingContext;
 | |
| struct dotlockLockingContext {
 | |
|   char *lockPath;
 | |
| };
 | |
| 
 | |
| 
 | |
| static int dotlockUnixCheckReservedLock(sqlite3_file *id) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   dotlockLockingContext *context;
 | |
| 
 | |
|   context = (dotlockLockingContext*)pFile->lockingContext;
 | |
|   if (pFile->locktype == RESERVED_LOCK) {
 | |
|     return 1; /* already have a reserved lock */
 | |
|   } else {
 | |
|     struct stat statBuf;
 | |
|     if (lstat(context->lockPath,&statBuf) == 0){
 | |
|       /* file exists, someone else has the lock */
 | |
|       return 1;
 | |
|     }else{
 | |
|       /* file does not exist, we could have it if we want it */
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int dotlockUnixLock(sqlite3_file *id, int locktype) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   dotlockLockingContext *context;
 | |
|   int fd;
 | |
| 
 | |
|   context = (dotlockLockingContext*)pFile->lockingContext;
 | |
|   
 | |
|   /* if we already have a lock, it is exclusive.  
 | |
|   ** Just adjust level and punt on outta here. */
 | |
|   if (pFile->locktype > NO_LOCK) {
 | |
|     pFile->locktype = locktype;
 | |
|     
 | |
|     /* Always update the timestamp on the old file */
 | |
|     utimes(context->lockPath,NULL);
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   
 | |
|   /* check to see if lock file already exists */
 | |
|   struct stat statBuf;
 | |
|   if (lstat(context->lockPath,&statBuf) == 0){
 | |
|     return SQLITE_BUSY; /* it does, busy */
 | |
|   }
 | |
|   
 | |
|   /* grab an exclusive lock */
 | |
|   fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600);
 | |
|   if( fd<0 ){
 | |
|     /* failed to open/create the file, someone else may have stolen the lock */
 | |
|     return SQLITE_BUSY; 
 | |
|   }
 | |
|   close(fd);
 | |
|   
 | |
|   /* got it, set the type and return ok */
 | |
|   pFile->locktype = locktype;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int dotlockUnixUnlock(sqlite3_file *id, int locktype) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   dotlockLockingContext *context;
 | |
| 
 | |
|   context = (dotlockLockingContext*)pFile->lockingContext;
 | |
|   
 | |
|   assert( locktype<=SHARED_LOCK );
 | |
|   
 | |
|   /* no-op if possible */
 | |
|   if( pFile->locktype==locktype ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   
 | |
|   /* shared can just be set because we always have an exclusive */
 | |
|   if (locktype==SHARED_LOCK) {
 | |
|     pFile->locktype = locktype;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   
 | |
|   /* no, really, unlock. */
 | |
|   unlink(context->lockPath);
 | |
|   pFile->locktype = NO_LOCK;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  ** Close a file.
 | |
|  */
 | |
| static int dotlockUnixClose(sqlite3_file *id) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   if( !pFile ) return SQLITE_OK;
 | |
|   dotlockUnixUnlock(id, NO_LOCK);
 | |
|   sqlite3_free(pFile->lockingContext);
 | |
|   if( pFile->dirfd>=0 ) close(pFile->dirfd);
 | |
|   pFile->dirfd = -1;
 | |
|   enterMutex();  
 | |
|   close(pFile->h);
 | |
|   leaveMutex();
 | |
|   OSTRACE2("CLOSE   %-3d\n", pFile->h);
 | |
|   OpenCounter(-1);
 | |
|   memset(pFile, 0, sizeof(unixFile));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| #pragma mark No locking
 | |
| 
 | |
| /*
 | |
| ** The nolockLockingContext is void
 | |
| */
 | |
| typedef void nolockLockingContext;
 | |
| 
 | |
| static int nolockUnixCheckReservedLock(sqlite3_file *id) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static int nolockUnixLock(sqlite3_file *id, int locktype) {
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int nolockUnixUnlock(sqlite3_file *id, int locktype) {
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a file.
 | |
| */
 | |
| static int nolockUnixClose(sqlite3_file *id) {
 | |
|   unixFile *pFile = (unixFile*)id;
 | |
|   
 | |
|   if( !pFile ) return SQLITE_OK;
 | |
|   if( pFile->dirfd>=0 ) close(pFile->dirfd);
 | |
|   pFile->dirfd = -1;
 | |
|   enterMutex();
 | |
|   close(pFile->h);
 | |
|   leaveMutex();
 | |
|   OSTRACE2("CLOSE   %-3d\n", pFile->h);
 | |
|   OpenCounter(-1);
 | |
|   memset(pFile, 0, sizeof(unixFile));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Information and control of an open file handle.
 | |
| */
 | |
| static int unixFileControl(sqlite3_file *id, int op, void *pArg){
 | |
|   switch( op ){
 | |
|     case SQLITE_FCNTL_LOCKSTATE: {
 | |
|       *(int*)pArg = ((unixFile*)id)->locktype;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_ERROR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the sector size in bytes of the underlying block device for
 | |
| ** the specified file. This is almost always 512 bytes, but may be
 | |
| ** larger for some devices.
 | |
| **
 | |
| ** SQLite code assumes this function cannot fail. It also assumes that
 | |
| ** if two files are created in the same file-system directory (i.e.
 | |
| ** a database and its journal file) that the sector size will be the
 | |
| ** same for both.
 | |
| */
 | |
| static int unixSectorSize(sqlite3_file *id){
 | |
|   return SQLITE_DEFAULT_SECTOR_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the device characteristics for the file. This is always 0.
 | |
| */
 | |
| static int unixDeviceCharacteristics(sqlite3_file *id){
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an sqlite3_file
 | |
| ** for unix.
 | |
| */
 | |
| static const sqlite3_io_methods sqlite3UnixIoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   unixClose,
 | |
|   unixRead,
 | |
|   unixWrite,
 | |
|   unixTruncate,
 | |
|   unixSync,
 | |
|   unixFileSize,
 | |
|   unixLock,
 | |
|   unixUnlock,
 | |
|   unixCheckReservedLock,
 | |
|   unixFileControl,
 | |
|   unixSectorSize,
 | |
|   unixDeviceCharacteristics
 | |
| };
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an sqlite3_file
 | |
| ** for unix with AFP style file locking.
 | |
| */
 | |
| static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   afpUnixClose,
 | |
|   unixRead,
 | |
|   unixWrite,
 | |
|   unixTruncate,
 | |
|   unixSync,
 | |
|   unixFileSize,
 | |
|   afpUnixLock,
 | |
|   afpUnixUnlock,
 | |
|   afpUnixCheckReservedLock,
 | |
|   unixFileControl,
 | |
|   unixSectorSize,
 | |
|   unixDeviceCharacteristics
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an sqlite3_file
 | |
| ** for unix with flock() style file locking.
 | |
| */
 | |
| static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   flockUnixClose,
 | |
|   unixRead,
 | |
|   unixWrite,
 | |
|   unixTruncate,
 | |
|   unixSync,
 | |
|   unixFileSize,
 | |
|   flockUnixLock,
 | |
|   flockUnixUnlock,
 | |
|   flockUnixCheckReservedLock,
 | |
|   unixFileControl,
 | |
|   unixSectorSize,
 | |
|   unixDeviceCharacteristics
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an sqlite3_file
 | |
| ** for unix with dotlock style file locking.
 | |
| */
 | |
| static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   dotlockUnixClose,
 | |
|   unixRead,
 | |
|   unixWrite,
 | |
|   unixTruncate,
 | |
|   unixSync,
 | |
|   unixFileSize,
 | |
|   dotlockUnixLock,
 | |
|   dotlockUnixUnlock,
 | |
|   dotlockUnixCheckReservedLock,
 | |
|   unixFileControl,
 | |
|   unixSectorSize,
 | |
|   unixDeviceCharacteristics
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an sqlite3_file
 | |
| ** for unix with nolock style file locking.
 | |
| */
 | |
| static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   nolockUnixClose,
 | |
|   unixRead,
 | |
|   unixWrite,
 | |
|   unixTruncate,
 | |
|   unixSync,
 | |
|   unixFileSize,
 | |
|   nolockUnixLock,
 | |
|   nolockUnixUnlock,
 | |
|   nolockUnixCheckReservedLock,
 | |
|   unixFileControl,
 | |
|   unixSectorSize,
 | |
|   unixDeviceCharacteristics
 | |
| };
 | |
| 
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| 
 | |
| /*
 | |
| ** Allocate memory for a new unixFile and initialize that unixFile.
 | |
| ** Write a pointer to the new unixFile into *pId.
 | |
| ** If we run out of memory, close the file and return an error.
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_LOCKING_STYLE
 | |
| /* 
 | |
| ** When locking extensions are enabled, the filepath and locking style 
 | |
| ** are needed to determine the unixFile pMethod to use for locking operations.
 | |
| ** The locking-style specific lockingContext data structure is created 
 | |
| ** and assigned here also.
 | |
| */
 | |
| static int fillInUnixFile(
 | |
|   int h,                  /* Open file descriptor of file being opened */
 | |
|   int dirfd,              /* Directory file descriptor */
 | |
|   sqlite3_file *pId,      /* Write to the unixFile structure here */
 | |
|   const char *zFilename   /* Name of the file being opened */
 | |
| ){
 | |
|   sqlite3LockingStyle lockingStyle;
 | |
|   unixFile *pNew = (unixFile *)pId;
 | |
|   int rc;
 | |
| 
 | |
| #ifdef FD_CLOEXEC
 | |
|   fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
 | |
| #endif
 | |
| 
 | |
|   lockingStyle = sqlite3DetectLockingStyle(zFilename, h);
 | |
|   if ( lockingStyle==posixLockingStyle ){
 | |
|     enterMutex();
 | |
|     rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
 | |
|     leaveMutex();
 | |
|     if( rc ){
 | |
|       if( dirfd>=0 ) close(dirfd);
 | |
|       close(h);
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|   } else {
 | |
|     /*  pLock and pOpen are only used for posix advisory locking */
 | |
|     pNew->pLock = NULL;
 | |
|     pNew->pOpen = NULL;
 | |
|   }
 | |
| 
 | |
|   OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
 | |
|   pNew->dirfd = -1;
 | |
|   pNew->h = h;
 | |
|   pNew->dirfd = dirfd;
 | |
|   SET_THREADID(pNew);
 | |
|     
 | |
|   switch(lockingStyle) {
 | |
|     case afpLockingStyle: {
 | |
|       /* afp locking uses the file path so it needs to be included in
 | |
|       ** the afpLockingContext */
 | |
|       afpLockingContext *context;
 | |
|       pNew->pMethod = &sqlite3AFPLockingUnixIoMethod;
 | |
|       pNew->lockingContext = context = sqlite3_malloc( sizeof(*context) );
 | |
|       if( context==0 ){
 | |
|         close(h);
 | |
|         if( dirfd>=0 ) close(dirfd);
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
| 
 | |
|       /* NB: zFilename exists and remains valid until the file is closed
 | |
|       ** according to requirement F11141.  So we do not need to make a
 | |
|       ** copy of the filename. */
 | |
|       context->filePath = zFilename;
 | |
|       srandomdev();
 | |
|       break;
 | |
|     }
 | |
|     case flockLockingStyle:
 | |
|       /* flock locking doesn't need additional lockingContext information */
 | |
|       pNew->pMethod = &sqlite3FlockLockingUnixIoMethod;
 | |
|       break;
 | |
|     case dotlockLockingStyle: {
 | |
|       /* dotlock locking uses the file path so it needs to be included in
 | |
|       ** the dotlockLockingContext */
 | |
|       dotlockLockingContext *context;
 | |
|       int nFilename;
 | |
|       nFilename = strlen(zFilename);
 | |
|       pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod;
 | |
|       pNew->lockingContext = context = 
 | |
|          sqlite3_malloc( sizeof(*context) + nFilename + 6 );
 | |
|       if( context==0 ){
 | |
|         close(h);
 | |
|         if( dirfd>=0 ) close(dirfd);
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|       context->lockPath = (char*)&context[1];
 | |
|       sqlite3_snprintf(nFilename, context->lockPath,
 | |
|                        "%s.lock", zFilename);
 | |
|       break;
 | |
|     }
 | |
|     case posixLockingStyle:
 | |
|       /* posix locking doesn't need additional lockingContext information */
 | |
|       pNew->pMethod = &sqlite3UnixIoMethod;
 | |
|       break;
 | |
|     case noLockingStyle:
 | |
|     case unsupportedLockingStyle:
 | |
|     default: 
 | |
|       pNew->pMethod = &sqlite3NolockLockingUnixIoMethod;
 | |
|   }
 | |
|   OpenCounter(+1);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #else /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| static int fillInUnixFile(
 | |
|   int h,                 /* Open file descriptor on file being opened */
 | |
|   int dirfd,
 | |
|   sqlite3_file *pId,     /* Write to the unixFile structure here */
 | |
|   const char *zFilename  /* Name of the file being opened */
 | |
| ){
 | |
|   unixFile *pNew = (unixFile *)pId;
 | |
|   int rc;
 | |
| 
 | |
| #ifdef FD_CLOEXEC
 | |
|   fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC);
 | |
| #endif
 | |
| 
 | |
|   enterMutex();
 | |
|   rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
 | |
|   leaveMutex();
 | |
|   if( rc ){
 | |
|     if( dirfd>=0 ) close(dirfd);
 | |
|     close(h);
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   OSTRACE3("OPEN    %-3d %s\n", h, zFilename);
 | |
|   pNew->dirfd = -1;
 | |
|   pNew->h = h;
 | |
|   pNew->dirfd = dirfd;
 | |
|   SET_THREADID(pNew);
 | |
| 
 | |
|   pNew->pMethod = &sqlite3UnixIoMethod;
 | |
|   OpenCounter(+1);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_LOCKING_STYLE */
 | |
| 
 | |
| /*
 | |
| ** Open a file descriptor to the directory containing file zFilename.
 | |
| ** If successful, *pFd is set to the opened file descriptor and
 | |
| ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
 | |
| ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
 | |
| ** value.
 | |
| **
 | |
| ** If SQLITE_OK is returned, the caller is responsible for closing
 | |
| ** the file descriptor *pFd using close().
 | |
| */
 | |
| static int openDirectory(const char *zFilename, int *pFd){
 | |
|   int ii;
 | |
|   int fd = -1;
 | |
|   char zDirname[MAX_PATHNAME+1];
 | |
| 
 | |
|   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
 | |
|   for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
 | |
|   if( ii>0 ){
 | |
|     zDirname[ii] = '\0';
 | |
|     fd = open(zDirname, O_RDONLY|O_BINARY, 0);
 | |
|     if( fd>=0 ){
 | |
| #ifdef FD_CLOEXEC
 | |
|       fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
 | |
| #endif
 | |
|       OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
 | |
|     }
 | |
|   }
 | |
|   *pFd = fd;
 | |
|   return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the file zPath.
 | |
| ** 
 | |
| ** Previously, the SQLite OS layer used three functions in place of this
 | |
| ** one:
 | |
| **
 | |
| **     sqlite3OsOpenReadWrite();
 | |
| **     sqlite3OsOpenReadOnly();
 | |
| **     sqlite3OsOpenExclusive();
 | |
| **
 | |
| ** These calls correspond to the following combinations of flags:
 | |
| **
 | |
| **     ReadWrite() ->     (READWRITE | CREATE)
 | |
| **     ReadOnly()  ->     (READONLY) 
 | |
| **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
 | |
| **
 | |
| ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
 | |
| ** true, the file was configured to be automatically deleted when the
 | |
| ** file handle closed. To achieve the same effect using this new 
 | |
| ** interface, add the DELETEONCLOSE flag to those specified above for 
 | |
| ** OpenExclusive().
 | |
| */
 | |
| static int unixOpen(
 | |
|   sqlite3_vfs *pVfs, 
 | |
|   const char *zPath, 
 | |
|   sqlite3_file *pFile,
 | |
|   int flags,
 | |
|   int *pOutFlags
 | |
| ){
 | |
|   int fd = 0;                    /* File descriptor returned by open() */
 | |
|   int dirfd = -1;                /* Directory file descriptor */
 | |
|   int oflags = 0;                /* Flags to pass to open() */
 | |
|   int eType = flags&0xFFFFFF00;  /* Type of file to open */
 | |
| 
 | |
|   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
 | |
|   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
 | |
|   int isCreate     = (flags & SQLITE_OPEN_CREATE);
 | |
|   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
 | |
|   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
 | |
| 
 | |
|   /* If creating a master or main-file journal, this function will open
 | |
|   ** a file-descriptor on the directory too. The first time unixSync()
 | |
|   ** is called the directory file descriptor will be fsync()ed and close()d.
 | |
|   */
 | |
|   int isOpenDirectory = (isCreate && 
 | |
|       (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
 | |
|   );
 | |
| 
 | |
|   /* Check the following statements are true: 
 | |
|   **
 | |
|   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
 | |
|   **   (b) if CREATE is set, then READWRITE must also be set, and
 | |
|   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
 | |
|   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
 | |
|   */
 | |
|   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
 | |
|   assert(isCreate==0 || isReadWrite);
 | |
|   assert(isExclusive==0 || isCreate);
 | |
|   assert(isDelete==0 || isCreate);
 | |
| 
 | |
| 
 | |
|   /* The main DB, main journal, and master journal are never automatically
 | |
|   ** deleted
 | |
|   */
 | |
|   assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
 | |
|   assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
 | |
|   assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
 | |
| 
 | |
|   /* Assert that the upper layer has set one of the "file-type" flags. */
 | |
|   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
 | |
|        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
 | |
|        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
 | |
|        || eType==SQLITE_OPEN_TRANSIENT_DB
 | |
|   );
 | |
| 
 | |
|   if( isReadonly )  oflags |= O_RDONLY;
 | |
|   if( isReadWrite ) oflags |= O_RDWR;
 | |
|   if( isCreate )    oflags |= O_CREAT;
 | |
|   if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
 | |
|   oflags |= (O_LARGEFILE|O_BINARY);
 | |
| 
 | |
|   memset(pFile, 0, sizeof(unixFile));
 | |
|   fd = open(zPath, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
 | |
|   if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
 | |
|     /* Failed to open the file for read/write access. Try read-only. */
 | |
|     flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
 | |
|     flags |= SQLITE_OPEN_READONLY;
 | |
|     return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
 | |
|   }
 | |
|   if( fd<0 ){
 | |
|     return SQLITE_CANTOPEN;
 | |
|   }
 | |
|   if( isDelete ){
 | |
|     unlink(zPath);
 | |
|   }
 | |
|   if( pOutFlags ){
 | |
|     *pOutFlags = flags;
 | |
|   }
 | |
| 
 | |
|   assert(fd!=0);
 | |
|   if( isOpenDirectory ){
 | |
|     int rc = openDirectory(zPath, &dirfd);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       close(fd);
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
|   return fillInUnixFile(fd, dirfd, pFile, zPath);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the file at zPath. If the dirSync argument is true, fsync()
 | |
| ** the directory after deleting the file.
 | |
| */
 | |
| static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
 | |
|   int rc = SQLITE_OK;
 | |
|   SimulateIOError(return SQLITE_IOERR_DELETE);
 | |
|   unlink(zPath);
 | |
|   if( dirSync ){
 | |
|     int fd;
 | |
|     rc = openDirectory(zPath, &fd);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       if( fsync(fd) ){
 | |
|         rc = SQLITE_IOERR_DIR_FSYNC;
 | |
|       }
 | |
|       close(fd);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Test the existance of or access permissions of file zPath. The
 | |
| ** test performed depends on the value of flags:
 | |
| **
 | |
| **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
 | |
| **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
 | |
| **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
 | |
| **
 | |
| ** Otherwise return 0.
 | |
| */
 | |
| static int unixAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){
 | |
|   int amode = 0;
 | |
|   switch( flags ){
 | |
|     case SQLITE_ACCESS_EXISTS:
 | |
|       amode = F_OK;
 | |
|       break;
 | |
|     case SQLITE_ACCESS_READWRITE:
 | |
|       amode = W_OK|R_OK;
 | |
|       break;
 | |
|     case SQLITE_ACCESS_READ:
 | |
|       amode = R_OK;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       assert(!"Invalid flags argument");
 | |
|   }
 | |
|   return (access(zPath, amode)==0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a temporary file name in zBuf.  zBuf must be allocated
 | |
| ** by the calling process and must be big enough to hold at least
 | |
| ** pVfs->mxPathname bytes.
 | |
| */
 | |
| static int unixGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
 | |
|   static const char *azDirs[] = {
 | |
|      0,
 | |
|      "/var/tmp",
 | |
|      "/usr/tmp",
 | |
|      "/tmp",
 | |
|      ".",
 | |
|   };
 | |
|   static const unsigned char zChars[] =
 | |
|     "abcdefghijklmnopqrstuvwxyz"
 | |
|     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|     "0123456789";
 | |
|   int i, j;
 | |
|   struct stat buf;
 | |
|   const char *zDir = ".";
 | |
| 
 | |
|   /* It's odd to simulate an io-error here, but really this is just
 | |
|   ** using the io-error infrastructure to test that SQLite handles this
 | |
|   ** function failing. 
 | |
|   */
 | |
|   SimulateIOError( return SQLITE_ERROR );
 | |
| 
 | |
|   azDirs[0] = sqlite3_temp_directory;
 | |
|   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
 | |
|     if( azDirs[i]==0 ) continue;
 | |
|     if( stat(azDirs[i], &buf) ) continue;
 | |
|     if( !S_ISDIR(buf.st_mode) ) continue;
 | |
|     if( access(azDirs[i], 07) ) continue;
 | |
|     zDir = azDirs[i];
 | |
|     break;
 | |
|   }
 | |
|   if( strlen(zDir) - sizeof(SQLITE_TEMP_FILE_PREFIX) - 17 <=0 ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   do{
 | |
|     assert( pVfs->mxPathname==MAX_PATHNAME );
 | |
|     sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
 | |
|     j = strlen(zBuf);
 | |
|     sqlite3Randomness(15, &zBuf[j]);
 | |
|     for(i=0; i<15; i++, j++){
 | |
|       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
 | |
|     }
 | |
|     zBuf[j] = 0;
 | |
|   }while( access(zBuf,0)==0 );
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Turn a relative pathname into a full pathname. The relative path
 | |
| ** is stored as a nul-terminated string in the buffer pointed to by
 | |
| ** zPath. 
 | |
| **
 | |
| ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
 | |
| ** (in this case, MAX_PATHNAME bytes). The full-path is written to
 | |
| ** this buffer before returning.
 | |
| */
 | |
| static int unixFullPathname(
 | |
|   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
 | |
|   const char *zPath,            /* Possibly relative input path */
 | |
|   int nOut,                     /* Size of output buffer in bytes */
 | |
|   char *zOut                    /* Output buffer */
 | |
| ){
 | |
| 
 | |
|   /* It's odd to simulate an io-error here, but really this is just
 | |
|   ** using the io-error infrastructure to test that SQLite handles this
 | |
|   ** function failing. This function could fail if, for example, the
 | |
|   ** current working directly has been unlinked.
 | |
|   */
 | |
|   SimulateIOError( return SQLITE_ERROR );
 | |
| 
 | |
|   assert( pVfs->mxPathname==MAX_PATHNAME );
 | |
|   zOut[nOut-1] = '\0';
 | |
|   if( zPath[0]=='/' ){
 | |
|     sqlite3_snprintf(nOut, zOut, "%s", zPath);
 | |
|   }else{
 | |
|     int nCwd;
 | |
|     if( getcwd(zOut, nOut-1)==0 ){
 | |
|       return SQLITE_CANTOPEN;
 | |
|     }
 | |
|     nCwd = strlen(zOut);
 | |
|     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| 
 | |
| #if 0
 | |
|   /*
 | |
|   ** Remove "/./" path elements and convert "/A/./" path elements
 | |
|   ** to just "/".
 | |
|   */
 | |
|   if( zFull ){
 | |
|     int i, j;
 | |
|     for(i=j=0; zFull[i]; i++){
 | |
|       if( zFull[i]=='/' ){
 | |
|         if( zFull[i+1]=='/' ) continue;
 | |
|         if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
 | |
|           i += 1;
 | |
|           continue;
 | |
|         }
 | |
|         if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
 | |
|           while( j>0 && zFull[j-1]!='/' ){ j--; }
 | |
|           i += 3;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       zFull[j++] = zFull[i];
 | |
|     }
 | |
|     zFull[j] = 0;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| /*
 | |
| ** Interfaces for opening a shared library, finding entry points
 | |
| ** within the shared library, and closing the shared library.
 | |
| */
 | |
| #include <dlfcn.h>
 | |
| static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
 | |
|   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** SQLite calls this function immediately after a call to unixDlSym() or
 | |
| ** unixDlOpen() fails (returns a null pointer). If a more detailed error
 | |
| ** message is available, it is written to zBufOut. If no error message
 | |
| ** is available, zBufOut is left unmodified and SQLite uses a default
 | |
| ** error message.
 | |
| */
 | |
| static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
 | |
|   char *zErr;
 | |
|   enterMutex();
 | |
|   zErr = dlerror();
 | |
|   if( zErr ){
 | |
|     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
 | |
|   }
 | |
|   leaveMutex();
 | |
| }
 | |
| static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
 | |
|   return dlsym(pHandle, zSymbol);
 | |
| }
 | |
| static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
 | |
|   dlclose(pHandle);
 | |
| }
 | |
| #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
 | |
|   #define unixDlOpen  0
 | |
|   #define unixDlError 0
 | |
|   #define unixDlSym   0
 | |
|   #define unixDlClose 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Write nBuf bytes of random data to the supplied buffer zBuf.
 | |
| */
 | |
| static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
 | |
| 
 | |
|   assert(nBuf>=(sizeof(time_t)+sizeof(int)));
 | |
| 
 | |
|   /* We have to initialize zBuf to prevent valgrind from reporting
 | |
|   ** errors.  The reports issued by valgrind are incorrect - we would
 | |
|   ** prefer that the randomness be increased by making use of the
 | |
|   ** uninitialized space in zBuf - but valgrind errors tend to worry
 | |
|   ** some users.  Rather than argue, it seems easier just to initialize
 | |
|   ** the whole array and silence valgrind, even if that means less randomness
 | |
|   ** in the random seed.
 | |
|   **
 | |
|   ** When testing, initializing zBuf[] to zero is all we do.  That means
 | |
|   ** that we always use the same random number sequence.  This makes the
 | |
|   ** tests repeatable.
 | |
|   */
 | |
|   memset(zBuf, 0, nBuf);
 | |
| #if !defined(SQLITE_TEST)
 | |
|   {
 | |
|     int pid, fd;
 | |
|     fd = open("/dev/urandom", O_RDONLY);
 | |
|     if( fd<0 ){
 | |
|       time_t t;
 | |
|       time(&t);
 | |
|       memcpy(zBuf, &t, sizeof(t));
 | |
|       pid = getpid();
 | |
|       memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
 | |
|     }else{
 | |
|       read(fd, zBuf, nBuf);
 | |
|       close(fd);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Sleep for a little while.  Return the amount of time slept.
 | |
| ** The argument is the number of microseconds we want to sleep.
 | |
| ** The return value is the number of microseconds of sleep actually
 | |
| ** requested from the underlying operating system, a number which
 | |
| ** might be greater than or equal to the argument, but not less
 | |
| ** than the argument.
 | |
| */
 | |
| static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
 | |
| #if defined(HAVE_USLEEP) && HAVE_USLEEP
 | |
|   usleep(microseconds);
 | |
|   return microseconds;
 | |
| #else
 | |
|   int seconds = (microseconds+999999)/1000000;
 | |
|   sleep(seconds);
 | |
|   return seconds*1000000;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following variable, if set to a non-zero value, becomes the result
 | |
| ** returned from sqlite3OsCurrentTime().  This is used for testing.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_current_time = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Find the current time (in Universal Coordinated Time).  Write the
 | |
| ** current time and date as a Julian Day number into *prNow and
 | |
| ** return 0.  Return 1 if the time and date cannot be found.
 | |
| */
 | |
| static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
 | |
| #ifdef NO_GETTOD
 | |
|   time_t t;
 | |
|   time(&t);
 | |
|   *prNow = t/86400.0 + 2440587.5;
 | |
| #else
 | |
|   struct timeval sNow;
 | |
|   gettimeofday(&sNow, 0);
 | |
|   *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
 | |
| #endif
 | |
| #ifdef SQLITE_TEST
 | |
|   if( sqlite3_current_time ){
 | |
|     *prNow = sqlite3_current_time/86400.0 + 2440587.5;
 | |
|   }
 | |
| #endif
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the sqlite3DefaultVfs structure.   We use
 | |
| ** a function rather than give the structure global scope because
 | |
| ** some compilers (MSVC) do not allow forward declarations of
 | |
| ** initialized structures.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
 | |
|   static sqlite3_vfs unixVfs = {
 | |
|     1,                  /* iVersion */
 | |
|     sizeof(unixFile),   /* szOsFile */
 | |
|     MAX_PATHNAME,       /* mxPathname */
 | |
|     0,                  /* pNext */
 | |
|     "unix",             /* zName */
 | |
|     0,                  /* pAppData */
 | |
|   
 | |
|     unixOpen,           /* xOpen */
 | |
|     unixDelete,         /* xDelete */
 | |
|     unixAccess,         /* xAccess */
 | |
|     unixGetTempname,    /* xGetTempName */
 | |
|     unixFullPathname,   /* xFullPathname */
 | |
|     unixDlOpen,         /* xDlOpen */
 | |
|     unixDlError,        /* xDlError */
 | |
|     unixDlSym,          /* xDlSym */
 | |
|     unixDlClose,        /* xDlClose */
 | |
|     unixRandomness,     /* xRandomness */
 | |
|     unixSleep,          /* xSleep */
 | |
|     unixCurrentTime     /* xCurrentTime */
 | |
|   };
 | |
|   
 | |
|   return &unixVfs;
 | |
| }
 | |
|  
 | |
| #endif /* OS_UNIX */
 | |
| 
 | |
| /************** End of os_unix.c *********************************************/
 | |
| /************** Begin file os_win.c ******************************************/
 | |
| /*
 | |
| ** 2004 May 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains code that is specific to windows.
 | |
| */
 | |
| #if OS_WIN               /* This file is used for windows only */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** A Note About Memory Allocation:
 | |
| **
 | |
| ** This driver uses malloc()/free() directly rather than going through
 | |
| ** the SQLite-wrappers sqlite3_malloc()/sqlite3_free().  Those wrappers
 | |
| ** are designed for use on embedded systems where memory is scarce and
 | |
| ** malloc failures happen frequently.  Win32 does not typically run on
 | |
| ** embedded systems, and when it does the developers normally have bigger
 | |
| ** problems to worry about than running out of memory.  So there is not
 | |
| ** a compelling need to use the wrappers.
 | |
| **
 | |
| ** But there is a good reason to not use the wrappers.  If we use the
 | |
| ** wrappers then we will get simulated malloc() failures within this
 | |
| ** driver.  And that causes all kinds of problems for our tests.  We
 | |
| ** could enhance SQLite to deal with simulated malloc failures within
 | |
| ** the OS driver, but the code to deal with those failure would not
 | |
| ** be exercised on Linux (which does not need to malloc() in the driver)
 | |
| ** and so we would have difficulty writing coverage tests for that
 | |
| ** code.  Better to leave the code out, we think.
 | |
| **
 | |
| ** The point of this discussion is as follows:  When creating a new
 | |
| ** OS layer for an embedded system, if you use this file as an example,
 | |
| ** avoid the use of malloc()/free().  Those routines work ok on windows
 | |
| ** desktops but not so well in embedded systems.
 | |
| */
 | |
| 
 | |
| #include <winbase.h>
 | |
| 
 | |
| #ifdef __CYGWIN__
 | |
| # include <sys/cygwin.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Macros used to determine whether or not to use threads.
 | |
| */
 | |
| #if defined(THREADSAFE) && THREADSAFE
 | |
| # define SQLITE_W32_THREADS 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Include code that is common to all os_*.c files
 | |
| */
 | |
| /************** Include os_common.h in the middle of os_win.c ****************/
 | |
| /************** Begin file os_common.h ***************************************/
 | |
| /*
 | |
| ** 2004 May 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This file contains macros and a little bit of code that is common to
 | |
| ** all of the platform-specific files (os_*.c) and is #included into those
 | |
| ** files.
 | |
| **
 | |
| ** This file should be #included by the os_*.c files only.  It is not a
 | |
| ** general purpose header file.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** At least two bugs have slipped in because we changed the MEMORY_DEBUG
 | |
| ** macro to SQLITE_DEBUG and some older makefiles have not yet made the
 | |
| ** switch.  The following code should catch this problem at compile-time.
 | |
| */
 | |
| #ifdef MEMORY_DEBUG
 | |
| # error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * When testing, this global variable stores the location of the
 | |
|  * pending-byte in the database file.
 | |
|  */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000;
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE int sqlite3OSTrace = 0;
 | |
| #define OSTRACE1(X)         if( sqlite3OSTrace ) sqlite3DebugPrintf(X)
 | |
| #define OSTRACE2(X,Y)       if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y)
 | |
| #define OSTRACE3(X,Y,Z)     if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z)
 | |
| #define OSTRACE4(X,Y,Z,A)   if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A)
 | |
| #define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B)
 | |
| #define OSTRACE6(X,Y,Z,A,B,C) \
 | |
|     if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
 | |
| #define OSTRACE7(X,Y,Z,A,B,C,D) \
 | |
|     if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D)
 | |
| #else
 | |
| #define OSTRACE1(X)
 | |
| #define OSTRACE2(X,Y)
 | |
| #define OSTRACE3(X,Y,Z)
 | |
| #define OSTRACE4(X,Y,Z,A)
 | |
| #define OSTRACE5(X,Y,Z,A,B)
 | |
| #define OSTRACE6(X,Y,Z,A,B,C)
 | |
| #define OSTRACE7(X,Y,Z,A,B,C,D)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Macros for performance tracing.  Normally turned off.  Only works
 | |
| ** on i486 hardware.
 | |
| */
 | |
| #ifdef SQLITE_PERFORMANCE_TRACE
 | |
| __inline__ unsigned long long int hwtime(void){
 | |
|   unsigned long long int x;
 | |
|   __asm__("rdtsc\n\t"
 | |
|           "mov %%edx, %%ecx\n\t"
 | |
|           :"=A" (x));
 | |
|   return x;
 | |
| }
 | |
| static unsigned long long int g_start;
 | |
| static unsigned int elapse;
 | |
| #define TIMER_START       g_start=hwtime()
 | |
| #define TIMER_END         elapse=hwtime()-g_start
 | |
| #define TIMER_ELAPSED     elapse
 | |
| #else
 | |
| #define TIMER_START
 | |
| #define TIMER_END
 | |
| #define TIMER_ELAPSED     0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** If we compile with the SQLITE_TEST macro set, then the following block
 | |
| ** of code will give us the ability to simulate a disk I/O error.  This
 | |
| ** is used for testing the I/O recovery logic.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
 | |
| SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
 | |
| SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
 | |
| SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
 | |
| SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
 | |
| SQLITE_API int sqlite3_diskfull_pending = 0;
 | |
| SQLITE_API int sqlite3_diskfull = 0;
 | |
| #define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
 | |
| #define SimulateIOError(CODE)  \
 | |
|   if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
 | |
|        || sqlite3_io_error_pending-- == 1 )  \
 | |
|               { local_ioerr(); CODE; }
 | |
| static void local_ioerr(){
 | |
|   IOTRACE(("IOERR\n"));
 | |
|   sqlite3_io_error_hit++;
 | |
|   if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
 | |
| }
 | |
| #define SimulateDiskfullError(CODE) \
 | |
|    if( sqlite3_diskfull_pending ){ \
 | |
|      if( sqlite3_diskfull_pending == 1 ){ \
 | |
|        local_ioerr(); \
 | |
|        sqlite3_diskfull = 1; \
 | |
|        sqlite3_io_error_hit = 1; \
 | |
|        CODE; \
 | |
|      }else{ \
 | |
|        sqlite3_diskfull_pending--; \
 | |
|      } \
 | |
|    }
 | |
| #else
 | |
| #define SimulateIOErrorBenign(X)
 | |
| #define SimulateIOError(A)
 | |
| #define SimulateDiskfullError(A)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When testing, keep a count of the number of open files.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_open_file_count = 0;
 | |
| #define OpenCounter(X)  sqlite3_open_file_count+=(X)
 | |
| #else
 | |
| #define OpenCounter(X)
 | |
| #endif
 | |
| 
 | |
| /************** End of os_common.h *******************************************/
 | |
| /************** Continuing where we left off in os_win.c *********************/
 | |
| 
 | |
| /*
 | |
| ** Determine if we are dealing with WindowsCE - which has a much
 | |
| ** reduced API.
 | |
| */
 | |
| #if defined(_WIN32_WCE)
 | |
| # define OS_WINCE 1
 | |
| # define AreFileApisANSI() 1
 | |
| #else
 | |
| # define OS_WINCE 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** WinCE lacks native support for file locking so we have to fake it
 | |
| ** with some code of our own.
 | |
| */
 | |
| #if OS_WINCE
 | |
| typedef struct winceLock {
 | |
|   int nReaders;       /* Number of reader locks obtained */
 | |
|   BOOL bPending;      /* Indicates a pending lock has been obtained */
 | |
|   BOOL bReserved;     /* Indicates a reserved lock has been obtained */
 | |
|   BOOL bExclusive;    /* Indicates an exclusive lock has been obtained */
 | |
| } winceLock;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The winFile structure is a subclass of sqlite3_file* specific to the win32
 | |
| ** portability layer.
 | |
| */
 | |
| typedef struct winFile winFile;
 | |
| struct winFile {
 | |
|   const sqlite3_io_methods *pMethod;/* Must be first */
 | |
|   HANDLE h;               /* Handle for accessing the file */
 | |
|   unsigned char locktype; /* Type of lock currently held on this file */
 | |
|   short sharedLockByte;   /* Randomly chosen byte used as a shared lock */
 | |
| #if OS_WINCE
 | |
|   WCHAR *zDeleteOnClose;  /* Name of file to delete when closing */
 | |
|   HANDLE hMutex;          /* Mutex used to control access to shared lock */  
 | |
|   HANDLE hShared;         /* Shared memory segment used for locking */
 | |
|   winceLock local;        /* Locks obtained by this instance of winFile */
 | |
|   winceLock *shared;      /* Global shared lock memory for the file  */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following variable is (normally) set once and never changes
 | |
| ** thereafter.  It records whether the operating system is Win95
 | |
| ** or WinNT.
 | |
| **
 | |
| ** 0:   Operating system unknown.
 | |
| ** 1:   Operating system is Win95.
 | |
| ** 2:   Operating system is WinNT.
 | |
| **
 | |
| ** In order to facilitate testing on a WinNT system, the test fixture
 | |
| ** can manually set this value to 1 to emulate Win98 behavior.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_os_type = 0;
 | |
| #else
 | |
| static int sqlite3_os_type = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return true (non-zero) if we are running under WinNT, Win2K, WinXP,
 | |
| ** or WinCE.  Return false (zero) for Win95, Win98, or WinME.
 | |
| **
 | |
| ** Here is an interesting observation:  Win95, Win98, and WinME lack
 | |
| ** the LockFileEx() API.  But we can still statically link against that
 | |
| ** API as long as we don't call it win running Win95/98/ME.  A call to
 | |
| ** this routine is used to determine if the host is Win95/98/ME or
 | |
| ** WinNT/2K/XP so that we will know whether or not we can safely call
 | |
| ** the LockFileEx() API.
 | |
| */
 | |
| #if OS_WINCE
 | |
| # define isNT()  (1)
 | |
| #else
 | |
|   static int isNT(void){
 | |
|     if( sqlite3_os_type==0 ){
 | |
|       OSVERSIONINFO sInfo;
 | |
|       sInfo.dwOSVersionInfoSize = sizeof(sInfo);
 | |
|       GetVersionEx(&sInfo);
 | |
|       sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
 | |
|     }
 | |
|     return sqlite3_os_type==2;
 | |
|   }
 | |
| #endif /* OS_WINCE */
 | |
| 
 | |
| /*
 | |
| ** Convert a UTF-8 string to microsoft unicode (UTF-16?). 
 | |
| **
 | |
| ** Space to hold the returned string is obtained from malloc.
 | |
| */
 | |
| static WCHAR *utf8ToUnicode(const char *zFilename){
 | |
|   int nChar;
 | |
|   WCHAR *zWideFilename;
 | |
| 
 | |
|   nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
 | |
|   zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) );
 | |
|   if( zWideFilename==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar);
 | |
|   if( nChar==0 ){
 | |
|     free(zWideFilename);
 | |
|     zWideFilename = 0;
 | |
|   }
 | |
|   return zWideFilename;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert microsoft unicode to UTF-8.  Space to hold the returned string is
 | |
| ** obtained from malloc().
 | |
| */
 | |
| static char *unicodeToUtf8(const WCHAR *zWideFilename){
 | |
|   int nByte;
 | |
|   char *zFilename;
 | |
| 
 | |
|   nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0);
 | |
|   zFilename = malloc( nByte );
 | |
|   if( zFilename==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte,
 | |
|                               0, 0);
 | |
|   if( nByte == 0 ){
 | |
|     free(zFilename);
 | |
|     zFilename = 0;
 | |
|   }
 | |
|   return zFilename;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert an ansi string to microsoft unicode, based on the
 | |
| ** current codepage settings for file apis.
 | |
| ** 
 | |
| ** Space to hold the returned string is obtained
 | |
| ** from malloc.
 | |
| */
 | |
| static WCHAR *mbcsToUnicode(const char *zFilename){
 | |
|   int nByte;
 | |
|   WCHAR *zMbcsFilename;
 | |
|   int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
 | |
| 
 | |
|   nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR);
 | |
|   zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) );
 | |
|   if( zMbcsFilename==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte);
 | |
|   if( nByte==0 ){
 | |
|     free(zMbcsFilename);
 | |
|     zMbcsFilename = 0;
 | |
|   }
 | |
|   return zMbcsFilename;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert microsoft unicode to multibyte character string, based on the
 | |
| ** user's Ansi codepage.
 | |
| **
 | |
| ** Space to hold the returned string is obtained from
 | |
| ** malloc().
 | |
| */
 | |
| static char *unicodeToMbcs(const WCHAR *zWideFilename){
 | |
|   int nByte;
 | |
|   char *zFilename;
 | |
|   int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP;
 | |
| 
 | |
|   nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0);
 | |
|   zFilename = malloc( nByte );
 | |
|   if( zFilename==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte,
 | |
|                               0, 0);
 | |
|   if( nByte == 0 ){
 | |
|     free(zFilename);
 | |
|     zFilename = 0;
 | |
|   }
 | |
|   return zFilename;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert multibyte character string to UTF-8.  Space to hold the
 | |
| ** returned string is obtained from malloc().
 | |
| */
 | |
| static char *mbcsToUtf8(const char *zFilename){
 | |
|   char *zFilenameUtf8;
 | |
|   WCHAR *zTmpWide;
 | |
| 
 | |
|   zTmpWide = mbcsToUnicode(zFilename);
 | |
|   if( zTmpWide==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   zFilenameUtf8 = unicodeToUtf8(zTmpWide);
 | |
|   free(zTmpWide);
 | |
|   return zFilenameUtf8;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert UTF-8 to multibyte character string.  Space to hold the 
 | |
| ** returned string is obtained from malloc().
 | |
| */
 | |
| static char *utf8ToMbcs(const char *zFilename){
 | |
|   char *zFilenameMbcs;
 | |
|   WCHAR *zTmpWide;
 | |
| 
 | |
|   zTmpWide = utf8ToUnicode(zFilename);
 | |
|   if( zTmpWide==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   zFilenameMbcs = unicodeToMbcs(zTmpWide);
 | |
|   free(zTmpWide);
 | |
|   return zFilenameMbcs;
 | |
| }
 | |
| 
 | |
| #if OS_WINCE
 | |
| /*************************************************************************
 | |
| ** This section contains code for WinCE only.
 | |
| */
 | |
| /*
 | |
| ** WindowsCE does not have a localtime() function.  So create a
 | |
| ** substitute.
 | |
| */
 | |
| struct tm *__cdecl localtime(const time_t *t)
 | |
| {
 | |
|   static struct tm y;
 | |
|   FILETIME uTm, lTm;
 | |
|   SYSTEMTIME pTm;
 | |
|   sqlite3_int64 t64;
 | |
|   t64 = *t;
 | |
|   t64 = (t64 + 11644473600)*10000000;
 | |
|   uTm.dwLowDateTime = t64 & 0xFFFFFFFF;
 | |
|   uTm.dwHighDateTime= t64 >> 32;
 | |
|   FileTimeToLocalFileTime(&uTm,&lTm);
 | |
|   FileTimeToSystemTime(&lTm,&pTm);
 | |
|   y.tm_year = pTm.wYear - 1900;
 | |
|   y.tm_mon = pTm.wMonth - 1;
 | |
|   y.tm_wday = pTm.wDayOfWeek;
 | |
|   y.tm_mday = pTm.wDay;
 | |
|   y.tm_hour = pTm.wHour;
 | |
|   y.tm_min = pTm.wMinute;
 | |
|   y.tm_sec = pTm.wSecond;
 | |
|   return &y;
 | |
| }
 | |
| 
 | |
| /* This will never be called, but defined to make the code compile */
 | |
| #define GetTempPathA(a,b)
 | |
| 
 | |
| #define LockFile(a,b,c,d,e)       winceLockFile(&a, b, c, d, e)
 | |
| #define UnlockFile(a,b,c,d,e)     winceUnlockFile(&a, b, c, d, e)
 | |
| #define LockFileEx(a,b,c,d,e,f)   winceLockFileEx(&a, b, c, d, e, f)
 | |
| 
 | |
| #define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)]
 | |
| 
 | |
| /*
 | |
| ** Acquire a lock on the handle h
 | |
| */
 | |
| static void winceMutexAcquire(HANDLE h){
 | |
|    DWORD dwErr;
 | |
|    do {
 | |
|      dwErr = WaitForSingleObject(h, INFINITE);
 | |
|    } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED);
 | |
| }
 | |
| /*
 | |
| ** Release a lock acquired by winceMutexAcquire()
 | |
| */
 | |
| #define winceMutexRelease(h) ReleaseMutex(h)
 | |
| 
 | |
| /*
 | |
| ** Create the mutex and shared memory used for locking in the file
 | |
| ** descriptor pFile
 | |
| */
 | |
| static BOOL winceCreateLock(const char *zFilename, winFile *pFile){
 | |
|   WCHAR *zTok;
 | |
|   WCHAR *zName = utf8ToUnicode(zFilename);
 | |
|   BOOL bInit = TRUE;
 | |
| 
 | |
|   /* Initialize the local lockdata */
 | |
|   ZeroMemory(&pFile->local, sizeof(pFile->local));
 | |
| 
 | |
|   /* Replace the backslashes from the filename and lowercase it
 | |
|   ** to derive a mutex name. */
 | |
|   zTok = CharLowerW(zName);
 | |
|   for (;*zTok;zTok++){
 | |
|     if (*zTok == '\\') *zTok = '_';
 | |
|   }
 | |
| 
 | |
|   /* Create/open the named mutex */
 | |
|   pFile->hMutex = CreateMutexW(NULL, FALSE, zName);
 | |
|   if (!pFile->hMutex){
 | |
|     free(zName);
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   /* Acquire the mutex before continuing */
 | |
|   winceMutexAcquire(pFile->hMutex);
 | |
|   
 | |
|   /* Since the names of named mutexes, semaphores, file mappings etc are 
 | |
|   ** case-sensitive, take advantage of that by uppercasing the mutex name
 | |
|   ** and using that as the shared filemapping name.
 | |
|   */
 | |
|   CharUpperW(zName);
 | |
|   pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL,
 | |
|                                        PAGE_READWRITE, 0, sizeof(winceLock),
 | |
|                                        zName);  
 | |
| 
 | |
|   /* Set a flag that indicates we're the first to create the memory so it 
 | |
|   ** must be zero-initialized */
 | |
|   if (GetLastError() == ERROR_ALREADY_EXISTS){
 | |
|     bInit = FALSE;
 | |
|   }
 | |
| 
 | |
|   free(zName);
 | |
| 
 | |
|   /* If we succeeded in making the shared memory handle, map it. */
 | |
|   if (pFile->hShared){
 | |
|     pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared, 
 | |
|              FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock));
 | |
|     /* If mapping failed, close the shared memory handle and erase it */
 | |
|     if (!pFile->shared){
 | |
|       CloseHandle(pFile->hShared);
 | |
|       pFile->hShared = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If shared memory could not be created, then close the mutex and fail */
 | |
|   if (pFile->hShared == NULL){
 | |
|     winceMutexRelease(pFile->hMutex);
 | |
|     CloseHandle(pFile->hMutex);
 | |
|     pFile->hMutex = NULL;
 | |
|     return FALSE;
 | |
|   }
 | |
|   
 | |
|   /* Initialize the shared memory if we're supposed to */
 | |
|   if (bInit) {
 | |
|     ZeroMemory(pFile->shared, sizeof(winceLock));
 | |
|   }
 | |
| 
 | |
|   winceMutexRelease(pFile->hMutex);
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Destroy the part of winFile that deals with wince locks
 | |
| */
 | |
| static void winceDestroyLock(winFile *pFile){
 | |
|   if (pFile->hMutex){
 | |
|     /* Acquire the mutex */
 | |
|     winceMutexAcquire(pFile->hMutex);
 | |
| 
 | |
|     /* The following blocks should probably assert in debug mode, but they
 | |
|        are to cleanup in case any locks remained open */
 | |
|     if (pFile->local.nReaders){
 | |
|       pFile->shared->nReaders --;
 | |
|     }
 | |
|     if (pFile->local.bReserved){
 | |
|       pFile->shared->bReserved = FALSE;
 | |
|     }
 | |
|     if (pFile->local.bPending){
 | |
|       pFile->shared->bPending = FALSE;
 | |
|     }
 | |
|     if (pFile->local.bExclusive){
 | |
|       pFile->shared->bExclusive = FALSE;
 | |
|     }
 | |
| 
 | |
|     /* De-reference and close our copy of the shared memory handle */
 | |
|     UnmapViewOfFile(pFile->shared);
 | |
|     CloseHandle(pFile->hShared);
 | |
| 
 | |
|     /* Done with the mutex */
 | |
|     winceMutexRelease(pFile->hMutex);    
 | |
|     CloseHandle(pFile->hMutex);
 | |
|     pFile->hMutex = NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** An implementation of the LockFile() API of windows for wince
 | |
| */
 | |
| static BOOL winceLockFile(
 | |
|   HANDLE *phFile,
 | |
|   DWORD dwFileOffsetLow,
 | |
|   DWORD dwFileOffsetHigh,
 | |
|   DWORD nNumberOfBytesToLockLow,
 | |
|   DWORD nNumberOfBytesToLockHigh
 | |
| ){
 | |
|   winFile *pFile = HANDLE_TO_WINFILE(phFile);
 | |
|   BOOL bReturn = FALSE;
 | |
| 
 | |
|   if (!pFile->hMutex) return TRUE;
 | |
|   winceMutexAcquire(pFile->hMutex);
 | |
| 
 | |
|   /* Wanting an exclusive lock? */
 | |
|   if (dwFileOffsetLow == SHARED_FIRST
 | |
|        && nNumberOfBytesToLockLow == SHARED_SIZE){
 | |
|     if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){
 | |
|        pFile->shared->bExclusive = TRUE;
 | |
|        pFile->local.bExclusive = TRUE;
 | |
|        bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Want a read-only lock? */
 | |
|   else if ((dwFileOffsetLow >= SHARED_FIRST &&
 | |
|             dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) &&
 | |
|             nNumberOfBytesToLockLow == 1){
 | |
|     if (pFile->shared->bExclusive == 0){
 | |
|       pFile->local.nReaders ++;
 | |
|       if (pFile->local.nReaders == 1){
 | |
|         pFile->shared->nReaders ++;
 | |
|       }
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Want a pending lock? */
 | |
|   else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){
 | |
|     /* If no pending lock has been acquired, then acquire it */
 | |
|     if (pFile->shared->bPending == 0) {
 | |
|       pFile->shared->bPending = TRUE;
 | |
|       pFile->local.bPending = TRUE;
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
|   /* Want a reserved lock? */
 | |
|   else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){
 | |
|     if (pFile->shared->bReserved == 0) {
 | |
|       pFile->shared->bReserved = TRUE;
 | |
|       pFile->local.bReserved = TRUE;
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   winceMutexRelease(pFile->hMutex);
 | |
|   return bReturn;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** An implementation of the UnlockFile API of windows for wince
 | |
| */
 | |
| static BOOL winceUnlockFile(
 | |
|   HANDLE *phFile,
 | |
|   DWORD dwFileOffsetLow,
 | |
|   DWORD dwFileOffsetHigh,
 | |
|   DWORD nNumberOfBytesToUnlockLow,
 | |
|   DWORD nNumberOfBytesToUnlockHigh
 | |
| ){
 | |
|   winFile *pFile = HANDLE_TO_WINFILE(phFile);
 | |
|   BOOL bReturn = FALSE;
 | |
| 
 | |
|   if (!pFile->hMutex) return TRUE;
 | |
|   winceMutexAcquire(pFile->hMutex);
 | |
| 
 | |
|   /* Releasing a reader lock or an exclusive lock */
 | |
|   if (dwFileOffsetLow >= SHARED_FIRST &&
 | |
|        dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){
 | |
|     /* Did we have an exclusive lock? */
 | |
|     if (pFile->local.bExclusive){
 | |
|       pFile->local.bExclusive = FALSE;
 | |
|       pFile->shared->bExclusive = FALSE;
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
| 
 | |
|     /* Did we just have a reader lock? */
 | |
|     else if (pFile->local.nReaders){
 | |
|       pFile->local.nReaders --;
 | |
|       if (pFile->local.nReaders == 0)
 | |
|       {
 | |
|         pFile->shared->nReaders --;
 | |
|       }
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Releasing a pending lock */
 | |
|   else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){
 | |
|     if (pFile->local.bPending){
 | |
|       pFile->local.bPending = FALSE;
 | |
|       pFile->shared->bPending = FALSE;
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
|   /* Releasing a reserved lock */
 | |
|   else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){
 | |
|     if (pFile->local.bReserved) {
 | |
|       pFile->local.bReserved = FALSE;
 | |
|       pFile->shared->bReserved = FALSE;
 | |
|       bReturn = TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   winceMutexRelease(pFile->hMutex);
 | |
|   return bReturn;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** An implementation of the LockFileEx() API of windows for wince
 | |
| */
 | |
| static BOOL winceLockFileEx(
 | |
|   HANDLE *phFile,
 | |
|   DWORD dwFlags,
 | |
|   DWORD dwReserved,
 | |
|   DWORD nNumberOfBytesToLockLow,
 | |
|   DWORD nNumberOfBytesToLockHigh,
 | |
|   LPOVERLAPPED lpOverlapped
 | |
| ){
 | |
|   /* If the caller wants a shared read lock, forward this call
 | |
|   ** to winceLockFile */
 | |
|   if (lpOverlapped->Offset == SHARED_FIRST &&
 | |
|       dwFlags == 1 &&
 | |
|       nNumberOfBytesToLockLow == SHARED_SIZE){
 | |
|     return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0);
 | |
|   }
 | |
|   return FALSE;
 | |
| }
 | |
| /*
 | |
| ** End of the special code for wince
 | |
| *****************************************************************************/
 | |
| #endif /* OS_WINCE */
 | |
| 
 | |
| /*****************************************************************************
 | |
| ** The next group of routines implement the I/O methods specified
 | |
| ** by the sqlite3_io_methods object.
 | |
| ******************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** Close a file.
 | |
| **
 | |
| ** It is reported that an attempt to close a handle might sometimes
 | |
| ** fail.  This is a very unreasonable result, but windows is notorious
 | |
| ** for being unreasonable so I do not doubt that it might happen.  If
 | |
| ** the close fails, we pause for 100 milliseconds and try again.  As
 | |
| ** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before
 | |
| ** giving up and returning an error.
 | |
| */
 | |
| #define MX_CLOSE_ATTEMPT 3
 | |
| static int winClose(sqlite3_file *id){
 | |
|   int rc, cnt = 0;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   OSTRACE2("CLOSE %d\n", pFile->h);
 | |
|   do{
 | |
|     rc = CloseHandle(pFile->h);
 | |
|   }while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) );
 | |
| #if OS_WINCE
 | |
| #define WINCE_DELETION_ATTEMPTS 3
 | |
|   winceDestroyLock(pFile);
 | |
|   if( pFile->zDeleteOnClose ){
 | |
|     int cnt = 0;
 | |
|     while(
 | |
|            DeleteFileW(pFile->zDeleteOnClose)==0
 | |
|         && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff 
 | |
|         && cnt++ < WINCE_DELETION_ATTEMPTS
 | |
|     ){
 | |
|        Sleep(100);  /* Wait a little before trying again */
 | |
|     }
 | |
|     free(pFile->zDeleteOnClose);
 | |
|   }
 | |
| #endif
 | |
|   OpenCounter(-1);
 | |
|   return rc ? SQLITE_OK : SQLITE_IOERR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Some microsoft compilers lack this definition.
 | |
| */
 | |
| #ifndef INVALID_SET_FILE_POINTER
 | |
| # define INVALID_SET_FILE_POINTER ((DWORD)-1)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Read data from a file into a buffer.  Return SQLITE_OK if all
 | |
| ** bytes were read successfully and SQLITE_IOERR if anything goes
 | |
| ** wrong.
 | |
| */
 | |
| static int winRead(
 | |
|   sqlite3_file *id,          /* File to read from */
 | |
|   void *pBuf,                /* Write content into this buffer */
 | |
|   int amt,                   /* Number of bytes to read */
 | |
|   sqlite3_int64 offset       /* Begin reading at this offset */
 | |
| ){
 | |
|   LONG upperBits = (offset>>32) & 0x7fffffff;
 | |
|   LONG lowerBits = offset & 0xffffffff;
 | |
|   DWORD rc;
 | |
|   DWORD got;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   assert( id!=0 );
 | |
|   SimulateIOError(return SQLITE_IOERR_READ);
 | |
|   OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype);
 | |
|   rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
 | |
|   if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
 | |
|     return SQLITE_FULL;
 | |
|   }
 | |
|   if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){
 | |
|     return SQLITE_IOERR_READ;
 | |
|   }
 | |
|   if( got==(DWORD)amt ){
 | |
|     return SQLITE_OK;
 | |
|   }else{
 | |
|     memset(&((char*)pBuf)[got], 0, amt-got);
 | |
|     return SQLITE_IOERR_SHORT_READ;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write data from a buffer into a file.  Return SQLITE_OK on success
 | |
| ** or some other error code on failure.
 | |
| */
 | |
| static int winWrite(
 | |
|   sqlite3_file *id,         /* File to write into */
 | |
|   const void *pBuf,         /* The bytes to be written */
 | |
|   int amt,                  /* Number of bytes to write */
 | |
|   sqlite3_int64 offset      /* Offset into the file to begin writing at */
 | |
| ){
 | |
|   LONG upperBits = (offset>>32) & 0x7fffffff;
 | |
|   LONG lowerBits = offset & 0xffffffff;
 | |
|   DWORD rc;
 | |
|   DWORD wrote;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   assert( id!=0 );
 | |
|   SimulateIOError(return SQLITE_IOERR_WRITE);
 | |
|   SimulateDiskfullError(return SQLITE_FULL);
 | |
|   OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype);
 | |
|   rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
 | |
|   if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){
 | |
|     return SQLITE_FULL;
 | |
|   }
 | |
|   assert( amt>0 );
 | |
|   while(
 | |
|      amt>0
 | |
|      && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0
 | |
|      && wrote>0
 | |
|   ){
 | |
|     amt -= wrote;
 | |
|     pBuf = &((char*)pBuf)[wrote];
 | |
|   }
 | |
|   if( !rc || amt>(int)wrote ){
 | |
|     return SQLITE_FULL;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Truncate an open file to a specified size
 | |
| */
 | |
| static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
 | |
|   LONG upperBits = (nByte>>32) & 0x7fffffff;
 | |
|   LONG lowerBits = nByte & 0xffffffff;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte);
 | |
|   SimulateIOError(return SQLITE_IOERR_TRUNCATE);
 | |
|   SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN);
 | |
|   SetEndOfFile(pFile->h);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** Count the number of fullsyncs and normal syncs.  This is used to test
 | |
| ** that syncs and fullsyncs are occuring at the right times.
 | |
| */
 | |
| SQLITE_API int sqlite3_sync_count = 0;
 | |
| SQLITE_API int sqlite3_fullsync_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Make sure all writes to a particular file are committed to disk.
 | |
| */
 | |
| static int winSync(sqlite3_file *id, int flags){
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
 | |
| #ifdef SQLITE_TEST
 | |
|   if( flags & SQLITE_SYNC_FULL ){
 | |
|     sqlite3_fullsync_count++;
 | |
|   }
 | |
|   sqlite3_sync_count++;
 | |
| #endif
 | |
|   if( FlushFileBuffers(pFile->h) ){
 | |
|     return SQLITE_OK;
 | |
|   }else{
 | |
|     return SQLITE_IOERR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Determine the current size of a file in bytes
 | |
| */
 | |
| static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   DWORD upperBits, lowerBits;
 | |
|   SimulateIOError(return SQLITE_IOERR_FSTAT);
 | |
|   lowerBits = GetFileSize(pFile->h, &upperBits);
 | |
|   *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems.
 | |
| */
 | |
| #ifndef LOCKFILE_FAIL_IMMEDIATELY
 | |
| # define LOCKFILE_FAIL_IMMEDIATELY 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Acquire a reader lock.
 | |
| ** Different API routines are called depending on whether or not this
 | |
| ** is Win95 or WinNT.
 | |
| */
 | |
| static int getReadLock(winFile *pFile){
 | |
|   int res;
 | |
|   if( isNT() ){
 | |
|     OVERLAPPED ovlp;
 | |
|     ovlp.Offset = SHARED_FIRST;
 | |
|     ovlp.OffsetHigh = 0;
 | |
|     ovlp.hEvent = 0;
 | |
|     res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY,
 | |
|                      0, SHARED_SIZE, 0, &ovlp);
 | |
|   }else{
 | |
|     int lk;
 | |
|     sqlite3Randomness(sizeof(lk), &lk);
 | |
|     pFile->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
 | |
|     res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0);
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Undo a readlock
 | |
| */
 | |
| static int unlockReadLock(winFile *pFile){
 | |
|   int res;
 | |
|   if( isNT() ){
 | |
|     res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
 | |
|   }else{
 | |
|     res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0);
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lock the file with the lock specified by parameter locktype - one
 | |
| ** of the following:
 | |
| **
 | |
| **     (1) SHARED_LOCK
 | |
| **     (2) RESERVED_LOCK
 | |
| **     (3) PENDING_LOCK
 | |
| **     (4) EXCLUSIVE_LOCK
 | |
| **
 | |
| ** Sometimes when requesting one lock state, additional lock states
 | |
| ** are inserted in between.  The locking might fail on one of the later
 | |
| ** transitions leaving the lock state different from what it started but
 | |
| ** still short of its goal.  The following chart shows the allowed
 | |
| ** transitions and the inserted intermediate states:
 | |
| **
 | |
| **    UNLOCKED -> SHARED
 | |
| **    SHARED -> RESERVED
 | |
| **    SHARED -> (PENDING) -> EXCLUSIVE
 | |
| **    RESERVED -> (PENDING) -> EXCLUSIVE
 | |
| **    PENDING -> EXCLUSIVE
 | |
| **
 | |
| ** This routine will only increase a lock.  The winUnlock() routine
 | |
| ** erases all locks at once and returns us immediately to locking level 0.
 | |
| ** It is not possible to lower the locking level one step at a time.  You
 | |
| ** must go straight to locking level 0.
 | |
| */
 | |
| static int winLock(sqlite3_file *id, int locktype){
 | |
|   int rc = SQLITE_OK;    /* Return code from subroutines */
 | |
|   int res = 1;           /* Result of a windows lock call */
 | |
|   int newLocktype;       /* Set pFile->locktype to this value before exiting */
 | |
|   int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
 | |
|   winFile *pFile = (winFile*)id;
 | |
| 
 | |
|   assert( pFile!=0 );
 | |
|   OSTRACE5("LOCK %d %d was %d(%d)\n",
 | |
|           pFile->h, locktype, pFile->locktype, pFile->sharedLockByte);
 | |
| 
 | |
|   /* If there is already a lock of this type or more restrictive on the
 | |
|   ** OsFile, do nothing. Don't use the end_lock: exit path, as
 | |
|   ** sqlite3OsEnterMutex() hasn't been called yet.
 | |
|   */
 | |
|   if( pFile->locktype>=locktype ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the locking sequence is correct
 | |
|   */
 | |
|   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
 | |
|   assert( locktype!=PENDING_LOCK );
 | |
|   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
 | |
| 
 | |
|   /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
 | |
|   ** a SHARED lock.  If we are acquiring a SHARED lock, the acquisition of
 | |
|   ** the PENDING_LOCK byte is temporary.
 | |
|   */
 | |
|   newLocktype = pFile->locktype;
 | |
|   if( pFile->locktype==NO_LOCK
 | |
|    || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
 | |
|   ){
 | |
|     int cnt = 3;
 | |
|     while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){
 | |
|       /* Try 3 times to get the pending lock.  The pending lock might be
 | |
|       ** held by another reader process who will release it momentarily.
 | |
|       */
 | |
|       OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt);
 | |
|       Sleep(1);
 | |
|     }
 | |
|     gotPendingLock = res;
 | |
|   }
 | |
| 
 | |
|   /* Acquire a shared lock
 | |
|   */
 | |
|   if( locktype==SHARED_LOCK && res ){
 | |
|     assert( pFile->locktype==NO_LOCK );
 | |
|     res = getReadLock(pFile);
 | |
|     if( res ){
 | |
|       newLocktype = SHARED_LOCK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Acquire a RESERVED lock
 | |
|   */
 | |
|   if( locktype==RESERVED_LOCK && res ){
 | |
|     assert( pFile->locktype==SHARED_LOCK );
 | |
|     res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
 | |
|     if( res ){
 | |
|       newLocktype = RESERVED_LOCK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Acquire a PENDING lock
 | |
|   */
 | |
|   if( locktype==EXCLUSIVE_LOCK && res ){
 | |
|     newLocktype = PENDING_LOCK;
 | |
|     gotPendingLock = 0;
 | |
|   }
 | |
| 
 | |
|   /* Acquire an EXCLUSIVE lock
 | |
|   */
 | |
|   if( locktype==EXCLUSIVE_LOCK && res ){
 | |
|     assert( pFile->locktype>=SHARED_LOCK );
 | |
|     res = unlockReadLock(pFile);
 | |
|     OSTRACE2("unreadlock = %d\n", res);
 | |
|     res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
 | |
|     if( res ){
 | |
|       newLocktype = EXCLUSIVE_LOCK;
 | |
|     }else{
 | |
|       OSTRACE2("error-code = %d\n", GetLastError());
 | |
|       getReadLock(pFile);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If we are holding a PENDING lock that ought to be released, then
 | |
|   ** release it now.
 | |
|   */
 | |
|   if( gotPendingLock && locktype==SHARED_LOCK ){
 | |
|     UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
 | |
|   }
 | |
| 
 | |
|   /* Update the state of the lock has held in the file descriptor then
 | |
|   ** return the appropriate result code.
 | |
|   */
 | |
|   if( res ){
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h,
 | |
|            locktype, newLocktype);
 | |
|     rc = SQLITE_BUSY;
 | |
|   }
 | |
|   pFile->locktype = newLocktype;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine checks if there is a RESERVED lock held on the specified
 | |
| ** file by this or any other process. If such a lock is held, return
 | |
| ** non-zero, otherwise zero.
 | |
| */
 | |
| static int winCheckReservedLock(sqlite3_file *id){
 | |
|   int rc;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   assert( pFile!=0 );
 | |
|   if( pFile->locktype>=RESERVED_LOCK ){
 | |
|     rc = 1;
 | |
|     OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc);
 | |
|   }else{
 | |
|     rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
 | |
|     if( rc ){
 | |
|       UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
 | |
|     }
 | |
|     rc = !rc;
 | |
|     OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lower the locking level on file descriptor id to locktype.  locktype
 | |
| ** must be either NO_LOCK or SHARED_LOCK.
 | |
| **
 | |
| ** If the locking level of the file descriptor is already at or below
 | |
| ** the requested locking level, this routine is a no-op.
 | |
| **
 | |
| ** It is not possible for this routine to fail if the second argument
 | |
| ** is NO_LOCK.  If the second argument is SHARED_LOCK then this routine
 | |
| ** might return SQLITE_IOERR;
 | |
| */
 | |
| static int winUnlock(sqlite3_file *id, int locktype){
 | |
|   int type;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   int rc = SQLITE_OK;
 | |
|   assert( pFile!=0 );
 | |
|   assert( locktype<=SHARED_LOCK );
 | |
|   OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype,
 | |
|           pFile->locktype, pFile->sharedLockByte);
 | |
|   type = pFile->locktype;
 | |
|   if( type>=EXCLUSIVE_LOCK ){
 | |
|     UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
 | |
|     if( locktype==SHARED_LOCK && !getReadLock(pFile) ){
 | |
|       /* This should never happen.  We should always be able to
 | |
|       ** reacquire the read lock */
 | |
|       rc = SQLITE_IOERR_UNLOCK;
 | |
|     }
 | |
|   }
 | |
|   if( type>=RESERVED_LOCK ){
 | |
|     UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0);
 | |
|   }
 | |
|   if( locktype==NO_LOCK && type>=SHARED_LOCK ){
 | |
|     unlockReadLock(pFile);
 | |
|   }
 | |
|   if( type>=PENDING_LOCK ){
 | |
|     UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0);
 | |
|   }
 | |
|   pFile->locktype = locktype;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Control and query of the open file handle.
 | |
| */
 | |
| static int winFileControl(sqlite3_file *id, int op, void *pArg){
 | |
|   switch( op ){
 | |
|     case SQLITE_FCNTL_LOCKSTATE: {
 | |
|       *(int*)pArg = ((winFile*)id)->locktype;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_ERROR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the sector size in bytes of the underlying block device for
 | |
| ** the specified file. This is almost always 512 bytes, but may be
 | |
| ** larger for some devices.
 | |
| **
 | |
| ** SQLite code assumes this function cannot fail. It also assumes that
 | |
| ** if two files are created in the same file-system directory (i.e.
 | |
| ** a database and its journal file) that the sector size will be the
 | |
| ** same for both.
 | |
| */
 | |
| static int winSectorSize(sqlite3_file *id){
 | |
|   return SQLITE_DEFAULT_SECTOR_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a vector of device characteristics.
 | |
| */
 | |
| static int winDeviceCharacteristics(sqlite3_file *id){
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This vector defines all the methods that can operate on an
 | |
| ** sqlite3_file for win32.
 | |
| */
 | |
| static const sqlite3_io_methods winIoMethod = {
 | |
|   1,                        /* iVersion */
 | |
|   winClose,
 | |
|   winRead,
 | |
|   winWrite,
 | |
|   winTruncate,
 | |
|   winSync,
 | |
|   winFileSize,
 | |
|   winLock,
 | |
|   winUnlock,
 | |
|   winCheckReservedLock,
 | |
|   winFileControl,
 | |
|   winSectorSize,
 | |
|   winDeviceCharacteristics
 | |
| };
 | |
| 
 | |
| /***************************************************************************
 | |
| ** Here ends the I/O methods that form the sqlite3_io_methods object.
 | |
| **
 | |
| ** The next block of code implements the VFS methods.
 | |
| ****************************************************************************/
 | |
| 
 | |
| /*
 | |
| ** Convert a UTF-8 filename into whatever form the underlying
 | |
| ** operating system wants filenames in.  Space to hold the result
 | |
| ** is obtained from malloc and must be freed by the calling
 | |
| ** function.
 | |
| */
 | |
| static void *convertUtf8Filename(const char *zFilename){
 | |
|   void *zConverted = 0;
 | |
|   if( isNT() ){
 | |
|     zConverted = utf8ToUnicode(zFilename);
 | |
|   }else{
 | |
|     zConverted = utf8ToMbcs(zFilename);
 | |
|   }
 | |
|   /* caller will handle out of memory */
 | |
|   return zConverted;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open a file.
 | |
| */
 | |
| static int winOpen(
 | |
|   sqlite3_vfs *pVfs,        /* Not used */
 | |
|   const char *zName,        /* Name of the file (UTF-8) */
 | |
|   sqlite3_file *id,         /* Write the SQLite file handle here */
 | |
|   int flags,                /* Open mode flags */
 | |
|   int *pOutFlags            /* Status return flags */
 | |
| ){
 | |
|   HANDLE h;
 | |
|   DWORD dwDesiredAccess;
 | |
|   DWORD dwShareMode;
 | |
|   DWORD dwCreationDisposition;
 | |
|   DWORD dwFlagsAndAttributes = 0;
 | |
|   int isTemp;
 | |
|   winFile *pFile = (winFile*)id;
 | |
|   void *zConverted = convertUtf8Filename(zName);
 | |
|   if( zConverted==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   if( flags & SQLITE_OPEN_READWRITE ){
 | |
|     dwDesiredAccess = GENERIC_READ | GENERIC_WRITE;
 | |
|   }else{
 | |
|     dwDesiredAccess = GENERIC_READ;
 | |
|   }
 | |
|   if( flags & SQLITE_OPEN_CREATE ){
 | |
|     dwCreationDisposition = OPEN_ALWAYS;
 | |
|   }else{
 | |
|     dwCreationDisposition = OPEN_EXISTING;
 | |
|   }
 | |
|   if( flags & SQLITE_OPEN_MAIN_DB ){
 | |
|     dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
 | |
|   }else{
 | |
|     dwShareMode = 0;
 | |
|   }
 | |
|   if( flags & SQLITE_OPEN_DELETEONCLOSE ){
 | |
| #if OS_WINCE
 | |
|     dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN;
 | |
| #else
 | |
|     dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY
 | |
|                                | FILE_ATTRIBUTE_HIDDEN
 | |
|                                | FILE_FLAG_DELETE_ON_CLOSE;
 | |
| #endif
 | |
|     isTemp = 1;
 | |
|   }else{
 | |
|     dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL;
 | |
|     isTemp = 0;
 | |
|   }
 | |
|   /* Reports from the internet are that performance is always
 | |
|   ** better if FILE_FLAG_RANDOM_ACCESS is used.  Ticket #2699. */
 | |
|   dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS;
 | |
|   if( isNT() ){
 | |
|     h = CreateFileW((WCHAR*)zConverted,
 | |
|        dwDesiredAccess,
 | |
|        dwShareMode,
 | |
|        NULL,
 | |
|        dwCreationDisposition,
 | |
|        dwFlagsAndAttributes,
 | |
|        NULL
 | |
|     );
 | |
|   }else{
 | |
| #if OS_WINCE
 | |
|     return SQLITE_NOMEM;
 | |
| #else
 | |
|     h = CreateFileA((char*)zConverted,
 | |
|        dwDesiredAccess,
 | |
|        dwShareMode,
 | |
|        NULL,
 | |
|        dwCreationDisposition,
 | |
|        dwFlagsAndAttributes,
 | |
|        NULL
 | |
|     );
 | |
| #endif
 | |
|   }
 | |
|   if( h==INVALID_HANDLE_VALUE ){
 | |
|     free(zConverted);
 | |
|     if( flags & SQLITE_OPEN_READWRITE ){
 | |
|       return winOpen(0, zName, id, 
 | |
|              ((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags);
 | |
|     }else{
 | |
|       return SQLITE_CANTOPEN;
 | |
|     }
 | |
|   }
 | |
|   if( pOutFlags ){
 | |
|     if( flags & SQLITE_OPEN_READWRITE ){
 | |
|       *pOutFlags = SQLITE_OPEN_READWRITE;
 | |
|     }else{
 | |
|       *pOutFlags = SQLITE_OPEN_READONLY;
 | |
|     }
 | |
|   }
 | |
|   memset(pFile, 0, sizeof(*pFile));
 | |
|   pFile->pMethod = &winIoMethod;
 | |
|   pFile->h = h;
 | |
| #if OS_WINCE
 | |
|   if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) ==
 | |
|                (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)
 | |
|        && !winceCreateLock(zName, pFile)
 | |
|   ){
 | |
|     CloseHandle(h);
 | |
|     free(zConverted);
 | |
|     return SQLITE_CANTOPEN;
 | |
|   }
 | |
|   if( isTemp ){
 | |
|     pFile->zDeleteOnClose = zConverted;
 | |
|   }else
 | |
| #endif
 | |
|   {
 | |
|     free(zConverted);
 | |
|   }
 | |
|   OpenCounter(+1);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the named file.
 | |
| **
 | |
| ** Note that windows does not allow a file to be deleted if some other
 | |
| ** process has it open.  Sometimes a virus scanner or indexing program
 | |
| ** will open a journal file shortly after it is created in order to do
 | |
| ** whatever does.  While this other process is holding the
 | |
| ** file open, we will be unable to delete it.  To work around this
 | |
| ** problem, we delay 100 milliseconds and try to delete again.  Up
 | |
| ** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
 | |
| ** up and returning an error.
 | |
| */
 | |
| #define MX_DELETION_ATTEMPTS 5
 | |
| static int winDelete(
 | |
|   sqlite3_vfs *pVfs,          /* Not used on win32 */
 | |
|   const char *zFilename,      /* Name of file to delete */
 | |
|   int syncDir                 /* Not used on win32 */
 | |
| ){
 | |
|   int cnt = 0;
 | |
|   int rc;
 | |
|   void *zConverted = convertUtf8Filename(zFilename);
 | |
|   if( zConverted==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   SimulateIOError(return SQLITE_IOERR_DELETE);
 | |
|   if( isNT() ){
 | |
|     do{
 | |
|       DeleteFileW(zConverted);
 | |
|     }while( (rc = GetFileAttributesW(zConverted))!=0xffffffff 
 | |
|             && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
 | |
|   }else{
 | |
| #if OS_WINCE
 | |
|     return SQLITE_NOMEM;
 | |
| #else
 | |
|     do{
 | |
|       DeleteFileA(zConverted);
 | |
|     }while( (rc = GetFileAttributesA(zConverted))!=0xffffffff
 | |
|             && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) );
 | |
| #endif
 | |
|   }
 | |
|   free(zConverted);
 | |
|   OSTRACE2("DELETE \"%s\"\n", zFilename);
 | |
|   return rc==0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check the existance and status of a file.
 | |
| */
 | |
| static int winAccess(
 | |
|   sqlite3_vfs *pVfs,         /* Not used on win32 */
 | |
|   const char *zFilename,     /* Name of file to check */
 | |
|   int flags                  /* Type of test to make on this file */
 | |
| ){
 | |
|   DWORD attr;
 | |
|   int rc;
 | |
|   void *zConverted = convertUtf8Filename(zFilename);
 | |
|   if( zConverted==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   if( isNT() ){
 | |
|     attr = GetFileAttributesW((WCHAR*)zConverted);
 | |
|   }else{
 | |
| #if OS_WINCE
 | |
|     return SQLITE_NOMEM;
 | |
| #else
 | |
|     attr = GetFileAttributesA((char*)zConverted);
 | |
| #endif
 | |
|   }
 | |
|   free(zConverted);
 | |
|   switch( flags ){
 | |
|     case SQLITE_ACCESS_READ:
 | |
|     case SQLITE_ACCESS_EXISTS:
 | |
|       rc = attr!=0xffffffff;
 | |
|       break;
 | |
|     case SQLITE_ACCESS_READWRITE:
 | |
|       rc = (attr & FILE_ATTRIBUTE_READONLY)==0;
 | |
|       break;
 | |
|     default:
 | |
|       assert(!"Invalid flags argument");
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a temporary file name in zBuf.  zBuf must be big enough to
 | |
| ** hold at pVfs->mxPathname characters.
 | |
| */
 | |
| static int winGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
 | |
|   static char zChars[] =
 | |
|     "abcdefghijklmnopqrstuvwxyz"
 | |
|     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|     "0123456789";
 | |
|   int i, j;
 | |
|   char zTempPath[MAX_PATH+1];
 | |
|   if( sqlite3_temp_directory ){
 | |
|     sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory);
 | |
|   }else if( isNT() ){
 | |
|     char *zMulti;
 | |
|     WCHAR zWidePath[MAX_PATH];
 | |
|     GetTempPathW(MAX_PATH-30, zWidePath);
 | |
|     zMulti = unicodeToUtf8(zWidePath);
 | |
|     if( zMulti ){
 | |
|       sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti);
 | |
|       free(zMulti);
 | |
|     }else{
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|   }else{
 | |
|     char *zUtf8;
 | |
|     char zMbcsPath[MAX_PATH];
 | |
|     GetTempPathA(MAX_PATH-30, zMbcsPath);
 | |
|     zUtf8 = mbcsToUtf8(zMbcsPath);
 | |
|     if( zUtf8 ){
 | |
|       sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8);
 | |
|       free(zUtf8);
 | |
|     }else{
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|   }
 | |
|   for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
 | |
|   zTempPath[i] = 0;
 | |
|   sqlite3_snprintf(nBuf-30, zBuf,
 | |
|                    "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
 | |
|   j = strlen(zBuf);
 | |
|   sqlite3Randomness(20, &zBuf[j]);
 | |
|   for(i=0; i<20; i++, j++){
 | |
|     zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
 | |
|   }
 | |
|   zBuf[j] = 0;
 | |
|   OSTRACE2("TEMP FILENAME: %s\n", zBuf);
 | |
|   return SQLITE_OK; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Turn a relative pathname into a full pathname.  Write the full
 | |
| ** pathname into zOut[].  zOut[] will be at least pVfs->mxPathname
 | |
| ** bytes in size.
 | |
| */
 | |
| static int winFullPathname(
 | |
|   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
 | |
|   const char *zRelative,        /* Possibly relative input path */
 | |
|   int nFull,                    /* Size of output buffer in bytes */
 | |
|   char *zFull                   /* Output buffer */
 | |
| ){
 | |
| 
 | |
| #if defined(__CYGWIN__)
 | |
|   cygwin_conv_to_full_win32_path(zRelative, zFull);
 | |
|   return SQLITE_OK;
 | |
| #endif
 | |
| 
 | |
| #if OS_WINCE
 | |
|   /* WinCE has no concept of a relative pathname, or so I am told. */
 | |
|   sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative);
 | |
|   return SQLITE_OK;
 | |
| #endif
 | |
| 
 | |
| #if !OS_WINCE && !defined(__CYGWIN__)
 | |
|   int nByte;
 | |
|   void *zConverted;
 | |
|   char *zOut;
 | |
|   zConverted = convertUtf8Filename(zRelative);
 | |
|   if( isNT() ){
 | |
|     WCHAR *zTemp;
 | |
|     nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3;
 | |
|     zTemp = malloc( nByte*sizeof(zTemp[0]) );
 | |
|     if( zTemp==0 ){
 | |
|       free(zConverted);
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0);
 | |
|     free(zConverted);
 | |
|     zOut = unicodeToUtf8(zTemp);
 | |
|     free(zTemp);
 | |
|   }else{
 | |
|     char *zTemp;
 | |
|     nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3;
 | |
|     zTemp = malloc( nByte*sizeof(zTemp[0]) );
 | |
|     if( zTemp==0 ){
 | |
|       free(zConverted);
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     GetFullPathNameA((char*)zConverted, nByte, zTemp, 0);
 | |
|     free(zConverted);
 | |
|     zOut = mbcsToUtf8(zTemp);
 | |
|     free(zTemp);
 | |
|   }
 | |
|   if( zOut ){
 | |
|     sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut);
 | |
|     free(zOut);
 | |
|     return SQLITE_OK;
 | |
|   }else{
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| /*
 | |
| ** Interfaces for opening a shared library, finding entry points
 | |
| ** within the shared library, and closing the shared library.
 | |
| */
 | |
| /*
 | |
| ** Interfaces for opening a shared library, finding entry points
 | |
| ** within the shared library, and closing the shared library.
 | |
| */
 | |
| static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
 | |
|   HANDLE h;
 | |
|   void *zConverted = convertUtf8Filename(zFilename);
 | |
|   if( zConverted==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( isNT() ){
 | |
|     h = LoadLibraryW((WCHAR*)zConverted);
 | |
|   }else{
 | |
| #if OS_WINCE
 | |
|     return 0;
 | |
| #else
 | |
|     h = LoadLibraryA((char*)zConverted);
 | |
| #endif
 | |
|   }
 | |
|   free(zConverted);
 | |
|   return (void*)h;
 | |
| }
 | |
| static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
 | |
| #if OS_WINCE
 | |
|   int error = GetLastError();
 | |
|   if( error>0x7FFFFFF ){
 | |
|     sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error);
 | |
|   }else{
 | |
|     sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error);
 | |
|   }
 | |
| #else
 | |
|   FormatMessageA(
 | |
|     FORMAT_MESSAGE_FROM_SYSTEM,
 | |
|     NULL,
 | |
|     GetLastError(),
 | |
|     0,
 | |
|     zBufOut,
 | |
|     nBuf-1,
 | |
|     0
 | |
|   );
 | |
| #endif
 | |
| }
 | |
| void *winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
 | |
| #if OS_WINCE
 | |
|   /* The GetProcAddressA() routine is only available on wince. */
 | |
|   return GetProcAddressA((HANDLE)pHandle, zSymbol);
 | |
| #else
 | |
|   /* All other windows platforms expect GetProcAddress() to take
 | |
|   ** an Ansi string regardless of the _UNICODE setting */
 | |
|   return GetProcAddress((HANDLE)pHandle, zSymbol);
 | |
| #endif
 | |
| }
 | |
| void winDlClose(sqlite3_vfs *pVfs, void *pHandle){
 | |
|   FreeLibrary((HANDLE)pHandle);
 | |
| }
 | |
| #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
 | |
|   #define winDlOpen  0
 | |
|   #define winDlError 0
 | |
|   #define winDlSym   0
 | |
|   #define winDlClose 0
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Write up to nBuf bytes of randomness into zBuf.
 | |
| */
 | |
| static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
 | |
|   int n = 0;
 | |
|   if( sizeof(SYSTEMTIME)<=nBuf-n ){
 | |
|     SYSTEMTIME x;
 | |
|     GetSystemTime(&x);
 | |
|     memcpy(&zBuf[n], &x, sizeof(x));
 | |
|     n += sizeof(x);
 | |
|   }
 | |
|   if( sizeof(DWORD)<=nBuf-n ){
 | |
|     DWORD pid = GetCurrentProcessId();
 | |
|     memcpy(&zBuf[n], &pid, sizeof(pid));
 | |
|     n += sizeof(pid);
 | |
|   }
 | |
|   if( sizeof(DWORD)<=nBuf-n ){
 | |
|     DWORD cnt = GetTickCount();
 | |
|     memcpy(&zBuf[n], &cnt, sizeof(cnt));
 | |
|     n += sizeof(cnt);
 | |
|   }
 | |
|   if( sizeof(LARGE_INTEGER)<=nBuf-n ){
 | |
|     LARGE_INTEGER i;
 | |
|     QueryPerformanceCounter(&i);
 | |
|     memcpy(&zBuf[n], &i, sizeof(i));
 | |
|     n += sizeof(i);
 | |
|   }
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Sleep for a little while.  Return the amount of time slept.
 | |
| */
 | |
| static int winSleep(sqlite3_vfs *pVfs, int microsec){
 | |
|   Sleep((microsec+999)/1000);
 | |
|   return ((microsec+999)/1000)*1000;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following variable, if set to a non-zero value, becomes the result
 | |
| ** returned from sqlite3OsCurrentTime().  This is used for testing.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_current_time = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Find the current time (in Universal Coordinated Time).  Write the
 | |
| ** current time and date as a Julian Day number into *prNow and
 | |
| ** return 0.  Return 1 if the time and date cannot be found.
 | |
| */
 | |
| int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
 | |
|   FILETIME ft;
 | |
|   /* FILETIME structure is a 64-bit value representing the number of 
 | |
|      100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). 
 | |
|   */
 | |
|   double now;
 | |
| #if OS_WINCE
 | |
|   SYSTEMTIME time;
 | |
|   GetSystemTime(&time);
 | |
|   SystemTimeToFileTime(&time,&ft);
 | |
| #else
 | |
|   GetSystemTimeAsFileTime( &ft );
 | |
| #endif
 | |
|   now = ((double)ft.dwHighDateTime) * 4294967296.0; 
 | |
|   *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
 | |
| #ifdef SQLITE_TEST
 | |
|   if( sqlite3_current_time ){
 | |
|     *prNow = sqlite3_current_time/86400.0 + 2440587.5;
 | |
|   }
 | |
| #endif
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the sqlite3DefaultVfs structure.   We use
 | |
| ** a function rather than give the structure global scope because
 | |
| ** some compilers (MSVC) do not allow forward declarations of
 | |
| ** initialized structures.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){
 | |
|   static sqlite3_vfs winVfs = {
 | |
|     1,                 /* iVersion */
 | |
|     sizeof(winFile),   /* szOsFile */
 | |
|     MAX_PATH,          /* mxPathname */
 | |
|     0,                 /* pNext */
 | |
|     "win32",           /* zName */
 | |
|     0,                 /* pAppData */
 | |
|   
 | |
|     winOpen,           /* xOpen */
 | |
|     winDelete,         /* xDelete */
 | |
|     winAccess,         /* xAccess */
 | |
|     winGetTempname,    /* xGetTempName */
 | |
|     winFullPathname,   /* xFullPathname */
 | |
|     winDlOpen,         /* xDlOpen */
 | |
|     winDlError,        /* xDlError */
 | |
|     winDlSym,          /* xDlSym */
 | |
|     winDlClose,        /* xDlClose */
 | |
|     winRandomness,     /* xRandomness */
 | |
|     winSleep,          /* xSleep */
 | |
|     winCurrentTime     /* xCurrentTime */
 | |
|   };
 | |
|   
 | |
|   return &winVfs;
 | |
| }
 | |
| 
 | |
| #endif /* OS_WIN */
 | |
| 
 | |
| /************** End of os_win.c **********************************************/
 | |
| /************** Begin file bitvec.c ******************************************/
 | |
| /*
 | |
| ** 2008 February 16
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file implements an object that represents a fixed-length
 | |
| ** bitmap.  Bits are numbered starting with 1.
 | |
| **
 | |
| ** A bitmap is used to record what pages a database file have been
 | |
| ** journalled during a transaction.  Usually only a few pages are
 | |
| ** journalled.  So the bitmap is usually sparse and has low cardinality.
 | |
| ** But sometimes (for example when during a DROP of a large table) most
 | |
| ** or all of the pages get journalled.  In those cases, the bitmap becomes
 | |
| ** dense.  The algorithm needs to handle both cases well.
 | |
| **
 | |
| ** The size of the bitmap is fixed when the object is created.
 | |
| **
 | |
| ** All bits are clear when the bitmap is created.  Individual bits
 | |
| ** may be set or cleared one at a time.
 | |
| **
 | |
| ** Test operations are about 100 times more common that set operations.
 | |
| ** Clear operations are exceedingly rare.  There are usually between
 | |
| ** 5 and 500 set operations per Bitvec object, though the number of sets can
 | |
| ** sometimes grow into tens of thousands or larger.  The size of the
 | |
| ** Bitvec object is the number of pages in the database file at the
 | |
| ** start of a transaction, and is thus usually less than a few thousand,
 | |
| ** but can be as large as 2 billion for a really big database.
 | |
| **
 | |
| ** @(#) $Id: bitvec.c,v 1.2 2008/03/14 13:02:08 mlcreech Exp $
 | |
| */
 | |
| 
 | |
| #define BITVEC_SZ        512
 | |
| /* Round the union size down to the nearest pointer boundary, since that's how 
 | |
| ** it will be aligned within the Bitvec struct. */
 | |
| #define BITVEC_USIZE     (((BITVEC_SZ-12)/sizeof(Bitvec *))*sizeof(Bitvec *))
 | |
| #define BITVEC_NCHAR     BITVEC_USIZE
 | |
| #define BITVEC_NBIT      (BITVEC_NCHAR*8)
 | |
| #define BITVEC_NINT      (BITVEC_USIZE/4)
 | |
| #define BITVEC_MXHASH    (BITVEC_NINT/2)
 | |
| #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
 | |
| 
 | |
| #define BITVEC_HASH(X)   (((X)*37)%BITVEC_NINT)
 | |
| 
 | |
| /*
 | |
| ** A bitmap is an instance of the following structure.
 | |
| **
 | |
| ** This bitmap records the existance of zero or more bits
 | |
| ** with values between 1 and iSize, inclusive.
 | |
| **
 | |
| ** There are three possible representations of the bitmap.
 | |
| ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
 | |
| ** bitmap.  The least significant bit is bit 1.
 | |
| **
 | |
| ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
 | |
| ** a hash table that will hold up to BITVEC_MXHASH distinct values.
 | |
| **
 | |
| ** Otherwise, the value i is redirected into one of BITVEC_NPTR
 | |
| ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
 | |
| ** handles up to iDivisor separate values of i.  apSub[0] holds
 | |
| ** values between 1 and iDivisor.  apSub[1] holds values between
 | |
| ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
 | |
| ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
 | |
| ** to hold deal with values between 1 and iDivisor.
 | |
| */
 | |
| struct Bitvec {
 | |
|   u32 iSize;      /* Maximum bit index */
 | |
|   u32 nSet;       /* Number of bits that are set */
 | |
|   u32 iDivisor;   /* Number of bits handled by each apSub[] entry */
 | |
|   union {
 | |
|     u8 aBitmap[BITVEC_NCHAR];    /* Bitmap representation */
 | |
|     u32 aHash[BITVEC_NINT];      /* Hash table representation */
 | |
|     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
 | |
|   } u;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Create a new bitmap object able to handle bits between 0 and iSize,
 | |
| ** inclusive.  Return a pointer to the new object.  Return NULL if 
 | |
| ** malloc fails.
 | |
| */
 | |
| SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){
 | |
|   Bitvec *p;
 | |
|   assert( sizeof(*p)==BITVEC_SZ );
 | |
|   p = sqlite3MallocZero( sizeof(*p) );
 | |
|   if( p ){
 | |
|     p->iSize = iSize;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to see if the i-th bit is set.  Return true or false.
 | |
| ** If p is NULL (if the bitmap has not been created) or if
 | |
| ** i is out of range, then return false.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){
 | |
|   assert( i>0 );
 | |
|   if( p==0 ) return 0;
 | |
|   if( i>p->iSize ) return 0;
 | |
|   if( p->iSize<=BITVEC_NBIT ){
 | |
|     i--;
 | |
|     return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
 | |
|   }
 | |
|   if( p->iDivisor>0 ){
 | |
|     u32 bin = (i-1)/p->iDivisor;
 | |
|     i = (i-1)%p->iDivisor + 1;
 | |
|     return sqlite3BitvecTest(p->u.apSub[bin], i);
 | |
|   }else{
 | |
|     u32 h = BITVEC_HASH(i);
 | |
|     while( p->u.aHash[h] ){
 | |
|       if( p->u.aHash[h]==i ) return 1;
 | |
|       h++;
 | |
|       if( h>=BITVEC_NINT ) h = 0;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the i-th bit.  Return 0 on success and an error code if
 | |
| ** anything goes wrong.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){
 | |
|   u32 h;
 | |
|   assert( p!=0 );
 | |
|   if( p->iSize<=BITVEC_NBIT ){
 | |
|     i--;
 | |
|     p->u.aBitmap[i/8] |= 1 << (i&7);
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( p->iDivisor ){
 | |
|     u32 bin = (i-1)/p->iDivisor;
 | |
|     i = (i-1)%p->iDivisor + 1;
 | |
|     if( p->u.apSub[bin]==0 ){
 | |
|       sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1);
 | |
|       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
 | |
|       sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
 | |
|       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
 | |
|     }
 | |
|     return sqlite3BitvecSet(p->u.apSub[bin], i);
 | |
|   }
 | |
|   h = BITVEC_HASH(i);
 | |
|   while( p->u.aHash[h] ){
 | |
|     if( p->u.aHash[h]==i ) return SQLITE_OK;
 | |
|     h++;
 | |
|     if( h==BITVEC_NINT ) h = 0;
 | |
|   }
 | |
|   p->nSet++;
 | |
|   if( p->nSet>=BITVEC_MXHASH ){
 | |
|     int j, rc;
 | |
|     u32 aiValues[BITVEC_NINT];
 | |
|     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
 | |
|     memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
 | |
|     p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
 | |
|     sqlite3BitvecSet(p, i);
 | |
|     for(rc=j=0; j<BITVEC_NINT; j++){
 | |
|       if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
 | |
|     }
 | |
|     return rc;
 | |
|   }
 | |
|   p->u.aHash[h] = i;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the i-th bit.  Return 0 on success and an error code if
 | |
| ** anything goes wrong.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i){
 | |
|   assert( p!=0 );
 | |
|   if( p->iSize<=BITVEC_NBIT ){
 | |
|     i--;
 | |
|     p->u.aBitmap[i/8] &= ~(1 << (i&7));
 | |
|   }else if( p->iDivisor ){
 | |
|     u32 bin = (i-1)/p->iDivisor;
 | |
|     i = (i-1)%p->iDivisor + 1;
 | |
|     if( p->u.apSub[bin] ){
 | |
|       sqlite3BitvecClear(p->u.apSub[bin], i);
 | |
|     }
 | |
|   }else{
 | |
|     int j;
 | |
|     u32 aiValues[BITVEC_NINT];
 | |
|     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
 | |
|     memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
 | |
|     p->nSet = 0;
 | |
|     for(j=0; j<BITVEC_NINT; j++){
 | |
|       if( aiValues[j] && aiValues[j]!=i ) sqlite3BitvecSet(p, aiValues[j]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Destroy a bitmap object.  Reclaim all memory used.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){
 | |
|   if( p==0 ) return;
 | |
|   if( p->iDivisor ){
 | |
|     int i;
 | |
|     for(i=0; i<BITVEC_NPTR; i++){
 | |
|       sqlite3BitvecDestroy(p->u.apSub[i]);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /************** End of bitvec.c **********************************************/
 | |
| /************** Begin file pager.c *******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This is the implementation of the page cache subsystem or "pager".
 | |
| ** 
 | |
| ** The pager is used to access a database disk file.  It implements
 | |
| ** atomic commit and rollback through the use of a journal file that
 | |
| ** is separate from the database file.  The pager also implements file
 | |
| ** locking to prevent two processes from writing the same database
 | |
| ** file simultaneously, or one process from reading the database while
 | |
| ** another is writing.
 | |
| **
 | |
| ** @(#) $Id: pager.c,v 1.417 2008/03/17 13:50:58 drh Exp $
 | |
| */
 | |
| #ifndef SQLITE_OMIT_DISKIO
 | |
| 
 | |
| /*
 | |
| ** Macros for troubleshooting.  Normally turned off
 | |
| */
 | |
| #if 0
 | |
| #define sqlite3DebugPrintf printf
 | |
| #define PAGERTRACE1(X)       sqlite3DebugPrintf(X)
 | |
| #define PAGERTRACE2(X,Y)     sqlite3DebugPrintf(X,Y)
 | |
| #define PAGERTRACE3(X,Y,Z)   sqlite3DebugPrintf(X,Y,Z)
 | |
| #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
 | |
| #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
 | |
| #else
 | |
| #define PAGERTRACE1(X)
 | |
| #define PAGERTRACE2(X,Y)
 | |
| #define PAGERTRACE3(X,Y,Z)
 | |
| #define PAGERTRACE4(X,Y,Z,W)
 | |
| #define PAGERTRACE5(X,Y,Z,W,V)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The following two macros are used within the PAGERTRACEX() macros above
 | |
| ** to print out file-descriptors. 
 | |
| **
 | |
| ** PAGERID() takes a pointer to a Pager struct as its argument. The
 | |
| ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
 | |
| ** struct as its argument.
 | |
| */
 | |
| #define PAGERID(p) ((int)(p->fd))
 | |
| #define FILEHANDLEID(fd) ((int)fd)
 | |
| 
 | |
| /*
 | |
| ** The page cache as a whole is always in one of the following
 | |
| ** states:
 | |
| **
 | |
| **   PAGER_UNLOCK        The page cache is not currently reading or 
 | |
| **                       writing the database file.  There is no
 | |
| **                       data held in memory.  This is the initial
 | |
| **                       state.
 | |
| **
 | |
| **   PAGER_SHARED        The page cache is reading the database.
 | |
| **                       Writing is not permitted.  There can be
 | |
| **                       multiple readers accessing the same database
 | |
| **                       file at the same time.
 | |
| **
 | |
| **   PAGER_RESERVED      This process has reserved the database for writing
 | |
| **                       but has not yet made any changes.  Only one process
 | |
| **                       at a time can reserve the database.  The original
 | |
| **                       database file has not been modified so other
 | |
| **                       processes may still be reading the on-disk
 | |
| **                       database file.
 | |
| **
 | |
| **   PAGER_EXCLUSIVE     The page cache is writing the database.
 | |
| **                       Access is exclusive.  No other processes or
 | |
| **                       threads can be reading or writing while one
 | |
| **                       process is writing.
 | |
| **
 | |
| **   PAGER_SYNCED        The pager moves to this state from PAGER_EXCLUSIVE
 | |
| **                       after all dirty pages have been written to the
 | |
| **                       database file and the file has been synced to
 | |
| **                       disk. All that remains to do is to remove or
 | |
| **                       truncate the journal file and the transaction 
 | |
| **                       will be committed.
 | |
| **
 | |
| ** The page cache comes up in PAGER_UNLOCK.  The first time a
 | |
| ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
 | |
| ** After all pages have been released using sqlite_page_unref(),
 | |
| ** the state transitions back to PAGER_UNLOCK.  The first time
 | |
| ** that sqlite3PagerWrite() is called, the state transitions to
 | |
| ** PAGER_RESERVED.  (Note that sqlite3PagerWrite() can only be
 | |
| ** called on an outstanding page which means that the pager must
 | |
| ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
 | |
| ** PAGER_RESERVED means that there is an open rollback journal.
 | |
| ** The transition to PAGER_EXCLUSIVE occurs before any changes
 | |
| ** are made to the database file, though writes to the rollback
 | |
| ** journal occurs with just PAGER_RESERVED.  After an sqlite3PagerRollback()
 | |
| ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
 | |
| ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
 | |
| */
 | |
| #define PAGER_UNLOCK      0
 | |
| #define PAGER_SHARED      1   /* same as SHARED_LOCK */
 | |
| #define PAGER_RESERVED    2   /* same as RESERVED_LOCK */
 | |
| #define PAGER_EXCLUSIVE   4   /* same as EXCLUSIVE_LOCK */
 | |
| #define PAGER_SYNCED      5
 | |
| 
 | |
| /*
 | |
| ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
 | |
| ** then failed attempts to get a reserved lock will invoke the busy callback.
 | |
| ** This is off by default.  To see why, consider the following scenario:
 | |
| ** 
 | |
| ** Suppose thread A already has a shared lock and wants a reserved lock.
 | |
| ** Thread B already has a reserved lock and wants an exclusive lock.  If
 | |
| ** both threads are using their busy callbacks, it might be a long time
 | |
| ** be for one of the threads give up and allows the other to proceed.
 | |
| ** But if the thread trying to get the reserved lock gives up quickly
 | |
| ** (if it never invokes its busy callback) then the contention will be
 | |
| ** resolved quickly.
 | |
| */
 | |
| #ifndef SQLITE_BUSY_RESERVED_LOCK
 | |
| # define SQLITE_BUSY_RESERVED_LOCK 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This macro rounds values up so that if the value is an address it
 | |
| ** is guaranteed to be an address that is aligned to an 8-byte boundary.
 | |
| */
 | |
| #define FORCE_ALIGNMENT(X)   (((X)+7)&~7)
 | |
| 
 | |
| typedef struct PgHdr PgHdr;
 | |
| 
 | |
| /*
 | |
| ** Each pager stores all currently unreferenced pages in a list sorted
 | |
| ** in least-recently-used (LRU) order (i.e. the first item on the list has 
 | |
| ** not been referenced in a long time, the last item has been recently
 | |
| ** used). An instance of this structure is included as part of each
 | |
| ** pager structure for this purpose (variable Pager.lru).
 | |
| **
 | |
| ** Additionally, if memory-management is enabled, all unreferenced pages 
 | |
| ** are stored in a global LRU list (global variable sqlite3LruPageList).
 | |
| **
 | |
| ** In both cases, the PagerLruList.pFirstSynced variable points to
 | |
| ** the first page in the corresponding list that does not require an
 | |
| ** fsync() operation before its memory can be reclaimed. If no such
 | |
| ** page exists, PagerLruList.pFirstSynced is set to NULL.
 | |
| */
 | |
| typedef struct PagerLruList PagerLruList;
 | |
| struct PagerLruList {
 | |
|   PgHdr *pFirst;         /* First page in LRU list */
 | |
|   PgHdr *pLast;          /* Last page in LRU list (the most recently used) */
 | |
|   PgHdr *pFirstSynced;   /* First page in list with PgHdr.needSync==0 */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The following structure contains the next and previous pointers used
 | |
| ** to link a PgHdr structure into a PagerLruList linked list. 
 | |
| */
 | |
| typedef struct PagerLruLink PagerLruLink;
 | |
| struct PagerLruLink {
 | |
|   PgHdr *pNext;
 | |
|   PgHdr *pPrev;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Each in-memory image of a page begins with the following header.
 | |
| ** This header is only visible to this pager module.  The client
 | |
| ** code that calls pager sees only the data that follows the header.
 | |
| **
 | |
| ** Client code should call sqlite3PagerWrite() on a page prior to making
 | |
| ** any modifications to that page.  The first time sqlite3PagerWrite()
 | |
| ** is called, the original page contents are written into the rollback
 | |
| ** journal and PgHdr.inJournal and PgHdr.needSync are set.  Later, once
 | |
| ** the journal page has made it onto the disk surface, PgHdr.needSync
 | |
| ** is cleared.  The modified page cannot be written back into the original
 | |
| ** database file until the journal pages has been synced to disk and the
 | |
| ** PgHdr.needSync has been cleared.
 | |
| **
 | |
| ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
 | |
| ** is cleared again when the page content is written back to the original
 | |
| ** database file.
 | |
| **
 | |
| ** Details of important structure elements:
 | |
| **
 | |
| ** needSync
 | |
| **
 | |
| **     If this is true, this means that it is not safe to write the page
 | |
| **     content to the database because the original content needed
 | |
| **     for rollback has not by synced to the main rollback journal.
 | |
| **     The original content may have been written to the rollback journal
 | |
| **     but it has not yet been synced.  So we cannot write to the database
 | |
| **     file because power failure might cause the page in the journal file
 | |
| **     to never reach the disk.  It is as if the write to the journal file
 | |
| **     does not occur until the journal file is synced.
 | |
| **     
 | |
| **     This flag is false if the page content exactly matches what
 | |
| **     currently exists in the database file.  The needSync flag is also
 | |
| **     false if the original content has been written to the main rollback
 | |
| **     journal and synced.  If the page represents a new page that has
 | |
| **     been added onto the end of the database during the current
 | |
| **     transaction, the needSync flag is true until the original database
 | |
| **     size in the journal header has been synced to disk.
 | |
| **
 | |
| ** inJournal
 | |
| **
 | |
| **     This is true if the original page has been written into the main
 | |
| **     rollback journal.  This is always false for new pages added to
 | |
| **     the end of the database file during the current transaction.
 | |
| **     And this flag says nothing about whether or not the journal
 | |
| **     has been synced to disk.  For pages that are in the original
 | |
| **     database file, the following expression should always be true:
 | |
| **
 | |
| **       inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno)
 | |
| **
 | |
| **     The pPager->pInJournal object is only valid for the original
 | |
| **     pages of the database, not new pages that are added to the end
 | |
| **     of the database, so obviously the above expression cannot be
 | |
| **     valid for new pages.  For new pages inJournal is always 0.
 | |
| **
 | |
| ** dirty
 | |
| **
 | |
| **     When true, this means that the content of the page has been
 | |
| **     modified and needs to be written back to the database file.
 | |
| **     If false, it means that either the content of the page is
 | |
| **     unchanged or else the content is unimportant and we do not
 | |
| **     care whether or not it is preserved.
 | |
| **
 | |
| ** alwaysRollback
 | |
| **
 | |
| **     This means that the sqlite3PagerDontRollback() API should be
 | |
| **     ignored for this page.  The DontRollback() API attempts to say
 | |
| **     that the content of the page on disk is unimportant (it is an
 | |
| **     unused page on the freelist) so that it is unnecessary to 
 | |
| **     rollback changes to this page because the content of the page
 | |
| **     can change without changing the meaning of the database.  This
 | |
| **     flag overrides any DontRollback() attempt.  This flag is set
 | |
| **     when a page that originally contained valid data is added to
 | |
| **     the freelist.  Later in the same transaction, this page might
 | |
| **     be pulled from the freelist and reused for something different
 | |
| **     and at that point the DontRollback() API will be called because
 | |
| **     pages taken from the freelist do not need to be protected by
 | |
| **     the rollback journal.  But this flag says that the page was
 | |
| **     not originally part of the freelist so that it still needs to
 | |
| **     be rolled back in spite of any subsequent DontRollback() calls.
 | |
| **
 | |
| ** needRead 
 | |
| **
 | |
| **     This flag means (when true) that the content of the page has
 | |
| **     not yet been loaded from disk.  The in-memory content is just
 | |
| **     garbage.  (Actually, we zero the content, but you should not
 | |
| **     make any assumptions about the content nevertheless.)  If the
 | |
| **     content is needed in the future, it should be read from the
 | |
| **     original database file.
 | |
| */
 | |
| struct PgHdr {
 | |
|   Pager *pPager;                 /* The pager to which this page belongs */
 | |
|   Pgno pgno;                     /* The page number for this page */
 | |
|   PgHdr *pNextHash, *pPrevHash;  /* Hash collision chain for PgHdr.pgno */
 | |
|   PagerLruLink free;             /* Next and previous free pages */
 | |
|   PgHdr *pNextAll;               /* A list of all pages */
 | |
|   u8 inJournal;                  /* TRUE if has been written to journal */
 | |
|   u8 dirty;                      /* TRUE if we need to write back changes */
 | |
|   u8 needSync;                   /* Sync journal before writing this page */
 | |
|   u8 alwaysRollback;             /* Disable DontRollback() for this page */
 | |
|   u8 needRead;                   /* Read content if PagerWrite() is called */
 | |
|   short int nRef;                /* Number of users of this page */
 | |
|   PgHdr *pDirty, *pPrevDirty;    /* Dirty pages */
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   PagerLruLink gfree;            /* Global list of nRef==0 pages */
 | |
| #endif
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
|   u32 pageHash;
 | |
| #endif
 | |
|   void *pData;                   /* Page data */
 | |
|   /* Pager.nExtra bytes of local data appended to this header */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** For an in-memory only database, some extra information is recorded about
 | |
| ** each page so that changes can be rolled back.  (Journal files are not
 | |
| ** used for in-memory databases.)  The following information is added to
 | |
| ** the end of every EXTRA block for in-memory databases.
 | |
| **
 | |
| ** This information could have been added directly to the PgHdr structure.
 | |
| ** But then it would take up an extra 8 bytes of storage on every PgHdr
 | |
| ** even for disk-based databases.  Splitting it out saves 8 bytes.  This
 | |
| ** is only a savings of 0.8% but those percentages add up.
 | |
| */
 | |
| typedef struct PgHistory PgHistory;
 | |
| struct PgHistory {
 | |
|   u8 *pOrig;     /* Original page text.  Restore to this on a full rollback */
 | |
|   u8 *pStmt;     /* Text as it was at the beginning of the current statement */
 | |
|   PgHdr *pNextStmt, *pPrevStmt;  /* List of pages in the statement journal */
 | |
|   u8 inStmt;                     /* TRUE if in the statement subjournal */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A macro used for invoking the codec if there is one
 | |
| */
 | |
| #ifdef SQLITE_HAS_CODEC
 | |
| # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
 | |
| # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
 | |
| #else
 | |
| # define CODEC1(P,D,N,X) /* NO-OP */
 | |
| # define CODEC2(P,D,N,X) ((char*)D)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Convert a pointer to a PgHdr into a pointer to its data
 | |
| ** and back again.
 | |
| */
 | |
| #define PGHDR_TO_DATA(P)    ((P)->pData)
 | |
| #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
 | |
| #define PGHDR_TO_HIST(P,PGR)  \
 | |
|             ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
 | |
| 
 | |
| /*
 | |
| ** A open page cache is an instance of the following structure.
 | |
| **
 | |
| ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
 | |
| ** or SQLITE_FULL. Once one of the first three errors occurs, it persists
 | |
| ** and is returned as the result of every major pager API call.  The
 | |
| ** SQLITE_FULL return code is slightly different. It persists only until the
 | |
| ** next successful rollback is performed on the pager cache. Also,
 | |
| ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
 | |
| ** APIs, they may still be used successfully.
 | |
| */
 | |
| struct Pager {
 | |
|   sqlite3_vfs *pVfs;          /* OS functions to use for IO */
 | |
|   u8 journalOpen;             /* True if journal file descriptors is valid */
 | |
|   u8 journalStarted;          /* True if header of journal is synced */
 | |
|   u8 useJournal;              /* Use a rollback journal on this file */
 | |
|   u8 noReadlock;              /* Do not bother to obtain readlocks */
 | |
|   u8 stmtOpen;                /* True if the statement subjournal is open */
 | |
|   u8 stmtInUse;               /* True we are in a statement subtransaction */
 | |
|   u8 stmtAutoopen;            /* Open stmt journal when main journal is opened*/
 | |
|   u8 noSync;                  /* Do not sync the journal if true */
 | |
|   u8 fullSync;                /* Do extra syncs of the journal for robustness */
 | |
|   u8 sync_flags;              /* One of SYNC_NORMAL or SYNC_FULL */
 | |
|   u8 state;                   /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
 | |
|   u8 tempFile;                /* zFilename is a temporary file */
 | |
|   u8 readOnly;                /* True for a read-only database */
 | |
|   u8 needSync;                /* True if an fsync() is needed on the journal */
 | |
|   u8 dirtyCache;              /* True if cached pages have changed */
 | |
|   u8 alwaysRollback;          /* Disable DontRollback() for all pages */
 | |
|   u8 memDb;                   /* True to inhibit all file I/O */
 | |
|   u8 setMaster;               /* True if a m-j name has been written to jrnl */
 | |
|   u8 doNotSync;               /* Boolean. While true, do not spill the cache */
 | |
|   u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
 | |
|   u8 changeCountDone;         /* Set after incrementing the change-counter */
 | |
|   u32 vfsFlags;               /* Flags for sqlite3_vfs.xOpen() */
 | |
|   int errCode;                /* One of several kinds of errors */
 | |
|   int dbSize;                 /* Number of pages in the file */
 | |
|   int origDbSize;             /* dbSize before the current change */
 | |
|   int stmtSize;               /* Size of database (in pages) at stmt_begin() */
 | |
|   int nRec;                   /* Number of pages written to the journal */
 | |
|   u32 cksumInit;              /* Quasi-random value added to every checksum */
 | |
|   int stmtNRec;               /* Number of records in stmt subjournal */
 | |
|   int nExtra;                 /* Add this many bytes to each in-memory page */
 | |
|   int pageSize;               /* Number of bytes in a page */
 | |
|   int nPage;                  /* Total number of in-memory pages */
 | |
|   int nRef;                   /* Number of in-memory pages with PgHdr.nRef>0 */
 | |
|   int mxPage;                 /* Maximum number of pages to hold in cache */
 | |
|   Pgno mxPgno;                /* Maximum allowed size of the database */
 | |
|   Bitvec *pInJournal;         /* One bit for each page in the database file */
 | |
|   Bitvec *pInStmt;            /* One bit for each page in the database */
 | |
|   char *zFilename;            /* Name of the database file */
 | |
|   char *zJournal;             /* Name of the journal file */
 | |
|   char *zDirectory;           /* Directory hold database and journal files */
 | |
|   char *zStmtJrnl;            /* Name of the statement journal file */
 | |
|   sqlite3_file *fd, *jfd;     /* File descriptors for database and journal */
 | |
|   sqlite3_file *stfd;         /* File descriptor for the statement subjournal*/
 | |
|   BusyHandler *pBusyHandler;  /* Pointer to sqlite.busyHandler */
 | |
|   PagerLruList lru;           /* LRU list of free pages */
 | |
|   PgHdr *pAll;                /* List of all pages */
 | |
|   PgHdr *pStmt;               /* List of pages in the statement subjournal */
 | |
|   PgHdr *pDirty;              /* List of all dirty pages */
 | |
|   i64 journalOff;             /* Current byte offset in the journal file */
 | |
|   i64 journalHdr;             /* Byte offset to previous journal header */
 | |
|   i64 stmtHdrOff;             /* First journal header written this statement */
 | |
|   i64 stmtCksum;              /* cksumInit when statement was started */
 | |
|   i64 stmtJSize;              /* Size of journal at stmt_begin() */
 | |
|   int sectorSize;             /* Assumed sector size during rollback */
 | |
| #ifdef SQLITE_TEST
 | |
|   int nHit, nMiss;            /* Cache hits and missing */
 | |
|   int nRead, nWrite;          /* Database pages read/written */
 | |
| #endif
 | |
|   void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
 | |
|   void (*xReiniter)(DbPage*,int);   /* Call this routine when reloading pages */
 | |
| #ifdef SQLITE_HAS_CODEC
 | |
|   void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
 | |
|   void *pCodecArg;            /* First argument to xCodec() */
 | |
| #endif
 | |
|   int nHash;                  /* Size of the pager hash table */
 | |
|   PgHdr **aHash;              /* Hash table to map page number to PgHdr */
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   Pager *pNext;               /* Doubly linked list of pagers on which */
 | |
|   Pager *pPrev;               /* sqlite3_release_memory() will work */
 | |
|   int iInUseMM;               /* Non-zero if unavailable to MM */
 | |
|   int iInUseDB;               /* Non-zero if in sqlite3_release_memory() */
 | |
| #endif
 | |
|   char *pTmpSpace;            /* Pager.pageSize bytes of space for tmp use */
 | |
|   char dbFileVers[16];        /* Changes whenever database file changes */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The following global variables hold counters used for
 | |
| ** testing purposes only.  These variables do not exist in
 | |
| ** a non-testing build.  These variables are not thread-safe.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_pager_readdb_count = 0;    /* Number of full pages read from DB */
 | |
| SQLITE_API int sqlite3_pager_writedb_count = 0;   /* Number of full pages written to DB */
 | |
| SQLITE_API int sqlite3_pager_writej_count = 0;    /* Number of pages written to journal */
 | |
| SQLITE_API int sqlite3_pager_pgfree_count = 0;    /* Number of cache pages freed */
 | |
| # define PAGER_INCR(v)  v++
 | |
| #else
 | |
| # define PAGER_INCR(v)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The following variable points to the head of a double-linked list
 | |
| ** of all pagers that are eligible for page stealing by the
 | |
| ** sqlite3_release_memory() interface.  Access to this list is
 | |
| ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
| static Pager *sqlite3PagerList = 0;
 | |
| static PagerLruList sqlite3LruPageList = {0, 0, 0};
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Journal files begin with the following magic string.  The data
 | |
| ** was obtained from /dev/random.  It is used only as a sanity check.
 | |
| **
 | |
| ** Since version 2.8.0, the journal format contains additional sanity
 | |
| ** checking information.  If the power fails while the journal is begin
 | |
| ** written, semi-random garbage data might appear in the journal
 | |
| ** file after power is restored.  If an attempt is then made
 | |
| ** to roll the journal back, the database could be corrupted.  The additional
 | |
| ** sanity checking data is an attempt to discover the garbage in the
 | |
| ** journal and ignore it.
 | |
| **
 | |
| ** The sanity checking information for the new journal format consists
 | |
| ** of a 32-bit checksum on each page of data.  The checksum covers both
 | |
| ** the page number and the pPager->pageSize bytes of data for the page.
 | |
| ** This cksum is initialized to a 32-bit random value that appears in the
 | |
| ** journal file right after the header.  The random initializer is important,
 | |
| ** because garbage data that appears at the end of a journal is likely
 | |
| ** data that was once in other files that have now been deleted.  If the
 | |
| ** garbage data came from an obsolete journal file, the checksums might
 | |
| ** be correct.  But by initializing the checksum to random value which
 | |
| ** is different for every journal, we minimize that risk.
 | |
| */
 | |
| static const unsigned char aJournalMagic[] = {
 | |
|   0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The size of the header and of each page in the journal is determined
 | |
| ** by the following macros.
 | |
| */
 | |
| #define JOURNAL_PG_SZ(pPager)  ((pPager->pageSize) + 8)
 | |
| 
 | |
| /*
 | |
| ** The journal header size for this pager. In the future, this could be
 | |
| ** set to some value read from the disk controller. The important
 | |
| ** characteristic is that it is the same size as a disk sector.
 | |
| */
 | |
| #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
 | |
| 
 | |
| /*
 | |
| ** The macro MEMDB is true if we are dealing with an in-memory database.
 | |
| ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
 | |
| ** the value of MEMDB will be a constant and the compiler will optimize
 | |
| ** out code that would never execute.
 | |
| */
 | |
| #ifdef SQLITE_OMIT_MEMORYDB
 | |
| # define MEMDB 0
 | |
| #else
 | |
| # define MEMDB pPager->memDb
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
 | |
| ** reserved for working around a windows/posix incompatibility). It is
 | |
| ** used in the journal to signify that the remainder of the journal file 
 | |
| ** is devoted to storing a master journal name - there are no more pages to
 | |
| ** roll back. See comments for function writeMasterJournal() for details.
 | |
| */
 | |
| /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
 | |
| #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
 | |
| 
 | |
| /*
 | |
| ** The maximum legal page number is (2^31 - 1).
 | |
| */
 | |
| #define PAGER_MAX_PGNO 2147483647
 | |
| 
 | |
| /*
 | |
| ** The pagerEnter() and pagerLeave() routines acquire and release
 | |
| ** a mutex on each pager.  The mutex is recursive.
 | |
| **
 | |
| ** This is a special-purpose mutex.  It only provides mutual exclusion
 | |
| ** between the Btree and the Memory Management sqlite3_release_memory()
 | |
| ** function.  It does not prevent, for example, two Btrees from accessing
 | |
| ** the same pager at the same time.  Other general-purpose mutexes in
 | |
| ** the btree layer handle that chore.
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   static void pagerEnter(Pager *p){
 | |
|     p->iInUseDB++;
 | |
|     if( p->iInUseMM && p->iInUseDB==1 ){
 | |
|       sqlite3_mutex *mutex;
 | |
|       mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
 | |
|       p->iInUseDB = 0;
 | |
|       sqlite3_mutex_enter(mutex);
 | |
|       p->iInUseDB = 1;
 | |
|       sqlite3_mutex_leave(mutex);
 | |
|     }
 | |
|     assert( p->iInUseMM==0 );
 | |
|   }
 | |
|   static void pagerLeave(Pager *p){
 | |
|     p->iInUseDB--;
 | |
|     assert( p->iInUseDB>=0 );
 | |
|   }
 | |
| #else
 | |
| # define pagerEnter(X)
 | |
| # define pagerLeave(X)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Add page pPg to the end of the linked list managed by structure
 | |
| ** pList (pPg becomes the last entry in the list - the most recently 
 | |
| ** used). Argument pLink should point to either pPg->free or pPg->gfree,
 | |
| ** depending on whether pPg is being added to the pager-specific or
 | |
| ** global LRU list.
 | |
| */
 | |
| static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
 | |
|   pLink->pNext = 0;
 | |
|   pLink->pPrev = pList->pLast;
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   assert(pLink==&pPg->free || pLink==&pPg->gfree);
 | |
|   assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
 | |
| #endif
 | |
| 
 | |
|   if( pList->pLast ){
 | |
|     int iOff = (char *)pLink - (char *)pPg;
 | |
|     PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
 | |
|     pLastLink->pNext = pPg;
 | |
|   }else{
 | |
|     assert(!pList->pFirst);
 | |
|     pList->pFirst = pPg;
 | |
|   }
 | |
| 
 | |
|   pList->pLast = pPg;
 | |
|   if( !pList->pFirstSynced && pPg->needSync==0 ){
 | |
|     pList->pFirstSynced = pPg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove pPg from the list managed by the structure pointed to by pList.
 | |
| **
 | |
| ** Argument pLink should point to either pPg->free or pPg->gfree, depending 
 | |
| ** on whether pPg is being added to the pager-specific or global LRU list.
 | |
| */
 | |
| static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
 | |
|   int iOff = (char *)pLink - (char *)pPg;
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   assert(pLink==&pPg->free || pLink==&pPg->gfree);
 | |
|   assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
 | |
| #endif
 | |
| 
 | |
|   if( pPg==pList->pFirst ){
 | |
|     pList->pFirst = pLink->pNext;
 | |
|   }
 | |
|   if( pPg==pList->pLast ){
 | |
|     pList->pLast = pLink->pPrev;
 | |
|   }
 | |
|   if( pLink->pPrev ){
 | |
|     PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
 | |
|     pPrevLink->pNext = pLink->pNext;
 | |
|   }
 | |
|   if( pLink->pNext ){
 | |
|     PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
 | |
|     pNextLink->pPrev = pLink->pPrev;
 | |
|   }
 | |
|   if( pPg==pList->pFirstSynced ){
 | |
|     PgHdr *p = pLink->pNext;
 | |
|     while( p && p->needSync ){
 | |
|       PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
 | |
|       p = pL->pNext;
 | |
|     }
 | |
|     pList->pFirstSynced = p;
 | |
|   }
 | |
| 
 | |
|   pLink->pNext = pLink->pPrev = 0;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Add page pPg to the list of free pages for the pager. If 
 | |
| ** memory-management is enabled, also add the page to the global 
 | |
| ** list of free pages.
 | |
| */
 | |
| static void lruListAdd(PgHdr *pPg){
 | |
|   listAdd(&pPg->pPager->lru, &pPg->free, pPg);
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   if( !pPg->pPager->memDb ){
 | |
|     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|     listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
 | |
|     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Remove page pPg from the list of free pages for the associated pager.
 | |
| ** If memory-management is enabled, also remove pPg from the global list
 | |
| ** of free pages.
 | |
| */
 | |
| static void lruListRemove(PgHdr *pPg){
 | |
|   listRemove(&pPg->pPager->lru, &pPg->free, pPg);
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   if( !pPg->pPager->memDb ){
 | |
|     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|     listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
 | |
|     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** This function is called just after the needSync flag has been cleared
 | |
| ** from all pages managed by pPager (usually because the journal file
 | |
| ** has just been synced). It updates the pPager->lru.pFirstSynced variable
 | |
| ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
 | |
| ** variable also.
 | |
| */
 | |
| static void lruListSetFirstSynced(Pager *pPager){
 | |
|   pPager->lru.pFirstSynced = pPager->lru.pFirst;
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   if( !pPager->memDb ){
 | |
|     PgHdr *p;
 | |
|     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|     for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
 | |
|     assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
 | |
|     sqlite3LruPageList.pFirstSynced = p;
 | |
|     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if page *pPg has already been written to the statement
 | |
| ** journal (or statement snapshot has been created, if *pPg is part
 | |
| ** of an in-memory database).
 | |
| */
 | |
| static int pageInStatement(PgHdr *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   if( MEMDB ){
 | |
|     return PGHDR_TO_HIST(pPg, pPager)->inStmt;
 | |
|   }else{
 | |
|     return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the size of the pager hash table to N.  N must be a power
 | |
| ** of two.
 | |
| */
 | |
| static void pager_resize_hash_table(Pager *pPager, int N){
 | |
|   PgHdr **aHash, *pPg;
 | |
|   assert( N>0 && (N&(N-1))==0 );
 | |
| #ifdef SQLITE_MALLOC_SOFT_LIMIT
 | |
|   if( N*sizeof(aHash[0])>SQLITE_MALLOC_SOFT_LIMIT ){
 | |
|     N = SQLITE_MALLOC_SOFT_LIMIT/sizeof(aHash[0]);
 | |
|   }
 | |
|   if( N==pPager->nHash ) return;
 | |
| #endif
 | |
|   pagerLeave(pPager);
 | |
|   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pPager->aHash!=0);
 | |
|   aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
 | |
|   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
 | |
|   pagerEnter(pPager);
 | |
|   if( aHash==0 ){
 | |
|     /* Failure to rehash is not an error.  It is only a performance hit. */
 | |
|     return;
 | |
|   }
 | |
|   sqlite3_free(pPager->aHash);
 | |
|   pPager->nHash = N;
 | |
|   pPager->aHash = aHash;
 | |
|   for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
 | |
|     int h;
 | |
|     if( pPg->pgno==0 ){
 | |
|       assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
 | |
|       continue;
 | |
|     }
 | |
|     h = pPg->pgno & (N-1);
 | |
|     pPg->pNextHash = aHash[h];
 | |
|     if( aHash[h] ){
 | |
|       aHash[h]->pPrevHash = pPg;
 | |
|     }
 | |
|     aHash[h] = pPg;
 | |
|     pPg->pPrevHash = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read a 32-bit integer from the given file descriptor.  Store the integer
 | |
| ** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
 | |
| ** error code is something goes wrong.
 | |
| **
 | |
| ** All values are stored on disk as big-endian.
 | |
| */
 | |
| static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
 | |
|   unsigned char ac[4];
 | |
|   int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     *pRes = sqlite3Get4byte(ac);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write a 32-bit integer into a string buffer in big-endian byte order.
 | |
| */
 | |
| #define put32bits(A,B)  sqlite3Put4byte((u8*)A,B)
 | |
| 
 | |
| /*
 | |
| ** Write a 32-bit integer into the given file descriptor.  Return SQLITE_OK
 | |
| ** on success or an error code is something goes wrong.
 | |
| */
 | |
| static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
 | |
|   char ac[4];
 | |
|   put32bits(ac, val);
 | |
|   return sqlite3OsWrite(fd, ac, 4, offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If file pFd is open, call sqlite3OsUnlock() on it.
 | |
| */
 | |
| static int osUnlock(sqlite3_file *pFd, int eLock){
 | |
|   if( !pFd->pMethods ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   return sqlite3OsUnlock(pFd, eLock);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function determines whether or not the atomic-write optimization
 | |
| ** can be used with this pager. The optimization can be used if:
 | |
| **
 | |
| **  (a) the value returned by OsDeviceCharacteristics() indicates that
 | |
| **      a database page may be written atomically, and
 | |
| **  (b) the value returned by OsSectorSize() is less than or equal
 | |
| **      to the page size.
 | |
| **
 | |
| ** If the optimization cannot be used, 0 is returned. If it can be used,
 | |
| ** then the value returned is the size of the journal file when it
 | |
| ** contains rollback data for exactly one page.
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_ATOMIC_WRITE
 | |
| static int jrnlBufferSize(Pager *pPager){
 | |
|   int dc;           /* Device characteristics */
 | |
|   int nSector;      /* Sector size */
 | |
|   int nPage;        /* Page size */
 | |
|   sqlite3_file *fd = pPager->fd;
 | |
| 
 | |
|   if( fd->pMethods ){
 | |
|     dc = sqlite3OsDeviceCharacteristics(fd);
 | |
|     nSector = sqlite3OsSectorSize(fd);
 | |
|     nPage = pPager->pageSize;
 | |
|   }
 | |
| 
 | |
|   assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
 | |
|   assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
 | |
| 
 | |
|   if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
 | |
|     return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This function should be called when an error occurs within the pager
 | |
| ** code. The first argument is a pointer to the pager structure, the
 | |
| ** second the error-code about to be returned by a pager API function. 
 | |
| ** The value returned is a copy of the second argument to this function. 
 | |
| **
 | |
| ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
 | |
| ** the error becomes persistent. Until the persisten error is cleared,
 | |
| ** subsequent API calls on this Pager will immediately return the same 
 | |
| ** error code.
 | |
| **
 | |
| ** A persistent error indicates that the contents of the pager-cache 
 | |
| ** cannot be trusted. This state can be cleared by completely discarding 
 | |
| ** the contents of the pager-cache. If a transaction was active when
 | |
| ** the persistent error occured, then the rollback journal may need
 | |
| ** to be replayed.
 | |
| */
 | |
| static void pager_unlock(Pager *pPager);
 | |
| static int pager_error(Pager *pPager, int rc){
 | |
|   int rc2 = rc & 0xff;
 | |
|   assert(
 | |
|        pPager->errCode==SQLITE_FULL ||
 | |
|        pPager->errCode==SQLITE_OK ||
 | |
|        (pPager->errCode & 0xff)==SQLITE_IOERR
 | |
|   );
 | |
|   if(
 | |
|     rc2==SQLITE_FULL ||
 | |
|     rc2==SQLITE_IOERR ||
 | |
|     rc2==SQLITE_CORRUPT
 | |
|   ){
 | |
|     pPager->errCode = rc;
 | |
|     if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
 | |
|       /* If the pager is already unlocked, call pager_unlock() now to
 | |
|       ** clear the error state and ensure that the pager-cache is 
 | |
|       ** completely empty.
 | |
|       */
 | |
|       pager_unlock(pPager);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
 | |
| ** on the cache using a hash function.  This is used for testing
 | |
| ** and debugging only.
 | |
| */
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
| /*
 | |
| ** Return a 32-bit hash of the page data for pPage.
 | |
| */
 | |
| static u32 pager_datahash(int nByte, unsigned char *pData){
 | |
|   u32 hash = 0;
 | |
|   int i;
 | |
|   for(i=0; i<nByte; i++){
 | |
|     hash = (hash*1039) + pData[i];
 | |
|   }
 | |
|   return hash;
 | |
| }
 | |
| static u32 pager_pagehash(PgHdr *pPage){
 | |
|   return pager_datahash(pPage->pPager->pageSize, 
 | |
|                         (unsigned char *)PGHDR_TO_DATA(pPage));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
 | |
| ** is defined, and NDEBUG is not defined, an assert() statement checks
 | |
| ** that the page is either dirty or still matches the calculated page-hash.
 | |
| */
 | |
| #define CHECK_PAGE(x) checkPage(x)
 | |
| static void checkPage(PgHdr *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || 
 | |
|       pPg->pageHash==pager_pagehash(pPg) );
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define pager_datahash(X,Y)  0
 | |
| #define pager_pagehash(X)  0
 | |
| #define CHECK_PAGE(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When this is called the journal file for pager pPager must be open.
 | |
| ** The master journal file name is read from the end of the file and 
 | |
| ** written into memory supplied by the caller. 
 | |
| **
 | |
| ** zMaster must point to a buffer of at least nMaster bytes allocated by
 | |
| ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
 | |
| ** enough space to write the master journal name). If the master journal
 | |
| ** name in the journal is longer than nMaster bytes (including a
 | |
| ** nul-terminator), then this is handled as if no master journal name
 | |
| ** were present in the journal.
 | |
| **
 | |
| ** If no master journal file name is present zMaster[0] is set to 0 and
 | |
| ** SQLITE_OK returned.
 | |
| */
 | |
| static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
 | |
|   int rc;
 | |
|   u32 len;
 | |
|   i64 szJ;
 | |
|   u32 cksum;
 | |
|   int i;
 | |
|   unsigned char aMagic[8]; /* A buffer to hold the magic header */
 | |
| 
 | |
|   zMaster[0] = '\0';
 | |
| 
 | |
|   rc = sqlite3OsFileSize(pJrnl, &szJ);
 | |
|   if( rc!=SQLITE_OK || szJ<16 ) return rc;
 | |
| 
 | |
|   rc = read32bits(pJrnl, szJ-16, &len);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   if( len>=nMaster ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   rc = read32bits(pJrnl, szJ-12, &cksum);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
 | |
|   if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
 | |
| 
 | |
|   rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   zMaster[len] = '\0';
 | |
| 
 | |
|   /* See if the checksum matches the master journal name */
 | |
|   for(i=0; i<len; i++){
 | |
|     cksum -= zMaster[i];
 | |
|    }
 | |
|   if( cksum ){
 | |
|     /* If the checksum doesn't add up, then one or more of the disk sectors
 | |
|     ** containing the master journal filename is corrupted. This means
 | |
|     ** definitely roll back, so just return SQLITE_OK and report a (nul)
 | |
|     ** master-journal filename.
 | |
|     */
 | |
|     zMaster[0] = '\0';
 | |
|   }
 | |
|    
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Seek the journal file descriptor to the next sector boundary where a
 | |
| ** journal header may be read or written. Pager.journalOff is updated with
 | |
| ** the new seek offset.
 | |
| **
 | |
| ** i.e for a sector size of 512:
 | |
| **
 | |
| ** Input Offset              Output Offset
 | |
| ** ---------------------------------------
 | |
| ** 0                         0
 | |
| ** 512                       512
 | |
| ** 100                       512
 | |
| ** 2000                      2048
 | |
| ** 
 | |
| */
 | |
| static void seekJournalHdr(Pager *pPager){
 | |
|   i64 offset = 0;
 | |
|   i64 c = pPager->journalOff;
 | |
|   if( c ){
 | |
|     offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
 | |
|   }
 | |
|   assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
 | |
|   assert( offset>=c );
 | |
|   assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
 | |
|   pPager->journalOff = offset;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The journal file must be open when this routine is called. A journal
 | |
| ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
 | |
| ** current location.
 | |
| **
 | |
| ** The format for the journal header is as follows:
 | |
| ** - 8 bytes: Magic identifying journal format.
 | |
| ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
 | |
| ** - 4 bytes: Random number used for page hash.
 | |
| ** - 4 bytes: Initial database page count.
 | |
| ** - 4 bytes: Sector size used by the process that wrote this journal.
 | |
| ** 
 | |
| ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
 | |
| */
 | |
| static int writeJournalHdr(Pager *pPager){
 | |
|   char zHeader[sizeof(aJournalMagic)+16];
 | |
|   int rc;
 | |
| 
 | |
|   if( pPager->stmtHdrOff==0 ){
 | |
|     pPager->stmtHdrOff = pPager->journalOff;
 | |
|   }
 | |
| 
 | |
|   seekJournalHdr(pPager);
 | |
|   pPager->journalHdr = pPager->journalOff;
 | |
| 
 | |
|   memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
 | |
| 
 | |
|   /* 
 | |
|   ** Write the nRec Field - the number of page records that follow this
 | |
|   ** journal header. Normally, zero is written to this value at this time.
 | |
|   ** After the records are added to the journal (and the journal synced, 
 | |
|   ** if in full-sync mode), the zero is overwritten with the true number
 | |
|   ** of records (see syncJournal()).
 | |
|   **
 | |
|   ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
 | |
|   ** reading the journal this value tells SQLite to assume that the
 | |
|   ** rest of the journal file contains valid page records. This assumption
 | |
|   ** is dangerous, as if a failure occured whilst writing to the journal
 | |
|   ** file it may contain some garbage data. There are two scenarios
 | |
|   ** where this risk can be ignored:
 | |
|   **
 | |
|   **   * When the pager is in no-sync mode. Corruption can follow a
 | |
|   **     power failure in this case anyway.
 | |
|   **
 | |
|   **   * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
 | |
|   **     that garbage data is never appended to the journal file.
 | |
|   */
 | |
|   assert(pPager->fd->pMethods||pPager->noSync);
 | |
|   if( (pPager->noSync) 
 | |
|    || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 
 | |
|   ){
 | |
|     put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
 | |
|   }else{
 | |
|     put32bits(&zHeader[sizeof(aJournalMagic)], 0);
 | |
|   }
 | |
| 
 | |
|   /* The random check-hash initialiser */ 
 | |
|   sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
 | |
|   put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
 | |
|   /* The initial database size */
 | |
|   put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
 | |
|   /* The assumed sector size for this process */
 | |
|   put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
 | |
|   IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader)))
 | |
|   rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff);
 | |
|   pPager->journalOff += JOURNAL_HDR_SZ(pPager);
 | |
| 
 | |
|   /* The journal header has been written successfully. Seek the journal
 | |
|   ** file descriptor to the end of the journal header sector.
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1))
 | |
|     rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The journal file must be open when this is called. A journal header file
 | |
| ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
 | |
| ** file. See comments above function writeJournalHdr() for a description of
 | |
| ** the journal header format.
 | |
| **
 | |
| ** If the header is read successfully, *nRec is set to the number of
 | |
| ** page records following this header and *dbSize is set to the size of the
 | |
| ** database before the transaction began, in pages. Also, pPager->cksumInit
 | |
| ** is set to the value read from the journal header. SQLITE_OK is returned
 | |
| ** in this case.
 | |
| **
 | |
| ** If the journal header file appears to be corrupted, SQLITE_DONE is
 | |
| ** returned and *nRec and *dbSize are not set.  If JOURNAL_HDR_SZ bytes
 | |
| ** cannot be read from the journal file an error code is returned.
 | |
| */
 | |
| static int readJournalHdr(
 | |
|   Pager *pPager, 
 | |
|   i64 journalSize,
 | |
|   u32 *pNRec, 
 | |
|   u32 *pDbSize
 | |
| ){
 | |
|   int rc;
 | |
|   unsigned char aMagic[8]; /* A buffer to hold the magic header */
 | |
|   i64 jrnlOff;
 | |
| 
 | |
|   seekJournalHdr(pPager);
 | |
|   if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
 | |
|     return SQLITE_DONE;
 | |
|   }
 | |
|   jrnlOff = pPager->journalOff;
 | |
| 
 | |
|   rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
 | |
|   if( rc ) return rc;
 | |
|   jrnlOff += sizeof(aMagic);
 | |
| 
 | |
|   if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
 | |
|     return SQLITE_DONE;
 | |
|   }
 | |
| 
 | |
|   rc = read32bits(pPager->jfd, jrnlOff, pNRec);
 | |
|   if( rc ) return rc;
 | |
| 
 | |
|   rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
 | |
|   if( rc ) return rc;
 | |
| 
 | |
|   rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
 | |
|   if( rc ) return rc;
 | |
| 
 | |
|   /* Update the assumed sector-size to match the value used by 
 | |
|   ** the process that created this journal. If this journal was
 | |
|   ** created by a process other than this one, then this routine
 | |
|   ** is being called from within pager_playback(). The local value
 | |
|   ** of Pager.sectorSize is restored at the end of that routine.
 | |
|   */
 | |
|   rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
 | |
|   if( rc ) return rc;
 | |
| 
 | |
|   pPager->journalOff += JOURNAL_HDR_SZ(pPager);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Write the supplied master journal name into the journal file for pager
 | |
| ** pPager at the current location. The master journal name must be the last
 | |
| ** thing written to a journal file. If the pager is in full-sync mode, the
 | |
| ** journal file descriptor is advanced to the next sector boundary before
 | |
| ** anything is written. The format is:
 | |
| **
 | |
| ** + 4 bytes: PAGER_MJ_PGNO.
 | |
| ** + N bytes: length of master journal name.
 | |
| ** + 4 bytes: N
 | |
| ** + 4 bytes: Master journal name checksum.
 | |
| ** + 8 bytes: aJournalMagic[].
 | |
| **
 | |
| ** The master journal page checksum is the sum of the bytes in the master
 | |
| ** journal name.
 | |
| **
 | |
| ** If zMaster is a NULL pointer (occurs for a single database transaction), 
 | |
| ** this call is a no-op.
 | |
| */
 | |
| static int writeMasterJournal(Pager *pPager, const char *zMaster){
 | |
|   int rc;
 | |
|   int len; 
 | |
|   int i; 
 | |
|   i64 jrnlOff;
 | |
|   u32 cksum = 0;
 | |
|   char zBuf[sizeof(aJournalMagic)+2*4];
 | |
| 
 | |
|   if( !zMaster || pPager->setMaster) return SQLITE_OK;
 | |
|   pPager->setMaster = 1;
 | |
| 
 | |
|   len = strlen(zMaster);
 | |
|   for(i=0; i<len; i++){
 | |
|     cksum += zMaster[i];
 | |
|   }
 | |
| 
 | |
|   /* If in full-sync mode, advance to the next disk sector before writing
 | |
|   ** the master journal name. This is in case the previous page written to
 | |
|   ** the journal has already been synced.
 | |
|   */
 | |
|   if( pPager->fullSync ){
 | |
|     seekJournalHdr(pPager);
 | |
|   }
 | |
|   jrnlOff = pPager->journalOff;
 | |
|   pPager->journalOff += (len+20);
 | |
| 
 | |
|   rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   jrnlOff += 4;
 | |
| 
 | |
|   rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   jrnlOff += len;
 | |
| 
 | |
|   put32bits(zBuf, len);
 | |
|   put32bits(&zBuf[4], cksum);
 | |
|   memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
 | |
|   rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
 | |
|   pPager->needSync = !pPager->noSync;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add or remove a page from the list of all pages that are in the
 | |
| ** statement journal.
 | |
| **
 | |
| ** The Pager keeps a separate list of pages that are currently in
 | |
| ** the statement journal.  This helps the sqlite3PagerStmtCommit()
 | |
| ** routine run MUCH faster for the common case where there are many
 | |
| ** pages in memory but only a few are in the statement journal.
 | |
| */
 | |
| static void page_add_to_stmt_list(PgHdr *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|   assert( MEMDB );
 | |
|   if( !pHist->inStmt ){
 | |
|     assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
 | |
|     if( pPager->pStmt ){
 | |
|       PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
 | |
|     }
 | |
|     pHist->pNextStmt = pPager->pStmt;
 | |
|     pPager->pStmt = pPg;
 | |
|     pHist->inStmt = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Find a page in the hash table given its page number.  Return
 | |
| ** a pointer to the page or NULL if not found.
 | |
| */
 | |
| static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
 | |
|   PgHdr *p;
 | |
|   if( pPager->aHash==0 ) return 0;
 | |
|   p = pPager->aHash[pgno & (pPager->nHash-1)];
 | |
|   while( p && p->pgno!=pgno ){
 | |
|     p = p->pNextHash;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the in-memory cache.  This routine
 | |
| ** sets the state of the pager back to what it was when it was first
 | |
| ** opened.  Any outstanding pages are invalidated and subsequent attempts
 | |
| ** to access those pages will likely result in a coredump.
 | |
| */
 | |
| static void pager_reset(Pager *pPager){
 | |
|   PgHdr *pPg, *pNext;
 | |
|   if( pPager->errCode ) return;
 | |
|   for(pPg=pPager->pAll; pPg; pPg=pNext){
 | |
|     IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
 | |
|     PAGER_INCR(sqlite3_pager_pgfree_count);
 | |
|     pNext = pPg->pNextAll;
 | |
|     lruListRemove(pPg);
 | |
|     sqlite3_free(pPg->pData);
 | |
|     sqlite3_free(pPg);
 | |
|   }
 | |
|   assert(pPager->lru.pFirst==0);
 | |
|   assert(pPager->lru.pFirstSynced==0);
 | |
|   assert(pPager->lru.pLast==0);
 | |
|   pPager->pStmt = 0;
 | |
|   pPager->pAll = 0;
 | |
|   pPager->pDirty = 0;
 | |
|   pPager->nHash = 0;
 | |
|   sqlite3_free(pPager->aHash);
 | |
|   pPager->nPage = 0;
 | |
|   pPager->aHash = 0;
 | |
|   pPager->nRef = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlock the database file. 
 | |
| **
 | |
| ** If the pager is currently in error state, discard the contents of 
 | |
| ** the cache and reset the Pager structure internal state. If there is
 | |
| ** an open journal-file, then the next time a shared-lock is obtained
 | |
| ** on the pager file (by this or any other process), it will be
 | |
| ** treated as a hot-journal and rolled back.
 | |
| */
 | |
| static void pager_unlock(Pager *pPager){
 | |
|   if( !pPager->exclusiveMode ){
 | |
|     if( !MEMDB ){
 | |
|       int rc = osUnlock(pPager->fd, NO_LOCK);
 | |
|       if( rc ) pPager->errCode = rc;
 | |
|       pPager->dbSize = -1;
 | |
|       IOTRACE(("UNLOCK %p\n", pPager))
 | |
| 
 | |
|       /* If Pager.errCode is set, the contents of the pager cache cannot be
 | |
|       ** trusted. Now that the pager file is unlocked, the contents of the
 | |
|       ** cache can be discarded and the error code safely cleared.
 | |
|       */
 | |
|       if( pPager->errCode ){
 | |
|         if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK;
 | |
|         pager_reset(pPager);
 | |
|         if( pPager->stmtOpen ){
 | |
|           sqlite3OsClose(pPager->stfd);
 | |
|           sqlite3BitvecDestroy(pPager->pInStmt);
 | |
|           pPager->pInStmt = 0;
 | |
|         }
 | |
|         if( pPager->journalOpen ){
 | |
|           sqlite3OsClose(pPager->jfd);
 | |
|           pPager->journalOpen = 0;
 | |
|           sqlite3BitvecDestroy(pPager->pInJournal);
 | |
|           pPager->pInJournal = 0;
 | |
|         }
 | |
|         pPager->stmtOpen = 0;
 | |
|         pPager->stmtInUse = 0;
 | |
|         pPager->journalOff = 0;
 | |
|         pPager->journalStarted = 0;
 | |
|         pPager->stmtAutoopen = 0;
 | |
|         pPager->origDbSize = 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if( !MEMDB || pPager->errCode==SQLITE_OK ){
 | |
|       pPager->state = PAGER_UNLOCK;
 | |
|       pPager->changeCountDone = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Execute a rollback if a transaction is active and unlock the 
 | |
| ** database file. If the pager has already entered the error state, 
 | |
| ** do not attempt the rollback.
 | |
| */
 | |
| static void pagerUnlockAndRollback(Pager *p){
 | |
|   assert( p->state>=PAGER_RESERVED || p->journalOpen==0 );
 | |
|   if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
 | |
|     sqlite3PagerRollback(p);
 | |
|   }
 | |
|   pager_unlock(p);
 | |
|   assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
 | |
|   assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine ends a transaction.  A transaction is ended by either
 | |
| ** a COMMIT or a ROLLBACK.
 | |
| **
 | |
| ** When this routine is called, the pager has the journal file open and
 | |
| ** a RESERVED or EXCLUSIVE lock on the database.  This routine will release
 | |
| ** the database lock and acquires a SHARED lock in its place if that is
 | |
| ** the appropriate thing to do.  Release locks usually is appropriate,
 | |
| ** unless we are in exclusive access mode or unless this is a 
 | |
| ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
 | |
| **
 | |
| ** The journal file is either deleted or truncated.
 | |
| **
 | |
| ** TODO: Consider keeping the journal file open for temporary databases.
 | |
| ** This might give a performance improvement on windows where opening
 | |
| ** a file is an expensive operation.
 | |
| */
 | |
| static int pager_end_transaction(Pager *pPager){
 | |
|   PgHdr *pPg;
 | |
|   int rc = SQLITE_OK;
 | |
|   int rc2 = SQLITE_OK;
 | |
|   assert( !MEMDB );
 | |
|   if( pPager->state<PAGER_RESERVED ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   sqlite3PagerStmtCommit(pPager);
 | |
|   if( pPager->stmtOpen && !pPager->exclusiveMode ){
 | |
|     sqlite3OsClose(pPager->stfd);
 | |
|     pPager->stmtOpen = 0;
 | |
|   }
 | |
|   if( pPager->journalOpen ){
 | |
|     if( pPager->exclusiveMode 
 | |
|           && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){;
 | |
|       pPager->journalOff = 0;
 | |
|       pPager->journalStarted = 0;
 | |
|     }else{
 | |
|       sqlite3OsClose(pPager->jfd);
 | |
|       pPager->journalOpen = 0;
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
 | |
|       }
 | |
|     }
 | |
|     sqlite3BitvecDestroy(pPager->pInJournal);
 | |
|     pPager->pInJournal = 0;
 | |
|     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
 | |
|       pPg->inJournal = 0;
 | |
|       pPg->dirty = 0;
 | |
|       pPg->needSync = 0;
 | |
|       pPg->alwaysRollback = 0;
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
|       pPg->pageHash = pager_pagehash(pPg);
 | |
| #endif
 | |
|     }
 | |
|     pPager->pDirty = 0;
 | |
|     pPager->dirtyCache = 0;
 | |
|     pPager->nRec = 0;
 | |
|   }else{
 | |
|     assert( pPager->pInJournal==0 );
 | |
|     assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
 | |
|   }
 | |
| 
 | |
|   if( !pPager->exclusiveMode ){
 | |
|     rc2 = osUnlock(pPager->fd, SHARED_LOCK);
 | |
|     pPager->state = PAGER_SHARED;
 | |
|   }else if( pPager->state==PAGER_SYNCED ){
 | |
|     pPager->state = PAGER_EXCLUSIVE;
 | |
|   }
 | |
|   pPager->origDbSize = 0;
 | |
|   pPager->setMaster = 0;
 | |
|   pPager->needSync = 0;
 | |
|   lruListSetFirstSynced(pPager);
 | |
|   pPager->dbSize = -1;
 | |
| 
 | |
|   return (rc==SQLITE_OK?rc2:rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute and return a checksum for the page of data.
 | |
| **
 | |
| ** This is not a real checksum.  It is really just the sum of the 
 | |
| ** random initial value and the page number.  We experimented with
 | |
| ** a checksum of the entire data, but that was found to be too slow.
 | |
| **
 | |
| ** Note that the page number is stored at the beginning of data and
 | |
| ** the checksum is stored at the end.  This is important.  If journal
 | |
| ** corruption occurs due to a power failure, the most likely scenario
 | |
| ** is that one end or the other of the record will be changed.  It is
 | |
| ** much less likely that the two ends of the journal record will be
 | |
| ** correct and the middle be corrupt.  Thus, this "checksum" scheme,
 | |
| ** though fast and simple, catches the mostly likely kind of corruption.
 | |
| **
 | |
| ** FIX ME:  Consider adding every 200th (or so) byte of the data to the
 | |
| ** checksum.  That way if a single page spans 3 or more disk sectors and
 | |
| ** only the middle sector is corrupt, we will still have a reasonable
 | |
| ** chance of failing the checksum and thus detecting the problem.
 | |
| */
 | |
| static u32 pager_cksum(Pager *pPager, const u8 *aData){
 | |
|   u32 cksum = pPager->cksumInit;
 | |
|   int i = pPager->pageSize-200;
 | |
|   while( i>0 ){
 | |
|     cksum += aData[i];
 | |
|     i -= 200;
 | |
|   }
 | |
|   return cksum;
 | |
| }
 | |
| 
 | |
| /* Forward declaration */
 | |
| static void makeClean(PgHdr*);
 | |
| 
 | |
| /*
 | |
| ** Read a single page from the journal file opened on file descriptor
 | |
| ** jfd.  Playback this one page.
 | |
| **
 | |
| ** If useCksum==0 it means this journal does not use checksums.  Checksums
 | |
| ** are not used in statement journals because statement journals do not
 | |
| ** need to survive power failures.
 | |
| */
 | |
| static int pager_playback_one_page(
 | |
|   Pager *pPager, 
 | |
|   sqlite3_file *jfd,
 | |
|   i64 offset,
 | |
|   int useCksum
 | |
| ){
 | |
|   int rc;
 | |
|   PgHdr *pPg;                   /* An existing page in the cache */
 | |
|   Pgno pgno;                    /* The page number of a page in journal */
 | |
|   u32 cksum;                    /* Checksum used for sanity checking */
 | |
|   u8 *aData = (u8 *)pPager->pTmpSpace;   /* Temp storage for a page */
 | |
| 
 | |
|   /* useCksum should be true for the main journal and false for
 | |
|   ** statement journals.  Verify that this is always the case
 | |
|   */
 | |
|   assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
 | |
|   assert( aData );
 | |
| 
 | |
|   rc = read32bits(jfd, offset, &pgno);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   pPager->journalOff += pPager->pageSize + 4;
 | |
| 
 | |
|   /* Sanity checking on the page.  This is more important that I originally
 | |
|   ** thought.  If a power failure occurs while the journal is being written,
 | |
|   ** it could cause invalid data to be written into the journal.  We need to
 | |
|   ** detect this invalid data (with high probability) and ignore it.
 | |
|   */
 | |
|   if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
 | |
|     return SQLITE_DONE;
 | |
|   }
 | |
|   if( pgno>(unsigned)pPager->dbSize ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( useCksum ){
 | |
|     rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
 | |
|     if( rc ) return rc;
 | |
|     pPager->journalOff += 4;
 | |
|     if( pager_cksum(pPager, aData)!=cksum ){
 | |
|       return SQLITE_DONE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
 | |
| 
 | |
|   /* If the pager is in RESERVED state, then there must be a copy of this
 | |
|   ** page in the pager cache. In this case just update the pager cache,
 | |
|   ** not the database file. The page is left marked dirty in this case.
 | |
|   **
 | |
|   ** An exception to the above rule: If the database is in no-sync mode
 | |
|   ** and a page is moved during an incremental vacuum then the page may
 | |
|   ** not be in the pager cache. Later: if a malloc() or IO error occurs
 | |
|   ** during a Movepage() call, then the page may not be in the cache
 | |
|   ** either. So the condition described in the above paragraph is not
 | |
|   ** assert()able.
 | |
|   **
 | |
|   ** If in EXCLUSIVE state, then we update the pager cache if it exists
 | |
|   ** and the main file. The page is then marked not dirty.
 | |
|   **
 | |
|   ** Ticket #1171:  The statement journal might contain page content that is
 | |
|   ** different from the page content at the start of the transaction.
 | |
|   ** This occurs when a page is changed prior to the start of a statement
 | |
|   ** then changed again within the statement.  When rolling back such a
 | |
|   ** statement we must not write to the original database unless we know
 | |
|   ** for certain that original page contents are synced into the main rollback
 | |
|   ** journal.  Otherwise, a power loss might leave modified data in the
 | |
|   ** database file without an entry in the rollback journal that can
 | |
|   ** restore the database to its original form.  Two conditions must be
 | |
|   ** met before writing to the database files. (1) the database must be
 | |
|   ** locked.  (2) we know that the original page content is fully synced
 | |
|   ** in the main journal either because the page is not in cache or else
 | |
|   ** the page is marked as needSync==0.
 | |
|   */
 | |
|   pPg = pager_lookup(pPager, pgno);
 | |
|   PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
 | |
|                PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
 | |
|   if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
 | |
|     i64 offset = (pgno-1)*(i64)pPager->pageSize;
 | |
|     rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
 | |
|     if( pPg ){
 | |
|       makeClean(pPg);
 | |
|     }
 | |
|   }
 | |
|   if( pPg ){
 | |
|     /* No page should ever be explicitly rolled back that is in use, except
 | |
|     ** for page 1 which is held in use in order to keep the lock on the
 | |
|     ** database active. However such a page may be rolled back as a result
 | |
|     ** of an internal error resulting in an automatic call to
 | |
|     ** sqlite3PagerRollback().
 | |
|     */
 | |
|     void *pData;
 | |
|     /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
 | |
|     pData = PGHDR_TO_DATA(pPg);
 | |
|     memcpy(pData, aData, pPager->pageSize);
 | |
|     if( pPager->xReiniter ){
 | |
|       pPager->xReiniter(pPg, pPager->pageSize);
 | |
|     }
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
|     pPg->pageHash = pager_pagehash(pPg);
 | |
| #endif
 | |
|     /* If this was page 1, then restore the value of Pager.dbFileVers.
 | |
|     ** Do this before any decoding. */
 | |
|     if( pgno==1 ){
 | |
|       memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
 | |
|     }
 | |
| 
 | |
|     /* Decode the page just read from disk */
 | |
|     CODEC1(pPager, pData, pPg->pgno, 3);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parameter zMaster is the name of a master journal file. A single journal
 | |
| ** file that referred to the master journal file has just been rolled back.
 | |
| ** This routine checks if it is possible to delete the master journal file,
 | |
| ** and does so if it is.
 | |
| **
 | |
| ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 
 | |
| ** available for use within this function.
 | |
| **
 | |
| **
 | |
| ** The master journal file contains the names of all child journals.
 | |
| ** To tell if a master journal can be deleted, check to each of the
 | |
| ** children.  If all children are either missing or do not refer to
 | |
| ** a different master journal, then this master journal can be deleted.
 | |
| */
 | |
| static int pager_delmaster(Pager *pPager, const char *zMaster){
 | |
|   sqlite3_vfs *pVfs = pPager->pVfs;
 | |
|   int rc;
 | |
|   int master_open = 0;
 | |
|   sqlite3_file *pMaster;
 | |
|   sqlite3_file *pJournal;
 | |
|   char *zMasterJournal = 0; /* Contents of master journal file */
 | |
|   i64 nMasterJournal;       /* Size of master journal file */
 | |
| 
 | |
|   /* Open the master journal file exclusively in case some other process
 | |
|   ** is running this routine also. Not that it makes too much difference.
 | |
|   */
 | |
|   pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
 | |
|   pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
 | |
|   if( !pMaster ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }else{
 | |
|     int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
 | |
|     rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
 | |
|   }
 | |
|   if( rc!=SQLITE_OK ) goto delmaster_out;
 | |
|   master_open = 1;
 | |
| 
 | |
|   rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
 | |
|   if( rc!=SQLITE_OK ) goto delmaster_out;
 | |
| 
 | |
|   if( nMasterJournal>0 ){
 | |
|     char *zJournal;
 | |
|     char *zMasterPtr = 0;
 | |
|     int nMasterPtr = pPager->pVfs->mxPathname+1;
 | |
| 
 | |
|     /* Load the entire master journal file into space obtained from
 | |
|     ** sqlite3_malloc() and pointed to by zMasterJournal. 
 | |
|     */
 | |
|     zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
 | |
|     if( !zMasterJournal ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|       goto delmaster_out;
 | |
|     }
 | |
|     zMasterPtr = &zMasterJournal[nMasterJournal];
 | |
|     rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
 | |
|     if( rc!=SQLITE_OK ) goto delmaster_out;
 | |
| 
 | |
|     zJournal = zMasterJournal;
 | |
|     while( (zJournal-zMasterJournal)<nMasterJournal ){
 | |
|       if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){
 | |
|         /* One of the journals pointed to by the master journal exists.
 | |
|         ** Open it and check if it points at the master journal. If
 | |
|         ** so, return without deleting the master journal file.
 | |
|         */
 | |
|         int c;
 | |
|         int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
 | |
|         rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           goto delmaster_out;
 | |
|         }
 | |
| 
 | |
|         rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
 | |
|         sqlite3OsClose(pJournal);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           goto delmaster_out;
 | |
|         }
 | |
| 
 | |
|         c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
 | |
|         if( c ){
 | |
|           /* We have a match. Do not delete the master journal file. */
 | |
|           goto delmaster_out;
 | |
|         }
 | |
|       }
 | |
|       zJournal += (strlen(zJournal)+1);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   rc = sqlite3OsDelete(pVfs, zMaster, 0);
 | |
| 
 | |
| delmaster_out:
 | |
|   if( zMasterJournal ){
 | |
|     sqlite3_free(zMasterJournal);
 | |
|   }  
 | |
|   if( master_open ){
 | |
|     sqlite3OsClose(pMaster);
 | |
|   }
 | |
|   sqlite3_free(pMaster);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void pager_truncate_cache(Pager *pPager);
 | |
| 
 | |
| /*
 | |
| ** Truncate the main file of the given pager to the number of pages
 | |
| ** indicated. Also truncate the cached representation of the file.
 | |
| **
 | |
| ** Might might be the case that the file on disk is smaller than nPage.
 | |
| ** This can happen, for example, if we are in the middle of a transaction
 | |
| ** which has extended the file size and the new pages are still all held
 | |
| ** in cache, then an INSERT or UPDATE does a statement rollback.  Some
 | |
| ** operating system implementations can get confused if you try to
 | |
| ** truncate a file to some size that is larger than it currently is,
 | |
| ** so detect this case and do not do the truncation.
 | |
| */
 | |
| static int pager_truncate(Pager *pPager, int nPage){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
 | |
|     i64 currentSize, newSize;
 | |
|     rc = sqlite3OsFileSize(pPager->fd, ¤tSize);
 | |
|     newSize = pPager->pageSize*(i64)nPage;
 | |
|     if( rc==SQLITE_OK && currentSize>newSize ){
 | |
|       rc = sqlite3OsTruncate(pPager->fd, newSize);
 | |
|     }
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pPager->dbSize = nPage;
 | |
|     pager_truncate_cache(pPager);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the sectorSize for the given pager.
 | |
| **
 | |
| ** The sector size is the larger of the sector size reported
 | |
| ** by sqlite3OsSectorSize() and the pageSize.
 | |
| */
 | |
| static void setSectorSize(Pager *pPager){
 | |
|   assert(pPager->fd->pMethods||pPager->tempFile);
 | |
|   if( !pPager->tempFile ){
 | |
|     /* Sector size doesn't matter for temporary files. Also, the file
 | |
|     ** may not have been opened yet, in whcih case the OsSectorSize()
 | |
|     ** call will segfault.
 | |
|     */
 | |
|     pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
 | |
|   }
 | |
|   if( pPager->sectorSize<pPager->pageSize ){
 | |
|     pPager->sectorSize = pPager->pageSize;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Playback the journal and thus restore the database file to
 | |
| ** the state it was in before we started making changes.  
 | |
| **
 | |
| ** The journal file format is as follows: 
 | |
| **
 | |
| **  (1)  8 byte prefix.  A copy of aJournalMagic[].
 | |
| **  (2)  4 byte big-endian integer which is the number of valid page records
 | |
| **       in the journal.  If this value is 0xffffffff, then compute the
 | |
| **       number of page records from the journal size.
 | |
| **  (3)  4 byte big-endian integer which is the initial value for the 
 | |
| **       sanity checksum.
 | |
| **  (4)  4 byte integer which is the number of pages to truncate the
 | |
| **       database to during a rollback.
 | |
| **  (5)  4 byte integer which is the number of bytes in the master journal
 | |
| **       name.  The value may be zero (indicate that there is no master
 | |
| **       journal.)
 | |
| **  (6)  N bytes of the master journal name.  The name will be nul-terminated
 | |
| **       and might be shorter than the value read from (5).  If the first byte
 | |
| **       of the name is \000 then there is no master journal.  The master
 | |
| **       journal name is stored in UTF-8.
 | |
| **  (7)  Zero or more pages instances, each as follows:
 | |
| **        +  4 byte page number.
 | |
| **        +  pPager->pageSize bytes of data.
 | |
| **        +  4 byte checksum
 | |
| **
 | |
| ** When we speak of the journal header, we mean the first 6 items above.
 | |
| ** Each entry in the journal is an instance of the 7th item.
 | |
| **
 | |
| ** Call the value from the second bullet "nRec".  nRec is the number of
 | |
| ** valid page entries in the journal.  In most cases, you can compute the
 | |
| ** value of nRec from the size of the journal file.  But if a power
 | |
| ** failure occurred while the journal was being written, it could be the
 | |
| ** case that the size of the journal file had already been increased but
 | |
| ** the extra entries had not yet made it safely to disk.  In such a case,
 | |
| ** the value of nRec computed from the file size would be too large.  For
 | |
| ** that reason, we always use the nRec value in the header.
 | |
| **
 | |
| ** If the nRec value is 0xffffffff it means that nRec should be computed
 | |
| ** from the file size.  This value is used when the user selects the
 | |
| ** no-sync option for the journal.  A power failure could lead to corruption
 | |
| ** in this case.  But for things like temporary table (which will be
 | |
| ** deleted when the power is restored) we don't care.  
 | |
| **
 | |
| ** If the file opened as the journal file is not a well-formed
 | |
| ** journal file then all pages up to the first corrupted page are rolled
 | |
| ** back (or no pages if the journal header is corrupted). The journal file
 | |
| ** is then deleted and SQLITE_OK returned, just as if no corruption had
 | |
| ** been encountered.
 | |
| **
 | |
| ** If an I/O or malloc() error occurs, the journal-file is not deleted
 | |
| ** and an error code is returned.
 | |
| */
 | |
| static int pager_playback(Pager *pPager, int isHot){
 | |
|   sqlite3_vfs *pVfs = pPager->pVfs;
 | |
|   i64 szJ;                 /* Size of the journal file in bytes */
 | |
|   u32 nRec;                /* Number of Records in the journal */
 | |
|   int i;                   /* Loop counter */
 | |
|   Pgno mxPg = 0;           /* Size of the original file in pages */
 | |
|   int rc;                  /* Result code of a subroutine */
 | |
|   char *zMaster = 0;       /* Name of master journal file if any */
 | |
| 
 | |
|   /* Figure out how many records are in the journal.  Abort early if
 | |
|   ** the journal is empty.
 | |
|   */
 | |
|   assert( pPager->journalOpen );
 | |
|   rc = sqlite3OsFileSize(pPager->jfd, &szJ);
 | |
|   if( rc!=SQLITE_OK || szJ==0 ){
 | |
|     goto end_playback;
 | |
|   }
 | |
| 
 | |
|   /* Read the master journal name from the journal, if it is present.
 | |
|   ** If a master journal file name is specified, but the file is not
 | |
|   ** present on disk, then the journal is not hot and does not need to be
 | |
|   ** played back.
 | |
|   */
 | |
|   zMaster = pPager->pTmpSpace;
 | |
|   rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
 | |
|   assert( rc!=SQLITE_DONE );
 | |
|   if( rc!=SQLITE_OK 
 | |
|    || (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS)) 
 | |
|   ){
 | |
|     zMaster = 0;
 | |
|     if( rc==SQLITE_DONE ) rc = SQLITE_OK;
 | |
|     goto end_playback;
 | |
|   }
 | |
|   pPager->journalOff = 0;
 | |
|   zMaster = 0;
 | |
| 
 | |
|   /* This loop terminates either when the readJournalHdr() call returns
 | |
|   ** SQLITE_DONE or an IO error occurs. */
 | |
|   while( 1 ){
 | |
| 
 | |
|     /* Read the next journal header from the journal file.  If there are
 | |
|     ** not enough bytes left in the journal file for a complete header, or
 | |
|     ** it is corrupted, then a process must of failed while writing it.
 | |
|     ** This indicates nothing more needs to be rolled back.
 | |
|     */
 | |
|     rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
 | |
|     if( rc!=SQLITE_OK ){ 
 | |
|       if( rc==SQLITE_DONE ){
 | |
|         rc = SQLITE_OK;
 | |
|       }
 | |
|       goto end_playback;
 | |
|     }
 | |
| 
 | |
|     /* If nRec is 0xffffffff, then this journal was created by a process
 | |
|     ** working in no-sync mode. This means that the rest of the journal
 | |
|     ** file consists of pages, there are no more journal headers. Compute
 | |
|     ** the value of nRec based on this assumption.
 | |
|     */
 | |
|     if( nRec==0xffffffff ){
 | |
|       assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
 | |
|       nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
 | |
|     }
 | |
| 
 | |
|     /* If nRec is 0 and this rollback is of a transaction created by this
 | |
|     ** process and if this is the final header in the journal, then it means
 | |
|     ** that this part of the journal was being filled but has not yet been
 | |
|     ** synced to disk.  Compute the number of pages based on the remaining
 | |
|     ** size of the file.
 | |
|     **
 | |
|     ** The third term of the test was added to fix ticket #2565.
 | |
|     */
 | |
|     if( nRec==0 && !isHot &&
 | |
|         pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
 | |
|       nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
 | |
|     }
 | |
| 
 | |
|     /* If this is the first header read from the journal, truncate the
 | |
|     ** database file back to its original size.
 | |
|     */
 | |
|     if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
 | |
|       rc = pager_truncate(pPager, mxPg);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto end_playback;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Copy original pages out of the journal and back into the database file.
 | |
|     */
 | |
|     for(i=0; i<nRec; i++){
 | |
|       rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         if( rc==SQLITE_DONE ){
 | |
|           rc = SQLITE_OK;
 | |
|           pPager->journalOff = szJ;
 | |
|           break;
 | |
|         }else{
 | |
|           goto end_playback;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /*NOTREACHED*/
 | |
|   assert( 0 );
 | |
| 
 | |
| end_playback:
 | |
|   if( rc==SQLITE_OK ){
 | |
|     zMaster = pPager->pTmpSpace;
 | |
|     rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = pager_end_transaction(pPager);
 | |
|   }
 | |
|   if( rc==SQLITE_OK && zMaster[0] ){
 | |
|     /* If there was a master journal and this routine will return success,
 | |
|     ** see if it is possible to delete the master journal.
 | |
|     */
 | |
|     rc = pager_delmaster(pPager, zMaster);
 | |
|   }
 | |
| 
 | |
|   /* The Pager.sectorSize variable may have been updated while rolling
 | |
|   ** back a journal created by a process with a different sector size
 | |
|   ** value. Reset it to the correct value for this process.
 | |
|   */
 | |
|   setSectorSize(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Playback the statement journal.
 | |
| **
 | |
| ** This is similar to playing back the transaction journal but with
 | |
| ** a few extra twists.
 | |
| **
 | |
| **    (1)  The number of pages in the database file at the start of
 | |
| **         the statement is stored in pPager->stmtSize, not in the
 | |
| **         journal file itself.
 | |
| **
 | |
| **    (2)  In addition to playing back the statement journal, also
 | |
| **         playback all pages of the transaction journal beginning
 | |
| **         at offset pPager->stmtJSize.
 | |
| */
 | |
| static int pager_stmt_playback(Pager *pPager){
 | |
|   i64 szJ;                 /* Size of the full journal */
 | |
|   i64 hdrOff;
 | |
|   int nRec;                /* Number of Records */
 | |
|   int i;                   /* Loop counter */
 | |
|   int rc;
 | |
| 
 | |
|   szJ = pPager->journalOff;
 | |
| #ifndef NDEBUG 
 | |
|   {
 | |
|     i64 os_szJ;
 | |
|     rc = sqlite3OsFileSize(pPager->jfd, &os_szJ);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|     assert( szJ==os_szJ );
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Set hdrOff to be the offset just after the end of the last journal
 | |
|   ** page written before the first journal-header for this statement
 | |
|   ** transaction was written, or the end of the file if no journal
 | |
|   ** header was written.
 | |
|   */
 | |
|   hdrOff = pPager->stmtHdrOff;
 | |
|   assert( pPager->fullSync || !hdrOff );
 | |
|   if( !hdrOff ){
 | |
|     hdrOff = szJ;
 | |
|   }
 | |
|   
 | |
|   /* Truncate the database back to its original size.
 | |
|   */
 | |
|   rc = pager_truncate(pPager, pPager->stmtSize);
 | |
|   assert( pPager->state>=PAGER_SHARED );
 | |
| 
 | |
|   /* Figure out how many records are in the statement journal.
 | |
|   */
 | |
|   assert( pPager->stmtInUse && pPager->journalOpen );
 | |
|   nRec = pPager->stmtNRec;
 | |
|   
 | |
|   /* Copy original pages out of the statement journal and back into the
 | |
|   ** database file.  Note that the statement journal omits checksums from
 | |
|   ** each record since power-failure recovery is not important to statement
 | |
|   ** journals.
 | |
|   */
 | |
|   for(i=0; i<nRec; i++){
 | |
|     i64 offset = i*(4+pPager->pageSize);
 | |
|     rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
 | |
|     assert( rc!=SQLITE_DONE );
 | |
|     if( rc!=SQLITE_OK ) goto end_stmt_playback;
 | |
|   }
 | |
| 
 | |
|   /* Now roll some pages back from the transaction journal. Pager.stmtJSize
 | |
|   ** was the size of the journal file when this statement was started, so
 | |
|   ** everything after that needs to be rolled back, either into the
 | |
|   ** database, the memory cache, or both.
 | |
|   **
 | |
|   ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
 | |
|   ** of the first journal header written during this statement transaction.
 | |
|   */
 | |
|   pPager->journalOff = pPager->stmtJSize;
 | |
|   pPager->cksumInit = pPager->stmtCksum;
 | |
|   while( pPager->journalOff < hdrOff ){
 | |
|     rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
 | |
|     assert( rc!=SQLITE_DONE );
 | |
|     if( rc!=SQLITE_OK ) goto end_stmt_playback;
 | |
|   }
 | |
| 
 | |
|   while( pPager->journalOff < szJ ){
 | |
|     u32 nJRec;         /* Number of Journal Records */
 | |
|     u32 dummy;
 | |
|     rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       assert( rc!=SQLITE_DONE );
 | |
|       goto end_stmt_playback;
 | |
|     }
 | |
|     if( nJRec==0 ){
 | |
|       nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
 | |
|     }
 | |
|     for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
 | |
|       rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
 | |
|       assert( rc!=SQLITE_DONE );
 | |
|       if( rc!=SQLITE_OK ) goto end_stmt_playback;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   pPager->journalOff = szJ;
 | |
|   
 | |
| end_stmt_playback:
 | |
|   if( rc==SQLITE_OK) {
 | |
|     pPager->journalOff = szJ;
 | |
|     /* pager_reload_cache(pPager); */
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the maximum number of in-memory pages that are allowed.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
 | |
|   if( mxPage>10 ){
 | |
|     pPager->mxPage = mxPage;
 | |
|   }else{
 | |
|     pPager->mxPage = 10;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Adjust the robustness of the database to damage due to OS crashes
 | |
| ** or power failures by changing the number of syncs()s when writing
 | |
| ** the rollback journal.  There are three levels:
 | |
| **
 | |
| **    OFF       sqlite3OsSync() is never called.  This is the default
 | |
| **              for temporary and transient files.
 | |
| **
 | |
| **    NORMAL    The journal is synced once before writes begin on the
 | |
| **              database.  This is normally adequate protection, but
 | |
| **              it is theoretically possible, though very unlikely,
 | |
| **              that an inopertune power failure could leave the journal
 | |
| **              in a state which would cause damage to the database
 | |
| **              when it is rolled back.
 | |
| **
 | |
| **    FULL      The journal is synced twice before writes begin on the
 | |
| **              database (with some additional information - the nRec field
 | |
| **              of the journal header - being written in between the two
 | |
| **              syncs).  If we assume that writing a
 | |
| **              single disk sector is atomic, then this mode provides
 | |
| **              assurance that the journal will not be corrupted to the
 | |
| **              point of causing damage to the database during rollback.
 | |
| **
 | |
| ** Numeric values associated with these states are OFF==1, NORMAL=2,
 | |
| ** and FULL=3.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
| SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
 | |
|   pPager->noSync =  level==1 || pPager->tempFile;
 | |
|   pPager->fullSync = level==3 && !pPager->tempFile;
 | |
|   pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
 | |
|   if( pPager->noSync ) pPager->needSync = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The following global variable is incremented whenever the library
 | |
| ** attempts to open a temporary file.  This information is used for
 | |
| ** testing and analysis only.  
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_opentemp_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Open a temporary file. 
 | |
| **
 | |
| ** Write the file descriptor into *fd.  Return SQLITE_OK on success or some
 | |
| ** other error code if we fail. The OS will automatically delete the temporary
 | |
| ** file when it is closed.
 | |
| */
 | |
| static int sqlite3PagerOpentemp(
 | |
|   sqlite3_vfs *pVfs,    /* The virtual file system layer */
 | |
|   sqlite3_file *pFile,  /* Write the file descriptor here */
 | |
|   char *zFilename,      /* Name of the file.  Might be NULL */
 | |
|   int vfsFlags          /* Flags passed through to the VFS */
 | |
| ){
 | |
|   int rc;
 | |
|   assert( zFilename!=0 );
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
|   sqlite3_opentemp_count++;  /* Used for testing and analysis only */
 | |
| #endif
 | |
| 
 | |
|   vfsFlags |=  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
 | |
|             SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
 | |
|   rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
 | |
|   assert( rc!=SQLITE_OK || pFile->pMethods );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new page cache and put a pointer to the page cache in *ppPager.
 | |
| ** The file to be cached need not exist.  The file is not locked until
 | |
| ** the first call to sqlite3PagerGet() and is only held open until the
 | |
| ** last page is released using sqlite3PagerUnref().
 | |
| **
 | |
| ** If zFilename is NULL then a randomly-named temporary file is created
 | |
| ** and used as the file to be cached.  The file will be deleted
 | |
| ** automatically when it is closed.
 | |
| **
 | |
| ** If zFilename is ":memory:" then all information is held in cache.
 | |
| ** It is never written to disk.  This can be used to implement an
 | |
| ** in-memory database.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerOpen(
 | |
|   sqlite3_vfs *pVfs,       /* The virtual file system to use */
 | |
|   Pager **ppPager,         /* Return the Pager structure here */
 | |
|   const char *zFilename,   /* Name of the database file to open */
 | |
|   int nExtra,              /* Extra bytes append to each in-memory page */
 | |
|   int flags,               /* flags controlling this file */
 | |
|   int vfsFlags             /* flags passed through to sqlite3_vfs.xOpen() */
 | |
| ){
 | |
|   u8 *pPtr;
 | |
|   Pager *pPager = 0;
 | |
|   int rc = SQLITE_OK;
 | |
|   int i;
 | |
|   int tempFile = 0;
 | |
|   int memDb = 0;
 | |
|   int readOnly = 0;
 | |
|   int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
 | |
|   int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
 | |
|   int journalFileSize = sqlite3JournalSize(pVfs);
 | |
|   int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
 | |
|   char *zPathname;
 | |
|   int nPathname;
 | |
|   char *zStmtJrnl;
 | |
|   int nStmtJrnl;
 | |
| 
 | |
|   /* The default return is a NULL pointer */
 | |
|   *ppPager = 0;
 | |
| 
 | |
|   /* Compute the full pathname */
 | |
|   nPathname = pVfs->mxPathname+1;
 | |
|   zPathname = sqlite3_malloc(nPathname*2);
 | |
|   if( zPathname==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   if( zFilename && zFilename[0] ){
 | |
| #ifndef SQLITE_OMIT_MEMORYDB
 | |
|     if( strcmp(zFilename,":memory:")==0 ){
 | |
|       memDb = 1;
 | |
|       zPathname[0] = 0;
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
 | |
|     }
 | |
|   }else{
 | |
|     rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
 | |
|   }
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     sqlite3_free(zPathname);
 | |
|     return rc;
 | |
|   }
 | |
|   nPathname = strlen(zPathname);
 | |
| 
 | |
|   /* Put the statement journal in temporary disk space since this is
 | |
|   ** sometimes RAM disk or other optimized storage.  Unlikely the main
 | |
|   ** main journal file, the statement journal does not need to be 
 | |
|   ** colocated with the database nor does it need to be persistent.
 | |
|   */
 | |
|   zStmtJrnl = &zPathname[nPathname+1];
 | |
|   rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname+1, zStmtJrnl);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     sqlite3_free(zPathname);
 | |
|     return rc;
 | |
|   }
 | |
|   nStmtJrnl = strlen(zStmtJrnl);
 | |
| 
 | |
|   /* Allocate memory for the pager structure */
 | |
|   pPager = sqlite3MallocZero(
 | |
|     sizeof(*pPager) +           /* Pager structure */
 | |
|     journalFileSize +           /* The journal file structure */ 
 | |
|     pVfs->szOsFile * 3 +        /* The main db and two journal files */ 
 | |
|     3*nPathname + 40 +          /* zFilename, zDirectory, zJournal */
 | |
|     nStmtJrnl                   /* zStmtJrnl */
 | |
|   );
 | |
|   if( !pPager ){
 | |
|     sqlite3_free(zPathname);
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   pPtr = (u8 *)&pPager[1];
 | |
|   pPager->vfsFlags = vfsFlags;
 | |
|   pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
 | |
|   pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
 | |
|   pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
 | |
|   pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
 | |
|   pPager->zDirectory = &pPager->zFilename[nPathname+1];
 | |
|   pPager->zJournal = &pPager->zDirectory[nPathname+1];
 | |
|   pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
 | |
|   pPager->pVfs = pVfs;
 | |
|   memcpy(pPager->zFilename, zPathname, nPathname+1);
 | |
|   memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl+1);
 | |
|   sqlite3_free(zPathname);
 | |
| 
 | |
|   /* Open the pager file.
 | |
|   */
 | |
|   if( zFilename && zFilename[0] && !memDb ){
 | |
|     if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
 | |
|       rc = SQLITE_CANTOPEN;
 | |
|     }else{
 | |
|       int fout = 0;
 | |
|       rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
 | |
|                          pPager->vfsFlags, &fout);
 | |
|       readOnly = (fout&SQLITE_OPEN_READONLY);
 | |
| 
 | |
|       /* If the file was successfully opened for read/write access,
 | |
|       ** choose a default page size in case we have to create the
 | |
|       ** database file. The default page size is the maximum of:
 | |
|       **
 | |
|       **    + SQLITE_DEFAULT_PAGE_SIZE,
 | |
|       **    + The value returned by sqlite3OsSectorSize()
 | |
|       **    + The largest page size that can be written atomically.
 | |
|       */
 | |
|       if( rc==SQLITE_OK && !readOnly ){
 | |
|         int iSectorSize = sqlite3OsSectorSize(pPager->fd);
 | |
|         if( nDefaultPage<iSectorSize ){
 | |
|           nDefaultPage = iSectorSize;
 | |
|         }
 | |
| #ifdef SQLITE_ENABLE_ATOMIC_WRITE
 | |
|         {
 | |
|           int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
 | |
|           int ii;
 | |
|           assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
 | |
|           assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
 | |
|           assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
 | |
|           for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
 | |
|             if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
 | |
|           }
 | |
|         }
 | |
| #endif
 | |
|         if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
 | |
|           nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }else if( !memDb ){
 | |
|     /* If a temporary file is requested, it is not opened immediately.
 | |
|     ** In this case we accept the default page size and delay actually
 | |
|     ** opening the file until the first call to OsWrite().
 | |
|     */ 
 | |
|     tempFile = 1;
 | |
|     pPager->state = PAGER_EXCLUSIVE;
 | |
|   }
 | |
| 
 | |
|   if( pPager && rc==SQLITE_OK ){
 | |
|     pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage);
 | |
|   }
 | |
| 
 | |
|   /* If an error occured in either of the blocks above.
 | |
|   ** Free the Pager structure and close the file.
 | |
|   ** Since the pager is not allocated there is no need to set 
 | |
|   ** any Pager.errMask variables.
 | |
|   */
 | |
|   if( !pPager || !pPager->pTmpSpace ){
 | |
|     sqlite3OsClose(pPager->fd);
 | |
|     sqlite3_free(pPager);
 | |
|     return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
 | |
|   }
 | |
| 
 | |
|   PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
 | |
|   IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
 | |
| 
 | |
|   /* Fill in Pager.zDirectory[] */
 | |
|   memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
 | |
|   for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
 | |
|   if( i>0 ) pPager->zDirectory[i-1] = 0;
 | |
| 
 | |
|   /* Fill in Pager.zJournal[] */
 | |
|   memcpy(pPager->zJournal, pPager->zFilename, nPathname);
 | |
|   memcpy(&pPager->zJournal[nPathname], "-journal", 9);
 | |
| 
 | |
|   /* pPager->journalOpen = 0; */
 | |
|   pPager->useJournal = useJournal && !memDb;
 | |
|   pPager->noReadlock = noReadlock && readOnly;
 | |
|   /* pPager->stmtOpen = 0; */
 | |
|   /* pPager->stmtInUse = 0; */
 | |
|   /* pPager->nRef = 0; */
 | |
|   pPager->dbSize = memDb-1;
 | |
|   pPager->pageSize = nDefaultPage;
 | |
|   /* pPager->stmtSize = 0; */
 | |
|   /* pPager->stmtJSize = 0; */
 | |
|   /* pPager->nPage = 0; */
 | |
|   pPager->mxPage = 100;
 | |
|   pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
 | |
|   /* pPager->state = PAGER_UNLOCK; */
 | |
|   assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
 | |
|   /* pPager->errMask = 0; */
 | |
|   pPager->tempFile = tempFile;
 | |
|   assert( tempFile==PAGER_LOCKINGMODE_NORMAL 
 | |
|           || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
 | |
|   assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
 | |
|   pPager->exclusiveMode = tempFile; 
 | |
|   pPager->memDb = memDb;
 | |
|   pPager->readOnly = readOnly;
 | |
|   /* pPager->needSync = 0; */
 | |
|   pPager->noSync = pPager->tempFile || !useJournal;
 | |
|   pPager->fullSync = (pPager->noSync?0:1);
 | |
|   pPager->sync_flags = SQLITE_SYNC_NORMAL;
 | |
|   /* pPager->pFirst = 0; */
 | |
|   /* pPager->pFirstSynced = 0; */
 | |
|   /* pPager->pLast = 0; */
 | |
|   pPager->nExtra = FORCE_ALIGNMENT(nExtra);
 | |
|   assert(pPager->fd->pMethods||memDb||tempFile);
 | |
|   if( !memDb ){
 | |
|     setSectorSize(pPager);
 | |
|   }
 | |
|   /* pPager->pBusyHandler = 0; */
 | |
|   /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
 | |
|   *ppPager = pPager;
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   pPager->iInUseMM = 0;
 | |
|   pPager->iInUseDB = 0;
 | |
|   if( !memDb ){
 | |
|     sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
 | |
|     sqlite3_mutex_enter(mutex);
 | |
|     pPager->pNext = sqlite3PagerList;
 | |
|     if( sqlite3PagerList ){
 | |
|       assert( sqlite3PagerList->pPrev==0 );
 | |
|       sqlite3PagerList->pPrev = pPager;
 | |
|     }
 | |
|     pPager->pPrev = 0;
 | |
|     sqlite3PagerList = pPager;
 | |
|     sqlite3_mutex_leave(mutex);
 | |
|   }
 | |
| #endif
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the busy handler function.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
 | |
|   pPager->pBusyHandler = pBusyHandler;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the destructor for this pager.  If not NULL, the destructor is called
 | |
| ** when the reference count on each page reaches zero.  The destructor can
 | |
| ** be used to clean up information in the extra segment appended to each page.
 | |
| **
 | |
| ** The destructor is not called as a result sqlite3PagerClose().  
 | |
| ** Destructors are only called by sqlite3PagerUnref().
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
 | |
|   pPager->xDestructor = xDesc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the reinitializer for this pager.  If not NULL, the reinitializer
 | |
| ** is called when the content of a page in cache is restored to its original
 | |
| ** value as a result of a rollback.  The callback gives higher-level code
 | |
| ** an opportunity to restore the EXTRA section to agree with the restored
 | |
| ** page data.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
 | |
|   pPager->xReiniter = xReinit;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the page size to *pPageSize. If the suggest new page size is
 | |
| ** inappropriate, then an alternative page size is set to that
 | |
| ** value before returning.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
 | |
|   int rc = SQLITE_OK;
 | |
|   u16 pageSize = *pPageSize;
 | |
|   assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
 | |
|   if( pageSize && pageSize!=pPager->pageSize 
 | |
|    && !pPager->memDb && pPager->nRef==0 
 | |
|   ){
 | |
|     char *pNew = (char *)sqlite3_malloc(pageSize);
 | |
|     if( !pNew ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }else{
 | |
|       pagerEnter(pPager);
 | |
|       pager_reset(pPager);
 | |
|       pPager->pageSize = pageSize;
 | |
|       setSectorSize(pPager);
 | |
|       sqlite3_free(pPager->pTmpSpace);
 | |
|       pPager->pTmpSpace = pNew;
 | |
|       pagerLeave(pPager);
 | |
|     }
 | |
|   }
 | |
|   *pPageSize = pPager->pageSize;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the "temporary page" buffer held internally
 | |
| ** by the pager.  This is a buffer that is big enough to hold the
 | |
| ** entire content of a database page.  This buffer is used internally
 | |
| ** during rollback and will be overwritten whenever a rollback
 | |
| ** occurs.  But other modules are free to use it too, as long as
 | |
| ** no rollbacks are happening.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
 | |
|   return pPager->pTmpSpace;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt to set the maximum database page count if mxPage is positive. 
 | |
| ** Make no changes if mxPage is zero or negative.  And never reduce the
 | |
| ** maximum page count below the current size of the database.
 | |
| **
 | |
| ** Regardless of mxPage, return the current maximum page count.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
 | |
|   if( mxPage>0 ){
 | |
|     pPager->mxPgno = mxPage;
 | |
|   }
 | |
|   sqlite3PagerPagecount(pPager);
 | |
|   return pPager->mxPgno;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following set of routines are used to disable the simulated
 | |
| ** I/O error mechanism.  These routines are used to avoid simulated
 | |
| ** errors in places where we do not care about errors.
 | |
| **
 | |
| ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
 | |
| ** and generate no code.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API extern int sqlite3_io_error_pending;
 | |
| SQLITE_API extern int sqlite3_io_error_hit;
 | |
| static int saved_cnt;
 | |
| void disable_simulated_io_errors(void){
 | |
|   saved_cnt = sqlite3_io_error_pending;
 | |
|   sqlite3_io_error_pending = -1;
 | |
| }
 | |
| void enable_simulated_io_errors(void){
 | |
|   sqlite3_io_error_pending = saved_cnt;
 | |
| }
 | |
| #else
 | |
| # define disable_simulated_io_errors()
 | |
| # define enable_simulated_io_errors()
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Read the first N bytes from the beginning of the file into memory
 | |
| ** that pDest points to. 
 | |
| **
 | |
| ** No error checking is done. The rational for this is that this function 
 | |
| ** may be called even if the file does not exist or contain a header. In 
 | |
| ** these cases sqlite3OsRead() will return an error, to which the correct 
 | |
| ** response is to zero the memory at pDest and continue.  A real IO error 
 | |
| ** will presumably recur and be picked up later (Todo: Think about this).
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
 | |
|   int rc = SQLITE_OK;
 | |
|   memset(pDest, 0, N);
 | |
|   assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
 | |
|   if( pPager->fd->pMethods ){
 | |
|     IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
 | |
|     rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
 | |
|     if( rc==SQLITE_IOERR_SHORT_READ ){
 | |
|       rc = SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the total number of pages in the disk file associated with
 | |
| ** pPager. 
 | |
| **
 | |
| ** If the PENDING_BYTE lies on the page directly after the end of the
 | |
| ** file, then consider this page part of the file too. For example, if
 | |
| ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
 | |
| ** file is 4096 bytes, 5 is returned instead of 4.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager){
 | |
|   i64 n = 0;
 | |
|   int rc;
 | |
|   assert( pPager!=0 );
 | |
|   if( pPager->errCode ){
 | |
|     return -1;
 | |
|   }
 | |
|   if( pPager->dbSize>=0 ){
 | |
|     n = pPager->dbSize;
 | |
|   } else {
 | |
|     assert(pPager->fd->pMethods||pPager->tempFile);
 | |
|     if( (pPager->fd->pMethods)
 | |
|      && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
 | |
|       pPager->nRef++;
 | |
|       pager_error(pPager, rc);
 | |
|       pPager->nRef--;
 | |
|       return -1;
 | |
|     }
 | |
|     if( n>0 && n<pPager->pageSize ){
 | |
|       n = 1;
 | |
|     }else{
 | |
|       n /= pPager->pageSize;
 | |
|     }
 | |
|     if( pPager->state!=PAGER_UNLOCK ){
 | |
|       pPager->dbSize = n;
 | |
|     }
 | |
|   }
 | |
|   if( n==(PENDING_BYTE/pPager->pageSize) ){
 | |
|     n++;
 | |
|   }
 | |
|   if( n>pPager->mxPgno ){
 | |
|     pPager->mxPgno = n;
 | |
|   }
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_MEMORYDB
 | |
| /*
 | |
| ** Clear a PgHistory block
 | |
| */
 | |
| static void clearHistory(PgHistory *pHist){
 | |
|   sqlite3_free(pHist->pOrig);
 | |
|   sqlite3_free(pHist->pStmt);
 | |
|   pHist->pOrig = 0;
 | |
|   pHist->pStmt = 0;
 | |
| }
 | |
| #else
 | |
| #define clearHistory(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Forward declaration
 | |
| */
 | |
| static int syncJournal(Pager*);
 | |
| 
 | |
| /*
 | |
| ** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
 | |
| ** that the page is not part of any hash chain. This is required because the
 | |
| ** sqlite3PagerMovepage() routine can leave a page in the 
 | |
| ** pNextFree/pPrevFree list that is not a part of any hash-chain.
 | |
| */
 | |
| static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
 | |
|   if( pPg->pgno==0 ){
 | |
|     assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
 | |
|     return;
 | |
|   }
 | |
|   if( pPg->pNextHash ){
 | |
|     pPg->pNextHash->pPrevHash = pPg->pPrevHash;
 | |
|   }
 | |
|   if( pPg->pPrevHash ){
 | |
|     assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
 | |
|     pPg->pPrevHash->pNextHash = pPg->pNextHash;
 | |
|   }else{
 | |
|     int h = pPg->pgno & (pPager->nHash-1);
 | |
|     pPager->aHash[h] = pPg->pNextHash;
 | |
|   }
 | |
|   if( MEMDB ){
 | |
|     clearHistory(PGHDR_TO_HIST(pPg, pPager));
 | |
|   }
 | |
|   pPg->pgno = 0;
 | |
|   pPg->pNextHash = pPg->pPrevHash = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlink a page from the free list (the list of all pages where nRef==0)
 | |
| ** and from its hash collision chain.
 | |
| */
 | |
| static void unlinkPage(PgHdr *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
| 
 | |
|   /* Unlink from free page list */
 | |
|   lruListRemove(pPg);
 | |
| 
 | |
|   /* Unlink from the pgno hash table */
 | |
|   unlinkHashChain(pPager, pPg);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is used to truncate the cache when a database
 | |
| ** is truncated.  Drop from the cache all pages whose pgno is
 | |
| ** larger than pPager->dbSize and is unreferenced.
 | |
| **
 | |
| ** Referenced pages larger than pPager->dbSize are zeroed.
 | |
| **
 | |
| ** Actually, at the point this routine is called, it would be
 | |
| ** an error to have a referenced page.  But rather than delete
 | |
| ** that page and guarantee a subsequent segfault, it seems better
 | |
| ** to zero it and hope that we error out sanely.
 | |
| */
 | |
| static void pager_truncate_cache(Pager *pPager){
 | |
|   PgHdr *pPg;
 | |
|   PgHdr **ppPg;
 | |
|   int dbSize = pPager->dbSize;
 | |
| 
 | |
|   ppPg = &pPager->pAll;
 | |
|   while( (pPg = *ppPg)!=0 ){
 | |
|     if( pPg->pgno<=dbSize ){
 | |
|       ppPg = &pPg->pNextAll;
 | |
|     }else if( pPg->nRef>0 ){
 | |
|       memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
 | |
|       ppPg = &pPg->pNextAll;
 | |
|     }else{
 | |
|       *ppPg = pPg->pNextAll;
 | |
|       IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
 | |
|       PAGER_INCR(sqlite3_pager_pgfree_count);
 | |
|       unlinkPage(pPg);
 | |
|       makeClean(pPg);
 | |
|       sqlite3_free(pPg->pData);
 | |
|       sqlite3_free(pPg);
 | |
|       pPager->nPage--;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to obtain a lock on a file.  Invoke the busy callback if the lock
 | |
| ** is currently not available.  Repeat until the busy callback returns
 | |
| ** false or until the lock succeeds.
 | |
| **
 | |
| ** Return SQLITE_OK on success and an error code if we cannot obtain
 | |
| ** the lock.
 | |
| */
 | |
| static int pager_wait_on_lock(Pager *pPager, int locktype){
 | |
|   int rc;
 | |
| 
 | |
|   /* The OS lock values must be the same as the Pager lock values */
 | |
|   assert( PAGER_SHARED==SHARED_LOCK );
 | |
|   assert( PAGER_RESERVED==RESERVED_LOCK );
 | |
|   assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
 | |
| 
 | |
|   /* If the file is currently unlocked then the size must be unknown */
 | |
|   assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
 | |
| 
 | |
|   if( pPager->state>=locktype ){
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0;
 | |
|     do {
 | |
|       rc = sqlite3OsLock(pPager->fd, locktype);
 | |
|     }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pPager->state = locktype;
 | |
|       IOTRACE(("LOCK %p %d\n", pPager, locktype))
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Truncate the file to the number of pages specified.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
 | |
|   int rc;
 | |
|   assert( pPager->state>=PAGER_SHARED || MEMDB );
 | |
|   sqlite3PagerPagecount(pPager);
 | |
|   if( pPager->errCode ){
 | |
|     rc = pPager->errCode;
 | |
|     return rc;
 | |
|   }
 | |
|   if( nPage>=(unsigned)pPager->dbSize ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( MEMDB ){
 | |
|     pPager->dbSize = nPage;
 | |
|     pager_truncate_cache(pPager);
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   pagerEnter(pPager);
 | |
|   rc = syncJournal(pPager);
 | |
|   pagerLeave(pPager);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* Get an exclusive lock on the database before truncating. */
 | |
|   pagerEnter(pPager);
 | |
|   rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
 | |
|   pagerLeave(pPager);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   rc = pager_truncate(pPager, nPage);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Shutdown the page cache.  Free all memory and close all files.
 | |
| **
 | |
| ** If a transaction was in progress when this routine is called, that
 | |
| ** transaction is rolled back.  All outstanding pages are invalidated
 | |
| ** and their memory is freed.  Any attempt to use a page associated
 | |
| ** with this page cache after this function returns will likely
 | |
| ** result in a coredump.
 | |
| **
 | |
| ** This function always succeeds. If a transaction is active an attempt
 | |
| ** is made to roll it back. If an error occurs during the rollback 
 | |
| ** a hot journal may be left in the filesystem but no error is returned
 | |
| ** to the caller.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
|   if( !MEMDB ){
 | |
|     sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
 | |
|     sqlite3_mutex_enter(mutex);
 | |
|     if( pPager->pPrev ){
 | |
|       pPager->pPrev->pNext = pPager->pNext;
 | |
|     }else{
 | |
|       sqlite3PagerList = pPager->pNext;
 | |
|     }
 | |
|     if( pPager->pNext ){
 | |
|       pPager->pNext->pPrev = pPager->pPrev;
 | |
|     }
 | |
|     sqlite3_mutex_leave(mutex);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   disable_simulated_io_errors();
 | |
|   pPager->errCode = 0;
 | |
|   pPager->exclusiveMode = 0;
 | |
|   pager_reset(pPager);
 | |
|   pagerUnlockAndRollback(pPager);
 | |
|   enable_simulated_io_errors();
 | |
|   PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
 | |
|   IOTRACE(("CLOSE %p\n", pPager))
 | |
|   assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
 | |
|   if( pPager->journalOpen ){
 | |
|     sqlite3OsClose(pPager->jfd);
 | |
|   }
 | |
|   sqlite3BitvecDestroy(pPager->pInJournal);
 | |
|   if( pPager->stmtOpen ){
 | |
|     sqlite3OsClose(pPager->stfd);
 | |
|   }
 | |
|   sqlite3OsClose(pPager->fd);
 | |
|   /* Temp files are automatically deleted by the OS
 | |
|   ** if( pPager->tempFile ){
 | |
|   **   sqlite3OsDelete(pPager->zFilename);
 | |
|   ** }
 | |
|   */
 | |
| 
 | |
|   sqlite3_free(pPager->aHash);
 | |
|   sqlite3_free(pPager->pTmpSpace);
 | |
|   sqlite3_free(pPager);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(SQLITE_TEST)
 | |
| /*
 | |
| ** Return the page number for the given page data.
 | |
| */
 | |
| SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *p){
 | |
|   return p->pgno;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The page_ref() function increments the reference count for a page.
 | |
| ** If the page is currently on the freelist (the reference count is zero) then
 | |
| ** remove it from the freelist.
 | |
| **
 | |
| ** For non-test systems, page_ref() is a macro that calls _page_ref()
 | |
| ** online of the reference count is zero.  For test systems, page_ref()
 | |
| ** is a real function so that we can set breakpoints and trace it.
 | |
| */
 | |
| static void _page_ref(PgHdr *pPg){
 | |
|   if( pPg->nRef==0 ){
 | |
|     /* The page is currently on the freelist.  Remove it. */
 | |
|     lruListRemove(pPg);
 | |
|     pPg->pPager->nRef++;
 | |
|   }
 | |
|   pPg->nRef++;
 | |
| }
 | |
| #ifdef SQLITE_DEBUG
 | |
|   static void page_ref(PgHdr *pPg){
 | |
|     if( pPg->nRef==0 ){
 | |
|       _page_ref(pPg);
 | |
|     }else{
 | |
|       pPg->nRef++;
 | |
|     }
 | |
|   }
 | |
| #else
 | |
| # define page_ref(P)   ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Increment the reference count for a page.  The input pointer is
 | |
| ** a reference to the page data.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerRef(DbPage *pPg){
 | |
|   pagerEnter(pPg->pPager);
 | |
|   page_ref(pPg);
 | |
|   pagerLeave(pPg->pPager);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Sync the journal.  In other words, make sure all the pages that have
 | |
| ** been written to the journal have actually reached the surface of the
 | |
| ** disk.  It is not safe to modify the original database file until after
 | |
| ** the journal has been synced.  If the original database is modified before
 | |
| ** the journal is synced and a power failure occurs, the unsynced journal
 | |
| ** data would be lost and we would be unable to completely rollback the
 | |
| ** database changes.  Database corruption would occur.
 | |
| ** 
 | |
| ** This routine also updates the nRec field in the header of the journal.
 | |
| ** (See comments on the pager_playback() routine for additional information.)
 | |
| ** If the sync mode is FULL, two syncs will occur.  First the whole journal
 | |
| ** is synced, then the nRec field is updated, then a second sync occurs.
 | |
| **
 | |
| ** For temporary databases, we do not care if we are able to rollback
 | |
| ** after a power failure, so no sync occurs.
 | |
| **
 | |
| ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
 | |
| ** the database is stored, then OsSync() is never called on the journal
 | |
| ** file. In this case all that is required is to update the nRec field in
 | |
| ** the journal header.
 | |
| **
 | |
| ** This routine clears the needSync field of every page current held in
 | |
| ** memory.
 | |
| */
 | |
| static int syncJournal(Pager *pPager){
 | |
|   PgHdr *pPg;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
| 
 | |
|   /* Sync the journal before modifying the main database
 | |
|   ** (assuming there is a journal and it needs to be synced.)
 | |
|   */
 | |
|   if( pPager->needSync ){
 | |
|     if( !pPager->tempFile ){
 | |
|       int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
 | |
|       assert( pPager->journalOpen );
 | |
| 
 | |
|       /* assert( !pPager->noSync ); // noSync might be set if synchronous
 | |
|       ** was turned off after the transaction was started.  Ticket #615 */
 | |
| #ifndef NDEBUG
 | |
|       {
 | |
|         /* Make sure the pPager->nRec counter we are keeping agrees
 | |
|         ** with the nRec computed from the size of the journal file.
 | |
|         */
 | |
|         i64 jSz;
 | |
|         rc = sqlite3OsFileSize(pPager->jfd, &jSz);
 | |
|         if( rc!=0 ) return rc;
 | |
|         assert( pPager->journalOff==jSz );
 | |
|       }
 | |
| #endif
 | |
|       if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
 | |
|         /* Write the nRec value into the journal file header. If in
 | |
|         ** full-synchronous mode, sync the journal first. This ensures that
 | |
|         ** all data has really hit the disk before nRec is updated to mark
 | |
|         ** it as a candidate for rollback.
 | |
|         **
 | |
|         ** This is not required if the persistent media supports the
 | |
|         ** SAFE_APPEND property. Because in this case it is not possible 
 | |
|         ** for garbage data to be appended to the file, the nRec field
 | |
|         ** is populated with 0xFFFFFFFF when the journal header is written
 | |
|         ** and never needs to be updated.
 | |
|         */
 | |
|         i64 jrnlOff;
 | |
|         if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
 | |
|           PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
 | |
|           IOTRACE(("JSYNC %p\n", pPager))
 | |
|           rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
 | |
|           if( rc!=0 ) return rc;
 | |
|         }
 | |
| 
 | |
|         jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
 | |
|         IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
 | |
|         rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
 | |
|         if( rc ) return rc;
 | |
|       }
 | |
|       if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
 | |
|         PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
 | |
|         IOTRACE(("JSYNC %p\n", pPager))
 | |
|         rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| 
 | |
|           (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
 | |
|         );
 | |
|         if( rc!=0 ) return rc;
 | |
|       }
 | |
|       pPager->journalStarted = 1;
 | |
|     }
 | |
|     pPager->needSync = 0;
 | |
| 
 | |
|     /* Erase the needSync flag from every page.
 | |
|     */
 | |
|     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
 | |
|       pPg->needSync = 0;
 | |
|     }
 | |
|     lruListSetFirstSynced(pPager);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   /* If the Pager.needSync flag is clear then the PgHdr.needSync
 | |
|   ** flag must also be clear for all pages.  Verify that this
 | |
|   ** invariant is true.
 | |
|   */
 | |
|   else{
 | |
|     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
 | |
|       assert( pPg->needSync==0 );
 | |
|     }
 | |
|     assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Merge two lists of pages connected by pDirty and in pgno order.
 | |
| ** Do not both fixing the pPrevDirty pointers.
 | |
| */
 | |
| static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
 | |
|   PgHdr result, *pTail;
 | |
|   pTail = &result;
 | |
|   while( pA && pB ){
 | |
|     if( pA->pgno<pB->pgno ){
 | |
|       pTail->pDirty = pA;
 | |
|       pTail = pA;
 | |
|       pA = pA->pDirty;
 | |
|     }else{
 | |
|       pTail->pDirty = pB;
 | |
|       pTail = pB;
 | |
|       pB = pB->pDirty;
 | |
|     }
 | |
|   }
 | |
|   if( pA ){
 | |
|     pTail->pDirty = pA;
 | |
|   }else if( pB ){
 | |
|     pTail->pDirty = pB;
 | |
|   }else{
 | |
|     pTail->pDirty = 0;
 | |
|   }
 | |
|   return result.pDirty;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Sort the list of pages in accending order by pgno.  Pages are
 | |
| ** connected by pDirty pointers.  The pPrevDirty pointers are
 | |
| ** corrupted by this sort.
 | |
| */
 | |
| #define N_SORT_BUCKET_ALLOC 25
 | |
| #define N_SORT_BUCKET       25
 | |
| #ifdef SQLITE_TEST
 | |
|   int sqlite3_pager_n_sort_bucket = 0;
 | |
|   #undef N_SORT_BUCKET
 | |
|   #define N_SORT_BUCKET \
 | |
|    (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
 | |
| #endif
 | |
| static PgHdr *sort_pagelist(PgHdr *pIn){
 | |
|   PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
 | |
|   int i;
 | |
|   memset(a, 0, sizeof(a));
 | |
|   while( pIn ){
 | |
|     p = pIn;
 | |
|     pIn = p->pDirty;
 | |
|     p->pDirty = 0;
 | |
|     for(i=0; i<N_SORT_BUCKET-1; i++){
 | |
|       if( a[i]==0 ){
 | |
|         a[i] = p;
 | |
|         break;
 | |
|       }else{
 | |
|         p = merge_pagelist(a[i], p);
 | |
|         a[i] = 0;
 | |
|       }
 | |
|     }
 | |
|     if( i==N_SORT_BUCKET-1 ){
 | |
|       /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) 
 | |
|       ** elements in the input list. This is possible, but impractical.
 | |
|       ** Testing this line is the point of global variable
 | |
|       ** sqlite3_pager_n_sort_bucket.
 | |
|       */
 | |
|       a[i] = merge_pagelist(a[i], p);
 | |
|     }
 | |
|   }
 | |
|   p = a[0];
 | |
|   for(i=1; i<N_SORT_BUCKET; i++){
 | |
|     p = merge_pagelist(p, a[i]);
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given a list of pages (connected by the PgHdr.pDirty pointer) write
 | |
| ** every one of those pages out to the database file and mark them all
 | |
| ** as clean.
 | |
| */
 | |
| static int pager_write_pagelist(PgHdr *pList){
 | |
|   Pager *pPager;
 | |
|   PgHdr *p;
 | |
|   int rc;
 | |
| 
 | |
|   if( pList==0 ) return SQLITE_OK;
 | |
|   pPager = pList->pPager;
 | |
| 
 | |
|   /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
 | |
|   ** database file. If there is already an EXCLUSIVE lock, the following
 | |
|   ** calls to sqlite3OsLock() are no-ops.
 | |
|   **
 | |
|   ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
 | |
|   ** through an intermediate state PENDING.   A PENDING lock prevents new
 | |
|   ** readers from attaching to the database but is unsufficient for us to
 | |
|   ** write.  The idea of a PENDING lock is to prevent new readers from
 | |
|   ** coming in while we wait for existing readers to clear.
 | |
|   **
 | |
|   ** While the pager is in the RESERVED state, the original database file
 | |
|   ** is unchanged and we can rollback without having to playback the
 | |
|   ** journal into the original database file.  Once we transition to
 | |
|   ** EXCLUSIVE, it means the database file has been changed and any rollback
 | |
|   ** will require a journal playback.
 | |
|   */
 | |
|   rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   pList = sort_pagelist(pList);
 | |
|   for(p=pList; p; p=p->pDirty){
 | |
|     assert( p->dirty );
 | |
|     p->dirty = 0;
 | |
|   }
 | |
|   while( pList ){
 | |
| 
 | |
|     /* If the file has not yet been opened, open it now. */
 | |
|     if( !pPager->fd->pMethods ){
 | |
|       assert(pPager->tempFile);
 | |
|       rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
 | |
|                                 pPager->vfsFlags);
 | |
|       if( rc ) return rc;
 | |
|     }
 | |
| 
 | |
|     /* If there are dirty pages in the page cache with page numbers greater
 | |
|     ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
 | |
|     ** make the file smaller (presumably by auto-vacuum code). Do not write
 | |
|     ** any such pages to the file.
 | |
|     */
 | |
|     if( pList->pgno<=pPager->dbSize ){
 | |
|       i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
 | |
|       char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
 | |
|       PAGERTRACE4("STORE %d page %d hash(%08x)\n",
 | |
|                    PAGERID(pPager), pList->pgno, pager_pagehash(pList));
 | |
|       IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
 | |
|       rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
 | |
|       PAGER_INCR(sqlite3_pager_writedb_count);
 | |
|       PAGER_INCR(pPager->nWrite);
 | |
|       if( pList->pgno==1 ){
 | |
|         memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
 | |
|       }
 | |
|     }
 | |
| #ifndef NDEBUG
 | |
|     else{
 | |
|       PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
 | |
|     }
 | |
| #endif
 | |
|     if( rc ) return rc;
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
|     pList->pageHash = pager_pagehash(pList);
 | |
| #endif
 | |
|     pList = pList->pDirty;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Collect every dirty page into a dirty list and
 | |
| ** return a pointer to the head of that list.  All pages are
 | |
| ** collected even if they are still in use.
 | |
| */
 | |
| static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   /* Verify the sanity of the dirty list when we are running
 | |
|   ** in debugging mode.  This is expensive, so do not
 | |
|   ** do this on a normal build. */
 | |
|   int n1 = 0;
 | |
|   int n2 = 0;
 | |
|   PgHdr *p;
 | |
|   for(p=pPager->pAll; p; p=p->pNextAll){ if( p->dirty ) n1++; }
 | |
|   for(p=pPager->pDirty; p; p=p->pDirty){ n2++; }
 | |
|   assert( n1==n2 );
 | |
| #endif
 | |
| 
 | |
|   return pPager->pDirty;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if there is a hot journal on the given pager.
 | |
| ** A hot journal is one that needs to be played back.
 | |
| **
 | |
| ** If the current size of the database file is 0 but a journal file
 | |
| ** exists, that is probably an old journal left over from a prior
 | |
| ** database with the same name.  Just delete the journal.
 | |
| */
 | |
| static int hasHotJournal(Pager *pPager){
 | |
|   sqlite3_vfs *pVfs = pPager->pVfs;
 | |
|   if( !pPager->useJournal ) return 0;
 | |
|   if( !pPager->fd->pMethods ) return 0;
 | |
|   if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( sqlite3OsCheckReservedLock(pPager->fd) ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( sqlite3PagerPagecount(pPager)==0 ){
 | |
|     sqlite3OsDelete(pVfs, pPager->zJournal, 0);
 | |
|     return 0;
 | |
|   }else{
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to find a page in the cache that can be recycled. 
 | |
| **
 | |
| ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It 
 | |
| ** does not set the pPager->errCode variable.
 | |
| */
 | |
| static int pager_recycle(Pager *pPager, PgHdr **ppPg){
 | |
|   PgHdr *pPg;
 | |
|   *ppPg = 0;
 | |
| 
 | |
|   /* It is illegal to call this function unless the pager object
 | |
|   ** pointed to by pPager has at least one free page (page with nRef==0).
 | |
|   */ 
 | |
|   assert(!MEMDB);
 | |
|   assert(pPager->lru.pFirst);
 | |
| 
 | |
|   /* Find a page to recycle.  Try to locate a page that does not
 | |
|   ** require us to do an fsync() on the journal.
 | |
|   */
 | |
|   pPg = pPager->lru.pFirstSynced;
 | |
| 
 | |
|   /* If we could not find a page that does not require an fsync()
 | |
|   ** on the journal file then fsync the journal file.  This is a
 | |
|   ** very slow operation, so we work hard to avoid it.  But sometimes
 | |
|   ** it can't be helped.
 | |
|   */
 | |
|   if( pPg==0 && pPager->lru.pFirst){
 | |
|     int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
 | |
|     int rc = syncJournal(pPager);
 | |
|     if( rc!=0 ){
 | |
|       return rc;
 | |
|     }
 | |
|     if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
 | |
|       /* If in full-sync mode, write a new journal header into the
 | |
|       ** journal file. This is done to avoid ever modifying a journal
 | |
|       ** header that is involved in the rollback of pages that have
 | |
|       ** already been written to the database (in case the header is
 | |
|       ** trashed when the nRec field is updated).
 | |
|       */
 | |
|       pPager->nRec = 0;
 | |
|       assert( pPager->journalOff > 0 );
 | |
|       assert( pPager->doNotSync==0 );
 | |
|       rc = writeJournalHdr(pPager);
 | |
|       if( rc!=0 ){
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|     pPg = pPager->lru.pFirst;
 | |
|   }
 | |
| 
 | |
|   assert( pPg->nRef==0 );
 | |
| 
 | |
|   /* Write the page to the database file if it is dirty.
 | |
|   */
 | |
|   if( pPg->dirty ){
 | |
|     int rc;
 | |
|     assert( pPg->needSync==0 );
 | |
|     makeClean(pPg);
 | |
|     pPg->dirty = 1;
 | |
|     pPg->pDirty = 0;
 | |
|     rc = pager_write_pagelist( pPg );
 | |
|     pPg->dirty = 0;
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
|   assert( pPg->dirty==0 );
 | |
| 
 | |
|   /* If the page we are recycling is marked as alwaysRollback, then
 | |
|   ** set the global alwaysRollback flag, thus disabling the
 | |
|   ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
 | |
|   ** It is necessary to do this because the page marked alwaysRollback
 | |
|   ** might be reloaded at a later time but at that point we won't remember
 | |
|   ** that is was marked alwaysRollback.  This means that all pages must
 | |
|   ** be marked as alwaysRollback from here on out.
 | |
|   */
 | |
|   if( pPg->alwaysRollback ){
 | |
|     IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
 | |
|     pPager->alwaysRollback = 1;
 | |
|   }
 | |
| 
 | |
|   /* Unlink the old page from the free list and the hash table
 | |
|   */
 | |
|   unlinkPage(pPg);
 | |
|   assert( pPg->pgno==0 );
 | |
| 
 | |
|   *ppPg = pPg;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
 | |
| /*
 | |
| ** This function is called to free superfluous dynamically allocated memory
 | |
| ** held by the pager system. Memory in use by any SQLite pager allocated
 | |
| ** by the current thread may be sqlite3_free()ed.
 | |
| **
 | |
| ** nReq is the number of bytes of memory required. Once this much has
 | |
| ** been released, the function returns. The return value is the total number 
 | |
| ** of bytes of memory released.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int nReq){
 | |
|   int nReleased = 0;          /* Bytes of memory released so far */
 | |
|   sqlite3_mutex *mutex;       /* The MEM2 mutex */
 | |
|   Pager *pPager;              /* For looping over pagers */
 | |
|   BusyHandler *savedBusy;     /* Saved copy of the busy handler */
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   /* Acquire the memory-management mutex
 | |
|   */
 | |
|   mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
 | |
|   sqlite3_mutex_enter(mutex);
 | |
| 
 | |
|   /* Signal all database connections that memory management wants
 | |
|   ** to have access to the pagers.
 | |
|   */
 | |
|   for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
 | |
|      pPager->iInUseMM = 1;
 | |
|   }
 | |
| 
 | |
|   while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
 | |
|     PgHdr *pPg;
 | |
|     PgHdr *pRecycled;
 | |
|  
 | |
|     /* Try to find a page to recycle that does not require a sync(). If
 | |
|     ** this is not possible, find one that does require a sync().
 | |
|     */
 | |
|     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
|     pPg = sqlite3LruPageList.pFirstSynced;
 | |
|     while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
 | |
|       pPg = pPg->gfree.pNext;
 | |
|     }
 | |
|     if( !pPg ){
 | |
|       pPg = sqlite3LruPageList.pFirst;
 | |
|       while( pPg && pPg->pPager->iInUseDB ){
 | |
|         pPg = pPg->gfree.pNext;
 | |
|       }
 | |
|     }
 | |
|     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
 | |
| 
 | |
|     /* If pPg==0, then the block above has failed to find a page to
 | |
|     ** recycle. In this case return early - no further memory will
 | |
|     ** be released.
 | |
|     */
 | |
|     if( !pPg ) break;
 | |
| 
 | |
|     pPager = pPg->pPager;
 | |
|     assert(!pPg->needSync || pPg==pPager->lru.pFirst);
 | |
|     assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
 | |
|   
 | |
|     savedBusy = pPager->pBusyHandler;
 | |
|     pPager->pBusyHandler = 0;
 | |
|     rc = pager_recycle(pPager, &pRecycled);
 | |
|     pPager->pBusyHandler = savedBusy;
 | |
|     assert(pRecycled==pPg || rc!=SQLITE_OK);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       /* We've found a page to free. At this point the page has been 
 | |
|       ** removed from the page hash-table, free-list and synced-list 
 | |
|       ** (pFirstSynced). It is still in the all pages (pAll) list. 
 | |
|       ** Remove it from this list before freeing.
 | |
|       **
 | |
|       ** Todo: Check the Pager.pStmt list to make sure this is Ok. It 
 | |
|       ** probably is though.
 | |
|       */
 | |
|       PgHdr *pTmp;
 | |
|       assert( pPg );
 | |
|       if( pPg==pPager->pAll ){
 | |
|          pPager->pAll = pPg->pNextAll;
 | |
|       }else{
 | |
|         for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
 | |
|         pTmp->pNextAll = pPg->pNextAll;
 | |
|       }
 | |
|       nReleased += (
 | |
|           sizeof(*pPg) + pPager->pageSize
 | |
|           + sizeof(u32) + pPager->nExtra
 | |
|           + MEMDB*sizeof(PgHistory) 
 | |
|       );
 | |
|       IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
 | |
|       PAGER_INCR(sqlite3_pager_pgfree_count);
 | |
|       sqlite3_free(pPg->pData);
 | |
|       sqlite3_free(pPg);
 | |
|       pPager->nPage--;
 | |
|     }else{
 | |
|       /* An error occured whilst writing to the database file or 
 | |
|       ** journal in pager_recycle(). The error is not returned to the 
 | |
|       ** caller of this function. Instead, set the Pager.errCode variable.
 | |
|       ** The error will be returned to the user (or users, in the case 
 | |
|       ** of a shared pager cache) of the pager for which the error occured.
 | |
|       */
 | |
|       assert(
 | |
|           (rc&0xff)==SQLITE_IOERR ||
 | |
|           rc==SQLITE_FULL ||
 | |
|           rc==SQLITE_BUSY
 | |
|       );
 | |
|       assert( pPager->state>=PAGER_RESERVED );
 | |
|       pager_error(pPager, rc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Clear the memory management flags and release the mutex
 | |
|   */
 | |
|   for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
 | |
|      pPager->iInUseMM = 0;
 | |
|   }
 | |
|   sqlite3_mutex_leave(mutex);
 | |
| 
 | |
|   /* Return the number of bytes released
 | |
|   */
 | |
|   return nReleased;
 | |
| }
 | |
| #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
 | |
| 
 | |
| /*
 | |
| ** Read the content of page pPg out of the database file.
 | |
| */
 | |
| static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
 | |
|   int rc;
 | |
|   i64 offset;
 | |
|   assert( MEMDB==0 );
 | |
|   assert(pPager->fd->pMethods||pPager->tempFile);
 | |
|   if( !pPager->fd->pMethods ){
 | |
|     return SQLITE_IOERR_SHORT_READ;
 | |
|   }
 | |
|   offset = (pgno-1)*(i64)pPager->pageSize;
 | |
|   rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
 | |
|   PAGER_INCR(sqlite3_pager_readdb_count);
 | |
|   PAGER_INCR(pPager->nRead);
 | |
|   IOTRACE(("PGIN %p %d\n", pPager, pgno));
 | |
|   if( pgno==1 ){
 | |
|     memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
 | |
|                                               sizeof(pPager->dbFileVers));
 | |
|   }
 | |
|   CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
 | |
|   PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
 | |
|                PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is called to obtain the shared lock required before
 | |
| ** data may be read from the pager cache. If the shared lock has already
 | |
| ** been obtained, this function is a no-op.
 | |
| **
 | |
| ** Immediately after obtaining the shared lock (if required), this function
 | |
| ** checks for a hot-journal file. If one is found, an emergency rollback
 | |
| ** is performed immediately.
 | |
| */
 | |
| static int pagerSharedLock(Pager *pPager){
 | |
|   int rc = SQLITE_OK;
 | |
|   int isHot = 0;
 | |
| 
 | |
|   /* If this database is opened for exclusive access, has no outstanding 
 | |
|   ** page references and is in an error-state, now is the chance to clear
 | |
|   ** the error. Discard the contents of the pager-cache and treat any
 | |
|   ** open journal file as a hot-journal.
 | |
|   */
 | |
|   if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
 | |
|     if( pPager->journalOpen ){
 | |
|       isHot = 1;
 | |
|     }
 | |
|     pager_reset(pPager);
 | |
|     pPager->errCode = SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* If the pager is still in an error state, do not proceed. The error 
 | |
|   ** state will be cleared at some point in the future when all page 
 | |
|   ** references are dropped and the cache can be discarded.
 | |
|   */
 | |
|   if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
 | |
|     return pPager->errCode;
 | |
|   }
 | |
| 
 | |
|   if( pPager->state==PAGER_UNLOCK || isHot ){
 | |
|     sqlite3_vfs *pVfs = pPager->pVfs;
 | |
|     if( !MEMDB ){
 | |
|       assert( pPager->nRef==0 );
 | |
|       if( !pPager->noReadlock ){
 | |
|         rc = pager_wait_on_lock(pPager, SHARED_LOCK);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return pager_error(pPager, rc);
 | |
|         }
 | |
|         assert( pPager->state>=SHARED_LOCK );
 | |
|       }
 | |
|   
 | |
|       /* If a journal file exists, and there is no RESERVED lock on the
 | |
|       ** database file, then it either needs to be played back or deleted.
 | |
|       */
 | |
|       if( hasHotJournal(pPager) || isHot ){
 | |
|         /* Get an EXCLUSIVE lock on the database file. At this point it is
 | |
|         ** important that a RESERVED lock is not obtained on the way to the
 | |
|         ** EXCLUSIVE lock. If it were, another process might open the
 | |
|         ** database file, detect the RESERVED lock, and conclude that the
 | |
|         ** database is safe to read while this process is still rolling it 
 | |
|         ** back.
 | |
|         ** 
 | |
|         ** Because the intermediate RESERVED lock is not requested, the
 | |
|         ** second process will get to this point in the code and fail to
 | |
|         ** obtain its own EXCLUSIVE lock on the database file.
 | |
|         */
 | |
|         if( pPager->state<EXCLUSIVE_LOCK ){
 | |
|           rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
 | |
|           if( rc!=SQLITE_OK ){
 | |
|             pager_unlock(pPager);
 | |
|             return pager_error(pPager, rc);
 | |
|           }
 | |
|           pPager->state = PAGER_EXCLUSIVE;
 | |
|         }
 | |
|  
 | |
|         /* Open the journal for reading only.  Return SQLITE_BUSY if
 | |
|         ** we are unable to open the journal file. 
 | |
|         **
 | |
|         ** The journal file does not need to be locked itself.  The
 | |
|         ** journal file is never open unless the main database file holds
 | |
|         ** a write lock, so there is never any chance of two or more
 | |
|         ** processes opening the journal at the same time.
 | |
|         **
 | |
|         ** Open the journal for read/write access. This is because in 
 | |
|         ** exclusive-access mode the file descriptor will be kept open and
 | |
|         ** possibly used for a transaction later on. On some systems, the
 | |
|         ** OsTruncate() call used in exclusive-access mode also requires
 | |
|         ** a read/write file handle.
 | |
|         */
 | |
|         if( !isHot ){
 | |
|           rc = SQLITE_BUSY;
 | |
|           if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
 | |
|             int fout = 0;
 | |
|             int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
 | |
|             assert( !pPager->tempFile );
 | |
|             rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
 | |
|             assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
 | |
|             if( fout&SQLITE_OPEN_READONLY ){
 | |
|               rc = SQLITE_BUSY;
 | |
|               sqlite3OsClose(pPager->jfd);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           pager_unlock(pPager);
 | |
|           switch( rc ){
 | |
|             case SQLITE_NOMEM:
 | |
|             case SQLITE_IOERR_UNLOCK:
 | |
|             case SQLITE_IOERR_NOMEM:
 | |
|               return rc;
 | |
|             default:
 | |
|               return SQLITE_BUSY;
 | |
|           }
 | |
|         }
 | |
|         pPager->journalOpen = 1;
 | |
|         pPager->journalStarted = 0;
 | |
|         pPager->journalOff = 0;
 | |
|         pPager->setMaster = 0;
 | |
|         pPager->journalHdr = 0;
 | |
|  
 | |
|         /* Playback and delete the journal.  Drop the database write
 | |
|         ** lock and reacquire the read lock.
 | |
|         */
 | |
|         rc = pager_playback(pPager, 1);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return pager_error(pPager, rc);
 | |
|         }
 | |
|         assert(pPager->state==PAGER_SHARED || 
 | |
|             (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
 | |
|         );
 | |
|       }
 | |
| 
 | |
|       if( pPager->pAll ){
 | |
|         /* The shared-lock has just been acquired on the database file
 | |
|         ** and there are already pages in the cache (from a previous
 | |
|         ** read or write transaction).  Check to see if the database
 | |
|         ** has been modified.  If the database has changed, flush the
 | |
|         ** cache.
 | |
|         **
 | |
|         ** Database changes is detected by looking at 15 bytes beginning
 | |
|         ** at offset 24 into the file.  The first 4 of these 16 bytes are
 | |
|         ** a 32-bit counter that is incremented with each change.  The
 | |
|         ** other bytes change randomly with each file change when
 | |
|         ** a codec is in use.
 | |
|         ** 
 | |
|         ** There is a vanishingly small chance that a change will not be 
 | |
|         ** detected.  The chance of an undetected change is so small that
 | |
|         ** it can be neglected.
 | |
|         */
 | |
|         char dbFileVers[sizeof(pPager->dbFileVers)];
 | |
|         sqlite3PagerPagecount(pPager);
 | |
| 
 | |
|         if( pPager->errCode ){
 | |
|           return pPager->errCode;
 | |
|         }
 | |
| 
 | |
|         if( pPager->dbSize>0 ){
 | |
|           IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
 | |
|           rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
 | |
|           if( rc!=SQLITE_OK ){
 | |
|             return rc;
 | |
|           }
 | |
|         }else{
 | |
|           memset(dbFileVers, 0, sizeof(dbFileVers));
 | |
|         }
 | |
| 
 | |
|         if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
 | |
|           pager_reset(pPager);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
 | |
|     if( pPager->state==PAGER_UNLOCK ){
 | |
|       pPager->state = PAGER_SHARED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate a PgHdr object.   Either create a new one or reuse
 | |
| ** an existing one that is not otherwise in use.
 | |
| **
 | |
| ** A new PgHdr structure is created if any of the following are
 | |
| ** true:
 | |
| **
 | |
| **     (1)  We have not exceeded our maximum allocated cache size
 | |
| **          as set by the "PRAGMA cache_size" command.
 | |
| **
 | |
| **     (2)  There are no unused PgHdr objects available at this time.
 | |
| **
 | |
| **     (3)  This is an in-memory database.
 | |
| **
 | |
| **     (4)  There are no PgHdr objects that do not require a journal
 | |
| **          file sync and a sync of the journal file is currently
 | |
| **          prohibited.
 | |
| **
 | |
| ** Otherwise, reuse an existing PgHdr.  In other words, reuse an
 | |
| ** existing PgHdr if all of the following are true:
 | |
| **
 | |
| **     (1)  We have reached or exceeded the maximum cache size
 | |
| **          allowed by "PRAGMA cache_size".
 | |
| **
 | |
| **     (2)  There is a PgHdr available with PgHdr->nRef==0
 | |
| **
 | |
| **     (3)  We are not in an in-memory database
 | |
| **
 | |
| **     (4)  Either there is an available PgHdr that does not need
 | |
| **          to be synced to disk or else disk syncing is currently
 | |
| **          allowed.
 | |
| */
 | |
| static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
 | |
|   int rc = SQLITE_OK;
 | |
|   PgHdr *pPg;
 | |
|   int nByteHdr;
 | |
| 
 | |
|   /* Create a new PgHdr if any of the four conditions defined 
 | |
|   ** above are met: */
 | |
|   if( pPager->nPage<pPager->mxPage
 | |
|    || pPager->lru.pFirst==0 
 | |
|    || MEMDB
 | |
|    || (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
 | |
|   ){
 | |
|     void *pData;
 | |
|     if( pPager->nPage>=pPager->nHash ){
 | |
|       pager_resize_hash_table(pPager,
 | |
|          pPager->nHash<256 ? 256 : pPager->nHash*2);
 | |
|       if( pPager->nHash==0 ){
 | |
|         rc = SQLITE_NOMEM;
 | |
|         goto pager_allocate_out;
 | |
|       }
 | |
|     }
 | |
|     pagerLeave(pPager);
 | |
|     nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
 | |
|               + MEMDB*sizeof(PgHistory);
 | |
|     pPg = sqlite3_malloc( nByteHdr );
 | |
|     if( pPg ){
 | |
|       pData = sqlite3_malloc( pPager->pageSize );
 | |
|       if( pData==0 ){
 | |
|         sqlite3_free(pPg);
 | |
|         pPg = 0;
 | |
|       }
 | |
|     }
 | |
|     pagerEnter(pPager);
 | |
|     if( pPg==0 ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|       goto pager_allocate_out;
 | |
|     }
 | |
|     memset(pPg, 0, nByteHdr);
 | |
|     pPg->pData = pData;
 | |
|     pPg->pPager = pPager;
 | |
|     pPg->pNextAll = pPager->pAll;
 | |
|     pPager->pAll = pPg;
 | |
|     pPager->nPage++;
 | |
|   }else{
 | |
|     /* Recycle an existing page with a zero ref-count. */
 | |
|     rc = pager_recycle(pPager, &pPg);
 | |
|     if( rc==SQLITE_BUSY ){
 | |
|       rc = SQLITE_IOERR_BLOCKED;
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto pager_allocate_out;
 | |
|     }
 | |
|     assert( pPager->state>=SHARED_LOCK );
 | |
|     assert(pPg);
 | |
|   }
 | |
|   *ppPg = pPg;
 | |
| 
 | |
| pager_allocate_out:
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure we have the content for a page.  If the page was
 | |
| ** previously acquired with noContent==1, then the content was
 | |
| ** just initialized to zeros instead of being read from disk.
 | |
| ** But now we need the real data off of disk.  So make sure we
 | |
| ** have it.  Read it in if we do not have it already.
 | |
| */
 | |
| static int pager_get_content(PgHdr *pPg){
 | |
|   if( pPg->needRead ){
 | |
|     int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pPg->needRead = 0;
 | |
|     }else{
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Acquire a page.
 | |
| **
 | |
| ** A read lock on the disk file is obtained when the first page is acquired. 
 | |
| ** This read lock is dropped when the last page is released.
 | |
| **
 | |
| ** This routine works for any page number greater than 0.  If the database
 | |
| ** file is smaller than the requested page, then no actual disk
 | |
| ** read occurs and the memory image of the page is initialized to
 | |
| ** all zeros.  The extra data appended to a page is always initialized
 | |
| ** to zeros the first time a page is loaded into memory.
 | |
| **
 | |
| ** The acquisition might fail for several reasons.  In all cases,
 | |
| ** an appropriate error code is returned and *ppPage is set to NULL.
 | |
| **
 | |
| ** See also sqlite3PagerLookup().  Both this routine and Lookup() attempt
 | |
| ** to find a page in the in-memory cache first.  If the page is not already
 | |
| ** in memory, this routine goes to disk to read it in whereas Lookup()
 | |
| ** just returns 0.  This routine acquires a read-lock the first time it
 | |
| ** has to go to disk, and could also playback an old journal if necessary.
 | |
| ** Since Lookup() never goes to disk, it never has to deal with locks
 | |
| ** or journal files.
 | |
| **
 | |
| ** If noContent is false, the page contents are actually read from disk.
 | |
| ** If noContent is true, it means that we do not care about the contents
 | |
| ** of the page at this time, so do not do a disk read.  Just fill in the
 | |
| ** page content with zeros.  But mark the fact that we have not read the
 | |
| ** content by setting the PgHdr.needRead flag.  Later on, if 
 | |
| ** sqlite3PagerWrite() is called on this page or if this routine is
 | |
| ** called again with noContent==0, that means that the content is needed
 | |
| ** and the disk read should occur at that point.
 | |
| */
 | |
| static int pagerAcquire(
 | |
|   Pager *pPager,      /* The pager open on the database file */
 | |
|   Pgno pgno,          /* Page number to fetch */
 | |
|   DbPage **ppPage,    /* Write a pointer to the page here */
 | |
|   int noContent       /* Do not bother reading content from disk if true */
 | |
| ){
 | |
|   PgHdr *pPg;
 | |
|   int rc;
 | |
| 
 | |
|   assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
 | |
| 
 | |
|   /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
 | |
|   ** number greater than this, or zero, is requested.
 | |
|   */
 | |
|   if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
| 
 | |
|   /* Make sure we have not hit any critical errors.
 | |
|   */ 
 | |
|   assert( pPager!=0 );
 | |
|   *ppPage = 0;
 | |
| 
 | |
|   /* If this is the first page accessed, then get a SHARED lock
 | |
|   ** on the database file. pagerSharedLock() is a no-op if 
 | |
|   ** a database lock is already held.
 | |
|   */
 | |
|   rc = pagerSharedLock(pPager);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   assert( pPager->state!=PAGER_UNLOCK );
 | |
| 
 | |
|   pPg = pager_lookup(pPager, pgno);
 | |
|   if( pPg==0 ){
 | |
|     /* The requested page is not in the page cache. */
 | |
|     int nMax;
 | |
|     int h;
 | |
|     PAGER_INCR(pPager->nMiss);
 | |
|     rc = pagerAllocatePage(pPager, &pPg);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     pPg->pgno = pgno;
 | |
|     assert( !MEMDB || pgno>pPager->stmtSize );
 | |
|     pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
 | |
|     pPg->needSync = 0;
 | |
| 
 | |
|     makeClean(pPg);
 | |
|     pPg->nRef = 1;
 | |
| 
 | |
|     pPager->nRef++;
 | |
|     if( pPager->nExtra>0 ){
 | |
|       memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
 | |
|     }
 | |
|     nMax = sqlite3PagerPagecount(pPager);
 | |
|     if( pPager->errCode ){
 | |
|       rc = pPager->errCode;
 | |
|       sqlite3PagerUnref(pPg);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Populate the page with data, either by reading from the database
 | |
|     ** file, or by setting the entire page to zero.
 | |
|     */
 | |
|     if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
 | |
|       if( pgno>pPager->mxPgno ){
 | |
|         sqlite3PagerUnref(pPg);
 | |
|         return SQLITE_FULL;
 | |
|       }
 | |
|       memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
 | |
|       pPg->needRead = noContent && !pPager->alwaysRollback;
 | |
|       IOTRACE(("ZERO %p %d\n", pPager, pgno));
 | |
|     }else{
 | |
|       rc = readDbPage(pPager, pPg, pgno);
 | |
|       if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
 | |
|         pPg->pgno = 0;
 | |
|         sqlite3PagerUnref(pPg);
 | |
|         return rc;
 | |
|       }
 | |
|       pPg->needRead = 0;
 | |
|     }
 | |
| 
 | |
|     /* Link the page into the page hash table */
 | |
|     h = pgno & (pPager->nHash-1);
 | |
|     assert( pgno!=0 );
 | |
|     pPg->pNextHash = pPager->aHash[h];
 | |
|     pPager->aHash[h] = pPg;
 | |
|     if( pPg->pNextHash ){
 | |
|       assert( pPg->pNextHash->pPrevHash==0 );
 | |
|       pPg->pNextHash->pPrevHash = pPg;
 | |
|     }
 | |
| 
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
|     pPg->pageHash = pager_pagehash(pPg);
 | |
| #endif
 | |
|   }else{
 | |
|     /* The requested page is in the page cache. */
 | |
|     assert(pPager->nRef>0 || pgno==1);
 | |
|     PAGER_INCR(pPager->nHit);
 | |
|     if( !noContent ){
 | |
|       rc = pager_get_content(pPg);
 | |
|       if( rc ){
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|     page_ref(pPg);
 | |
|   }
 | |
|   *ppPage = pPg;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3PagerAcquire(
 | |
|   Pager *pPager,      /* The pager open on the database file */
 | |
|   Pgno pgno,          /* Page number to fetch */
 | |
|   DbPage **ppPage,    /* Write a pointer to the page here */
 | |
|   int noContent       /* Do not bother reading content from disk if true */
 | |
| ){
 | |
|   int rc;
 | |
|   pagerEnter(pPager);
 | |
|   rc = pagerAcquire(pPager, pgno, ppPage, noContent);
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Acquire a page if it is already in the in-memory cache.  Do
 | |
| ** not read the page from disk.  Return a pointer to the page,
 | |
| ** or 0 if the page is not in cache.
 | |
| **
 | |
| ** See also sqlite3PagerGet().  The difference between this routine
 | |
| ** and sqlite3PagerGet() is that _get() will go to the disk and read
 | |
| ** in the page if the page is not already in cache.  This routine
 | |
| ** returns NULL if the page is not in cache or if a disk I/O error 
 | |
| ** has ever happened.
 | |
| */
 | |
| SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
 | |
|   PgHdr *pPg = 0;
 | |
| 
 | |
|   assert( pPager!=0 );
 | |
|   assert( pgno!=0 );
 | |
| 
 | |
|   pagerEnter(pPager);
 | |
|   if( pPager->state==PAGER_UNLOCK ){
 | |
|     assert( !pPager->pAll || pPager->exclusiveMode );
 | |
|   }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
 | |
|     /* Do nothing */
 | |
|   }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
 | |
|     page_ref(pPg);
 | |
|   }
 | |
|   pagerLeave(pPager);
 | |
|   return pPg;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release a page.
 | |
| **
 | |
| ** If the number of references to the page drop to zero, then the
 | |
| ** page is added to the LRU list.  When all references to all pages
 | |
| ** are released, a rollback occurs and the lock on the database is
 | |
| ** removed.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerUnref(DbPage *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
| 
 | |
|   /* Decrement the reference count for this page
 | |
|   */
 | |
|   assert( pPg->nRef>0 );
 | |
|   pagerEnter(pPg->pPager);
 | |
|   pPg->nRef--;
 | |
| 
 | |
|   CHECK_PAGE(pPg);
 | |
| 
 | |
|   /* When the number of references to a page reach 0, call the
 | |
|   ** destructor and add the page to the freelist.
 | |
|   */
 | |
|   if( pPg->nRef==0 ){
 | |
| 
 | |
|     lruListAdd(pPg);
 | |
|     if( pPager->xDestructor ){
 | |
|       pPager->xDestructor(pPg, pPager->pageSize);
 | |
|     }
 | |
|   
 | |
|     /* When all pages reach the freelist, drop the read lock from
 | |
|     ** the database file.
 | |
|     */
 | |
|     pPager->nRef--;
 | |
|     assert( pPager->nRef>=0 );
 | |
|     if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
 | |
|       pagerUnlockAndRollback(pPager);
 | |
|     }
 | |
|   }
 | |
|   pagerLeave(pPager);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a journal file for pPager.  There should already be a RESERVED
 | |
| ** or EXCLUSIVE lock on the database file when this routine is called.
 | |
| **
 | |
| ** Return SQLITE_OK if everything.  Return an error code and release the
 | |
| ** write lock if anything goes wrong.
 | |
| */
 | |
| static int pager_open_journal(Pager *pPager){
 | |
|   sqlite3_vfs *pVfs = pPager->pVfs;
 | |
|   int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
 | |
| 
 | |
|   int rc;
 | |
|   assert( !MEMDB );
 | |
|   assert( pPager->state>=PAGER_RESERVED );
 | |
|   assert( pPager->journalOpen==0 );
 | |
|   assert( pPager->useJournal );
 | |
|   assert( pPager->pInJournal==0 );
 | |
|   sqlite3PagerPagecount(pPager);
 | |
|   pagerLeave(pPager);
 | |
|   pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
 | |
|   pagerEnter(pPager);
 | |
|   if( pPager->pInJournal==0 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|     goto failed_to_open_journal;
 | |
|   }
 | |
| 
 | |
|   if( pPager->tempFile ){
 | |
|     flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
 | |
|   }else{
 | |
|     flags |= (SQLITE_OPEN_MAIN_JOURNAL);
 | |
|   }
 | |
| #ifdef SQLITE_ENABLE_ATOMIC_WRITE
 | |
|   rc = sqlite3JournalOpen(
 | |
|       pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
 | |
|   );
 | |
| #else
 | |
|   rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
 | |
| #endif
 | |
|   assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
 | |
|   pPager->journalOff = 0;
 | |
|   pPager->setMaster = 0;
 | |
|   pPager->journalHdr = 0;
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     if( rc==SQLITE_NOMEM ){
 | |
|       sqlite3OsDelete(pVfs, pPager->zJournal, 0);
 | |
|     }
 | |
|     goto failed_to_open_journal;
 | |
|   }
 | |
|   pPager->journalOpen = 1;
 | |
|   pPager->journalStarted = 0;
 | |
|   pPager->needSync = 0;
 | |
|   pPager->alwaysRollback = 0;
 | |
|   pPager->nRec = 0;
 | |
|   if( pPager->errCode ){
 | |
|     rc = pPager->errCode;
 | |
|     goto failed_to_open_journal;
 | |
|   }
 | |
|   pPager->origDbSize = pPager->dbSize;
 | |
| 
 | |
|   rc = writeJournalHdr(pPager);
 | |
| 
 | |
|   if( pPager->stmtAutoopen && rc==SQLITE_OK ){
 | |
|     rc = sqlite3PagerStmtBegin(pPager);
 | |
|   }
 | |
|   if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
 | |
|     rc = pager_end_transaction(pPager);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = SQLITE_FULL;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| 
 | |
| failed_to_open_journal:
 | |
|   sqlite3BitvecDestroy(pPager->pInJournal);
 | |
|   pPager->pInJournal = 0;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Acquire a write-lock on the database.  The lock is removed when
 | |
| ** the any of the following happen:
 | |
| **
 | |
| **   *  sqlite3PagerCommitPhaseTwo() is called.
 | |
| **   *  sqlite3PagerRollback() is called.
 | |
| **   *  sqlite3PagerClose() is called.
 | |
| **   *  sqlite3PagerUnref() is called to on every outstanding page.
 | |
| **
 | |
| ** The first parameter to this routine is a pointer to any open page of the
 | |
| ** database file.  Nothing changes about the page - it is used merely to
 | |
| ** acquire a pointer to the Pager structure and as proof that there is
 | |
| ** already a read-lock on the database.
 | |
| **
 | |
| ** The second parameter indicates how much space in bytes to reserve for a
 | |
| ** master journal file-name at the start of the journal when it is created.
 | |
| **
 | |
| ** A journal file is opened if this is not a temporary file.  For temporary
 | |
| ** files, the opening of the journal file is deferred until there is an
 | |
| ** actual need to write to the journal.
 | |
| **
 | |
| ** If the database is already reserved for writing, this routine is a no-op.
 | |
| **
 | |
| ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
 | |
| ** immediately instead of waiting until we try to flush the cache.  The
 | |
| ** exFlag is ignored if a transaction is already active.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerBegin(DbPage *pPg, int exFlag){
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   int rc = SQLITE_OK;
 | |
|   pagerEnter(pPager);
 | |
|   assert( pPg->nRef>0 );
 | |
|   assert( pPager->state!=PAGER_UNLOCK );
 | |
|   if( pPager->state==PAGER_SHARED ){
 | |
|     assert( pPager->pInJournal==0 );
 | |
|     if( MEMDB ){
 | |
|       pPager->state = PAGER_EXCLUSIVE;
 | |
|       pPager->origDbSize = pPager->dbSize;
 | |
|     }else{
 | |
|       rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         pPager->state = PAGER_RESERVED;
 | |
|         if( exFlag ){
 | |
|           rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
 | |
|         }
 | |
|       }
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         pagerLeave(pPager);
 | |
|         return rc;
 | |
|       }
 | |
|       pPager->dirtyCache = 0;
 | |
|       PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
 | |
|       if( pPager->useJournal && !pPager->tempFile ){
 | |
|         rc = pager_open_journal(pPager);
 | |
|       }
 | |
|     }
 | |
|   }else if( pPager->journalOpen && pPager->journalOff==0 ){
 | |
|     /* This happens when the pager was in exclusive-access mode last
 | |
|     ** time a (read or write) transaction was successfully concluded
 | |
|     ** by this connection. Instead of deleting the journal file it was 
 | |
|     ** kept open and truncated to 0 bytes.
 | |
|     */
 | |
|     assert( pPager->nRec==0 );
 | |
|     assert( pPager->origDbSize==0 );
 | |
|     assert( pPager->pInJournal==0 );
 | |
|     sqlite3PagerPagecount(pPager);
 | |
|     pagerLeave(pPager);
 | |
|     pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
 | |
|     pagerEnter(pPager);
 | |
|     if( !pPager->pInJournal ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }else{
 | |
|       pPager->origDbSize = pPager->dbSize;
 | |
|       rc = writeJournalHdr(pPager);
 | |
|     }
 | |
|   }
 | |
|   assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a page dirty.  Set its dirty flag and add it to the dirty
 | |
| ** page list.
 | |
| */
 | |
| static void makeDirty(PgHdr *pPg){
 | |
|   if( pPg->dirty==0 ){
 | |
|     Pager *pPager = pPg->pPager;
 | |
|     pPg->dirty = 1;
 | |
|     pPg->pDirty = pPager->pDirty;
 | |
|     if( pPager->pDirty ){
 | |
|       pPager->pDirty->pPrevDirty = pPg;
 | |
|     }
 | |
|     pPg->pPrevDirty = 0;
 | |
|     pPager->pDirty = pPg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a page clean.  Clear its dirty bit and remove it from the
 | |
| ** dirty page list.
 | |
| */
 | |
| static void makeClean(PgHdr *pPg){
 | |
|   if( pPg->dirty ){
 | |
|     pPg->dirty = 0;
 | |
|     if( pPg->pDirty ){
 | |
|       assert( pPg->pDirty->pPrevDirty==pPg );
 | |
|       pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
 | |
|     }
 | |
|     if( pPg->pPrevDirty ){
 | |
|       assert( pPg->pPrevDirty->pDirty==pPg );
 | |
|       pPg->pPrevDirty->pDirty = pPg->pDirty;
 | |
|     }else{
 | |
|       assert( pPg->pPager->pDirty==pPg );
 | |
|       pPg->pPager->pDirty = pPg->pDirty;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Mark a data page as writeable.  The page is written into the journal 
 | |
| ** if it is not there already.  This routine must be called before making
 | |
| ** changes to a page.
 | |
| **
 | |
| ** The first time this routine is called, the pager creates a new
 | |
| ** journal and acquires a RESERVED lock on the database.  If the RESERVED
 | |
| ** lock could not be acquired, this routine returns SQLITE_BUSY.  The
 | |
| ** calling routine must check for that return value and be careful not to
 | |
| ** change any page data until this routine returns SQLITE_OK.
 | |
| **
 | |
| ** If the journal file could not be written because the disk is full,
 | |
| ** then this routine returns SQLITE_FULL and does an immediate rollback.
 | |
| ** All subsequent write attempts also return SQLITE_FULL until there
 | |
| ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
 | |
| ** reset.
 | |
| */
 | |
| static int pager_write(PgHdr *pPg){
 | |
|   void *pData = PGHDR_TO_DATA(pPg);
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   /* Check for errors
 | |
|   */
 | |
|   if( pPager->errCode ){ 
 | |
|     return pPager->errCode;
 | |
|   }
 | |
|   if( pPager->readOnly ){
 | |
|     return SQLITE_PERM;
 | |
|   }
 | |
| 
 | |
|   assert( !pPager->setMaster );
 | |
| 
 | |
|   CHECK_PAGE(pPg);
 | |
| 
 | |
|   /* If this page was previously acquired with noContent==1, that means
 | |
|   ** we didn't really read in the content of the page.  This can happen
 | |
|   ** (for example) when the page is being moved to the freelist.  But
 | |
|   ** now we are (perhaps) moving the page off of the freelist for
 | |
|   ** reuse and we need to know its original content so that content
 | |
|   ** can be stored in the rollback journal.  So do the read at this
 | |
|   ** time.
 | |
|   */
 | |
|   rc = pager_get_content(pPg);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* Mark the page as dirty.  If the page has already been written
 | |
|   ** to the journal then we can return right away.
 | |
|   */
 | |
|   makeDirty(pPg);
 | |
|   if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
 | |
|     pPager->dirtyCache = 1;
 | |
|   }else{
 | |
| 
 | |
|     /* If we get this far, it means that the page needs to be
 | |
|     ** written to the transaction journal or the ckeckpoint journal
 | |
|     ** or both.
 | |
|     **
 | |
|     ** First check to see that the transaction journal exists and
 | |
|     ** create it if it does not.
 | |
|     */
 | |
|     assert( pPager->state!=PAGER_UNLOCK );
 | |
|     rc = sqlite3PagerBegin(pPg, 0);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     assert( pPager->state>=PAGER_RESERVED );
 | |
|     if( !pPager->journalOpen && pPager->useJournal ){
 | |
|       rc = pager_open_journal(pPager);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
|     }
 | |
|     assert( pPager->journalOpen || !pPager->useJournal );
 | |
|     pPager->dirtyCache = 1;
 | |
|   
 | |
|     /* The transaction journal now exists and we have a RESERVED or an
 | |
|     ** EXCLUSIVE lock on the main database file.  Write the current page to
 | |
|     ** the transaction journal if it is not there already.
 | |
|     */
 | |
|     if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
 | |
|       if( (int)pPg->pgno <= pPager->origDbSize ){
 | |
|         if( MEMDB ){
 | |
|           PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|           PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
 | |
|           assert( pHist->pOrig==0 );
 | |
|           pHist->pOrig = sqlite3_malloc( pPager->pageSize );
 | |
|           if( !pHist->pOrig ){
 | |
|             return SQLITE_NOMEM;
 | |
|           }
 | |
|           memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
 | |
|         }else{
 | |
|           u32 cksum;
 | |
|           char *pData2;
 | |
| 
 | |
|           /* We should never write to the journal file the page that
 | |
|           ** contains the database locks.  The following assert verifies
 | |
|           ** that we do not. */
 | |
|           assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
 | |
|           pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
 | |
|           cksum = pager_cksum(pPager, (u8*)pData2);
 | |
|           rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
 | |
|           if( rc==SQLITE_OK ){
 | |
|             rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
 | |
|                                 pPager->journalOff + 4);
 | |
|             pPager->journalOff += pPager->pageSize+4;
 | |
|           }
 | |
|           if( rc==SQLITE_OK ){
 | |
|             rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
 | |
|             pPager->journalOff += 4;
 | |
|           }
 | |
|           IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 
 | |
|                    pPager->journalOff, pPager->pageSize));
 | |
|           PAGER_INCR(sqlite3_pager_writej_count);
 | |
|           PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
 | |
|                PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
 | |
| 
 | |
|           /* An error has occured writing to the journal file. The 
 | |
|           ** transaction will be rolled back by the layer above.
 | |
|           */
 | |
|           if( rc!=SQLITE_OK ){
 | |
|             return rc;
 | |
|           }
 | |
| 
 | |
|           pPager->nRec++;
 | |
|           assert( pPager->pInJournal!=0 );
 | |
|           sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
 | |
|           pPg->needSync = !pPager->noSync;
 | |
|           if( pPager->stmtInUse ){
 | |
|             sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
 | |
|           }
 | |
|         }
 | |
|       }else{
 | |
|         pPg->needSync = !pPager->journalStarted && !pPager->noSync;
 | |
|         PAGERTRACE4("APPEND %d page %d needSync=%d\n",
 | |
|                 PAGERID(pPager), pPg->pgno, pPg->needSync);
 | |
|       }
 | |
|       if( pPg->needSync ){
 | |
|         pPager->needSync = 1;
 | |
|       }
 | |
|       pPg->inJournal = 1;
 | |
|     }
 | |
|   
 | |
|     /* If the statement journal is open and the page is not in it,
 | |
|     ** then write the current page to the statement journal.  Note that
 | |
|     ** the statement journal format differs from the standard journal format
 | |
|     ** in that it omits the checksums and the header.
 | |
|     */
 | |
|     if( pPager->stmtInUse 
 | |
|      && !pageInStatement(pPg) 
 | |
|      && (int)pPg->pgno<=pPager->stmtSize 
 | |
|     ){
 | |
|       assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
 | |
|       if( MEMDB ){
 | |
|         PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|         assert( pHist->pStmt==0 );
 | |
|         pHist->pStmt = sqlite3_malloc( pPager->pageSize );
 | |
|         if( pHist->pStmt ){
 | |
|           memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
 | |
|         }
 | |
|         PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
 | |
|         page_add_to_stmt_list(pPg);
 | |
|       }else{
 | |
|         i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
 | |
|         char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
 | |
|         rc = write32bits(pPager->stfd, offset, pPg->pgno);
 | |
|         if( rc==SQLITE_OK ){
 | |
|           rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
 | |
|         }
 | |
|         PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|         pPager->stmtNRec++;
 | |
|         assert( pPager->pInStmt!=0 );
 | |
|         sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Update the database size and return.
 | |
|   */
 | |
|   assert( pPager->state>=PAGER_SHARED );
 | |
|   if( pPager->dbSize<(int)pPg->pgno ){
 | |
|     pPager->dbSize = pPg->pgno;
 | |
|     if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
 | |
|       pPager->dbSize++;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is used to mark a data-page as writable. It uses 
 | |
| ** pager_write() to open a journal file (if it is not already open)
 | |
| ** and write the page *pData to the journal.
 | |
| **
 | |
| ** The difference between this function and pager_write() is that this
 | |
| ** function also deals with the special case where 2 or more pages
 | |
| ** fit on a single disk sector. In this case all co-resident pages
 | |
| ** must have been written to the journal file before returning.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   PgHdr *pPg = pDbPage;
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
 | |
| 
 | |
|   pagerEnter(pPager);
 | |
|   if( !MEMDB && nPagePerSector>1 ){
 | |
|     Pgno nPageCount;          /* Total number of pages in database file */
 | |
|     Pgno pg1;                 /* First page of the sector pPg is located on. */
 | |
|     int nPage;                /* Number of pages starting at pg1 to journal */
 | |
|     int ii;
 | |
|     int needSync = 0;
 | |
| 
 | |
|     /* Set the doNotSync flag to 1. This is because we cannot allow a journal
 | |
|     ** header to be written between the pages journaled by this function.
 | |
|     */
 | |
|     assert( pPager->doNotSync==0 );
 | |
|     pPager->doNotSync = 1;
 | |
| 
 | |
|     /* This trick assumes that both the page-size and sector-size are
 | |
|     ** an integer power of 2. It sets variable pg1 to the identifier
 | |
|     ** of the first page of the sector pPg is located on.
 | |
|     */
 | |
|     pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
 | |
| 
 | |
|     nPageCount = sqlite3PagerPagecount(pPager);
 | |
|     if( pPg->pgno>nPageCount ){
 | |
|       nPage = (pPg->pgno - pg1)+1;
 | |
|     }else if( (pg1+nPagePerSector-1)>nPageCount ){
 | |
|       nPage = nPageCount+1-pg1;
 | |
|     }else{
 | |
|       nPage = nPagePerSector;
 | |
|     }
 | |
|     assert(nPage>0);
 | |
|     assert(pg1<=pPg->pgno);
 | |
|     assert((pg1+nPage)>pPg->pgno);
 | |
| 
 | |
|     for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
 | |
|       Pgno pg = pg1+ii;
 | |
|       PgHdr *pPage;
 | |
|       if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
 | |
|         if( pg!=PAGER_MJ_PGNO(pPager) ){
 | |
|           rc = sqlite3PagerGet(pPager, pg, &pPage);
 | |
|           if( rc==SQLITE_OK ){
 | |
|             rc = pager_write(pPage);
 | |
|             if( pPage->needSync ){
 | |
|               needSync = 1;
 | |
|             }
 | |
|             sqlite3PagerUnref(pPage);
 | |
|           }
 | |
|         }
 | |
|       }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
 | |
|         if( pPage->needSync ){
 | |
|           needSync = 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If the PgHdr.needSync flag is set for any of the nPage pages 
 | |
|     ** starting at pg1, then it needs to be set for all of them. Because
 | |
|     ** writing to any of these nPage pages may damage the others, the
 | |
|     ** journal file must contain sync()ed copies of all of them
 | |
|     ** before any of them can be written out to the database file.
 | |
|     */
 | |
|     if( needSync ){
 | |
|       for(ii=0; ii<nPage && needSync; ii++){
 | |
|         PgHdr *pPage = pager_lookup(pPager, pg1+ii);
 | |
|         if( pPage ) pPage->needSync = 1;
 | |
|       }
 | |
|       assert(pPager->needSync);
 | |
|     }
 | |
| 
 | |
|     assert( pPager->doNotSync==1 );
 | |
|     pPager->doNotSync = 0;
 | |
|   }else{
 | |
|     rc = pager_write(pDbPage);
 | |
|   }
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the page given in the argument was previously passed
 | |
| ** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
 | |
| ** to change the content of the page.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
 | |
|   return pPg->dirty;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VACUUM
 | |
| /*
 | |
| ** Replace the content of a single page with the information in the third
 | |
| ** argument.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){
 | |
|   PgHdr *pPg;
 | |
|   int rc;
 | |
| 
 | |
|   pagerEnter(pPager);
 | |
|   rc = sqlite3PagerGet(pPager, pgno, &pPg);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3PagerWrite(pPg);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize);
 | |
|     }
 | |
|     sqlite3PagerUnref(pPg);
 | |
|   }
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** A call to this routine tells the pager that it is not necessary to
 | |
| ** write the information on page pPg back to the disk, even though
 | |
| ** that page might be marked as dirty.
 | |
| **
 | |
| ** The overlying software layer calls this routine when all of the data
 | |
| ** on the given page is unused.  The pager marks the page as clean so
 | |
| ** that it does not get written to disk.
 | |
| **
 | |
| ** Tests show that this optimization, together with the
 | |
| ** sqlite3PagerDontRollback() below, more than double the speed
 | |
| ** of large INSERT operations and quadruple the speed of large DELETEs.
 | |
| **
 | |
| ** When this routine is called, set the alwaysRollback flag to true.
 | |
| ** Subsequent calls to sqlite3PagerDontRollback() for the same page
 | |
| ** will thereafter be ignored.  This is necessary to avoid a problem
 | |
| ** where a page with data is added to the freelist during one part of
 | |
| ** a transaction then removed from the freelist during a later part
 | |
| ** of the same transaction and reused for some other purpose.  When it
 | |
| ** is first added to the freelist, this routine is called.  When reused,
 | |
| ** the sqlite3PagerDontRollback() routine is called.  But because the
 | |
| ** page contains critical data, we still need to be sure it gets
 | |
| ** rolled back in spite of the sqlite3PagerDontRollback() call.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage *pDbPage){
 | |
|   PgHdr *pPg = pDbPage;
 | |
|   Pager *pPager = pPg->pPager;
 | |
| 
 | |
|   if( MEMDB ) return;
 | |
|   pagerEnter(pPager);
 | |
|   pPg->alwaysRollback = 1;
 | |
|   if( pPg->dirty && !pPager->stmtInUse ){
 | |
|     assert( pPager->state>=PAGER_SHARED );
 | |
|     if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
 | |
|       /* If this pages is the last page in the file and the file has grown
 | |
|       ** during the current transaction, then do NOT mark the page as clean.
 | |
|       ** When the database file grows, we must make sure that the last page
 | |
|       ** gets written at least once so that the disk file will be the correct
 | |
|       ** size. If you do not write this page and the size of the file
 | |
|       ** on the disk ends up being too small, that can lead to database
 | |
|       ** corruption during the next transaction.
 | |
|       */
 | |
|     }else{
 | |
|       PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
 | |
|       IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
 | |
|       makeClean(pPg);
 | |
| #ifdef SQLITE_CHECK_PAGES
 | |
|       pPg->pageHash = pager_pagehash(pPg);
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
|   pagerLeave(pPager);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A call to this routine tells the pager that if a rollback occurs,
 | |
| ** it is not necessary to restore the data on the given page.  This
 | |
| ** means that the pager does not have to record the given page in the
 | |
| ** rollback journal.
 | |
| **
 | |
| ** If we have not yet actually read the content of this page (if
 | |
| ** the PgHdr.needRead flag is set) then this routine acts as a promise
 | |
| ** that we will never need to read the page content in the future.
 | |
| ** so the needRead flag can be cleared at this point.
 | |
| **
 | |
| ** This routine is only called from a single place in the sqlite btree
 | |
| ** code (when a leaf is removed from the free-list). This allows the
 | |
| ** following assumptions to be made about pPg:
 | |
| **
 | |
| **   1. PagerDontWrite() has been called on the page, OR 
 | |
| **      PagerWrite() has not yet been called on the page.
 | |
| **
 | |
| **   2. The page existed when the transaction was started.
 | |
| **
 | |
| ** Details: DontRollback() (this routine) is only called when a leaf is
 | |
| ** removed from the free list. DontWrite() is called whenever a page 
 | |
| ** becomes a free-list leaf.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
| 
 | |
|   pagerEnter(pPager);
 | |
|   assert( pPager->state>=PAGER_RESERVED );
 | |
| 
 | |
|   /* If the journal file is not open, or DontWrite() has been called on
 | |
|   ** this page (DontWrite() sets the alwaysRollback flag), then this
 | |
|   ** function is a no-op.
 | |
|   */
 | |
|   if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){
 | |
|     pagerLeave(pPager);
 | |
|     return;
 | |
|   }
 | |
|   assert( !MEMDB );    /* For a memdb, pPager->journalOpen is always 0 */
 | |
| 
 | |
|   /* Check that PagerWrite() has not yet been called on this page, and
 | |
|   ** that the page existed when the transaction started.
 | |
|   */
 | |
|   assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize );
 | |
| 
 | |
|   assert( pPager->pInJournal!=0 );
 | |
|   sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
 | |
|   pPg->inJournal = 1;
 | |
|   pPg->needRead = 0;
 | |
|   if( pPager->stmtInUse ){
 | |
|     assert( pPager->stmtSize <= pPager->origDbSize );
 | |
|     sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
 | |
|   }
 | |
|   PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
 | |
|   IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
 | |
|   pagerLeave(pPager);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine is called to increment the database file change-counter,
 | |
| ** stored at byte 24 of the pager file.
 | |
| */
 | |
| static int pager_incr_changecounter(Pager *pPager, int isDirect){
 | |
|   PgHdr *pPgHdr;
 | |
|   u32 change_counter;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   if( !pPager->changeCountDone ){
 | |
|     /* Open page 1 of the file for writing. */
 | |
|     rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     if( !isDirect ){
 | |
|       rc = sqlite3PagerWrite(pPgHdr);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         sqlite3PagerUnref(pPgHdr);
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Increment the value just read and write it back to byte 24. */
 | |
|     change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
 | |
|     change_counter++;
 | |
|     put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
 | |
| 
 | |
|     if( isDirect && pPager->fd->pMethods ){
 | |
|       const void *zBuf = PGHDR_TO_DATA(pPgHdr);
 | |
|       rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
 | |
|     }
 | |
| 
 | |
|     /* Release the page reference. */
 | |
|     sqlite3PagerUnref(pPgHdr);
 | |
|     pPager->changeCountDone = 1;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Sync the database file for the pager pPager. zMaster points to the name
 | |
| ** of a master journal file that should be written into the individual
 | |
| ** journal file. zMaster may be NULL, which is interpreted as no master
 | |
| ** journal (a single database transaction).
 | |
| **
 | |
| ** This routine ensures that the journal is synced, all dirty pages written
 | |
| ** to the database file and the database file synced. The only thing that
 | |
| ** remains to commit the transaction is to delete the journal file (or
 | |
| ** master journal file if specified).
 | |
| **
 | |
| ** Note that if zMaster==NULL, this does not overwrite a previous value
 | |
| ** passed to an sqlite3PagerCommitPhaseOne() call.
 | |
| **
 | |
| ** If parameter nTrunc is non-zero, then the pager file is truncated to
 | |
| ** nTrunc pages (this is used by auto-vacuum databases).
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", 
 | |
|       pPager->zFilename, zMaster, nTrunc);
 | |
|   pagerEnter(pPager);
 | |
| 
 | |
|   /* If this is an in-memory db, or no pages have been written to, or this
 | |
|   ** function has already been called, it is a no-op.
 | |
|   */
 | |
|   if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
 | |
|     PgHdr *pPg;
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_ATOMIC_WRITE
 | |
|     /* The atomic-write optimization can be used if all of the
 | |
|     ** following are true:
 | |
|     **
 | |
|     **    + The file-system supports the atomic-write property for
 | |
|     **      blocks of size page-size, and
 | |
|     **    + This commit is not part of a multi-file transaction, and
 | |
|     **    + Exactly one page has been modified and store in the journal file.
 | |
|     **
 | |
|     ** If the optimization can be used, then the journal file will never
 | |
|     ** be created for this transaction.
 | |
|     */
 | |
|     int useAtomicWrite = (
 | |
|         !zMaster && 
 | |
|         pPager->journalOff==jrnlBufferSize(pPager) && 
 | |
|         nTrunc==0 && 
 | |
|         (0==pPager->pDirty || 0==pPager->pDirty->pDirty)
 | |
|     );
 | |
|     if( useAtomicWrite ){
 | |
|       /* Update the nRec field in the journal file. */
 | |
|       int offset = pPager->journalHdr + sizeof(aJournalMagic);
 | |
|       assert(pPager->nRec==1);
 | |
|       rc = write32bits(pPager->jfd, offset, pPager->nRec);
 | |
| 
 | |
|       /* Update the db file change counter. The following call will modify
 | |
|       ** the in-memory representation of page 1 to include the updated
 | |
|       ** change counter and then write page 1 directly to the database
 | |
|       ** file. Because of the atomic-write property of the host file-system, 
 | |
|       ** this is safe.
 | |
|       */
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = pager_incr_changecounter(pPager, 1);
 | |
|       }
 | |
|     }else{
 | |
|       rc = sqlite3JournalCreate(pPager->jfd);
 | |
|     }
 | |
| 
 | |
|     if( !useAtomicWrite && rc==SQLITE_OK )
 | |
| #endif
 | |
| 
 | |
|     /* If a master journal file name has already been written to the
 | |
|     ** journal file, then no sync is required. This happens when it is
 | |
|     ** written, then the process fails to upgrade from a RESERVED to an
 | |
|     ** EXCLUSIVE lock. The next time the process tries to commit the
 | |
|     ** transaction the m-j name will have already been written.
 | |
|     */
 | |
|     if( !pPager->setMaster ){
 | |
|       assert( pPager->journalOpen );
 | |
|       rc = pager_incr_changecounter(pPager, 0);
 | |
|       if( rc!=SQLITE_OK ) goto sync_exit;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       if( nTrunc!=0 ){
 | |
|         /* If this transaction has made the database smaller, then all pages
 | |
|         ** being discarded by the truncation must be written to the journal
 | |
|         ** file.
 | |
|         */
 | |
|         Pgno i;
 | |
|         int iSkip = PAGER_MJ_PGNO(pPager);
 | |
|         for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
 | |
|           if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
 | |
|             rc = sqlite3PagerGet(pPager, i, &pPg);
 | |
|             if( rc!=SQLITE_OK ) goto sync_exit;
 | |
|             rc = sqlite3PagerWrite(pPg);
 | |
|             sqlite3PagerUnref(pPg);
 | |
|             if( rc!=SQLITE_OK ) goto sync_exit;
 | |
|           }
 | |
|         } 
 | |
|       }
 | |
| #endif
 | |
|       rc = writeMasterJournal(pPager, zMaster);
 | |
|       if( rc!=SQLITE_OK ) goto sync_exit;
 | |
|       rc = syncJournal(pPager);
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ) goto sync_exit;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( nTrunc!=0 ){
 | |
|       rc = sqlite3PagerTruncate(pPager, nTrunc);
 | |
|       if( rc!=SQLITE_OK ) goto sync_exit;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Write all dirty pages to the database file */
 | |
|     pPg = pager_get_all_dirty_pages(pPager);
 | |
|     rc = pager_write_pagelist(pPg);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       assert( rc!=SQLITE_IOERR_BLOCKED );
 | |
|       /* The error might have left the dirty list all fouled up here,
 | |
|       ** but that does not matter because if the if the dirty list did
 | |
|       ** get corrupted, then the transaction will roll back and
 | |
|       ** discard the dirty list.  There is an assert in
 | |
|       ** pager_get_all_dirty_pages() that verifies that no attempt
 | |
|       ** is made to use an invalid dirty list.
 | |
|       */
 | |
|       goto sync_exit;
 | |
|     }
 | |
|     pPager->pDirty = 0;
 | |
| 
 | |
|     /* Sync the database file. */
 | |
|     if( !pPager->noSync ){
 | |
|       rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
 | |
|     }
 | |
|     IOTRACE(("DBSYNC %p\n", pPager))
 | |
| 
 | |
|     pPager->state = PAGER_SYNCED;
 | |
|   }else if( MEMDB && nTrunc!=0 ){
 | |
|     rc = sqlite3PagerTruncate(pPager, nTrunc);
 | |
|   }
 | |
| 
 | |
| sync_exit:
 | |
|   if( rc==SQLITE_IOERR_BLOCKED ){
 | |
|     /* pager_incr_changecounter() may attempt to obtain an exclusive
 | |
|      * lock to spill the cache and return IOERR_BLOCKED. But since 
 | |
|      * there is no chance the cache is inconsistent, it is
 | |
|      * better to return SQLITE_BUSY.
 | |
|      */
 | |
|     rc = SQLITE_BUSY;
 | |
|   }
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Commit all changes to the database and release the write lock.
 | |
| **
 | |
| ** If the commit fails for any reason, a rollback attempt is made
 | |
| ** and an error code is returned.  If the commit worked, SQLITE_OK
 | |
| ** is returned.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
 | |
|   int rc;
 | |
|   PgHdr *pPg;
 | |
| 
 | |
|   if( pPager->errCode ){
 | |
|     return pPager->errCode;
 | |
|   }
 | |
|   if( pPager->state<PAGER_RESERVED ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   pagerEnter(pPager);
 | |
|   PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
 | |
|   if( MEMDB ){
 | |
|     pPg = pager_get_all_dirty_pages(pPager);
 | |
|     while( pPg ){
 | |
|       PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|       clearHistory(pHist);
 | |
|       pPg->dirty = 0;
 | |
|       pPg->inJournal = 0;
 | |
|       pHist->inStmt = 0;
 | |
|       pPg->needSync = 0;
 | |
|       pHist->pPrevStmt = pHist->pNextStmt = 0;
 | |
|       pPg = pPg->pDirty;
 | |
|     }
 | |
|     pPager->pDirty = 0;
 | |
| #ifndef NDEBUG
 | |
|     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
 | |
|       PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|       assert( !pPg->alwaysRollback );
 | |
|       assert( !pHist->pOrig );
 | |
|       assert( !pHist->pStmt );
 | |
|     }
 | |
| #endif
 | |
|     pPager->pStmt = 0;
 | |
|     pPager->state = PAGER_SHARED;
 | |
|     pagerLeave(pPager);
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   assert( pPager->journalOpen || !pPager->dirtyCache );
 | |
|   assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
 | |
|   rc = pager_end_transaction(pPager);
 | |
|   rc = pager_error(pPager, rc);
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback all changes.  The database falls back to PAGER_SHARED mode.
 | |
| ** All in-memory cache pages revert to their original data contents.
 | |
| ** The journal is deleted.
 | |
| **
 | |
| ** This routine cannot fail unless some other process is not following
 | |
| ** the correct locking protocol or unless some other
 | |
| ** process is writing trash into the journal file (SQLITE_CORRUPT) or
 | |
| ** unless a prior malloc() failed (SQLITE_NOMEM).  Appropriate error
 | |
| ** codes are returned for all these occasions.  Otherwise,
 | |
| ** SQLITE_OK is returned.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
 | |
|   int rc;
 | |
|   PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
 | |
|   if( MEMDB ){
 | |
|     PgHdr *p;
 | |
|     for(p=pPager->pAll; p; p=p->pNextAll){
 | |
|       PgHistory *pHist;
 | |
|       assert( !p->alwaysRollback );
 | |
|       if( !p->dirty ){
 | |
|         assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
 | |
|         assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       pHist = PGHDR_TO_HIST(p, pPager);
 | |
|       if( pHist->pOrig ){
 | |
|         memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
 | |
|         PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
 | |
|       }else{
 | |
|         PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
 | |
|       }
 | |
|       clearHistory(pHist);
 | |
|       p->dirty = 0;
 | |
|       p->inJournal = 0;
 | |
|       pHist->inStmt = 0;
 | |
|       pHist->pPrevStmt = pHist->pNextStmt = 0;
 | |
|       if( pPager->xReiniter ){
 | |
|         pPager->xReiniter(p, pPager->pageSize);
 | |
|       }
 | |
|     }
 | |
|     pPager->pDirty = 0;
 | |
|     pPager->pStmt = 0;
 | |
|     pPager->dbSize = pPager->origDbSize;
 | |
|     pager_truncate_cache(pPager);
 | |
|     pPager->stmtInUse = 0;
 | |
|     pPager->state = PAGER_SHARED;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   pagerEnter(pPager);
 | |
|   if( !pPager->dirtyCache || !pPager->journalOpen ){
 | |
|     rc = pager_end_transaction(pPager);
 | |
|     pagerLeave(pPager);
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
 | |
|     if( pPager->state>=PAGER_EXCLUSIVE ){
 | |
|       pager_playback(pPager, 0);
 | |
|     }
 | |
|     pagerLeave(pPager);
 | |
|     return pPager->errCode;
 | |
|   }
 | |
|   if( pPager->state==PAGER_RESERVED ){
 | |
|     int rc2;
 | |
|     rc = pager_playback(pPager, 0);
 | |
|     rc2 = pager_end_transaction(pPager);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = rc2;
 | |
|     }
 | |
|   }else{
 | |
|     rc = pager_playback(pPager, 0);
 | |
|   }
 | |
|   /* pager_reset(pPager); */
 | |
|   pPager->dbSize = -1;
 | |
| 
 | |
|   /* If an error occurs during a ROLLBACK, we can no longer trust the pager
 | |
|   ** cache. So call pager_error() on the way out to make any error 
 | |
|   ** persistent.
 | |
|   */
 | |
|   rc = pager_error(pPager, rc);
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the database file is opened read-only.  Return FALSE
 | |
| ** if the database is (in theory) writable.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager *pPager){
 | |
|   return pPager->readOnly;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of references to the pager.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
 | |
|   return pPager->nRef;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** This routine is used for testing and analysis only.
 | |
| */
 | |
| SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
 | |
|   static int a[11];
 | |
|   a[0] = pPager->nRef;
 | |
|   a[1] = pPager->nPage;
 | |
|   a[2] = pPager->mxPage;
 | |
|   a[3] = pPager->dbSize;
 | |
|   a[4] = pPager->state;
 | |
|   a[5] = pPager->errCode;
 | |
|   a[6] = pPager->nHit;
 | |
|   a[7] = pPager->nMiss;
 | |
|   a[8] = 0;  /* Used to be pPager->nOvfl */
 | |
|   a[9] = pPager->nRead;
 | |
|   a[10] = pPager->nWrite;
 | |
|   return a;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Set the statement rollback point.
 | |
| **
 | |
| ** This routine should be called with the transaction journal already
 | |
| ** open.  A new statement journal is created that can be used to rollback
 | |
| ** changes of a single SQL command within a larger transaction.
 | |
| */
 | |
| static int pagerStmtBegin(Pager *pPager){
 | |
|   int rc;
 | |
|   assert( !pPager->stmtInUse );
 | |
|   assert( pPager->state>=PAGER_SHARED );
 | |
|   assert( pPager->dbSize>=0 );
 | |
|   PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
 | |
|   if( MEMDB ){
 | |
|     pPager->stmtInUse = 1;
 | |
|     pPager->stmtSize = pPager->dbSize;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( !pPager->journalOpen ){
 | |
|     pPager->stmtAutoopen = 1;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   assert( pPager->journalOpen );
 | |
|   pagerLeave(pPager);
 | |
|   assert( pPager->pInStmt==0 );
 | |
|   pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
 | |
|   pagerEnter(pPager);
 | |
|   if( pPager->pInStmt==0 ){
 | |
|     /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize);
 | |
|   if( rc ) goto stmt_begin_failed;
 | |
|   assert( pPager->stmtJSize == pPager->journalOff );
 | |
| #endif
 | |
|   pPager->stmtJSize = pPager->journalOff;
 | |
|   pPager->stmtSize = pPager->dbSize;
 | |
|   pPager->stmtHdrOff = 0;
 | |
|   pPager->stmtCksum = pPager->cksumInit;
 | |
|   if( !pPager->stmtOpen ){
 | |
|     rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
 | |
|                               SQLITE_OPEN_SUBJOURNAL);
 | |
|     if( rc ){
 | |
|       goto stmt_begin_failed;
 | |
|     }
 | |
|     pPager->stmtOpen = 1;
 | |
|     pPager->stmtNRec = 0;
 | |
|   }
 | |
|   pPager->stmtInUse = 1;
 | |
|   return SQLITE_OK;
 | |
|  
 | |
| stmt_begin_failed:
 | |
|   if( pPager->pInStmt ){
 | |
|     sqlite3BitvecDestroy(pPager->pInStmt);
 | |
|     pPager->pInStmt = 0;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager *pPager){
 | |
|   int rc;
 | |
|   pagerEnter(pPager);
 | |
|   rc = pagerStmtBegin(pPager);
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Commit a statement.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager *pPager){
 | |
|   pagerEnter(pPager);
 | |
|   if( pPager->stmtInUse ){
 | |
|     PgHdr *pPg, *pNext;
 | |
|     PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
 | |
|     if( !MEMDB ){
 | |
|       /* sqlite3OsTruncate(pPager->stfd, 0); */
 | |
|       sqlite3BitvecDestroy(pPager->pInStmt);
 | |
|       pPager->pInStmt = 0;
 | |
|     }else{
 | |
|       for(pPg=pPager->pStmt; pPg; pPg=pNext){
 | |
|         PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|         pNext = pHist->pNextStmt;
 | |
|         assert( pHist->inStmt );
 | |
|         pHist->inStmt = 0;
 | |
|         pHist->pPrevStmt = pHist->pNextStmt = 0;
 | |
|         sqlite3_free(pHist->pStmt);
 | |
|         pHist->pStmt = 0;
 | |
|       }
 | |
|     }
 | |
|     pPager->stmtNRec = 0;
 | |
|     pPager->stmtInUse = 0;
 | |
|     pPager->pStmt = 0;
 | |
|   }
 | |
|   pPager->stmtAutoopen = 0;
 | |
|   pagerLeave(pPager);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback a statement.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager *pPager){
 | |
|   int rc;
 | |
|   pagerEnter(pPager);
 | |
|   if( pPager->stmtInUse ){
 | |
|     PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
 | |
|     if( MEMDB ){
 | |
|       PgHdr *pPg;
 | |
|       PgHistory *pHist;
 | |
|       for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
 | |
|         pHist = PGHDR_TO_HIST(pPg, pPager);
 | |
|         if( pHist->pStmt ){
 | |
|           memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
 | |
|           sqlite3_free(pHist->pStmt);
 | |
|           pHist->pStmt = 0;
 | |
|         }
 | |
|       }
 | |
|       pPager->dbSize = pPager->stmtSize;
 | |
|       pager_truncate_cache(pPager);
 | |
|       rc = SQLITE_OK;
 | |
|     }else{
 | |
|       rc = pager_stmt_playback(pPager);
 | |
|     }
 | |
|     sqlite3PagerStmtCommit(pPager);
 | |
|   }else{
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   pPager->stmtAutoopen = 0;
 | |
|   pagerLeave(pPager);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the full pathname of the database file.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){
 | |
|   return pPager->zFilename;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the VFS structure for the pager.
 | |
| */
 | |
| SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
 | |
|   return pPager->pVfs;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the file handle for the database file associated
 | |
| ** with the pager.  This might return NULL if the file has
 | |
| ** not yet been opened.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
 | |
|   return pPager->fd;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the directory of the database file.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager *pPager){
 | |
|   return pPager->zDirectory;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the full pathname of the journal file.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
 | |
|   return pPager->zJournal;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if fsync() calls are disabled for this pager.  Return FALSE
 | |
| ** if fsync()s are executed normally.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){
 | |
|   return pPager->noSync;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_HAS_CODEC
 | |
| /*
 | |
| ** Set the codec for this pager
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerSetCodec(
 | |
|   Pager *pPager,
 | |
|   void *(*xCodec)(void*,void*,Pgno,int),
 | |
|   void *pCodecArg
 | |
| ){
 | |
|   pPager->xCodec = xCodec;
 | |
|   pPager->pCodecArg = pCodecArg;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| /*
 | |
| ** Move the page pPg to location pgno in the file.
 | |
| **
 | |
| ** There must be no references to the page previously located at
 | |
| ** pgno (which we call pPgOld) though that page is allowed to be
 | |
| ** in cache.  If the page previous located at pgno is not already
 | |
| ** in the rollback journal, it is not put there by by this routine.
 | |
| **
 | |
| ** References to the page pPg remain valid. Updating any
 | |
| ** meta-data associated with pPg (i.e. data stored in the nExtra bytes
 | |
| ** allocated along with the page) is the responsibility of the caller.
 | |
| **
 | |
| ** A transaction must be active when this routine is called. It used to be
 | |
| ** required that a statement transaction was not active, but this restriction
 | |
| ** has been removed (CREATE INDEX needs to move a page when a statement
 | |
| ** transaction is active).
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
 | |
|   PgHdr *pPgOld;  /* The page being overwritten. */
 | |
|   int h;
 | |
|   Pgno needSyncPgno = 0;
 | |
| 
 | |
|   pagerEnter(pPager);
 | |
|   assert( pPg->nRef>0 );
 | |
| 
 | |
|   PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", 
 | |
|       PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
 | |
|   IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
 | |
| 
 | |
|   pager_get_content(pPg);
 | |
|   if( pPg->needSync ){
 | |
|     needSyncPgno = pPg->pgno;
 | |
|     assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
 | |
|     assert( pPg->dirty );
 | |
|     assert( pPager->needSync );
 | |
|   }
 | |
| 
 | |
|   /* Unlink pPg from its hash-chain */
 | |
|   unlinkHashChain(pPager, pPg);
 | |
| 
 | |
|   /* If the cache contains a page with page-number pgno, remove it
 | |
|   ** from its hash chain. Also, if the PgHdr.needSync was set for 
 | |
|   ** page pgno before the 'move' operation, it needs to be retained 
 | |
|   ** for the page moved there.
 | |
|   */
 | |
|   pPg->needSync = 0;
 | |
|   pPgOld = pager_lookup(pPager, pgno);
 | |
|   if( pPgOld ){
 | |
|     assert( pPgOld->nRef==0 );
 | |
|     unlinkHashChain(pPager, pPgOld);
 | |
|     makeClean(pPgOld);
 | |
|     pPg->needSync = pPgOld->needSync;
 | |
|   }else{
 | |
|     pPg->needSync = 0;
 | |
|   }
 | |
|   pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
 | |
| 
 | |
|   /* Change the page number for pPg and insert it into the new hash-chain. */
 | |
|   assert( pgno!=0 );
 | |
|   pPg->pgno = pgno;
 | |
|   h = pgno & (pPager->nHash-1);
 | |
|   if( pPager->aHash[h] ){
 | |
|     assert( pPager->aHash[h]->pPrevHash==0 );
 | |
|     pPager->aHash[h]->pPrevHash = pPg;
 | |
|   }
 | |
|   pPg->pNextHash = pPager->aHash[h];
 | |
|   pPager->aHash[h] = pPg;
 | |
|   pPg->pPrevHash = 0;
 | |
| 
 | |
|   makeDirty(pPg);
 | |
|   pPager->dirtyCache = 1;
 | |
| 
 | |
|   if( needSyncPgno ){
 | |
|     /* If needSyncPgno is non-zero, then the journal file needs to be 
 | |
|     ** sync()ed before any data is written to database file page needSyncPgno.
 | |
|     ** Currently, no such page exists in the page-cache and the 
 | |
|     ** Pager.pInJournal bit has been set. This needs to be remedied by loading
 | |
|     ** the page into the pager-cache and setting the PgHdr.needSync flag.
 | |
|     **
 | |
|     ** If the attempt to load the page into the page-cache fails, (due
 | |
|     ** to a malloc() or IO failure), clear the bit in the pInJournal[]
 | |
|     ** array. Otherwise, if the page is loaded and written again in
 | |
|     ** this transaction, it may be written to the database file before
 | |
|     ** it is synced into the journal file. This way, it may end up in
 | |
|     ** the journal file twice, but that is not a problem.
 | |
|     **
 | |
|     ** The sqlite3PagerGet() call may cause the journal to sync. So make
 | |
|     ** sure the Pager.needSync flag is set too.
 | |
|     */
 | |
|     int rc;
 | |
|     PgHdr *pPgHdr;
 | |
|     assert( pPager->needSync );
 | |
|     rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){
 | |
|         sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
 | |
|       }
 | |
|       pagerLeave(pPager);
 | |
|       return rc;
 | |
|     }
 | |
|     pPager->needSync = 1;
 | |
|     pPgHdr->needSync = 1;
 | |
|     pPgHdr->inJournal = 1;
 | |
|     makeDirty(pPgHdr);
 | |
|     sqlite3PagerUnref(pPgHdr);
 | |
|   }
 | |
| 
 | |
|   pagerLeave(pPager);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the data for the specified page.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
 | |
|   return PGHDR_TO_DATA(pPg);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the Pager.nExtra bytes of "extra" space 
 | |
| ** allocated along with the specified page.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
 | |
|   Pager *pPager = pPg->pPager;
 | |
|   return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Get/set the locking-mode for this pager. Parameter eMode must be one
 | |
| ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 
 | |
| ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
 | |
| ** the locking-mode is set to the value specified.
 | |
| **
 | |
| ** The returned value is either PAGER_LOCKINGMODE_NORMAL or
 | |
| ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
 | |
| ** locking-mode.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
 | |
|   assert( eMode==PAGER_LOCKINGMODE_QUERY
 | |
|             || eMode==PAGER_LOCKINGMODE_NORMAL
 | |
|             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
 | |
|   assert( PAGER_LOCKINGMODE_QUERY<0 );
 | |
|   assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
 | |
|   if( eMode>=0 && !pPager->tempFile ){
 | |
|     pPager->exclusiveMode = eMode;
 | |
|   }
 | |
|   return (int)pPager->exclusiveMode;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** Print a listing of all referenced pages and their ref count.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){
 | |
|   PgHdr *pPg;
 | |
|   for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
 | |
|     if( pPg->nRef<=0 ) continue;
 | |
|     sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", 
 | |
|        pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif /* SQLITE_OMIT_DISKIO */
 | |
| 
 | |
| /************** End of pager.c ***********************************************/
 | |
| /************** Begin file btmutex.c *****************************************/
 | |
| /*
 | |
| ** 2007 August 27
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** $Id: btmutex.c,v 1.9 2008/01/23 12:52:41 drh Exp $
 | |
| **
 | |
| ** This file contains code used to implement mutexes on Btree objects.
 | |
| ** This code really belongs in btree.c.  But btree.c is getting too
 | |
| ** big and we want to break it down some.  This packaged seemed like
 | |
| ** a good breakout.
 | |
| */
 | |
| /************** Include btreeInt.h in the middle of btmutex.c ****************/
 | |
| /************** Begin file btreeInt.h ****************************************/
 | |
| /*
 | |
| ** 2004 April 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** $Id: btreeInt.h,v 1.17 2008/03/04 17:45:01 mlcreech Exp $
 | |
| **
 | |
| ** This file implements a external (disk-based) database using BTrees.
 | |
| ** For a detailed discussion of BTrees, refer to
 | |
| **
 | |
| **     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
 | |
| **     "Sorting And Searching", pages 473-480. Addison-Wesley
 | |
| **     Publishing Company, Reading, Massachusetts.
 | |
| **
 | |
| ** The basic idea is that each page of the file contains N database
 | |
| ** entries and N+1 pointers to subpages.
 | |
| **
 | |
| **   ----------------------------------------------------------------
 | |
| **   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
 | |
| **   ----------------------------------------------------------------
 | |
| **
 | |
| ** All of the keys on the page that Ptr(0) points to have values less
 | |
| ** than Key(0).  All of the keys on page Ptr(1) and its subpages have
 | |
| ** values greater than Key(0) and less than Key(1).  All of the keys
 | |
| ** on Ptr(N) and its subpages have values greater than Key(N-1).  And
 | |
| ** so forth.
 | |
| **
 | |
| ** Finding a particular key requires reading O(log(M)) pages from the 
 | |
| ** disk where M is the number of entries in the tree.
 | |
| **
 | |
| ** In this implementation, a single file can hold one or more separate 
 | |
| ** BTrees.  Each BTree is identified by the index of its root page.  The
 | |
| ** key and data for any entry are combined to form the "payload".  A
 | |
| ** fixed amount of payload can be carried directly on the database
 | |
| ** page.  If the payload is larger than the preset amount then surplus
 | |
| ** bytes are stored on overflow pages.  The payload for an entry
 | |
| ** and the preceding pointer are combined to form a "Cell".  Each 
 | |
| ** page has a small header which contains the Ptr(N) pointer and other
 | |
| ** information such as the size of key and data.
 | |
| **
 | |
| ** FORMAT DETAILS
 | |
| **
 | |
| ** The file is divided into pages.  The first page is called page 1,
 | |
| ** the second is page 2, and so forth.  A page number of zero indicates
 | |
| ** "no such page".  The page size can be anything between 512 and 65536.
 | |
| ** Each page can be either a btree page, a freelist page or an overflow
 | |
| ** page.
 | |
| **
 | |
| ** The first page is always a btree page.  The first 100 bytes of the first
 | |
| ** page contain a special header (the "file header") that describes the file.
 | |
| ** The format of the file header is as follows:
 | |
| **
 | |
| **   OFFSET   SIZE    DESCRIPTION
 | |
| **      0      16     Header string: "SQLite format 3\000"
 | |
| **     16       2     Page size in bytes.  
 | |
| **     18       1     File format write version
 | |
| **     19       1     File format read version
 | |
| **     20       1     Bytes of unused space at the end of each page
 | |
| **     21       1     Max embedded payload fraction
 | |
| **     22       1     Min embedded payload fraction
 | |
| **     23       1     Min leaf payload fraction
 | |
| **     24       4     File change counter
 | |
| **     28       4     Reserved for future use
 | |
| **     32       4     First freelist page
 | |
| **     36       4     Number of freelist pages in the file
 | |
| **     40      60     15 4-byte meta values passed to higher layers
 | |
| **
 | |
| ** All of the integer values are big-endian (most significant byte first).
 | |
| **
 | |
| ** The file change counter is incremented when the database is changed
 | |
| ** This counter allows other processes to know when the file has changed
 | |
| ** and thus when they need to flush their cache.
 | |
| **
 | |
| ** The max embedded payload fraction is the amount of the total usable
 | |
| ** space in a page that can be consumed by a single cell for standard
 | |
| ** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
 | |
| ** is to limit the maximum cell size so that at least 4 cells will fit
 | |
| ** on one page.  Thus the default max embedded payload fraction is 64.
 | |
| **
 | |
| ** If the payload for a cell is larger than the max payload, then extra
 | |
| ** payload is spilled to overflow pages.  Once an overflow page is allocated,
 | |
| ** as many bytes as possible are moved into the overflow pages without letting
 | |
| ** the cell size drop below the min embedded payload fraction.
 | |
| **
 | |
| ** The min leaf payload fraction is like the min embedded payload fraction
 | |
| ** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
 | |
| ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
 | |
| ** not specified in the header.
 | |
| **
 | |
| ** Each btree pages is divided into three sections:  The header, the
 | |
| ** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
 | |
| ** file header that occurs before the page header.
 | |
| **
 | |
| **      |----------------|
 | |
| **      | file header    |   100 bytes.  Page 1 only.
 | |
| **      |----------------|
 | |
| **      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
 | |
| **      |----------------|
 | |
| **      | cell pointer   |   |  2 bytes per cell.  Sorted order.
 | |
| **      | array          |   |  Grows downward
 | |
| **      |                |   v
 | |
| **      |----------------|
 | |
| **      | unallocated    |
 | |
| **      | space          |
 | |
| **      |----------------|   ^  Grows upwards
 | |
| **      | cell content   |   |  Arbitrary order interspersed with freeblocks.
 | |
| **      | area           |   |  and free space fragments.
 | |
| **      |----------------|
 | |
| **
 | |
| ** The page headers looks like this:
 | |
| **
 | |
| **   OFFSET   SIZE     DESCRIPTION
 | |
| **      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
 | |
| **      1       2      byte offset to the first freeblock
 | |
| **      3       2      number of cells on this page
 | |
| **      5       2      first byte of the cell content area
 | |
| **      7       1      number of fragmented free bytes
 | |
| **      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
 | |
| **
 | |
| ** The flags define the format of this btree page.  The leaf flag means that
 | |
| ** this page has no children.  The zerodata flag means that this page carries
 | |
| ** only keys and no data.  The intkey flag means that the key is a integer
 | |
| ** which is stored in the key size entry of the cell header rather than in
 | |
| ** the payload area.
 | |
| **
 | |
| ** The cell pointer array begins on the first byte after the page header.
 | |
| ** The cell pointer array contains zero or more 2-byte numbers which are
 | |
| ** offsets from the beginning of the page to the cell content in the cell
 | |
| ** content area.  The cell pointers occur in sorted order.  The system strives
 | |
| ** to keep free space after the last cell pointer so that new cells can
 | |
| ** be easily added without having to defragment the page.
 | |
| **
 | |
| ** Cell content is stored at the very end of the page and grows toward the
 | |
| ** beginning of the page.
 | |
| **
 | |
| ** Unused space within the cell content area is collected into a linked list of
 | |
| ** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
 | |
| ** to the first freeblock is given in the header.  Freeblocks occur in
 | |
| ** increasing order.  Because a freeblock must be at least 4 bytes in size,
 | |
| ** any group of 3 or fewer unused bytes in the cell content area cannot
 | |
| ** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
 | |
| ** a fragment.  The total number of bytes in all fragments is recorded.
 | |
| ** in the page header at offset 7.
 | |
| **
 | |
| **    SIZE    DESCRIPTION
 | |
| **      2     Byte offset of the next freeblock
 | |
| **      2     Bytes in this freeblock
 | |
| **
 | |
| ** Cells are of variable length.  Cells are stored in the cell content area at
 | |
| ** the end of the page.  Pointers to the cells are in the cell pointer array
 | |
| ** that immediately follows the page header.  Cells is not necessarily
 | |
| ** contiguous or in order, but cell pointers are contiguous and in order.
 | |
| **
 | |
| ** Cell content makes use of variable length integers.  A variable
 | |
| ** length integer is 1 to 9 bytes where the lower 7 bits of each 
 | |
| ** byte are used.  The integer consists of all bytes that have bit 8 set and
 | |
| ** the first byte with bit 8 clear.  The most significant byte of the integer
 | |
| ** appears first.  A variable-length integer may not be more than 9 bytes long.
 | |
| ** As a special case, all 8 bytes of the 9th byte are used as data.  This
 | |
| ** allows a 64-bit integer to be encoded in 9 bytes.
 | |
| **
 | |
| **    0x00                      becomes  0x00000000
 | |
| **    0x7f                      becomes  0x0000007f
 | |
| **    0x81 0x00                 becomes  0x00000080
 | |
| **    0x82 0x00                 becomes  0x00000100
 | |
| **    0x80 0x7f                 becomes  0x0000007f
 | |
| **    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
 | |
| **    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
 | |
| **
 | |
| ** Variable length integers are used for rowids and to hold the number of
 | |
| ** bytes of key and data in a btree cell.
 | |
| **
 | |
| ** The content of a cell looks like this:
 | |
| **
 | |
| **    SIZE    DESCRIPTION
 | |
| **      4     Page number of the left child. Omitted if leaf flag is set.
 | |
| **     var    Number of bytes of data. Omitted if the zerodata flag is set.
 | |
| **     var    Number of bytes of key. Or the key itself if intkey flag is set.
 | |
| **      *     Payload
 | |
| **      4     First page of the overflow chain.  Omitted if no overflow
 | |
| **
 | |
| ** Overflow pages form a linked list.  Each page except the last is completely
 | |
| ** filled with data (pagesize - 4 bytes).  The last page can have as little
 | |
| ** as 1 byte of data.
 | |
| **
 | |
| **    SIZE    DESCRIPTION
 | |
| **      4     Page number of next overflow page
 | |
| **      *     Data
 | |
| **
 | |
| ** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
 | |
| ** file header points to the first in a linked list of trunk page.  Each trunk
 | |
| ** page points to multiple leaf pages.  The content of a leaf page is
 | |
| ** unspecified.  A trunk page looks like this:
 | |
| **
 | |
| **    SIZE    DESCRIPTION
 | |
| **      4     Page number of next trunk page
 | |
| **      4     Number of leaf pointers on this page
 | |
| **      *     zero or more pages numbers of leaves
 | |
| */
 | |
| 
 | |
| /* Round up a number to the next larger multiple of 8.  This is used
 | |
| ** to force 8-byte alignment on 64-bit architectures.
 | |
| */
 | |
| #define ROUND8(x)   ((x+7)&~7)
 | |
| 
 | |
| 
 | |
| /* The following value is the maximum cell size assuming a maximum page
 | |
| ** size give above.
 | |
| */
 | |
| #define MX_CELL_SIZE(pBt)  (pBt->pageSize-8)
 | |
| 
 | |
| /* The maximum number of cells on a single page of the database.  This
 | |
| ** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
 | |
| ** plus 2 bytes for the index to the cell in the page header).  Such
 | |
| ** small cells will be rare, but they are possible.
 | |
| */
 | |
| #define MX_CELL(pBt) ((pBt->pageSize-8)/6)
 | |
| 
 | |
| /* Forward declarations */
 | |
| typedef struct MemPage MemPage;
 | |
| typedef struct BtLock BtLock;
 | |
| 
 | |
| /*
 | |
| ** This is a magic string that appears at the beginning of every
 | |
| ** SQLite database in order to identify the file as a real database.
 | |
| **
 | |
| ** You can change this value at compile-time by specifying a
 | |
| ** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
 | |
| ** header must be exactly 16 bytes including the zero-terminator so
 | |
| ** the string itself should be 15 characters long.  If you change
 | |
| ** the header, then your custom library will not be able to read 
 | |
| ** databases generated by the standard tools and the standard tools
 | |
| ** will not be able to read databases created by your custom library.
 | |
| */
 | |
| #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
 | |
| #  define SQLITE_FILE_HEADER "SQLite format 3"
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Page type flags.  An ORed combination of these flags appear as the
 | |
| ** first byte of on-disk image of every BTree page.
 | |
| */
 | |
| #define PTF_INTKEY    0x01
 | |
| #define PTF_ZERODATA  0x02
 | |
| #define PTF_LEAFDATA  0x04
 | |
| #define PTF_LEAF      0x08
 | |
| 
 | |
| /*
 | |
| ** As each page of the file is loaded into memory, an instance of the following
 | |
| ** structure is appended and initialized to zero.  This structure stores
 | |
| ** information about the page that is decoded from the raw file page.
 | |
| **
 | |
| ** The pParent field points back to the parent page.  This allows us to
 | |
| ** walk up the BTree from any leaf to the root.  Care must be taken to
 | |
| ** unref() the parent page pointer when this page is no longer referenced.
 | |
| ** The pageDestructor() routine handles that chore.
 | |
| **
 | |
| ** Access to all fields of this structure is controlled by the mutex
 | |
| ** stored in MemPage.pBt->mutex.
 | |
| */
 | |
| struct MemPage {
 | |
|   u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
 | |
|   u8 idxShift;         /* True if Cell indices have changed */
 | |
|   u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
 | |
|   u8 intKey;           /* True if intkey flag is set */
 | |
|   u8 leaf;             /* True if leaf flag is set */
 | |
|   u8 zeroData;         /* True if table stores keys only */
 | |
|   u8 leafData;         /* True if tables stores data on leaves only */
 | |
|   u8 hasData;          /* True if this page stores data */
 | |
|   u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
 | |
|   u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
 | |
|   u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
 | |
|   u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
 | |
|   u16 cellOffset;      /* Index in aData of first cell pointer */
 | |
|   u16 idxParent;       /* Index in parent of this node */
 | |
|   u16 nFree;           /* Number of free bytes on the page */
 | |
|   u16 nCell;           /* Number of cells on this page, local and ovfl */
 | |
|   struct _OvflCell {   /* Cells that will not fit on aData[] */
 | |
|     u8 *pCell;          /* Pointers to the body of the overflow cell */
 | |
|     u16 idx;            /* Insert this cell before idx-th non-overflow cell */
 | |
|   } aOvfl[5];
 | |
|   BtShared *pBt;       /* Pointer to BtShared that this page is part of */
 | |
|   u8 *aData;           /* Pointer to disk image of the page data */
 | |
|   DbPage *pDbPage;     /* Pager page handle */
 | |
|   Pgno pgno;           /* Page number for this page */
 | |
|   MemPage *pParent;    /* The parent of this page.  NULL for root */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The in-memory image of a disk page has the auxiliary information appended
 | |
| ** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
 | |
| ** that extra information.
 | |
| */
 | |
| #define EXTRA_SIZE sizeof(MemPage)
 | |
| 
 | |
| /* A Btree handle
 | |
| **
 | |
| ** A database connection contains a pointer to an instance of
 | |
| ** this object for every database file that it has open.  This structure
 | |
| ** is opaque to the database connection.  The database connection cannot
 | |
| ** see the internals of this structure and only deals with pointers to
 | |
| ** this structure.
 | |
| **
 | |
| ** For some database files, the same underlying database cache might be 
 | |
| ** shared between multiple connections.  In that case, each contection
 | |
| ** has it own pointer to this object.  But each instance of this object
 | |
| ** points to the same BtShared object.  The database cache and the
 | |
| ** schema associated with the database file are all contained within
 | |
| ** the BtShared object.
 | |
| **
 | |
| ** All fields in this structure are accessed under sqlite3.mutex.
 | |
| ** The pBt pointer itself may not be changed while there exists cursors 
 | |
| ** in the referenced BtShared that point back to this Btree since those
 | |
| ** cursors have to do go through this Btree to find their BtShared and
 | |
| ** they often do so without holding sqlite3.mutex.
 | |
| */
 | |
| struct Btree {
 | |
|   sqlite3 *db;       /* The database connection holding this btree */
 | |
|   BtShared *pBt;     /* Sharable content of this btree */
 | |
|   u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
 | |
|   u8 sharable;       /* True if we can share pBt with another db */
 | |
|   u8 locked;         /* True if db currently has pBt locked */
 | |
|   int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
 | |
|   Btree *pNext;      /* List of other sharable Btrees from the same db */
 | |
|   Btree *pPrev;      /* Back pointer of the same list */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Btree.inTrans may take one of the following values.
 | |
| **
 | |
| ** If the shared-data extension is enabled, there may be multiple users
 | |
| ** of the Btree structure. At most one of these may open a write transaction,
 | |
| ** but any number may have active read transactions.
 | |
| */
 | |
| #define TRANS_NONE  0
 | |
| #define TRANS_READ  1
 | |
| #define TRANS_WRITE 2
 | |
| 
 | |
| /*
 | |
| ** An instance of this object represents a single database file.
 | |
| ** 
 | |
| ** A single database file can be in use as the same time by two
 | |
| ** or more database connections.  When two or more connections are
 | |
| ** sharing the same database file, each connection has it own
 | |
| ** private Btree object for the file and each of those Btrees points
 | |
| ** to this one BtShared object.  BtShared.nRef is the number of
 | |
| ** connections currently sharing this database file.
 | |
| **
 | |
| ** Fields in this structure are accessed under the BtShared.mutex
 | |
| ** mutex, except for nRef and pNext which are accessed under the
 | |
| ** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
 | |
| ** may not be modified once it is initially set as long as nRef>0.
 | |
| ** The pSchema field may be set once under BtShared.mutex and
 | |
| ** thereafter is unchanged as long as nRef>0.
 | |
| */
 | |
| struct BtShared {
 | |
|   Pager *pPager;        /* The page cache */
 | |
|   sqlite3 *db;          /* Database connection currently using this Btree */
 | |
|   BtCursor *pCursor;    /* A list of all open cursors */
 | |
|   MemPage *pPage1;      /* First page of the database */
 | |
|   u8 inStmt;            /* True if we are in a statement subtransaction */
 | |
|   u8 readOnly;          /* True if the underlying file is readonly */
 | |
|   u8 maxEmbedFrac;      /* Maximum payload as % of total page size */
 | |
|   u8 minEmbedFrac;      /* Minimum payload as % of total page size */
 | |
|   u8 minLeafFrac;       /* Minimum leaf payload as % of total page size */
 | |
|   u8 pageSizeFixed;     /* True if the page size can no longer be changed */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   u8 autoVacuum;        /* True if auto-vacuum is enabled */
 | |
|   u8 incrVacuum;        /* True if incr-vacuum is enabled */
 | |
|   Pgno nTrunc;          /* Non-zero if the db will be truncated (incr vacuum) */
 | |
| #endif
 | |
|   u16 pageSize;         /* Total number of bytes on a page */
 | |
|   u16 usableSize;       /* Number of usable bytes on each page */
 | |
|   int maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
 | |
|   int minLocal;         /* Minimum local payload in non-LEAFDATA tables */
 | |
|   int maxLeaf;          /* Maximum local payload in a LEAFDATA table */
 | |
|   int minLeaf;          /* Minimum local payload in a LEAFDATA table */
 | |
|   u8 inTransaction;     /* Transaction state */
 | |
|   int nTransaction;     /* Number of open transactions (read + write) */
 | |
|   void *pSchema;        /* Pointer to space allocated by sqlite3BtreeSchema() */
 | |
|   void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
 | |
|   sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */
 | |
|   BusyHandler busyHdr;  /* The busy handler for this btree */
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   int nRef;             /* Number of references to this structure */
 | |
|   BtShared *pNext;      /* Next on a list of sharable BtShared structs */
 | |
|   BtLock *pLock;        /* List of locks held on this shared-btree struct */
 | |
|   Btree *pExclusive;    /* Btree with an EXCLUSIVE lock on the whole db */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure is used to hold information
 | |
| ** about a cell.  The parseCellPtr() function fills in this structure
 | |
| ** based on information extract from the raw disk page.
 | |
| */
 | |
| typedef struct CellInfo CellInfo;
 | |
| struct CellInfo {
 | |
|   u8 *pCell;     /* Pointer to the start of cell content */
 | |
|   i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
 | |
|   u32 nData;     /* Number of bytes of data */
 | |
|   u32 nPayload;  /* Total amount of payload */
 | |
|   u16 nHeader;   /* Size of the cell content header in bytes */
 | |
|   u16 nLocal;    /* Amount of payload held locally */
 | |
|   u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
 | |
|   u16 nSize;     /* Size of the cell content on the main b-tree page */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A cursor is a pointer to a particular entry within a particular
 | |
| ** b-tree within a database file.
 | |
| **
 | |
| ** The entry is identified by its MemPage and the index in
 | |
| ** MemPage.aCell[] of the entry.
 | |
| **
 | |
| ** When a single database file can shared by two more database connections,
 | |
| ** but cursors cannot be shared.  Each cursor is associated with a
 | |
| ** particular database connection identified BtCursor.pBtree.db.
 | |
| **
 | |
| ** Fields in this structure are accessed under the BtShared.mutex
 | |
| ** found at self->pBt->mutex. 
 | |
| */
 | |
| struct BtCursor {
 | |
|   Btree *pBtree;            /* The Btree to which this cursor belongs */
 | |
|   BtShared *pBt;            /* The BtShared this cursor points to */
 | |
|   BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
 | |
|   int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
 | |
|   void *pArg;               /* First arg to xCompare() */
 | |
|   Pgno pgnoRoot;            /* The root page of this tree */
 | |
|   MemPage *pPage;           /* Page that contains the entry */
 | |
|   int idx;                  /* Index of the entry in pPage->aCell[] */
 | |
|   CellInfo info;            /* A parse of the cell we are pointing at */
 | |
|   u8 wrFlag;                /* True if writable */
 | |
|   u8 eState;                /* One of the CURSOR_XXX constants (see below) */
 | |
|   void *pKey;      /* Saved key that was cursor's last known position */
 | |
|   i64 nKey;        /* Size of pKey, or last integer key */
 | |
|   int skip;        /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
|   u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
 | |
|   Pgno *aOverflow;          /* Cache of overflow page locations */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Potential values for BtCursor.eState.
 | |
| **
 | |
| ** CURSOR_VALID:
 | |
| **   Cursor points to a valid entry. getPayload() etc. may be called.
 | |
| **
 | |
| ** CURSOR_INVALID:
 | |
| **   Cursor does not point to a valid entry. This can happen (for example) 
 | |
| **   because the table is empty or because BtreeCursorFirst() has not been
 | |
| **   called.
 | |
| **
 | |
| ** CURSOR_REQUIRESEEK:
 | |
| **   The table that this cursor was opened on still exists, but has been 
 | |
| **   modified since the cursor was last used. The cursor position is saved
 | |
| **   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
 | |
| **   this state, restoreOrClearCursorPosition() can be called to attempt to
 | |
| **   seek the cursor to the saved position.
 | |
| **
 | |
| ** CURSOR_FAULT:
 | |
| **   A unrecoverable error (an I/O error or a malloc failure) has occurred
 | |
| **   on a different connection that shares the BtShared cache with this
 | |
| **   cursor.  The error has left the cache in an inconsistent state.
 | |
| **   Do nothing else with this cursor.  Any attempt to use the cursor
 | |
| **   should return the error code stored in BtCursor.skip
 | |
| */
 | |
| #define CURSOR_INVALID           0
 | |
| #define CURSOR_VALID             1
 | |
| #define CURSOR_REQUIRESEEK       2
 | |
| #define CURSOR_FAULT             3
 | |
| 
 | |
| /*
 | |
| ** The TRACE macro will print high-level status information about the
 | |
| ** btree operation when the global variable sqlite3BtreeTrace is
 | |
| ** enabled.
 | |
| */
 | |
| #if SQLITE_TEST
 | |
| # define TRACE(X)   if( sqlite3BtreeTrace ){ printf X; fflush(stdout); }
 | |
| #else
 | |
| # define TRACE(X)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Routines to read and write variable-length integers.  These used to
 | |
| ** be defined locally, but now we use the varint routines in the util.c
 | |
| ** file.
 | |
| */
 | |
| #define getVarint    sqlite3GetVarint
 | |
| #define getVarint32(A,B)  ((*B=*(A))<=0x7f?1:sqlite3GetVarint32(A,B))
 | |
| #define putVarint    sqlite3PutVarint
 | |
| 
 | |
| /* The database page the PENDING_BYTE occupies. This page is never used.
 | |
| ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They
 | |
| ** should possibly be consolidated (presumably in pager.h).
 | |
| **
 | |
| ** If disk I/O is omitted (meaning that the database is stored purely
 | |
| ** in memory) then there is no pending byte.
 | |
| */
 | |
| #ifdef SQLITE_OMIT_DISKIO
 | |
| # define PENDING_BYTE_PAGE(pBt)  0x7fffffff
 | |
| #else
 | |
| # define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** A linked list of the following structures is stored at BtShared.pLock.
 | |
| ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor 
 | |
| ** is opened on the table with root page BtShared.iTable. Locks are removed
 | |
| ** from this list when a transaction is committed or rolled back, or when
 | |
| ** a btree handle is closed.
 | |
| */
 | |
| struct BtLock {
 | |
|   Btree *pBtree;        /* Btree handle holding this lock */
 | |
|   Pgno iTable;          /* Root page of table */
 | |
|   u8 eLock;             /* READ_LOCK or WRITE_LOCK */
 | |
|   BtLock *pNext;        /* Next in BtShared.pLock list */
 | |
| };
 | |
| 
 | |
| /* Candidate values for BtLock.eLock */
 | |
| #define READ_LOCK     1
 | |
| #define WRITE_LOCK    2
 | |
| 
 | |
| /*
 | |
| ** These macros define the location of the pointer-map entry for a 
 | |
| ** database page. The first argument to each is the number of usable
 | |
| ** bytes on each page of the database (often 1024). The second is the
 | |
| ** page number to look up in the pointer map.
 | |
| **
 | |
| ** PTRMAP_PAGENO returns the database page number of the pointer-map
 | |
| ** page that stores the required pointer. PTRMAP_PTROFFSET returns
 | |
| ** the offset of the requested map entry.
 | |
| **
 | |
| ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
 | |
| ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
 | |
| ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
 | |
| ** this test.
 | |
| */
 | |
| #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
 | |
| #define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1))
 | |
| #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
 | |
| 
 | |
| /*
 | |
| ** The pointer map is a lookup table that identifies the parent page for
 | |
| ** each child page in the database file.  The parent page is the page that
 | |
| ** contains a pointer to the child.  Every page in the database contains
 | |
| ** 0 or 1 parent pages.  (In this context 'database page' refers
 | |
| ** to any page that is not part of the pointer map itself.)  Each pointer map
 | |
| ** entry consists of a single byte 'type' and a 4 byte parent page number.
 | |
| ** The PTRMAP_XXX identifiers below are the valid types.
 | |
| **
 | |
| ** The purpose of the pointer map is to facility moving pages from one
 | |
| ** position in the file to another as part of autovacuum.  When a page
 | |
| ** is moved, the pointer in its parent must be updated to point to the
 | |
| ** new location.  The pointer map is used to locate the parent page quickly.
 | |
| **
 | |
| ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
 | |
| **                  used in this case.
 | |
| **
 | |
| ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number 
 | |
| **                  is not used in this case.
 | |
| **
 | |
| ** PTRMAP_OVERFLOW1: The database page is the first page in a list of 
 | |
| **                   overflow pages. The page number identifies the page that
 | |
| **                   contains the cell with a pointer to this overflow page.
 | |
| **
 | |
| ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
 | |
| **                   overflow pages. The page-number identifies the previous
 | |
| **                   page in the overflow page list.
 | |
| **
 | |
| ** PTRMAP_BTREE: The database page is a non-root btree page. The page number
 | |
| **               identifies the parent page in the btree.
 | |
| */
 | |
| #define PTRMAP_ROOTPAGE 1
 | |
| #define PTRMAP_FREEPAGE 2
 | |
| #define PTRMAP_OVERFLOW1 3
 | |
| #define PTRMAP_OVERFLOW2 4
 | |
| #define PTRMAP_BTREE 5
 | |
| 
 | |
| /* A bunch of assert() statements to check the transaction state variables
 | |
| ** of handle p (type Btree*) are internally consistent.
 | |
| */
 | |
| #define btreeIntegrity(p) \
 | |
|   assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
 | |
|   assert( p->pBt->inTransaction>=p->inTrans ); 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
 | |
| ** if the database supports auto-vacuum or not. Because it is used
 | |
| ** within an expression that is an argument to another macro 
 | |
| ** (sqliteMallocRaw), it is not possible to use conditional compilation.
 | |
| ** So, this macro is defined instead.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| #define ISAUTOVACUUM (pBt->autoVacuum)
 | |
| #else
 | |
| #define ISAUTOVACUUM 0
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This structure is passed around through all the sanity checking routines
 | |
| ** in order to keep track of some global state information.
 | |
| */
 | |
| typedef struct IntegrityCk IntegrityCk;
 | |
| struct IntegrityCk {
 | |
|   BtShared *pBt;    /* The tree being checked out */
 | |
|   Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
 | |
|   int nPage;        /* Number of pages in the database */
 | |
|   int *anRef;       /* Number of times each page is referenced */
 | |
|   int mxErr;        /* Stop accumulating errors when this reaches zero */
 | |
|   char *zErrMsg;    /* An error message.  NULL if no errors seen. */
 | |
|   int nErr;         /* Number of messages written to zErrMsg so far */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Read or write a two- and four-byte big-endian integer values.
 | |
| */
 | |
| #define get2byte(x)   ((x)[0]<<8 | (x)[1])
 | |
| #define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v))
 | |
| #define get4byte sqlite3Get4byte
 | |
| #define put4byte sqlite3Put4byte
 | |
| 
 | |
| /*
 | |
| ** Internal routines that should be accessed by the btree layer only.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int);
 | |
| SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent);
 | |
| SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*);
 | |
| SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage*, int, CellInfo*);
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell);
 | |
| #endif
 | |
| SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur);
 | |
| SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur);
 | |
| SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur);
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage);
 | |
| SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur);
 | |
| 
 | |
| /************** End of btreeInt.h ********************************************/
 | |
| /************** Continuing where we left off in btmutex.c ********************/
 | |
| #if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Enter a mutex on the given BTree object.
 | |
| **
 | |
| ** If the object is not sharable, then no mutex is ever required
 | |
| ** and this routine is a no-op.  The underlying mutex is non-recursive.
 | |
| ** But we keep a reference count in Btree.wantToLock so the behavior
 | |
| ** of this interface is recursive.
 | |
| **
 | |
| ** To avoid deadlocks, multiple Btrees are locked in the same order
 | |
| ** by all database connections.  The p->pNext is a list of other
 | |
| ** Btrees belonging to the same database connection as the p Btree
 | |
| ** which need to be locked after p.  If we cannot get a lock on
 | |
| ** p, then first unlock all of the others on p->pNext, then wait
 | |
| ** for the lock to become available on p, then relock all of the
 | |
| ** subsequent Btrees that desire a lock.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
 | |
|   Btree *pLater;
 | |
| 
 | |
|   /* Some basic sanity checking on the Btree.  The list of Btrees
 | |
|   ** connected by pNext and pPrev should be in sorted order by
 | |
|   ** Btree.pBt value. All elements of the list should belong to
 | |
|   ** the same connection. Only shared Btrees are on the list. */
 | |
|   assert( p->pNext==0 || p->pNext->pBt>p->pBt );
 | |
|   assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
 | |
|   assert( p->pNext==0 || p->pNext->db==p->db );
 | |
|   assert( p->pPrev==0 || p->pPrev->db==p->db );
 | |
|   assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
 | |
| 
 | |
|   /* Check for locking consistency */
 | |
|   assert( !p->locked || p->wantToLock>0 );
 | |
|   assert( p->sharable || p->wantToLock==0 );
 | |
| 
 | |
|   /* We should already hold a lock on the database connection */
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );
 | |
| 
 | |
|   if( !p->sharable ) return;
 | |
|   p->wantToLock++;
 | |
|   if( p->locked ) return;
 | |
| 
 | |
| #ifndef SQLITE_MUTEX_NOOP
 | |
|   /* In most cases, we should be able to acquire the lock we
 | |
|   ** want without having to go throught the ascending lock
 | |
|   ** procedure that follows.  Just be sure not to block.
 | |
|   */
 | |
|   if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
 | |
|     p->locked = 1;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* To avoid deadlock, first release all locks with a larger
 | |
|   ** BtShared address.  Then acquire our lock.  Then reacquire
 | |
|   ** the other BtShared locks that we used to hold in ascending
 | |
|   ** order.
 | |
|   */
 | |
|   for(pLater=p->pNext; pLater; pLater=pLater->pNext){
 | |
|     assert( pLater->sharable );
 | |
|     assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
 | |
|     assert( !pLater->locked || pLater->wantToLock>0 );
 | |
|     if( pLater->locked ){
 | |
|       sqlite3_mutex_leave(pLater->pBt->mutex);
 | |
|       pLater->locked = 0;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_mutex_enter(p->pBt->mutex);
 | |
|   p->locked = 1;
 | |
|   for(pLater=p->pNext; pLater; pLater=pLater->pNext){
 | |
|     if( pLater->wantToLock ){
 | |
|       sqlite3_mutex_enter(pLater->pBt->mutex);
 | |
|       pLater->locked = 1;
 | |
|     }
 | |
|   }
 | |
| #endif /* SQLITE_MUTEX_NOOP */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Exit the recursive mutex on a Btree.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
 | |
|   if( p->sharable ){
 | |
|     assert( p->wantToLock>0 );
 | |
|     p->wantToLock--;
 | |
|     if( p->wantToLock==0 ){
 | |
|       assert( p->locked );
 | |
|       sqlite3_mutex_leave(p->pBt->mutex);
 | |
|       p->locked = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /*
 | |
| ** Return true if the BtShared mutex is held on the btree.  
 | |
| **
 | |
| ** This routine makes no determination one why or another if the
 | |
| ** database connection mutex is held.
 | |
| **
 | |
| ** This routine is used only from within assert() statements.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
 | |
|   return (p->sharable==0 ||
 | |
|              (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| /*
 | |
| ** Enter and leave a mutex on a Btree given a cursor owned by that
 | |
| ** Btree.  These entry points are used by incremental I/O and can be
 | |
| ** omitted if that module is not used.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
 | |
|   sqlite3BtreeEnter(pCur->pBtree);
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
 | |
|   sqlite3BtreeLeave(pCur->pBtree);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INCRBLOB */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex on every Btree associated with a database
 | |
| ** connection.  This is needed (for example) prior to parsing
 | |
| ** a statement since we will be comparing table and column names
 | |
| ** against all schemas and we do not want those schemas being
 | |
| ** reset out from under us.
 | |
| **
 | |
| ** There is a corresponding leave-all procedures.
 | |
| **
 | |
| ** Enter the mutexes in accending order by BtShared pointer address
 | |
| ** to avoid the possibility of deadlock when two threads with
 | |
| ** two or more btrees in common both try to lock all their btrees
 | |
| ** at the same instant.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
 | |
|   int i;
 | |
|   Btree *p, *pLater;
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     p = db->aDb[i].pBt;
 | |
|     if( p && p->sharable ){
 | |
|       p->wantToLock++;
 | |
|       if( !p->locked ){
 | |
|         assert( p->wantToLock==1 );
 | |
|         while( p->pPrev ) p = p->pPrev;
 | |
|         while( p->locked && p->pNext ) p = p->pNext;
 | |
|         for(pLater = p->pNext; pLater; pLater=pLater->pNext){
 | |
|           if( pLater->locked ){
 | |
|             sqlite3_mutex_leave(pLater->pBt->mutex);
 | |
|             pLater->locked = 0;
 | |
|           }
 | |
|         }
 | |
|         while( p ){
 | |
|           sqlite3_mutex_enter(p->pBt->mutex);
 | |
|           p->locked++;
 | |
|           p = p->pNext;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
 | |
|   int i;
 | |
|   Btree *p;
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     p = db->aDb[i].pBt;
 | |
|     if( p && p->sharable ){
 | |
|       assert( p->wantToLock>0 );
 | |
|       p->wantToLock--;
 | |
|       if( p->wantToLock==0 ){
 | |
|         assert( p->locked );
 | |
|         sqlite3_mutex_leave(p->pBt->mutex);
 | |
|         p->locked = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /*
 | |
| ** Return true if the current thread holds the database connection
 | |
| ** mutex and all required BtShared mutexes.
 | |
| **
 | |
| ** This routine is used inside assert() statements only.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
 | |
|   int i;
 | |
|   if( !sqlite3_mutex_held(db->mutex) ){
 | |
|     return 0;
 | |
|   }
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     Btree *p;
 | |
|     p = db->aDb[i].pBt;
 | |
|     if( p && p->sharable &&
 | |
|          (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
| /*
 | |
| ** Potentially dd a new Btree pointer to a BtreeMutexArray.
 | |
| ** Really only add the Btree if it can possibly be shared with
 | |
| ** another database connection.
 | |
| **
 | |
| ** The Btrees are kept in sorted order by pBtree->pBt.  That
 | |
| ** way when we go to enter all the mutexes, we can enter them
 | |
| ** in order without every having to backup and retry and without
 | |
| ** worrying about deadlock.
 | |
| **
 | |
| ** The number of shared btrees will always be small (usually 0 or 1)
 | |
| ** so an insertion sort is an adequate algorithm here.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
 | |
|   int i, j;
 | |
|   BtShared *pBt;
 | |
|   if( pBtree==0 || pBtree->sharable==0 ) return;
 | |
| #ifndef NDEBUG
 | |
|   {
 | |
|     for(i=0; i<pArray->nMutex; i++){
 | |
|       assert( pArray->aBtree[i]!=pBtree );
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   assert( pArray->nMutex>=0 );
 | |
|   assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
 | |
|   pBt = pBtree->pBt;
 | |
|   for(i=0; i<pArray->nMutex; i++){
 | |
|     assert( pArray->aBtree[i]!=pBtree );
 | |
|     if( pArray->aBtree[i]->pBt>pBt ){
 | |
|       for(j=pArray->nMutex; j>i; j--){
 | |
|         pArray->aBtree[j] = pArray->aBtree[j-1];
 | |
|       }
 | |
|       pArray->aBtree[i] = pBtree;
 | |
|       pArray->nMutex++;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   pArray->aBtree[pArray->nMutex++] = pBtree;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Enter the mutex of every btree in the array.  This routine is
 | |
| ** called at the beginning of sqlite3VdbeExec().  The mutexes are
 | |
| ** exited at the end of the same function.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
 | |
|   int i;
 | |
|   for(i=0; i<pArray->nMutex; i++){
 | |
|     Btree *p = pArray->aBtree[i];
 | |
|     /* Some basic sanity checking */
 | |
|     assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
 | |
|     assert( !p->locked || p->wantToLock>0 );
 | |
| 
 | |
|     /* We should already hold a lock on the database connection */
 | |
|     assert( sqlite3_mutex_held(p->db->mutex) );
 | |
| 
 | |
|     p->wantToLock++;
 | |
|     if( !p->locked && p->sharable ){
 | |
|       sqlite3_mutex_enter(p->pBt->mutex);
 | |
|       p->locked = 1;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Leave the mutex of every btree in the group.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
 | |
|   int i;
 | |
|   for(i=0; i<pArray->nMutex; i++){
 | |
|     Btree *p = pArray->aBtree[i];
 | |
|     /* Some basic sanity checking */
 | |
|     assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
 | |
|     assert( p->locked || !p->sharable );
 | |
|     assert( p->wantToLock>0 );
 | |
| 
 | |
|     /* We should already hold a lock on the database connection */
 | |
|     assert( sqlite3_mutex_held(p->db->mutex) );
 | |
| 
 | |
|     p->wantToLock--;
 | |
|     if( p->wantToLock==0 && p->locked ){
 | |
|       sqlite3_mutex_leave(p->pBt->mutex);
 | |
|       p->locked = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif  /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| /************** End of btmutex.c *********************************************/
 | |
| /************** Begin file btree.c *******************************************/
 | |
| /*
 | |
| ** 2004 April 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** $Id: btree.c,v 1.440 2008/03/04 17:45:01 mlcreech Exp $
 | |
| **
 | |
| ** This file implements a external (disk-based) database using BTrees.
 | |
| ** See the header comment on "btreeInt.h" for additional information.
 | |
| ** Including a description of file format and an overview of operation.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The header string that appears at the beginning of every
 | |
| ** SQLite database.
 | |
| */
 | |
| static const char zMagicHeader[] = SQLITE_FILE_HEADER;
 | |
| 
 | |
| /*
 | |
| ** Set this global variable to 1 to enable tracing using the TRACE
 | |
| ** macro.
 | |
| */
 | |
| #if SQLITE_TEST
 | |
| int sqlite3BtreeTrace=0;  /* True to enable tracing */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** A flag to indicate whether or not shared cache is enabled.  Also,
 | |
| ** a list of BtShared objects that are eligible for participation
 | |
| ** in shared cache.  The variables have file scope during normal builds,
 | |
| ** but the test harness needs to access these variables so we make them
 | |
| ** global for test builds.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_PRIVATE BtShared *sqlite3SharedCacheList = 0;
 | |
| SQLITE_PRIVATE int sqlite3SharedCacheEnabled = 0;
 | |
| #else
 | |
| static BtShared *sqlite3SharedCacheList = 0;
 | |
| static int sqlite3SharedCacheEnabled = 0;
 | |
| #endif
 | |
| #endif /* SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** Enable or disable the shared pager and schema features.
 | |
| **
 | |
| ** This routine has no effect on existing database connections.
 | |
| ** The shared cache setting effects only future calls to
 | |
| ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
 | |
| */
 | |
| SQLITE_API int sqlite3_enable_shared_cache(int enable){
 | |
|   sqlite3SharedCacheEnabled = enable;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Forward declaration
 | |
| */
 | |
| static int checkReadLocks(Btree*,Pgno,BtCursor*);
 | |
| 
 | |
| 
 | |
| #ifdef SQLITE_OMIT_SHARED_CACHE
 | |
|   /*
 | |
|   ** The functions queryTableLock(), lockTable() and unlockAllTables()
 | |
|   ** manipulate entries in the BtShared.pLock linked list used to store
 | |
|   ** shared-cache table level locks. If the library is compiled with the
 | |
|   ** shared-cache feature disabled, then there is only ever one user
 | |
|   ** of each BtShared structure and so this locking is not necessary. 
 | |
|   ** So define the lock related functions as no-ops.
 | |
|   */
 | |
|   #define queryTableLock(a,b,c) SQLITE_OK
 | |
|   #define lockTable(a,b,c) SQLITE_OK
 | |
|   #define unlockAllTables(a)
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** Query to see if btree handle p may obtain a lock of type eLock 
 | |
| ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
 | |
| ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
 | |
| ** SQLITE_LOCKED if not.
 | |
| */
 | |
| static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   BtLock *pIter;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
|   
 | |
|   /* This is a no-op if the shared-cache is not enabled */
 | |
|   if( !p->sharable ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* If some other connection is holding an exclusive lock, the
 | |
|   ** requested lock may not be obtained.
 | |
|   */
 | |
|   if( pBt->pExclusive && pBt->pExclusive!=p ){
 | |
|     return SQLITE_LOCKED;
 | |
|   }
 | |
| 
 | |
|   /* This (along with lockTable()) is where the ReadUncommitted flag is
 | |
|   ** dealt with. If the caller is querying for a read-lock and the flag is
 | |
|   ** set, it is unconditionally granted - even if there are write-locks
 | |
|   ** on the table. If a write-lock is requested, the ReadUncommitted flag
 | |
|   ** is not considered.
 | |
|   **
 | |
|   ** In function lockTable(), if a read-lock is demanded and the 
 | |
|   ** ReadUncommitted flag is set, no entry is added to the locks list 
 | |
|   ** (BtShared.pLock).
 | |
|   **
 | |
|   ** To summarize: If the ReadUncommitted flag is set, then read cursors do
 | |
|   ** not create or respect table locks. The locking procedure for a 
 | |
|   ** write-cursor does not change.
 | |
|   */
 | |
|   if( 
 | |
|     !p->db || 
 | |
|     0==(p->db->flags&SQLITE_ReadUncommitted) || 
 | |
|     eLock==WRITE_LOCK ||
 | |
|     iTab==MASTER_ROOT
 | |
|   ){
 | |
|     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
 | |
|       if( pIter->pBtree!=p && pIter->iTable==iTab && 
 | |
|           (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
 | |
|         return SQLITE_LOCKED;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** Add a lock on the table with root-page iTable to the shared-btree used
 | |
| ** by Btree handle p. Parameter eLock must be either READ_LOCK or 
 | |
| ** WRITE_LOCK.
 | |
| **
 | |
| ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
 | |
| ** SQLITE_NOMEM may also be returned.
 | |
| */
 | |
| static int lockTable(Btree *p, Pgno iTable, u8 eLock){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   BtLock *pLock = 0;
 | |
|   BtLock *pIter;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
| 
 | |
|   /* This is a no-op if the shared-cache is not enabled */
 | |
|   if( !p->sharable ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
 | |
| 
 | |
|   /* If the read-uncommitted flag is set and a read-lock is requested,
 | |
|   ** return early without adding an entry to the BtShared.pLock list. See
 | |
|   ** comment in function queryTableLock() for more info on handling 
 | |
|   ** the ReadUncommitted flag.
 | |
|   */
 | |
|   if( 
 | |
|     (p->db) && 
 | |
|     (p->db->flags&SQLITE_ReadUncommitted) && 
 | |
|     (eLock==READ_LOCK) &&
 | |
|     iTable!=MASTER_ROOT
 | |
|   ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* First search the list for an existing lock on this table. */
 | |
|   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
 | |
|     if( pIter->iTable==iTable && pIter->pBtree==p ){
 | |
|       pLock = pIter;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the above search did not find a BtLock struct associating Btree p
 | |
|   ** with table iTable, allocate one and link it into the list.
 | |
|   */
 | |
|   if( !pLock ){
 | |
|     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
 | |
|     if( !pLock ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     pLock->iTable = iTable;
 | |
|     pLock->pBtree = p;
 | |
|     pLock->pNext = pBt->pLock;
 | |
|     pBt->pLock = pLock;
 | |
|   }
 | |
| 
 | |
|   /* Set the BtLock.eLock variable to the maximum of the current lock
 | |
|   ** and the requested lock. This means if a write-lock was already held
 | |
|   ** and a read-lock requested, we don't incorrectly downgrade the lock.
 | |
|   */
 | |
|   assert( WRITE_LOCK>READ_LOCK );
 | |
|   if( eLock>pLock->eLock ){
 | |
|     pLock->eLock = eLock;
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** Release all the table locks (locks obtained via calls to the lockTable()
 | |
| ** procedure) held by Btree handle p.
 | |
| */
 | |
| static void unlockAllTables(Btree *p){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   BtLock **ppIter = &pBt->pLock;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
|   assert( p->sharable || 0==*ppIter );
 | |
| 
 | |
|   while( *ppIter ){
 | |
|     BtLock *pLock = *ppIter;
 | |
|     assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
 | |
|     if( pLock->pBtree==p ){
 | |
|       *ppIter = pLock->pNext;
 | |
|       sqlite3_free(pLock);
 | |
|     }else{
 | |
|       ppIter = &pLock->pNext;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( pBt->pExclusive==p ){
 | |
|     pBt->pExclusive = 0;
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| static void releasePage(MemPage *pPage);  /* Forward reference */
 | |
| 
 | |
| /*
 | |
| ** Verify that the cursor holds a mutex on the BtShared
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| static int cursorHoldsMutex(BtCursor *p){
 | |
|   return sqlite3_mutex_held(p->pBt->mutex);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| /*
 | |
| ** Invalidate the overflow page-list cache for cursor pCur, if any.
 | |
| */
 | |
| static void invalidateOverflowCache(BtCursor *pCur){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   sqlite3_free(pCur->aOverflow);
 | |
|   pCur->aOverflow = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invalidate the overflow page-list cache for all cursors opened
 | |
| ** on the shared btree structure pBt.
 | |
| */
 | |
| static void invalidateAllOverflowCache(BtShared *pBt){
 | |
|   BtCursor *p;
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   for(p=pBt->pCursor; p; p=p->pNext){
 | |
|     invalidateOverflowCache(p);
 | |
|   }
 | |
| }
 | |
| #else
 | |
|   #define invalidateOverflowCache(x)
 | |
|   #define invalidateAllOverflowCache(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Save the current cursor position in the variables BtCursor.nKey 
 | |
| ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
 | |
| */
 | |
| static int saveCursorPosition(BtCursor *pCur){
 | |
|   int rc;
 | |
| 
 | |
|   assert( CURSOR_VALID==pCur->eState );
 | |
|   assert( 0==pCur->pKey );
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
| 
 | |
|   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
 | |
| 
 | |
|   /* If this is an intKey table, then the above call to BtreeKeySize()
 | |
|   ** stores the integer key in pCur->nKey. In this case this value is
 | |
|   ** all that is required. Otherwise, if pCur is not open on an intKey
 | |
|   ** table, then malloc space for and store the pCur->nKey bytes of key 
 | |
|   ** data.
 | |
|   */
 | |
|   if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
 | |
|     void *pKey = sqlite3_malloc(pCur->nKey);
 | |
|     if( pKey ){
 | |
|       rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         pCur->pKey = pKey;
 | |
|       }else{
 | |
|         sqlite3_free(pKey);
 | |
|       }
 | |
|     }else{
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }
 | |
|   }
 | |
|   assert( !pCur->pPage->intKey || !pCur->pKey );
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     releasePage(pCur->pPage);
 | |
|     pCur->pPage = 0;
 | |
|     pCur->eState = CURSOR_REQUIRESEEK;
 | |
|   }
 | |
| 
 | |
|   invalidateOverflowCache(pCur);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Save the positions of all cursors except pExcept open on the table 
 | |
| ** with root-page iRoot. Usually, this is called just before cursor
 | |
| ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
 | |
| */
 | |
| static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
 | |
|   BtCursor *p;
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   assert( pExcept==0 || pExcept->pBt==pBt );
 | |
|   for(p=pBt->pCursor; p; p=p->pNext){
 | |
|     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
 | |
|         p->eState==CURSOR_VALID ){
 | |
|       int rc = saveCursorPosition(p);
 | |
|       if( SQLITE_OK!=rc ){
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the current cursor position.
 | |
| */
 | |
| static void clearCursorPosition(BtCursor *pCur){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   sqlite3_free(pCur->pKey);
 | |
|   pCur->pKey = 0;
 | |
|   pCur->eState = CURSOR_INVALID;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Restore the cursor to the position it was in (or as close to as possible)
 | |
| ** when saveCursorPosition() was called. Note that this call deletes the 
 | |
| ** saved position info stored by saveCursorPosition(), so there can be
 | |
| ** at most one effective restoreOrClearCursorPosition() call after each 
 | |
| ** saveCursorPosition().
 | |
| **
 | |
| ** If the second argument argument - doSeek - is false, then instead of 
 | |
| ** returning the cursor to its saved position, any saved position is deleted
 | |
| ** and the cursor state set to CURSOR_INVALID.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){
 | |
|   int rc;
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pCur->eState>=CURSOR_REQUIRESEEK );
 | |
|   if( pCur->eState==CURSOR_FAULT ){
 | |
|     return pCur->skip;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
|   if( pCur->isIncrblobHandle ){
 | |
|     return SQLITE_ABORT;
 | |
|   }
 | |
| #endif
 | |
|   pCur->eState = CURSOR_INVALID;
 | |
|   rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     sqlite3_free(pCur->pKey);
 | |
|     pCur->pKey = 0;
 | |
|     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #define restoreOrClearCursorPosition(p) \
 | |
|   (p->eState>=CURSOR_REQUIRESEEK ? \
 | |
|          sqlite3BtreeRestoreOrClearCursorPosition(p) : \
 | |
|          SQLITE_OK)
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| /*
 | |
| ** Given a page number of a regular database page, return the page
 | |
| ** number for the pointer-map page that contains the entry for the
 | |
| ** input page number.
 | |
| */
 | |
| static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
 | |
|   int nPagesPerMapPage, iPtrMap, ret;
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   nPagesPerMapPage = (pBt->usableSize/5)+1;
 | |
|   iPtrMap = (pgno-2)/nPagesPerMapPage;
 | |
|   ret = (iPtrMap*nPagesPerMapPage) + 2; 
 | |
|   if( ret==PENDING_BYTE_PAGE(pBt) ){
 | |
|     ret++;
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write an entry into the pointer map.
 | |
| **
 | |
| ** This routine updates the pointer map entry for page number 'key'
 | |
| ** so that it maps to type 'eType' and parent page number 'pgno'.
 | |
| ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
 | |
| */
 | |
| static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
 | |
|   DbPage *pDbPage;  /* The pointer map page */
 | |
|   u8 *pPtrmap;      /* The pointer map data */
 | |
|   Pgno iPtrmap;     /* The pointer map page number */
 | |
|   int offset;       /* Offset in pointer map page */
 | |
|   int rc;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   /* The master-journal page number must never be used as a pointer map page */
 | |
|   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
 | |
| 
 | |
|   assert( pBt->autoVacuum );
 | |
|   if( key==0 ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   iPtrmap = PTRMAP_PAGENO(pBt, key);
 | |
|   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   offset = PTRMAP_PTROFFSET(pBt, key);
 | |
|   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
 | |
| 
 | |
|   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
 | |
|     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
 | |
|     rc = sqlite3PagerWrite(pDbPage);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pPtrmap[offset] = eType;
 | |
|       put4byte(&pPtrmap[offset+1], parent);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3PagerUnref(pDbPage);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read an entry from the pointer map.
 | |
| **
 | |
| ** This routine retrieves the pointer map entry for page 'key', writing
 | |
| ** the type and parent page number to *pEType and *pPgno respectively.
 | |
| ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
 | |
| */
 | |
| static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
 | |
|   DbPage *pDbPage;   /* The pointer map page */
 | |
|   int iPtrmap;       /* Pointer map page index */
 | |
|   u8 *pPtrmap;       /* Pointer map page data */
 | |
|   int offset;        /* Offset of entry in pointer map */
 | |
|   int rc;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
| 
 | |
|   iPtrmap = PTRMAP_PAGENO(pBt, key);
 | |
|   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
 | |
|   if( rc!=0 ){
 | |
|     return rc;
 | |
|   }
 | |
|   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
 | |
| 
 | |
|   offset = PTRMAP_PTROFFSET(pBt, key);
 | |
|   assert( pEType!=0 );
 | |
|   *pEType = pPtrmap[offset];
 | |
|   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
 | |
| 
 | |
|   sqlite3PagerUnref(pDbPage);
 | |
|   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_AUTOVACUUM */
 | |
| 
 | |
| /*
 | |
| ** Given a btree page and a cell index (0 means the first cell on
 | |
| ** the page, 1 means the second cell, and so forth) return a pointer
 | |
| ** to the cell content.
 | |
| **
 | |
| ** This routine works only for pages that do not contain overflow cells.
 | |
| */
 | |
| #define findCell(pPage, iCell) \
 | |
|   ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)]))
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){
 | |
|   assert( iCell>=0 );
 | |
|   assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) );
 | |
|   return findCell(pPage, iCell);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This a more complex version of sqlite3BtreeFindCell() that works for
 | |
| ** pages that do contain overflow cells.  See insert
 | |
| */
 | |
| static u8 *findOverflowCell(MemPage *pPage, int iCell){
 | |
|   int i;
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   for(i=pPage->nOverflow-1; i>=0; i--){
 | |
|     int k;
 | |
|     struct _OvflCell *pOvfl;
 | |
|     pOvfl = &pPage->aOvfl[i];
 | |
|     k = pOvfl->idx;
 | |
|     if( k<=iCell ){
 | |
|       if( k==iCell ){
 | |
|         return pOvfl->pCell;
 | |
|       }
 | |
|       iCell--;
 | |
|     }
 | |
|   }
 | |
|   return findCell(pPage, iCell);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parse a cell content block and fill in the CellInfo structure.  There
 | |
| ** are two versions of this function.  sqlite3BtreeParseCell() takes a 
 | |
| ** cell index as the second argument and sqlite3BtreeParseCellPtr() 
 | |
| ** takes a pointer to the body of the cell as its second argument.
 | |
| **
 | |
| ** Within this file, the parseCell() macro can be called instead of
 | |
| ** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(
 | |
|   MemPage *pPage,         /* Page containing the cell */
 | |
|   u8 *pCell,              /* Pointer to the cell text. */
 | |
|   CellInfo *pInfo         /* Fill in this structure */
 | |
| ){
 | |
|   int n;                  /* Number bytes in cell content header */
 | |
|   u32 nPayload;           /* Number of bytes of cell payload */
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
| 
 | |
|   pInfo->pCell = pCell;
 | |
|   assert( pPage->leaf==0 || pPage->leaf==1 );
 | |
|   n = pPage->childPtrSize;
 | |
|   assert( n==4-4*pPage->leaf );
 | |
|   if( pPage->hasData ){
 | |
|     n += getVarint32(&pCell[n], &nPayload);
 | |
|   }else{
 | |
|     nPayload = 0;
 | |
|   }
 | |
|   pInfo->nData = nPayload;
 | |
|   if( pPage->intKey ){
 | |
|     n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
 | |
|   }else{
 | |
|     u32 x;
 | |
|     n += getVarint32(&pCell[n], &x);
 | |
|     pInfo->nKey = x;
 | |
|     nPayload += x;
 | |
|   }
 | |
|   pInfo->nPayload = nPayload;
 | |
|   pInfo->nHeader = n;
 | |
|   if( nPayload<=pPage->maxLocal ){
 | |
|     /* This is the (easy) common case where the entire payload fits
 | |
|     ** on the local page.  No overflow is required.
 | |
|     */
 | |
|     int nSize;          /* Total size of cell content in bytes */
 | |
|     pInfo->nLocal = nPayload;
 | |
|     pInfo->iOverflow = 0;
 | |
|     nSize = nPayload + n;
 | |
|     if( nSize<4 ){
 | |
|       nSize = 4;        /* Minimum cell size is 4 */
 | |
|     }
 | |
|     pInfo->nSize = nSize;
 | |
|   }else{
 | |
|     /* If the payload will not fit completely on the local page, we have
 | |
|     ** to decide how much to store locally and how much to spill onto
 | |
|     ** overflow pages.  The strategy is to minimize the amount of unused
 | |
|     ** space on overflow pages while keeping the amount of local storage
 | |
|     ** in between minLocal and maxLocal.
 | |
|     **
 | |
|     ** Warning:  changing the way overflow payload is distributed in any
 | |
|     ** way will result in an incompatible file format.
 | |
|     */
 | |
|     int minLocal;  /* Minimum amount of payload held locally */
 | |
|     int maxLocal;  /* Maximum amount of payload held locally */
 | |
|     int surplus;   /* Overflow payload available for local storage */
 | |
| 
 | |
|     minLocal = pPage->minLocal;
 | |
|     maxLocal = pPage->maxLocal;
 | |
|     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
 | |
|     if( surplus <= maxLocal ){
 | |
|       pInfo->nLocal = surplus;
 | |
|     }else{
 | |
|       pInfo->nLocal = minLocal;
 | |
|     }
 | |
|     pInfo->iOverflow = pInfo->nLocal + n;
 | |
|     pInfo->nSize = pInfo->iOverflow + 4;
 | |
|   }
 | |
| }
 | |
| #define parseCell(pPage, iCell, pInfo) \
 | |
|   sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
 | |
| SQLITE_PRIVATE void sqlite3BtreeParseCell(
 | |
|   MemPage *pPage,         /* Page containing the cell */
 | |
|   int iCell,              /* The cell index.  First cell is 0 */
 | |
|   CellInfo *pInfo         /* Fill in this structure */
 | |
| ){
 | |
|   parseCell(pPage, iCell, pInfo);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute the total number of bytes that a Cell needs in the cell
 | |
| ** data area of the btree-page.  The return number includes the cell
 | |
| ** data header and the local payload, but not any overflow page or
 | |
| ** the space used by the cell pointer.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| static u16 cellSize(MemPage *pPage, int iCell){
 | |
|   CellInfo info;
 | |
|   sqlite3BtreeParseCell(pPage, iCell, &info);
 | |
|   return info.nSize;
 | |
| }
 | |
| #endif
 | |
| static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
 | |
|   CellInfo info;
 | |
|   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|   return info.nSize;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| /*
 | |
| ** If the cell pCell, part of page pPage contains a pointer
 | |
| ** to an overflow page, insert an entry into the pointer-map
 | |
| ** for the overflow page.
 | |
| */
 | |
| static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
 | |
|   if( pCell ){
 | |
|     CellInfo info;
 | |
|     sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|     assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
 | |
|     if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
 | |
|       Pgno ovfl = get4byte(&pCell[info.iOverflow]);
 | |
|       return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| /*
 | |
| ** If the cell with index iCell on page pPage contains a pointer
 | |
| ** to an overflow page, insert an entry into the pointer-map
 | |
| ** for the overflow page.
 | |
| */
 | |
| static int ptrmapPutOvfl(MemPage *pPage, int iCell){
 | |
|   u8 *pCell;
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   pCell = findOverflowCell(pPage, iCell);
 | |
|   return ptrmapPutOvflPtr(pPage, pCell);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Defragment the page given.  All Cells are moved to the
 | |
| ** end of the page and all free space is collected into one
 | |
| ** big FreeBlk that occurs in between the header and cell
 | |
| ** pointer array and the cell content area.
 | |
| */
 | |
| static int defragmentPage(MemPage *pPage){
 | |
|   int i;                     /* Loop counter */
 | |
|   int pc;                    /* Address of a i-th cell */
 | |
|   int addr;                  /* Offset of first byte after cell pointer array */
 | |
|   int hdr;                   /* Offset to the page header */
 | |
|   int size;                  /* Size of a cell */
 | |
|   int usableSize;            /* Number of usable bytes on a page */
 | |
|   int cellOffset;            /* Offset to the cell pointer array */
 | |
|   int brk;                   /* Offset to the cell content area */
 | |
|   int nCell;                 /* Number of cells on the page */
 | |
|   unsigned char *data;       /* The page data */
 | |
|   unsigned char *temp;       /* Temp area for cell content */
 | |
| 
 | |
|   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
 | |
|   assert( pPage->pBt!=0 );
 | |
|   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
 | |
|   assert( pPage->nOverflow==0 );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
 | |
|   data = pPage->aData;
 | |
|   hdr = pPage->hdrOffset;
 | |
|   cellOffset = pPage->cellOffset;
 | |
|   nCell = pPage->nCell;
 | |
|   assert( nCell==get2byte(&data[hdr+3]) );
 | |
|   usableSize = pPage->pBt->usableSize;
 | |
|   brk = get2byte(&data[hdr+5]);
 | |
|   memcpy(&temp[brk], &data[brk], usableSize - brk);
 | |
|   brk = usableSize;
 | |
|   for(i=0; i<nCell; i++){
 | |
|     u8 *pAddr;     /* The i-th cell pointer */
 | |
|     pAddr = &data[cellOffset + i*2];
 | |
|     pc = get2byte(pAddr);
 | |
|     assert( pc<pPage->pBt->usableSize );
 | |
|     size = cellSizePtr(pPage, &temp[pc]);
 | |
|     brk -= size;
 | |
|     memcpy(&data[brk], &temp[pc], size);
 | |
|     put2byte(pAddr, brk);
 | |
|   }
 | |
|   assert( brk>=cellOffset+2*nCell );
 | |
|   put2byte(&data[hdr+5], brk);
 | |
|   data[hdr+1] = 0;
 | |
|   data[hdr+2] = 0;
 | |
|   data[hdr+7] = 0;
 | |
|   addr = cellOffset+2*nCell;
 | |
|   memset(&data[addr], 0, brk-addr);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nByte bytes of space on a page.
 | |
| **
 | |
| ** Return the index into pPage->aData[] of the first byte of
 | |
| ** the new allocation. Or return 0 if there is not enough free
 | |
| ** space on the page to satisfy the allocation request.
 | |
| **
 | |
| ** If the page contains nBytes of free space but does not contain
 | |
| ** nBytes of contiguous free space, then this routine automatically
 | |
| ** calls defragementPage() to consolidate all free space before 
 | |
| ** allocating the new chunk.
 | |
| */
 | |
| static int allocateSpace(MemPage *pPage, int nByte){
 | |
|   int addr, pc, hdr;
 | |
|   int size;
 | |
|   int nFrag;
 | |
|   int top;
 | |
|   int nCell;
 | |
|   int cellOffset;
 | |
|   unsigned char *data;
 | |
|   
 | |
|   data = pPage->aData;
 | |
|   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
 | |
|   assert( pPage->pBt );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( nByte<4 ) nByte = 4;
 | |
|   if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
 | |
|   pPage->nFree -= nByte;
 | |
|   hdr = pPage->hdrOffset;
 | |
| 
 | |
|   nFrag = data[hdr+7];
 | |
|   if( nFrag<60 ){
 | |
|     /* Search the freelist looking for a slot big enough to satisfy the
 | |
|     ** space request. */
 | |
|     addr = hdr+1;
 | |
|     while( (pc = get2byte(&data[addr]))>0 ){
 | |
|       size = get2byte(&data[pc+2]);
 | |
|       if( size>=nByte ){
 | |
|         if( size<nByte+4 ){
 | |
|           memcpy(&data[addr], &data[pc], 2);
 | |
|           data[hdr+7] = nFrag + size - nByte;
 | |
|           return pc;
 | |
|         }else{
 | |
|           put2byte(&data[pc+2], size-nByte);
 | |
|           return pc + size - nByte;
 | |
|         }
 | |
|       }
 | |
|       addr = pc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Allocate memory from the gap in between the cell pointer array
 | |
|   ** and the cell content area.
 | |
|   */
 | |
|   top = get2byte(&data[hdr+5]);
 | |
|   nCell = get2byte(&data[hdr+3]);
 | |
|   cellOffset = pPage->cellOffset;
 | |
|   if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
 | |
|     if( defragmentPage(pPage) ) return 0;
 | |
|     top = get2byte(&data[hdr+5]);
 | |
|   }
 | |
|   top -= nByte;
 | |
|   assert( cellOffset + 2*nCell <= top );
 | |
|   put2byte(&data[hdr+5], top);
 | |
|   return top;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a section of the pPage->aData to the freelist.
 | |
| ** The first byte of the new free block is pPage->aDisk[start]
 | |
| ** and the size of the block is "size" bytes.
 | |
| **
 | |
| ** Most of the effort here is involved in coalesing adjacent
 | |
| ** free blocks into a single big free block.
 | |
| */
 | |
| static void freeSpace(MemPage *pPage, int start, int size){
 | |
|   int addr, pbegin, hdr;
 | |
|   unsigned char *data = pPage->aData;
 | |
| 
 | |
|   assert( pPage->pBt!=0 );
 | |
|   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
 | |
|   assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
 | |
|   assert( (start + size)<=pPage->pBt->usableSize );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( size<4 ) size = 4;
 | |
| 
 | |
| #ifdef SQLITE_SECURE_DELETE
 | |
|   /* Overwrite deleted information with zeros when the SECURE_DELETE 
 | |
|   ** option is enabled at compile-time */
 | |
|   memset(&data[start], 0, size);
 | |
| #endif
 | |
| 
 | |
|   /* Add the space back into the linked list of freeblocks */
 | |
|   hdr = pPage->hdrOffset;
 | |
|   addr = hdr + 1;
 | |
|   while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
 | |
|     assert( pbegin<=pPage->pBt->usableSize-4 );
 | |
|     assert( pbegin>addr );
 | |
|     addr = pbegin;
 | |
|   }
 | |
|   assert( pbegin<=pPage->pBt->usableSize-4 );
 | |
|   assert( pbegin>addr || pbegin==0 );
 | |
|   put2byte(&data[addr], start);
 | |
|   put2byte(&data[start], pbegin);
 | |
|   put2byte(&data[start+2], size);
 | |
|   pPage->nFree += size;
 | |
| 
 | |
|   /* Coalesce adjacent free blocks */
 | |
|   addr = pPage->hdrOffset + 1;
 | |
|   while( (pbegin = get2byte(&data[addr]))>0 ){
 | |
|     int pnext, psize;
 | |
|     assert( pbegin>addr );
 | |
|     assert( pbegin<=pPage->pBt->usableSize-4 );
 | |
|     pnext = get2byte(&data[pbegin]);
 | |
|     psize = get2byte(&data[pbegin+2]);
 | |
|     if( pbegin + psize + 3 >= pnext && pnext>0 ){
 | |
|       int frag = pnext - (pbegin+psize);
 | |
|       assert( frag<=data[pPage->hdrOffset+7] );
 | |
|       data[pPage->hdrOffset+7] -= frag;
 | |
|       put2byte(&data[pbegin], get2byte(&data[pnext]));
 | |
|       put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
 | |
|     }else{
 | |
|       addr = pbegin;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the cell content area begins with a freeblock, remove it. */
 | |
|   if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
 | |
|     int top;
 | |
|     pbegin = get2byte(&data[hdr+1]);
 | |
|     memcpy(&data[hdr+1], &data[pbegin], 2);
 | |
|     top = get2byte(&data[hdr+5]);
 | |
|     put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Decode the flags byte (the first byte of the header) for a page
 | |
| ** and initialize fields of the MemPage structure accordingly.
 | |
| */
 | |
| static void decodeFlags(MemPage *pPage, int flagByte){
 | |
|   BtShared *pBt;     /* A copy of pPage->pBt */
 | |
| 
 | |
|   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
 | |
|   pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
 | |
|   pPage->leaf = (flagByte & PTF_LEAF)!=0;
 | |
|   pPage->childPtrSize = 4*(pPage->leaf==0);
 | |
|   pBt = pPage->pBt;
 | |
|   if( flagByte & PTF_LEAFDATA ){
 | |
|     pPage->leafData = 1;
 | |
|     pPage->maxLocal = pBt->maxLeaf;
 | |
|     pPage->minLocal = pBt->minLeaf;
 | |
|   }else{
 | |
|     pPage->leafData = 0;
 | |
|     pPage->maxLocal = pBt->maxLocal;
 | |
|     pPage->minLocal = pBt->minLocal;
 | |
|   }
 | |
|   pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize the auxiliary information for a disk block.
 | |
| **
 | |
| ** The pParent parameter must be a pointer to the MemPage which
 | |
| ** is the parent of the page being initialized.  The root of a
 | |
| ** BTree has no parent and so for that page, pParent==NULL.
 | |
| **
 | |
| ** Return SQLITE_OK on success.  If we see that the page does
 | |
| ** not contain a well-formed database page, then return 
 | |
| ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
 | |
| ** guarantee that the page is well-formed.  It only shows that
 | |
| ** we failed to detect any corruption.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeInitPage(
 | |
|   MemPage *pPage,        /* The page to be initialized */
 | |
|   MemPage *pParent       /* The parent.  Might be NULL */
 | |
| ){
 | |
|   int pc;            /* Address of a freeblock within pPage->aData[] */
 | |
|   int hdr;           /* Offset to beginning of page header */
 | |
|   u8 *data;          /* Equal to pPage->aData */
 | |
|   BtShared *pBt;        /* The main btree structure */
 | |
|   int usableSize;    /* Amount of usable space on each page */
 | |
|   int cellOffset;    /* Offset from start of page to first cell pointer */
 | |
|   int nFree;         /* Number of unused bytes on the page */
 | |
|   int top;           /* First byte of the cell content area */
 | |
| 
 | |
|   pBt = pPage->pBt;
 | |
|   assert( pBt!=0 );
 | |
|   assert( pParent==0 || pParent->pBt==pBt );
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
 | |
|   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
 | |
|   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
 | |
|   if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
 | |
|     /* The parent page should never change unless the file is corrupt */
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   if( pPage->isInit ) return SQLITE_OK;
 | |
|   if( pPage->pParent==0 && pParent!=0 ){
 | |
|     pPage->pParent = pParent;
 | |
|     sqlite3PagerRef(pParent->pDbPage);
 | |
|   }
 | |
|   hdr = pPage->hdrOffset;
 | |
|   data = pPage->aData;
 | |
|   decodeFlags(pPage, data[hdr]);
 | |
|   pPage->nOverflow = 0;
 | |
|   pPage->idxShift = 0;
 | |
|   usableSize = pBt->usableSize;
 | |
|   pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
 | |
|   top = get2byte(&data[hdr+5]);
 | |
|   pPage->nCell = get2byte(&data[hdr+3]);
 | |
|   if( pPage->nCell>MX_CELL(pBt) ){
 | |
|     /* To many cells for a single page.  The page must be corrupt */
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
 | |
|     /* All pages must have at least one cell, except for root pages */
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
| 
 | |
|   /* Compute the total free space on the page */
 | |
|   pc = get2byte(&data[hdr+1]);
 | |
|   nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
 | |
|   while( pc>0 ){
 | |
|     int next, size;
 | |
|     if( pc>usableSize-4 ){
 | |
|       /* Free block is off the page */
 | |
|       return SQLITE_CORRUPT_BKPT; 
 | |
|     }
 | |
|     next = get2byte(&data[pc]);
 | |
|     size = get2byte(&data[pc+2]);
 | |
|     if( next>0 && next<=pc+size+3 ){
 | |
|       /* Free blocks must be in accending order */
 | |
|       return SQLITE_CORRUPT_BKPT; 
 | |
|     }
 | |
|     nFree += size;
 | |
|     pc = next;
 | |
|   }
 | |
|   pPage->nFree = nFree;
 | |
|   if( nFree>=usableSize ){
 | |
|     /* Free space cannot exceed total page size */
 | |
|     return SQLITE_CORRUPT_BKPT; 
 | |
|   }
 | |
| 
 | |
|   pPage->isInit = 1;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set up a raw page so that it looks like a database page holding
 | |
| ** no entries.
 | |
| */
 | |
| static void zeroPage(MemPage *pPage, int flags){
 | |
|   unsigned char *data = pPage->aData;
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   int hdr = pPage->hdrOffset;
 | |
|   int first;
 | |
| 
 | |
|   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
 | |
|   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
 | |
|   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
 | |
|   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   memset(&data[hdr], 0, pBt->usableSize - hdr);
 | |
|   data[hdr] = flags;
 | |
|   first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
 | |
|   memset(&data[hdr+1], 0, 4);
 | |
|   data[hdr+7] = 0;
 | |
|   put2byte(&data[hdr+5], pBt->usableSize);
 | |
|   pPage->nFree = pBt->usableSize - first;
 | |
|   decodeFlags(pPage, flags);
 | |
|   pPage->hdrOffset = hdr;
 | |
|   pPage->cellOffset = first;
 | |
|   pPage->nOverflow = 0;
 | |
|   pPage->idxShift = 0;
 | |
|   pPage->nCell = 0;
 | |
|   pPage->isInit = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Get a page from the pager.  Initialize the MemPage.pBt and
 | |
| ** MemPage.aData elements if needed.
 | |
| **
 | |
| ** If the noContent flag is set, it means that we do not care about
 | |
| ** the content of the page at this time.  So do not go to the disk
 | |
| ** to fetch the content.  Just fill in the content with zeros for now.
 | |
| ** If in the future we call sqlite3PagerWrite() on this page, that
 | |
| ** means we have started to be concerned about content and the disk
 | |
| ** read should occur at that point.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetPage(
 | |
|   BtShared *pBt,       /* The btree */
 | |
|   Pgno pgno,           /* Number of the page to fetch */
 | |
|   MemPage **ppPage,    /* Return the page in this parameter */
 | |
|   int noContent        /* Do not load page content if true */
 | |
| ){
 | |
|   int rc;
 | |
|   MemPage *pPage;
 | |
|   DbPage *pDbPage;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
 | |
|   if( rc ) return rc;
 | |
|   pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
 | |
|   pPage->aData = sqlite3PagerGetData(pDbPage);
 | |
|   pPage->pDbPage = pDbPage;
 | |
|   pPage->pBt = pBt;
 | |
|   pPage->pgno = pgno;
 | |
|   pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
 | |
|   *ppPage = pPage;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Get a page from the pager and initialize it.  This routine
 | |
| ** is just a convenience wrapper around separate calls to
 | |
| ** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
 | |
| */
 | |
| static int getAndInitPage(
 | |
|   BtShared *pBt,          /* The database file */
 | |
|   Pgno pgno,           /* Number of the page to get */
 | |
|   MemPage **ppPage,    /* Write the page pointer here */
 | |
|   MemPage *pParent     /* Parent of the page */
 | |
| ){
 | |
|   int rc;
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   if( pgno==0 ){
 | |
|     return SQLITE_CORRUPT_BKPT; 
 | |
|   }
 | |
|   rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
 | |
|   if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
 | |
|     rc = sqlite3BtreeInitPage(*ppPage, pParent);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release a MemPage.  This should be called once for each prior
 | |
| ** call to sqlite3BtreeGetPage.
 | |
| */
 | |
| static void releasePage(MemPage *pPage){
 | |
|   if( pPage ){
 | |
|     assert( pPage->aData );
 | |
|     assert( pPage->pBt );
 | |
|     assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
 | |
|     assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
 | |
|     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|     sqlite3PagerUnref(pPage->pDbPage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called when the reference count for a page
 | |
| ** reaches zero.  We need to unref the pParent pointer when that
 | |
| ** happens.
 | |
| */
 | |
| static void pageDestructor(DbPage *pData, int pageSize){
 | |
|   MemPage *pPage;
 | |
|   assert( (pageSize & 7)==0 );
 | |
|   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
 | |
|   assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( pPage->pParent ){
 | |
|     MemPage *pParent = pPage->pParent;
 | |
|     assert( pParent->pBt==pPage->pBt );
 | |
|     pPage->pParent = 0;
 | |
|     releasePage(pParent);
 | |
|   }
 | |
|   pPage->isInit = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** During a rollback, when the pager reloads information into the cache
 | |
| ** so that the cache is restored to its original state at the start of
 | |
| ** the transaction, for each page restored this routine is called.
 | |
| **
 | |
| ** This routine needs to reset the extra data section at the end of the
 | |
| ** page to agree with the restored data.
 | |
| */
 | |
| static void pageReinit(DbPage *pData, int pageSize){
 | |
|   MemPage *pPage;
 | |
|   assert( (pageSize & 7)==0 );
 | |
|   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
 | |
|   if( pPage->isInit ){
 | |
|     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|     pPage->isInit = 0;
 | |
|     sqlite3BtreeInitPage(pPage, pPage->pParent);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the busy handler for a btree.
 | |
| */
 | |
| static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
 | |
|   BtShared *pBt = (BtShared*)pArg;
 | |
|   assert( pBt->db );
 | |
|   assert( sqlite3_mutex_held(pBt->db->mutex) );
 | |
|   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open a database file.
 | |
| ** 
 | |
| ** zFilename is the name of the database file.  If zFilename is NULL
 | |
| ** a new database with a random name is created.  This randomly named
 | |
| ** database file will be deleted when sqlite3BtreeClose() is called.
 | |
| ** If zFilename is ":memory:" then an in-memory database is created
 | |
| ** that is automatically destroyed when it is closed.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeOpen(
 | |
|   const char *zFilename,  /* Name of the file containing the BTree database */
 | |
|   sqlite3 *db,            /* Associated database handle */
 | |
|   Btree **ppBtree,        /* Pointer to new Btree object written here */
 | |
|   int flags,              /* Options */
 | |
|   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
 | |
| ){
 | |
|   sqlite3_vfs *pVfs;      /* The VFS to use for this btree */
 | |
|   BtShared *pBt = 0;      /* Shared part of btree structure */
 | |
|   Btree *p;               /* Handle to return */
 | |
|   int rc = SQLITE_OK;
 | |
|   int nReserve;
 | |
|   unsigned char zDbHeader[100];
 | |
| 
 | |
|   /* Set the variable isMemdb to true for an in-memory database, or 
 | |
|   ** false for a file-based database. This symbol is only required if
 | |
|   ** either of the shared-data or autovacuum features are compiled 
 | |
|   ** into the library.
 | |
|   */
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
 | |
|   #ifdef SQLITE_OMIT_MEMORYDB
 | |
|     const int isMemdb = 0;
 | |
|   #else
 | |
|     const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
|   assert( db!=0 );
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
| 
 | |
|   pVfs = db->pVfs;
 | |
|   p = sqlite3MallocZero(sizeof(Btree));
 | |
|   if( !p ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   p->inTrans = TRANS_NONE;
 | |
|   p->db = db;
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
 | |
|   /*
 | |
|   ** If this Btree is a candidate for shared cache, try to find an
 | |
|   ** existing BtShared object that we can share with
 | |
|   */
 | |
|   if( (flags & BTREE_PRIVATE)==0
 | |
|    && isMemdb==0
 | |
|    && (db->flags & SQLITE_Vtab)==0
 | |
|    && zFilename && zFilename[0]
 | |
|   ){
 | |
|     if( sqlite3SharedCacheEnabled ){
 | |
|       int nFullPathname = pVfs->mxPathname+1;
 | |
|       char *zFullPathname = (char *)sqlite3_malloc(nFullPathname);
 | |
|       sqlite3_mutex *mutexShared;
 | |
|       p->sharable = 1;
 | |
|       if( db ){
 | |
|         db->flags |= SQLITE_SharedCache;
 | |
|       }
 | |
|       if( !zFullPathname ){
 | |
|         sqlite3_free(p);
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|       sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
 | |
|       mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
|       sqlite3_mutex_enter(mutexShared);
 | |
|       for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
 | |
|         assert( pBt->nRef>0 );
 | |
|         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
 | |
|                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
 | |
|           p->pBt = pBt;
 | |
|           pBt->nRef++;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       sqlite3_mutex_leave(mutexShared);
 | |
|       sqlite3_free(zFullPathname);
 | |
|     }
 | |
| #ifdef SQLITE_DEBUG
 | |
|     else{
 | |
|       /* In debug mode, we mark all persistent databases as sharable
 | |
|       ** even when they are not.  This exercises the locking code and
 | |
|       ** gives more opportunity for asserts(sqlite3_mutex_held())
 | |
|       ** statements to find locking problems.
 | |
|       */
 | |
|       p->sharable = 1;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| #endif
 | |
|   if( pBt==0 ){
 | |
|     /*
 | |
|     ** The following asserts make sure that structures used by the btree are
 | |
|     ** the right size.  This is to guard against size changes that result
 | |
|     ** when compiling on a different architecture.
 | |
|     */
 | |
|     assert( sizeof(i64)==8 || sizeof(i64)==4 );
 | |
|     assert( sizeof(u64)==8 || sizeof(u64)==4 );
 | |
|     assert( sizeof(u32)==4 );
 | |
|     assert( sizeof(u16)==2 );
 | |
|     assert( sizeof(Pgno)==4 );
 | |
|   
 | |
|     pBt = sqlite3MallocZero( sizeof(*pBt) );
 | |
|     if( pBt==0 ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|       goto btree_open_out;
 | |
|     }
 | |
|     pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
 | |
|     pBt->busyHdr.pArg = pBt;
 | |
|     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
 | |
|                           EXTRA_SIZE, flags, vfsFlags);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto btree_open_out;
 | |
|     }
 | |
|     sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
 | |
|     p->pBt = pBt;
 | |
|   
 | |
|     sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
 | |
|     sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
 | |
|     pBt->pCursor = 0;
 | |
|     pBt->pPage1 = 0;
 | |
|     pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
 | |
|     pBt->pageSize = get2byte(&zDbHeader[16]);
 | |
|     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
 | |
|          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
 | |
|       pBt->pageSize = 0;
 | |
|       sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
 | |
|       pBt->maxEmbedFrac = 64;   /* 25% */
 | |
|       pBt->minEmbedFrac = 32;   /* 12.5% */
 | |
|       pBt->minLeafFrac = 32;    /* 12.5% */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       /* If the magic name ":memory:" will create an in-memory database, then
 | |
|       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
 | |
|       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
 | |
|       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
 | |
|       ** regular file-name. In this case the auto-vacuum applies as per normal.
 | |
|       */
 | |
|       if( zFilename && !isMemdb ){
 | |
|         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
 | |
|         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
 | |
|       }
 | |
| #endif
 | |
|       nReserve = 0;
 | |
|     }else{
 | |
|       nReserve = zDbHeader[20];
 | |
|       pBt->maxEmbedFrac = zDbHeader[21];
 | |
|       pBt->minEmbedFrac = zDbHeader[22];
 | |
|       pBt->minLeafFrac = zDbHeader[23];
 | |
|       pBt->pageSizeFixed = 1;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
 | |
|       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
 | |
| #endif
 | |
|     }
 | |
|     pBt->usableSize = pBt->pageSize - nReserve;
 | |
|     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
 | |
|     sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
 | |
|    
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
 | |
|     /* Add the new BtShared object to the linked list sharable BtShareds.
 | |
|     */
 | |
|     if( p->sharable ){
 | |
|       sqlite3_mutex *mutexShared;
 | |
|       pBt->nRef = 1;
 | |
|       mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
|       if( SQLITE_THREADSAFE ){
 | |
|         pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
 | |
|         if( pBt->mutex==0 ){
 | |
|           rc = SQLITE_NOMEM;
 | |
|           db->mallocFailed = 0;
 | |
|           goto btree_open_out;
 | |
|         }
 | |
|       }
 | |
|       sqlite3_mutex_enter(mutexShared);
 | |
|       pBt->pNext = sqlite3SharedCacheList;
 | |
|       sqlite3SharedCacheList = pBt;
 | |
|       sqlite3_mutex_leave(mutexShared);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
 | |
|   /* If the new Btree uses a sharable pBtShared, then link the new
 | |
|   ** Btree into the list of all sharable Btrees for the same connection.
 | |
|   ** The list is kept in ascending order by pBt address.
 | |
|   */
 | |
|   if( p->sharable ){
 | |
|     int i;
 | |
|     Btree *pSib;
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
 | |
|         while( pSib->pPrev ){ pSib = pSib->pPrev; }
 | |
|         if( p->pBt<pSib->pBt ){
 | |
|           p->pNext = pSib;
 | |
|           p->pPrev = 0;
 | |
|           pSib->pPrev = p;
 | |
|         }else{
 | |
|           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
 | |
|             pSib = pSib->pNext;
 | |
|           }
 | |
|           p->pNext = pSib->pNext;
 | |
|           p->pPrev = pSib;
 | |
|           if( p->pNext ){
 | |
|             p->pNext->pPrev = p;
 | |
|           }
 | |
|           pSib->pNext = p;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   *ppBtree = p;
 | |
| 
 | |
| btree_open_out:
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     if( pBt && pBt->pPager ){
 | |
|       sqlite3PagerClose(pBt->pPager);
 | |
|     }
 | |
|     sqlite3_free(pBt);
 | |
|     sqlite3_free(p);
 | |
|     *ppBtree = 0;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Decrement the BtShared.nRef counter.  When it reaches zero,
 | |
| ** remove the BtShared structure from the sharing list.  Return
 | |
| ** true if the BtShared.nRef counter reaches zero and return
 | |
| ** false if it is still positive.
 | |
| */
 | |
| static int removeFromSharingList(BtShared *pBt){
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   sqlite3_mutex *pMaster;
 | |
|   BtShared *pList;
 | |
|   int removed = 0;
 | |
| 
 | |
|   assert( sqlite3_mutex_notheld(pBt->mutex) );
 | |
|   pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
|   sqlite3_mutex_enter(pMaster);
 | |
|   pBt->nRef--;
 | |
|   if( pBt->nRef<=0 ){
 | |
|     if( sqlite3SharedCacheList==pBt ){
 | |
|       sqlite3SharedCacheList = pBt->pNext;
 | |
|     }else{
 | |
|       pList = sqlite3SharedCacheList;
 | |
|       while( pList && pList->pNext!=pBt ){
 | |
|         pList=pList->pNext;
 | |
|       }
 | |
|       if( pList ){
 | |
|         pList->pNext = pBt->pNext;
 | |
|       }
 | |
|     }
 | |
|     if( SQLITE_THREADSAFE ){
 | |
|       sqlite3_mutex_free(pBt->mutex);
 | |
|     }
 | |
|     removed = 1;
 | |
|   }
 | |
|   sqlite3_mutex_leave(pMaster);
 | |
|   return removed;
 | |
| #else
 | |
|   return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close an open database and invalidate all cursors.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   BtCursor *pCur;
 | |
| 
 | |
|   /* Close all cursors opened via this handle.  */
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   pCur = pBt->pCursor;
 | |
|   while( pCur ){
 | |
|     BtCursor *pTmp = pCur;
 | |
|     pCur = pCur->pNext;
 | |
|     if( pTmp->pBtree==p ){
 | |
|       sqlite3BtreeCloseCursor(pTmp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Rollback any active transaction and free the handle structure.
 | |
|   ** The call to sqlite3BtreeRollback() drops any table-locks held by
 | |
|   ** this handle.
 | |
|   */
 | |
|   sqlite3BtreeRollback(p);
 | |
|   sqlite3BtreeLeave(p);
 | |
| 
 | |
|   /* If there are still other outstanding references to the shared-btree
 | |
|   ** structure, return now. The remainder of this procedure cleans 
 | |
|   ** up the shared-btree.
 | |
|   */
 | |
|   assert( p->wantToLock==0 && p->locked==0 );
 | |
|   if( !p->sharable || removeFromSharingList(pBt) ){
 | |
|     /* The pBt is no longer on the sharing list, so we can access
 | |
|     ** it without having to hold the mutex.
 | |
|     **
 | |
|     ** Clean out and delete the BtShared object.
 | |
|     */
 | |
|     assert( !pBt->pCursor );
 | |
|     sqlite3PagerClose(pBt->pPager);
 | |
|     if( pBt->xFreeSchema && pBt->pSchema ){
 | |
|       pBt->xFreeSchema(pBt->pSchema);
 | |
|     }
 | |
|     sqlite3_free(pBt->pSchema);
 | |
|     sqlite3_free(pBt);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   assert( p->wantToLock==0 );
 | |
|   assert( p->locked==0 );
 | |
|   if( p->pPrev ) p->pPrev->pNext = p->pNext;
 | |
|   if( p->pNext ) p->pNext->pPrev = p->pPrev;
 | |
| #endif
 | |
| 
 | |
|   sqlite3_free(p);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the limit on the number of pages allowed in the cache.
 | |
| **
 | |
| ** The maximum number of cache pages is set to the absolute
 | |
| ** value of mxPage.  If mxPage is negative, the pager will
 | |
| ** operate asynchronously - it will not stop to do fsync()s
 | |
| ** to insure data is written to the disk surface before
 | |
| ** continuing.  Transactions still work if synchronous is off,
 | |
| ** and the database cannot be corrupted if this program
 | |
| ** crashes.  But if the operating system crashes or there is
 | |
| ** an abrupt power failure when synchronous is off, the database
 | |
| ** could be left in an inconsistent and unrecoverable state.
 | |
| ** Synchronous is on by default so database corruption is not
 | |
| ** normally a worry.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );
 | |
|   sqlite3BtreeEnter(p);
 | |
|   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the way data is synced to disk in order to increase or decrease
 | |
| ** how well the database resists damage due to OS crashes and power
 | |
| ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
 | |
| ** there is a high probability of damage)  Level 2 is the default.  There
 | |
| ** is a very low but non-zero probability of damage.  Level 3 reduces the
 | |
| ** probability of damage to near zero but with a write performance reduction.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );
 | |
|   sqlite3BtreeEnter(p);
 | |
|   sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given btree is set to safety level 1.  In other
 | |
| ** words, return TRUE if no sync() occurs on the disk files.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   int rc;
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );  
 | |
|   sqlite3BtreeEnter(p);
 | |
|   assert( pBt && pBt->pPager );
 | |
|   rc = sqlite3PagerNosync(pBt->pPager);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
 | |
| /*
 | |
| ** Change the default pages size and the number of reserved bytes per page.
 | |
| **
 | |
| ** The page size must be a power of 2 between 512 and 65536.  If the page
 | |
| ** size supplied does not meet this constraint then the page size is not
 | |
| ** changed.
 | |
| **
 | |
| ** Page sizes are constrained to be a power of two so that the region
 | |
| ** of the database file used for locking (beginning at PENDING_BYTE,
 | |
| ** the first byte past the 1GB boundary, 0x40000000) needs to occur
 | |
| ** at the beginning of a page.
 | |
| **
 | |
| ** If parameter nReserve is less than zero, then the number of reserved
 | |
| ** bytes per page is left unchanged.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
 | |
|   int rc = SQLITE_OK;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   if( pBt->pageSizeFixed ){
 | |
|     sqlite3BtreeLeave(p);
 | |
|     return SQLITE_READONLY;
 | |
|   }
 | |
|   if( nReserve<0 ){
 | |
|     nReserve = pBt->pageSize - pBt->usableSize;
 | |
|   }
 | |
|   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
 | |
|         ((pageSize-1)&pageSize)==0 ){
 | |
|     assert( (pageSize & 7)==0 );
 | |
|     assert( !pBt->pPage1 && !pBt->pCursor );
 | |
|     pBt->pageSize = pageSize;
 | |
|     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
 | |
|   }
 | |
|   pBt->usableSize = pBt->pageSize - nReserve;
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the currently defined page size
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
 | |
|   return p->pBt->pageSize;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
 | |
|   int n;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   n = p->pBt->pageSize - p->pBt->usableSize;
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the maximum page count for a database if mxPage is positive.
 | |
| ** No changes are made if mxPage is 0 or negative.
 | |
| ** Regardless of the value of mxPage, return the maximum page count.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
 | |
|   int n;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return n;
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
 | |
| 
 | |
| /*
 | |
| ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
 | |
| ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
 | |
| ** is disabled. The default value for the auto-vacuum property is 
 | |
| ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|   return SQLITE_READONLY;
 | |
| #else
 | |
|   BtShared *pBt = p->pBt;
 | |
|   int rc = SQLITE_OK;
 | |
|   int av = (autoVacuum?1:0);
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
 | |
|     rc = SQLITE_READONLY;
 | |
|   }else{
 | |
|     pBt->autoVacuum = av;
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
 | |
| ** enabled 1 is returned. Otherwise 0.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|   return BTREE_AUTOVACUUM_NONE;
 | |
| #else
 | |
|   int rc;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   rc = (
 | |
|     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
 | |
|     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
 | |
|     BTREE_AUTOVACUUM_INCR
 | |
|   );
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Get a reference to pPage1 of the database file.  This will
 | |
| ** also acquire a readlock on that file.
 | |
| **
 | |
| ** SQLITE_OK is returned on success.  If the file is not a
 | |
| ** well-formed database file, then SQLITE_CORRUPT is returned.
 | |
| ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
 | |
| ** is returned if we run out of memory. 
 | |
| */
 | |
| static int lockBtree(BtShared *pBt){
 | |
|   int rc, pageSize;
 | |
|   MemPage *pPage1;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   if( pBt->pPage1 ) return SQLITE_OK;
 | |
|   rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   
 | |
| 
 | |
|   /* Do some checking to help insure the file we opened really is
 | |
|   ** a valid database file. 
 | |
|   */
 | |
|   rc = SQLITE_NOTADB;
 | |
|   if( sqlite3PagerPagecount(pBt->pPager)>0 ){
 | |
|     u8 *page1 = pPage1->aData;
 | |
|     if( memcmp(page1, zMagicHeader, 16)!=0 ){
 | |
|       goto page1_init_failed;
 | |
|     }
 | |
|     if( page1[18]>1 ){
 | |
|       pBt->readOnly = 1;
 | |
|     }
 | |
|     if( page1[19]>1 ){
 | |
|       goto page1_init_failed;
 | |
|     }
 | |
|     pageSize = get2byte(&page1[16]);
 | |
|     if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
 | |
|         (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
 | |
|     ){
 | |
|       goto page1_init_failed;
 | |
|     }
 | |
|     assert( (pageSize & 7)==0 );
 | |
|     pBt->pageSize = pageSize;
 | |
|     pBt->usableSize = pageSize - page1[20];
 | |
|     if( pBt->usableSize<500 ){
 | |
|       goto page1_init_failed;
 | |
|     }
 | |
|     pBt->maxEmbedFrac = page1[21];
 | |
|     pBt->minEmbedFrac = page1[22];
 | |
|     pBt->minLeafFrac = page1[23];
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
 | |
|     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* maxLocal is the maximum amount of payload to store locally for
 | |
|   ** a cell.  Make sure it is small enough so that at least minFanout
 | |
|   ** cells can will fit on one page.  We assume a 10-byte page header.
 | |
|   ** Besides the payload, the cell must store:
 | |
|   **     2-byte pointer to the cell
 | |
|   **     4-byte child pointer
 | |
|   **     9-byte nKey value
 | |
|   **     4-byte nData value
 | |
|   **     4-byte overflow page pointer
 | |
|   ** So a cell consists of a 2-byte poiner, a header which is as much as
 | |
|   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
 | |
|   ** page pointer.
 | |
|   */
 | |
|   pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
 | |
|   pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
 | |
|   pBt->maxLeaf = pBt->usableSize - 35;
 | |
|   pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
 | |
|   if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
 | |
|     goto page1_init_failed;
 | |
|   }
 | |
|   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
 | |
|   pBt->pPage1 = pPage1;
 | |
|   return SQLITE_OK;
 | |
| 
 | |
| page1_init_failed:
 | |
|   releasePage(pPage1);
 | |
|   pBt->pPage1 = 0;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine works like lockBtree() except that it also invokes the
 | |
| ** busy callback if there is lock contention.
 | |
| */
 | |
| static int lockBtreeWithRetry(Btree *pRef){
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(pRef) );
 | |
|   if( pRef->inTrans==TRANS_NONE ){
 | |
|     u8 inTransaction = pRef->pBt->inTransaction;
 | |
|     btreeIntegrity(pRef);
 | |
|     rc = sqlite3BtreeBeginTrans(pRef, 0);
 | |
|     pRef->pBt->inTransaction = inTransaction;
 | |
|     pRef->inTrans = TRANS_NONE;
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pRef->pBt->nTransaction--;
 | |
|     }
 | |
|     btreeIntegrity(pRef);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
|        
 | |
| 
 | |
| /*
 | |
| ** If there are no outstanding cursors and we are not in the middle
 | |
| ** of a transaction but there is a read lock on the database, then
 | |
| ** this routine unrefs the first page of the database file which 
 | |
| ** has the effect of releasing the read lock.
 | |
| **
 | |
| ** If there are any outstanding cursors, this routine is a no-op.
 | |
| **
 | |
| ** If there is a transaction in progress, this routine is a no-op.
 | |
| */
 | |
| static void unlockBtreeIfUnused(BtShared *pBt){
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
 | |
|     if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
 | |
|       assert( pBt->pPage1->aData );
 | |
| #if 0
 | |
|       if( pBt->pPage1->aData==0 ){
 | |
|         MemPage *pPage = pBt->pPage1;
 | |
|         pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
 | |
|         pPage->pBt = pBt;
 | |
|         pPage->pgno = 1;
 | |
|       }
 | |
| #endif
 | |
|       releasePage(pBt->pPage1);
 | |
|     }
 | |
|     pBt->pPage1 = 0;
 | |
|     pBt->inStmt = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new database by initializing the first page of the
 | |
| ** file.
 | |
| */
 | |
| static int newDatabase(BtShared *pBt){
 | |
|   MemPage *pP1;
 | |
|   unsigned char *data;
 | |
|   int rc;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK;
 | |
|   pP1 = pBt->pPage1;
 | |
|   assert( pP1!=0 );
 | |
|   data = pP1->aData;
 | |
|   rc = sqlite3PagerWrite(pP1->pDbPage);
 | |
|   if( rc ) return rc;
 | |
|   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
 | |
|   assert( sizeof(zMagicHeader)==16 );
 | |
|   put2byte(&data[16], pBt->pageSize);
 | |
|   data[18] = 1;
 | |
|   data[19] = 1;
 | |
|   data[20] = pBt->pageSize - pBt->usableSize;
 | |
|   data[21] = pBt->maxEmbedFrac;
 | |
|   data[22] = pBt->minEmbedFrac;
 | |
|   data[23] = pBt->minLeafFrac;
 | |
|   memset(&data[24], 0, 100-24);
 | |
|   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
 | |
|   pBt->pageSizeFixed = 1;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
 | |
|   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
 | |
|   put4byte(&data[36 + 4*4], pBt->autoVacuum);
 | |
|   put4byte(&data[36 + 7*4], pBt->incrVacuum);
 | |
| #endif
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt to start a new transaction. A write-transaction
 | |
| ** is started if the second argument is nonzero, otherwise a read-
 | |
| ** transaction.  If the second argument is 2 or more and exclusive
 | |
| ** transaction is started, meaning that no other process is allowed
 | |
| ** to access the database.  A preexisting transaction may not be
 | |
| ** upgraded to exclusive by calling this routine a second time - the
 | |
| ** exclusivity flag only works for a new transaction.
 | |
| **
 | |
| ** A write-transaction must be started before attempting any 
 | |
| ** changes to the database.  None of the following routines 
 | |
| ** will work unless a transaction is started first:
 | |
| **
 | |
| **      sqlite3BtreeCreateTable()
 | |
| **      sqlite3BtreeCreateIndex()
 | |
| **      sqlite3BtreeClearTable()
 | |
| **      sqlite3BtreeDropTable()
 | |
| **      sqlite3BtreeInsert()
 | |
| **      sqlite3BtreeDelete()
 | |
| **      sqlite3BtreeUpdateMeta()
 | |
| **
 | |
| ** If an initial attempt to acquire the lock fails because of lock contention
 | |
| ** and the database was previously unlocked, then invoke the busy handler
 | |
| ** if there is one.  But if there was previously a read-lock, do not
 | |
| ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
 | |
| ** returned when there is already a read-lock in order to avoid a deadlock.
 | |
| **
 | |
| ** Suppose there are two processes A and B.  A has a read lock and B has
 | |
| ** a reserved lock.  B tries to promote to exclusive but is blocked because
 | |
| ** of A's read lock.  A tries to promote to reserved but is blocked by B.
 | |
| ** One or the other of the two processes must give way or there can be
 | |
| ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
 | |
| ** when A already has a read lock, we encourage A to give up and let B
 | |
| ** proceed.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   btreeIntegrity(p);
 | |
| 
 | |
|   /* If the btree is already in a write-transaction, or it
 | |
|   ** is already in a read-transaction and a read-transaction
 | |
|   ** is requested, this is a no-op.
 | |
|   */
 | |
|   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
 | |
|     goto trans_begun;
 | |
|   }
 | |
| 
 | |
|   /* Write transactions are not possible on a read-only database */
 | |
|   if( pBt->readOnly && wrflag ){
 | |
|     rc = SQLITE_READONLY;
 | |
|     goto trans_begun;
 | |
|   }
 | |
| 
 | |
|   /* If another database handle has already opened a write transaction 
 | |
|   ** on this shared-btree structure and a second write transaction is
 | |
|   ** requested, return SQLITE_BUSY.
 | |
|   */
 | |
|   if( pBt->inTransaction==TRANS_WRITE && wrflag ){
 | |
|     rc = SQLITE_BUSY;
 | |
|     goto trans_begun;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   if( wrflag>1 ){
 | |
|     BtLock *pIter;
 | |
|     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
 | |
|       if( pIter->pBtree!=p ){
 | |
|         rc = SQLITE_BUSY;
 | |
|         goto trans_begun;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   do {
 | |
|     if( pBt->pPage1==0 ){
 | |
|       rc = lockBtree(pBt);
 | |
|     }
 | |
| 
 | |
|     if( rc==SQLITE_OK && wrflag ){
 | |
|       if( pBt->readOnly ){
 | |
|         rc = SQLITE_READONLY;
 | |
|       }else{
 | |
|         rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
 | |
|         if( rc==SQLITE_OK ){
 | |
|           rc = newDatabase(pBt);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     if( rc==SQLITE_OK ){
 | |
|       if( wrflag ) pBt->inStmt = 0;
 | |
|     }else{
 | |
|       unlockBtreeIfUnused(pBt);
 | |
|     }
 | |
|   }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
 | |
|           sqlite3BtreeInvokeBusyHandler(pBt, 0) );
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( p->inTrans==TRANS_NONE ){
 | |
|       pBt->nTransaction++;
 | |
|     }
 | |
|     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
 | |
|     if( p->inTrans>pBt->inTransaction ){
 | |
|       pBt->inTransaction = p->inTrans;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|     if( wrflag>1 ){
 | |
|       assert( !pBt->pExclusive );
 | |
|       pBt->pExclusive = p;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| 
 | |
| trans_begun:
 | |
|   btreeIntegrity(p);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| 
 | |
| /*
 | |
| ** Set the pointer-map entries for all children of page pPage. Also, if
 | |
| ** pPage contains cells that point to overflow pages, set the pointer
 | |
| ** map entries for the overflow pages as well.
 | |
| */
 | |
| static int setChildPtrmaps(MemPage *pPage){
 | |
|   int i;                             /* Counter variable */
 | |
|   int nCell;                         /* Number of cells in page pPage */
 | |
|   int rc;                            /* Return code */
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   int isInitOrig = pPage->isInit;
 | |
|   Pgno pgno = pPage->pgno;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     goto set_child_ptrmaps_out;
 | |
|   }
 | |
|   nCell = pPage->nCell;
 | |
| 
 | |
|   for(i=0; i<nCell; i++){
 | |
|     u8 *pCell = findCell(pPage, i);
 | |
| 
 | |
|     rc = ptrmapPutOvflPtr(pPage, pCell);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto set_child_ptrmaps_out;
 | |
|     }
 | |
| 
 | |
|     if( !pPage->leaf ){
 | |
|       Pgno childPgno = get4byte(pCell);
 | |
|       rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
 | |
|       if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( !pPage->leaf ){
 | |
|     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
 | |
|     rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
 | |
|   }
 | |
| 
 | |
| set_child_ptrmaps_out:
 | |
|   pPage->isInit = isInitOrig;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
 | |
| ** page, is a pointer to page iFrom. Modify this pointer so that it points to
 | |
| ** iTo. Parameter eType describes the type of pointer to be modified, as 
 | |
| ** follows:
 | |
| **
 | |
| ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
 | |
| **                   page of pPage.
 | |
| **
 | |
| ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
 | |
| **                   page pointed to by one of the cells on pPage.
 | |
| **
 | |
| ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
 | |
| **                   overflow page in the list.
 | |
| */
 | |
| static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( eType==PTRMAP_OVERFLOW2 ){
 | |
|     /* The pointer is always the first 4 bytes of the page in this case.  */
 | |
|     if( get4byte(pPage->aData)!=iFrom ){
 | |
|       return SQLITE_CORRUPT_BKPT;
 | |
|     }
 | |
|     put4byte(pPage->aData, iTo);
 | |
|   }else{
 | |
|     int isInitOrig = pPage->isInit;
 | |
|     int i;
 | |
|     int nCell;
 | |
| 
 | |
|     sqlite3BtreeInitPage(pPage, 0);
 | |
|     nCell = pPage->nCell;
 | |
| 
 | |
|     for(i=0; i<nCell; i++){
 | |
|       u8 *pCell = findCell(pPage, i);
 | |
|       if( eType==PTRMAP_OVERFLOW1 ){
 | |
|         CellInfo info;
 | |
|         sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|         if( info.iOverflow ){
 | |
|           if( iFrom==get4byte(&pCell[info.iOverflow]) ){
 | |
|             put4byte(&pCell[info.iOverflow], iTo);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }else{
 | |
|         if( get4byte(pCell)==iFrom ){
 | |
|           put4byte(pCell, iTo);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     if( i==nCell ){
 | |
|       if( eType!=PTRMAP_BTREE || 
 | |
|           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
 | |
|         return SQLITE_CORRUPT_BKPT;
 | |
|       }
 | |
|       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
 | |
|     }
 | |
| 
 | |
|     pPage->isInit = isInitOrig;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Move the open database page pDbPage to location iFreePage in the 
 | |
| ** database. The pDbPage reference remains valid.
 | |
| */
 | |
| static int relocatePage(
 | |
|   BtShared *pBt,           /* Btree */
 | |
|   MemPage *pDbPage,        /* Open page to move */
 | |
|   u8 eType,                /* Pointer map 'type' entry for pDbPage */
 | |
|   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
 | |
|   Pgno iFreePage           /* The location to move pDbPage to */
 | |
| ){
 | |
|   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
 | |
|   Pgno iDbPage = pDbPage->pgno;
 | |
|   Pager *pPager = pBt->pPager;
 | |
|   int rc;
 | |
| 
 | |
|   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
 | |
|       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   assert( pDbPage->pBt==pBt );
 | |
| 
 | |
|   /* Move page iDbPage from its current location to page number iFreePage */
 | |
|   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
 | |
|       iDbPage, iFreePage, iPtrPage, eType));
 | |
|   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   pDbPage->pgno = iFreePage;
 | |
| 
 | |
|   /* If pDbPage was a btree-page, then it may have child pages and/or cells
 | |
|   ** that point to overflow pages. The pointer map entries for all these
 | |
|   ** pages need to be changed.
 | |
|   **
 | |
|   ** If pDbPage is an overflow page, then the first 4 bytes may store a
 | |
|   ** pointer to a subsequent overflow page. If this is the case, then
 | |
|   ** the pointer map needs to be updated for the subsequent overflow page.
 | |
|   */
 | |
|   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
 | |
|     rc = setChildPtrmaps(pDbPage);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|   }else{
 | |
|     Pgno nextOvfl = get4byte(pDbPage->aData);
 | |
|     if( nextOvfl!=0 ){
 | |
|       rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
 | |
|   ** that it points at iFreePage. Also fix the pointer map entry for
 | |
|   ** iPtrPage.
 | |
|   */
 | |
|   if( eType!=PTRMAP_ROOTPAGE ){
 | |
|     rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       releasePage(pPtrPage);
 | |
|       return rc;
 | |
|     }
 | |
|     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
 | |
|     releasePage(pPtrPage);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Forward declaration required by incrVacuumStep(). */
 | |
| static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
 | |
| 
 | |
| /*
 | |
| ** Perform a single step of an incremental-vacuum. If successful,
 | |
| ** return SQLITE_OK. If there is no work to do (and therefore no
 | |
| ** point in calling this function again), return SQLITE_DONE.
 | |
| **
 | |
| ** More specificly, this function attempts to re-organize the 
 | |
| ** database so that the last page of the file currently in use
 | |
| ** is no longer in use.
 | |
| **
 | |
| ** If the nFin parameter is non-zero, the implementation assumes
 | |
| ** that the caller will keep calling incrVacuumStep() until
 | |
| ** it returns SQLITE_DONE or an error, and that nFin is the
 | |
| ** number of pages the database file will contain after this 
 | |
| ** process is complete.
 | |
| */
 | |
| static int incrVacuumStep(BtShared *pBt, Pgno nFin){
 | |
|   Pgno iLastPg;             /* Last page in the database */
 | |
|   Pgno nFreeList;           /* Number of pages still on the free-list */
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   iLastPg = pBt->nTrunc;
 | |
|   if( iLastPg==0 ){
 | |
|     iLastPg = sqlite3PagerPagecount(pBt->pPager);
 | |
|   }
 | |
| 
 | |
|   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
 | |
|     int rc;
 | |
|     u8 eType;
 | |
|     Pgno iPtrPage;
 | |
| 
 | |
|     nFreeList = get4byte(&pBt->pPage1->aData[36]);
 | |
|     if( nFreeList==0 || nFin==iLastPg ){
 | |
|       return SQLITE_DONE;
 | |
|     }
 | |
| 
 | |
|     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     if( eType==PTRMAP_ROOTPAGE ){
 | |
|       return SQLITE_CORRUPT_BKPT;
 | |
|     }
 | |
| 
 | |
|     if( eType==PTRMAP_FREEPAGE ){
 | |
|       if( nFin==0 ){
 | |
|         /* Remove the page from the files free-list. This is not required
 | |
|         ** if nFin is non-zero. In that case, the free-list will be
 | |
|         ** truncated to zero after this function returns, so it doesn't 
 | |
|         ** matter if it still contains some garbage entries.
 | |
|         */
 | |
|         Pgno iFreePg;
 | |
|         MemPage *pFreePg;
 | |
|         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|         assert( iFreePg==iLastPg );
 | |
|         releasePage(pFreePg);
 | |
|       }
 | |
|     } else {
 | |
|       Pgno iFreePg;             /* Index of free page to move pLastPg to */
 | |
|       MemPage *pLastPg;
 | |
| 
 | |
|       rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
| 
 | |
|       /* If nFin is zero, this loop runs exactly once and page pLastPg
 | |
|       ** is swapped with the first free page pulled off the free list.
 | |
|       **
 | |
|       ** On the other hand, if nFin is greater than zero, then keep
 | |
|       ** looping until a free-page located within the first nFin pages
 | |
|       ** of the file is found.
 | |
|       */
 | |
|       do {
 | |
|         MemPage *pFreePg;
 | |
|         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           releasePage(pLastPg);
 | |
|           return rc;
 | |
|         }
 | |
|         releasePage(pFreePg);
 | |
|       }while( nFin!=0 && iFreePg>nFin );
 | |
|       assert( iFreePg<iLastPg );
 | |
|       
 | |
|       rc = sqlite3PagerWrite(pLastPg->pDbPage);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg);
 | |
|       }
 | |
|       releasePage(pLastPg);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   pBt->nTrunc = iLastPg - 1;
 | |
|   while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
 | |
|     pBt->nTrunc--;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A write-transaction must be opened before calling this function.
 | |
| ** It performs a single unit of work towards an incremental vacuum.
 | |
| **
 | |
| ** If the incremental vacuum is finished after this function has run,
 | |
| ** SQLITE_DONE is returned. If it is not finished, but no error occured,
 | |
| ** SQLITE_OK is returned. Otherwise an SQLite error code. 
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){
 | |
|   int rc;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
 | |
|   if( !pBt->autoVacuum ){
 | |
|     rc = SQLITE_DONE;
 | |
|   }else{
 | |
|     invalidateAllOverflowCache(pBt);
 | |
|     rc = incrVacuumStep(pBt, 0);
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called prior to sqlite3PagerCommit when a transaction
 | |
| ** is commited for an auto-vacuum database.
 | |
| **
 | |
| ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
 | |
| ** the database file should be truncated to during the commit process. 
 | |
| ** i.e. the database has been reorganized so that only the first *pnTrunc
 | |
| ** pages are in use.
 | |
| */
 | |
| static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
 | |
|   int rc = SQLITE_OK;
 | |
|   Pager *pPager = pBt->pPager;
 | |
| #ifndef NDEBUG
 | |
|   int nRef = sqlite3PagerRefcount(pPager);
 | |
| #endif
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   invalidateAllOverflowCache(pBt);
 | |
|   assert(pBt->autoVacuum);
 | |
|   if( !pBt->incrVacuum ){
 | |
|     Pgno nFin = 0;
 | |
| 
 | |
|     if( pBt->nTrunc==0 ){
 | |
|       Pgno nFree;
 | |
|       Pgno nPtrmap;
 | |
|       const int pgsz = pBt->pageSize;
 | |
|       Pgno nOrig = sqlite3PagerPagecount(pBt->pPager);
 | |
| 
 | |
|       if( PTRMAP_ISPAGE(pBt, nOrig) ){
 | |
|         return SQLITE_CORRUPT_BKPT;
 | |
|       }
 | |
|       if( nOrig==PENDING_BYTE_PAGE(pBt) ){
 | |
|         nOrig--;
 | |
|       }
 | |
|       nFree = get4byte(&pBt->pPage1->aData[36]);
 | |
|       nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
 | |
|       nFin = nOrig - nFree - nPtrmap;
 | |
|       if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
 | |
|         nFin--;
 | |
|       }
 | |
|       while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
 | |
|         nFin--;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while( rc==SQLITE_OK ){
 | |
|       rc = incrVacuumStep(pBt, nFin);
 | |
|     }
 | |
|     if( rc==SQLITE_DONE ){
 | |
|       assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
 | |
|       rc = SQLITE_OK;
 | |
|       if( pBt->nTrunc ){
 | |
|         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
 | |
|         put4byte(&pBt->pPage1->aData[32], 0);
 | |
|         put4byte(&pBt->pPage1->aData[36], 0);
 | |
|         pBt->nTrunc = nFin;
 | |
|       }
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3PagerRollback(pPager);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     *pnTrunc = pBt->nTrunc;
 | |
|     pBt->nTrunc = 0;
 | |
|   }
 | |
|   assert( nRef==sqlite3PagerRefcount(pPager) );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This routine does the first phase of a two-phase commit.  This routine
 | |
| ** causes a rollback journal to be created (if it does not already exist)
 | |
| ** and populated with enough information so that if a power loss occurs
 | |
| ** the database can be restored to its original state by playing back
 | |
| ** the journal.  Then the contents of the journal are flushed out to
 | |
| ** the disk.  After the journal is safely on oxide, the changes to the
 | |
| ** database are written into the database file and flushed to oxide.
 | |
| ** At the end of this call, the rollback journal still exists on the
 | |
| ** disk and we are still holding all locks, so the transaction has not
 | |
| ** committed.  See sqlite3BtreeCommit() for the second phase of the
 | |
| ** commit process.
 | |
| **
 | |
| ** This call is a no-op if no write-transaction is currently active on pBt.
 | |
| **
 | |
| ** Otherwise, sync the database file for the btree pBt. zMaster points to
 | |
| ** the name of a master journal file that should be written into the
 | |
| ** individual journal file, or is NULL, indicating no master journal file 
 | |
| ** (single database transaction).
 | |
| **
 | |
| ** When this is called, the master journal should already have been
 | |
| ** created, populated with this journal pointer and synced to disk.
 | |
| **
 | |
| ** Once this is routine has returned, the only thing required to commit
 | |
| ** the write-transaction for this database file is to delete the journal.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( p->inTrans==TRANS_WRITE ){
 | |
|     BtShared *pBt = p->pBt;
 | |
|     Pgno nTrunc = 0;
 | |
|     sqlite3BtreeEnter(p);
 | |
|     pBt->db = p->db;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( pBt->autoVacuum ){
 | |
|       rc = autoVacuumCommit(pBt, &nTrunc); 
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         sqlite3BtreeLeave(p);
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc);
 | |
|     sqlite3BtreeLeave(p);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Commit the transaction currently in progress.
 | |
| **
 | |
| ** This routine implements the second phase of a 2-phase commit.  The
 | |
| ** sqlite3BtreeSync() routine does the first phase and should be invoked
 | |
| ** prior to calling this routine.  The sqlite3BtreeSync() routine did
 | |
| ** all the work of writing information out to disk and flushing the
 | |
| ** contents so that they are written onto the disk platter.  All this
 | |
| ** routine has to do is delete or truncate the rollback journal
 | |
| ** (which causes the transaction to commit) and drop locks.
 | |
| **
 | |
| ** This will release the write lock on the database file.  If there
 | |
| ** are no active cursors, it also releases the read lock.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p){
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   btreeIntegrity(p);
 | |
| 
 | |
|   /* If the handle has a write-transaction open, commit the shared-btrees 
 | |
|   ** transaction and set the shared state to TRANS_READ.
 | |
|   */
 | |
|   if( p->inTrans==TRANS_WRITE ){
 | |
|     int rc;
 | |
|     assert( pBt->inTransaction==TRANS_WRITE );
 | |
|     assert( pBt->nTransaction>0 );
 | |
|     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3BtreeLeave(p);
 | |
|       return rc;
 | |
|     }
 | |
|     pBt->inTransaction = TRANS_READ;
 | |
|     pBt->inStmt = 0;
 | |
|   }
 | |
|   unlockAllTables(p);
 | |
| 
 | |
|   /* If the handle has any kind of transaction open, decrement the transaction
 | |
|   ** count of the shared btree. If the transaction count reaches 0, set
 | |
|   ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
 | |
|   ** will unlock the pager.
 | |
|   */
 | |
|   if( p->inTrans!=TRANS_NONE ){
 | |
|     pBt->nTransaction--;
 | |
|     if( 0==pBt->nTransaction ){
 | |
|       pBt->inTransaction = TRANS_NONE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Set the handles current transaction state to TRANS_NONE and unlock
 | |
|   ** the pager if this call closed the only read or write transaction.
 | |
|   */
 | |
|   p->inTrans = TRANS_NONE;
 | |
|   unlockBtreeIfUnused(pBt);
 | |
| 
 | |
|   btreeIntegrity(p);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Do both phases of a commit.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){
 | |
|   int rc;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   rc = sqlite3BtreeCommitPhaseOne(p, 0);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3BtreeCommitPhaseTwo(p);
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /*
 | |
| ** Return the number of write-cursors open on this handle. This is for use
 | |
| ** in assert() expressions, so it is only compiled if NDEBUG is not
 | |
| ** defined.
 | |
| **
 | |
| ** For the purposes of this routine, a write-cursor is any cursor that
 | |
| ** is capable of writing to the databse.  That means the cursor was
 | |
| ** originally opened for writing and the cursor has not be disabled
 | |
| ** by having its state changed to CURSOR_FAULT.
 | |
| */
 | |
| static int countWriteCursors(BtShared *pBt){
 | |
|   BtCursor *pCur;
 | |
|   int r = 0;
 | |
|   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
 | |
|     if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; 
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This routine sets the state to CURSOR_FAULT and the error
 | |
| ** code to errCode for every cursor on BtShared that pBtree
 | |
| ** references.
 | |
| **
 | |
| ** Every cursor is tripped, including cursors that belong
 | |
| ** to other database connections that happen to be sharing
 | |
| ** the cache with pBtree.
 | |
| **
 | |
| ** This routine gets called when a rollback occurs.
 | |
| ** All cursors using the same cache must be tripped
 | |
| ** to prevent them from trying to use the btree after
 | |
| ** the rollback.  The rollback may have deleted tables
 | |
| ** or moved root pages, so it is not sufficient to
 | |
| ** save the state of the cursor.  The cursor must be
 | |
| ** invalidated.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
 | |
|   BtCursor *p;
 | |
|   sqlite3BtreeEnter(pBtree);
 | |
|   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
 | |
|     clearCursorPosition(p);
 | |
|     p->eState = CURSOR_FAULT;
 | |
|     p->skip = errCode;
 | |
|   }
 | |
|   sqlite3BtreeLeave(pBtree);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback the transaction in progress.  All cursors will be
 | |
| ** invalided by this operation.  Any attempt to use a cursor
 | |
| ** that was open at the beginning of this operation will result
 | |
| ** in an error.
 | |
| **
 | |
| ** This will release the write lock on the database file.  If there
 | |
| ** are no active cursors, it also releases the read lock.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){
 | |
|   int rc;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   MemPage *pPage1;
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   rc = saveAllCursors(pBt, 0, 0);
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     /* This is a horrible situation. An IO or malloc() error occured whilst
 | |
|     ** trying to save cursor positions. If this is an automatic rollback (as
 | |
|     ** the result of a constraint, malloc() failure or IO error) then 
 | |
|     ** the cache may be internally inconsistent (not contain valid trees) so
 | |
|     ** we cannot simply return the error to the caller. Instead, abort 
 | |
|     ** all queries that may be using any of the cursors that failed to save.
 | |
|     */
 | |
|     sqlite3BtreeTripAllCursors(p, rc);
 | |
|   }
 | |
| #endif
 | |
|   btreeIntegrity(p);
 | |
|   unlockAllTables(p);
 | |
| 
 | |
|   if( p->inTrans==TRANS_WRITE ){
 | |
|     int rc2;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     pBt->nTrunc = 0;
 | |
| #endif
 | |
| 
 | |
|     assert( TRANS_WRITE==pBt->inTransaction );
 | |
|     rc2 = sqlite3PagerRollback(pBt->pPager);
 | |
|     if( rc2!=SQLITE_OK ){
 | |
|       rc = rc2;
 | |
|     }
 | |
| 
 | |
|     /* The rollback may have destroyed the pPage1->aData value.  So
 | |
|     ** call sqlite3BtreeGetPage() on page 1 again to make
 | |
|     ** sure pPage1->aData is set correctly. */
 | |
|     if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
 | |
|       releasePage(pPage1);
 | |
|     }
 | |
|     assert( countWriteCursors(pBt)==0 );
 | |
|     pBt->inTransaction = TRANS_READ;
 | |
|   }
 | |
| 
 | |
|   if( p->inTrans!=TRANS_NONE ){
 | |
|     assert( pBt->nTransaction>0 );
 | |
|     pBt->nTransaction--;
 | |
|     if( 0==pBt->nTransaction ){
 | |
|       pBt->inTransaction = TRANS_NONE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   p->inTrans = TRANS_NONE;
 | |
|   pBt->inStmt = 0;
 | |
|   unlockBtreeIfUnused(pBt);
 | |
| 
 | |
|   btreeIntegrity(p);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Start a statement subtransaction.  The subtransaction can
 | |
| ** can be rolled back independently of the main transaction.
 | |
| ** You must start a transaction before starting a subtransaction.
 | |
| ** The subtransaction is ended automatically if the main transaction
 | |
| ** commits or rolls back.
 | |
| **
 | |
| ** Only one subtransaction may be active at a time.  It is an error to try
 | |
| ** to start a new subtransaction if another subtransaction is already active.
 | |
| **
 | |
| ** Statement subtransactions are used around individual SQL statements
 | |
| ** that are contained within a BEGIN...COMMIT block.  If a constraint
 | |
| ** error occurs within the statement, the effect of that one statement
 | |
| ** can be rolled back without having to rollback the entire transaction.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p){
 | |
|   int rc;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
 | |
|     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|   }else{
 | |
|     assert( pBt->inTransaction==TRANS_WRITE );
 | |
|     rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
 | |
|     pBt->inStmt = 1;
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Commit the statment subtransaction currently in progress.  If no
 | |
| ** subtransaction is active, this is a no-op.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree *p){
 | |
|   int rc;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   if( pBt->inStmt && !pBt->readOnly ){
 | |
|     rc = sqlite3PagerStmtCommit(pBt->pPager);
 | |
|   }else{
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   pBt->inStmt = 0;
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback the active statement subtransaction.  If no subtransaction
 | |
| ** is active this routine is a no-op.
 | |
| **
 | |
| ** All cursors will be invalidated by this operation.  Any attempt
 | |
| ** to use a cursor that was open at the beginning of this operation
 | |
| ** will result in an error.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree *p){
 | |
|   int rc = SQLITE_OK;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   if( pBt->inStmt && !pBt->readOnly ){
 | |
|     rc = sqlite3PagerStmtRollback(pBt->pPager);
 | |
|     assert( countWriteCursors(pBt)==0 );
 | |
|     pBt->inStmt = 0;
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Default key comparison function to be used if no comparison function
 | |
| ** is specified on the sqlite3BtreeCursor() call.
 | |
| */
 | |
| static int dfltCompare(
 | |
|   void *NotUsed,             /* User data is not used */
 | |
|   int n1, const void *p1,    /* First key to compare */
 | |
|   int n2, const void *p2     /* Second key to compare */
 | |
| ){
 | |
|   int c;
 | |
|   c = memcmp(p1, p2, n1<n2 ? n1 : n2);
 | |
|   if( c==0 ){
 | |
|     c = n1 - n2;
 | |
|   }
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new cursor for the BTree whose root is on the page
 | |
| ** iTable.  The act of acquiring a cursor gets a read lock on 
 | |
| ** the database file.
 | |
| **
 | |
| ** If wrFlag==0, then the cursor can only be used for reading.
 | |
| ** If wrFlag==1, then the cursor can be used for reading or for
 | |
| ** writing if other conditions for writing are also met.  These
 | |
| ** are the conditions that must be met in order for writing to
 | |
| ** be allowed:
 | |
| **
 | |
| ** 1:  The cursor must have been opened with wrFlag==1
 | |
| **
 | |
| ** 2:  Other database connections that share the same pager cache
 | |
| **     but which are not in the READ_UNCOMMITTED state may not have
 | |
| **     cursors open with wrFlag==0 on the same table.  Otherwise
 | |
| **     the changes made by this write cursor would be visible to
 | |
| **     the read cursors in the other database connection.
 | |
| **
 | |
| ** 3:  The database must be writable (not on read-only media)
 | |
| **
 | |
| ** 4:  There must be an active transaction.
 | |
| **
 | |
| ** No checking is done to make sure that page iTable really is the
 | |
| ** root page of a b-tree.  If it is not, then the cursor acquired
 | |
| ** will not work correctly.
 | |
| **
 | |
| ** The comparison function must be logically the same for every cursor
 | |
| ** on a particular table.  Changing the comparison function will result
 | |
| ** in incorrect operations.  If the comparison function is NULL, a
 | |
| ** default comparison function is used.  The comparison function is
 | |
| ** always ignored for INTKEY tables.
 | |
| */
 | |
| static int btreeCursor(
 | |
|   Btree *p,                                   /* The btree */
 | |
|   int iTable,                                 /* Root page of table to open */
 | |
|   int wrFlag,                                 /* 1 to write. 0 read-only */
 | |
|   int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
 | |
|   void *pArg,                                 /* First arg to xCompare() */
 | |
|   BtCursor **ppCur                            /* Write new cursor here */
 | |
| ){
 | |
|   int rc;
 | |
|   BtCursor *pCur;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
|   *ppCur = 0;
 | |
|   if( wrFlag ){
 | |
|     if( pBt->readOnly ){
 | |
|       return SQLITE_READONLY;
 | |
|     }
 | |
|     if( checkReadLocks(p, iTable, 0) ){
 | |
|       return SQLITE_LOCKED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( pBt->pPage1==0 ){
 | |
|     rc = lockBtreeWithRetry(p);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     if( pBt->readOnly && wrFlag ){
 | |
|       return SQLITE_READONLY;
 | |
|     }
 | |
|   }
 | |
|   pCur = sqlite3MallocZero( sizeof(*pCur) );
 | |
|   if( pCur==0 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|     goto create_cursor_exception;
 | |
|   }
 | |
|   pCur->pgnoRoot = (Pgno)iTable;
 | |
|   if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){
 | |
|     rc = SQLITE_EMPTY;
 | |
|     goto create_cursor_exception;
 | |
|   }
 | |
|   rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     goto create_cursor_exception;
 | |
|   }
 | |
| 
 | |
|   /* Now that no other errors can occur, finish filling in the BtCursor
 | |
|   ** variables, link the cursor into the BtShared list and set *ppCur (the
 | |
|   ** output argument to this function).
 | |
|   */
 | |
|   pCur->xCompare = xCmp ? xCmp : dfltCompare;
 | |
|   pCur->pArg = pArg;
 | |
|   pCur->pBtree = p;
 | |
|   pCur->pBt = pBt;
 | |
|   pCur->wrFlag = wrFlag;
 | |
|   pCur->pNext = pBt->pCursor;
 | |
|   if( pCur->pNext ){
 | |
|     pCur->pNext->pPrev = pCur;
 | |
|   }
 | |
|   pBt->pCursor = pCur;
 | |
|   pCur->eState = CURSOR_INVALID;
 | |
|   *ppCur = pCur;
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| 
 | |
| create_cursor_exception:
 | |
|   if( pCur ){
 | |
|     releasePage(pCur->pPage);
 | |
|     sqlite3_free(pCur);
 | |
|   }
 | |
|   unlockBtreeIfUnused(pBt);
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreeCursor(
 | |
|   Btree *p,                                   /* The btree */
 | |
|   int iTable,                                 /* Root page of table to open */
 | |
|   int wrFlag,                                 /* 1 to write. 0 read-only */
 | |
|   int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
 | |
|   void *pArg,                                 /* First arg to xCompare() */
 | |
|   BtCursor **ppCur                            /* Write new cursor here */
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   p->pBt->db = p->db;
 | |
|   rc = btreeCursor(p, iTable, wrFlag, xCmp, pArg, ppCur);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Close a cursor.  The read lock on the database file is released
 | |
| ** when the last cursor is closed.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){
 | |
|   BtShared *pBt = pCur->pBt;
 | |
|   Btree *pBtree = pCur->pBtree;
 | |
| 
 | |
|   sqlite3BtreeEnter(pBtree);
 | |
|   pBt->db = pBtree->db;
 | |
|   clearCursorPosition(pCur);
 | |
|   if( pCur->pPrev ){
 | |
|     pCur->pPrev->pNext = pCur->pNext;
 | |
|   }else{
 | |
|     pBt->pCursor = pCur->pNext;
 | |
|   }
 | |
|   if( pCur->pNext ){
 | |
|     pCur->pNext->pPrev = pCur->pPrev;
 | |
|   }
 | |
|   releasePage(pCur->pPage);
 | |
|   unlockBtreeIfUnused(pBt);
 | |
|   invalidateOverflowCache(pCur);
 | |
|   sqlite3_free(pCur);
 | |
|   sqlite3BtreeLeave(pBtree);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a temporary cursor by filling in the fields of pTempCur.
 | |
| ** The temporary cursor is not on the cursor list for the Btree.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   memcpy(pTempCur, pCur, sizeof(*pCur));
 | |
|   pTempCur->pNext = 0;
 | |
|   pTempCur->pPrev = 0;
 | |
|   if( pTempCur->pPage ){
 | |
|     sqlite3PagerRef(pTempCur->pPage->pDbPage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
 | |
| ** function above.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   if( pCur->pPage ){
 | |
|     sqlite3PagerUnref(pCur->pPage->pDbPage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure the BtCursor* given in the argument has a valid
 | |
| ** BtCursor.info structure.  If it is not already valid, call
 | |
| ** sqlite3BtreeParseCell() to fill it in.
 | |
| **
 | |
| ** BtCursor.info is a cache of the information in the current cell.
 | |
| ** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
 | |
| **
 | |
| ** 2007-06-25:  There is a bug in some versions of MSVC that cause the
 | |
| ** compiler to crash when getCellInfo() is implemented as a macro.
 | |
| ** But there is a measureable speed advantage to using the macro on gcc
 | |
| ** (when less compiler optimizations like -Os or -O0 are used and the
 | |
| ** compiler is not doing agressive inlining.)  So we use a real function
 | |
| ** for MSVC and a macro for everything else.  Ticket #2457.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
|   static void assertCellInfo(BtCursor *pCur){
 | |
|     CellInfo info;
 | |
|     memset(&info, 0, sizeof(info));
 | |
|     sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
 | |
|     assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
 | |
|   }
 | |
| #else
 | |
|   #define assertCellInfo(x)
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
|   /* Use a real function in MSVC to work around bugs in that compiler. */
 | |
|   static void getCellInfo(BtCursor *pCur){
 | |
|     if( pCur->info.nSize==0 ){
 | |
|       sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
 | |
|     }else{
 | |
|       assertCellInfo(pCur);
 | |
|     }
 | |
|   }
 | |
| #else /* if not _MSC_VER */
 | |
|   /* Use a macro in all other compilers so that the function is inlined */
 | |
| #define getCellInfo(pCur)                                               \
 | |
|   if( pCur->info.nSize==0 ){                                            \
 | |
|     sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);         \
 | |
|   }else{                                                                \
 | |
|     assertCellInfo(pCur);                                               \
 | |
|   }
 | |
| #endif /* _MSC_VER */
 | |
| 
 | |
| /*
 | |
| ** Set *pSize to the size of the buffer needed to hold the value of
 | |
| ** the key for the current entry.  If the cursor is not pointing
 | |
| ** to a valid entry, *pSize is set to 0. 
 | |
| **
 | |
| ** For a table with the INTKEY flag set, this routine returns the key
 | |
| ** itself, not the number of bytes in the key.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
 | |
|   int rc;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = restoreOrClearCursorPosition(pCur);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
 | |
|     if( pCur->eState==CURSOR_INVALID ){
 | |
|       *pSize = 0;
 | |
|     }else{
 | |
|       getCellInfo(pCur);
 | |
|       *pSize = pCur->info.nKey;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set *pSize to the number of bytes of data in the entry the
 | |
| ** cursor currently points to.  Always return SQLITE_OK.
 | |
| ** Failure is not possible.  If the cursor is not currently
 | |
| ** pointing to an entry (which can happen, for example, if
 | |
| ** the database is empty) then *pSize is set to 0.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
 | |
|   int rc;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = restoreOrClearCursorPosition(pCur);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
 | |
|     if( pCur->eState==CURSOR_INVALID ){
 | |
|       /* Not pointing at a valid entry - set *pSize to 0. */
 | |
|       *pSize = 0;
 | |
|     }else{
 | |
|       getCellInfo(pCur);
 | |
|       *pSize = pCur->info.nData;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given the page number of an overflow page in the database (parameter
 | |
| ** ovfl), this function finds the page number of the next page in the 
 | |
| ** linked list of overflow pages. If possible, it uses the auto-vacuum
 | |
| ** pointer-map data instead of reading the content of page ovfl to do so. 
 | |
| **
 | |
| ** If an error occurs an SQLite error code is returned. Otherwise:
 | |
| **
 | |
| ** Unless pPgnoNext is NULL, the page number of the next overflow 
 | |
| ** page in the linked list is written to *pPgnoNext. If page ovfl
 | |
| ** is the last page in its linked list, *pPgnoNext is set to zero. 
 | |
| **
 | |
| ** If ppPage is not NULL, *ppPage is set to the MemPage* handle
 | |
| ** for page ovfl. The underlying pager page may have been requested
 | |
| ** with the noContent flag set, so the page data accessable via
 | |
| ** this handle may not be trusted.
 | |
| */
 | |
| static int getOverflowPage(
 | |
|   BtShared *pBt, 
 | |
|   Pgno ovfl,                   /* Overflow page */
 | |
|   MemPage **ppPage,            /* OUT: MemPage handle */
 | |
|   Pgno *pPgnoNext              /* OUT: Next overflow page number */
 | |
| ){
 | |
|   Pgno next = 0;
 | |
|   int rc;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   /* One of these must not be NULL. Otherwise, why call this function? */
 | |
|   assert(ppPage || pPgnoNext);
 | |
| 
 | |
|   /* If pPgnoNext is NULL, then this function is being called to obtain
 | |
|   ** a MemPage* reference only. No page-data is required in this case.
 | |
|   */
 | |
|   if( !pPgnoNext ){
 | |
|     return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   /* Try to find the next page in the overflow list using the
 | |
|   ** autovacuum pointer-map pages. Guess that the next page in 
 | |
|   ** the overflow list is page number (ovfl+1). If that guess turns 
 | |
|   ** out to be wrong, fall back to loading the data of page 
 | |
|   ** number ovfl to determine the next page number.
 | |
|   */
 | |
|   if( pBt->autoVacuum ){
 | |
|     Pgno pgno;
 | |
|     Pgno iGuess = ovfl+1;
 | |
|     u8 eType;
 | |
| 
 | |
|     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
 | |
|       iGuess++;
 | |
|     }
 | |
| 
 | |
|     if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){
 | |
|       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|       if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
 | |
|         next = iGuess;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if( next==0 || ppPage ){
 | |
|     MemPage *pPage = 0;
 | |
| 
 | |
|     rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
 | |
|     assert(rc==SQLITE_OK || pPage==0);
 | |
|     if( next==0 && rc==SQLITE_OK ){
 | |
|       next = get4byte(pPage->aData);
 | |
|     }
 | |
| 
 | |
|     if( ppPage ){
 | |
|       *ppPage = pPage;
 | |
|     }else{
 | |
|       releasePage(pPage);
 | |
|     }
 | |
|   }
 | |
|   *pPgnoNext = next;
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Copy data from a buffer to a page, or from a page to a buffer.
 | |
| **
 | |
| ** pPayload is a pointer to data stored on database page pDbPage.
 | |
| ** If argument eOp is false, then nByte bytes of data are copied
 | |
| ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
 | |
| ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
 | |
| ** of data are copied from the buffer pBuf to pPayload.
 | |
| **
 | |
| ** SQLITE_OK is returned on success, otherwise an error code.
 | |
| */
 | |
| static int copyPayload(
 | |
|   void *pPayload,           /* Pointer to page data */
 | |
|   void *pBuf,               /* Pointer to buffer */
 | |
|   int nByte,                /* Number of bytes to copy */
 | |
|   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
 | |
|   DbPage *pDbPage           /* Page containing pPayload */
 | |
| ){
 | |
|   if( eOp ){
 | |
|     /* Copy data from buffer to page (a write operation) */
 | |
|     int rc = sqlite3PagerWrite(pDbPage);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     memcpy(pPayload, pBuf, nByte);
 | |
|   }else{
 | |
|     /* Copy data from page to buffer (a read operation) */
 | |
|     memcpy(pBuf, pPayload, nByte);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is used to read or overwrite payload information
 | |
| ** for the entry that the pCur cursor is pointing to. If the eOp
 | |
| ** parameter is 0, this is a read operation (data copied into
 | |
| ** buffer pBuf). If it is non-zero, a write (data copied from
 | |
| ** buffer pBuf).
 | |
| **
 | |
| ** A total of "amt" bytes are read or written beginning at "offset".
 | |
| ** Data is read to or from the buffer pBuf.
 | |
| **
 | |
| ** This routine does not make a distinction between key and data.
 | |
| ** It just reads or writes bytes from the payload area.  Data might 
 | |
| ** appear on the main page or be scattered out on multiple overflow 
 | |
| ** pages.
 | |
| **
 | |
| ** If the BtCursor.isIncrblobHandle flag is set, and the current
 | |
| ** cursor entry uses one or more overflow pages, this function
 | |
| ** allocates space for and lazily popluates the overflow page-list 
 | |
| ** cache array (BtCursor.aOverflow). Subsequent calls use this
 | |
| ** cache to make seeking to the supplied offset more efficient.
 | |
| **
 | |
| ** Once an overflow page-list cache has been allocated, it may be
 | |
| ** invalidated if some other cursor writes to the same table, or if
 | |
| ** the cursor is moved to a different row. Additionally, in auto-vacuum
 | |
| ** mode, the following events may invalidate an overflow page-list cache.
 | |
| **
 | |
| **   * An incremental vacuum,
 | |
| **   * A commit in auto_vacuum="full" mode,
 | |
| **   * Creating a table (may require moving an overflow page).
 | |
| */
 | |
| static int accessPayload(
 | |
|   BtCursor *pCur,      /* Cursor pointing to entry to read from */
 | |
|   int offset,          /* Begin reading this far into payload */
 | |
|   int amt,             /* Read this many bytes */
 | |
|   unsigned char *pBuf, /* Write the bytes into this buffer */ 
 | |
|   int skipKey,         /* offset begins at data if this is true */
 | |
|   int eOp              /* zero to read. non-zero to write. */
 | |
| ){
 | |
|   unsigned char *aPayload;
 | |
|   int rc = SQLITE_OK;
 | |
|   u32 nKey;
 | |
|   int iIdx = 0;
 | |
|   MemPage *pPage = pCur->pPage;     /* Btree page of current cursor entry */
 | |
|   BtShared *pBt;                   /* Btree this cursor belongs to */
 | |
| 
 | |
|   assert( pPage );
 | |
|   assert( pCur->eState==CURSOR_VALID );
 | |
|   assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
 | |
|   assert( offset>=0 );
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
| 
 | |
|   getCellInfo(pCur);
 | |
|   aPayload = pCur->info.pCell + pCur->info.nHeader;
 | |
|   nKey = (pPage->intKey ? 0 : pCur->info.nKey);
 | |
| 
 | |
|   if( skipKey ){
 | |
|     offset += nKey;
 | |
|   }
 | |
|   if( offset+amt > nKey+pCur->info.nData ){
 | |
|     /* Trying to read or write past the end of the data is an error */
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Check if data must be read/written to/from the btree page itself. */
 | |
|   if( offset<pCur->info.nLocal ){
 | |
|     int a = amt;
 | |
|     if( a+offset>pCur->info.nLocal ){
 | |
|       a = pCur->info.nLocal - offset;
 | |
|     }
 | |
|     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
 | |
|     offset = 0;
 | |
|     pBuf += a;
 | |
|     amt -= a;
 | |
|   }else{
 | |
|     offset -= pCur->info.nLocal;
 | |
|   }
 | |
| 
 | |
|   pBt = pCur->pBt;
 | |
|   if( rc==SQLITE_OK && amt>0 ){
 | |
|     const int ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
 | |
|     Pgno nextPage;
 | |
| 
 | |
|     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
|     /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
 | |
|     ** has not been allocated, allocate it now. The array is sized at
 | |
|     ** one entry for each overflow page in the overflow chain. The
 | |
|     ** page number of the first overflow page is stored in aOverflow[0],
 | |
|     ** etc. A value of 0 in the aOverflow[] array means "not yet known"
 | |
|     ** (the cache is lazily populated).
 | |
|     */
 | |
|     if( pCur->isIncrblobHandle && !pCur->aOverflow ){
 | |
|       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
 | |
|       pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
 | |
|       if( nOvfl && !pCur->aOverflow ){
 | |
|         rc = SQLITE_NOMEM;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If the overflow page-list cache has been allocated and the
 | |
|     ** entry for the first required overflow page is valid, skip
 | |
|     ** directly to it.
 | |
|     */
 | |
|     if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
 | |
|       iIdx = (offset/ovflSize);
 | |
|       nextPage = pCur->aOverflow[iIdx];
 | |
|       offset = (offset%ovflSize);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
|       /* If required, populate the overflow page-list cache. */
 | |
|       if( pCur->aOverflow ){
 | |
|         assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
 | |
|         pCur->aOverflow[iIdx] = nextPage;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if( offset>=ovflSize ){
 | |
|         /* The only reason to read this page is to obtain the page
 | |
|         ** number for the next page in the overflow chain. The page
 | |
|         ** data is not required. So first try to lookup the overflow
 | |
|         ** page-list cache, if any, then fall back to the getOverflowPage()
 | |
|         ** function.
 | |
|         */
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
|         if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
 | |
|           nextPage = pCur->aOverflow[iIdx+1];
 | |
|         } else 
 | |
| #endif
 | |
|           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
 | |
|         offset -= ovflSize;
 | |
|       }else{
 | |
|         /* Need to read this page properly. It contains some of the
 | |
|         ** range of data that is being read (eOp==0) or written (eOp!=0).
 | |
|         */
 | |
|         DbPage *pDbPage;
 | |
|         int a = amt;
 | |
|         rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
 | |
|         if( rc==SQLITE_OK ){
 | |
|           aPayload = sqlite3PagerGetData(pDbPage);
 | |
|           nextPage = get4byte(aPayload);
 | |
|           if( a + offset > ovflSize ){
 | |
|             a = ovflSize - offset;
 | |
|           }
 | |
|           rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
 | |
|           sqlite3PagerUnref(pDbPage);
 | |
|           offset = 0;
 | |
|           amt -= a;
 | |
|           pBuf += a;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( rc==SQLITE_OK && amt>0 ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read part of the key associated with cursor pCur.  Exactly
 | |
| ** "amt" bytes will be transfered into pBuf[].  The transfer
 | |
| ** begins at "offset".
 | |
| **
 | |
| ** Return SQLITE_OK on success or an error code if anything goes
 | |
| ** wrong.  An error is returned if "offset+amt" is larger than
 | |
| ** the available payload.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
 | |
|   int rc;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = restoreOrClearCursorPosition(pCur);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     assert( pCur->eState==CURSOR_VALID );
 | |
|     assert( pCur->pPage!=0 );
 | |
|     if( pCur->pPage->intKey ){
 | |
|       return SQLITE_CORRUPT_BKPT;
 | |
|     }
 | |
|     assert( pCur->pPage->intKey==0 );
 | |
|     assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
 | |
|     rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read part of the data associated with cursor pCur.  Exactly
 | |
| ** "amt" bytes will be transfered into pBuf[].  The transfer
 | |
| ** begins at "offset".
 | |
| **
 | |
| ** Return SQLITE_OK on success or an error code if anything goes
 | |
| ** wrong.  An error is returned if "offset+amt" is larger than
 | |
| ** the available payload.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
 | |
|   int rc;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = restoreOrClearCursorPosition(pCur);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     assert( pCur->eState==CURSOR_VALID );
 | |
|     assert( pCur->pPage!=0 );
 | |
|     assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
 | |
|     rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to payload information from the entry that the 
 | |
| ** pCur cursor is pointing to.  The pointer is to the beginning of
 | |
| ** the key if skipKey==0 and it points to the beginning of data if
 | |
| ** skipKey==1.  The number of bytes of available key/data is written
 | |
| ** into *pAmt.  If *pAmt==0, then the value returned will not be
 | |
| ** a valid pointer.
 | |
| **
 | |
| ** This routine is an optimization.  It is common for the entire key
 | |
| ** and data to fit on the local page and for there to be no overflow
 | |
| ** pages.  When that is so, this routine can be used to access the
 | |
| ** key and data without making a copy.  If the key and/or data spills
 | |
| ** onto overflow pages, then accessPayload() must be used to reassembly
 | |
| ** the key/data and copy it into a preallocated buffer.
 | |
| **
 | |
| ** The pointer returned by this routine looks directly into the cached
 | |
| ** page of the database.  The data might change or move the next time
 | |
| ** any btree routine is called.
 | |
| */
 | |
| static const unsigned char *fetchPayload(
 | |
|   BtCursor *pCur,      /* Cursor pointing to entry to read from */
 | |
|   int *pAmt,           /* Write the number of available bytes here */
 | |
|   int skipKey          /* read beginning at data if this is true */
 | |
| ){
 | |
|   unsigned char *aPayload;
 | |
|   MemPage *pPage;
 | |
|   u32 nKey;
 | |
|   int nLocal;
 | |
| 
 | |
|   assert( pCur!=0 && pCur->pPage!=0 );
 | |
|   assert( pCur->eState==CURSOR_VALID );
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   pPage = pCur->pPage;
 | |
|   assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
 | |
|   getCellInfo(pCur);
 | |
|   aPayload = pCur->info.pCell;
 | |
|   aPayload += pCur->info.nHeader;
 | |
|   if( pPage->intKey ){
 | |
|     nKey = 0;
 | |
|   }else{
 | |
|     nKey = pCur->info.nKey;
 | |
|   }
 | |
|   if( skipKey ){
 | |
|     aPayload += nKey;
 | |
|     nLocal = pCur->info.nLocal - nKey;
 | |
|   }else{
 | |
|     nLocal = pCur->info.nLocal;
 | |
|     if( nLocal>nKey ){
 | |
|       nLocal = nKey;
 | |
|     }
 | |
|   }
 | |
|   *pAmt = nLocal;
 | |
|   return aPayload;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** For the entry that cursor pCur is point to, return as
 | |
| ** many bytes of the key or data as are available on the local
 | |
| ** b-tree page.  Write the number of available bytes into *pAmt.
 | |
| **
 | |
| ** The pointer returned is ephemeral.  The key/data may move
 | |
| ** or be destroyed on the next call to any Btree routine,
 | |
| ** including calls from other threads against the same cache.
 | |
| ** Hence, a mutex on the BtShared should be held prior to calling
 | |
| ** this routine.
 | |
| **
 | |
| ** These routines is used to get quick access to key and data
 | |
| ** in the common case where no overflow pages are used.
 | |
| */
 | |
| SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   if( pCur->eState==CURSOR_VALID ){
 | |
|     return (const void*)fetchPayload(pCur, pAmt, 0);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   if( pCur->eState==CURSOR_VALID ){
 | |
|     return (const void*)fetchPayload(pCur, pAmt, 1);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Move the cursor down to a new child page.  The newPgno argument is the
 | |
| ** page number of the child page to move to.
 | |
| */
 | |
| static int moveToChild(BtCursor *pCur, u32 newPgno){
 | |
|   int rc;
 | |
|   MemPage *pNewPage;
 | |
|   MemPage *pOldPage;
 | |
|   BtShared *pBt = pCur->pBt;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pCur->eState==CURSOR_VALID );
 | |
|   rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
 | |
|   if( rc ) return rc;
 | |
|   pNewPage->idxParent = pCur->idx;
 | |
|   pOldPage = pCur->pPage;
 | |
|   pOldPage->idxShift = 0;
 | |
|   releasePage(pOldPage);
 | |
|   pCur->pPage = pNewPage;
 | |
|   pCur->idx = 0;
 | |
|   pCur->info.nSize = 0;
 | |
|   if( pNewPage->nCell<1 ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the page is the virtual root of its table.
 | |
| **
 | |
| ** The virtual root page is the root page for most tables.  But
 | |
| ** for the table rooted on page 1, sometime the real root page
 | |
| ** is empty except for the right-pointer.  In such cases the
 | |
| ** virtual root page is the page that the right-pointer of page
 | |
| ** 1 is pointing to.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage){
 | |
|   MemPage *pParent;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   pParent = pPage->pParent;
 | |
|   if( pParent==0 ) return 1;
 | |
|   if( pParent->pgno>1 ) return 0;
 | |
|   if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Move the cursor up to the parent page.
 | |
| **
 | |
| ** pCur->idx is set to the cell index that contains the pointer
 | |
| ** to the page we are coming from.  If we are coming from the
 | |
| ** right-most child page then pCur->idx is set to one more than
 | |
| ** the largest cell index.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur){
 | |
|   MemPage *pParent;
 | |
|   MemPage *pPage;
 | |
|   int idxParent;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pCur->eState==CURSOR_VALID );
 | |
|   pPage = pCur->pPage;
 | |
|   assert( pPage!=0 );
 | |
|   assert( !sqlite3BtreeIsRootPage(pPage) );
 | |
|   pParent = pPage->pParent;
 | |
|   assert( pParent!=0 );
 | |
|   idxParent = pPage->idxParent;
 | |
|   sqlite3PagerRef(pParent->pDbPage);
 | |
|   releasePage(pPage);
 | |
|   pCur->pPage = pParent;
 | |
|   pCur->info.nSize = 0;
 | |
|   assert( pParent->idxShift==0 );
 | |
|   pCur->idx = idxParent;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Move the cursor to the root page
 | |
| */
 | |
| static int moveToRoot(BtCursor *pCur){
 | |
|   MemPage *pRoot;
 | |
|   int rc = SQLITE_OK;
 | |
|   Btree *p = pCur->pBtree;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
 | |
|   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
 | |
|   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
 | |
|   if( pCur->eState>=CURSOR_REQUIRESEEK ){
 | |
|     if( pCur->eState==CURSOR_FAULT ){
 | |
|       return pCur->skip;
 | |
|     }
 | |
|     clearCursorPosition(pCur);
 | |
|   }
 | |
|   pRoot = pCur->pPage;
 | |
|   if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
 | |
|     assert( pRoot->isInit );
 | |
|   }else{
 | |
|     if( 
 | |
|       SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
 | |
|     ){
 | |
|       pCur->eState = CURSOR_INVALID;
 | |
|       return rc;
 | |
|     }
 | |
|     releasePage(pCur->pPage);
 | |
|     pCur->pPage = pRoot;
 | |
|   }
 | |
|   pCur->idx = 0;
 | |
|   pCur->info.nSize = 0;
 | |
|   if( pRoot->nCell==0 && !pRoot->leaf ){
 | |
|     Pgno subpage;
 | |
|     assert( pRoot->pgno==1 );
 | |
|     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
 | |
|     assert( subpage>0 );
 | |
|     pCur->eState = CURSOR_VALID;
 | |
|     rc = moveToChild(pCur, subpage);
 | |
|   }
 | |
|   pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Move the cursor down to the left-most leaf entry beneath the
 | |
| ** entry to which it is currently pointing.
 | |
| **
 | |
| ** The left-most leaf is the one with the smallest key - the first
 | |
| ** in ascending order.
 | |
| */
 | |
| static int moveToLeftmost(BtCursor *pCur){
 | |
|   Pgno pgno;
 | |
|   int rc = SQLITE_OK;
 | |
|   MemPage *pPage;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pCur->eState==CURSOR_VALID );
 | |
|   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
 | |
|     assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
 | |
|     pgno = get4byte(findCell(pPage, pCur->idx));
 | |
|     rc = moveToChild(pCur, pgno);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Move the cursor down to the right-most leaf entry beneath the
 | |
| ** page to which it is currently pointing.  Notice the difference
 | |
| ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
 | |
| ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
 | |
| ** finds the right-most entry beneath the *page*.
 | |
| **
 | |
| ** The right-most entry is the one with the largest key - the last
 | |
| ** key in ascending order.
 | |
| */
 | |
| static int moveToRightmost(BtCursor *pCur){
 | |
|   Pgno pgno;
 | |
|   int rc = SQLITE_OK;
 | |
|   MemPage *pPage;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pCur->eState==CURSOR_VALID );
 | |
|   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
 | |
|     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
 | |
|     pCur->idx = pPage->nCell;
 | |
|     rc = moveToChild(pCur, pgno);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pCur->idx = pPage->nCell - 1;
 | |
|     pCur->info.nSize = 0;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Move the cursor to the first entry in the table.  Return SQLITE_OK
 | |
| ** on success.  Set *pRes to 0 if the cursor actually points to something
 | |
| ** or set *pRes to 1 if the table is empty.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
 | |
|   int rc;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
 | |
|   rc = moveToRoot(pCur);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( pCur->eState==CURSOR_INVALID ){
 | |
|       assert( pCur->pPage->nCell==0 );
 | |
|       *pRes = 1;
 | |
|       rc = SQLITE_OK;
 | |
|     }else{
 | |
|       assert( pCur->pPage->nCell>0 );
 | |
|       *pRes = 0;
 | |
|       rc = moveToLeftmost(pCur);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Move the cursor to the last entry in the table.  Return SQLITE_OK
 | |
| ** on success.  Set *pRes to 0 if the cursor actually points to something
 | |
| ** or set *pRes to 1 if the table is empty.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
 | |
|   int rc;
 | |
|  
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
 | |
|   rc = moveToRoot(pCur);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( CURSOR_INVALID==pCur->eState ){
 | |
|       assert( pCur->pPage->nCell==0 );
 | |
|       *pRes = 1;
 | |
|     }else{
 | |
|       assert( pCur->eState==CURSOR_VALID );
 | |
|       *pRes = 0;
 | |
|       rc = moveToRightmost(pCur);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Move the cursor so that it points to an entry near pKey/nKey.
 | |
| ** Return a success code.
 | |
| **
 | |
| ** For INTKEY tables, only the nKey parameter is used.  pKey is
 | |
| ** ignored.  For other tables, nKey is the number of bytes of data
 | |
| ** in pKey.  The comparison function specified when the cursor was
 | |
| ** created is used to compare keys.
 | |
| **
 | |
| ** If an exact match is not found, then the cursor is always
 | |
| ** left pointing at a leaf page which would hold the entry if it
 | |
| ** were present.  The cursor might point to an entry that comes
 | |
| ** before or after the key.
 | |
| **
 | |
| ** The result of comparing the key with the entry to which the
 | |
| ** cursor is written to *pRes if pRes!=NULL.  The meaning of
 | |
| ** this value is as follows:
 | |
| **
 | |
| **     *pRes<0      The cursor is left pointing at an entry that
 | |
| **                  is smaller than pKey or if the table is empty
 | |
| **                  and the cursor is therefore left point to nothing.
 | |
| **
 | |
| **     *pRes==0     The cursor is left pointing at an entry that
 | |
| **                  exactly matches pKey.
 | |
| **
 | |
| **     *pRes>0      The cursor is left pointing at an entry that
 | |
| **                  is larger than pKey.
 | |
| **
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeMoveto(
 | |
|   BtCursor *pCur,        /* The cursor to be moved */
 | |
|   const void *pKey,      /* The key content for indices.  Not used by tables */
 | |
|   i64 nKey,              /* Size of pKey.  Or the key for tables */
 | |
|   int biasRight,         /* If true, bias the search to the high end */
 | |
|   int *pRes              /* Search result flag */
 | |
| ){
 | |
|   int rc;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
 | |
|   rc = moveToRoot(pCur);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
|   assert( pCur->pPage );
 | |
|   assert( pCur->pPage->isInit );
 | |
|   if( pCur->eState==CURSOR_INVALID ){
 | |
|     *pRes = -1;
 | |
|     assert( pCur->pPage->nCell==0 );
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   for(;;){
 | |
|     int lwr, upr;
 | |
|     Pgno chldPg;
 | |
|     MemPage *pPage = pCur->pPage;
 | |
|     int c = -1;  /* pRes return if table is empty must be -1 */
 | |
|     lwr = 0;
 | |
|     upr = pPage->nCell-1;
 | |
|     if( !pPage->intKey && pKey==0 ){
 | |
|       return SQLITE_CORRUPT_BKPT;
 | |
|     }
 | |
|     if( biasRight ){
 | |
|       pCur->idx = upr;
 | |
|     }else{
 | |
|       pCur->idx = (upr+lwr)/2;
 | |
|     }
 | |
|     if( lwr<=upr ) for(;;){
 | |
|       void *pCellKey;
 | |
|       i64 nCellKey;
 | |
|       pCur->info.nSize = 0;
 | |
|       if( pPage->intKey ){
 | |
|         u8 *pCell;
 | |
|         pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
 | |
|         if( pPage->hasData ){
 | |
|           u32 dummy;
 | |
|           pCell += getVarint32(pCell, &dummy);
 | |
|         }
 | |
|         getVarint(pCell, (u64 *)&nCellKey);
 | |
|         if( nCellKey<nKey ){
 | |
|           c = -1;
 | |
|         }else if( nCellKey>nKey ){
 | |
|           c = +1;
 | |
|         }else{
 | |
|           c = 0;
 | |
|         }
 | |
|       }else{
 | |
|         int available;
 | |
|         pCellKey = (void *)fetchPayload(pCur, &available, 0);
 | |
|         nCellKey = pCur->info.nKey;
 | |
|         if( available>=nCellKey ){
 | |
|           c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
 | |
|         }else{
 | |
|           pCellKey = sqlite3_malloc( nCellKey );
 | |
|           if( pCellKey==0 ) return SQLITE_NOMEM;
 | |
|           rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
 | |
|           c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
 | |
|           sqlite3_free(pCellKey);
 | |
|           if( rc ){
 | |
|             return rc;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if( c==0 ){
 | |
|         if( pPage->leafData && !pPage->leaf ){
 | |
|           lwr = pCur->idx;
 | |
|           upr = lwr - 1;
 | |
|           break;
 | |
|         }else{
 | |
|           if( pRes ) *pRes = 0;
 | |
|           return SQLITE_OK;
 | |
|         }
 | |
|       }
 | |
|       if( c<0 ){
 | |
|         lwr = pCur->idx+1;
 | |
|       }else{
 | |
|         upr = pCur->idx-1;
 | |
|       }
 | |
|       if( lwr>upr ){
 | |
|         break;
 | |
|       }
 | |
|       pCur->idx = (lwr+upr)/2;
 | |
|     }
 | |
|     assert( lwr==upr+1 );
 | |
|     assert( pPage->isInit );
 | |
|     if( pPage->leaf ){
 | |
|       chldPg = 0;
 | |
|     }else if( lwr>=pPage->nCell ){
 | |
|       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
 | |
|     }else{
 | |
|       chldPg = get4byte(findCell(pPage, lwr));
 | |
|     }
 | |
|     if( chldPg==0 ){
 | |
|       assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
 | |
|       if( pRes ) *pRes = c;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|     pCur->idx = lwr;
 | |
|     pCur->info.nSize = 0;
 | |
|     rc = moveToChild(pCur, chldPg);
 | |
|     if( rc ){
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
|   /* NOT REACHED */
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the cursor is not pointing at an entry of the table.
 | |
| **
 | |
| ** TRUE will be returned after a call to sqlite3BtreeNext() moves
 | |
| ** past the last entry in the table or sqlite3BtreePrev() moves past
 | |
| ** the first entry.  TRUE is also returned if the table is empty.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){
 | |
|   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
 | |
|   ** have been deleted? This API will need to change to return an error code
 | |
|   ** as well as the boolean result value.
 | |
|   */
 | |
|   return (CURSOR_VALID!=pCur->eState);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the database connection handle for a cursor.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
 | |
|   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
 | |
|   return pCur->pBtree->db;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Advance the cursor to the next entry in the database.  If
 | |
| ** successful then set *pRes=0.  If the cursor
 | |
| ** was already pointing to the last entry in the database before
 | |
| ** this routine was called, then set *pRes=1.
 | |
| */
 | |
| static int btreeNext(BtCursor *pCur, int *pRes){
 | |
|   int rc;
 | |
|   MemPage *pPage;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = restoreOrClearCursorPosition(pCur);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   assert( pRes!=0 );
 | |
|   pPage = pCur->pPage;
 | |
|   if( CURSOR_INVALID==pCur->eState ){
 | |
|     *pRes = 1;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( pCur->skip>0 ){
 | |
|     pCur->skip = 0;
 | |
|     *pRes = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   pCur->skip = 0;
 | |
| 
 | |
|   assert( pPage->isInit );
 | |
|   assert( pCur->idx<pPage->nCell );
 | |
| 
 | |
|   pCur->idx++;
 | |
|   pCur->info.nSize = 0;
 | |
|   if( pCur->idx>=pPage->nCell ){
 | |
|     if( !pPage->leaf ){
 | |
|       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
 | |
|       if( rc ) return rc;
 | |
|       rc = moveToLeftmost(pCur);
 | |
|       *pRes = 0;
 | |
|       return rc;
 | |
|     }
 | |
|     do{
 | |
|       if( sqlite3BtreeIsRootPage(pPage) ){
 | |
|         *pRes = 1;
 | |
|         pCur->eState = CURSOR_INVALID;
 | |
|         return SQLITE_OK;
 | |
|       }
 | |
|       sqlite3BtreeMoveToParent(pCur);
 | |
|       pPage = pCur->pPage;
 | |
|     }while( pCur->idx>=pPage->nCell );
 | |
|     *pRes = 0;
 | |
|     if( pPage->leafData ){
 | |
|       rc = sqlite3BtreeNext(pCur, pRes);
 | |
|     }else{
 | |
|       rc = SQLITE_OK;
 | |
|     }
 | |
|     return rc;
 | |
|   }
 | |
|   *pRes = 0;
 | |
|   if( pPage->leaf ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   rc = moveToLeftmost(pCur);
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
 | |
|   int rc;
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = btreeNext(pCur, pRes);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Step the cursor to the back to the previous entry in the database.  If
 | |
| ** successful then set *pRes=0.  If the cursor
 | |
| ** was already pointing to the first entry in the database before
 | |
| ** this routine was called, then set *pRes=1.
 | |
| */
 | |
| static int btreePrevious(BtCursor *pCur, int *pRes){
 | |
|   int rc;
 | |
|   Pgno pgno;
 | |
|   MemPage *pPage;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = restoreOrClearCursorPosition(pCur);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   if( CURSOR_INVALID==pCur->eState ){
 | |
|     *pRes = 1;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( pCur->skip<0 ){
 | |
|     pCur->skip = 0;
 | |
|     *pRes = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   pCur->skip = 0;
 | |
| 
 | |
|   pPage = pCur->pPage;
 | |
|   assert( pPage->isInit );
 | |
|   assert( pCur->idx>=0 );
 | |
|   if( !pPage->leaf ){
 | |
|     pgno = get4byte( findCell(pPage, pCur->idx) );
 | |
|     rc = moveToChild(pCur, pgno);
 | |
|     if( rc ){
 | |
|       return rc;
 | |
|     }
 | |
|     rc = moveToRightmost(pCur);
 | |
|   }else{
 | |
|     while( pCur->idx==0 ){
 | |
|       if( sqlite3BtreeIsRootPage(pPage) ){
 | |
|         pCur->eState = CURSOR_INVALID;
 | |
|         *pRes = 1;
 | |
|         return SQLITE_OK;
 | |
|       }
 | |
|       sqlite3BtreeMoveToParent(pCur);
 | |
|       pPage = pCur->pPage;
 | |
|     }
 | |
|     pCur->idx--;
 | |
|     pCur->info.nSize = 0;
 | |
|     if( pPage->leafData && !pPage->leaf ){
 | |
|       rc = sqlite3BtreePrevious(pCur, pRes);
 | |
|     }else{
 | |
|       rc = SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   *pRes = 0;
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
 | |
|   int rc;
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   rc = btreePrevious(pCur, pRes);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate a new page from the database file.
 | |
| **
 | |
| ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
 | |
| ** has already been called on the new page.)  The new page has also
 | |
| ** been referenced and the calling routine is responsible for calling
 | |
| ** sqlite3PagerUnref() on the new page when it is done.
 | |
| **
 | |
| ** SQLITE_OK is returned on success.  Any other return value indicates
 | |
| ** an error.  *ppPage and *pPgno are undefined in the event of an error.
 | |
| ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
 | |
| **
 | |
| ** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
 | |
| ** locate a page close to the page number "nearby".  This can be used in an
 | |
| ** attempt to keep related pages close to each other in the database file,
 | |
| ** which in turn can make database access faster.
 | |
| **
 | |
| ** If the "exact" parameter is not 0, and the page-number nearby exists 
 | |
| ** anywhere on the free-list, then it is guarenteed to be returned. This
 | |
| ** is only used by auto-vacuum databases when allocating a new table.
 | |
| */
 | |
| static int allocateBtreePage(
 | |
|   BtShared *pBt, 
 | |
|   MemPage **ppPage, 
 | |
|   Pgno *pPgno, 
 | |
|   Pgno nearby,
 | |
|   u8 exact
 | |
| ){
 | |
|   MemPage *pPage1;
 | |
|   int rc;
 | |
|   int n;     /* Number of pages on the freelist */
 | |
|   int k;     /* Number of leaves on the trunk of the freelist */
 | |
|   MemPage *pTrunk = 0;
 | |
|   MemPage *pPrevTrunk = 0;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   pPage1 = pBt->pPage1;
 | |
|   n = get4byte(&pPage1->aData[36]);
 | |
|   if( n>0 ){
 | |
|     /* There are pages on the freelist.  Reuse one of those pages. */
 | |
|     Pgno iTrunk;
 | |
|     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
 | |
|     
 | |
|     /* If the 'exact' parameter was true and a query of the pointer-map
 | |
|     ** shows that the page 'nearby' is somewhere on the free-list, then
 | |
|     ** the entire-list will be searched for that page.
 | |
|     */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){
 | |
|       u8 eType;
 | |
|       assert( nearby>0 );
 | |
|       assert( pBt->autoVacuum );
 | |
|       rc = ptrmapGet(pBt, nearby, &eType, 0);
 | |
|       if( rc ) return rc;
 | |
|       if( eType==PTRMAP_FREEPAGE ){
 | |
|         searchList = 1;
 | |
|       }
 | |
|       *pPgno = nearby;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Decrement the free-list count by 1. Set iTrunk to the index of the
 | |
|     ** first free-list trunk page. iPrevTrunk is initially 1.
 | |
|     */
 | |
|     rc = sqlite3PagerWrite(pPage1->pDbPage);
 | |
|     if( rc ) return rc;
 | |
|     put4byte(&pPage1->aData[36], n-1);
 | |
| 
 | |
|     /* The code within this loop is run only once if the 'searchList' variable
 | |
|     ** is not true. Otherwise, it runs once for each trunk-page on the
 | |
|     ** free-list until the page 'nearby' is located.
 | |
|     */
 | |
|     do {
 | |
|       pPrevTrunk = pTrunk;
 | |
|       if( pPrevTrunk ){
 | |
|         iTrunk = get4byte(&pPrevTrunk->aData[0]);
 | |
|       }else{
 | |
|         iTrunk = get4byte(&pPage1->aData[32]);
 | |
|       }
 | |
|       rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
 | |
|       if( rc ){
 | |
|         pTrunk = 0;
 | |
|         goto end_allocate_page;
 | |
|       }
 | |
| 
 | |
|       k = get4byte(&pTrunk->aData[4]);
 | |
|       if( k==0 && !searchList ){
 | |
|         /* The trunk has no leaves and the list is not being searched. 
 | |
|         ** So extract the trunk page itself and use it as the newly 
 | |
|         ** allocated page */
 | |
|         assert( pPrevTrunk==0 );
 | |
|         rc = sqlite3PagerWrite(pTrunk->pDbPage);
 | |
|         if( rc ){
 | |
|           goto end_allocate_page;
 | |
|         }
 | |
|         *pPgno = iTrunk;
 | |
|         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
 | |
|         *ppPage = pTrunk;
 | |
|         pTrunk = 0;
 | |
|         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
 | |
|       }else if( k>pBt->usableSize/4 - 8 ){
 | |
|         /* Value of k is out of range.  Database corruption */
 | |
|         rc = SQLITE_CORRUPT_BKPT;
 | |
|         goto end_allocate_page;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       }else if( searchList && nearby==iTrunk ){
 | |
|         /* The list is being searched and this trunk page is the page
 | |
|         ** to allocate, regardless of whether it has leaves.
 | |
|         */
 | |
|         assert( *pPgno==iTrunk );
 | |
|         *ppPage = pTrunk;
 | |
|         searchList = 0;
 | |
|         rc = sqlite3PagerWrite(pTrunk->pDbPage);
 | |
|         if( rc ){
 | |
|           goto end_allocate_page;
 | |
|         }
 | |
|         if( k==0 ){
 | |
|           if( !pPrevTrunk ){
 | |
|             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
 | |
|           }else{
 | |
|             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
 | |
|           }
 | |
|         }else{
 | |
|           /* The trunk page is required by the caller but it contains 
 | |
|           ** pointers to free-list leaves. The first leaf becomes a trunk
 | |
|           ** page in this case.
 | |
|           */
 | |
|           MemPage *pNewTrunk;
 | |
|           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
 | |
|           rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
 | |
|           if( rc!=SQLITE_OK ){
 | |
|             goto end_allocate_page;
 | |
|           }
 | |
|           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
 | |
|           if( rc!=SQLITE_OK ){
 | |
|             releasePage(pNewTrunk);
 | |
|             goto end_allocate_page;
 | |
|           }
 | |
|           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
 | |
|           put4byte(&pNewTrunk->aData[4], k-1);
 | |
|           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
 | |
|           releasePage(pNewTrunk);
 | |
|           if( !pPrevTrunk ){
 | |
|             put4byte(&pPage1->aData[32], iNewTrunk);
 | |
|           }else{
 | |
|             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
 | |
|             if( rc ){
 | |
|               goto end_allocate_page;
 | |
|             }
 | |
|             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
 | |
|           }
 | |
|         }
 | |
|         pTrunk = 0;
 | |
|         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
 | |
| #endif
 | |
|       }else{
 | |
|         /* Extract a leaf from the trunk */
 | |
|         int closest;
 | |
|         Pgno iPage;
 | |
|         unsigned char *aData = pTrunk->aData;
 | |
|         rc = sqlite3PagerWrite(pTrunk->pDbPage);
 | |
|         if( rc ){
 | |
|           goto end_allocate_page;
 | |
|         }
 | |
|         if( nearby>0 ){
 | |
|           int i, dist;
 | |
|           closest = 0;
 | |
|           dist = get4byte(&aData[8]) - nearby;
 | |
|           if( dist<0 ) dist = -dist;
 | |
|           for(i=1; i<k; i++){
 | |
|             int d2 = get4byte(&aData[8+i*4]) - nearby;
 | |
|             if( d2<0 ) d2 = -d2;
 | |
|             if( d2<dist ){
 | |
|               closest = i;
 | |
|               dist = d2;
 | |
|             }
 | |
|           }
 | |
|         }else{
 | |
|           closest = 0;
 | |
|         }
 | |
| 
 | |
|         iPage = get4byte(&aData[8+closest*4]);
 | |
|         if( !searchList || iPage==nearby ){
 | |
|           *pPgno = iPage;
 | |
|           if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){
 | |
|             /* Free page off the end of the file */
 | |
|             return SQLITE_CORRUPT_BKPT;
 | |
|           }
 | |
|           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
 | |
|                  ": %d more free pages\n",
 | |
|                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
 | |
|           if( closest<k-1 ){
 | |
|             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
 | |
|           }
 | |
|           put4byte(&aData[4], k-1);
 | |
|           rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
 | |
|           if( rc==SQLITE_OK ){
 | |
|             sqlite3PagerDontRollback((*ppPage)->pDbPage);
 | |
|             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
 | |
|             if( rc!=SQLITE_OK ){
 | |
|               releasePage(*ppPage);
 | |
|             }
 | |
|           }
 | |
|           searchList = 0;
 | |
|         }
 | |
|       }
 | |
|       releasePage(pPrevTrunk);
 | |
|       pPrevTrunk = 0;
 | |
|     }while( searchList );
 | |
|   }else{
 | |
|     /* There are no pages on the freelist, so create a new page at the
 | |
|     ** end of the file */
 | |
|     *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( pBt->nTrunc ){
 | |
|       /* An incr-vacuum has already run within this transaction. So the
 | |
|       ** page to allocate is not from the physical end of the file, but
 | |
|       ** at pBt->nTrunc. 
 | |
|       */
 | |
|       *pPgno = pBt->nTrunc+1;
 | |
|       if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
 | |
|         (*pPgno)++;
 | |
|       }
 | |
|     }
 | |
|     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
 | |
|       /* If *pPgno refers to a pointer-map page, allocate two new pages
 | |
|       ** at the end of the file instead of one. The first allocated page
 | |
|       ** becomes a new pointer-map page, the second is used by the caller.
 | |
|       */
 | |
|       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
 | |
|       assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
 | |
|       (*pPgno)++;
 | |
|       if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
 | |
|     }
 | |
|     if( pBt->nTrunc ){
 | |
|       pBt->nTrunc = *pPgno;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
 | |
|     rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
 | |
|     if( rc ) return rc;
 | |
|     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       releasePage(*ppPage);
 | |
|     }
 | |
|     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
 | |
|   }
 | |
| 
 | |
|   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
 | |
| 
 | |
| end_allocate_page:
 | |
|   releasePage(pTrunk);
 | |
|   releasePage(pPrevTrunk);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a page of the database file to the freelist.
 | |
| **
 | |
| ** sqlite3PagerUnref() is NOT called for pPage.
 | |
| */
 | |
| static int freePage(MemPage *pPage){
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   MemPage *pPage1 = pBt->pPage1;
 | |
|   int rc, n, k;
 | |
| 
 | |
|   /* Prepare the page for freeing */
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   assert( pPage->pgno>1 );
 | |
|   pPage->isInit = 0;
 | |
|   releasePage(pPage->pParent);
 | |
|   pPage->pParent = 0;
 | |
| 
 | |
|   /* Increment the free page count on pPage1 */
 | |
|   rc = sqlite3PagerWrite(pPage1->pDbPage);
 | |
|   if( rc ) return rc;
 | |
|   n = get4byte(&pPage1->aData[36]);
 | |
|   put4byte(&pPage1->aData[36], n+1);
 | |
| 
 | |
| #ifdef SQLITE_SECURE_DELETE
 | |
|   /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
 | |
|   ** always fully overwrite deleted information with zeros.
 | |
|   */
 | |
|   rc = sqlite3PagerWrite(pPage->pDbPage);
 | |
|   if( rc ) return rc;
 | |
|   memset(pPage->aData, 0, pPage->pBt->pageSize);
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   /* If the database supports auto-vacuum, write an entry in the pointer-map
 | |
|   ** to indicate that the page is free.
 | |
|   */
 | |
|   if( pBt->autoVacuum ){
 | |
|     rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
 | |
|     if( rc ) return rc;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if( n==0 ){
 | |
|     /* This is the first free page */
 | |
|     rc = sqlite3PagerWrite(pPage->pDbPage);
 | |
|     if( rc ) return rc;
 | |
|     memset(pPage->aData, 0, 8);
 | |
|     put4byte(&pPage1->aData[32], pPage->pgno);
 | |
|     TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
 | |
|   }else{
 | |
|     /* Other free pages already exist.  Retrive the first trunk page
 | |
|     ** of the freelist and find out how many leaves it has. */
 | |
|     MemPage *pTrunk;
 | |
|     rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
 | |
|     if( rc ) return rc;
 | |
|     k = get4byte(&pTrunk->aData[4]);
 | |
|     if( k>=pBt->usableSize/4 - 8 ){
 | |
|       /* The trunk is full.  Turn the page being freed into a new
 | |
|       ** trunk page with no leaves. */
 | |
|       rc = sqlite3PagerWrite(pPage->pDbPage);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         put4byte(pPage->aData, pTrunk->pgno);
 | |
|         put4byte(&pPage->aData[4], 0);
 | |
|         put4byte(&pPage1->aData[32], pPage->pgno);
 | |
|         TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
 | |
|                 pPage->pgno, pTrunk->pgno));
 | |
|       }
 | |
|     }else if( k<0 ){
 | |
|       rc = SQLITE_CORRUPT;
 | |
|     }else{
 | |
|       /* Add the newly freed page as a leaf on the current trunk */
 | |
|       rc = sqlite3PagerWrite(pTrunk->pDbPage);
 | |
|       if( rc==SQLITE_OK ){
 | |
|         put4byte(&pTrunk->aData[4], k+1);
 | |
|         put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
 | |
| #ifndef SQLITE_SECURE_DELETE
 | |
|         sqlite3PagerDontWrite(pPage->pDbPage);
 | |
| #endif
 | |
|       }
 | |
|       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
 | |
|     }
 | |
|     releasePage(pTrunk);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free any overflow pages associated with the given Cell.
 | |
| */
 | |
| static int clearCell(MemPage *pPage, unsigned char *pCell){
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   CellInfo info;
 | |
|   Pgno ovflPgno;
 | |
|   int rc;
 | |
|   int nOvfl;
 | |
|   int ovflPageSize;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|   if( info.iOverflow==0 ){
 | |
|     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
 | |
|   }
 | |
|   ovflPgno = get4byte(&pCell[info.iOverflow]);
 | |
|   ovflPageSize = pBt->usableSize - 4;
 | |
|   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
 | |
|   assert( ovflPgno==0 || nOvfl>0 );
 | |
|   while( nOvfl-- ){
 | |
|     MemPage *pOvfl;
 | |
|     if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){
 | |
|       return SQLITE_CORRUPT_BKPT;
 | |
|     }
 | |
| 
 | |
|     rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
 | |
|     if( rc ) return rc;
 | |
|     rc = freePage(pOvfl);
 | |
|     sqlite3PagerUnref(pOvfl->pDbPage);
 | |
|     if( rc ) return rc;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create the byte sequence used to represent a cell on page pPage
 | |
| ** and write that byte sequence into pCell[].  Overflow pages are
 | |
| ** allocated and filled in as necessary.  The calling procedure
 | |
| ** is responsible for making sure sufficient space has been allocated
 | |
| ** for pCell[].
 | |
| **
 | |
| ** Note that pCell does not necessary need to point to the pPage->aData
 | |
| ** area.  pCell might point to some temporary storage.  The cell will
 | |
| ** be constructed in this temporary area then copied into pPage->aData
 | |
| ** later.
 | |
| */
 | |
| static int fillInCell(
 | |
|   MemPage *pPage,                /* The page that contains the cell */
 | |
|   unsigned char *pCell,          /* Complete text of the cell */
 | |
|   const void *pKey, i64 nKey,    /* The key */
 | |
|   const void *pData,int nData,   /* The data */
 | |
|   int nZero,                     /* Extra zero bytes to append to pData */
 | |
|   int *pnSize                    /* Write cell size here */
 | |
| ){
 | |
|   int nPayload;
 | |
|   const u8 *pSrc;
 | |
|   int nSrc, n, rc;
 | |
|   int spaceLeft;
 | |
|   MemPage *pOvfl = 0;
 | |
|   MemPage *pToRelease = 0;
 | |
|   unsigned char *pPrior;
 | |
|   unsigned char *pPayload;
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   Pgno pgnoOvfl = 0;
 | |
|   int nHeader;
 | |
|   CellInfo info;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
| 
 | |
|   /* Fill in the header. */
 | |
|   nHeader = 0;
 | |
|   if( !pPage->leaf ){
 | |
|     nHeader += 4;
 | |
|   }
 | |
|   if( pPage->hasData ){
 | |
|     nHeader += putVarint(&pCell[nHeader], nData+nZero);
 | |
|   }else{
 | |
|     nData = nZero = 0;
 | |
|   }
 | |
|   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
 | |
|   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|   assert( info.nHeader==nHeader );
 | |
|   assert( info.nKey==nKey );
 | |
|   assert( info.nData==nData+nZero );
 | |
|   
 | |
|   /* Fill in the payload */
 | |
|   nPayload = nData + nZero;
 | |
|   if( pPage->intKey ){
 | |
|     pSrc = pData;
 | |
|     nSrc = nData;
 | |
|     nData = 0;
 | |
|   }else{
 | |
|     nPayload += nKey;
 | |
|     pSrc = pKey;
 | |
|     nSrc = nKey;
 | |
|   }
 | |
|   *pnSize = info.nSize;
 | |
|   spaceLeft = info.nLocal;
 | |
|   pPayload = &pCell[nHeader];
 | |
|   pPrior = &pCell[info.iOverflow];
 | |
| 
 | |
|   while( nPayload>0 ){
 | |
|     if( spaceLeft==0 ){
 | |
|       int isExact = 0;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
 | |
|       if( pBt->autoVacuum ){
 | |
|         do{
 | |
|           pgnoOvfl++;
 | |
|         } while( 
 | |
|           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
 | |
|         );
 | |
|         if( pgnoOvfl>1 ){
 | |
|           /* isExact = 1; */
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       /* If the database supports auto-vacuum, and the second or subsequent
 | |
|       ** overflow page is being allocated, add an entry to the pointer-map
 | |
|       ** for that page now. 
 | |
|       **
 | |
|       ** If this is the first overflow page, then write a partial entry 
 | |
|       ** to the pointer-map. If we write nothing to this pointer-map slot,
 | |
|       ** then the optimistic overflow chain processing in clearCell()
 | |
|       ** may misinterpret the uninitialised values and delete the
 | |
|       ** wrong pages from the database.
 | |
|       */
 | |
|       if( pBt->autoVacuum && rc==SQLITE_OK ){
 | |
|         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
 | |
|         rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
 | |
|         if( rc ){
 | |
|           releasePage(pOvfl);
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       if( rc ){
 | |
|         releasePage(pToRelease);
 | |
|         return rc;
 | |
|       }
 | |
|       put4byte(pPrior, pgnoOvfl);
 | |
|       releasePage(pToRelease);
 | |
|       pToRelease = pOvfl;
 | |
|       pPrior = pOvfl->aData;
 | |
|       put4byte(pPrior, 0);
 | |
|       pPayload = &pOvfl->aData[4];
 | |
|       spaceLeft = pBt->usableSize - 4;
 | |
|     }
 | |
|     n = nPayload;
 | |
|     if( n>spaceLeft ) n = spaceLeft;
 | |
|     if( nSrc>0 ){
 | |
|       if( n>nSrc ) n = nSrc;
 | |
|       assert( pSrc );
 | |
|       memcpy(pPayload, pSrc, n);
 | |
|     }else{
 | |
|       memset(pPayload, 0, n);
 | |
|     }
 | |
|     nPayload -= n;
 | |
|     pPayload += n;
 | |
|     pSrc += n;
 | |
|     nSrc -= n;
 | |
|     spaceLeft -= n;
 | |
|     if( nSrc==0 ){
 | |
|       nSrc = nData;
 | |
|       pSrc = pData;
 | |
|     }
 | |
|   }
 | |
|   releasePage(pToRelease);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the MemPage.pParent pointer on the page whose number is
 | |
| ** given in the second argument so that MemPage.pParent holds the
 | |
| ** pointer in the third argument.
 | |
| */
 | |
| static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){
 | |
|   MemPage *pThis;
 | |
|   DbPage *pDbPage;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   assert( pNewParent!=0 );
 | |
|   if( pgno==0 ) return SQLITE_OK;
 | |
|   assert( pBt->pPager!=0 );
 | |
|   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
 | |
|   if( pDbPage ){
 | |
|     pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
 | |
|     if( pThis->isInit ){
 | |
|       assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
 | |
|       if( pThis->pParent!=pNewParent ){
 | |
|         if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
 | |
|         pThis->pParent = pNewParent;
 | |
|         sqlite3PagerRef(pNewParent->pDbPage);
 | |
|       }
 | |
|       pThis->idxParent = idx;
 | |
|     }
 | |
|     sqlite3PagerUnref(pDbPage);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( pBt->autoVacuum ){
 | |
|     return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
 | |
|   }
 | |
| #endif
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change the pParent pointer of all children of pPage to point back
 | |
| ** to pPage.
 | |
| **
 | |
| ** In other words, for every child of pPage, invoke reparentPage()
 | |
| ** to make sure that each child knows that pPage is its parent.
 | |
| **
 | |
| ** This routine gets called after you memcpy() one page into
 | |
| ** another.
 | |
| */
 | |
| static int reparentChildPages(MemPage *pPage){
 | |
|   int i;
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( pPage->leaf ) return SQLITE_OK;
 | |
| 
 | |
|   for(i=0; i<pPage->nCell; i++){
 | |
|     u8 *pCell = findCell(pPage, i);
 | |
|     if( !pPage->leaf ){
 | |
|       rc = reparentPage(pBt, get4byte(pCell), pPage, i);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
|     }
 | |
|   }
 | |
|   if( !pPage->leaf ){
 | |
|     rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), 
 | |
|        pPage, i);
 | |
|     pPage->idxShift = 0;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the i-th cell from pPage.  This routine effects pPage only.
 | |
| ** The cell content is not freed or deallocated.  It is assumed that
 | |
| ** the cell content has been copied someplace else.  This routine just
 | |
| ** removes the reference to the cell from pPage.
 | |
| **
 | |
| ** "sz" must be the number of bytes in the cell.
 | |
| */
 | |
| static void dropCell(MemPage *pPage, int idx, int sz){
 | |
|   int i;          /* Loop counter */
 | |
|   int pc;         /* Offset to cell content of cell being deleted */
 | |
|   u8 *data;       /* pPage->aData */
 | |
|   u8 *ptr;        /* Used to move bytes around within data[] */
 | |
| 
 | |
|   assert( idx>=0 && idx<pPage->nCell );
 | |
|   assert( sz==cellSize(pPage, idx) );
 | |
|   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   data = pPage->aData;
 | |
|   ptr = &data[pPage->cellOffset + 2*idx];
 | |
|   pc = get2byte(ptr);
 | |
|   assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
 | |
|   freeSpace(pPage, pc, sz);
 | |
|   for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
 | |
|     ptr[0] = ptr[2];
 | |
|     ptr[1] = ptr[3];
 | |
|   }
 | |
|   pPage->nCell--;
 | |
|   put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
 | |
|   pPage->nFree += 2;
 | |
|   pPage->idxShift = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert a new cell on pPage at cell index "i".  pCell points to the
 | |
| ** content of the cell.
 | |
| **
 | |
| ** If the cell content will fit on the page, then put it there.  If it
 | |
| ** will not fit, then make a copy of the cell content into pTemp if
 | |
| ** pTemp is not null.  Regardless of pTemp, allocate a new entry
 | |
| ** in pPage->aOvfl[] and make it point to the cell content (either
 | |
| ** in pTemp or the original pCell) and also record its index. 
 | |
| ** Allocating a new entry in pPage->aCell[] implies that 
 | |
| ** pPage->nOverflow is incremented.
 | |
| **
 | |
| ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
 | |
| ** cell. The caller will overwrite them after this function returns. If
 | |
| ** nSkip is non-zero, then pCell may not point to an invalid memory location 
 | |
| ** (but pCell+nSkip is always valid).
 | |
| */
 | |
| static int insertCell(
 | |
|   MemPage *pPage,   /* Page into which we are copying */
 | |
|   int i,            /* New cell becomes the i-th cell of the page */
 | |
|   u8 *pCell,        /* Content of the new cell */
 | |
|   int sz,           /* Bytes of content in pCell */
 | |
|   u8 *pTemp,        /* Temp storage space for pCell, if needed */
 | |
|   u8 nSkip          /* Do not write the first nSkip bytes of the cell */
 | |
| ){
 | |
|   int idx;          /* Where to write new cell content in data[] */
 | |
|   int j;            /* Loop counter */
 | |
|   int top;          /* First byte of content for any cell in data[] */
 | |
|   int end;          /* First byte past the last cell pointer in data[] */
 | |
|   int ins;          /* Index in data[] where new cell pointer is inserted */
 | |
|   int hdr;          /* Offset into data[] of the page header */
 | |
|   int cellOffset;   /* Address of first cell pointer in data[] */
 | |
|   u8 *data;         /* The content of the whole page */
 | |
|   u8 *ptr;          /* Used for moving information around in data[] */
 | |
| 
 | |
|   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
 | |
|   assert( sz==cellSizePtr(pPage, pCell) );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( pPage->nOverflow || sz+2>pPage->nFree ){
 | |
|     if( pTemp ){
 | |
|       memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
 | |
|       pCell = pTemp;
 | |
|     }
 | |
|     j = pPage->nOverflow++;
 | |
|     assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
 | |
|     pPage->aOvfl[j].pCell = pCell;
 | |
|     pPage->aOvfl[j].idx = i;
 | |
|     pPage->nFree = 0;
 | |
|   }else{
 | |
|     int rc = sqlite3PagerWrite(pPage->pDbPage);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
 | |
|     data = pPage->aData;
 | |
|     hdr = pPage->hdrOffset;
 | |
|     top = get2byte(&data[hdr+5]);
 | |
|     cellOffset = pPage->cellOffset;
 | |
|     end = cellOffset + 2*pPage->nCell + 2;
 | |
|     ins = cellOffset + 2*i;
 | |
|     if( end > top - sz ){
 | |
|       rc = defragmentPage(pPage);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
|       top = get2byte(&data[hdr+5]);
 | |
|       assert( end + sz <= top );
 | |
|     }
 | |
|     idx = allocateSpace(pPage, sz);
 | |
|     assert( idx>0 );
 | |
|     assert( end <= get2byte(&data[hdr+5]) );
 | |
|     pPage->nCell++;
 | |
|     pPage->nFree -= 2;
 | |
|     memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
 | |
|     for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
 | |
|       ptr[0] = ptr[-2];
 | |
|       ptr[1] = ptr[-1];
 | |
|     }
 | |
|     put2byte(&data[ins], idx);
 | |
|     put2byte(&data[hdr+3], pPage->nCell);
 | |
|     pPage->idxShift = 1;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( pPage->pBt->autoVacuum ){
 | |
|       /* The cell may contain a pointer to an overflow page. If so, write
 | |
|       ** the entry for the overflow page into the pointer map.
 | |
|       */
 | |
|       CellInfo info;
 | |
|       sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|       assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
 | |
|       if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
 | |
|         Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
 | |
|         rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
 | |
|         if( rc!=SQLITE_OK ) return rc;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a list of cells to a page.  The page should be initially empty.
 | |
| ** The cells are guaranteed to fit on the page.
 | |
| */
 | |
| static void assemblePage(
 | |
|   MemPage *pPage,   /* The page to be assemblied */
 | |
|   int nCell,        /* The number of cells to add to this page */
 | |
|   u8 **apCell,      /* Pointers to cell bodies */
 | |
|   u16 *aSize        /* Sizes of the cells */
 | |
| ){
 | |
|   int i;            /* Loop counter */
 | |
|   int totalSize;    /* Total size of all cells */
 | |
|   int hdr;          /* Index of page header */
 | |
|   int cellptr;      /* Address of next cell pointer */
 | |
|   int cellbody;     /* Address of next cell body */
 | |
|   u8 *data;         /* Data for the page */
 | |
| 
 | |
|   assert( pPage->nOverflow==0 );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   totalSize = 0;
 | |
|   for(i=0; i<nCell; i++){
 | |
|     totalSize += aSize[i];
 | |
|   }
 | |
|   assert( totalSize+2*nCell<=pPage->nFree );
 | |
|   assert( pPage->nCell==0 );
 | |
|   cellptr = pPage->cellOffset;
 | |
|   data = pPage->aData;
 | |
|   hdr = pPage->hdrOffset;
 | |
|   put2byte(&data[hdr+3], nCell);
 | |
|   if( nCell ){
 | |
|     cellbody = allocateSpace(pPage, totalSize);
 | |
|     assert( cellbody>0 );
 | |
|     assert( pPage->nFree >= 2*nCell );
 | |
|     pPage->nFree -= 2*nCell;
 | |
|     for(i=0; i<nCell; i++){
 | |
|       put2byte(&data[cellptr], cellbody);
 | |
|       memcpy(&data[cellbody], apCell[i], aSize[i]);
 | |
|       cellptr += 2;
 | |
|       cellbody += aSize[i];
 | |
|     }
 | |
|     assert( cellbody==pPage->pBt->usableSize );
 | |
|   }
 | |
|   pPage->nCell = nCell;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following parameters determine how many adjacent pages get involved
 | |
| ** in a balancing operation.  NN is the number of neighbors on either side
 | |
| ** of the page that participate in the balancing operation.  NB is the
 | |
| ** total number of pages that participate, including the target page and
 | |
| ** NN neighbors on either side.
 | |
| **
 | |
| ** The minimum value of NN is 1 (of course).  Increasing NN above 1
 | |
| ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
 | |
| ** in exchange for a larger degradation in INSERT and UPDATE performance.
 | |
| ** The value of NN appears to give the best results overall.
 | |
| */
 | |
| #define NN 1             /* Number of neighbors on either side of pPage */
 | |
| #define NB (NN*2+1)      /* Total pages involved in the balance */
 | |
| 
 | |
| /* Forward reference */
 | |
| static int balance(MemPage*, int);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_QUICKBALANCE
 | |
| /*
 | |
| ** This version of balance() handles the common special case where
 | |
| ** a new entry is being inserted on the extreme right-end of the
 | |
| ** tree, in other words, when the new entry will become the largest
 | |
| ** entry in the tree.
 | |
| **
 | |
| ** Instead of trying balance the 3 right-most leaf pages, just add
 | |
| ** a new page to the right-hand side and put the one new entry in
 | |
| ** that page.  This leaves the right side of the tree somewhat
 | |
| ** unbalanced.  But odds are that we will be inserting new entries
 | |
| ** at the end soon afterwards so the nearly empty page will quickly
 | |
| ** fill up.  On average.
 | |
| **
 | |
| ** pPage is the leaf page which is the right-most page in the tree.
 | |
| ** pParent is its parent.  pPage must have a single overflow entry
 | |
| ** which is also the right-most entry on the page.
 | |
| */
 | |
| static int balance_quick(MemPage *pPage, MemPage *pParent){
 | |
|   int rc;
 | |
|   MemPage *pNew;
 | |
|   Pgno pgnoNew;
 | |
|   u8 *pCell;
 | |
|   u16 szCell;
 | |
|   CellInfo info;
 | |
|   BtShared *pBt = pPage->pBt;
 | |
|   int parentIdx = pParent->nCell;   /* pParent new divider cell index */
 | |
|   int parentSize;                   /* Size of new divider cell */
 | |
|   u8 parentCell[64];                /* Space for the new divider cell */
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
| 
 | |
|   /* Allocate a new page. Insert the overflow cell from pPage
 | |
|   ** into it. Then remove the overflow cell from pPage.
 | |
|   */
 | |
|   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   pCell = pPage->aOvfl[0].pCell;
 | |
|   szCell = cellSizePtr(pPage, pCell);
 | |
|   zeroPage(pNew, pPage->aData[0]);
 | |
|   assemblePage(pNew, 1, &pCell, &szCell);
 | |
|   pPage->nOverflow = 0;
 | |
| 
 | |
|   /* Set the parent of the newly allocated page to pParent. */
 | |
|   pNew->pParent = pParent;
 | |
|   sqlite3PagerRef(pParent->pDbPage);
 | |
| 
 | |
|   /* pPage is currently the right-child of pParent. Change this
 | |
|   ** so that the right-child is the new page allocated above and
 | |
|   ** pPage is the next-to-right child. 
 | |
|   */
 | |
|   assert( pPage->nCell>0 );
 | |
|   pCell = findCell(pPage, pPage->nCell-1);
 | |
|   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|   rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   assert( parentSize<64 );
 | |
|   rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
|   put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
 | |
|   put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   /* If this is an auto-vacuum database, update the pointer map
 | |
|   ** with entries for the new page, and any pointer from the 
 | |
|   ** cell on the page to an overflow page.
 | |
|   */
 | |
|   if( pBt->autoVacuum ){
 | |
|     rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = ptrmapPutOvfl(pNew, 0);
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       releasePage(pNew);
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Release the reference to the new page and balance the parent page,
 | |
|   ** in case the divider cell inserted caused it to become overfull.
 | |
|   */
 | |
|   releasePage(pNew);
 | |
|   return balance(pParent, 0);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_QUICKBALANCE */
 | |
| 
 | |
| /*
 | |
| ** This routine redistributes Cells on pPage and up to NN*2 siblings
 | |
| ** of pPage so that all pages have about the same amount of free space.
 | |
| ** Usually NN siblings on either side of pPage is used in the balancing,
 | |
| ** though more siblings might come from one side if pPage is the first
 | |
| ** or last child of its parent.  If pPage has fewer than 2*NN siblings
 | |
| ** (something which can only happen if pPage is the root page or a 
 | |
| ** child of root) then all available siblings participate in the balancing.
 | |
| **
 | |
| ** The number of siblings of pPage might be increased or decreased by one or
 | |
| ** two in an effort to keep pages nearly full but not over full. The root page
 | |
| ** is special and is allowed to be nearly empty. If pPage is 
 | |
| ** the root page, then the depth of the tree might be increased
 | |
| ** or decreased by one, as necessary, to keep the root page from being
 | |
| ** overfull or completely empty.
 | |
| **
 | |
| ** Note that when this routine is called, some of the Cells on pPage
 | |
| ** might not actually be stored in pPage->aData[].  This can happen
 | |
| ** if the page is overfull.  Part of the job of this routine is to
 | |
| ** make sure all Cells for pPage once again fit in pPage->aData[].
 | |
| **
 | |
| ** In the course of balancing the siblings of pPage, the parent of pPage
 | |
| ** might become overfull or underfull.  If that happens, then this routine
 | |
| ** is called recursively on the parent.
 | |
| **
 | |
| ** If this routine fails for any reason, it might leave the database
 | |
| ** in a corrupted state.  So if this routine fails, the database should
 | |
| ** be rolled back.
 | |
| */
 | |
| static int balance_nonroot(MemPage *pPage){
 | |
|   MemPage *pParent;            /* The parent of pPage */
 | |
|   BtShared *pBt;               /* The whole database */
 | |
|   int nCell = 0;               /* Number of cells in apCell[] */
 | |
|   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
 | |
|   int nOld;                    /* Number of pages in apOld[] */
 | |
|   int nNew;                    /* Number of pages in apNew[] */
 | |
|   int nDiv;                    /* Number of cells in apDiv[] */
 | |
|   int i, j, k;                 /* Loop counters */
 | |
|   int idx;                     /* Index of pPage in pParent->aCell[] */
 | |
|   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
 | |
|   int rc;                      /* The return code */
 | |
|   int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
 | |
|   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
 | |
|   int usableSpace;             /* Bytes in pPage beyond the header */
 | |
|   int pageFlags;               /* Value of pPage->aData[0] */
 | |
|   int subtotal;                /* Subtotal of bytes in cells on one page */
 | |
|   int iSpace = 0;              /* First unused byte of aSpace[] */
 | |
|   MemPage *apOld[NB];          /* pPage and up to two siblings */
 | |
|   Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
 | |
|   MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
 | |
|   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
 | |
|   Pgno pgnoNew[NB+2];          /* Page numbers for each page in apNew[] */
 | |
|   u8 *apDiv[NB];               /* Divider cells in pParent */
 | |
|   int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
 | |
|   int szNew[NB+2];             /* Combined size of cells place on i-th page */
 | |
|   u8 **apCell = 0;             /* All cells begin balanced */
 | |
|   u16 *szCell;                 /* Local size of all cells in apCell[] */
 | |
|   u8 *aCopy[NB];               /* Space for holding data of apCopy[] */
 | |
|   u8 *aSpace;                  /* Space to hold copies of dividers cells */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   u8 *aFrom = 0;
 | |
| #endif
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
| 
 | |
|   /* 
 | |
|   ** Find the parent page.
 | |
|   */
 | |
|   assert( pPage->isInit );
 | |
|   assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
 | |
|   pBt = pPage->pBt;
 | |
|   pParent = pPage->pParent;
 | |
|   assert( pParent );
 | |
|   if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
 | |
|     return rc;
 | |
|   }
 | |
|   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
 | |
| 
 | |
| #ifndef SQLITE_OMIT_QUICKBALANCE
 | |
|   /*
 | |
|   ** A special case:  If a new entry has just been inserted into a
 | |
|   ** table (that is, a btree with integer keys and all data at the leaves)
 | |
|   ** and the new entry is the right-most entry in the tree (it has the
 | |
|   ** largest key) then use the special balance_quick() routine for
 | |
|   ** balancing.  balance_quick() is much faster and results in a tighter
 | |
|   ** packing of data in the common case.
 | |
|   */
 | |
|   if( pPage->leaf &&
 | |
|       pPage->intKey &&
 | |
|       pPage->leafData &&
 | |
|       pPage->nOverflow==1 &&
 | |
|       pPage->aOvfl[0].idx==pPage->nCell &&
 | |
|       pPage->pParent->pgno!=1 &&
 | |
|       get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
 | |
|   ){
 | |
|     /*
 | |
|     ** TODO: Check the siblings to the left of pPage. It may be that
 | |
|     ** they are not full and no new page is required.
 | |
|     */
 | |
|     return balance_quick(pPage, pParent);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Find the cell in the parent page whose left child points back
 | |
|   ** to pPage.  The "idx" variable is the index of that cell.  If pPage
 | |
|   ** is the rightmost child of pParent then set idx to pParent->nCell 
 | |
|   */
 | |
|   if( pParent->idxShift ){
 | |
|     Pgno pgno;
 | |
|     pgno = pPage->pgno;
 | |
|     assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
 | |
|     for(idx=0; idx<pParent->nCell; idx++){
 | |
|       if( get4byte(findCell(pParent, idx))==pgno ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert( idx<pParent->nCell
 | |
|              || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
 | |
|   }else{
 | |
|     idx = pPage->idxParent;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Initialize variables so that it will be safe to jump
 | |
|   ** directly to balance_cleanup at any moment.
 | |
|   */
 | |
|   nOld = nNew = 0;
 | |
|   sqlite3PagerRef(pParent->pDbPage);
 | |
| 
 | |
|   /*
 | |
|   ** Find sibling pages to pPage and the cells in pParent that divide
 | |
|   ** the siblings.  An attempt is made to find NN siblings on either
 | |
|   ** side of pPage.  More siblings are taken from one side, however, if
 | |
|   ** pPage there are fewer than NN siblings on the other side.  If pParent
 | |
|   ** has NB or fewer children then all children of pParent are taken.
 | |
|   */
 | |
|   nxDiv = idx - NN;
 | |
|   if( nxDiv + NB > pParent->nCell ){
 | |
|     nxDiv = pParent->nCell - NB + 1;
 | |
|   }
 | |
|   if( nxDiv<0 ){
 | |
|     nxDiv = 0;
 | |
|   }
 | |
|   nDiv = 0;
 | |
|   for(i=0, k=nxDiv; i<NB; i++, k++){
 | |
|     if( k<pParent->nCell ){
 | |
|       apDiv[i] = findCell(pParent, k);
 | |
|       nDiv++;
 | |
|       assert( !pParent->leaf );
 | |
|       pgnoOld[i] = get4byte(apDiv[i]);
 | |
|     }else if( k==pParent->nCell ){
 | |
|       pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
 | |
|     }else{
 | |
|       break;
 | |
|     }
 | |
|     rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
 | |
|     if( rc ) goto balance_cleanup;
 | |
|     apOld[i]->idxParent = k;
 | |
|     apCopy[i] = 0;
 | |
|     assert( i==nOld );
 | |
|     nOld++;
 | |
|     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
 | |
|   }
 | |
| 
 | |
|   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
 | |
|   ** alignment */
 | |
|   nMaxCells = (nMaxCells + 3)&~3;
 | |
| 
 | |
|   /*
 | |
|   ** Allocate space for memory structures
 | |
|   */
 | |
|   apCell = sqlite3_malloc( 
 | |
|        nMaxCells*sizeof(u8*)                       /* apCell */
 | |
|      + nMaxCells*sizeof(u16)                       /* szCell */
 | |
|      + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB  /* aCopy */
 | |
|      + pBt->pageSize*5                             /* aSpace */
 | |
|      + (ISAUTOVACUUM ? nMaxCells : 0)              /* aFrom */
 | |
|   );
 | |
|   if( apCell==0 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|     goto balance_cleanup;
 | |
|   }
 | |
|   szCell = (u16*)&apCell[nMaxCells];
 | |
|   aCopy[0] = (u8*)&szCell[nMaxCells];
 | |
|   assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
 | |
|   for(i=1; i<NB; i++){
 | |
|     aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
 | |
|     assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
 | |
|   }
 | |
|   aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
 | |
|   assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( pBt->autoVacuum ){
 | |
|     aFrom = &aSpace[5*pBt->pageSize];
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   /*
 | |
|   ** Make copies of the content of pPage and its siblings into aOld[].
 | |
|   ** The rest of this function will use data from the copies rather
 | |
|   ** that the original pages since the original pages will be in the
 | |
|   ** process of being overwritten.
 | |
|   */
 | |
|   for(i=0; i<nOld; i++){
 | |
|     MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
 | |
|     memcpy(p, apOld[i], sizeof(MemPage));
 | |
|     p->aData = (void*)&p[1];
 | |
|     memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Load pointers to all cells on sibling pages and the divider cells
 | |
|   ** into the local apCell[] array.  Make copies of the divider cells
 | |
|   ** into space obtained form aSpace[] and remove the the divider Cells
 | |
|   ** from pParent.
 | |
|   **
 | |
|   ** If the siblings are on leaf pages, then the child pointers of the
 | |
|   ** divider cells are stripped from the cells before they are copied
 | |
|   ** into aSpace[].  In this way, all cells in apCell[] are without
 | |
|   ** child pointers.  If siblings are not leaves, then all cell in
 | |
|   ** apCell[] include child pointers.  Either way, all cells in apCell[]
 | |
|   ** are alike.
 | |
|   **
 | |
|   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
 | |
|   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
 | |
|   */
 | |
|   nCell = 0;
 | |
|   leafCorrection = pPage->leaf*4;
 | |
|   leafData = pPage->leafData && pPage->leaf;
 | |
|   for(i=0; i<nOld; i++){
 | |
|     MemPage *pOld = apCopy[i];
 | |
|     int limit = pOld->nCell+pOld->nOverflow;
 | |
|     for(j=0; j<limit; j++){
 | |
|       assert( nCell<nMaxCells );
 | |
|       apCell[nCell] = findOverflowCell(pOld, j);
 | |
|       szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       if( pBt->autoVacuum ){
 | |
|         int a;
 | |
|         aFrom[nCell] = i;
 | |
|         for(a=0; a<pOld->nOverflow; a++){
 | |
|           if( pOld->aOvfl[a].pCell==apCell[nCell] ){
 | |
|             aFrom[nCell] = 0xFF;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       nCell++;
 | |
|     }
 | |
|     if( i<nOld-1 ){
 | |
|       u16 sz = cellSizePtr(pParent, apDiv[i]);
 | |
|       if( leafData ){
 | |
|         /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
 | |
|         ** are duplicates of keys on the child pages.  We need to remove
 | |
|         ** the divider cells from pParent, but the dividers cells are not
 | |
|         ** added to apCell[] because they are duplicates of child cells.
 | |
|         */
 | |
|         dropCell(pParent, nxDiv, sz);
 | |
|       }else{
 | |
|         u8 *pTemp;
 | |
|         assert( nCell<nMaxCells );
 | |
|         szCell[nCell] = sz;
 | |
|         pTemp = &aSpace[iSpace];
 | |
|         iSpace += sz;
 | |
|         assert( iSpace<=pBt->pageSize*5 );
 | |
|         memcpy(pTemp, apDiv[i], sz);
 | |
|         apCell[nCell] = pTemp+leafCorrection;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|         if( pBt->autoVacuum ){
 | |
|           aFrom[nCell] = 0xFF;
 | |
|         }
 | |
| #endif
 | |
|         dropCell(pParent, nxDiv, sz);
 | |
|         szCell[nCell] -= leafCorrection;
 | |
|         assert( get4byte(pTemp)==pgnoOld[i] );
 | |
|         if( !pOld->leaf ){
 | |
|           assert( leafCorrection==0 );
 | |
|           /* The right pointer of the child page pOld becomes the left
 | |
|           ** pointer of the divider cell */
 | |
|           memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
 | |
|         }else{
 | |
|           assert( leafCorrection==4 );
 | |
|           if( szCell[nCell]<4 ){
 | |
|             /* Do not allow any cells smaller than 4 bytes. */
 | |
|             szCell[nCell] = 4;
 | |
|           }
 | |
|         }
 | |
|         nCell++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Figure out the number of pages needed to hold all nCell cells.
 | |
|   ** Store this number in "k".  Also compute szNew[] which is the total
 | |
|   ** size of all cells on the i-th page and cntNew[] which is the index
 | |
|   ** in apCell[] of the cell that divides page i from page i+1.  
 | |
|   ** cntNew[k] should equal nCell.
 | |
|   **
 | |
|   ** Values computed by this block:
 | |
|   **
 | |
|   **           k: The total number of sibling pages
 | |
|   **    szNew[i]: Spaced used on the i-th sibling page.
 | |
|   **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
 | |
|   **              the right of the i-th sibling page.
 | |
|   ** usableSpace: Number of bytes of space available on each sibling.
 | |
|   ** 
 | |
|   */
 | |
|   usableSpace = pBt->usableSize - 12 + leafCorrection;
 | |
|   for(subtotal=k=i=0; i<nCell; i++){
 | |
|     assert( i<nMaxCells );
 | |
|     subtotal += szCell[i] + 2;
 | |
|     if( subtotal > usableSpace ){
 | |
|       szNew[k] = subtotal - szCell[i];
 | |
|       cntNew[k] = i;
 | |
|       if( leafData ){ i--; }
 | |
|       subtotal = 0;
 | |
|       k++;
 | |
|     }
 | |
|   }
 | |
|   szNew[k] = subtotal;
 | |
|   cntNew[k] = nCell;
 | |
|   k++;
 | |
| 
 | |
|   /*
 | |
|   ** The packing computed by the previous block is biased toward the siblings
 | |
|   ** on the left side.  The left siblings are always nearly full, while the
 | |
|   ** right-most sibling might be nearly empty.  This block of code attempts
 | |
|   ** to adjust the packing of siblings to get a better balance.
 | |
|   **
 | |
|   ** This adjustment is more than an optimization.  The packing above might
 | |
|   ** be so out of balance as to be illegal.  For example, the right-most
 | |
|   ** sibling might be completely empty.  This adjustment is not optional.
 | |
|   */
 | |
|   for(i=k-1; i>0; i--){
 | |
|     int szRight = szNew[i];  /* Size of sibling on the right */
 | |
|     int szLeft = szNew[i-1]; /* Size of sibling on the left */
 | |
|     int r;              /* Index of right-most cell in left sibling */
 | |
|     int d;              /* Index of first cell to the left of right sibling */
 | |
| 
 | |
|     r = cntNew[i-1] - 1;
 | |
|     d = r + 1 - leafData;
 | |
|     assert( d<nMaxCells );
 | |
|     assert( r<nMaxCells );
 | |
|     while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
 | |
|       szRight += szCell[d] + 2;
 | |
|       szLeft -= szCell[r] + 2;
 | |
|       cntNew[i-1]--;
 | |
|       r = cntNew[i-1] - 1;
 | |
|       d = r + 1 - leafData;
 | |
|     }
 | |
|     szNew[i] = szRight;
 | |
|     szNew[i-1] = szLeft;
 | |
|   }
 | |
| 
 | |
|   /* Either we found one or more cells (cntnew[0])>0) or we are the
 | |
|   ** a virtual root page.  A virtual root page is when the real root
 | |
|   ** page is page 1 and we are the only child of that page.
 | |
|   */
 | |
|   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
 | |
| 
 | |
|   /*
 | |
|   ** Allocate k new pages.  Reuse old pages where possible.
 | |
|   */
 | |
|   assert( pPage->pgno>1 );
 | |
|   pageFlags = pPage->aData[0];
 | |
|   for(i=0; i<k; i++){
 | |
|     MemPage *pNew;
 | |
|     if( i<nOld ){
 | |
|       pNew = apNew[i] = apOld[i];
 | |
|       pgnoNew[i] = pgnoOld[i];
 | |
|       apOld[i] = 0;
 | |
|       rc = sqlite3PagerWrite(pNew->pDbPage);
 | |
|       nNew++;
 | |
|       if( rc ) goto balance_cleanup;
 | |
|     }else{
 | |
|       assert( i>0 );
 | |
|       rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
 | |
|       if( rc ) goto balance_cleanup;
 | |
|       apNew[i] = pNew;
 | |
|       nNew++;
 | |
|     }
 | |
|     zeroPage(pNew, pageFlags);
 | |
|   }
 | |
| 
 | |
|   /* Free any old pages that were not reused as new pages.
 | |
|   */
 | |
|   while( i<nOld ){
 | |
|     rc = freePage(apOld[i]);
 | |
|     if( rc ) goto balance_cleanup;
 | |
|     releasePage(apOld[i]);
 | |
|     apOld[i] = 0;
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Put the new pages in accending order.  This helps to
 | |
|   ** keep entries in the disk file in order so that a scan
 | |
|   ** of the table is a linear scan through the file.  That
 | |
|   ** in turn helps the operating system to deliver pages
 | |
|   ** from the disk more rapidly.
 | |
|   **
 | |
|   ** An O(n^2) insertion sort algorithm is used, but since
 | |
|   ** n is never more than NB (a small constant), that should
 | |
|   ** not be a problem.
 | |
|   **
 | |
|   ** When NB==3, this one optimization makes the database
 | |
|   ** about 25% faster for large insertions and deletions.
 | |
|   */
 | |
|   for(i=0; i<k-1; i++){
 | |
|     int minV = pgnoNew[i];
 | |
|     int minI = i;
 | |
|     for(j=i+1; j<k; j++){
 | |
|       if( pgnoNew[j]<(unsigned)minV ){
 | |
|         minI = j;
 | |
|         minV = pgnoNew[j];
 | |
|       }
 | |
|     }
 | |
|     if( minI>i ){
 | |
|       int t;
 | |
|       MemPage *pT;
 | |
|       t = pgnoNew[i];
 | |
|       pT = apNew[i];
 | |
|       pgnoNew[i] = pgnoNew[minI];
 | |
|       apNew[i] = apNew[minI];
 | |
|       pgnoNew[minI] = t;
 | |
|       apNew[minI] = pT;
 | |
|     }
 | |
|   }
 | |
|   TRACE(("BALANCE: old: %d %d %d  new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
 | |
|     pgnoOld[0], 
 | |
|     nOld>=2 ? pgnoOld[1] : 0,
 | |
|     nOld>=3 ? pgnoOld[2] : 0,
 | |
|     pgnoNew[0], szNew[0],
 | |
|     nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
 | |
|     nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
 | |
|     nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
 | |
|     nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
 | |
| 
 | |
|   /*
 | |
|   ** Evenly distribute the data in apCell[] across the new pages.
 | |
|   ** Insert divider cells into pParent as necessary.
 | |
|   */
 | |
|   j = 0;
 | |
|   for(i=0; i<nNew; i++){
 | |
|     /* Assemble the new sibling page. */
 | |
|     MemPage *pNew = apNew[i];
 | |
|     assert( j<nMaxCells );
 | |
|     assert( pNew->pgno==pgnoNew[i] );
 | |
|     assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
 | |
|     assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
 | |
|     assert( pNew->nOverflow==0 );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     /* If this is an auto-vacuum database, update the pointer map entries
 | |
|     ** that point to the siblings that were rearranged. These can be: left
 | |
|     ** children of cells, the right-child of the page, or overflow pages
 | |
|     ** pointed to by cells.
 | |
|     */
 | |
|     if( pBt->autoVacuum ){
 | |
|       for(k=j; k<cntNew[i]; k++){
 | |
|         assert( k<nMaxCells );
 | |
|         if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
 | |
|           rc = ptrmapPutOvfl(pNew, k-j);
 | |
|           if( rc!=SQLITE_OK ){
 | |
|             goto balance_cleanup;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     j = cntNew[i];
 | |
| 
 | |
|     /* If the sibling page assembled above was not the right-most sibling,
 | |
|     ** insert a divider cell into the parent page.
 | |
|     */
 | |
|     if( i<nNew-1 && j<nCell ){
 | |
|       u8 *pCell;
 | |
|       u8 *pTemp;
 | |
|       int sz;
 | |
| 
 | |
|       assert( j<nMaxCells );
 | |
|       pCell = apCell[j];
 | |
|       sz = szCell[j] + leafCorrection;
 | |
|       if( !pNew->leaf ){
 | |
|         memcpy(&pNew->aData[8], pCell, 4);
 | |
|         pTemp = 0;
 | |
|       }else if( leafData ){
 | |
|         /* If the tree is a leaf-data tree, and the siblings are leaves, 
 | |
|         ** then there is no divider cell in apCell[]. Instead, the divider 
 | |
|         ** cell consists of the integer key for the right-most cell of 
 | |
|         ** the sibling-page assembled above only.
 | |
|         */
 | |
|         CellInfo info;
 | |
|         j--;
 | |
|         sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
 | |
|         pCell = &aSpace[iSpace];
 | |
|         fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
 | |
|         iSpace += sz;
 | |
|         assert( iSpace<=pBt->pageSize*5 );
 | |
|         pTemp = 0;
 | |
|       }else{
 | |
|         pCell -= 4;
 | |
|         pTemp = &aSpace[iSpace];
 | |
|         iSpace += sz;
 | |
|         assert( iSpace<=pBt->pageSize*5 );
 | |
|         /* Obscure case for non-leaf-data trees: If the cell at pCell was
 | |
|         ** previously stored on a leaf node, and its reported size was 4
 | |
|         ** bytes, then it may actually be smaller than this 
 | |
|         ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
 | |
|         ** any cell). But it is important to pass the correct size to 
 | |
|         ** insertCell(), so reparse the cell now.
 | |
|         **
 | |
|         ** Note that this can never happen in an SQLite data file, as all
 | |
|         ** cells are at least 4 bytes. It only happens in b-trees used
 | |
|         ** to evaluate "IN (SELECT ...)" and similar clauses.
 | |
|         */
 | |
|         if( szCell[j]==4 ){
 | |
|           assert(leafCorrection==4);
 | |
|           sz = cellSizePtr(pParent, pCell);
 | |
|         }
 | |
|       }
 | |
|       rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
 | |
|       if( rc!=SQLITE_OK ) goto balance_cleanup;
 | |
|       put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       /* If this is an auto-vacuum database, and not a leaf-data tree,
 | |
|       ** then update the pointer map with an entry for the overflow page
 | |
|       ** that the cell just inserted points to (if any).
 | |
|       */
 | |
|       if( pBt->autoVacuum && !leafData ){
 | |
|         rc = ptrmapPutOvfl(pParent, nxDiv);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           goto balance_cleanup;
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       j++;
 | |
|       nxDiv++;
 | |
|     }
 | |
|   }
 | |
|   assert( j==nCell );
 | |
|   assert( nOld>0 );
 | |
|   assert( nNew>0 );
 | |
|   if( (pageFlags & PTF_LEAF)==0 ){
 | |
|     memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
 | |
|   }
 | |
|   if( nxDiv==pParent->nCell+pParent->nOverflow ){
 | |
|     /* Right-most sibling is the right-most child of pParent */
 | |
|     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
 | |
|   }else{
 | |
|     /* Right-most sibling is the left child of the first entry in pParent
 | |
|     ** past the right-most divider entry */
 | |
|     put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Reparent children of all cells.
 | |
|   */
 | |
|   for(i=0; i<nNew; i++){
 | |
|     rc = reparentChildPages(apNew[i]);
 | |
|     if( rc!=SQLITE_OK ) goto balance_cleanup;
 | |
|   }
 | |
|   rc = reparentChildPages(pParent);
 | |
|   if( rc!=SQLITE_OK ) goto balance_cleanup;
 | |
| 
 | |
|   /*
 | |
|   ** Balance the parent page.  Note that the current page (pPage) might
 | |
|   ** have been added to the freelist so it might no longer be initialized.
 | |
|   ** But the parent page will always be initialized.
 | |
|   */
 | |
|   assert( pParent->isInit );
 | |
|   rc = balance(pParent, 0);
 | |
|   
 | |
|   /*
 | |
|   ** Cleanup before returning.
 | |
|   */
 | |
| balance_cleanup:
 | |
|   sqlite3_free(apCell);
 | |
|   for(i=0; i<nOld; i++){
 | |
|     releasePage(apOld[i]);
 | |
|   }
 | |
|   for(i=0; i<nNew; i++){
 | |
|     releasePage(apNew[i]);
 | |
|   }
 | |
|   releasePage(pParent);
 | |
|   TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
 | |
|           pPage->pgno, nOld, nNew, nCell));
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called for the root page of a btree when the root
 | |
| ** page contains no cells.  This is an opportunity to make the tree
 | |
| ** shallower by one level.
 | |
| */
 | |
| static int balance_shallower(MemPage *pPage){
 | |
|   MemPage *pChild;             /* The only child page of pPage */
 | |
|   Pgno pgnoChild;              /* Page number for pChild */
 | |
|   int rc = SQLITE_OK;          /* Return code from subprocedures */
 | |
|   BtShared *pBt;                  /* The main BTree structure */
 | |
|   int mxCellPerPage;           /* Maximum number of cells per page */
 | |
|   u8 **apCell;                 /* All cells from pages being balanced */
 | |
|   u16 *szCell;                 /* Local size of all cells */
 | |
| 
 | |
|   assert( pPage->pParent==0 );
 | |
|   assert( pPage->nCell==0 );
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   pBt = pPage->pBt;
 | |
|   mxCellPerPage = MX_CELL(pBt);
 | |
|   apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
 | |
|   if( apCell==0 ) return SQLITE_NOMEM;
 | |
|   szCell = (u16*)&apCell[mxCellPerPage];
 | |
|   if( pPage->leaf ){
 | |
|     /* The table is completely empty */
 | |
|     TRACE(("BALANCE: empty table %d\n", pPage->pgno));
 | |
|   }else{
 | |
|     /* The root page is empty but has one child.  Transfer the
 | |
|     ** information from that one child into the root page if it 
 | |
|     ** will fit.  This reduces the depth of the tree by one.
 | |
|     **
 | |
|     ** If the root page is page 1, it has less space available than
 | |
|     ** its child (due to the 100 byte header that occurs at the beginning
 | |
|     ** of the database fle), so it might not be able to hold all of the 
 | |
|     ** information currently contained in the child.  If this is the 
 | |
|     ** case, then do not do the transfer.  Leave page 1 empty except
 | |
|     ** for the right-pointer to the child page.  The child page becomes
 | |
|     ** the virtual root of the tree.
 | |
|     */
 | |
|     pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
 | |
|     assert( pgnoChild>0 );
 | |
|     assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) );
 | |
|     rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
 | |
|     if( rc ) goto end_shallow_balance;
 | |
|     if( pPage->pgno==1 ){
 | |
|       rc = sqlite3BtreeInitPage(pChild, pPage);
 | |
|       if( rc ) goto end_shallow_balance;
 | |
|       assert( pChild->nOverflow==0 );
 | |
|       if( pChild->nFree>=100 ){
 | |
|         /* The child information will fit on the root page, so do the
 | |
|         ** copy */
 | |
|         int i;
 | |
|         zeroPage(pPage, pChild->aData[0]);
 | |
|         for(i=0; i<pChild->nCell; i++){
 | |
|           apCell[i] = findCell(pChild,i);
 | |
|           szCell[i] = cellSizePtr(pChild, apCell[i]);
 | |
|         }
 | |
|         assemblePage(pPage, pChild->nCell, apCell, szCell);
 | |
|         /* Copy the right-pointer of the child to the parent. */
 | |
|         put4byte(&pPage->aData[pPage->hdrOffset+8], 
 | |
|             get4byte(&pChild->aData[pChild->hdrOffset+8]));
 | |
|         freePage(pChild);
 | |
|         TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
 | |
|       }else{
 | |
|         /* The child has more information that will fit on the root.
 | |
|         ** The tree is already balanced.  Do nothing. */
 | |
|         TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
 | |
|       }
 | |
|     }else{
 | |
|       memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
 | |
|       pPage->isInit = 0;
 | |
|       pPage->pParent = 0;
 | |
|       rc = sqlite3BtreeInitPage(pPage, 0);
 | |
|       assert( rc==SQLITE_OK );
 | |
|       freePage(pChild);
 | |
|       TRACE(("BALANCE: transfer child %d into root %d\n",
 | |
|               pChild->pgno, pPage->pgno));
 | |
|     }
 | |
|     rc = reparentChildPages(pPage);
 | |
|     assert( pPage->nOverflow==0 );
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( pBt->autoVacuum ){
 | |
|       int i;
 | |
|       for(i=0; i<pPage->nCell; i++){ 
 | |
|         rc = ptrmapPutOvfl(pPage, i);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           goto end_shallow_balance;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     releasePage(pChild);
 | |
|   }
 | |
| end_shallow_balance:
 | |
|   sqlite3_free(apCell);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The root page is overfull
 | |
| **
 | |
| ** When this happens, Create a new child page and copy the
 | |
| ** contents of the root into the child.  Then make the root
 | |
| ** page an empty page with rightChild pointing to the new
 | |
| ** child.   Finally, call balance_internal() on the new child
 | |
| ** to cause it to split.
 | |
| */
 | |
| static int balance_deeper(MemPage *pPage){
 | |
|   int rc;             /* Return value from subprocedures */
 | |
|   MemPage *pChild;    /* Pointer to a new child page */
 | |
|   Pgno pgnoChild;     /* Page number of the new child page */
 | |
|   BtShared *pBt;         /* The BTree */
 | |
|   int usableSize;     /* Total usable size of a page */
 | |
|   u8 *data;           /* Content of the parent page */
 | |
|   u8 *cdata;          /* Content of the child page */
 | |
|   int hdr;            /* Offset to page header in parent */
 | |
|   int brk;            /* Offset to content of first cell in parent */
 | |
| 
 | |
|   assert( pPage->pParent==0 );
 | |
|   assert( pPage->nOverflow>0 );
 | |
|   pBt = pPage->pBt;
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
 | |
|   if( rc ) return rc;
 | |
|   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
 | |
|   usableSize = pBt->usableSize;
 | |
|   data = pPage->aData;
 | |
|   hdr = pPage->hdrOffset;
 | |
|   brk = get2byte(&data[hdr+5]);
 | |
|   cdata = pChild->aData;
 | |
|   memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
 | |
|   memcpy(&cdata[brk], &data[brk], usableSize-brk);
 | |
|   assert( pChild->isInit==0 );
 | |
|   rc = sqlite3BtreeInitPage(pChild, pPage);
 | |
|   if( rc ) goto balancedeeper_out;
 | |
|   memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
 | |
|   pChild->nOverflow = pPage->nOverflow;
 | |
|   if( pChild->nOverflow ){
 | |
|     pChild->nFree = 0;
 | |
|   }
 | |
|   assert( pChild->nCell==pPage->nCell );
 | |
|   zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
 | |
|   put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
 | |
|   TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( pBt->autoVacuum ){
 | |
|     int i;
 | |
|     rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
 | |
|     if( rc ) goto balancedeeper_out;
 | |
|     for(i=0; i<pChild->nCell; i++){
 | |
|       rc = ptrmapPutOvfl(pChild, i);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   rc = balance_nonroot(pChild);
 | |
| 
 | |
| balancedeeper_out:
 | |
|   releasePage(pChild);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Decide if the page pPage needs to be balanced.  If balancing is
 | |
| ** required, call the appropriate balancing routine.
 | |
| */
 | |
| static int balance(MemPage *pPage, int insert){
 | |
|   int rc = SQLITE_OK;
 | |
|   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
 | |
|   if( pPage->pParent==0 ){
 | |
|     rc = sqlite3PagerWrite(pPage->pDbPage);
 | |
|     if( rc==SQLITE_OK && pPage->nOverflow>0 ){
 | |
|       rc = balance_deeper(pPage);
 | |
|     }
 | |
|     if( rc==SQLITE_OK && pPage->nCell==0 ){
 | |
|       rc = balance_shallower(pPage);
 | |
|     }
 | |
|   }else{
 | |
|     if( pPage->nOverflow>0 || 
 | |
|         (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
 | |
|       rc = balance_nonroot(pPage);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine checks all cursors that point to table pgnoRoot.
 | |
| ** If any of those cursors were opened with wrFlag==0 in a different
 | |
| ** database connection (a database connection that shares the pager
 | |
| ** cache with the current connection) and that other connection 
 | |
| ** is not in the ReadUncommmitted state, then this routine returns 
 | |
| ** SQLITE_LOCKED.
 | |
| **
 | |
| ** In addition to checking for read-locks (where a read-lock 
 | |
| ** means a cursor opened with wrFlag==0) this routine also moves
 | |
| ** all write cursors so that they are pointing to the 
 | |
| ** first Cell on the root page.  This is necessary because an insert 
 | |
| ** or delete might change the number of cells on a page or delete
 | |
| ** a page entirely and we do not want to leave any cursors 
 | |
| ** pointing to non-existant pages or cells.
 | |
| */
 | |
| static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){
 | |
|   BtCursor *p;
 | |
|   BtShared *pBt = pBtree->pBt;
 | |
|   sqlite3 *db = pBtree->db;
 | |
|   assert( sqlite3BtreeHoldsMutex(pBtree) );
 | |
|   for(p=pBt->pCursor; p; p=p->pNext){
 | |
|     if( p==pExclude ) continue;
 | |
|     if( p->eState!=CURSOR_VALID ) continue;
 | |
|     if( p->pgnoRoot!=pgnoRoot ) continue;
 | |
|     if( p->wrFlag==0 ){
 | |
|       sqlite3 *dbOther = p->pBtree->db;
 | |
|       if( dbOther==0 ||
 | |
|          (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
 | |
|         return SQLITE_LOCKED;
 | |
|       }
 | |
|     }else if( p->pPage->pgno!=p->pgnoRoot ){
 | |
|       moveToRoot(p);
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
 | |
| ** and the data is given by (pData,nData).  The cursor is used only to
 | |
| ** define what table the record should be inserted into.  The cursor
 | |
| ** is left pointing at a random location.
 | |
| **
 | |
| ** For an INTKEY table, only the nKey value of the key is used.  pKey is
 | |
| ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeInsert(
 | |
|   BtCursor *pCur,                /* Insert data into the table of this cursor */
 | |
|   const void *pKey, i64 nKey,    /* The key of the new record */
 | |
|   const void *pData, int nData,  /* The data of the new record */
 | |
|   int nZero,                     /* Number of extra 0 bytes to append to data */
 | |
|   int appendBias                 /* True if this is likely an append */
 | |
| ){
 | |
|   int rc;
 | |
|   int loc;
 | |
|   int szNew;
 | |
|   MemPage *pPage;
 | |
|   Btree *p = pCur->pBtree;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   unsigned char *oldCell;
 | |
|   unsigned char *newCell = 0;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   if( pBt->inTransaction!=TRANS_WRITE ){
 | |
|     /* Must start a transaction before doing an insert */
 | |
|     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|     return rc;
 | |
|   }
 | |
|   assert( !pBt->readOnly );
 | |
|   if( !pCur->wrFlag ){
 | |
|     return SQLITE_PERM;   /* Cursor not open for writing */
 | |
|   }
 | |
|   if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
 | |
|     return SQLITE_LOCKED; /* The table pCur points to has a read lock */
 | |
|   }
 | |
|   if( pCur->eState==CURSOR_FAULT ){
 | |
|     return pCur->skip;
 | |
|   }
 | |
| 
 | |
|   /* Save the positions of any other cursors open on this table */
 | |
|   clearCursorPosition(pCur);
 | |
|   if( 
 | |
|     SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
 | |
|     SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
 | |
|   ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   pPage = pCur->pPage;
 | |
|   assert( pPage->intKey || nKey>=0 );
 | |
|   assert( pPage->leaf || !pPage->leafData );
 | |
|   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
 | |
|           pCur->pgnoRoot, nKey, nData, pPage->pgno,
 | |
|           loc==0 ? "overwrite" : "new entry"));
 | |
|   assert( pPage->isInit );
 | |
|   newCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
 | |
|   if( newCell==0 ) return SQLITE_NOMEM;
 | |
|   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
 | |
|   if( rc ) goto end_insert;
 | |
|   assert( szNew==cellSizePtr(pPage, newCell) );
 | |
|   assert( szNew<=MX_CELL_SIZE(pBt) );
 | |
|   if( loc==0 && CURSOR_VALID==pCur->eState ){
 | |
|     u16 szOld;
 | |
|     assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
 | |
|     rc = sqlite3PagerWrite(pPage->pDbPage);
 | |
|     if( rc ){
 | |
|       goto end_insert;
 | |
|     }
 | |
|     oldCell = findCell(pPage, pCur->idx);
 | |
|     if( !pPage->leaf ){
 | |
|       memcpy(newCell, oldCell, 4);
 | |
|     }
 | |
|     szOld = cellSizePtr(pPage, oldCell);
 | |
|     rc = clearCell(pPage, oldCell);
 | |
|     if( rc ) goto end_insert;
 | |
|     dropCell(pPage, pCur->idx, szOld);
 | |
|   }else if( loc<0 && pPage->nCell>0 ){
 | |
|     assert( pPage->leaf );
 | |
|     pCur->idx++;
 | |
|     pCur->info.nSize = 0;
 | |
|   }else{
 | |
|     assert( pPage->leaf );
 | |
|   }
 | |
|   rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
 | |
|   if( rc!=SQLITE_OK ) goto end_insert;
 | |
|   rc = balance(pPage, 1);
 | |
|   /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
 | |
|   /* fflush(stdout); */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     moveToRoot(pCur);
 | |
|   }
 | |
| end_insert:
 | |
|   sqlite3_free(newCell);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the entry that the cursor is pointing to.  The cursor
 | |
| ** is left pointing at a random location.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){
 | |
|   MemPage *pPage = pCur->pPage;
 | |
|   unsigned char *pCell;
 | |
|   int rc;
 | |
|   Pgno pgnoChild = 0;
 | |
|   Btree *p = pCur->pBtree;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pPage->isInit );
 | |
|   if( pBt->inTransaction!=TRANS_WRITE ){
 | |
|     /* Must start a transaction before doing a delete */
 | |
|     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|     return rc;
 | |
|   }
 | |
|   assert( !pBt->readOnly );
 | |
|   if( pCur->eState==CURSOR_FAULT ){
 | |
|     return pCur->skip;
 | |
|   }
 | |
|   if( pCur->idx >= pPage->nCell ){
 | |
|     return SQLITE_ERROR;  /* The cursor is not pointing to anything */
 | |
|   }
 | |
|   if( !pCur->wrFlag ){
 | |
|     return SQLITE_PERM;   /* Did not open this cursor for writing */
 | |
|   }
 | |
|   if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){
 | |
|     return SQLITE_LOCKED; /* The table pCur points to has a read lock */
 | |
|   }
 | |
| 
 | |
|   /* Restore the current cursor position (a no-op if the cursor is not in 
 | |
|   ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
 | |
|   ** open on the same table. Then call sqlite3PagerWrite() on the page
 | |
|   ** that the entry will be deleted from.
 | |
|   */
 | |
|   if( 
 | |
|     (rc = restoreOrClearCursorPosition(pCur))!=0 ||
 | |
|     (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
 | |
|     (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
 | |
|   ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* Locate the cell within its page and leave pCell pointing to the
 | |
|   ** data. The clearCell() call frees any overflow pages associated with the
 | |
|   ** cell. The cell itself is still intact.
 | |
|   */
 | |
|   pCell = findCell(pPage, pCur->idx);
 | |
|   if( !pPage->leaf ){
 | |
|     pgnoChild = get4byte(pCell);
 | |
|   }
 | |
|   rc = clearCell(pPage, pCell);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   if( !pPage->leaf ){
 | |
|     /*
 | |
|     ** The entry we are about to delete is not a leaf so if we do not
 | |
|     ** do something we will leave a hole on an internal page.
 | |
|     ** We have to fill the hole by moving in a cell from a leaf.  The
 | |
|     ** next Cell after the one to be deleted is guaranteed to exist and
 | |
|     ** to be a leaf so we can use it.
 | |
|     */
 | |
|     BtCursor leafCur;
 | |
|     unsigned char *pNext;
 | |
|     int notUsed;
 | |
|     unsigned char *tempCell = 0;
 | |
|     assert( !pPage->leafData );
 | |
|     sqlite3BtreeGetTempCursor(pCur, &leafCur);
 | |
|     rc = sqlite3BtreeNext(&leafCur, ¬Used);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       u16 szNext;
 | |
|       TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
 | |
|          pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
 | |
|       dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
 | |
|       pNext = findCell(leafCur.pPage, leafCur.idx);
 | |
|       szNext = cellSizePtr(leafCur.pPage, pNext);
 | |
|       assert( MX_CELL_SIZE(pBt)>=szNext+4 );
 | |
|       tempCell = sqlite3_malloc( MX_CELL_SIZE(pBt) );
 | |
|       if( tempCell==0 ){
 | |
|         rc = SQLITE_NOMEM;
 | |
|       }
 | |
|       if( rc==SQLITE_OK ){
 | |
|         rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
 | |
|       }
 | |
|       if( rc==SQLITE_OK ){
 | |
|         put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
 | |
|         rc = balance(pPage, 0);
 | |
|       }
 | |
|       if( rc==SQLITE_OK ){
 | |
|         dropCell(leafCur.pPage, leafCur.idx, szNext);
 | |
|         rc = balance(leafCur.pPage, 0);
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(tempCell);
 | |
|     sqlite3BtreeReleaseTempCursor(&leafCur);
 | |
|   }else{
 | |
|     TRACE(("DELETE: table=%d delete from leaf %d\n",
 | |
|        pCur->pgnoRoot, pPage->pgno));
 | |
|     dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
 | |
|     rc = balance(pPage, 0);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     moveToRoot(pCur);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new BTree table.  Write into *piTable the page
 | |
| ** number for the root page of the new table.
 | |
| **
 | |
| ** The type of type is determined by the flags parameter.  Only the
 | |
| ** following values of flags are currently in use.  Other values for
 | |
| ** flags might not work:
 | |
| **
 | |
| **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
 | |
| **     BTREE_ZERODATA                  Used for SQL indices
 | |
| */
 | |
| static int btreeCreateTable(Btree *p, int *piTable, int flags){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   MemPage *pRoot;
 | |
|   Pgno pgnoRoot;
 | |
|   int rc;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
|   if( pBt->inTransaction!=TRANS_WRITE ){
 | |
|     /* Must start a transaction first */
 | |
|     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|     return rc;
 | |
|   }
 | |
|   assert( !pBt->readOnly );
 | |
| 
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
| #else
 | |
|   if( pBt->autoVacuum ){
 | |
|     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
 | |
|     MemPage *pPageMove; /* The page to move to. */
 | |
| 
 | |
|     /* Creating a new table may probably require moving an existing database
 | |
|     ** to make room for the new tables root page. In case this page turns
 | |
|     ** out to be an overflow page, delete all overflow page-map caches
 | |
|     ** held by open cursors.
 | |
|     */
 | |
|     invalidateAllOverflowCache(pBt);
 | |
| 
 | |
|     /* Read the value of meta[3] from the database to determine where the
 | |
|     ** root page of the new table should go. meta[3] is the largest root-page
 | |
|     ** created so far, so the new root-page is (meta[3]+1).
 | |
|     */
 | |
|     rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     pgnoRoot++;
 | |
| 
 | |
|     /* The new root-page may not be allocated on a pointer-map page, or the
 | |
|     ** PENDING_BYTE page.
 | |
|     */
 | |
|     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
 | |
|         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
 | |
|       pgnoRoot++;
 | |
|     }
 | |
|     assert( pgnoRoot>=3 );
 | |
| 
 | |
|     /* Allocate a page. The page that currently resides at pgnoRoot will
 | |
|     ** be moved to the allocated page (unless the allocated page happens
 | |
|     ** to reside at pgnoRoot).
 | |
|     */
 | |
|     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     if( pgnoMove!=pgnoRoot ){
 | |
|       /* pgnoRoot is the page that will be used for the root-page of
 | |
|       ** the new table (assuming an error did not occur). But we were
 | |
|       ** allocated pgnoMove. If required (i.e. if it was not allocated
 | |
|       ** by extending the file), the current page at position pgnoMove
 | |
|       ** is already journaled.
 | |
|       */
 | |
|       u8 eType;
 | |
|       Pgno iPtrPage;
 | |
| 
 | |
|       releasePage(pPageMove);
 | |
| 
 | |
|       /* Move the page currently at pgnoRoot to pgnoMove. */
 | |
|       rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
 | |
|       if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
 | |
|         releasePage(pRoot);
 | |
|         return rc;
 | |
|       }
 | |
|       assert( eType!=PTRMAP_ROOTPAGE );
 | |
|       assert( eType!=PTRMAP_FREEPAGE );
 | |
|       rc = sqlite3PagerWrite(pRoot->pDbPage);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         releasePage(pRoot);
 | |
|         return rc;
 | |
|       }
 | |
|       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove);
 | |
|       releasePage(pRoot);
 | |
| 
 | |
|       /* Obtain the page at pgnoRoot */
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|       rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         return rc;
 | |
|       }
 | |
|       rc = sqlite3PagerWrite(pRoot->pDbPage);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         releasePage(pRoot);
 | |
|         return rc;
 | |
|       }
 | |
|     }else{
 | |
|       pRoot = pPageMove;
 | |
|     } 
 | |
| 
 | |
|     /* Update the pointer-map and meta-data with the new root-page number. */
 | |
|     rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
 | |
|     if( rc ){
 | |
|       releasePage(pRoot);
 | |
|       return rc;
 | |
|     }
 | |
|     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
 | |
|     if( rc ){
 | |
|       releasePage(pRoot);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|   }else{
 | |
|     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
 | |
|     if( rc ) return rc;
 | |
|   }
 | |
| #endif
 | |
|   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
 | |
|   zeroPage(pRoot, flags | PTF_LEAF);
 | |
|   sqlite3PagerUnref(pRoot->pDbPage);
 | |
|   *piTable = (int)pgnoRoot;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
 | |
|   int rc;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   p->pBt->db = p->db;
 | |
|   rc = btreeCreateTable(p, piTable, flags);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Erase the given database page and all its children.  Return
 | |
| ** the page to the freelist.
 | |
| */
 | |
| static int clearDatabasePage(
 | |
|   BtShared *pBt,           /* The BTree that contains the table */
 | |
|   Pgno pgno,            /* Page number to clear */
 | |
|   MemPage *pParent,     /* Parent page.  NULL for the root */
 | |
|   int freePageFlag      /* Deallocate page if true */
 | |
| ){
 | |
|   MemPage *pPage = 0;
 | |
|   int rc;
 | |
|   unsigned char *pCell;
 | |
|   int i;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pBt->mutex) );
 | |
|   if( pgno>sqlite3PagerPagecount(pBt->pPager) ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
| 
 | |
|   rc = getAndInitPage(pBt, pgno, &pPage, pParent);
 | |
|   if( rc ) goto cleardatabasepage_out;
 | |
|   for(i=0; i<pPage->nCell; i++){
 | |
|     pCell = findCell(pPage, i);
 | |
|     if( !pPage->leaf ){
 | |
|       rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
 | |
|       if( rc ) goto cleardatabasepage_out;
 | |
|     }
 | |
|     rc = clearCell(pPage, pCell);
 | |
|     if( rc ) goto cleardatabasepage_out;
 | |
|   }
 | |
|   if( !pPage->leaf ){
 | |
|     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
 | |
|     if( rc ) goto cleardatabasepage_out;
 | |
|   }
 | |
|   if( freePageFlag ){
 | |
|     rc = freePage(pPage);
 | |
|   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
 | |
|     zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
 | |
|   }
 | |
| 
 | |
| cleardatabasepage_out:
 | |
|   releasePage(pPage);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete all information from a single table in the database.  iTable is
 | |
| ** the page number of the root of the table.  After this routine returns,
 | |
| ** the root page is empty, but still exists.
 | |
| **
 | |
| ** This routine will fail with SQLITE_LOCKED if there are any open
 | |
| ** read cursors on the table.  Open write cursors are moved to the
 | |
| ** root of the table.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable){
 | |
|   int rc;
 | |
|   BtShared *pBt = p->pBt;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   if( p->inTrans!=TRANS_WRITE ){
 | |
|     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|   }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){
 | |
|     /* nothing to do */
 | |
|   }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
 | |
|     /* nothing to do */
 | |
|   }else{
 | |
|     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Erase all information in a table and add the root of the table to
 | |
| ** the freelist.  Except, the root of the principle table (the one on
 | |
| ** page 1) is never added to the freelist.
 | |
| **
 | |
| ** This routine will fail with SQLITE_LOCKED if there are any open
 | |
| ** cursors on the table.
 | |
| **
 | |
| ** If AUTOVACUUM is enabled and the page at iTable is not the last
 | |
| ** root page in the database file, then the last root page 
 | |
| ** in the database file is moved into the slot formerly occupied by
 | |
| ** iTable and that last slot formerly occupied by the last root page
 | |
| ** is added to the freelist instead of iTable.  In this say, all
 | |
| ** root pages are kept at the beginning of the database file, which
 | |
| ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
 | |
| ** page number that used to be the last root page in the file before
 | |
| ** the move.  If no page gets moved, *piMoved is set to 0.
 | |
| ** The last root page is recorded in meta[3] and the value of
 | |
| ** meta[3] is updated by this procedure.
 | |
| */
 | |
| static int btreeDropTable(Btree *p, int iTable, int *piMoved){
 | |
|   int rc;
 | |
|   MemPage *pPage = 0;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
|   if( p->inTrans!=TRANS_WRITE ){
 | |
|     return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* It is illegal to drop a table if any cursors are open on the
 | |
|   ** database. This is because in auto-vacuum mode the backend may
 | |
|   ** need to move another root-page to fill a gap left by the deleted
 | |
|   ** root page. If an open cursor was using this page a problem would 
 | |
|   ** occur.
 | |
|   */
 | |
|   if( pBt->pCursor ){
 | |
|     return SQLITE_LOCKED;
 | |
|   }
 | |
| 
 | |
|   rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
 | |
|   if( rc ) return rc;
 | |
|   rc = sqlite3BtreeClearTable(p, iTable);
 | |
|   if( rc ){
 | |
|     releasePage(pPage);
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   *piMoved = 0;
 | |
| 
 | |
|   if( iTable>1 ){
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|     rc = freePage(pPage);
 | |
|     releasePage(pPage);
 | |
| #else
 | |
|     if( pBt->autoVacuum ){
 | |
|       Pgno maxRootPgno;
 | |
|       rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         releasePage(pPage);
 | |
|         return rc;
 | |
|       }
 | |
| 
 | |
|       if( iTable==maxRootPgno ){
 | |
|         /* If the table being dropped is the table with the largest root-page
 | |
|         ** number in the database, put the root page on the free list. 
 | |
|         */
 | |
|         rc = freePage(pPage);
 | |
|         releasePage(pPage);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|       }else{
 | |
|         /* The table being dropped does not have the largest root-page
 | |
|         ** number in the database. So move the page that does into the 
 | |
|         ** gap left by the deleted root-page.
 | |
|         */
 | |
|         MemPage *pMove;
 | |
|         releasePage(pPage);
 | |
|         rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|         rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable);
 | |
|         releasePage(pMove);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|         rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|         rc = freePage(pMove);
 | |
|         releasePage(pMove);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           return rc;
 | |
|         }
 | |
|         *piMoved = maxRootPgno;
 | |
|       }
 | |
| 
 | |
|       /* Set the new 'max-root-page' value in the database header. This
 | |
|       ** is the old value less one, less one more if that happens to
 | |
|       ** be a root-page number, less one again if that is the
 | |
|       ** PENDING_BYTE_PAGE.
 | |
|       */
 | |
|       maxRootPgno--;
 | |
|       if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
 | |
|         maxRootPgno--;
 | |
|       }
 | |
|       if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
 | |
|         maxRootPgno--;
 | |
|       }
 | |
|       assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
 | |
| 
 | |
|       rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
 | |
|     }else{
 | |
|       rc = freePage(pPage);
 | |
|       releasePage(pPage);
 | |
|     }
 | |
| #endif
 | |
|   }else{
 | |
|     /* If sqlite3BtreeDropTable was called on page 1. */
 | |
|     zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
 | |
|     releasePage(pPage);
 | |
|   }
 | |
|   return rc;  
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
 | |
|   int rc;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   p->pBt->db = p->db;
 | |
|   rc = btreeDropTable(p, iTable, piMoved);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Read the meta-information out of a database file.  Meta[0]
 | |
| ** is the number of free pages currently in the database.  Meta[1]
 | |
| ** through meta[15] are available for use by higher layers.  Meta[0]
 | |
| ** is read-only, the others are read/write.
 | |
| ** 
 | |
| ** The schema layer numbers meta values differently.  At the schema
 | |
| ** layer (and the SetCookie and ReadCookie opcodes) the number of
 | |
| ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
 | |
|   DbPage *pDbPage;
 | |
|   int rc;
 | |
|   unsigned char *pP1;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
| 
 | |
|   /* Reading a meta-data value requires a read-lock on page 1 (and hence
 | |
|   ** the sqlite_master table. We grab this lock regardless of whether or
 | |
|   ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
 | |
|   ** 1 is treated as a special case by queryTableLock() and lockTable()).
 | |
|   */
 | |
|   rc = queryTableLock(p, 1, READ_LOCK);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     sqlite3BtreeLeave(p);
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   assert( idx>=0 && idx<=15 );
 | |
|   rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
 | |
|   if( rc ){
 | |
|     sqlite3BtreeLeave(p);
 | |
|     return rc;
 | |
|   }
 | |
|   pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
 | |
|   *pMeta = get4byte(&pP1[36 + idx*4]);
 | |
|   sqlite3PagerUnref(pDbPage);
 | |
| 
 | |
|   /* If autovacuumed is disabled in this build but we are trying to 
 | |
|   ** access an autovacuumed database, then make the database readonly. 
 | |
|   */
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
 | |
| #endif
 | |
| 
 | |
|   /* Grab the read-lock on page 1. */
 | |
|   rc = lockTable(p, 1, READ_LOCK);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write meta-information back into the database.  Meta[0] is
 | |
| ** read-only and may not be written.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   unsigned char *pP1;
 | |
|   int rc;
 | |
|   assert( idx>=1 && idx<=15 );
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   if( p->inTrans!=TRANS_WRITE ){
 | |
|     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
 | |
|   }else{
 | |
|     assert( pBt->pPage1!=0 );
 | |
|     pP1 = pBt->pPage1->aData;
 | |
|     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       put4byte(&pP1[36 + idx*4], iMeta);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       if( idx==7 ){
 | |
|         assert( pBt->autoVacuum || iMeta==0 );
 | |
|         assert( iMeta==0 || iMeta==1 );
 | |
|         pBt->incrVacuum = iMeta;
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the flag byte at the beginning of the page that the cursor
 | |
| ** is currently pointing to.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *pCur){
 | |
|   /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
 | |
|   ** restoreOrClearCursorPosition() here.
 | |
|   */
 | |
|   MemPage *pPage;
 | |
|   restoreOrClearCursorPosition(pCur);
 | |
|   pPage = pCur->pPage;
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( pPage->pBt==pCur->pBt );
 | |
|   return pPage ? pPage->aData[pPage->hdrOffset] : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return the pager associated with a BTree.  This routine is used for
 | |
| ** testing and debugging only.
 | |
| */
 | |
| SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){
 | |
|   return p->pBt->pPager;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
| /*
 | |
| ** Append a message to the error message string.
 | |
| */
 | |
| static void checkAppendMsg(
 | |
|   IntegrityCk *pCheck,
 | |
|   char *zMsg1,
 | |
|   const char *zFormat,
 | |
|   ...
 | |
| ){
 | |
|   va_list ap;
 | |
|   char *zMsg2;
 | |
|   if( !pCheck->mxErr ) return;
 | |
|   pCheck->mxErr--;
 | |
|   pCheck->nErr++;
 | |
|   va_start(ap, zFormat);
 | |
|   zMsg2 = sqlite3VMPrintf(0, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   if( zMsg1==0 ) zMsg1 = "";
 | |
|   if( pCheck->zErrMsg ){
 | |
|     char *zOld = pCheck->zErrMsg;
 | |
|     pCheck->zErrMsg = 0;
 | |
|     sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
 | |
|     sqlite3_free(zOld);
 | |
|   }else{
 | |
|     sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
 | |
|   }
 | |
|   sqlite3_free(zMsg2);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
| /*
 | |
| ** Add 1 to the reference count for page iPage.  If this is the second
 | |
| ** reference to the page, add an error message to pCheck->zErrMsg.
 | |
| ** Return 1 if there are 2 ore more references to the page and 0 if
 | |
| ** if this is the first reference to the page.
 | |
| **
 | |
| ** Also check that the page number is in bounds.
 | |
| */
 | |
| static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
 | |
|   if( iPage==0 ) return 1;
 | |
|   if( iPage>pCheck->nPage || iPage<0 ){
 | |
|     checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
 | |
|     return 1;
 | |
|   }
 | |
|   if( pCheck->anRef[iPage]==1 ){
 | |
|     checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
 | |
|     return 1;
 | |
|   }
 | |
|   return  (pCheck->anRef[iPage]++)>1;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| /*
 | |
| ** Check that the entry in the pointer-map for page iChild maps to 
 | |
| ** page iParent, pointer type ptrType. If not, append an error message
 | |
| ** to pCheck.
 | |
| */
 | |
| static void checkPtrmap(
 | |
|   IntegrityCk *pCheck,   /* Integrity check context */
 | |
|   Pgno iChild,           /* Child page number */
 | |
|   u8 eType,              /* Expected pointer map type */
 | |
|   Pgno iParent,          /* Expected pointer map parent page number */
 | |
|   char *zContext         /* Context description (used for error msg) */
 | |
| ){
 | |
|   int rc;
 | |
|   u8 ePtrmapType;
 | |
|   Pgno iPtrmapParent;
 | |
| 
 | |
|   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
 | |
|     checkAppendMsg(pCheck, zContext, 
 | |
|       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
 | |
|       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Check the integrity of the freelist or of an overflow page list.
 | |
| ** Verify that the number of pages on the list is N.
 | |
| */
 | |
| static void checkList(
 | |
|   IntegrityCk *pCheck,  /* Integrity checking context */
 | |
|   int isFreeList,       /* True for a freelist.  False for overflow page list */
 | |
|   int iPage,            /* Page number for first page in the list */
 | |
|   int N,                /* Expected number of pages in the list */
 | |
|   char *zContext        /* Context for error messages */
 | |
| ){
 | |
|   int i;
 | |
|   int expected = N;
 | |
|   int iFirst = iPage;
 | |
|   while( N-- > 0 && pCheck->mxErr ){
 | |
|     DbPage *pOvflPage;
 | |
|     unsigned char *pOvflData;
 | |
|     if( iPage<1 ){
 | |
|       checkAppendMsg(pCheck, zContext,
 | |
|          "%d of %d pages missing from overflow list starting at %d",
 | |
|           N+1, expected, iFirst);
 | |
|       break;
 | |
|     }
 | |
|     if( checkRef(pCheck, iPage, zContext) ) break;
 | |
|     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
 | |
|       checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
 | |
|       break;
 | |
|     }
 | |
|     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
 | |
|     if( isFreeList ){
 | |
|       int n = get4byte(&pOvflData[4]);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       if( pCheck->pBt->autoVacuum ){
 | |
|         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
 | |
|       }
 | |
| #endif
 | |
|       if( n>pCheck->pBt->usableSize/4-8 ){
 | |
|         checkAppendMsg(pCheck, zContext,
 | |
|            "freelist leaf count too big on page %d", iPage);
 | |
|         N--;
 | |
|       }else{
 | |
|         for(i=0; i<n; i++){
 | |
|           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|           if( pCheck->pBt->autoVacuum ){
 | |
|             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
 | |
|           }
 | |
| #endif
 | |
|           checkRef(pCheck, iFreePage, zContext);
 | |
|         }
 | |
|         N -= n;
 | |
|       }
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     else{
 | |
|       /* If this database supports auto-vacuum and iPage is not the last
 | |
|       ** page in this overflow list, check that the pointer-map entry for
 | |
|       ** the following page matches iPage.
 | |
|       */
 | |
|       if( pCheck->pBt->autoVacuum && N>0 ){
 | |
|         i = get4byte(pOvflData);
 | |
|         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     iPage = get4byte(pOvflData);
 | |
|     sqlite3PagerUnref(pOvflPage);
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
| /*
 | |
| ** Do various sanity checks on a single page of a tree.  Return
 | |
| ** the tree depth.  Root pages return 0.  Parents of root pages
 | |
| ** return 1, and so forth.
 | |
| ** 
 | |
| ** These checks are done:
 | |
| **
 | |
| **      1.  Make sure that cells and freeblocks do not overlap
 | |
| **          but combine to completely cover the page.
 | |
| **  NO  2.  Make sure cell keys are in order.
 | |
| **  NO  3.  Make sure no key is less than or equal to zLowerBound.
 | |
| **  NO  4.  Make sure no key is greater than or equal to zUpperBound.
 | |
| **      5.  Check the integrity of overflow pages.
 | |
| **      6.  Recursively call checkTreePage on all children.
 | |
| **      7.  Verify that the depth of all children is the same.
 | |
| **      8.  Make sure this page is at least 33% full or else it is
 | |
| **          the root of the tree.
 | |
| */
 | |
| static int checkTreePage(
 | |
|   IntegrityCk *pCheck,  /* Context for the sanity check */
 | |
|   int iPage,            /* Page number of the page to check */
 | |
|   MemPage *pParent,     /* Parent page */
 | |
|   char *zParentContext  /* Parent context */
 | |
| ){
 | |
|   MemPage *pPage;
 | |
|   int i, rc, depth, d2, pgno, cnt;
 | |
|   int hdr, cellStart;
 | |
|   int nCell;
 | |
|   u8 *data;
 | |
|   BtShared *pBt;
 | |
|   int usableSize;
 | |
|   char zContext[100];
 | |
|   char *hit;
 | |
| 
 | |
|   sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
 | |
| 
 | |
|   /* Check that the page exists
 | |
|   */
 | |
|   pBt = pCheck->pBt;
 | |
|   usableSize = pBt->usableSize;
 | |
|   if( iPage==0 ) return 0;
 | |
|   if( checkRef(pCheck, iPage, zParentContext) ) return 0;
 | |
|   if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
 | |
|     checkAppendMsg(pCheck, zContext,
 | |
|        "unable to get the page. error code=%d", rc);
 | |
|     return 0;
 | |
|   }
 | |
|   if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
 | |
|     checkAppendMsg(pCheck, zContext, 
 | |
|                    "sqlite3BtreeInitPage() returns error code %d", rc);
 | |
|     releasePage(pPage);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* Check out all the cells.
 | |
|   */
 | |
|   depth = 0;
 | |
|   for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
 | |
|     u8 *pCell;
 | |
|     int sz;
 | |
|     CellInfo info;
 | |
| 
 | |
|     /* Check payload overflow pages
 | |
|     */
 | |
|     sqlite3_snprintf(sizeof(zContext), zContext,
 | |
|              "On tree page %d cell %d: ", iPage, i);
 | |
|     pCell = findCell(pPage,i);
 | |
|     sqlite3BtreeParseCellPtr(pPage, pCell, &info);
 | |
|     sz = info.nData;
 | |
|     if( !pPage->intKey ) sz += info.nKey;
 | |
|     assert( sz==info.nPayload );
 | |
|     if( sz>info.nLocal ){
 | |
|       int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
 | |
|       Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       if( pBt->autoVacuum ){
 | |
|         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
 | |
|       }
 | |
| #endif
 | |
|       checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
 | |
|     }
 | |
| 
 | |
|     /* Check sanity of left child page.
 | |
|     */
 | |
|     if( !pPage->leaf ){
 | |
|       pgno = get4byte(pCell);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|       if( pBt->autoVacuum ){
 | |
|         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
 | |
|       }
 | |
| #endif
 | |
|       d2 = checkTreePage(pCheck,pgno,pPage,zContext);
 | |
|       if( i>0 && d2!=depth ){
 | |
|         checkAppendMsg(pCheck, zContext, "Child page depth differs");
 | |
|       }
 | |
|       depth = d2;
 | |
|     }
 | |
|   }
 | |
|   if( !pPage->leaf ){
 | |
|     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
 | |
|     sqlite3_snprintf(sizeof(zContext), zContext, 
 | |
|                      "On page %d at right child: ", iPage);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( pBt->autoVacuum ){
 | |
|       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
 | |
|     }
 | |
| #endif
 | |
|     checkTreePage(pCheck, pgno, pPage, zContext);
 | |
|   }
 | |
|  
 | |
|   /* Check for complete coverage of the page
 | |
|   */
 | |
|   data = pPage->aData;
 | |
|   hdr = pPage->hdrOffset;
 | |
|   hit = sqlite3MallocZero( usableSize );
 | |
|   if( hit ){
 | |
|     memset(hit, 1, get2byte(&data[hdr+5]));
 | |
|     nCell = get2byte(&data[hdr+3]);
 | |
|     cellStart = hdr + 12 - 4*pPage->leaf;
 | |
|     for(i=0; i<nCell; i++){
 | |
|       int pc = get2byte(&data[cellStart+i*2]);
 | |
|       u16 size = cellSizePtr(pPage, &data[pc]);
 | |
|       int j;
 | |
|       if( (pc+size-1)>=usableSize || pc<0 ){
 | |
|         checkAppendMsg(pCheck, 0, 
 | |
|             "Corruption detected in cell %d on page %d",i,iPage,0);
 | |
|       }else{
 | |
|         for(j=pc+size-1; j>=pc; j--) hit[j]++;
 | |
|       }
 | |
|     }
 | |
|     for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; 
 | |
|            cnt++){
 | |
|       int size = get2byte(&data[i+2]);
 | |
|       int j;
 | |
|       if( (i+size-1)>=usableSize || i<0 ){
 | |
|         checkAppendMsg(pCheck, 0,  
 | |
|             "Corruption detected in cell %d on page %d",i,iPage,0);
 | |
|       }else{
 | |
|         for(j=i+size-1; j>=i; j--) hit[j]++;
 | |
|       }
 | |
|       i = get2byte(&data[i]);
 | |
|     }
 | |
|     for(i=cnt=0; i<usableSize; i++){
 | |
|       if( hit[i]==0 ){
 | |
|         cnt++;
 | |
|       }else if( hit[i]>1 ){
 | |
|         checkAppendMsg(pCheck, 0,
 | |
|           "Multiple uses for byte %d of page %d", i, iPage);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( cnt!=data[hdr+7] ){
 | |
|       checkAppendMsg(pCheck, 0, 
 | |
|           "Fragmented space is %d byte reported as %d on page %d",
 | |
|           cnt, data[hdr+7], iPage);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_free(hit);
 | |
| 
 | |
|   releasePage(pPage);
 | |
|   return depth+1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
| /*
 | |
| ** This routine does a complete check of the given BTree file.  aRoot[] is
 | |
| ** an array of pages numbers were each page number is the root page of
 | |
| ** a table.  nRoot is the number of entries in aRoot.
 | |
| **
 | |
| ** If everything checks out, this routine returns NULL.  If something is
 | |
| ** amiss, an error message is written into memory obtained from malloc()
 | |
| ** and a pointer to that error message is returned.  The calling function
 | |
| ** is responsible for freeing the error message when it is done.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(
 | |
|   Btree *p,     /* The btree to be checked */
 | |
|   int *aRoot,   /* An array of root pages numbers for individual trees */
 | |
|   int nRoot,    /* Number of entries in aRoot[] */
 | |
|   int mxErr,    /* Stop reporting errors after this many */
 | |
|   int *pnErr    /* Write number of errors seen to this variable */
 | |
| ){
 | |
|   int i;
 | |
|   int nRef;
 | |
|   IntegrityCk sCheck;
 | |
|   BtShared *pBt = p->pBt;
 | |
| 
 | |
|   sqlite3BtreeEnter(p);
 | |
|   pBt->db = p->db;
 | |
|   nRef = sqlite3PagerRefcount(pBt->pPager);
 | |
|   if( lockBtreeWithRetry(p)!=SQLITE_OK ){
 | |
|     sqlite3BtreeLeave(p);
 | |
|     return sqlite3StrDup("Unable to acquire a read lock on the database");
 | |
|   }
 | |
|   sCheck.pBt = pBt;
 | |
|   sCheck.pPager = pBt->pPager;
 | |
|   sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager);
 | |
|   sCheck.mxErr = mxErr;
 | |
|   sCheck.nErr = 0;
 | |
|   *pnErr = 0;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( pBt->nTrunc!=0 ){
 | |
|     sCheck.nPage = pBt->nTrunc;
 | |
|   }
 | |
| #endif
 | |
|   if( sCheck.nPage==0 ){
 | |
|     unlockBtreeIfUnused(pBt);
 | |
|     sqlite3BtreeLeave(p);
 | |
|     return 0;
 | |
|   }
 | |
|   sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
 | |
|   if( !sCheck.anRef ){
 | |
|     unlockBtreeIfUnused(pBt);
 | |
|     *pnErr = 1;
 | |
|     sqlite3BtreeLeave(p);
 | |
|     return sqlite3MPrintf(p->db, "Unable to malloc %d bytes", 
 | |
|         (sCheck.nPage+1)*sizeof(sCheck.anRef[0]));
 | |
|   }
 | |
|   for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
 | |
|   i = PENDING_BYTE_PAGE(pBt);
 | |
|   if( i<=sCheck.nPage ){
 | |
|     sCheck.anRef[i] = 1;
 | |
|   }
 | |
|   sCheck.zErrMsg = 0;
 | |
| 
 | |
|   /* Check the integrity of the freelist
 | |
|   */
 | |
|   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
 | |
|             get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
 | |
| 
 | |
|   /* Check all the tables.
 | |
|   */
 | |
|   for(i=0; i<nRoot && sCheck.mxErr; i++){
 | |
|     if( aRoot[i]==0 ) continue;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( pBt->autoVacuum && aRoot[i]>1 ){
 | |
|       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
 | |
|     }
 | |
| #endif
 | |
|     checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
 | |
|   }
 | |
| 
 | |
|   /* Make sure every page in the file is referenced
 | |
|   */
 | |
|   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( sCheck.anRef[i]==0 ){
 | |
|       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
 | |
|     }
 | |
| #else
 | |
|     /* If the database supports auto-vacuum, make sure no tables contain
 | |
|     ** references to pointer-map pages.
 | |
|     */
 | |
|     if( sCheck.anRef[i]==0 && 
 | |
|        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
 | |
|       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
 | |
|     }
 | |
|     if( sCheck.anRef[i]!=0 && 
 | |
|        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
 | |
|       checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* Make sure this analysis did not leave any unref() pages
 | |
|   */
 | |
|   unlockBtreeIfUnused(pBt);
 | |
|   if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
 | |
|     checkAppendMsg(&sCheck, 0, 
 | |
|       "Outstanding page count goes from %d to %d during this analysis",
 | |
|       nRef, sqlite3PagerRefcount(pBt->pPager)
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   /* Clean  up and report errors.
 | |
|   */
 | |
|   sqlite3BtreeLeave(p);
 | |
|   sqlite3_free(sCheck.anRef);
 | |
|   *pnErr = sCheck.nErr;
 | |
|   return sCheck.zErrMsg;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| /*
 | |
| ** Return the full pathname of the underlying database file.
 | |
| **
 | |
| ** The pager filename is invariant as long as the pager is
 | |
| ** open so it is safe to access without the BtShared mutex.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){
 | |
|   assert( p->pBt->pPager!=0 );
 | |
|   return sqlite3PagerFilename(p->pBt->pPager);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the pathname of the directory that contains the database file.
 | |
| **
 | |
| ** The pager directory name is invariant as long as the pager is
 | |
| ** open so it is safe to access without the BtShared mutex.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *p){
 | |
|   assert( p->pBt->pPager!=0 );
 | |
|   return sqlite3PagerDirname(p->pBt->pPager);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the pathname of the journal file for this database. The return
 | |
| ** value of this routine is the same regardless of whether the journal file
 | |
| ** has been created or not.
 | |
| **
 | |
| ** The pager journal filename is invariant as long as the pager is
 | |
| ** open so it is safe to access without the BtShared mutex.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){
 | |
|   assert( p->pBt->pPager!=0 );
 | |
|   return sqlite3PagerJournalname(p->pBt->pPager);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VACUUM
 | |
| /*
 | |
| ** Copy the complete content of pBtFrom into pBtTo.  A transaction
 | |
| ** must be active for both files.
 | |
| **
 | |
| ** The size of file pBtFrom may be reduced by this operation.
 | |
| ** If anything goes wrong, the transaction on pBtFrom is rolled back.
 | |
| */
 | |
| static int btreeCopyFile(Btree *pTo, Btree *pFrom){
 | |
|   int rc = SQLITE_OK;
 | |
|   Pgno i, nPage, nToPage, iSkip;
 | |
| 
 | |
|   BtShared *pBtTo = pTo->pBt;
 | |
|   BtShared *pBtFrom = pFrom->pBt;
 | |
|   pBtTo->db = pTo->db;
 | |
|   pBtFrom->db = pFrom->db;
 | |
|   
 | |
| 
 | |
|   if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   if( pBtTo->pCursor ) return SQLITE_BUSY;
 | |
|   nToPage = sqlite3PagerPagecount(pBtTo->pPager);
 | |
|   nPage = sqlite3PagerPagecount(pBtFrom->pPager);
 | |
|   iSkip = PENDING_BYTE_PAGE(pBtTo);
 | |
|   for(i=1; rc==SQLITE_OK && i<=nPage; i++){
 | |
|     DbPage *pDbPage;
 | |
|     if( i==iSkip ) continue;
 | |
|     rc = sqlite3PagerGet(pBtFrom->pPager, i, &pDbPage);
 | |
|     if( rc ) break;
 | |
|     rc = sqlite3PagerOverwrite(pBtTo->pPager, i, sqlite3PagerGetData(pDbPage));
 | |
|     sqlite3PagerUnref(pDbPage);
 | |
|   }
 | |
| 
 | |
|   /* If the file is shrinking, journal the pages that are being truncated
 | |
|   ** so that they can be rolled back if the commit fails.
 | |
|   */
 | |
|   for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
 | |
|     DbPage *pDbPage;
 | |
|     if( i==iSkip ) continue;
 | |
|     rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
 | |
|     if( rc ) break;
 | |
|     rc = sqlite3PagerWrite(pDbPage);
 | |
|     sqlite3PagerDontWrite(pDbPage);
 | |
|     /* Yeah.  It seems wierd to call DontWrite() right after Write().  But
 | |
|     ** that is because the names of those procedures do not exactly 
 | |
|     ** represent what they do.  Write() really means "put this page in the
 | |
|     ** rollback journal and mark it as dirty so that it will be written
 | |
|     ** to the database file later."  DontWrite() undoes the second part of
 | |
|     ** that and prevents the page from being written to the database.  The
 | |
|     ** page is still on the rollback journal, though.  And that is the whole
 | |
|     ** point of this loop: to put pages on the rollback journal. */
 | |
|     sqlite3PagerUnref(pDbPage);
 | |
|   }
 | |
|   if( !rc && nPage<nToPage ){
 | |
|     rc = sqlite3PagerTruncate(pBtTo->pPager, nPage);
 | |
|   }
 | |
| 
 | |
|   if( rc ){
 | |
|     sqlite3BtreeRollback(pTo);
 | |
|   }
 | |
|   return rc;  
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
 | |
|   int rc;
 | |
|   sqlite3BtreeEnter(pTo);
 | |
|   sqlite3BtreeEnter(pFrom);
 | |
|   rc = btreeCopyFile(pTo, pFrom);
 | |
|   sqlite3BtreeLeave(pFrom);
 | |
|   sqlite3BtreeLeave(pTo);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_VACUUM */
 | |
| 
 | |
| /*
 | |
| ** Return non-zero if a transaction is active.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){
 | |
|   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
 | |
|   return (p && (p->inTrans==TRANS_WRITE));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return non-zero if a statement transaction is active.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree *p){
 | |
|   assert( sqlite3BtreeHoldsMutex(p) );
 | |
|   return (p->pBt && p->pBt->inStmt);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return non-zero if a read (or write) transaction is active.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );
 | |
|   return (p && (p->inTrans!=TRANS_NONE));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function returns a pointer to a blob of memory associated with
 | |
| ** a single shared-btree. The memory is used by client code for its own
 | |
| ** purposes (for example, to store a high-level schema associated with 
 | |
| ** the shared-btree). The btree layer manages reference counting issues.
 | |
| **
 | |
| ** The first time this is called on a shared-btree, nBytes bytes of memory
 | |
| ** are allocated, zeroed, and returned to the caller. For each subsequent 
 | |
| ** call the nBytes parameter is ignored and a pointer to the same blob
 | |
| ** of memory returned. 
 | |
| **
 | |
| ** Just before the shared-btree is closed, the function passed as the 
 | |
| ** xFree argument when the memory allocation was made is invoked on the 
 | |
| ** blob of allocated memory. This function should not call sqlite3_free()
 | |
| ** on the memory, the btree layer does that.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
 | |
|   BtShared *pBt = p->pBt;
 | |
|   sqlite3BtreeEnter(p);
 | |
|   if( !pBt->pSchema ){
 | |
|     pBt->pSchema = sqlite3MallocZero(nBytes);
 | |
|     pBt->xFreeSchema = xFree;
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return pBt->pSchema;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if another user of the same shared btree as the argument
 | |
| ** handle holds an exclusive lock on the sqlite_master table.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){
 | |
|   int rc;
 | |
|   assert( sqlite3_mutex_held(p->db->mutex) );
 | |
|   sqlite3BtreeEnter(p);
 | |
|   rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** Obtain a lock on the table whose root page is iTab.  The
 | |
| ** lock is a write lock if isWritelock is true or a read lock
 | |
| ** if it is false.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
 | |
|   int rc = SQLITE_OK;
 | |
|   u8 lockType = (isWriteLock?WRITE_LOCK:READ_LOCK);
 | |
|   sqlite3BtreeEnter(p);
 | |
|   rc = queryTableLock(p, iTab, lockType);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = lockTable(p, iTab, lockType);
 | |
|   }
 | |
|   sqlite3BtreeLeave(p);
 | |
|   return rc;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| /*
 | |
| ** Argument pCsr must be a cursor opened for writing on an 
 | |
| ** INTKEY table currently pointing at a valid table entry. 
 | |
| ** This function modifies the data stored as part of that entry.
 | |
| ** Only the data content may only be modified, it is not possible
 | |
| ** to change the length of the data stored.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
 | |
|   assert( cursorHoldsMutex(pCsr) );
 | |
|   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
 | |
|   assert(pCsr->isIncrblobHandle);
 | |
|   if( pCsr->eState>=CURSOR_REQUIRESEEK ){
 | |
|     if( pCsr->eState==CURSOR_FAULT ){
 | |
|       return pCsr->skip;
 | |
|     }else{
 | |
|       return SQLITE_ABORT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Check some preconditions: 
 | |
|   **   (a) the cursor is open for writing,
 | |
|   **   (b) there is no read-lock on the table being modified and
 | |
|   **   (c) the cursor points at a valid row of an intKey table.
 | |
|   */
 | |
|   if( !pCsr->wrFlag ){
 | |
|     return SQLITE_READONLY;
 | |
|   }
 | |
|   assert( !pCsr->pBt->readOnly 
 | |
|           && pCsr->pBt->inTransaction==TRANS_WRITE );
 | |
|   if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){
 | |
|     return SQLITE_LOCKED; /* The table pCur points to has a read lock */
 | |
|   }
 | |
|   if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Set a flag on this cursor to cache the locations of pages from the 
 | |
| ** overflow list for the current row. This is used by cursors opened
 | |
| ** for incremental blob IO only.
 | |
| **
 | |
| ** This function sets a flag only. The actual page location cache
 | |
| ** (stored in BtCursor.aOverflow[]) is allocated and used by function
 | |
| ** accessPayload() (the worker function for sqlite3BtreeData() and
 | |
| ** sqlite3BtreePutData()).
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){
 | |
|   assert( cursorHoldsMutex(pCur) );
 | |
|   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
 | |
|   assert(!pCur->isIncrblobHandle);
 | |
|   assert(!pCur->aOverflow);
 | |
|   pCur->isIncrblobHandle = 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /************** End of btree.c ***********************************************/
 | |
| /************** Begin file vdbefifo.c ****************************************/
 | |
| /*
 | |
| ** 2005 June 16
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file implements a FIFO queue of rowids used for processing
 | |
| ** UPDATE and DELETE statements.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Constants FIFOSIZE_FIRST and FIFOSIZE_MAX are the initial
 | |
| ** number of entries in a fifo page and the maximum number of
 | |
| ** entries in a fifo page.
 | |
| */
 | |
| #define FIFOSIZE_FIRST (((128-sizeof(FifoPage))/8)+1)
 | |
| #ifdef SQLITE_MALLOC_SOFT_LIMIT
 | |
| # define FIFOSIZE_MAX   (((SQLITE_MALLOC_SOFT_LIMIT-sizeof(FifoPage))/8)+1)
 | |
| #else
 | |
| # define FIFOSIZE_MAX   (((262144-sizeof(FifoPage))/8)+1)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Allocate a new FifoPage and return a pointer to it.  Return NULL if
 | |
| ** we run out of memory.  Leave space on the page for nEntry entries.
 | |
| */
 | |
| static FifoPage *allocateFifoPage(int nEntry){
 | |
|   FifoPage *pPage;
 | |
|   if( nEntry>FIFOSIZE_MAX ){
 | |
|     nEntry = FIFOSIZE_MAX;
 | |
|   }
 | |
|   pPage = sqlite3_malloc( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) );
 | |
|   if( pPage ){
 | |
|     pPage->nSlot = nEntry;
 | |
|     pPage->iWrite = 0;
 | |
|     pPage->iRead = 0;
 | |
|     pPage->pNext = 0;
 | |
|   }
 | |
|   return pPage;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize a Fifo structure.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo){
 | |
|   memset(pFifo, 0, sizeof(*pFifo));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Push a single 64-bit integer value into the Fifo.  Return SQLITE_OK
 | |
| ** normally.   SQLITE_NOMEM is returned if we are unable to allocate
 | |
| ** memory.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){
 | |
|   FifoPage *pPage;
 | |
|   pPage = pFifo->pLast;
 | |
|   if( pPage==0 ){
 | |
|     pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(FIFOSIZE_FIRST);
 | |
|     if( pPage==0 ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|   }else if( pPage->iWrite>=pPage->nSlot ){
 | |
|     pPage->pNext = allocateFifoPage(pFifo->nEntry);
 | |
|     if( pPage->pNext==0 ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     pPage = pFifo->pLast = pPage->pNext;
 | |
|   }
 | |
|   pPage->aSlot[pPage->iWrite++] = val;
 | |
|   pFifo->nEntry++;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Extract a single 64-bit integer value from the Fifo.  The integer
 | |
| ** extracted is the one least recently inserted.  If the Fifo is empty
 | |
| ** return SQLITE_DONE.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){
 | |
|   FifoPage *pPage;
 | |
|   if( pFifo->nEntry==0 ){
 | |
|     return SQLITE_DONE;
 | |
|   }
 | |
|   assert( pFifo->nEntry>0 );
 | |
|   pPage = pFifo->pFirst;
 | |
|   assert( pPage!=0 );
 | |
|   assert( pPage->iWrite>pPage->iRead );
 | |
|   assert( pPage->iWrite<=pPage->nSlot );
 | |
|   assert( pPage->iRead<pPage->nSlot );
 | |
|   assert( pPage->iRead>=0 );
 | |
|   *pVal = pPage->aSlot[pPage->iRead++];
 | |
|   pFifo->nEntry--;
 | |
|   if( pPage->iRead>=pPage->iWrite ){
 | |
|     pFifo->pFirst = pPage->pNext;
 | |
|     sqlite3_free(pPage);
 | |
|     if( pFifo->nEntry==0 ){
 | |
|       assert( pFifo->pLast==pPage );
 | |
|       pFifo->pLast = 0;
 | |
|     }else{
 | |
|       assert( pFifo->pFirst!=0 );
 | |
|     }
 | |
|   }else{
 | |
|     assert( pFifo->nEntry>0 );
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete all information from a Fifo object.   Free all memory held
 | |
| ** by the Fifo.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo *pFifo){
 | |
|   FifoPage *pPage, *pNextPage;
 | |
|   for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){
 | |
|     pNextPage = pPage->pNext;
 | |
|     sqlite3_free(pPage);
 | |
|   }
 | |
|   sqlite3VdbeFifoInit(pFifo);
 | |
| }
 | |
| 
 | |
| /************** End of vdbefifo.c ********************************************/
 | |
| /************** Begin file vdbemem.c *****************************************/
 | |
| /*
 | |
| ** 2004 May 26
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file contains code use to manipulate "Mem" structure.  A "Mem"
 | |
| ** stores a single value in the VDBE.  Mem is an opaque structure visible
 | |
| ** only within the VDBE.  Interface routines refer to a Mem using the
 | |
| ** name sqlite_value
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
 | |
| ** P if required.
 | |
| */
 | |
| #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
 | |
| 
 | |
| /*
 | |
| ** If pMem is an object with a valid string representation, this routine
 | |
| ** ensures the internal encoding for the string representation is
 | |
| ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
 | |
| **
 | |
| ** If pMem is not a string object, or the encoding of the string
 | |
| ** representation is already stored using the requested encoding, then this
 | |
| ** routine is a no-op.
 | |
| **
 | |
| ** SQLITE_OK is returned if the conversion is successful (or not required).
 | |
| ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
 | |
| ** between formats.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
 | |
|   int rc;
 | |
|   if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
| #ifdef SQLITE_OMIT_UTF16
 | |
|   return SQLITE_ERROR;
 | |
| #else
 | |
| 
 | |
|   /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
 | |
|   ** then the encoding of the value may not have changed.
 | |
|   */
 | |
|   rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
 | |
|   assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
 | |
|   assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
 | |
|   assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
 | |
|   return rc;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure pMem->z points to a writable allocation of at least 
 | |
| ** n bytes.
 | |
| **
 | |
| ** If the memory cell currently contains string or blob data
 | |
| ** and the third argument passed to this function is true, the 
 | |
| ** current content of the cell is preserved. Otherwise, it may
 | |
| ** be discarded.  
 | |
| **
 | |
| ** This function sets the MEM_Dyn flag and clears any xDel callback.
 | |
| ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 
 | |
| ** not set, Mem.n is zeroed.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
 | |
|   int f = pMem->flags;
 | |
| 
 | |
|   assert( (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 
 | |
|        || (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==MEM_Dyn 
 | |
|        || (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==MEM_Ephem 
 | |
|        || (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==MEM_Static 
 | |
|   );
 | |
| 
 | |
|   if( ((f&MEM_Dyn)==0 || pMem->xDel || sqlite3MallocSize(pMem->z)<n) ){
 | |
| 
 | |
|     /* Allocate the new buffer. The minimum allocation size is 32 bytes. */
 | |
|     char *z = 0;
 | |
|     if( n>0 ){
 | |
|       if( preserve && (f&MEM_Dyn) && !pMem->xDel ){
 | |
|         z = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
 | |
|         pMem->z = 0;
 | |
|         preserve = 0;
 | |
|       }else{
 | |
|         z = sqlite3DbMallocRaw(pMem->db, (n>32?n:32));
 | |
|       }
 | |
|       if( !z ){
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If the value is currently a string or blob and the preserve flag
 | |
|     ** is true, copy the content to the new buffer. 
 | |
|     */
 | |
|     if( pMem->flags&(MEM_Blob|MEM_Str) && preserve ){
 | |
|       int nCopy = (pMem->n>n?n:pMem->n);
 | |
|       memcpy(z, pMem->z, nCopy);
 | |
|     }
 | |
|  
 | |
|     /* Release the old buffer. */
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
| 
 | |
|     pMem->z = z;
 | |
|     pMem->flags |= MEM_Dyn;
 | |
|     pMem->flags &= ~(MEM_Ephem|MEM_Static);
 | |
|     pMem->xDel = 0;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make the given Mem object MEM_Dyn.
 | |
| **
 | |
| ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *pMem){
 | |
|   int f;
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   expandBlob(pMem);
 | |
|   f = pMem->flags;
 | |
|   if( (f&(MEM_Str|MEM_Blob)) && ((f&MEM_Dyn)==0 || pMem->xDel) ){
 | |
|     if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     pMem->z[pMem->n] = 0;
 | |
|     pMem->z[pMem->n+1] = 0;
 | |
|     pMem->flags |= MEM_Term;
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the given Mem* has a zero-filled tail, turn it into an ordinary
 | |
| ** blob stored in dynamically allocated space.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){
 | |
|   if( pMem->flags & MEM_Zero ){
 | |
|     int nByte;
 | |
|     assert( pMem->flags&MEM_Blob );
 | |
|     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
| 
 | |
|     /* Set nByte to the number of bytes required to store the expanded blob. */
 | |
|     nByte = pMem->n + pMem->u.i;
 | |
|     if( nByte<=0 ){
 | |
|       nByte = 1;
 | |
|     }
 | |
|     if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
| 
 | |
|     memset(&pMem->z[pMem->n], 0, pMem->u.i);
 | |
|     pMem->n += pMem->u.i;
 | |
|     pMem->flags &= ~(MEM_Zero|MEM_Term);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes
 | |
| ** of the Mem.z[] array can be modified.
 | |
| **
 | |
| ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){
 | |
|   return sqlite3VdbeMemDynamicify(pMem);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure the given Mem is \u0000 terminated.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
 | |
|     return SQLITE_OK;   /* Nothing to do */
 | |
|   }
 | |
|   if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   pMem->z[pMem->n] = 0;
 | |
|   pMem->z[pMem->n+1] = 0;
 | |
|   pMem->flags |= MEM_Term;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add MEM_Str to the set of representations for the given Mem.  Numbers
 | |
| ** are converted using sqlite3_snprintf().  Converting a BLOB to a string
 | |
| ** is a no-op.
 | |
| **
 | |
| ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
 | |
| **
 | |
| ** A MEM_Null value will never be passed to this function. This function is
 | |
| ** used for converting values to text for returning to the user (i.e. via
 | |
| ** sqlite3_value_text()), or for ensuring that values to be used as btree
 | |
| ** keys are strings. In the former case a NULL pointer is returned the
 | |
| ** user and the later is an internal programming error.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){
 | |
|   int rc = SQLITE_OK;
 | |
|   int fg = pMem->flags;
 | |
|   const int nByte = 32;
 | |
| 
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   assert( !(fg&MEM_Zero) );
 | |
|   assert( !(fg&(MEM_Str|MEM_Blob)) );
 | |
|   assert( fg&(MEM_Int|MEM_Real) );
 | |
| 
 | |
|   if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
 | |
|   ** string representation of the value. Then, if the required encoding
 | |
|   ** is UTF-16le or UTF-16be do a translation.
 | |
|   ** 
 | |
|   ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
 | |
|   */
 | |
|   if( fg & MEM_Int ){
 | |
|     sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
 | |
|   }else{
 | |
|     assert( fg & MEM_Real );
 | |
|     sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
 | |
|   }
 | |
|   pMem->n = strlen(pMem->z);
 | |
|   pMem->enc = SQLITE_UTF8;
 | |
|   pMem->flags |= MEM_Str|MEM_Term;
 | |
|   sqlite3VdbeChangeEncoding(pMem, enc);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Memory cell pMem contains the context of an aggregate function.
 | |
| ** This routine calls the finalize method for that function.  The
 | |
| ** result of the aggregate is stored back into pMem.
 | |
| **
 | |
| ** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
 | |
| ** otherwise.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pFunc && pFunc->xFinalize ){
 | |
|     sqlite3_context ctx;
 | |
|     assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
 | |
|     assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|     ctx.s.flags = MEM_Null;
 | |
|     ctx.s.db = pMem->db;
 | |
|     ctx.pMem = pMem;
 | |
|     ctx.pFunc = pFunc;
 | |
|     ctx.isError = 0;
 | |
|     pFunc->xFinalize(&ctx);
 | |
|     if( pMem->z ){
 | |
|       sqlite3_free( pMem->z );
 | |
|     }
 | |
|     *pMem = ctx.s;
 | |
|     rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Release any memory held by the Mem. This may leave the Mem in an
 | |
| ** inconsistent state, for example with (Mem.z==0) and
 | |
| ** (Mem.type==SQLITE_TEXT).
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){
 | |
|   assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
 | |
|   if( p->flags & (MEM_Dyn|MEM_Agg) ){
 | |
|     if( p->xDel ){
 | |
|       if( p->flags & MEM_Agg ){
 | |
|         sqlite3VdbeMemFinalize(p, p->u.pDef);
 | |
|         assert( (p->flags & MEM_Agg)==0 );
 | |
|         sqlite3VdbeMemRelease(p);
 | |
|       }else{
 | |
|         p->xDel((void *)p->z);
 | |
|       }
 | |
|     }else{
 | |
|       sqlite3_free(p->z);
 | |
|     }
 | |
|     p->z = 0;
 | |
|     p->xDel = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert a 64-bit IEEE double into a 64-bit signed integer.
 | |
| ** If the double is too large, return 0x8000000000000000.
 | |
| **
 | |
| ** Most systems appear to do this simply by assigning
 | |
| ** variables and without the extra range tests.  But
 | |
| ** there are reports that windows throws an expection
 | |
| ** if the floating point value is out of range. (See ticket #2880.)
 | |
| ** Because we do not completely understand the problem, we will
 | |
| ** take the conservative approach and always do range tests
 | |
| ** before attempting the conversion.
 | |
| */
 | |
| static i64 doubleToInt64(double r){
 | |
|   /*
 | |
|   ** Many compilers we encounter do not define constants for the
 | |
|   ** minimum and maximum 64-bit integers, or they define them
 | |
|   ** inconsistently.  And many do not understand the "LL" notation.
 | |
|   ** So we define our own static constants here using nothing
 | |
|   ** larger than a 32-bit integer constant.
 | |
|   */
 | |
|   static const i64 maxInt = (((i64)0x7fffffff)<<32)|0xffffffff;
 | |
|   static const i64 minInt = ((i64)0x80000000)<<32;
 | |
| 
 | |
|   if( r<(double)minInt ){
 | |
|     return minInt;
 | |
|   }else if( r>(double)maxInt ){
 | |
|     return minInt;
 | |
|   }else{
 | |
|     return (i64)r;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return some kind of integer value which is the best we can do
 | |
| ** at representing the value that *pMem describes as an integer.
 | |
| ** If pMem is an integer, then the value is exact.  If pMem is
 | |
| ** a floating-point then the value returned is the integer part.
 | |
| ** If pMem is a string or blob, then we make an attempt to convert
 | |
| ** it into a integer and return that.  If pMem is NULL, return 0.
 | |
| **
 | |
| ** If pMem is a string, its encoding might be changed.
 | |
| */
 | |
| SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){
 | |
|   int flags;
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   flags = pMem->flags;
 | |
|   if( flags & MEM_Int ){
 | |
|     return pMem->u.i;
 | |
|   }else if( flags & MEM_Real ){
 | |
|     return doubleToInt64(pMem->r);
 | |
|   }else if( flags & (MEM_Str|MEM_Blob) ){
 | |
|     i64 value;
 | |
|     pMem->flags |= MEM_Str;
 | |
|     if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
 | |
|        || sqlite3VdbeMemNulTerminate(pMem) ){
 | |
|       return 0;
 | |
|     }
 | |
|     assert( pMem->z );
 | |
|     sqlite3Atoi64(pMem->z, &value);
 | |
|     return value;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the best representation of pMem that we can get into a
 | |
| ** double.  If pMem is already a double or an integer, return its
 | |
| ** value.  If it is a string or blob, try to convert it to a double.
 | |
| ** If it is a NULL, return 0.0.
 | |
| */
 | |
| SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   if( pMem->flags & MEM_Real ){
 | |
|     return pMem->r;
 | |
|   }else if( pMem->flags & MEM_Int ){
 | |
|     return (double)pMem->u.i;
 | |
|   }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
 | |
|     double val = 0.0;
 | |
|     pMem->flags |= MEM_Str;
 | |
|     if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
 | |
|        || sqlite3VdbeMemNulTerminate(pMem) ){
 | |
|       return 0.0;
 | |
|     }
 | |
|     assert( pMem->z );
 | |
|     sqlite3AtoF(pMem->z, &val);
 | |
|     return val;
 | |
|   }else{
 | |
|     return 0.0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The MEM structure is already a MEM_Real.  Try to also make it a
 | |
| ** MEM_Int if we can.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){
 | |
|   assert( pMem->flags & MEM_Real );
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
| 
 | |
|   pMem->u.i = doubleToInt64(pMem->r);
 | |
|   if( pMem->r==(double)pMem->u.i ){
 | |
|     pMem->flags |= MEM_Int;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void setTypeFlag(Mem *pMem, int f){
 | |
|   MemSetTypeFlag(pMem, f);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert pMem to type integer.  Invalidate any prior representations.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   pMem->u.i = sqlite3VdbeIntValue(pMem);
 | |
|   setTypeFlag(pMem, MEM_Int);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert pMem so that it is of type MEM_Real.
 | |
| ** Invalidate any prior representations.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   pMem->r = sqlite3VdbeRealValue(pMem);
 | |
|   setTypeFlag(pMem, MEM_Real);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
 | |
| ** Invalidate any prior representations.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){
 | |
|   double r1, r2;
 | |
|   i64 i;
 | |
|   assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
 | |
|   assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
|   r1 = sqlite3VdbeRealValue(pMem);
 | |
|   i = doubleToInt64(r1);
 | |
|   r2 = (double)i;
 | |
|   if( r1==r2 ){
 | |
|     sqlite3VdbeMemIntegerify(pMem);
 | |
|   }else{
 | |
|     pMem->r = r1;
 | |
|     setTypeFlag(pMem, MEM_Real);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value stored in *pMem to NULL.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){
 | |
|   setTypeFlag(pMem, MEM_Null);
 | |
|   pMem->type = SQLITE_NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value to be a BLOB of length
 | |
| ** n containing all zeros.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   setTypeFlag(pMem, MEM_Blob);
 | |
|   pMem->flags = MEM_Blob|MEM_Zero;
 | |
|   pMem->type = SQLITE_BLOB;
 | |
|   pMem->n = 0;
 | |
|   if( n<0 ) n = 0;
 | |
|   pMem->u.i = n;
 | |
|   pMem->enc = SQLITE_UTF8;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value stored in *pMem to val,
 | |
| ** manifest type INTEGER.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
 | |
|   sqlite3VdbeMemRelease(pMem);
 | |
|   pMem->u.i = val;
 | |
|   pMem->flags = MEM_Int;
 | |
|   pMem->type = SQLITE_INTEGER;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete any previous value and set the value stored in *pMem to val,
 | |
| ** manifest type REAL.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
 | |
|   if( sqlite3_isnan(val) ){
 | |
|     sqlite3VdbeMemSetNull(pMem);
 | |
|   }else{
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
|     pMem->r = val;
 | |
|     pMem->flags = MEM_Real;
 | |
|     pMem->type = SQLITE_FLOAT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the Mem object contains a TEXT or BLOB that is
 | |
| ** too large - whose size exceeds SQLITE_MAX_LENGTH.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){
 | |
|   if( p->flags & (MEM_Str|MEM_Blob) ){
 | |
|     int n = p->n;
 | |
|     if( p->flags & MEM_Zero ){
 | |
|       n += p->u.i;
 | |
|     }
 | |
|     return n>SQLITE_MAX_LENGTH;
 | |
|   }
 | |
|   return 0; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make an shallow copy of pFrom into pTo.  Prior contents of
 | |
| ** pTo are freed.  The pFrom->z field is not duplicated.  If
 | |
| ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
 | |
| ** and flags gets srcType (either MEM_Ephem or MEM_Static).
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
 | |
|   sqlite3VdbeMemRelease(pTo);
 | |
|   memcpy(pTo, pFrom, sizeof(*pFrom));
 | |
|   pTo->xDel = 0;
 | |
|   if( pTo->flags&MEM_Dyn ){
 | |
|     pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
 | |
|     assert( srcType==MEM_Ephem || srcType==MEM_Static );
 | |
|     pTo->flags |= srcType;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a full copy of pFrom into pTo.  Prior contents of pTo are
 | |
| ** freed before the copy is made.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
 | |
|   int rc = SQLITE_OK;
 | |
|   char *zBuf = 0;
 | |
| 
 | |
|   /* If cell pTo currently has a reusable buffer, save a pointer to it
 | |
|   ** in local variable zBuf. This function attempts to avoid freeing
 | |
|   ** this buffer.
 | |
|   */
 | |
|   if( pTo->flags&MEM_Dyn ){
 | |
|     if( pTo->xDel ){
 | |
|       sqlite3VdbeMemRelease(pTo);
 | |
|     }else{
 | |
|       zBuf = pTo->z;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Copy the contents of *pFrom to *pTo */
 | |
|   memcpy(pTo, pFrom, sizeof(*pFrom));
 | |
| 
 | |
|   if( pTo->flags&(MEM_Str|MEM_Blob) && pTo->flags&MEM_Static ){
 | |
|     /* pFrom contained a pointer to a static string. In this case,
 | |
|     ** free any dynamically allocated buffer associated with pTo.
 | |
|     */
 | |
|     sqlite3_free(zBuf);
 | |
|   }else{
 | |
|     char *zData = pTo->z;
 | |
| 
 | |
|     pTo->z = zBuf;
 | |
|     pTo->flags &= ~(MEM_Static|MEM_Ephem);
 | |
|     pTo->flags |= MEM_Dyn;
 | |
|     pTo->xDel = 0;
 | |
|  
 | |
|     if( pTo->flags&(MEM_Str|MEM_Blob) ){
 | |
|       if( sqlite3VdbeMemGrow(pTo, pTo->n+2, 0) ){
 | |
|         pTo->n = 0;
 | |
|         rc = SQLITE_NOMEM;
 | |
|       }else{
 | |
|         memcpy(pTo->z, zData, pTo->n);
 | |
|         pTo->z[pTo->n] = '\0';
 | |
|         pTo->z[pTo->n+1] = '\0';
 | |
|         pTo->flags |= MEM_Term;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
 | |
| ** freed. If pFrom contains ephemeral data, a copy is made.
 | |
| **
 | |
| ** pFrom contains an SQL NULL when this routine returns.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
 | |
|   assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
 | |
|   assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
 | |
|   assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
 | |
|   if( pTo->flags & MEM_Dyn ){
 | |
|     sqlite3VdbeMemRelease(pTo);
 | |
|   }
 | |
|   memcpy(pTo, pFrom, sizeof(Mem));
 | |
|   pFrom->flags = MEM_Null;
 | |
|   pFrom->xDel = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of a Mem to be a string or a BLOB.
 | |
| **
 | |
| ** The memory management strategy depends on the value of the xDel
 | |
| ** parameter. If the value passed is SQLITE_TRANSIENT, then the 
 | |
| ** string is copied into a (possibly existing) buffer managed by the 
 | |
| ** Mem structure. Otherwise, any existing buffer is freed and the
 | |
| ** pointer copied.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemSetStr(
 | |
|   Mem *pMem,          /* Memory cell to set to string value */
 | |
|   const char *z,      /* String pointer */
 | |
|   int n,              /* Bytes in string, or negative */
 | |
|   u8 enc,             /* Encoding of z.  0 for BLOBs */
 | |
|   void (*xDel)(void*) /* Destructor function */
 | |
| ){
 | |
|   int nByte = n;      /* New value for pMem->n */
 | |
|   int flags = 0;      /* New value for pMem->flags */
 | |
| 
 | |
|   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
 | |
| 
 | |
|   /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
 | |
|   if( !z ){
 | |
|     sqlite3VdbeMemSetNull(pMem);
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   flags = (enc==0?MEM_Blob:MEM_Str);
 | |
|   if( nByte<0 ){
 | |
|     assert( enc!=0 );
 | |
|     if( enc==SQLITE_UTF8 ){
 | |
|       for(nByte=0; z[nByte]; nByte++){}
 | |
|     }else{
 | |
|       for(nByte=0; z[nByte] | z[nByte+1]; nByte+=2){}
 | |
|     }
 | |
|     flags |= MEM_Term;
 | |
|   }
 | |
| 
 | |
|   /* The following block sets the new values of Mem.z and Mem.xDel. It
 | |
|   ** also sets a flag in local variable "flags" to indicate the memory
 | |
|   ** management (one of MEM_Dyn or MEM_Static).
 | |
|   */
 | |
|   if( xDel==SQLITE_TRANSIENT ){
 | |
|     int nAlloc = nByte;
 | |
|     if( flags&MEM_Term ){
 | |
|       nAlloc += (enc==SQLITE_UTF8?1:2);
 | |
|     }
 | |
|     if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     memcpy(pMem->z, z, nAlloc);
 | |
|     flags |= MEM_Dyn;
 | |
|   }else{
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
|     pMem->z = (char *)z;
 | |
|     pMem->xDel = xDel;
 | |
|     flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
 | |
|   }
 | |
| 
 | |
|   pMem->n = nByte;
 | |
|   pMem->flags = flags;
 | |
|   pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
 | |
|   pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the values contained by the two memory cells, returning
 | |
| ** negative, zero or positive if pMem1 is less than, equal to, or greater
 | |
| ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
 | |
| ** and reals) sorted numerically, followed by text ordered by the collating
 | |
| ** sequence pColl and finally blob's ordered by memcmp().
 | |
| **
 | |
| ** Two NULL values are considered equal by this function.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
 | |
|   int rc;
 | |
|   int f1, f2;
 | |
|   int combined_flags;
 | |
| 
 | |
|   /* Interchange pMem1 and pMem2 if the collating sequence specifies
 | |
|   ** DESC order.
 | |
|   */
 | |
|   f1 = pMem1->flags;
 | |
|   f2 = pMem2->flags;
 | |
|   combined_flags = f1|f2;
 | |
|  
 | |
|   /* If one value is NULL, it is less than the other. If both values
 | |
|   ** are NULL, return 0.
 | |
|   */
 | |
|   if( combined_flags&MEM_Null ){
 | |
|     return (f2&MEM_Null) - (f1&MEM_Null);
 | |
|   }
 | |
| 
 | |
|   /* If one value is a number and the other is not, the number is less.
 | |
|   ** If both are numbers, compare as reals if one is a real, or as integers
 | |
|   ** if both values are integers.
 | |
|   */
 | |
|   if( combined_flags&(MEM_Int|MEM_Real) ){
 | |
|     if( !(f1&(MEM_Int|MEM_Real)) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( !(f2&(MEM_Int|MEM_Real)) ){
 | |
|       return -1;
 | |
|     }
 | |
|     if( (f1 & f2 & MEM_Int)==0 ){
 | |
|       double r1, r2;
 | |
|       if( (f1&MEM_Real)==0 ){
 | |
|         r1 = pMem1->u.i;
 | |
|       }else{
 | |
|         r1 = pMem1->r;
 | |
|       }
 | |
|       if( (f2&MEM_Real)==0 ){
 | |
|         r2 = pMem2->u.i;
 | |
|       }else{
 | |
|         r2 = pMem2->r;
 | |
|       }
 | |
|       if( r1<r2 ) return -1;
 | |
|       if( r1>r2 ) return 1;
 | |
|       return 0;
 | |
|     }else{
 | |
|       assert( f1&MEM_Int );
 | |
|       assert( f2&MEM_Int );
 | |
|       if( pMem1->u.i < pMem2->u.i ) return -1;
 | |
|       if( pMem1->u.i > pMem2->u.i ) return 1;
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If one value is a string and the other is a blob, the string is less.
 | |
|   ** If both are strings, compare using the collating functions.
 | |
|   */
 | |
|   if( combined_flags&MEM_Str ){
 | |
|     if( (f1 & MEM_Str)==0 ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( (f2 & MEM_Str)==0 ){
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|     assert( pMem1->enc==pMem2->enc );
 | |
|     assert( pMem1->enc==SQLITE_UTF8 || 
 | |
|             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
 | |
| 
 | |
|     /* The collation sequence must be defined at this point, even if
 | |
|     ** the user deletes the collation sequence after the vdbe program is
 | |
|     ** compiled (this was not always the case).
 | |
|     */
 | |
|     assert( !pColl || pColl->xCmp );
 | |
| 
 | |
|     if( pColl ){
 | |
|       if( pMem1->enc==pColl->enc ){
 | |
|         /* The strings are already in the correct encoding.  Call the
 | |
|         ** comparison function directly */
 | |
|         return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
 | |
|       }else{
 | |
|         u8 origEnc = pMem1->enc;
 | |
|         const void *v1, *v2;
 | |
|         int n1, n2;
 | |
|         /* Convert the strings into the encoding that the comparison
 | |
|         ** function expects */
 | |
|         v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
 | |
|         n1 = v1==0 ? 0 : pMem1->n;
 | |
|         assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
 | |
|         v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
 | |
|         n2 = v2==0 ? 0 : pMem2->n;
 | |
|         assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
 | |
|         /* Do the comparison */
 | |
|         rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
 | |
|         /* Convert the strings back into the database encoding */
 | |
|         sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
 | |
|         sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
 | |
|         return rc;
 | |
|       }
 | |
|     }
 | |
|     /* If a NULL pointer was passed as the collate function, fall through
 | |
|     ** to the blob case and use memcmp().  */
 | |
|   }
 | |
|  
 | |
|   /* Both values must be blobs.  Compare using memcmp().  */
 | |
|   rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
 | |
|   if( rc==0 ){
 | |
|     rc = pMem1->n - pMem2->n;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Move data out of a btree key or data field and into a Mem structure.
 | |
| ** The data or key is taken from the entry that pCur is currently pointing
 | |
| ** to.  offset and amt determine what portion of the data or key to retrieve.
 | |
| ** key is true to get the key or false to get data.  The result is written
 | |
| ** into the pMem element.
 | |
| **
 | |
| ** The pMem structure is assumed to be uninitialized.  Any prior content
 | |
| ** is overwritten without being freed.
 | |
| **
 | |
| ** If this routine fails for any reason (malloc returns NULL or unable
 | |
| ** to read from the disk) then the pMem is left in an inconsistent state.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(
 | |
|   BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
 | |
|   int offset,       /* Offset from the start of data to return bytes from. */
 | |
|   int amt,          /* Number of bytes to return. */
 | |
|   int key,          /* If true, retrieve from the btree key, not data. */
 | |
|   Mem *pMem         /* OUT: Return data in this Mem structure. */
 | |
| ){
 | |
|   char *zData;       /* Data from the btree layer */
 | |
|   int available = 0; /* Number of bytes available on the local btree page */
 | |
|   sqlite3 *db;       /* Database connection */
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   db = sqlite3BtreeCursorDb(pCur);
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   if( key ){
 | |
|     zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
 | |
|   }else{
 | |
|     zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
 | |
|   }
 | |
|   assert( zData!=0 );
 | |
| 
 | |
|   if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
 | |
|     sqlite3VdbeMemRelease(pMem);
 | |
|     pMem->z = &zData[offset];
 | |
|     pMem->flags = MEM_Blob|MEM_Ephem;
 | |
|   }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
 | |
|     pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
 | |
|     pMem->enc = 0;
 | |
|     pMem->type = SQLITE_BLOB;
 | |
|     if( key ){
 | |
|       rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
 | |
|     }else{
 | |
|       rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
 | |
|     }
 | |
|     pMem->z[amt] = 0;
 | |
|     pMem->z[amt+1] = 0;
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3VdbeMemRelease(pMem);
 | |
|     }
 | |
|   }
 | |
|   pMem->n = amt;
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
| ** Perform various checks on the memory cell pMem. An assert() will
 | |
| ** fail if pMem is internally inconsistent.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem *pMem){
 | |
|   int flags = pMem->flags;
 | |
|   assert( flags!=0 );  /* Must define some type */
 | |
|   if( flags & (MEM_Str|MEM_Blob) ){
 | |
|     int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
 | |
|     assert( x!=0 );            /* Strings must define a string subtype */
 | |
|     assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
 | |
|     assert( pMem->z!=0 );      /* Strings must have a value */
 | |
|     /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
 | |
|     assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
 | |
|     assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
 | |
|     /* No destructor unless there is MEM_Dyn */
 | |
|     assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
 | |
| 
 | |
|     if( (flags & MEM_Str) ){
 | |
|       assert( pMem->enc==SQLITE_UTF8 || 
 | |
|               pMem->enc==SQLITE_UTF16BE ||
 | |
|               pMem->enc==SQLITE_UTF16LE 
 | |
|       );
 | |
|       /* If the string is UTF-8 encoded and nul terminated, then pMem->n
 | |
|       ** must be the length of the string.  (Later:)  If the database file
 | |
|       ** has been corrupted, '\000' characters might have been inserted
 | |
|       ** into the middle of the string.  In that case, the strlen() might
 | |
|       ** be less.
 | |
|       */
 | |
|       if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 
 | |
|         assert( strlen(pMem->z)<=pMem->n );
 | |
|         assert( pMem->z[pMem->n]==0 );
 | |
|       }
 | |
|     }
 | |
|   }else{
 | |
|     /* Cannot define a string subtype for non-string objects */
 | |
|     assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
 | |
|     assert( pMem->xDel==0 );
 | |
|   }
 | |
|   /* MEM_Null excludes all other types */
 | |
|   assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
 | |
|           || (pMem->flags&MEM_Null)==0 );
 | |
|   /* If the MEM is both real and integer, the values are equal */
 | |
|   assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) 
 | |
|           || pMem->r==pMem->u.i );
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* This function is only available internally, it is not part of the
 | |
| ** external API. It works in a similar way to sqlite3_value_text(),
 | |
| ** except the data returned is in the encoding specified by the second
 | |
| ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
 | |
| ** SQLITE_UTF8.
 | |
| **
 | |
| ** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
 | |
| ** If that is the case, then the result must be aligned on an even byte
 | |
| ** boundary.
 | |
| */
 | |
| SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
 | |
|   if( !pVal ) return 0;
 | |
| 
 | |
|   assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
 | |
|   assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
 | |
| 
 | |
|   if( pVal->flags&MEM_Null ){
 | |
|     return 0;
 | |
|   }
 | |
|   assert( (MEM_Blob>>3) == MEM_Str );
 | |
|   pVal->flags |= (pVal->flags & MEM_Blob)>>3;
 | |
|   expandBlob(pVal);
 | |
|   if( pVal->flags&MEM_Str ){
 | |
|     sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
 | |
|     if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(sqlite3_intptr_t)pVal->z) ){
 | |
|       assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
 | |
|       if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeMemNulTerminate(pVal);
 | |
|   }else{
 | |
|     assert( (pVal->flags&MEM_Blob)==0 );
 | |
|     sqlite3VdbeMemStringify(pVal, enc);
 | |
|     assert( 0==(1&(sqlite3_intptr_t)pVal->z) );
 | |
|   }
 | |
|   assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
 | |
|               || pVal->db->mallocFailed );
 | |
|   if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
 | |
|     return pVal->z;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new sqlite3_value object.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){
 | |
|   Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
 | |
|   if( p ){
 | |
|     p->flags = MEM_Null;
 | |
|     p->type = SQLITE_NULL;
 | |
|     p->db = db;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new sqlite3_value object, containing the value of pExpr.
 | |
| **
 | |
| ** This only works for very simple expressions that consist of one constant
 | |
| ** token (i.e. "5", "5.1", "'a string'"). If the expression can
 | |
| ** be converted directly into a value, then the value is allocated and
 | |
| ** a pointer written to *ppVal. The caller is responsible for deallocating
 | |
| ** the value by passing it to sqlite3ValueFree() later on. If the expression
 | |
| ** cannot be converted to a value, then *ppVal is set to NULL.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ValueFromExpr(
 | |
|   sqlite3 *db,              /* The database connection */
 | |
|   Expr *pExpr,              /* The expression to evaluate */
 | |
|   u8 enc,                   /* Encoding to use */
 | |
|   u8 affinity,              /* Affinity to use */
 | |
|   sqlite3_value **ppVal     /* Write the new value here */
 | |
| ){
 | |
|   int op;
 | |
|   char *zVal = 0;
 | |
|   sqlite3_value *pVal = 0;
 | |
| 
 | |
|   if( !pExpr ){
 | |
|     *ppVal = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   op = pExpr->op;
 | |
| 
 | |
|   if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
 | |
|     zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n);
 | |
|     pVal = sqlite3ValueNew(db);
 | |
|     if( !zVal || !pVal ) goto no_mem;
 | |
|     sqlite3Dequote(zVal);
 | |
|     sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free);
 | |
|     if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
 | |
|       sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
 | |
|     }else{
 | |
|       sqlite3ValueApplyAffinity(pVal, affinity, enc);
 | |
|     }
 | |
|   }else if( op==TK_UMINUS ) {
 | |
|     if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
 | |
|       pVal->u.i = -1 * pVal->u.i;
 | |
|       pVal->r = -1.0 * pVal->r;
 | |
|     }
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
|   else if( op==TK_BLOB ){
 | |
|     int nVal;
 | |
|     assert( pExpr->token.n>=3 );
 | |
|     assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
 | |
|     assert( pExpr->token.z[1]=='\'' );
 | |
|     assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
 | |
|     pVal = sqlite3ValueNew(db);
 | |
|     nVal = pExpr->token.n - 3;
 | |
|     zVal = (char*)pExpr->token.z + 2;
 | |
|     sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
 | |
|                          0, sqlite3_free);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   *ppVal = pVal;
 | |
|   return SQLITE_OK;
 | |
| 
 | |
| no_mem:
 | |
|   db->mallocFailed = 1;
 | |
|   sqlite3_free(zVal);
 | |
|   sqlite3ValueFree(pVal);
 | |
|   *ppVal = 0;
 | |
|   return SQLITE_NOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the string value of an sqlite3_value object
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ValueSetStr(
 | |
|   sqlite3_value *v,     /* Value to be set */
 | |
|   int n,                /* Length of string z */
 | |
|   const void *z,        /* Text of the new string */
 | |
|   u8 enc,               /* Encoding to use */
 | |
|   void (*xDel)(void*)   /* Destructor for the string */
 | |
| ){
 | |
|   if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free an sqlite3_value object
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){
 | |
|   if( !v ) return;
 | |
|   sqlite3VdbeMemRelease((Mem *)v);
 | |
|   sqlite3_free(v);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of bytes in the sqlite3_value object assuming
 | |
| ** that it uses the encoding "enc"
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
 | |
|   Mem *p = (Mem*)pVal;
 | |
|   if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
 | |
|     if( p->flags & MEM_Zero ){
 | |
|       return p->n+p->u.i;
 | |
|     }else{
 | |
|       return p->n;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /************** End of vdbemem.c *********************************************/
 | |
| /************** Begin file vdbeaux.c *****************************************/
 | |
| /*
 | |
| ** 2003 September 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used for creating, destroying, and populating
 | |
| ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
 | |
| ** to version 2.8.7, all this code was combined into the vdbe.c source file.
 | |
| ** But that file was getting too big so this subroutines were split out.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** When debugging the code generator in a symbolic debugger, one can
 | |
| ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
 | |
| ** as they are added to the instruction stream.
 | |
| */
 | |
| #ifdef SQLITE_DEBUG
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a new virtual database engine.
 | |
| */
 | |
| SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
 | |
|   if( p==0 ) return 0;
 | |
|   p->db = db;
 | |
|   if( db->pVdbe ){
 | |
|     db->pVdbe->pPrev = p;
 | |
|   }
 | |
|   p->pNext = db->pVdbe;
 | |
|   p->pPrev = 0;
 | |
|   db->pVdbe = p;
 | |
|   p->magic = VDBE_MAGIC_INIT;
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remember the SQL string for a prepared statement.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
 | |
|   if( p==0 ) return;
 | |
|   assert( p->zSql==0 );
 | |
|   p->zSql = sqlite3DbStrNDup(p->db, z, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the SQL associated with a prepared statement
 | |
| */
 | |
| SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
 | |
|   return ((Vdbe *)pStmt)->zSql;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Swap all content between two VDBE structures.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
 | |
|   Vdbe tmp, *pTmp;
 | |
|   char *zTmp;
 | |
|   int nTmp;
 | |
|   tmp = *pA;
 | |
|   *pA = *pB;
 | |
|   *pB = tmp;
 | |
|   pTmp = pA->pNext;
 | |
|   pA->pNext = pB->pNext;
 | |
|   pB->pNext = pTmp;
 | |
|   pTmp = pA->pPrev;
 | |
|   pA->pPrev = pB->pPrev;
 | |
|   pB->pPrev = pTmp;
 | |
|   zTmp = pA->zSql;
 | |
|   pA->zSql = pB->zSql;
 | |
|   pB->zSql = zTmp;
 | |
|   nTmp = pA->nSql;
 | |
|   pA->nSql = pB->nSql;
 | |
|   pB->nSql = nTmp;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Turn tracing on or off
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
 | |
|   p->trace = trace;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Resize the Vdbe.aOp array so that it contains at least N
 | |
| ** elements.
 | |
| **
 | |
| ** If an out-of-memory error occurs while resizing the array,
 | |
| ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
 | |
| ** any opcodes already allocated can be correctly deallocated
 | |
| ** along with the rest of the Vdbe).
 | |
| */
 | |
| static void resizeOpArray(Vdbe *p, int N){
 | |
|   VdbeOp *pNew;
 | |
|   int oldSize = p->nOpAlloc;
 | |
|   pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
 | |
|   if( pNew ){
 | |
|     p->nOpAlloc = N;
 | |
|     p->aOp = pNew;
 | |
|     if( N>oldSize ){
 | |
|       memset(&p->aOp[oldSize], 0, (N-oldSize)*sizeof(Op));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new instruction to the list of instructions current in the
 | |
| ** VDBE.  Return the address of the new instruction.
 | |
| **
 | |
| ** Parameters:
 | |
| **
 | |
| **    p               Pointer to the VDBE
 | |
| **
 | |
| **    op              The opcode for this instruction
 | |
| **
 | |
| **    p1, p2, p3      Operands
 | |
| **
 | |
| ** Use the sqlite3VdbeResolveLabel() function to fix an address and
 | |
| ** the sqlite3VdbeChangeP4() function to change the value of the P4
 | |
| ** operand.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
 | |
|   int i;
 | |
|   VdbeOp *pOp;
 | |
| 
 | |
|   i = p->nOp;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p->nOpAlloc<=i ){
 | |
|     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
 | |
|     if( p->db->mallocFailed ){
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   p->nOp++;
 | |
|   pOp = &p->aOp[i];
 | |
|   pOp->opcode = op;
 | |
|   pOp->p1 = p1;
 | |
|   pOp->p2 = p2;
 | |
|   pOp->p3 = p3;
 | |
|   pOp->p4.p = 0;
 | |
|   pOp->p4type = P4_NOTUSED;
 | |
|   p->expired = 0;
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
 | |
| #endif
 | |
|   return i;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){
 | |
|   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
 | |
|   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
 | |
|   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add an opcode that includes the p4 value as a pointer.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOp4(
 | |
|   Vdbe *p,            /* Add the opcode to this VM */
 | |
|   int op,             /* The new opcode */
 | |
|   int p1,             /* The P1 operand */
 | |
|   int p2,             /* The P2 operand */
 | |
|   int p3,             /* The P3 operand */
 | |
|   const char *zP4,    /* The P4 operand */
 | |
|   int p4type          /* P4 operand type */
 | |
| ){
 | |
|   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
 | |
|   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new symbolic label for an instruction that has yet to be
 | |
| ** coded.  The symbolic label is really just a negative number.  The
 | |
| ** label can be used as the P2 value of an operation.  Later, when
 | |
| ** the label is resolved to a specific address, the VDBE will scan
 | |
| ** through its operation list and change all values of P2 which match
 | |
| ** the label into the resolved address.
 | |
| **
 | |
| ** The VDBE knows that a P2 value is a label because labels are
 | |
| ** always negative and P2 values are suppose to be non-negative.
 | |
| ** Hence, a negative P2 value is a label that has yet to be resolved.
 | |
| **
 | |
| ** Zero is returned if a malloc() fails.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){
 | |
|   int i;
 | |
|   i = p->nLabel++;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   if( i>=p->nLabelAlloc ){
 | |
|     p->nLabelAlloc = p->nLabelAlloc*2 + 10;
 | |
|     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
 | |
|                                     p->nLabelAlloc*sizeof(p->aLabel[0]));
 | |
|   }
 | |
|   if( p->aLabel ){
 | |
|     p->aLabel[i] = -1;
 | |
|   }
 | |
|   return -1-i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Resolve label "x" to be the address of the next instruction to
 | |
| ** be inserted.  The parameter "x" must have been obtained from
 | |
| ** a prior call to sqlite3VdbeMakeLabel().
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){
 | |
|   int j = -1-x;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   assert( j>=0 && j<p->nLabel );
 | |
|   if( p->aLabel ){
 | |
|     p->aLabel[j] = p->nOp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Loop through the program looking for P2 values that are negative
 | |
| ** on jump instructions.  Each such value is a label.  Resolve the
 | |
| ** label by setting the P2 value to its correct non-zero value.
 | |
| **
 | |
| ** This routine is called once after all opcodes have been inserted.
 | |
| **
 | |
| ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
 | |
| ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
 | |
| ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
 | |
| **
 | |
| ** This routine also does the following optimization:  It scans for
 | |
| ** instructions that might cause a statement rollback.  Such instructions
 | |
| ** are:
 | |
| **
 | |
| **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
 | |
| **   *  OP_Destroy
 | |
| **   *  OP_VUpdate
 | |
| **   *  OP_VRename
 | |
| **
 | |
| ** If no such instruction is found, then every Statement instruction 
 | |
| ** is changed to a Noop.  In this way, we avoid creating the statement 
 | |
| ** journal file unnecessarily.
 | |
| */
 | |
| static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
 | |
|   int i;
 | |
|   int nMaxArgs = 0;
 | |
|   Op *pOp;
 | |
|   int *aLabel = p->aLabel;
 | |
|   int doesStatementRollback = 0;
 | |
|   int hasStatementBegin = 0;
 | |
|   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | |
|     u8 opcode = pOp->opcode;
 | |
| 
 | |
|     if( opcode==OP_Function ){
 | |
|       if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
 | |
|     }else if( opcode==OP_AggStep 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|         || opcode==OP_VUpdate
 | |
| #endif
 | |
|     ){
 | |
|       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
 | |
|     }
 | |
|     if( opcode==OP_Halt ){
 | |
|       if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
 | |
|         doesStatementRollback = 1;
 | |
|       }
 | |
|     }else if( opcode==OP_Statement ){
 | |
|       hasStatementBegin = 1;
 | |
|     }else if( opcode==OP_Destroy ){
 | |
|       doesStatementRollback = 1;
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
 | |
|       doesStatementRollback = 1;
 | |
|     }else if( opcode==OP_VFilter ){
 | |
|       int n;
 | |
|       assert( p->nOp - i >= 3 );
 | |
|       assert( pOp[-1].opcode==OP_Integer );
 | |
|       n = pOp[-1].p1;
 | |
|       if( n>nMaxArgs ) nMaxArgs = n;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
 | |
|       assert( -1-pOp->p2<p->nLabel );
 | |
|       pOp->p2 = aLabel[-1-pOp->p2];
 | |
|     }
 | |
|   }
 | |
|   sqlite3_free(p->aLabel);
 | |
|   p->aLabel = 0;
 | |
| 
 | |
|   *pMaxFuncArgs = nMaxArgs;
 | |
| 
 | |
|   /* If we never rollback a statement transaction, then statement
 | |
|   ** transactions are not needed.  So change every OP_Statement
 | |
|   ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
 | |
|   ** which can be expensive on some platforms.
 | |
|   */
 | |
|   if( hasStatementBegin && !doesStatementRollback ){
 | |
|     for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
 | |
|       if( pOp->opcode==OP_Statement ){
 | |
|         pOp->opcode = OP_Noop;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the address of the next instruction to be inserted.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   return p->nOp;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a whole list of operations to the operation stack.  Return the
 | |
| ** address of the first operation added.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
 | |
|   int addr;
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p->nOp + nOp > p->nOpAlloc ){
 | |
|     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
 | |
|     assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
 | |
|   }
 | |
|   if( p->db->mallocFailed ){
 | |
|     return 0;
 | |
|   }
 | |
|   addr = p->nOp;
 | |
|   if( nOp>0 ){
 | |
|     int i;
 | |
|     VdbeOpList const *pIn = aOp;
 | |
|     for(i=0; i<nOp; i++, pIn++){
 | |
|       int p2 = pIn->p2;
 | |
|       VdbeOp *pOut = &p->aOp[i+addr];
 | |
|       pOut->opcode = pIn->opcode;
 | |
|       pOut->p1 = pIn->p1;
 | |
|       if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
 | |
|         pOut->p2 = addr + ADDR(p2);
 | |
|       }else{
 | |
|         pOut->p2 = p2;
 | |
|       }
 | |
|       pOut->p3 = pIn->p3;
 | |
|       pOut->p4type = P4_NOTUSED;
 | |
|       pOut->p4.p = 0;
 | |
|       pOut->p5 = 0;
 | |
| #ifdef SQLITE_DEBUG
 | |
|       if( sqlite3VdbeAddopTrace ){
 | |
|         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|     p->nOp += nOp;
 | |
|   }
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P1 operand for a specific instruction.
 | |
| ** This routine is useful when a large program is loaded from a
 | |
| ** static array using sqlite3VdbeAddOpList but we want to make a
 | |
| ** few minor changes to the program.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | |
|     p->aOp[addr].p1 = val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P2 operand for a specific instruction.
 | |
| ** This routine is useful for setting a jump destination.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | |
|     p->aOp[addr].p2 = val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P3 operand for a specific instruction.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p && addr>=0 && p->nOp>addr && p->aOp ){
 | |
|     p->aOp[addr].p3 = val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P5 operand for the most recently
 | |
| ** added operation.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
 | |
|   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p && p->aOp ){
 | |
|     assert( p->nOp>0 );
 | |
|     p->aOp[p->nOp-1].p5 = val;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the P2 operand of instruction addr so that it points to
 | |
| ** the address of the next instruction to be coded.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){
 | |
|   sqlite3VdbeChangeP2(p, addr, p->nOp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If the input FuncDef structure is ephemeral, then free it.  If
 | |
| ** the FuncDef is not ephermal, then do nothing.
 | |
| */
 | |
| static void freeEphemeralFunction(FuncDef *pDef){
 | |
|   if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
 | |
|     sqlite3_free(pDef);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete a P4 value if necessary.
 | |
| */
 | |
| static void freeP4(int p4type, void *p3){
 | |
|   if( p3 ){
 | |
|     switch( p4type ){
 | |
|       case P4_REAL:
 | |
|       case P4_INT64:
 | |
|       case P4_MPRINTF:
 | |
|       case P4_DYNAMIC:
 | |
|       case P4_KEYINFO:
 | |
|       case P4_KEYINFO_HANDOFF: {
 | |
|         sqlite3_free(p3);
 | |
|         break;
 | |
|       }
 | |
|       case P4_VDBEFUNC: {
 | |
|         VdbeFunc *pVdbeFunc = (VdbeFunc *)p3;
 | |
|         freeEphemeralFunction(pVdbeFunc->pFunc);
 | |
|         sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
 | |
|         sqlite3_free(pVdbeFunc);
 | |
|         break;
 | |
|       }
 | |
|       case P4_FUNCDEF: {
 | |
|         freeEphemeralFunction((FuncDef*)p3);
 | |
|         break;
 | |
|       }
 | |
|       case P4_MEM: {
 | |
|         sqlite3ValueFree((sqlite3_value*)p3);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Change N opcodes starting at addr to No-ops.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
 | |
|   if( p && p->aOp ){
 | |
|     VdbeOp *pOp = &p->aOp[addr];
 | |
|     while( N-- ){
 | |
|       freeP4(pOp->p4type, pOp->p4.p);
 | |
|       memset(pOp, 0, sizeof(pOp[0]));
 | |
|       pOp->opcode = OP_Noop;
 | |
|       pOp++;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Change the value of the P4 operand for a specific instruction.
 | |
| ** This routine is useful when a large program is loaded from a
 | |
| ** static array using sqlite3VdbeAddOpList but we want to make a
 | |
| ** few minor changes to the program.
 | |
| **
 | |
| ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
 | |
| ** the string is made into memory obtained from sqlite3_malloc().
 | |
| ** A value of n==0 means copy bytes of zP4 up to and including the
 | |
| ** first null byte.  If n>0 then copy n+1 bytes of zP4.
 | |
| **
 | |
| ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
 | |
| ** A copy is made of the KeyInfo structure into memory obtained from
 | |
| ** sqlite3_malloc, to be freed when the Vdbe is finalized.
 | |
| ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
 | |
| ** stored in memory that the caller has obtained from sqlite3_malloc. The 
 | |
| ** caller should not free the allocation, it will be freed when the Vdbe is
 | |
| ** finalized.
 | |
| ** 
 | |
| ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
 | |
| ** to a string or structure that is guaranteed to exist for the lifetime of
 | |
| ** the Vdbe. In these cases we can just copy the pointer.
 | |
| **
 | |
| ** If addr<0 then change P4 on the most recently inserted instruction.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
 | |
|   Op *pOp;
 | |
|   assert( p!=0 );
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   if( p->aOp==0 || p->db->mallocFailed ){
 | |
|     if (n != P4_KEYINFO) {
 | |
|       freeP4(n, (void*)*(char**)&zP4);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   assert( addr<p->nOp );
 | |
|   if( addr<0 ){
 | |
|     addr = p->nOp - 1;
 | |
|     if( addr<0 ) return;
 | |
|   }
 | |
|   pOp = &p->aOp[addr];
 | |
|   freeP4(pOp->p4type, pOp->p4.p);
 | |
|   pOp->p4.p = 0;
 | |
|   if( n==P4_INT32 ){
 | |
|     /* Note: this cast is safe, because the origin data point was an int
 | |
|     ** that was cast to a (const char *). */
 | |
|     pOp->p4.i = (int)(sqlite3_intptr_t)zP4;
 | |
|     pOp->p4type = n;
 | |
|   }else if( zP4==0 ){
 | |
|     pOp->p4.p = 0;
 | |
|     pOp->p4type = P4_NOTUSED;
 | |
|   }else if( n==P4_KEYINFO ){
 | |
|     KeyInfo *pKeyInfo;
 | |
|     int nField, nByte;
 | |
| 
 | |
|     nField = ((KeyInfo*)zP4)->nField;
 | |
|     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
 | |
|     pKeyInfo = sqlite3_malloc( nByte );
 | |
|     pOp->p4.pKeyInfo = pKeyInfo;
 | |
|     if( pKeyInfo ){
 | |
|       memcpy(pKeyInfo, zP4, nByte);
 | |
|       /* In the current implementation, P4_KEYINFO is only ever used on
 | |
|       ** KeyInfo structures that have no aSortOrder component.  Elements
 | |
|       ** with an aSortOrder always use P4_KEYINFO_HANDOFF.  So we do not
 | |
|       ** need to bother with duplicating the aSortOrder. */
 | |
|       assert( pKeyInfo->aSortOrder==0 );
 | |
| #if 0
 | |
|       aSortOrder = pKeyInfo->aSortOrder;
 | |
|       if( aSortOrder ){
 | |
|         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
 | |
|         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
 | |
|       }
 | |
| #endif
 | |
|       pOp->p4type = P4_KEYINFO;
 | |
|     }else{
 | |
|       p->db->mallocFailed = 1;
 | |
|       pOp->p4type = P4_NOTUSED;
 | |
|     }
 | |
|   }else if( n==P4_KEYINFO_HANDOFF ){
 | |
|     pOp->p4.p = (void*)zP4;
 | |
|     pOp->p4type = P4_KEYINFO;
 | |
|   }else if( n<0 ){
 | |
|     pOp->p4.p = (void*)zP4;
 | |
|     pOp->p4type = n;
 | |
|   }else{
 | |
|     if( n==0 ) n = strlen(zP4);
 | |
|     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
 | |
|     pOp->p4type = P4_DYNAMIC;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /*
 | |
| ** Change the comment on the the most recently coded instruction.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   assert( p->nOp>0 || p->aOp==0 );
 | |
|   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
 | |
|   if( p->nOp ){
 | |
|     char **pz = &p->aOp[p->nOp-1].zComment;
 | |
|     va_start(ap, zFormat);
 | |
|     sqlite3_free(*pz);
 | |
|     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
 | |
|     va_end(ap);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return the opcode for a given address.
 | |
| */
 | |
| SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
|   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
 | |
|   return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
 | |
|      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | |
| /*
 | |
| ** Compute a string that describes the P4 parameter for an opcode.
 | |
| ** Use zTemp for any required temporary buffer space.
 | |
| */
 | |
| static char *displayP4(Op *pOp, char *zTemp, int nTemp){
 | |
|   char *zP4 = zTemp;
 | |
|   assert( nTemp>=20 );
 | |
|   switch( pOp->p4type ){
 | |
|     case P4_KEYINFO: {
 | |
|       int i, j;
 | |
|       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
 | |
|       i = strlen(zTemp);
 | |
|       for(j=0; j<pKeyInfo->nField; j++){
 | |
|         CollSeq *pColl = pKeyInfo->aColl[j];
 | |
|         if( pColl ){
 | |
|           int n = strlen(pColl->zName);
 | |
|           if( i+n>nTemp-6 ){
 | |
|             memcpy(&zTemp[i],",...",4);
 | |
|             break;
 | |
|           }
 | |
|           zTemp[i++] = ',';
 | |
|           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
 | |
|             zTemp[i++] = '-';
 | |
|           }
 | |
|           memcpy(&zTemp[i], pColl->zName,n+1);
 | |
|           i += n;
 | |
|         }else if( i+4<nTemp-6 ){
 | |
|           memcpy(&zTemp[i],",nil",4);
 | |
|           i += 4;
 | |
|         }
 | |
|       }
 | |
|       zTemp[i++] = ')';
 | |
|       zTemp[i] = 0;
 | |
|       assert( i<nTemp );
 | |
|       break;
 | |
|     }
 | |
|     case P4_COLLSEQ: {
 | |
|       CollSeq *pColl = pOp->p4.pColl;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
 | |
|       break;
 | |
|     }
 | |
|     case P4_FUNCDEF: {
 | |
|       FuncDef *pDef = pOp->p4.pFunc;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
 | |
|       break;
 | |
|     }
 | |
|     case P4_INT64: {
 | |
|       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
 | |
|       break;
 | |
|     }
 | |
|     case P4_INT32: {
 | |
|       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
 | |
|       break;
 | |
|     }
 | |
|     case P4_REAL: {
 | |
|       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
 | |
|       break;
 | |
|     }
 | |
|     case P4_MEM: {
 | |
|       Mem *pMem = pOp->p4.pMem;
 | |
|       assert( (pMem->flags & MEM_Null)==0 );
 | |
|       if( pMem->flags & MEM_Str ){
 | |
|         zP4 = pMem->z;
 | |
|       }else if( pMem->flags & MEM_Int ){
 | |
|         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
 | |
|       }else if( pMem->flags & MEM_Real ){
 | |
|         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     case P4_VTAB: {
 | |
|       sqlite3_vtab *pVtab = pOp->p4.pVtab;
 | |
|       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     default: {
 | |
|       zP4 = pOp->p4.z;
 | |
|       if( zP4==0 ){
 | |
|         zP4 = zTemp;
 | |
|         zTemp[0] = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert( zP4!=0 );
 | |
|   return zP4;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
 | |
| **
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){
 | |
|   int mask;
 | |
|   assert( i>=0 && i<p->db->nDb );
 | |
|   assert( i<sizeof(p->btreeMask)*8 );
 | |
|   mask = 1<<i;
 | |
|   if( (p->btreeMask & mask)==0 ){
 | |
|     p->btreeMask |= mask;
 | |
|     sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
 | |
| /*
 | |
| ** Print a single opcode.  This routine is used for debugging only.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
 | |
|   char *zP4;
 | |
|   char zPtr[50];
 | |
|   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
 | |
|   if( pOut==0 ) pOut = stdout;
 | |
|   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
 | |
|   fprintf(pOut, zFormat1, pc, 
 | |
|       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
 | |
| #ifdef SQLITE_DEBUG
 | |
|       pOp->zComment ? pOp->zComment : ""
 | |
| #else
 | |
|       ""
 | |
| #endif
 | |
|   );
 | |
|   fflush(pOut);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Release an array of N Mem elements
 | |
| */
 | |
| static void releaseMemArray(Mem *p, int N){
 | |
|   if( p && N ){
 | |
|     sqlite3 *db = p->db;
 | |
|     int malloc_failed = db->mallocFailed;
 | |
|     while( N-->0 ){
 | |
|       assert( N<2 || p[0].db==p[1].db );
 | |
|       sqlite3VdbeMemRelease(p);
 | |
|       p++->flags = MEM_Null;
 | |
|     }
 | |
|     db->mallocFailed = malloc_failed;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
| /*
 | |
| ** Give a listing of the program in the virtual machine.
 | |
| **
 | |
| ** The interface is the same as sqlite3VdbeExec().  But instead of
 | |
| ** running the code, it invokes the callback once for each instruction.
 | |
| ** This feature is used to implement "EXPLAIN".
 | |
| **
 | |
| ** When p->explain==1, each instruction is listed.  When
 | |
| ** p->explain==2, only OP_Explain instructions are listed and these
 | |
| ** are shown in a different format.  p->explain==2 is used to implement
 | |
| ** EXPLAIN QUERY PLAN.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeList(
 | |
|   Vdbe *p                   /* The VDBE */
 | |
| ){
 | |
|   sqlite3 *db = p->db;
 | |
|   int i;
 | |
|   int rc = SQLITE_OK;
 | |
|   Mem *pMem = p->pResultSet = &p->aMem[1];
 | |
| 
 | |
|   assert( p->explain );
 | |
|   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
 | |
|   assert( db->magic==SQLITE_MAGIC_BUSY );
 | |
|   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | |
| 
 | |
|   /* Even though this opcode does not use dynamic strings for
 | |
|   ** the result, result columns may become dynamic if the user calls
 | |
|   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
 | |
|   */
 | |
|   releaseMemArray(pMem, p->nMem);
 | |
| 
 | |
|   do{
 | |
|     i = p->pc++;
 | |
|   }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
 | |
|   if( i>=p->nOp ){
 | |
|     p->rc = SQLITE_OK;
 | |
|     rc = SQLITE_DONE;
 | |
|   }else if( db->u1.isInterrupted ){
 | |
|     p->rc = SQLITE_INTERRUPT;
 | |
|     rc = SQLITE_ERROR;
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0);
 | |
|   }else{
 | |
|     char *z;
 | |
|     Op *pOp = &p->aOp[i];
 | |
|     if( p->explain==1 ){
 | |
|       pMem->flags = MEM_Int;
 | |
|       pMem->type = SQLITE_INTEGER;
 | |
|       pMem->u.i = i;                                /* Program counter */
 | |
|       pMem++;
 | |
|   
 | |
|       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
 | |
|       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
 | |
|       assert( pMem->z!=0 );
 | |
|       pMem->n = strlen(pMem->z);
 | |
|       pMem->type = SQLITE_TEXT;
 | |
|       pMem->enc = SQLITE_UTF8;
 | |
|       pMem++;
 | |
|     }
 | |
| 
 | |
|     pMem->flags = MEM_Int;
 | |
|     pMem->u.i = pOp->p1;                          /* P1 */
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|     pMem++;
 | |
| 
 | |
|     pMem->flags = MEM_Int;
 | |
|     pMem->u.i = pOp->p2;                          /* P2 */
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|     pMem++;
 | |
| 
 | |
|     if( p->explain==1 ){
 | |
|       pMem->flags = MEM_Int;
 | |
|       pMem->u.i = pOp->p3;                          /* P3 */
 | |
|       pMem->type = SQLITE_INTEGER;
 | |
|       pMem++;
 | |
|     }
 | |
| 
 | |
|     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
 | |
|       p->db->mallocFailed = 1;
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
 | |
|     z = displayP4(pOp, pMem->z, 32);
 | |
|     if( z!=pMem->z ){
 | |
|       sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
 | |
|     }else{
 | |
|       assert( pMem->z!=0 );
 | |
|       pMem->n = strlen(pMem->z);
 | |
|       pMem->enc = SQLITE_UTF8;
 | |
|     }
 | |
|     pMem->type = SQLITE_TEXT;
 | |
|     pMem++;
 | |
| 
 | |
|     if( p->explain==1 ){
 | |
|       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
 | |
|         p->db->mallocFailed = 1;
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|       pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
 | |
|       pMem->n = 2;
 | |
|       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
 | |
|       pMem->type = SQLITE_TEXT;
 | |
|       pMem->enc = SQLITE_UTF8;
 | |
|       pMem++;
 | |
|   
 | |
| #ifdef SQLITE_DEBUG
 | |
|       if( pOp->zComment ){
 | |
|         pMem->flags = MEM_Str|MEM_Term;
 | |
|         pMem->z = pOp->zComment;
 | |
|         pMem->n = strlen(pMem->z);
 | |
|         pMem->enc = SQLITE_UTF8;
 | |
|       }else
 | |
| #endif
 | |
|       {
 | |
|         pMem->flags = MEM_Null;                       /* Comment */
 | |
|         pMem->type = SQLITE_NULL;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     p->nResColumn = 8 - 5*(p->explain-1);
 | |
|     p->rc = SQLITE_OK;
 | |
|     rc = SQLITE_ROW;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Print the SQL that was used to generate a VDBE program.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){
 | |
|   int nOp = p->nOp;
 | |
|   VdbeOp *pOp;
 | |
|   if( nOp<1 ) return;
 | |
|   pOp = &p->aOp[0];
 | |
|   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
 | |
|     const char *z = pOp->p4.z;
 | |
|     while( isspace(*(u8*)z) ) z++;
 | |
|     printf("SQL: [%s]\n", z);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
 | |
| /*
 | |
| ** Print an IOTRACE message showing SQL content.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){
 | |
|   int nOp = p->nOp;
 | |
|   VdbeOp *pOp;
 | |
|   if( sqlite3IoTrace==0 ) return;
 | |
|   if( nOp<1 ) return;
 | |
|   pOp = &p->aOp[0];
 | |
|   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
 | |
|     int i, j;
 | |
|     char z[1000];
 | |
|     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
 | |
|     for(i=0; isspace((unsigned char)z[i]); i++){}
 | |
|     for(j=0; z[i]; i++){
 | |
|       if( isspace((unsigned char)z[i]) ){
 | |
|         if( z[i-1]!=' ' ){
 | |
|           z[j++] = ' ';
 | |
|         }
 | |
|       }else{
 | |
|         z[j++] = z[i];
 | |
|       }
 | |
|     }
 | |
|     z[j] = 0;
 | |
|     sqlite3IoTrace("SQL %s\n", z);
 | |
|   }
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Prepare a virtual machine for execution.  This involves things such
 | |
| ** as allocating stack space and initializing the program counter.
 | |
| ** After the VDBE has be prepped, it can be executed by one or more
 | |
| ** calls to sqlite3VdbeExec().  
 | |
| **
 | |
| ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
 | |
| ** VDBE_MAGIC_RUN.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMakeReady(
 | |
|   Vdbe *p,                       /* The VDBE */
 | |
|   int nVar,                      /* Number of '?' see in the SQL statement */
 | |
|   int nMem,                      /* Number of memory cells to allocate */
 | |
|   int nCursor,                   /* Number of cursors to allocate */
 | |
|   int isExplain                  /* True if the EXPLAIN keywords is present */
 | |
| ){
 | |
|   int n;
 | |
|   sqlite3 *db = p->db;
 | |
| 
 | |
|   assert( p!=0 );
 | |
|   assert( p->magic==VDBE_MAGIC_INIT );
 | |
| 
 | |
|   /* There should be at least one opcode.
 | |
|   */
 | |
|   assert( p->nOp>0 );
 | |
| 
 | |
|   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
 | |
|    * is because the call to resizeOpArray() below may shrink the
 | |
|    * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
 | |
|    * state.
 | |
|    */
 | |
|   p->magic = VDBE_MAGIC_RUN;
 | |
| 
 | |
|   /*
 | |
|   ** Allocation space for registers.
 | |
|   */
 | |
|   if( p->aMem==0 ){
 | |
|     int nArg;       /* Maximum number of args passed to a user function. */
 | |
|     resolveP2Values(p, &nArg);
 | |
|     resizeOpArray(p, p->nOp);
 | |
|     assert( nVar>=0 );
 | |
|     if( isExplain && nMem<10 ){
 | |
|       p->nMem = nMem = 10;
 | |
|     }
 | |
|     p->aMem = sqlite3DbMallocZero(db,
 | |
|         nMem*sizeof(Mem)               /* aMem */
 | |
|       + nVar*sizeof(Mem)               /* aVar */
 | |
|       + nArg*sizeof(Mem*)              /* apArg */
 | |
|       + nVar*sizeof(char*)             /* azVar */
 | |
|       + nCursor*sizeof(Cursor*) + 1    /* apCsr */
 | |
|     );
 | |
|     if( !db->mallocFailed ){
 | |
|       p->aMem--;             /* aMem[] goes from 1..nMem */
 | |
|       p->nMem = nMem;        /*       not from 0..nMem-1 */
 | |
|       p->aVar = &p->aMem[nMem+1];
 | |
|       p->nVar = nVar;
 | |
|       p->okVar = 0;
 | |
|       p->apArg = (Mem**)&p->aVar[nVar];
 | |
|       p->azVar = (char**)&p->apArg[nArg];
 | |
|       p->apCsr = (Cursor**)&p->azVar[nVar];
 | |
|       p->nCursor = nCursor;
 | |
|       for(n=0; n<nVar; n++){
 | |
|         p->aVar[n].flags = MEM_Null;
 | |
|         p->aVar[n].db = db;
 | |
|       }
 | |
|       for(n=1; n<=nMem; n++){
 | |
|         p->aMem[n].flags = MEM_Null;
 | |
|         p->aMem[n].db = db;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #ifdef SQLITE_DEBUG
 | |
|   for(n=1; n<p->nMem; n++){
 | |
|     assert( p->aMem[n].db==db );
 | |
|     assert( p->aMem[n].flags==MEM_Null );
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   p->pc = -1;
 | |
|   p->rc = SQLITE_OK;
 | |
|   p->uniqueCnt = 0;
 | |
|   p->returnDepth = 0;
 | |
|   p->errorAction = OE_Abort;
 | |
|   p->explain |= isExplain;
 | |
|   p->magic = VDBE_MAGIC_RUN;
 | |
|   p->nChange = 0;
 | |
|   p->cacheCtr = 1;
 | |
|   p->minWriteFileFormat = 255;
 | |
|   p->openedStatement = 0;
 | |
| #ifdef VDBE_PROFILE
 | |
|   {
 | |
|     int i;
 | |
|     for(i=0; i<p->nOp; i++){
 | |
|       p->aOp[i].cnt = 0;
 | |
|       p->aOp[i].cycles = 0;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a VDBE cursor and release all the resources that cursor happens
 | |
| ** to hold.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
 | |
|   if( pCx==0 ){
 | |
|     return;
 | |
|   }
 | |
|   if( pCx->pCursor ){
 | |
|     sqlite3BtreeCloseCursor(pCx->pCursor);
 | |
|   }
 | |
|   if( pCx->pBt ){
 | |
|     sqlite3BtreeClose(pCx->pBt);
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( pCx->pVtabCursor ){
 | |
|     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
 | |
|     const sqlite3_module *pModule = pCx->pModule;
 | |
|     p->inVtabMethod = 1;
 | |
|     (void)sqlite3SafetyOff(p->db);
 | |
|     pModule->xClose(pVtabCursor);
 | |
|     (void)sqlite3SafetyOn(p->db);
 | |
|     p->inVtabMethod = 0;
 | |
|   }
 | |
| #endif
 | |
|   sqlite3_free(pCx->pData);
 | |
|   sqlite3_free(pCx->aType);
 | |
|   sqlite3_free(pCx);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close all cursors except for VTab cursors that are currently
 | |
| ** in use.
 | |
| */
 | |
| static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
 | |
|   int i;
 | |
|   if( p->apCsr==0 ) return;
 | |
|   for(i=0; i<p->nCursor; i++){
 | |
|     Cursor *pC = p->apCsr[i];
 | |
|     if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
 | |
|       sqlite3VdbeFreeCursor(p, pC);
 | |
|       p->apCsr[i] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clean up the VM after execution.
 | |
| **
 | |
| ** This routine will automatically close any cursors, lists, and/or
 | |
| ** sorters that were left open.  It also deletes the values of
 | |
| ** variables in the aVar[] array.
 | |
| */
 | |
| static void Cleanup(Vdbe *p){
 | |
|   int i;
 | |
|   closeAllCursorsExceptActiveVtabs(p);
 | |
|   for(i=1; i<=p->nMem; i++){
 | |
|     MemSetTypeFlag(&p->aMem[i], MEM_Null);
 | |
|   }
 | |
|   releaseMemArray(&p->aMem[1], p->nMem);
 | |
|   sqlite3VdbeFifoClear(&p->sFifo);
 | |
|   if( p->contextStack ){
 | |
|     for(i=0; i<p->contextStackTop; i++){
 | |
|       sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
 | |
|     }
 | |
|     sqlite3_free(p->contextStack);
 | |
|   }
 | |
|   p->contextStack = 0;
 | |
|   p->contextStackDepth = 0;
 | |
|   p->contextStackTop = 0;
 | |
|   sqlite3_free(p->zErrMsg);
 | |
|   p->zErrMsg = 0;
 | |
|   p->pResultSet = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the number of result columns that will be returned by this SQL
 | |
| ** statement. This is now set at compile time, rather than during
 | |
| ** execution of the vdbe program so that sqlite3_column_count() can
 | |
| ** be called on an SQL statement before sqlite3_step().
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
 | |
|   Mem *pColName;
 | |
|   int n;
 | |
| 
 | |
|   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | |
|   sqlite3_free(p->aColName);
 | |
|   n = nResColumn*COLNAME_N;
 | |
|   p->nResColumn = nResColumn;
 | |
|   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n );
 | |
|   if( p->aColName==0 ) return;
 | |
|   while( n-- > 0 ){
 | |
|     pColName->flags = MEM_Null;
 | |
|     pColName->db = p->db;
 | |
|     pColName++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the name of the idx'th column to be returned by the SQL statement.
 | |
| ** zName must be a pointer to a nul terminated string.
 | |
| **
 | |
| ** This call must be made after a call to sqlite3VdbeSetNumCols().
 | |
| **
 | |
| ** If N==P4_STATIC  it means that zName is a pointer to a constant static
 | |
| ** string and we can just copy the pointer. If it is P4_DYNAMIC, then 
 | |
| ** the string is freed using sqlite3_free() when the vdbe is finished with
 | |
| ** it. Otherwise, N bytes of zName are copied.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
 | |
|   int rc;
 | |
|   Mem *pColName;
 | |
|   assert( idx<p->nResColumn );
 | |
|   assert( var<COLNAME_N );
 | |
|   if( p->db->mallocFailed ) return SQLITE_NOMEM;
 | |
|   assert( p->aColName!=0 );
 | |
|   pColName = &(p->aColName[idx+var*p->nResColumn]);
 | |
|   if( N==P4_DYNAMIC || N==P4_STATIC ){
 | |
|     rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
 | |
|   }else{
 | |
|     rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
 | |
|   }
 | |
|   if( rc==SQLITE_OK && N==P4_DYNAMIC ){
 | |
|     pColName->flags = (pColName->flags&(~MEM_Static))|MEM_Dyn;
 | |
|     pColName->xDel = 0;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A read or write transaction may or may not be active on database handle
 | |
| ** db. If a transaction is active, commit it. If there is a
 | |
| ** write-transaction spanning more than one database file, this routine
 | |
| ** takes care of the master journal trickery.
 | |
| */
 | |
| static int vdbeCommit(sqlite3 *db){
 | |
|   int i;
 | |
|   int nTrans = 0;  /* Number of databases with an active write-transaction */
 | |
|   int rc = SQLITE_OK;
 | |
|   int needXcommit = 0;
 | |
| 
 | |
|   /* Before doing anything else, call the xSync() callback for any
 | |
|   ** virtual module tables written in this transaction. This has to
 | |
|   ** be done before determining whether a master journal file is 
 | |
|   ** required, as an xSync() callback may add an attached database
 | |
|   ** to the transaction.
 | |
|   */
 | |
|   rc = sqlite3VtabSync(db, rc);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* This loop determines (a) if the commit hook should be invoked and
 | |
|   ** (b) how many database files have open write transactions, not 
 | |
|   ** including the temp database. (b) is important because if more than 
 | |
|   ** one database file has an open write transaction, a master journal
 | |
|   ** file is required for an atomic commit.
 | |
|   */ 
 | |
|   for(i=0; i<db->nDb; i++){ 
 | |
|     Btree *pBt = db->aDb[i].pBt;
 | |
|     if( sqlite3BtreeIsInTrans(pBt) ){
 | |
|       needXcommit = 1;
 | |
|       if( i!=1 ) nTrans++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If there are any write-transactions at all, invoke the commit hook */
 | |
|   if( needXcommit && db->xCommitCallback ){
 | |
|     (void)sqlite3SafetyOff(db);
 | |
|     rc = db->xCommitCallback(db->pCommitArg);
 | |
|     (void)sqlite3SafetyOn(db);
 | |
|     if( rc ){
 | |
|       return SQLITE_CONSTRAINT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The simple case - no more than one database file (not counting the
 | |
|   ** TEMP database) has a transaction active.   There is no need for the
 | |
|   ** master-journal.
 | |
|   **
 | |
|   ** If the return value of sqlite3BtreeGetFilename() is a zero length
 | |
|   ** string, it means the main database is :memory:.  In that case we do
 | |
|   ** not support atomic multi-file commits, so use the simple case then
 | |
|   ** too.
 | |
|   */
 | |
|   if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Do the commit only if all databases successfully complete phase 1. 
 | |
|     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
 | |
|     ** IO error while deleting or truncating a journal file. It is unlikely,
 | |
|     ** but could happen. In this case abandon processing and return the error.
 | |
|     */
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseTwo(pBt);
 | |
|       }
 | |
|     }
 | |
|     if( rc==SQLITE_OK ){
 | |
|       sqlite3VtabCommit(db);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The complex case - There is a multi-file write-transaction active.
 | |
|   ** This requires a master journal file to ensure the transaction is
 | |
|   ** committed atomicly.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_DISKIO
 | |
|   else{
 | |
|     sqlite3_vfs *pVfs = db->pVfs;
 | |
|     int needSync = 0;
 | |
|     char *zMaster = 0;   /* File-name for the master journal */
 | |
|     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
 | |
|     sqlite3_file *pMaster = 0;
 | |
|     i64 offset = 0;
 | |
| 
 | |
|     /* Select a master journal file name */
 | |
|     do {
 | |
|       u32 random;
 | |
|       sqlite3_free(zMaster);
 | |
|       sqlite3Randomness(sizeof(random), &random);
 | |
|       zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
 | |
|       if( !zMaster ){
 | |
|         return SQLITE_NOMEM;
 | |
|       }
 | |
|     }while( sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS) );
 | |
| 
 | |
|     /* Open the master journal. */
 | |
|     rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
 | |
|         SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
 | |
|         SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
 | |
|     );
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3_free(zMaster);
 | |
|       return rc;
 | |
|     }
 | |
|  
 | |
|     /* Write the name of each database file in the transaction into the new
 | |
|     ** master journal file. If an error occurs at this point close
 | |
|     ** and delete the master journal file. All the individual journal files
 | |
|     ** still have 'null' as the master journal pointer, so they will roll
 | |
|     ** back independently if a failure occurs.
 | |
|     */
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( i==1 ) continue;   /* Ignore the TEMP database */
 | |
|       if( sqlite3BtreeIsInTrans(pBt) ){
 | |
|         char const *zFile = sqlite3BtreeGetJournalname(pBt);
 | |
|         if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
 | |
|         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
 | |
|           needSync = 1;
 | |
|         }
 | |
|         rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
 | |
|         offset += strlen(zFile)+1;
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           sqlite3OsCloseFree(pMaster);
 | |
|           sqlite3OsDelete(pVfs, zMaster, 0);
 | |
|           sqlite3_free(zMaster);
 | |
|           return rc;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
 | |
|     ** flag is set this is not required.
 | |
|     */
 | |
|     zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
 | |
|     if( (needSync 
 | |
|      && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
 | |
|      && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
 | |
|       sqlite3OsCloseFree(pMaster);
 | |
|       sqlite3OsDelete(pVfs, zMaster, 0);
 | |
|       sqlite3_free(zMaster);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Sync all the db files involved in the transaction. The same call
 | |
|     ** sets the master journal pointer in each individual journal. If
 | |
|     ** an error occurs here, do not delete the master journal file.
 | |
|     **
 | |
|     ** If the error occurs during the first call to
 | |
|     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
 | |
|     ** master journal file will be orphaned. But we cannot delete it,
 | |
|     ** in case the master journal file name was written into the journal
 | |
|     ** file before the failure occured.
 | |
|     */
 | |
|     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
 | |
|       }
 | |
|     }
 | |
|     sqlite3OsCloseFree(pMaster);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3_free(zMaster);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* Delete the master journal file. This commits the transaction. After
 | |
|     ** doing this the directory is synced again before any individual
 | |
|     ** transaction files are deleted.
 | |
|     */
 | |
|     rc = sqlite3OsDelete(pVfs, zMaster, 1);
 | |
|     sqlite3_free(zMaster);
 | |
|     zMaster = 0;
 | |
|     if( rc ){
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     /* All files and directories have already been synced, so the following
 | |
|     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
 | |
|     ** deleting or truncating journals. If something goes wrong while
 | |
|     ** this is happening we don't really care. The integrity of the
 | |
|     ** transaction is already guaranteed, but some stray 'cold' journals
 | |
|     ** may be lying around. Returning an error code won't help matters.
 | |
|     */
 | |
|     disable_simulated_io_errors();
 | |
|     for(i=0; i<db->nDb; i++){ 
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         sqlite3BtreeCommitPhaseTwo(pBt);
 | |
|       }
 | |
|     }
 | |
|     enable_simulated_io_errors();
 | |
| 
 | |
|     sqlite3VtabCommit(db);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** This routine checks that the sqlite3.activeVdbeCnt count variable
 | |
| ** matches the number of vdbe's in the list sqlite3.pVdbe that are
 | |
| ** currently active. An assertion fails if the two counts do not match.
 | |
| ** This is an internal self-check only - it is not an essential processing
 | |
| ** step.
 | |
| **
 | |
| ** This is a no-op if NDEBUG is defined.
 | |
| */
 | |
| #ifndef NDEBUG
 | |
| static void checkActiveVdbeCnt(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   int cnt = 0;
 | |
|   p = db->pVdbe;
 | |
|   while( p ){
 | |
|     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
 | |
|       cnt++;
 | |
|     }
 | |
|     p = p->pNext;
 | |
|   }
 | |
|   assert( cnt==db->activeVdbeCnt );
 | |
| }
 | |
| #else
 | |
| #define checkActiveVdbeCnt(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** For every Btree that in database connection db which 
 | |
| ** has been modified, "trip" or invalidate each cursor in
 | |
| ** that Btree might have been modified so that the cursor
 | |
| ** can never be used again.  This happens when a rollback
 | |
| *** occurs.  We have to trip all the other cursors, even
 | |
| ** cursor from other VMs in different database connections,
 | |
| ** so that none of them try to use the data at which they
 | |
| ** were pointing and which now may have been changed due
 | |
| ** to the rollback.
 | |
| **
 | |
| ** Remember that a rollback can delete tables complete and
 | |
| ** reorder rootpages.  So it is not sufficient just to save
 | |
| ** the state of the cursor.  We have to invalidate the cursor
 | |
| ** so that it is never used again.
 | |
| */
 | |
| static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
 | |
|   int i;
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     Btree *p = db->aDb[i].pBt;
 | |
|     if( p && sqlite3BtreeIsInTrans(p) ){
 | |
|       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called the when a VDBE tries to halt.  If the VDBE
 | |
| ** has made changes and is in autocommit mode, then commit those
 | |
| ** changes.  If a rollback is needed, then do the rollback.
 | |
| **
 | |
| ** This routine is the only way to move the state of a VM from
 | |
| ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
 | |
| ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
 | |
| **
 | |
| ** Return an error code.  If the commit could not complete because of
 | |
| ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
 | |
| ** means the close did not happen and needs to be repeated.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){
 | |
|   sqlite3 *db = p->db;
 | |
|   int i;
 | |
|   int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
 | |
|   int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
 | |
| 
 | |
|   /* This function contains the logic that determines if a statement or
 | |
|   ** transaction will be committed or rolled back as a result of the
 | |
|   ** execution of this virtual machine. 
 | |
|   **
 | |
|   ** If any of the following errors occur:
 | |
|   **
 | |
|   **     SQLITE_NOMEM
 | |
|   **     SQLITE_IOERR
 | |
|   **     SQLITE_FULL
 | |
|   **     SQLITE_INTERRUPT
 | |
|   **
 | |
|   ** Then the internal cache might have been left in an inconsistent
 | |
|   ** state.  We need to rollback the statement transaction, if there is
 | |
|   ** one, or the complete transaction if there is no statement transaction.
 | |
|   */
 | |
| 
 | |
|   if( p->db->mallocFailed ){
 | |
|     p->rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   closeAllCursorsExceptActiveVtabs(p);
 | |
|   if( p->magic!=VDBE_MAGIC_RUN ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   checkActiveVdbeCnt(db);
 | |
| 
 | |
|   /* No commit or rollback needed if the program never started */
 | |
|   if( p->pc>=0 ){
 | |
|     int mrc;   /* Primary error code from p->rc */
 | |
| 
 | |
|     /* Lock all btrees used by the statement */
 | |
|     sqlite3BtreeMutexArrayEnter(&p->aMutex);
 | |
| 
 | |
|     /* Check for one of the special errors */
 | |
|     mrc = p->rc & 0xff;
 | |
|     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
 | |
|                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
 | |
|     if( isSpecialError ){
 | |
|       /* This loop does static analysis of the query to see which of the
 | |
|       ** following three categories it falls into:
 | |
|       **
 | |
|       **     Read-only
 | |
|       **     Query with statement journal
 | |
|       **     Query without statement journal
 | |
|       **
 | |
|       ** We could do something more elegant than this static analysis (i.e.
 | |
|       ** store the type of query as part of the compliation phase), but 
 | |
|       ** handling malloc() or IO failure is a fairly obscure edge case so 
 | |
|       ** this is probably easier. Todo: Might be an opportunity to reduce 
 | |
|       ** code size a very small amount though...
 | |
|       */
 | |
|       int notReadOnly = 0;
 | |
|       int isStatement = 0;
 | |
|       assert(p->aOp || p->nOp==0);
 | |
|       for(i=0; i<p->nOp; i++){ 
 | |
|         switch( p->aOp[i].opcode ){
 | |
|           case OP_Transaction:
 | |
|             notReadOnly |= p->aOp[i].p2;
 | |
|             break;
 | |
|           case OP_Statement:
 | |
|             isStatement = 1;
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|    
 | |
|       /* If the query was read-only, we need do no rollback at all. Otherwise,
 | |
|       ** proceed with the special handling.
 | |
|       */
 | |
|       if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
 | |
|         if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
 | |
|           xFunc = sqlite3BtreeRollbackStmt;
 | |
|           p->rc = SQLITE_BUSY;
 | |
|         } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
 | |
|           xFunc = sqlite3BtreeRollbackStmt;
 | |
|         }else{
 | |
|           /* We are forced to roll back the active transaction. Before doing
 | |
|           ** so, abort any other statements this handle currently has active.
 | |
|           */
 | |
|           invalidateCursorsOnModifiedBtrees(db);
 | |
|           sqlite3RollbackAll(db);
 | |
|           db->autoCommit = 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If the auto-commit flag is set and this is the only active vdbe, then
 | |
|     ** we do either a commit or rollback of the current transaction. 
 | |
|     **
 | |
|     ** Note: This block also runs if one of the special errors handled 
 | |
|     ** above has occured. 
 | |
|     */
 | |
|     if( db->autoCommit && db->activeVdbeCnt==1 ){
 | |
|       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
 | |
|         /* The auto-commit flag is true, and the vdbe program was 
 | |
|         ** successful or hit an 'OR FAIL' constraint. This means a commit 
 | |
|         ** is required.
 | |
|         */
 | |
|         int rc = vdbeCommit(db);
 | |
|         if( rc==SQLITE_BUSY ){
 | |
|           sqlite3BtreeMutexArrayLeave(&p->aMutex);
 | |
|           return SQLITE_BUSY;
 | |
|         }else if( rc!=SQLITE_OK ){
 | |
|           p->rc = rc;
 | |
|           sqlite3RollbackAll(db);
 | |
|         }else{
 | |
|           sqlite3CommitInternalChanges(db);
 | |
|         }
 | |
|       }else{
 | |
|         sqlite3RollbackAll(db);
 | |
|       }
 | |
|     }else if( !xFunc ){
 | |
|       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
 | |
|         if( p->openedStatement ){
 | |
|           xFunc = sqlite3BtreeCommitStmt;
 | |
|         } 
 | |
|       }else if( p->errorAction==OE_Abort ){
 | |
|         xFunc = sqlite3BtreeRollbackStmt;
 | |
|       }else{
 | |
|         invalidateCursorsOnModifiedBtrees(db);
 | |
|         sqlite3RollbackAll(db);
 | |
|         db->autoCommit = 1;
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
 | |
|     ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
 | |
|     ** and the return code is still SQLITE_OK, set the return code to the new
 | |
|     ** error value.
 | |
|     */
 | |
|     assert(!xFunc ||
 | |
|       xFunc==sqlite3BtreeCommitStmt ||
 | |
|       xFunc==sqlite3BtreeRollbackStmt
 | |
|     );
 | |
|     for(i=0; xFunc && i<db->nDb; i++){ 
 | |
|       int rc;
 | |
|       Btree *pBt = db->aDb[i].pBt;
 | |
|       if( pBt ){
 | |
|         rc = xFunc(pBt);
 | |
|         if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
 | |
|           p->rc = rc;
 | |
|           sqlite3SetString(&p->zErrMsg, 0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
 | |
|     ** set the change counter. 
 | |
|     */
 | |
|     if( p->changeCntOn && p->pc>=0 ){
 | |
|       if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
 | |
|         sqlite3VdbeSetChanges(db, p->nChange);
 | |
|       }else{
 | |
|         sqlite3VdbeSetChanges(db, 0);
 | |
|       }
 | |
|       p->nChange = 0;
 | |
|     }
 | |
|   
 | |
|     /* Rollback or commit any schema changes that occurred. */
 | |
|     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
 | |
|       sqlite3ResetInternalSchema(db, 0);
 | |
|       db->flags = (db->flags | SQLITE_InternChanges);
 | |
|     }
 | |
| 
 | |
|     /* Release the locks */
 | |
|     sqlite3BtreeMutexArrayLeave(&p->aMutex);
 | |
|   }
 | |
| 
 | |
|   /* We have successfully halted and closed the VM.  Record this fact. */
 | |
|   if( p->pc>=0 ){
 | |
|     db->activeVdbeCnt--;
 | |
|   }
 | |
|   p->magic = VDBE_MAGIC_HALT;
 | |
|   checkActiveVdbeCnt(db);
 | |
|   if( p->db->mallocFailed ){
 | |
|     p->rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   checkActiveVdbeCnt(db);
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Each VDBE holds the result of the most recent sqlite3_step() call
 | |
| ** in p->rc.  This routine sets that result back to SQLITE_OK.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){
 | |
|   p->rc = SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clean up a VDBE after execution but do not delete the VDBE just yet.
 | |
| ** Write any error messages into *pzErrMsg.  Return the result code.
 | |
| **
 | |
| ** After this routine is run, the VDBE should be ready to be executed
 | |
| ** again.
 | |
| **
 | |
| ** To look at it another way, this routine resets the state of the
 | |
| ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
 | |
| ** VDBE_MAGIC_INIT.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p){
 | |
|   sqlite3 *db;
 | |
|   db = p->db;
 | |
| 
 | |
|   /* If the VM did not run to completion or if it encountered an
 | |
|   ** error, then it might not have been halted properly.  So halt
 | |
|   ** it now.
 | |
|   */
 | |
|   (void)sqlite3SafetyOn(db);
 | |
|   sqlite3VdbeHalt(p);
 | |
|   (void)sqlite3SafetyOff(db);
 | |
| 
 | |
|   /* If the VDBE has be run even partially, then transfer the error code
 | |
|   ** and error message from the VDBE into the main database structure.  But
 | |
|   ** if the VDBE has just been set to run but has not actually executed any
 | |
|   ** instructions yet, leave the main database error information unchanged.
 | |
|   */
 | |
|   if( p->pc>=0 ){
 | |
|     if( p->zErrMsg ){
 | |
|       sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free);
 | |
|       db->errCode = p->rc;
 | |
|       p->zErrMsg = 0;
 | |
|     }else if( p->rc ){
 | |
|       sqlite3Error(db, p->rc, 0);
 | |
|     }else{
 | |
|       sqlite3Error(db, SQLITE_OK, 0);
 | |
|     }
 | |
|   }else if( p->rc && p->expired ){
 | |
|     /* The expired flag was set on the VDBE before the first call
 | |
|     ** to sqlite3_step(). For consistency (since sqlite3_step() was
 | |
|     ** called), set the database error in this case as well.
 | |
|     */
 | |
|     sqlite3Error(db, p->rc, 0);
 | |
|     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free);
 | |
|     p->zErrMsg = 0;
 | |
|   }
 | |
| 
 | |
|   /* Reclaim all memory used by the VDBE
 | |
|   */
 | |
|   Cleanup(p);
 | |
| 
 | |
|   /* Save profiling information from this VDBE run.
 | |
|   */
 | |
| #ifdef VDBE_PROFILE
 | |
|   {
 | |
|     FILE *out = fopen("vdbe_profile.out", "a");
 | |
|     if( out ){
 | |
|       int i;
 | |
|       fprintf(out, "---- ");
 | |
|       for(i=0; i<p->nOp; i++){
 | |
|         fprintf(out, "%02x", p->aOp[i].opcode);
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|       for(i=0; i<p->nOp; i++){
 | |
|         fprintf(out, "%6d %10lld %8lld ",
 | |
|            p->aOp[i].cnt,
 | |
|            p->aOp[i].cycles,
 | |
|            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
 | |
|         );
 | |
|         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
 | |
|       }
 | |
|       fclose(out);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   p->magic = VDBE_MAGIC_INIT;
 | |
|   p->aborted = 0;
 | |
|   return p->rc & db->errMask;
 | |
| }
 | |
|  
 | |
| /*
 | |
| ** Clean up and delete a VDBE after execution.  Return an integer which is
 | |
| ** the result code.  Write any error message text into *pzErrMsg.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
 | |
|     rc = sqlite3VdbeReset(p);
 | |
|     assert( (rc & p->db->errMask)==rc );
 | |
|   }else if( p->magic!=VDBE_MAGIC_INIT ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   sqlite3VdbeDelete(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call the destructor for each auxdata entry in pVdbeFunc for which
 | |
| ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
 | |
| ** are always destroyed.  To destroy all auxdata entries, call this
 | |
| ** routine with mask==0.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
 | |
|   int i;
 | |
|   for(i=0; i<pVdbeFunc->nAux; i++){
 | |
|     struct AuxData *pAux = &pVdbeFunc->apAux[i];
 | |
|     if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
 | |
|       if( pAux->xDelete ){
 | |
|         pAux->xDelete(pAux->pAux);
 | |
|       }
 | |
|       pAux->pAux = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an entire VDBE.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
 | |
|   int i;
 | |
|   if( p==0 ) return;
 | |
|   Cleanup(p);
 | |
|   if( p->pPrev ){
 | |
|     p->pPrev->pNext = p->pNext;
 | |
|   }else{
 | |
|     assert( p->db->pVdbe==p );
 | |
|     p->db->pVdbe = p->pNext;
 | |
|   }
 | |
|   if( p->pNext ){
 | |
|     p->pNext->pPrev = p->pPrev;
 | |
|   }
 | |
|   if( p->aOp ){
 | |
|     Op *pOp = p->aOp;
 | |
|     for(i=0; i<p->nOp; i++, pOp++){
 | |
|       freeP4(pOp->p4type, pOp->p4.p);
 | |
| #ifdef SQLITE_DEBUG
 | |
|       sqlite3_free(pOp->zComment);
 | |
| #endif     
 | |
|     }
 | |
|     sqlite3_free(p->aOp);
 | |
|   }
 | |
|   releaseMemArray(p->aVar, p->nVar);
 | |
|   sqlite3_free(p->aLabel);
 | |
|   if( p->aMem ){
 | |
|     sqlite3_free(&p->aMem[1]);
 | |
|   }
 | |
|   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
 | |
|   sqlite3_free(p->aColName);
 | |
|   sqlite3_free(p->zSql);
 | |
|   p->magic = VDBE_MAGIC_DEAD;
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If a MoveTo operation is pending on the given cursor, then do that
 | |
| ** MoveTo now.  Return an error code.  If no MoveTo is pending, this
 | |
| ** routine does nothing and returns SQLITE_OK.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor *p){
 | |
|   if( p->deferredMoveto ){
 | |
|     int res, rc;
 | |
| #ifdef SQLITE_TEST
 | |
|     extern int sqlite3_search_count;
 | |
| #endif
 | |
|     assert( p->isTable );
 | |
|     rc = sqlite3BtreeMoveto(p->pCursor, 0, p->movetoTarget, 0, &res);
 | |
|     if( rc ) return rc;
 | |
|     *p->pIncrKey = 0;
 | |
|     p->lastRowid = keyToInt(p->movetoTarget);
 | |
|     p->rowidIsValid = res==0;
 | |
|     if( res<0 ){
 | |
|       rc = sqlite3BtreeNext(p->pCursor, &res);
 | |
|       if( rc ) return rc;
 | |
|     }
 | |
| #ifdef SQLITE_TEST
 | |
|     sqlite3_search_count++;
 | |
| #endif
 | |
|     p->deferredMoveto = 0;
 | |
|     p->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following functions:
 | |
| **
 | |
| ** sqlite3VdbeSerialType()
 | |
| ** sqlite3VdbeSerialTypeLen()
 | |
| ** sqlite3VdbeSerialRead()
 | |
| ** sqlite3VdbeSerialLen()
 | |
| ** sqlite3VdbeSerialWrite()
 | |
| **
 | |
| ** encapsulate the code that serializes values for storage in SQLite
 | |
| ** data and index records. Each serialized value consists of a
 | |
| ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
 | |
| ** integer, stored as a varint.
 | |
| **
 | |
| ** In an SQLite index record, the serial type is stored directly before
 | |
| ** the blob of data that it corresponds to. In a table record, all serial
 | |
| ** types are stored at the start of the record, and the blobs of data at
 | |
| ** the end. Hence these functions allow the caller to handle the
 | |
| ** serial-type and data blob seperately.
 | |
| **
 | |
| ** The following table describes the various storage classes for data:
 | |
| **
 | |
| **   serial type        bytes of data      type
 | |
| **   --------------     ---------------    ---------------
 | |
| **      0                     0            NULL
 | |
| **      1                     1            signed integer
 | |
| **      2                     2            signed integer
 | |
| **      3                     3            signed integer
 | |
| **      4                     4            signed integer
 | |
| **      5                     6            signed integer
 | |
| **      6                     8            signed integer
 | |
| **      7                     8            IEEE float
 | |
| **      8                     0            Integer constant 0
 | |
| **      9                     0            Integer constant 1
 | |
| **     10,11                               reserved for expansion
 | |
| **    N>=12 and even       (N-12)/2        BLOB
 | |
| **    N>=13 and odd        (N-13)/2        text
 | |
| **
 | |
| ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
 | |
| ** of SQLite will not understand those serial types.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Return the serial-type for the value stored in pMem.
 | |
| */
 | |
| SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
 | |
|   int flags = pMem->flags;
 | |
|   int n;
 | |
| 
 | |
|   if( flags&MEM_Null ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( flags&MEM_Int ){
 | |
|     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
 | |
| #   define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
 | |
|     i64 i = pMem->u.i;
 | |
|     u64 u;
 | |
|     if( file_format>=4 && (i&1)==i ){
 | |
|       return 8+i;
 | |
|     }
 | |
|     u = i<0 ? -i : i;
 | |
|     if( u<=127 ) return 1;
 | |
|     if( u<=32767 ) return 2;
 | |
|     if( u<=8388607 ) return 3;
 | |
|     if( u<=2147483647 ) return 4;
 | |
|     if( u<=MAX_6BYTE ) return 5;
 | |
|     return 6;
 | |
|   }
 | |
|   if( flags&MEM_Real ){
 | |
|     return 7;
 | |
|   }
 | |
|   assert( flags&(MEM_Str|MEM_Blob) );
 | |
|   n = pMem->n;
 | |
|   if( flags & MEM_Zero ){
 | |
|     n += pMem->u.i;
 | |
|   }
 | |
|   assert( n>=0 );
 | |
|   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the length of the data corresponding to the supplied serial-type.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32 serial_type){
 | |
|   if( serial_type>=12 ){
 | |
|     return (serial_type-12)/2;
 | |
|   }else{
 | |
|     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
 | |
|     return aSize[serial_type];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If we are on an architecture with mixed-endian floating 
 | |
| ** points (ex: ARM7) then swap the lower 4 bytes with the 
 | |
| ** upper 4 bytes.  Return the result.
 | |
| **
 | |
| ** For most architectures, this is a no-op.
 | |
| **
 | |
| ** (later):  It is reported to me that the mixed-endian problem
 | |
| ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
 | |
| ** that early versions of GCC stored the two words of a 64-bit
 | |
| ** float in the wrong order.  And that error has been propagated
 | |
| ** ever since.  The blame is not necessarily with GCC, though.
 | |
| ** GCC might have just copying the problem from a prior compiler.
 | |
| ** I am also told that newer versions of GCC that follow a different
 | |
| ** ABI get the byte order right.
 | |
| **
 | |
| ** Developers using SQLite on an ARM7 should compile and run their
 | |
| ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
 | |
| ** enabled, some asserts below will ensure that the byte order of
 | |
| ** floating point values is correct.
 | |
| **
 | |
| ** (2007-08-30)  Frank van Vugt has studied this problem closely
 | |
| ** and has send his findings to the SQLite developers.  Frank
 | |
| ** writes that some Linux kernels offer floating point hardware
 | |
| ** emulation that uses only 32-bit mantissas instead of a full 
 | |
| ** 48-bits as required by the IEEE standard.  (This is the
 | |
| ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
 | |
| ** byte swapping becomes very complicated.  To avoid problems,
 | |
| ** the necessary byte swapping is carried out using a 64-bit integer
 | |
| ** rather than a 64-bit float.  Frank assures us that the code here
 | |
| ** works for him.  We, the developers, have no way to independently
 | |
| ** verify this, but Frank seems to know what he is talking about
 | |
| ** so we trust him.
 | |
| */
 | |
| #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
 | |
| static u64 floatSwap(u64 in){
 | |
|   union {
 | |
|     u64 r;
 | |
|     u32 i[2];
 | |
|   } u;
 | |
|   u32 t;
 | |
| 
 | |
|   u.r = in;
 | |
|   t = u.i[0];
 | |
|   u.i[0] = u.i[1];
 | |
|   u.i[1] = t;
 | |
|   return u.r;
 | |
| }
 | |
| # define swapMixedEndianFloat(X)  X = floatSwap(X)
 | |
| #else
 | |
| # define swapMixedEndianFloat(X)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Write the serialized data blob for the value stored in pMem into 
 | |
| ** buf. It is assumed that the caller has allocated sufficient space.
 | |
| ** Return the number of bytes written.
 | |
| **
 | |
| ** nBuf is the amount of space left in buf[].  nBuf must always be
 | |
| ** large enough to hold the entire field.  Except, if the field is
 | |
| ** a blob with a zero-filled tail, then buf[] might be just the right
 | |
| ** size to hold everything except for the zero-filled tail.  If buf[]
 | |
| ** is only big enough to hold the non-zero prefix, then only write that
 | |
| ** prefix into buf[].  But if buf[] is large enough to hold both the
 | |
| ** prefix and the tail then write the prefix and set the tail to all
 | |
| ** zeros.
 | |
| **
 | |
| ** Return the number of bytes actually written into buf[].  The number
 | |
| ** of bytes in the zero-filled tail is included in the return value only
 | |
| ** if those bytes were zeroed in buf[].
 | |
| */ 
 | |
| SQLITE_PRIVATE int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
 | |
|   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
 | |
|   int len;
 | |
| 
 | |
|   /* Integer and Real */
 | |
|   if( serial_type<=7 && serial_type>0 ){
 | |
|     u64 v;
 | |
|     int i;
 | |
|     if( serial_type==7 ){
 | |
|       assert( sizeof(v)==sizeof(pMem->r) );
 | |
|       memcpy(&v, &pMem->r, sizeof(v));
 | |
|       swapMixedEndianFloat(v);
 | |
|     }else{
 | |
|       v = pMem->u.i;
 | |
|     }
 | |
|     len = i = sqlite3VdbeSerialTypeLen(serial_type);
 | |
|     assert( len<=nBuf );
 | |
|     while( i-- ){
 | |
|       buf[i] = (v&0xFF);
 | |
|       v >>= 8;
 | |
|     }
 | |
|     return len;
 | |
|   }
 | |
| 
 | |
|   /* String or blob */
 | |
|   if( serial_type>=12 ){
 | |
|     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
 | |
|              == sqlite3VdbeSerialTypeLen(serial_type) );
 | |
|     assert( pMem->n<=nBuf );
 | |
|     len = pMem->n;
 | |
|     memcpy(buf, pMem->z, len);
 | |
|     if( pMem->flags & MEM_Zero ){
 | |
|       len += pMem->u.i;
 | |
|       if( len>nBuf ){
 | |
|         len = nBuf;
 | |
|       }
 | |
|       memset(&buf[pMem->n], 0, len-pMem->n);
 | |
|     }
 | |
|     return len;
 | |
|   }
 | |
| 
 | |
|   /* NULL or constants 0 or 1 */
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Deserialize the data blob pointed to by buf as serial type serial_type
 | |
| ** and store the result in pMem.  Return the number of bytes read.
 | |
| */ 
 | |
| SQLITE_PRIVATE int sqlite3VdbeSerialGet(
 | |
|   const unsigned char *buf,     /* Buffer to deserialize from */
 | |
|   u32 serial_type,              /* Serial type to deserialize */
 | |
|   Mem *pMem                     /* Memory cell to write value into */
 | |
| ){
 | |
|   switch( serial_type ){
 | |
|     case 10:   /* Reserved for future use */
 | |
|     case 11:   /* Reserved for future use */
 | |
|     case 0: {  /* NULL */
 | |
|       pMem->flags = MEM_Null;
 | |
|       break;
 | |
|     }
 | |
|     case 1: { /* 1-byte signed integer */
 | |
|       pMem->u.i = (signed char)buf[0];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 1;
 | |
|     }
 | |
|     case 2: { /* 2-byte signed integer */
 | |
|       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 2;
 | |
|     }
 | |
|     case 3: { /* 3-byte signed integer */
 | |
|       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 3;
 | |
|     }
 | |
|     case 4: { /* 4-byte signed integer */
 | |
|       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 4;
 | |
|     }
 | |
|     case 5: { /* 6-byte signed integer */
 | |
|       u64 x = (((signed char)buf[0])<<8) | buf[1];
 | |
|       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
 | |
|       x = (x<<32) | y;
 | |
|       pMem->u.i = *(i64*)&x;
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 6;
 | |
|     }
 | |
|     case 6:   /* 8-byte signed integer */
 | |
|     case 7: { /* IEEE floating point */
 | |
|       u64 x;
 | |
|       u32 y;
 | |
| #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
 | |
|       /* Verify that integers and floating point values use the same
 | |
|       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
 | |
|       ** defined that 64-bit floating point values really are mixed
 | |
|       ** endian.
 | |
|       */
 | |
|       static const u64 t1 = ((u64)0x3ff00000)<<32;
 | |
|       static const double r1 = 1.0;
 | |
|       u64 t2 = t1;
 | |
|       swapMixedEndianFloat(t2);
 | |
|       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
 | |
| #endif
 | |
| 
 | |
|       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
 | |
|       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
 | |
|       x = (x<<32) | y;
 | |
|       if( serial_type==6 ){
 | |
|         pMem->u.i = *(i64*)&x;
 | |
|         pMem->flags = MEM_Int;
 | |
|       }else{
 | |
|         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
 | |
|         swapMixedEndianFloat(x);
 | |
|         memcpy(&pMem->r, &x, sizeof(x));
 | |
|         pMem->flags = MEM_Real;
 | |
|       }
 | |
|       return 8;
 | |
|     }
 | |
|     case 8:    /* Integer 0 */
 | |
|     case 9: {  /* Integer 1 */
 | |
|       pMem->u.i = serial_type-8;
 | |
|       pMem->flags = MEM_Int;
 | |
|       return 0;
 | |
|     }
 | |
|     default: {
 | |
|       int len = (serial_type-12)/2;
 | |
|       pMem->z = (char *)buf;
 | |
|       pMem->n = len;
 | |
|       pMem->xDel = 0;
 | |
|       if( serial_type&0x01 ){
 | |
|         pMem->flags = MEM_Str | MEM_Ephem;
 | |
|       }else{
 | |
|         pMem->flags = MEM_Blob | MEM_Ephem;
 | |
|       }
 | |
|       return len;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The header of a record consists of a sequence variable-length integers.
 | |
| ** These integers are almost always small and are encoded as a single byte.
 | |
| ** The following macro takes advantage this fact to provide a fast decode
 | |
| ** of the integers in a record header.  It is faster for the common case
 | |
| ** where the integer is a single byte.  It is a little slower when the
 | |
| ** integer is two or more bytes.  But overall it is faster.
 | |
| **
 | |
| ** The following expressions are equivalent:
 | |
| **
 | |
| **     x = sqlite3GetVarint32( A, &B );
 | |
| **
 | |
| **     x = GetVarint( A, B );
 | |
| **
 | |
| */
 | |
| #define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
 | |
| 
 | |
| /*
 | |
| ** This function compares the two table rows or index records specified by 
 | |
| ** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
 | |
| ** or positive integer if {nKey1, pKey1} is less than, equal to or 
 | |
| ** greater than {nKey2, pKey2}.  Both Key1 and Key2 must be byte strings
 | |
| ** composed by the OP_MakeRecord opcode of the VDBE.
 | |
| **
 | |
| ** Key1 and Key2 do not have to contain the same number of fields.
 | |
| ** But if the lengths differ, Key2 must be the shorter of the two.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
 | |
|   void *userData,
 | |
|   int nKey1, const void *pKey1, 
 | |
|   int nKey2, const void *pKey2
 | |
| ){
 | |
|   KeyInfo *pKeyInfo = (KeyInfo*)userData;
 | |
|   u32 d1, d2;          /* Offset into aKey[] of next data element */
 | |
|   u32 idx1, idx2;      /* Offset into aKey[] of next header element */
 | |
|   u32 szHdr1, szHdr2;  /* Number of bytes in header */
 | |
|   int i = 0;
 | |
|   int nField;
 | |
|   int rc = 0;
 | |
|   const unsigned char *aKey1 = (const unsigned char *)pKey1;
 | |
|   const unsigned char *aKey2 = (const unsigned char *)pKey2;
 | |
| 
 | |
|   Mem mem1;
 | |
|   Mem mem2;
 | |
|   mem1.enc = pKeyInfo->enc;
 | |
|   mem1.db = pKeyInfo->db;
 | |
|   mem1.flags = 0;
 | |
|   mem2.enc = pKeyInfo->enc;
 | |
|   mem2.db = pKeyInfo->db;
 | |
|   mem2.flags = 0;
 | |
|   
 | |
|   idx1 = GetVarint(aKey1, szHdr1);
 | |
|   d1 = szHdr1;
 | |
|   idx2 = GetVarint(aKey2, szHdr2);
 | |
|   d2 = szHdr2;
 | |
|   nField = pKeyInfo->nField;
 | |
|   while( idx1<szHdr1 && idx2<szHdr2 ){
 | |
|     u32 serial_type1;
 | |
|     u32 serial_type2;
 | |
| 
 | |
|     /* Read the serial types for the next element in each key. */
 | |
|     idx1 += GetVarint( aKey1+idx1, serial_type1 );
 | |
|     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
 | |
|     idx2 += GetVarint( aKey2+idx2, serial_type2 );
 | |
|     if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
 | |
| 
 | |
|     /* Extract the values to be compared.
 | |
|     */
 | |
|     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
 | |
|     d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
 | |
| 
 | |
|     /* Do the comparison
 | |
|     */
 | |
|     rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
 | |
|     if( mem1.flags&MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
 | |
|     if( mem2.flags&MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
 | |
|     if( rc!=0 ){
 | |
|       break;
 | |
|     }
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   /* One of the keys ran out of fields, but all the fields up to that point
 | |
|   ** were equal. If the incrKey flag is true, then the second key is
 | |
|   ** treated as larger.
 | |
|   */
 | |
|   if( rc==0 ){
 | |
|     if( pKeyInfo->incrKey ){
 | |
|       rc = -1;
 | |
|     }else if( !pKeyInfo->prefixIsEqual ){
 | |
|       if( d1<nKey1 ){
 | |
|         rc = 1;
 | |
|       }else if( d2<nKey2 ){
 | |
|         rc = -1;  /* Only occurs on a corrupt database file */
 | |
|       }
 | |
|     }
 | |
|   }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
 | |
|                && pKeyInfo->aSortOrder[i] ){
 | |
|     rc = -rc;
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The argument is an index entry composed using the OP_MakeRecord opcode.
 | |
| ** The last entry in this record should be an integer (specifically
 | |
| ** an integer rowid).  This routine returns the number of bytes in
 | |
| ** that integer.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey){
 | |
|   u32 szHdr;        /* Size of the header */
 | |
|   u32 typeRowid;    /* Serial type of the rowid */
 | |
| 
 | |
|   sqlite3GetVarint32(aKey, &szHdr);
 | |
|   sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
 | |
|   return sqlite3VdbeSerialTypeLen(typeRowid);
 | |
| }
 | |
|   
 | |
| 
 | |
| /*
 | |
| ** pCur points at an index entry created using the OP_MakeRecord opcode.
 | |
| ** Read the rowid (the last field in the record) and store it in *rowid.
 | |
| ** Return SQLITE_OK if everything works, or an error code otherwise.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
 | |
|   i64 nCellKey = 0;
 | |
|   int rc;
 | |
|   u32 szHdr;        /* Size of the header */
 | |
|   u32 typeRowid;    /* Serial type of the rowid */
 | |
|   u32 lenRowid;     /* Size of the rowid */
 | |
|   Mem m, v;
 | |
| 
 | |
|   sqlite3BtreeKeySize(pCur, &nCellKey);
 | |
|   if( nCellKey<=0 ){
 | |
|     return SQLITE_CORRUPT_BKPT;
 | |
|   }
 | |
|   m.flags = 0;
 | |
|   m.db = 0;
 | |
|   rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
|   sqlite3GetVarint32((u8*)m.z, &szHdr);
 | |
|   sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
 | |
|   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
 | |
|   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
 | |
|   *rowid = v.u.i;
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the key of the index entry that cursor pC is point to against
 | |
| ** the key string in pKey (of length nKey).  Write into *pRes a number
 | |
| ** that is negative, zero, or positive if pC is less than, equal to,
 | |
| ** or greater than pKey.  Return SQLITE_OK on success.
 | |
| **
 | |
| ** pKey is either created without a rowid or is truncated so that it
 | |
| ** omits the rowid at the end.  The rowid at the end of the index entry
 | |
| ** is ignored as well.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(
 | |
|   Cursor *pC,                 /* The cursor to compare against */
 | |
|   int nKey, const u8 *pKey,   /* The key to compare */
 | |
|   int *res                    /* Write the comparison result here */
 | |
| ){
 | |
|   i64 nCellKey = 0;
 | |
|   int rc;
 | |
|   BtCursor *pCur = pC->pCursor;
 | |
|   int lenRowid;
 | |
|   Mem m;
 | |
| 
 | |
|   sqlite3BtreeKeySize(pCur, &nCellKey);
 | |
|   if( nCellKey<=0 ){
 | |
|     *res = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   m.db = 0;
 | |
|   m.flags = 0;
 | |
|   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
 | |
|   if( rc ){
 | |
|     return rc;
 | |
|   }
 | |
|   lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
 | |
|   *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
 | |
|   sqlite3VdbeMemRelease(&m);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine sets the value to be returned by subsequent calls to
 | |
| ** sqlite3_changes() on the database handle 'db'. 
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   db->nChange = nChange;
 | |
|   db->nTotalChange += nChange;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set a flag in the vdbe to update the change counter when it is finalised
 | |
| ** or reset.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){
 | |
|   v->changeCntOn = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Mark every prepared statement associated with a database connection
 | |
| ** as expired.
 | |
| **
 | |
| ** An expired statement means that recompilation of the statement is
 | |
| ** recommend.  Statements expire when things happen that make their
 | |
| ** programs obsolete.  Removing user-defined functions or collating
 | |
| ** sequences, or changing an authorization function are the types of
 | |
| ** things that make prepared statements obsolete.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){
 | |
|   Vdbe *p;
 | |
|   for(p = db->pVdbe; p; p=p->pNext){
 | |
|     p->expired = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the database associated with the Vdbe.
 | |
| */
 | |
| SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){
 | |
|   return v->db;
 | |
| }
 | |
| 
 | |
| /************** End of vdbeaux.c *********************************************/
 | |
| /************** Begin file vdbeapi.c *****************************************/
 | |
| /*
 | |
| ** 2004 May 26
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file contains code use to implement APIs that are part of the
 | |
| ** VDBE.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Return TRUE (non-zero) of the statement supplied as an argument needs
 | |
| ** to be recompiled.  A statement needs to be recompiled whenever the
 | |
| ** execution environment changes in a way that would alter the program
 | |
| ** that sqlite3_prepare() generates.  For example, if new functions or
 | |
| ** collating sequences are registered or if an authorizer function is
 | |
| ** added or changed.
 | |
| */
 | |
| SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
 | |
|   Vdbe *p = (Vdbe*)pStmt;
 | |
|   return p==0 || p->expired;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following routine destroys a virtual machine that is created by
 | |
| ** the sqlite3_compile() routine. The integer returned is an SQLITE_
 | |
| ** success/failure code that describes the result of executing the virtual
 | |
| ** machine.
 | |
| **
 | |
| ** This routine sets the error code and string returned by
 | |
| ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
 | |
| */
 | |
| SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
 | |
|   int rc;
 | |
|   if( pStmt==0 ){
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     Vdbe *v = (Vdbe*)pStmt;
 | |
| #ifndef SQLITE_MUTEX_NOOP
 | |
|     sqlite3_mutex *mutex = v->db->mutex;
 | |
| #endif
 | |
|     sqlite3_mutex_enter(mutex);
 | |
|     rc = sqlite3VdbeFinalize(v);
 | |
|     sqlite3_mutex_leave(mutex);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Terminate the current execution of an SQL statement and reset it
 | |
| ** back to its starting state so that it can be reused. A success code from
 | |
| ** the prior execution is returned.
 | |
| **
 | |
| ** This routine sets the error code and string returned by
 | |
| ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
 | |
| */
 | |
| SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
 | |
|   int rc;
 | |
|   if( pStmt==0 ){
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     Vdbe *v = (Vdbe*)pStmt;
 | |
|     sqlite3_mutex_enter(v->db->mutex);
 | |
|     rc = sqlite3VdbeReset(v);
 | |
|     sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
 | |
|     assert( (rc & (v->db->errMask))==rc );
 | |
|     sqlite3_mutex_leave(v->db->mutex);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set all the parameters in the compiled SQL statement to NULL.
 | |
| */
 | |
| SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
 | |
|   int i;
 | |
|   int rc = SQLITE_OK;
 | |
| #ifndef SQLITE_MUTEX_NOOP
 | |
|   sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
 | |
| #endif
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   for(i=1; rc==SQLITE_OK && i<=sqlite3_bind_parameter_count(pStmt); i++){
 | |
|     rc = sqlite3_bind_null(pStmt, i);
 | |
|   }
 | |
|   sqlite3_mutex_leave(mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**************************** sqlite3_value_  *******************************
 | |
| ** The following routines extract information from a Mem or sqlite3_value
 | |
| ** structure.
 | |
| */
 | |
| SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
 | |
|   Mem *p = (Mem*)pVal;
 | |
|   if( p->flags & (MEM_Blob|MEM_Str) ){
 | |
|     sqlite3VdbeMemExpandBlob(p);
 | |
|     p->flags &= ~MEM_Str;
 | |
|     p->flags |= MEM_Blob;
 | |
|     return p->z;
 | |
|   }else{
 | |
|     return sqlite3_value_text(pVal);
 | |
|   }
 | |
| }
 | |
| SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
 | |
|   return sqlite3ValueBytes(pVal, SQLITE_UTF8);
 | |
| }
 | |
| SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
 | |
|   return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
 | |
| }
 | |
| SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
 | |
|   return sqlite3VdbeRealValue((Mem*)pVal);
 | |
| }
 | |
| SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
 | |
|   return sqlite3VdbeIntValue((Mem*)pVal);
 | |
| }
 | |
| SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
 | |
|   return sqlite3VdbeIntValue((Mem*)pVal);
 | |
| }
 | |
| SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
 | |
|   return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
 | |
|   return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
 | |
| }
 | |
| SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
 | |
|   return sqlite3ValueText(pVal, SQLITE_UTF16BE);
 | |
| }
 | |
| SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
 | |
|   return sqlite3ValueText(pVal, SQLITE_UTF16LE);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
 | |
|   return pVal->type;
 | |
| }
 | |
| 
 | |
| /**************************** sqlite3_result_  *******************************
 | |
| ** The following routines are used by user-defined functions to specify
 | |
| ** the function result.
 | |
| */
 | |
| SQLITE_API void sqlite3_result_blob(
 | |
|   sqlite3_context *pCtx, 
 | |
|   const void *z, 
 | |
|   int n, 
 | |
|   void (*xDel)(void *)
 | |
| ){
 | |
|   assert( n>=0 );
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   pCtx->isError = SQLITE_ERROR;
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   pCtx->isError = SQLITE_ERROR;
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
 | |
| }
 | |
| #endif
 | |
| SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetNull(&pCtx->s);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_text(
 | |
|   sqlite3_context *pCtx, 
 | |
|   const char *z, 
 | |
|   int n,
 | |
|   void (*xDel)(void *)
 | |
| ){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API void sqlite3_result_text16(
 | |
|   sqlite3_context *pCtx, 
 | |
|   const void *z, 
 | |
|   int n, 
 | |
|   void (*xDel)(void *)
 | |
| ){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_text16be(
 | |
|   sqlite3_context *pCtx, 
 | |
|   const void *z, 
 | |
|   int n, 
 | |
|   void (*xDel)(void *)
 | |
| ){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_text16le(
 | |
|   sqlite3_context *pCtx, 
 | |
|   const void *z, 
 | |
|   int n, 
 | |
|   void (*xDel)(void *)
 | |
| ){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemCopy(&pCtx->s, pValue);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
 | |
| }
 | |
| SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
 | |
|   pCtx->isError = errCode;
 | |
| }
 | |
| 
 | |
| /* Force an SQLITE_TOOBIG error. */
 | |
| SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetZeroBlob(&pCtx->s, SQLITE_MAX_LENGTH+1);
 | |
| }
 | |
| 
 | |
| /* An SQLITE_NOMEM error. */
 | |
| SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   sqlite3VdbeMemSetNull(&pCtx->s);
 | |
|   pCtx->isError = SQLITE_NOMEM;
 | |
|   pCtx->s.db->mallocFailed = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Execute the statement pStmt, either until a row of data is ready, the
 | |
| ** statement is completely executed or an error occurs.
 | |
| **
 | |
| ** This routine implements the bulk of the logic behind the sqlite_step()
 | |
| ** API.  The only thing omitted is the automatic recompile if a 
 | |
| ** schema change has occurred.  That detail is handled by the
 | |
| ** outer sqlite3_step() wrapper procedure.
 | |
| */
 | |
| static int sqlite3Step(Vdbe *p){
 | |
|   sqlite3 *db;
 | |
|   int rc;
 | |
| 
 | |
|   assert(p);
 | |
|   if( p->magic!=VDBE_MAGIC_RUN ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
| 
 | |
|   /* Assert that malloc() has not failed */
 | |
|   db = p->db;
 | |
|   assert( !db->mallocFailed );
 | |
| 
 | |
|   if( p->aborted ){
 | |
|     return SQLITE_ABORT;
 | |
|   }
 | |
|   if( p->pc<=0 && p->expired ){
 | |
|     if( p->rc==SQLITE_OK ){
 | |
|       p->rc = SQLITE_SCHEMA;
 | |
|     }
 | |
|     rc = SQLITE_ERROR;
 | |
|     goto end_of_step;
 | |
|   }
 | |
|   if( sqlite3SafetyOn(db) ){
 | |
|     p->rc = SQLITE_MISUSE;
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   if( p->pc<0 ){
 | |
|     /* If there are no other statements currently running, then
 | |
|     ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt
 | |
|     ** from interrupting a statement that has not yet started.
 | |
|     */
 | |
|     if( db->activeVdbeCnt==0 ){
 | |
|       db->u1.isInterrupted = 0;
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
|     if( db->xProfile && !db->init.busy ){
 | |
|       double rNow;
 | |
|       sqlite3OsCurrentTime(db->pVfs, &rNow);
 | |
|       p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     db->activeVdbeCnt++;
 | |
|     p->pc = 0;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|   if( p->explain ){
 | |
|     rc = sqlite3VdbeList(p);
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
|   {
 | |
|     rc = sqlite3VdbeExec(p);
 | |
|   }
 | |
| 
 | |
|   if( sqlite3SafetyOff(db) ){
 | |
|     rc = SQLITE_MISUSE;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
|   /* Invoke the profile callback if there is one
 | |
|   */
 | |
|   if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
 | |
|            && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
 | |
|     double rNow;
 | |
|     u64 elapseTime;
 | |
| 
 | |
|     sqlite3OsCurrentTime(db->pVfs, &rNow);
 | |
|     elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
 | |
|     db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   sqlite3Error(p->db, rc, 0);
 | |
|   p->rc = sqlite3ApiExit(p->db, p->rc);
 | |
| end_of_step:
 | |
|   assert( (rc&0xff)==rc );
 | |
|   if( p->zSql && (rc&0xff)<SQLITE_ROW ){
 | |
|     /* This behavior occurs if sqlite3_prepare_v2() was used to build
 | |
|     ** the prepared statement.  Return error codes directly */
 | |
|     sqlite3Error(p->db, p->rc, 0);
 | |
|     return p->rc;
 | |
|   }else{
 | |
|     /* This is for legacy sqlite3_prepare() builds and when the code
 | |
|     ** is SQLITE_ROW or SQLITE_DONE */
 | |
|     return rc;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is the top-level implementation of sqlite3_step().  Call
 | |
| ** sqlite3Step() to do most of the work.  If a schema error occurs,
 | |
| ** call sqlite3Reprepare() and try again.
 | |
| */
 | |
| #ifdef SQLITE_OMIT_PARSER
 | |
| SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
 | |
|   int rc = SQLITE_MISUSE;
 | |
|   if( pStmt ){
 | |
|     Vdbe *v;
 | |
|     v = (Vdbe*)pStmt;
 | |
|     sqlite3_mutex_enter(v->db->mutex);
 | |
|     rc = sqlite3Step(v);
 | |
|     sqlite3_mutex_leave(v->db->mutex);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #else
 | |
| SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
 | |
|   int rc = SQLITE_MISUSE;
 | |
|   if( pStmt ){
 | |
|     int cnt = 0;
 | |
|     Vdbe *v = (Vdbe*)pStmt;
 | |
|     sqlite3 *db = v->db;
 | |
|     sqlite3_mutex_enter(db->mutex);
 | |
|     while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
 | |
|            && cnt++ < 5
 | |
|            && sqlite3Reprepare(v) ){
 | |
|       sqlite3_reset(pStmt);
 | |
|       v->expired = 0;
 | |
|     }
 | |
|     if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
 | |
|       /* This case occurs after failing to recompile an sql statement. 
 | |
|       ** The error message from the SQL compiler has already been loaded 
 | |
|       ** into the database handle. This block copies the error message 
 | |
|       ** from the database handle into the statement and sets the statement
 | |
|       ** program counter to 0 to ensure that when the statement is 
 | |
|       ** finalized or reset the parser error message is available via
 | |
|       ** sqlite3_errmsg() and sqlite3_errcode().
 | |
|       */
 | |
|       const char *zErr = (const char *)sqlite3_value_text(db->pErr); 
 | |
|       sqlite3_free(v->zErrMsg);
 | |
|       if( !db->mallocFailed ){
 | |
|         v->zErrMsg = sqlite3DbStrDup(db, zErr);
 | |
|       } else {
 | |
|         v->zErrMsg = 0;
 | |
|         v->rc = SQLITE_NOMEM;
 | |
|       }
 | |
|     }
 | |
|     rc = sqlite3ApiExit(db, rc);
 | |
|     sqlite3_mutex_leave(db->mutex);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Extract the user data from a sqlite3_context structure and return a
 | |
| ** pointer to it.
 | |
| */
 | |
| SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
 | |
|   assert( p && p->pFunc );
 | |
|   return p->pFunc->pUserData;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following is the implementation of an SQL function that always
 | |
| ** fails with an error message stating that the function is used in the
 | |
| ** wrong context.  The sqlite3_overload_function() API might construct
 | |
| ** SQL function that use this routine so that the functions will exist
 | |
| ** for name resolution but are actually overloaded by the xFindFunction
 | |
| ** method of virtual tables.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3InvalidFunction(
 | |
|   sqlite3_context *context,  /* The function calling context */
 | |
|   int argc,                  /* Number of arguments to the function */
 | |
|   sqlite3_value **argv       /* Value of each argument */
 | |
| ){
 | |
|   const char *zName = context->pFunc->zName;
 | |
|   char *zErr;
 | |
|   zErr = sqlite3MPrintf(0,
 | |
|       "unable to use function %s in the requested context", zName);
 | |
|   sqlite3_result_error(context, zErr, -1);
 | |
|   sqlite3_free(zErr);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate or return the aggregate context for a user function.  A new
 | |
| ** context is allocated on the first call.  Subsequent calls return the
 | |
| ** same context that was returned on prior calls.
 | |
| */
 | |
| SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
 | |
|   Mem *pMem;
 | |
|   assert( p && p->pFunc && p->pFunc->xStep );
 | |
|   assert( sqlite3_mutex_held(p->s.db->mutex) );
 | |
|   pMem = p->pMem;
 | |
|   if( (pMem->flags & MEM_Agg)==0 ){
 | |
|     if( nByte==0 ){
 | |
|       assert( pMem->flags==MEM_Null );
 | |
|       pMem->z = 0;
 | |
|     }else{
 | |
|       pMem->flags = MEM_Agg;
 | |
|       pMem->xDel = sqlite3_free;
 | |
|       pMem->u.pDef = p->pFunc;
 | |
|       pMem->z = sqlite3DbMallocZero(p->s.db, nByte);
 | |
|     }
 | |
|   }
 | |
|   return (void*)pMem->z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the auxilary data pointer, if any, for the iArg'th argument to
 | |
| ** the user-function defined by pCtx.
 | |
| */
 | |
| SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
 | |
|   VdbeFunc *pVdbeFunc;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   pVdbeFunc = pCtx->pVdbeFunc;
 | |
|   if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   return pVdbeFunc->apAux[iArg].pAux;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the auxilary data pointer and delete function, for the iArg'th
 | |
| ** argument to the user-function defined by pCtx. Any previous value is
 | |
| ** deleted by calling the delete function specified when it was set.
 | |
| */
 | |
| SQLITE_API void sqlite3_set_auxdata(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int iArg, 
 | |
|   void *pAux, 
 | |
|   void (*xDelete)(void*)
 | |
| ){
 | |
|   struct AuxData *pAuxData;
 | |
|   VdbeFunc *pVdbeFunc;
 | |
|   if( iArg<0 ) goto failed;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
 | |
|   pVdbeFunc = pCtx->pVdbeFunc;
 | |
|   if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
 | |
|     int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
 | |
|     int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
 | |
|     pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
 | |
|     if( !pVdbeFunc ){
 | |
|       goto failed;
 | |
|     }
 | |
|     pCtx->pVdbeFunc = pVdbeFunc;
 | |
|     memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
 | |
|     pVdbeFunc->nAux = iArg+1;
 | |
|     pVdbeFunc->pFunc = pCtx->pFunc;
 | |
|   }
 | |
| 
 | |
|   pAuxData = &pVdbeFunc->apAux[iArg];
 | |
|   if( pAuxData->pAux && pAuxData->xDelete ){
 | |
|     pAuxData->xDelete(pAuxData->pAux);
 | |
|   }
 | |
|   pAuxData->pAux = pAux;
 | |
|   pAuxData->xDelete = xDelete;
 | |
|   return;
 | |
| 
 | |
| failed:
 | |
|   if( xDelete ){
 | |
|     xDelete(pAux);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of times the Step function of a aggregate has been 
 | |
| ** called.
 | |
| **
 | |
| ** This function is deprecated.  Do not use it for new code.  It is
 | |
| ** provide only to avoid breaking legacy code.  New aggregate function
 | |
| ** implementations should keep their own counts within their aggregate
 | |
| ** context.
 | |
| */
 | |
| SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
 | |
|   assert( p && p->pFunc && p->pFunc->xStep );
 | |
|   return p->pMem->n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of columns in the result set for the statement pStmt.
 | |
| */
 | |
| SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
 | |
|   Vdbe *pVm = (Vdbe *)pStmt;
 | |
|   return pVm ? pVm->nResColumn : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of values available from the current row of the
 | |
| ** currently executing statement pStmt.
 | |
| */
 | |
| SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
 | |
|   Vdbe *pVm = (Vdbe *)pStmt;
 | |
|   if( pVm==0 || pVm->pResultSet==0 ) return 0;
 | |
|   return pVm->nResColumn;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check to see if column iCol of the given statement is valid.  If
 | |
| ** it is, return a pointer to the Mem for the value of that column.
 | |
| ** If iCol is not valid, return a pointer to a Mem which has a value
 | |
| ** of NULL.
 | |
| */
 | |
| static Mem *columnMem(sqlite3_stmt *pStmt, int i){
 | |
|   Vdbe *pVm;
 | |
|   int vals;
 | |
|   Mem *pOut;
 | |
| 
 | |
|   pVm = (Vdbe *)pStmt;
 | |
|   if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
 | |
|     sqlite3_mutex_enter(pVm->db->mutex);
 | |
|     vals = sqlite3_data_count(pStmt);
 | |
|     pOut = &pVm->pResultSet[i];
 | |
|   }else{
 | |
|     static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL };
 | |
|     if( pVm->db ){
 | |
|       sqlite3_mutex_enter(pVm->db->mutex);
 | |
|       sqlite3Error(pVm->db, SQLITE_RANGE, 0);
 | |
|     }
 | |
|     pOut = (Mem*)&nullMem;
 | |
|   }
 | |
|   return pOut;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is called after invoking an sqlite3_value_XXX function on a 
 | |
| ** column value (i.e. a value returned by evaluating an SQL expression in the
 | |
| ** select list of a SELECT statement) that may cause a malloc() failure. If 
 | |
| ** malloc() has failed, the threads mallocFailed flag is cleared and the result
 | |
| ** code of statement pStmt set to SQLITE_NOMEM.
 | |
| **
 | |
| ** Specifically, this is called from within:
 | |
| **
 | |
| **     sqlite3_column_int()
 | |
| **     sqlite3_column_int64()
 | |
| **     sqlite3_column_text()
 | |
| **     sqlite3_column_text16()
 | |
| **     sqlite3_column_real()
 | |
| **     sqlite3_column_bytes()
 | |
| **     sqlite3_column_bytes16()
 | |
| **
 | |
| ** But not for sqlite3_column_blob(), which never calls malloc().
 | |
| */
 | |
| static void columnMallocFailure(sqlite3_stmt *pStmt)
 | |
| {
 | |
|   /* If malloc() failed during an encoding conversion within an
 | |
|   ** sqlite3_column_XXX API, then set the return code of the statement to
 | |
|   ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
 | |
|   ** and _finalize() will return NOMEM.
 | |
|   */
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   if( p ){
 | |
|     p->rc = sqlite3ApiExit(p->db, p->rc);
 | |
|     sqlite3_mutex_leave(p->db->mutex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**************************** sqlite3_column_  *******************************
 | |
| ** The following routines are used to access elements of the current row
 | |
| ** in the result set.
 | |
| */
 | |
| SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
 | |
|   const void *val;
 | |
|   val = sqlite3_value_blob( columnMem(pStmt,i) );
 | |
|   /* Even though there is no encoding conversion, value_blob() might
 | |
|   ** need to call malloc() to expand the result of a zeroblob() 
 | |
|   ** expression. 
 | |
|   */
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
 | |
|   int val = sqlite3_value_bytes( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
 | |
|   int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
 | |
|   double val = sqlite3_value_double( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
 | |
|   int val = sqlite3_value_int( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
 | |
|   sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
 | |
|   const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
 | |
|   sqlite3_value *pOut = columnMem(pStmt, i);
 | |
|   columnMallocFailure(pStmt);
 | |
|   return pOut;
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
 | |
|   const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return val;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
 | |
|   int iType = sqlite3_value_type( columnMem(pStmt,i) );
 | |
|   columnMallocFailure(pStmt);
 | |
|   return iType;
 | |
| }
 | |
| 
 | |
| /* The following function is experimental and subject to change or
 | |
| ** removal */
 | |
| /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
 | |
| **  return sqlite3_value_numeric_type( columnMem(pStmt,i) );
 | |
| **}
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Convert the N-th element of pStmt->pColName[] into a string using
 | |
| ** xFunc() then return that string.  If N is out of range, return 0.
 | |
| **
 | |
| ** There are up to 5 names for each column.  useType determines which
 | |
| ** name is returned.  Here are the names:
 | |
| **
 | |
| **    0      The column name as it should be displayed for output
 | |
| **    1      The datatype name for the column
 | |
| **    2      The name of the database that the column derives from
 | |
| **    3      The name of the table that the column derives from
 | |
| **    4      The name of the table column that the result column derives from
 | |
| **
 | |
| ** If the result is not a simple column reference (if it is an expression
 | |
| ** or a constant) then useTypes 2, 3, and 4 return NULL.
 | |
| */
 | |
| static const void *columnName(
 | |
|   sqlite3_stmt *pStmt,
 | |
|   int N,
 | |
|   const void *(*xFunc)(Mem*),
 | |
|   int useType
 | |
| ){
 | |
|   const void *ret = 0;
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   int n;
 | |
|   
 | |
| 
 | |
|   if( p!=0 ){
 | |
|     n = sqlite3_column_count(pStmt);
 | |
|     if( N<n && N>=0 ){
 | |
|       N += useType*n;
 | |
|       sqlite3_mutex_enter(p->db->mutex);
 | |
|       ret = xFunc(&p->aColName[N]);
 | |
| 
 | |
|       /* A malloc may have failed inside of the xFunc() call. If this
 | |
|       ** is the case, clear the mallocFailed flag and return NULL.
 | |
|       */
 | |
|       if( p->db && p->db->mallocFailed ){
 | |
|         p->db->mallocFailed = 0;
 | |
|         ret = 0;
 | |
|       }
 | |
|       sqlite3_mutex_leave(p->db->mutex);
 | |
|     }
 | |
|   }
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the name of the Nth column of the result set returned by SQL
 | |
| ** statement pStmt.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return the column declaration type (if applicable) of the 'i'th column
 | |
| ** of the result set of SQL statement pStmt.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA
 | |
| /*
 | |
| ** Return the name of the database from which a result column derives.
 | |
| ** NULL is returned if the result column is an expression or constant or
 | |
| ** anything else which is not an unabiguous reference to a database column.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** Return the name of the table from which a result column derives.
 | |
| ** NULL is returned if the result column is an expression or constant or
 | |
| ** anything else which is not an unabiguous reference to a database column.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** Return the name of the table column from which a result column derives.
 | |
| ** NULL is returned if the result column is an expression or constant or
 | |
| ** anything else which is not an unabiguous reference to a database column.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
 | |
|   return columnName(
 | |
|       pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| #endif /* SQLITE_ENABLE_COLUMN_METADATA */
 | |
| 
 | |
| 
 | |
| /******************************* sqlite3_bind_  ***************************
 | |
| ** 
 | |
| ** Routines used to attach values to wildcards in a compiled SQL statement.
 | |
| */
 | |
| /*
 | |
| ** Unbind the value bound to variable i in virtual machine p. This is the 
 | |
| ** the same as binding a NULL value to the column. If the "i" parameter is
 | |
| ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
 | |
| **
 | |
| ** The error code stored in database p->db is overwritten with the return
 | |
| ** value in any case.
 | |
| */
 | |
| static int vdbeUnbind(Vdbe *p, int i){
 | |
|   Mem *pVar;
 | |
|   if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
 | |
|     if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   if( i<1 || i>p->nVar ){
 | |
|     sqlite3Error(p->db, SQLITE_RANGE, 0);
 | |
|     return SQLITE_RANGE;
 | |
|   }
 | |
|   i--;
 | |
|   pVar = &p->aVar[i];
 | |
|   sqlite3VdbeMemRelease(pVar);
 | |
|   pVar->flags = MEM_Null;
 | |
|   sqlite3Error(p->db, SQLITE_OK, 0);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Bind a text or BLOB value.
 | |
| */
 | |
| static int bindText(
 | |
|   sqlite3_stmt *pStmt,   /* The statement to bind against */
 | |
|   int i,                 /* Index of the parameter to bind */
 | |
|   const void *zData,     /* Pointer to the data to be bound */
 | |
|   int nData,             /* Number of bytes of data to be bound */
 | |
|   void (*xDel)(void*),   /* Destructor for the data */
 | |
|   int encoding           /* Encoding for the data */
 | |
| ){
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   Mem *pVar;
 | |
|   int rc;
 | |
| 
 | |
|   if( p==0 ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   sqlite3_mutex_enter(p->db->mutex);
 | |
|   rc = vdbeUnbind(p, i);
 | |
|   if( rc==SQLITE_OK && zData!=0 ){
 | |
|     pVar = &p->aVar[i-1];
 | |
|     rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
 | |
|     if( rc==SQLITE_OK && encoding!=0 ){
 | |
|       rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
 | |
|     }
 | |
|     sqlite3Error(p->db, rc, 0);
 | |
|     rc = sqlite3ApiExit(p->db, rc);
 | |
|   }
 | |
|   sqlite3_mutex_leave(p->db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Bind a blob value to an SQL statement variable.
 | |
| */
 | |
| SQLITE_API int sqlite3_bind_blob(
 | |
|   sqlite3_stmt *pStmt, 
 | |
|   int i, 
 | |
|   const void *zData, 
 | |
|   int nData, 
 | |
|   void (*xDel)(void*)
 | |
| ){
 | |
|   return bindText(pStmt, i, zData, nData, xDel, 0);
 | |
| }
 | |
| SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
 | |
|   int rc;
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   sqlite3_mutex_enter(p->db->mutex);
 | |
|   rc = vdbeUnbind(p, i);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
 | |
|   }
 | |
|   sqlite3_mutex_leave(p->db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
 | |
|   return sqlite3_bind_int64(p, i, (i64)iValue);
 | |
| }
 | |
| SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
 | |
|   int rc;
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   sqlite3_mutex_enter(p->db->mutex);
 | |
|   rc = vdbeUnbind(p, i);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
 | |
|   }
 | |
|   sqlite3_mutex_leave(p->db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
 | |
|   int rc;
 | |
|   Vdbe *p = (Vdbe*)pStmt;
 | |
|   sqlite3_mutex_enter(p->db->mutex);
 | |
|   rc = vdbeUnbind(p, i);
 | |
|   sqlite3_mutex_leave(p->db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_API int sqlite3_bind_text( 
 | |
|   sqlite3_stmt *pStmt, 
 | |
|   int i, 
 | |
|   const char *zData, 
 | |
|   int nData, 
 | |
|   void (*xDel)(void*)
 | |
| ){
 | |
|   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
 | |
| }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API int sqlite3_bind_text16(
 | |
|   sqlite3_stmt *pStmt, 
 | |
|   int i, 
 | |
|   const void *zData, 
 | |
|   int nData, 
 | |
|   void (*xDel)(void*)
 | |
| ){
 | |
|   return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
 | |
|   int rc;
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   sqlite3_mutex_enter(p->db->mutex);
 | |
|   rc = vdbeUnbind(p, i);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
 | |
|   }
 | |
|   rc = sqlite3ApiExit(p->db, rc);
 | |
|   sqlite3_mutex_leave(p->db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
 | |
|   int rc;
 | |
|   Vdbe *p = (Vdbe *)pStmt;
 | |
|   sqlite3_mutex_enter(p->db->mutex);
 | |
|   rc = vdbeUnbind(p, i);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
 | |
|   }
 | |
|   sqlite3_mutex_leave(p->db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of wildcards that can be potentially bound to.
 | |
| ** This routine is added to support DBD::SQLite.  
 | |
| */
 | |
| SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
 | |
|   Vdbe *p = (Vdbe*)pStmt;
 | |
|   return p ? p->nVar : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a mapping from variable numbers to variable names
 | |
| ** in the Vdbe.azVar[] array, if such a mapping does not already
 | |
| ** exist.
 | |
| */
 | |
| static void createVarMap(Vdbe *p){
 | |
|   if( !p->okVar ){
 | |
|     sqlite3_mutex_enter(p->db->mutex);
 | |
|     if( !p->okVar ){
 | |
|       int j;
 | |
|       Op *pOp;
 | |
|       for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
 | |
|         if( pOp->opcode==OP_Variable ){
 | |
|           assert( pOp->p1>0 && pOp->p1<=p->nVar );
 | |
|           p->azVar[pOp->p1-1] = pOp->p4.z;
 | |
|         }
 | |
|       }
 | |
|       p->okVar = 1;
 | |
|     }
 | |
|     sqlite3_mutex_leave(p->db->mutex);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the name of a wildcard parameter.  Return NULL if the index
 | |
| ** is out of range or if the wildcard is unnamed.
 | |
| **
 | |
| ** The result is always UTF-8.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
 | |
|   Vdbe *p = (Vdbe*)pStmt;
 | |
|   if( p==0 || i<1 || i>p->nVar ){
 | |
|     return 0;
 | |
|   }
 | |
|   createVarMap(p);
 | |
|   return p->azVar[i-1];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given a wildcard parameter name, return the index of the variable
 | |
| ** with that name.  If there is no variable with the given name,
 | |
| ** return 0.
 | |
| */
 | |
| SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
 | |
|   Vdbe *p = (Vdbe*)pStmt;
 | |
|   int i;
 | |
|   if( p==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   createVarMap(p); 
 | |
|   if( zName ){
 | |
|     for(i=0; i<p->nVar; i++){
 | |
|       const char *z = p->azVar[i];
 | |
|       if( z && strcmp(z,zName)==0 ){
 | |
|         return i+1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Transfer all bindings from the first statement over to the second.
 | |
| ** If the two statements contain a different number of bindings, then
 | |
| ** an SQLITE_ERROR is returned.
 | |
| */
 | |
| SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
 | |
|   Vdbe *pFrom = (Vdbe*)pFromStmt;
 | |
|   Vdbe *pTo = (Vdbe*)pToStmt;
 | |
|   int i, rc = SQLITE_OK;
 | |
|   if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
 | |
|     || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
 | |
|     || pTo->db!=pFrom->db ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   if( pFrom->nVar!=pTo->nVar ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   sqlite3_mutex_enter(pTo->db->mutex);
 | |
|   for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
 | |
|     sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
 | |
|   }
 | |
|   sqlite3_mutex_leave(pTo->db->mutex);
 | |
|   assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the sqlite3* database handle to which the prepared statement given
 | |
| ** in the argument belongs.  This is the same database handle that was
 | |
| ** the first argument to the sqlite3_prepare() that was used to create
 | |
| ** the statement in the first place.
 | |
| */
 | |
| SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
 | |
|   return pStmt ? ((Vdbe*)pStmt)->db : 0;
 | |
| }
 | |
| 
 | |
| /************** End of vdbeapi.c *********************************************/
 | |
| /************** Begin file vdbe.c ********************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** The code in this file implements execution method of the 
 | |
| ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
 | |
| ** handles housekeeping details such as creating and deleting
 | |
| ** VDBE instances.  This file is solely interested in executing
 | |
| ** the VDBE program.
 | |
| **
 | |
| ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
 | |
| ** to a VDBE.
 | |
| **
 | |
| ** The SQL parser generates a program which is then executed by
 | |
| ** the VDBE to do the work of the SQL statement.  VDBE programs are 
 | |
| ** similar in form to assembly language.  The program consists of
 | |
| ** a linear sequence of operations.  Each operation has an opcode 
 | |
| ** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4 
 | |
| ** is a null-terminated string.  Operand P5 is an unsigned character.
 | |
| ** Few opcodes use all 5 operands.
 | |
| **
 | |
| ** Computation results are stored on a set of registers numbered beginning
 | |
| ** with 1 and going up to Vdbe.nMem.  Each register can store
 | |
| ** either an integer, a null-terminated string, a floating point
 | |
| ** number, or the SQL "NULL" value.  An inplicit conversion from one
 | |
| ** type to the other occurs as necessary.
 | |
| ** 
 | |
| ** Most of the code in this file is taken up by the sqlite3VdbeExec()
 | |
| ** function which does the work of interpreting a VDBE program.
 | |
| ** But other routines are also provided to help in building up
 | |
| ** a program instruction by instruction.
 | |
| **
 | |
| ** Various scripts scan this source file in order to generate HTML
 | |
| ** documentation, headers files, or other derived files.  The formatting
 | |
| ** of the code in this file is, therefore, important.  See other comments
 | |
| ** in this file for details.  If in doubt, do not deviate from existing
 | |
| ** commenting and indentation practices when changing or adding code.
 | |
| **
 | |
| ** $Id: vdbe.c,v 1.711 2008/03/17 17:18:38 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The following global variable is incremented every time a cursor
 | |
| ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
 | |
| ** procedures use this information to make sure that indices are
 | |
| ** working correctly.  This variable has no function other than to
 | |
| ** help verify the correct operation of the library.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_search_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** When this global variable is positive, it gets decremented once before
 | |
| ** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
 | |
| ** field of the sqlite3 structure is set in order to simulate and interrupt.
 | |
| **
 | |
| ** This facility is used for testing purposes only.  It does not function
 | |
| ** in an ordinary build.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_interrupt_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The next global variable is incremented each type the OP_Sort opcode
 | |
| ** is executed.  The test procedures use this information to make sure that
 | |
| ** sorting is occurring or not occuring at appropriate times.   This variable
 | |
| ** has no function other than to help verify the correct operation of the
 | |
| ** library.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_sort_count = 0;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The next global variable records the size of the largest MEM_Blob
 | |
| ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
 | |
| ** use this information to make sure that the zero-blob functionality
 | |
| ** is working correctly.   This variable has no function other than to
 | |
| ** help verify the correct operation of the library.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_max_blobsize = 0;
 | |
| static void updateMaxBlobsize(Mem *p){
 | |
|   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
 | |
|     sqlite3_max_blobsize = p->n;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Test a register to see if it exceeds the current maximum blob size.
 | |
| ** If it does, record the new maximum blob size.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
 | |
| #else
 | |
| # define UPDATE_MAX_BLOBSIZE(P)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Release the memory associated with a register.  This
 | |
| ** leaves the Mem.flags field in an inconsistent state.
 | |
| */
 | |
| #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
 | |
| 
 | |
| /*
 | |
| ** Convert the given register into a string if it isn't one
 | |
| ** already. Return non-zero if a malloc() fails.
 | |
| */
 | |
| #define Stringify(P, enc) \
 | |
|    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
 | |
|      { goto no_mem; }
 | |
| 
 | |
| /*
 | |
| ** The header of a record consists of a sequence variable-length integers.
 | |
| ** These integers are almost always small and are encoded as a single byte.
 | |
| ** The following macro takes advantage this fact to provide a fast decode
 | |
| ** of the integers in a record header.  It is faster for the common case
 | |
| ** where the integer is a single byte.  It is a little slower when the
 | |
| ** integer is two or more bytes.  But overall it is faster.
 | |
| **
 | |
| ** The following expressions are equivalent:
 | |
| **
 | |
| **     x = sqlite3GetVarint32( A, &B );
 | |
| **
 | |
| **     x = GetVarint( A, B );
 | |
| **
 | |
| */
 | |
| #define GetVarint(A,B)  ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
 | |
| 
 | |
| /*
 | |
| ** An ephemeral string value (signified by the MEM_Ephem flag) contains
 | |
| ** a pointer to a dynamically allocated string where some other entity
 | |
| ** is responsible for deallocating that string.  Because the register
 | |
| ** does not control the string, it might be deleted without the register
 | |
| ** knowing it.
 | |
| **
 | |
| ** This routine converts an ephemeral string into a dynamically allocated
 | |
| ** string that the register itself controls.  In other words, it
 | |
| ** converts an MEM_Ephem string into an MEM_Dyn string.
 | |
| */
 | |
| #define Deephemeralize(P) \
 | |
|    if( ((P)->flags&MEM_Ephem)!=0 \
 | |
|        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
 | |
| 
 | |
| /*
 | |
| ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
 | |
| ** P if required.
 | |
| */
 | |
| #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
 | |
| 
 | |
| /*
 | |
| ** Argument pMem points at a regiser that will be passed to a
 | |
| ** user-defined function or returned to the user as the result of a query.
 | |
| ** The second argument, 'db_enc' is the text encoding used by the vdbe for
 | |
| ** register variables.  This routine sets the pMem->enc and pMem->type
 | |
| ** variables used by the sqlite3_value_*() routines.
 | |
| */
 | |
| #define storeTypeInfo(A,B) _storeTypeInfo(A)
 | |
| static void _storeTypeInfo(Mem *pMem){
 | |
|   int flags = pMem->flags;
 | |
|   if( flags & MEM_Null ){
 | |
|     pMem->type = SQLITE_NULL;
 | |
|   }
 | |
|   else if( flags & MEM_Int ){
 | |
|     pMem->type = SQLITE_INTEGER;
 | |
|   }
 | |
|   else if( flags & MEM_Real ){
 | |
|     pMem->type = SQLITE_FLOAT;
 | |
|   }
 | |
|   else if( flags & MEM_Str ){
 | |
|     pMem->type = SQLITE_TEXT;
 | |
|   }else{
 | |
|     pMem->type = SQLITE_BLOB;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Properties of opcodes.  The OPFLG_INITIALIZER macro is
 | |
| ** created by mkopcodeh.awk during compilation.  Data is obtained
 | |
| ** from the comments following the "case OP_xxxx:" statements in
 | |
| ** this file.  
 | |
| */
 | |
| static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
 | |
| 
 | |
| /*
 | |
| ** Return true if an opcode has any of the OPFLG_xxx properties
 | |
| ** specified by mask.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
 | |
|   assert( opcode>0 && opcode<sizeof(opcodeProperty) );
 | |
|   return (opcodeProperty[opcode]&mask)!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
 | |
| ** if we run out of memory.
 | |
| */
 | |
| static Cursor *allocateCursor(Vdbe *p, int iCur, int iDb){
 | |
|   Cursor *pCx;
 | |
|   assert( iCur<p->nCursor );
 | |
|   if( p->apCsr[iCur] ){
 | |
|     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
 | |
|   }
 | |
|   p->apCsr[iCur] = pCx = sqlite3MallocZero( sizeof(Cursor) );
 | |
|   if( pCx ){
 | |
|     pCx->iDb = iDb;
 | |
|   }
 | |
|   return pCx;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to convert a value into a numeric representation if we can
 | |
| ** do so without loss of information.  In other words, if the string
 | |
| ** looks like a number, convert it into a number.  If it does not
 | |
| ** look like a number, leave it alone.
 | |
| */
 | |
| static void applyNumericAffinity(Mem *pRec){
 | |
|   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
 | |
|     int realnum;
 | |
|     sqlite3VdbeMemNulTerminate(pRec);
 | |
|     if( (pRec->flags&MEM_Str)
 | |
|          && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
 | |
|       i64 value;
 | |
|       sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
 | |
|       if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
 | |
|         pRec->u.i = value;
 | |
|         MemSetTypeFlag(pRec, MEM_Int);
 | |
|       }else{
 | |
|         sqlite3VdbeMemRealify(pRec);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Processing is determine by the affinity parameter:
 | |
| **
 | |
| ** SQLITE_AFF_INTEGER:
 | |
| ** SQLITE_AFF_REAL:
 | |
| ** SQLITE_AFF_NUMERIC:
 | |
| **    Try to convert pRec to an integer representation or a 
 | |
| **    floating-point representation if an integer representation
 | |
| **    is not possible.  Note that the integer representation is
 | |
| **    always preferred, even if the affinity is REAL, because
 | |
| **    an integer representation is more space efficient on disk.
 | |
| **
 | |
| ** SQLITE_AFF_TEXT:
 | |
| **    Convert pRec to a text representation.
 | |
| **
 | |
| ** SQLITE_AFF_NONE:
 | |
| **    No-op.  pRec is unchanged.
 | |
| */
 | |
| static void applyAffinity(
 | |
|   Mem *pRec,          /* The value to apply affinity to */
 | |
|   char affinity,      /* The affinity to be applied */
 | |
|   u8 enc              /* Use this text encoding */
 | |
| ){
 | |
|   if( affinity==SQLITE_AFF_TEXT ){
 | |
|     /* Only attempt the conversion to TEXT if there is an integer or real
 | |
|     ** representation (blob and NULL do not get converted) but no string
 | |
|     ** representation.
 | |
|     */
 | |
|     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
 | |
|       sqlite3VdbeMemStringify(pRec, enc);
 | |
|     }
 | |
|     pRec->flags &= ~(MEM_Real|MEM_Int);
 | |
|   }else if( affinity!=SQLITE_AFF_NONE ){
 | |
|     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
 | |
|              || affinity==SQLITE_AFF_NUMERIC );
 | |
|     applyNumericAffinity(pRec);
 | |
|     if( pRec->flags & MEM_Real ){
 | |
|       sqlite3VdbeIntegerAffinity(pRec);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Try to convert the type of a function argument or a result column
 | |
| ** into a numeric representation.  Use either INTEGER or REAL whichever
 | |
| ** is appropriate.  But only do the conversion if it is possible without
 | |
| ** loss of information and return the revised type of the argument.
 | |
| **
 | |
| ** This is an EXPERIMENTAL api and is subject to change or removal.
 | |
| */
 | |
| SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
 | |
|   Mem *pMem = (Mem*)pVal;
 | |
|   applyNumericAffinity(pMem);
 | |
|   storeTypeInfo(pMem, 0);
 | |
|   return pMem->type;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Exported version of applyAffinity(). This one works on sqlite3_value*, 
 | |
| ** not the internal Mem* type.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ValueApplyAffinity(
 | |
|   sqlite3_value *pVal, 
 | |
|   u8 affinity, 
 | |
|   u8 enc
 | |
| ){
 | |
|   applyAffinity((Mem *)pVal, affinity, enc);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Write a nice string representation of the contents of cell pMem
 | |
| ** into buffer zBuf, length nBuf.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
 | |
|   char *zCsr = zBuf;
 | |
|   int f = pMem->flags;
 | |
| 
 | |
|   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
 | |
| 
 | |
|   if( f&MEM_Blob ){
 | |
|     int i;
 | |
|     char c;
 | |
|     if( f & MEM_Dyn ){
 | |
|       c = 'z';
 | |
|       assert( (f & (MEM_Static|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Static ){
 | |
|       c = 't';
 | |
|       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Ephem ){
 | |
|       c = 'e';
 | |
|       assert( (f & (MEM_Static|MEM_Dyn))==0 );
 | |
|     }else{
 | |
|       c = 's';
 | |
|     }
 | |
| 
 | |
|     sqlite3_snprintf(100, zCsr, "%c", c);
 | |
|     zCsr += strlen(zCsr);
 | |
|     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
 | |
|     zCsr += strlen(zCsr);
 | |
|     for(i=0; i<16 && i<pMem->n; i++){
 | |
|       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
 | |
|       zCsr += strlen(zCsr);
 | |
|     }
 | |
|     for(i=0; i<16 && i<pMem->n; i++){
 | |
|       char z = pMem->z[i];
 | |
|       if( z<32 || z>126 ) *zCsr++ = '.';
 | |
|       else *zCsr++ = z;
 | |
|     }
 | |
| 
 | |
|     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
 | |
|     zCsr += strlen(zCsr);
 | |
|     if( f & MEM_Zero ){
 | |
|       sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
 | |
|       zCsr += strlen(zCsr);
 | |
|     }
 | |
|     *zCsr = '\0';
 | |
|   }else if( f & MEM_Str ){
 | |
|     int j, k;
 | |
|     zBuf[0] = ' ';
 | |
|     if( f & MEM_Dyn ){
 | |
|       zBuf[1] = 'z';
 | |
|       assert( (f & (MEM_Static|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Static ){
 | |
|       zBuf[1] = 't';
 | |
|       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
 | |
|     }else if( f & MEM_Ephem ){
 | |
|       zBuf[1] = 'e';
 | |
|       assert( (f & (MEM_Static|MEM_Dyn))==0 );
 | |
|     }else{
 | |
|       zBuf[1] = 's';
 | |
|     }
 | |
|     k = 2;
 | |
|     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
 | |
|     k += strlen(&zBuf[k]);
 | |
|     zBuf[k++] = '[';
 | |
|     for(j=0; j<15 && j<pMem->n; j++){
 | |
|       u8 c = pMem->z[j];
 | |
|       if( c>=0x20 && c<0x7f ){
 | |
|         zBuf[k++] = c;
 | |
|       }else{
 | |
|         zBuf[k++] = '.';
 | |
|       }
 | |
|     }
 | |
|     zBuf[k++] = ']';
 | |
|     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
 | |
|     k += strlen(&zBuf[k]);
 | |
|     zBuf[k++] = 0;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** Print the value of a register for tracing purposes:
 | |
| */
 | |
| static void memTracePrint(FILE *out, Mem *p){
 | |
|   if( p->flags & MEM_Null ){
 | |
|     fprintf(out, " NULL");
 | |
|   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
 | |
|     fprintf(out, " si:%lld", p->u.i);
 | |
|   }else if( p->flags & MEM_Int ){
 | |
|     fprintf(out, " i:%lld", p->u.i);
 | |
|   }else if( p->flags & MEM_Real ){
 | |
|     fprintf(out, " r:%g", p->r);
 | |
|   }else{
 | |
|     char zBuf[200];
 | |
|     sqlite3VdbeMemPrettyPrint(p, zBuf);
 | |
|     fprintf(out, " ");
 | |
|     fprintf(out, "%s", zBuf);
 | |
|   }
 | |
| }
 | |
| static void registerTrace(FILE *out, int iReg, Mem *p){
 | |
|   fprintf(out, "REG[%d] = ", iReg);
 | |
|   memTracePrint(out, p);
 | |
|   fprintf(out, "\n");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| #  define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M)
 | |
| #else
 | |
| #  define REGISTER_TRACE(R,M)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef VDBE_PROFILE
 | |
| /*
 | |
| ** The following routine only works on pentium-class processors.
 | |
| ** It uses the RDTSC opcode to read the cycle count value out of the
 | |
| ** processor and returns that value.  This can be used for high-res
 | |
| ** profiling.
 | |
| */
 | |
| __inline__ unsigned long long int hwtime(void){
 | |
|   unsigned long long int x;
 | |
|   __asm__("rdtsc\n\t"
 | |
|           "mov %%edx, %%ecx\n\t"
 | |
|           :"=A" (x));
 | |
|   return x;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
 | |
| ** sqlite3_interrupt() routine has been called.  If it has been, then
 | |
| ** processing of the VDBE program is interrupted.
 | |
| **
 | |
| ** This macro added to every instruction that does a jump in order to
 | |
| ** implement a loop.  This test used to be on every single instruction,
 | |
| ** but that meant we more testing that we needed.  By only testing the
 | |
| ** flag on jump instructions, we get a (small) speed improvement.
 | |
| */
 | |
| #define CHECK_FOR_INTERRUPT \
 | |
|    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Execute as much of a VDBE program as we can then return.
 | |
| **
 | |
| ** sqlite3VdbeMakeReady() must be called before this routine in order to
 | |
| ** close the program with a final OP_Halt and to set up the callbacks
 | |
| ** and the error message pointer.
 | |
| **
 | |
| ** Whenever a row or result data is available, this routine will either
 | |
| ** invoke the result callback (if there is one) or return with
 | |
| ** SQLITE_ROW.
 | |
| **
 | |
| ** If an attempt is made to open a locked database, then this routine
 | |
| ** will either invoke the busy callback (if there is one) or it will
 | |
| ** return SQLITE_BUSY.
 | |
| **
 | |
| ** If an error occurs, an error message is written to memory obtained
 | |
| ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
 | |
| ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
 | |
| **
 | |
| ** If the callback ever returns non-zero, then the program exits
 | |
| ** immediately.  There will be no error message but the p->rc field is
 | |
| ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
 | |
| **
 | |
| ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
 | |
| ** routine to return SQLITE_ERROR.
 | |
| **
 | |
| ** Other fatal errors return SQLITE_ERROR.
 | |
| **
 | |
| ** After this routine has finished, sqlite3VdbeFinalize() should be
 | |
| ** used to clean up the mess that was left behind.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VdbeExec(
 | |
|   Vdbe *p                    /* The VDBE */
 | |
| ){
 | |
|   int pc;                    /* The program counter */
 | |
|   Op *pOp;                   /* Current operation */
 | |
|   int rc = SQLITE_OK;        /* Value to return */
 | |
|   sqlite3 *db = p->db;       /* The database */
 | |
|   u8 encoding = ENC(db);     /* The database encoding */
 | |
|   Mem *pIn1, *pIn2, *pIn3;   /* Input operands */
 | |
|   Mem *pOut;                 /* Output operand */
 | |
|   u8 opProperty;
 | |
| #ifdef VDBE_PROFILE
 | |
|   unsigned long long start;  /* CPU clock count at start of opcode */
 | |
|   int origPc;                /* Program counter at start of opcode */
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
|   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
 | |
| #endif
 | |
| 
 | |
|   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
 | |
|   assert( db->magic==SQLITE_MAGIC_BUSY );
 | |
|   sqlite3BtreeMutexArrayEnter(&p->aMutex);
 | |
|   if( p->rc==SQLITE_NOMEM ){
 | |
|     /* This happens if a malloc() inside a call to sqlite3_column_text() or
 | |
|     ** sqlite3_column_text16() failed.  */
 | |
|     goto no_mem;
 | |
|   }
 | |
|   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
 | |
|   p->rc = SQLITE_OK;
 | |
|   assert( p->explain==0 );
 | |
|   p->pResultSet = 0;
 | |
|   db->busyHandler.nBusy = 0;
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   sqlite3VdbeIOTraceSql(p);
 | |
| #ifdef SQLITE_DEBUG
 | |
|   if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0
 | |
|     || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS))
 | |
|   ){
 | |
|     int i;
 | |
|     printf("VDBE Program Listing:\n");
 | |
|     sqlite3VdbePrintSql(p);
 | |
|     for(i=0; i<p->nOp; i++){
 | |
|       sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
 | |
|     }
 | |
|   }
 | |
|   if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS) ){
 | |
|     p->trace = stdout;
 | |
|   }
 | |
| #endif
 | |
|   for(pc=p->pc; rc==SQLITE_OK; pc++){
 | |
|     assert( pc>=0 && pc<p->nOp );
 | |
|     if( db->mallocFailed ) goto no_mem;
 | |
| #ifdef VDBE_PROFILE
 | |
|     origPc = pc;
 | |
|     start = hwtime();
 | |
| #endif
 | |
|     pOp = &p->aOp[pc];
 | |
| 
 | |
|     /* Only allow tracing if SQLITE_DEBUG is defined.
 | |
|     */
 | |
| #ifdef SQLITE_DEBUG
 | |
|     if( p->trace ){
 | |
|       if( pc==0 ){
 | |
|         printf("VDBE Execution Trace:\n");
 | |
|         sqlite3VdbePrintSql(p);
 | |
|       }
 | |
|       sqlite3VdbePrintOp(p->trace, pc, pOp);
 | |
|     }
 | |
|     if( p->trace==0 && pc==0 
 | |
|      && sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS) ){
 | |
|       sqlite3VdbePrintSql(p);
 | |
|     }
 | |
| #endif
 | |
|       
 | |
| 
 | |
|     /* Check to see if we need to simulate an interrupt.  This only happens
 | |
|     ** if we have a special test build.
 | |
|     */
 | |
| #ifdef SQLITE_TEST
 | |
|     if( sqlite3_interrupt_count>0 ){
 | |
|       sqlite3_interrupt_count--;
 | |
|       if( sqlite3_interrupt_count==0 ){
 | |
|         sqlite3_interrupt(db);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
|     /* Call the progress callback if it is configured and the required number
 | |
|     ** of VDBE ops have been executed (either since this invocation of
 | |
|     ** sqlite3VdbeExec() or since last time the progress callback was called).
 | |
|     ** If the progress callback returns non-zero, exit the virtual machine with
 | |
|     ** a return code SQLITE_ABORT.
 | |
|     */
 | |
|     if( db->xProgress ){
 | |
|       if( db->nProgressOps==nProgressOps ){
 | |
|         int prc;
 | |
|         if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|         prc =db->xProgress(db->pProgressArg);
 | |
|         if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|         if( prc!=0 ){
 | |
|           rc = SQLITE_INTERRUPT;
 | |
|           goto vdbe_error_halt;
 | |
|         }
 | |
|         nProgressOps = 0;
 | |
|       }
 | |
|       nProgressOps++;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Do common setup processing for any opcode that is marked
 | |
|     ** with the "out2-prerelease" tag.  Such opcodes have a single
 | |
|     ** output which is specified by the P2 parameter.  The P2 register
 | |
|     ** is initialized to a NULL.
 | |
|     */
 | |
|     opProperty = opcodeProperty[pOp->opcode];
 | |
|     if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
 | |
|       assert( pOp->p2>0 );
 | |
|       assert( pOp->p2<=p->nMem );
 | |
|       pOut = &p->aMem[pOp->p2];
 | |
|       sqlite3VdbeMemRelease(pOut);
 | |
|       pOut->flags = MEM_Null;
 | |
|     }else
 | |
|  
 | |
|     /* Do common setup for opcodes marked with one of the following
 | |
|     ** combinations of properties.
 | |
|     **
 | |
|     **           in1
 | |
|     **           in1 in2
 | |
|     **           in1 in2 out3
 | |
|     **           in1 in3
 | |
|     **
 | |
|     ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
 | |
|     ** registers for inputs.  Variable pOut points to the output register.
 | |
|     */
 | |
|     if( (opProperty & OPFLG_IN1)!=0 ){
 | |
|       assert( pOp->p1>0 );
 | |
|       assert( pOp->p1<=p->nMem );
 | |
|       pIn1 = &p->aMem[pOp->p1];
 | |
|       REGISTER_TRACE(pOp->p1, pIn1);
 | |
|       if( (opProperty & OPFLG_IN2)!=0 ){
 | |
|         assert( pOp->p2>0 );
 | |
|         assert( pOp->p2<=p->nMem );
 | |
|         pIn2 = &p->aMem[pOp->p2];
 | |
|         REGISTER_TRACE(pOp->p2, pIn2);
 | |
|         if( (opProperty & OPFLG_OUT3)!=0 ){
 | |
|           assert( pOp->p3>0 );
 | |
|           assert( pOp->p3<=p->nMem );
 | |
|           pOut = &p->aMem[pOp->p3];
 | |
|         }
 | |
|       }else if( (opProperty & OPFLG_IN3)!=0 ){
 | |
|         assert( pOp->p3>0 );
 | |
|         assert( pOp->p3<=p->nMem );
 | |
|         pIn3 = &p->aMem[pOp->p3];
 | |
|         REGISTER_TRACE(pOp->p3, pIn3);
 | |
|       }
 | |
|     }else if( (opProperty & OPFLG_IN2)!=0 ){
 | |
|       assert( pOp->p2>0 );
 | |
|       assert( pOp->p2<=p->nMem );
 | |
|       pIn2 = &p->aMem[pOp->p2];
 | |
|       REGISTER_TRACE(pOp->p2, pIn2);
 | |
|     }else if( (opProperty & OPFLG_IN3)!=0 ){
 | |
|       assert( pOp->p3>0 );
 | |
|       assert( pOp->p3<=p->nMem );
 | |
|       pIn3 = &p->aMem[pOp->p3];
 | |
|       REGISTER_TRACE(pOp->p3, pIn3);
 | |
|     }
 | |
| 
 | |
|     switch( pOp->opcode ){
 | |
| 
 | |
| /*****************************************************************************
 | |
| ** What follows is a massive switch statement where each case implements a
 | |
| ** separate instruction in the virtual machine.  If we follow the usual
 | |
| ** indentation conventions, each case should be indented by 6 spaces.  But
 | |
| ** that is a lot of wasted space on the left margin.  So the code within
 | |
| ** the switch statement will break with convention and be flush-left. Another
 | |
| ** big comment (similar to this one) will mark the point in the code where
 | |
| ** we transition back to normal indentation.
 | |
| **
 | |
| ** The formatting of each case is important.  The makefile for SQLite
 | |
| ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
 | |
| ** file looking for lines that begin with "case OP_".  The opcodes.h files
 | |
| ** will be filled with #defines that give unique integer values to each
 | |
| ** opcode and the opcodes.c file is filled with an array of strings where
 | |
| ** each string is the symbolic name for the corresponding opcode.  If the
 | |
| ** case statement is followed by a comment of the form "/# same as ... #/"
 | |
| ** that comment is used to determine the particular value of the opcode.
 | |
| **
 | |
| ** Other keywords in the comment that follows each case are used to
 | |
| ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
 | |
| ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
 | |
| ** the mkopcodeh.awk script for additional information.
 | |
| **
 | |
| ** Documentation about VDBE opcodes is generated by scanning this file
 | |
| ** for lines of that contain "Opcode:".  That line and all subsequent
 | |
| ** comment lines are used in the generation of the opcode.html documentation
 | |
| ** file.
 | |
| **
 | |
| ** SUMMARY:
 | |
| **
 | |
| **     Formatting is important to scripts that scan this file.
 | |
| **     Do not deviate from the formatting style currently in use.
 | |
| **
 | |
| *****************************************************************************/
 | |
| 
 | |
| /* Opcode:  Goto * P2 * * *
 | |
| **
 | |
| ** An unconditional jump to address P2.
 | |
| ** The next instruction executed will be 
 | |
| ** the one at index P2 from the beginning of
 | |
| ** the program.
 | |
| */
 | |
| case OP_Goto: {             /* jump */
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   pc = pOp->p2 - 1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode:  Gosub * P2 * * *
 | |
| **
 | |
| ** Push the current address plus 1 onto the return address stack
 | |
| ** and then jump to address P2.
 | |
| **
 | |
| ** The return address stack is of limited depth.  If too many
 | |
| ** OP_Gosub operations occur without intervening OP_Returns, then
 | |
| ** the return address stack will fill up and processing will abort
 | |
| ** with a fatal error.
 | |
| */
 | |
| case OP_Gosub: {            /* jump */
 | |
|   assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) );
 | |
|   p->returnStack[p->returnDepth++] = pc+1;
 | |
|   pc = pOp->p2 - 1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode:  Return * * * * *
 | |
| **
 | |
| ** Jump immediately to the next instruction after the last unreturned
 | |
| ** OP_Gosub.  If an OP_Return has occurred for all OP_Gosubs, then
 | |
| ** processing aborts with a fatal error.
 | |
| */
 | |
| case OP_Return: {
 | |
|   assert( p->returnDepth>0 );
 | |
|   p->returnDepth--;
 | |
|   pc = p->returnStack[p->returnDepth] - 1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode:  Halt P1 P2 * P4 *
 | |
| **
 | |
| ** Exit immediately.  All open cursors, Fifos, etc are closed
 | |
| ** automatically.
 | |
| **
 | |
| ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
 | |
| ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
 | |
| ** For errors, it can be some other value.  If P1!=0 then P2 will determine
 | |
| ** whether or not to rollback the current transaction.  Do not rollback
 | |
| ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
 | |
| ** then back out all changes that have occurred during this execution of the
 | |
| ** VDBE, but do not rollback the transaction. 
 | |
| **
 | |
| ** If P4 is not null then it is an error message string.
 | |
| **
 | |
| ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
 | |
| ** every program.  So a jump past the last instruction of the program
 | |
| ** is the same as executing Halt.
 | |
| */
 | |
| case OP_Halt: {
 | |
|   p->rc = pOp->p1;
 | |
|   p->pc = pc;
 | |
|   p->errorAction = pOp->p2;
 | |
|   if( pOp->p4.z ){
 | |
|     sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0);
 | |
|   }
 | |
|   rc = sqlite3VdbeHalt(p);
 | |
|   assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
 | |
|   if( rc==SQLITE_BUSY ){
 | |
|     p->rc = rc = SQLITE_BUSY;
 | |
|   }else{
 | |
|     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
 | |
|   }
 | |
|   goto vdbe_return;
 | |
| }
 | |
| 
 | |
| /* Opcode: Integer P1 P2 * * *
 | |
| **
 | |
| ** The 32-bit integer value P1 is written into register P2.
 | |
| */
 | |
| case OP_Integer: {         /* out2-prerelease */
 | |
|   pOut->flags = MEM_Int;
 | |
|   pOut->u.i = pOp->p1;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Int64 * P2 * P4 *
 | |
| **
 | |
| ** P4 is a pointer to a 64-bit integer value.
 | |
| ** Write that value into register P2.
 | |
| */
 | |
| case OP_Int64: {           /* out2-prerelease */
 | |
|   assert( pOp->p4.pI64!=0 );
 | |
|   pOut->flags = MEM_Int;
 | |
|   pOut->u.i = *pOp->p4.pI64;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Real * P2 * P4 *
 | |
| **
 | |
| ** P4 is a pointer to a 64-bit floating point value.
 | |
| ** Write that value into register P2.
 | |
| */
 | |
| case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
 | |
|   pOut->flags = MEM_Real;
 | |
|   pOut->r = *pOp->p4.pReal;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: String8 * P2 * P4 *
 | |
| **
 | |
| ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
 | |
| ** into an OP_String before it is executed for the first time.
 | |
| */
 | |
| case OP_String8: {         /* same as TK_STRING, out2-prerelease */
 | |
|   assert( pOp->p4.z!=0 );
 | |
|   pOp->opcode = OP_String;
 | |
|   pOp->p1 = strlen(pOp->p4.z);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   if( encoding!=SQLITE_UTF8 ){
 | |
|     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
 | |
|     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
 | |
|     if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem;
 | |
|     pOut->flags &= ~(MEM_Dyn);
 | |
|     pOut->flags |= MEM_Static;
 | |
|     if( pOp->p4type==P4_DYNAMIC ){
 | |
|       sqlite3_free(pOp->p4.z);
 | |
|     }
 | |
|     pOp->p4type = P4_DYNAMIC;
 | |
|     pOp->p4.z = pOut->z;
 | |
|     pOp->p1 = pOut->n;
 | |
|     if( pOp->p1>SQLITE_MAX_LENGTH ){
 | |
|       goto too_big;
 | |
|     }
 | |
|     UPDATE_MAX_BLOBSIZE(pOut);
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
|   if( pOp->p1>SQLITE_MAX_LENGTH ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   /* Fall through to the next case, OP_String */
 | |
| }
 | |
|   
 | |
| /* Opcode: String P1 P2 * P4 *
 | |
| **
 | |
| ** The string value P4 of length P1 (bytes) is stored in register P2.
 | |
| */
 | |
| case OP_String: {          /* out2-prerelease */
 | |
|   assert( pOp->p4.z!=0 );
 | |
|   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
 | |
|   pOut->z = pOp->p4.z;
 | |
|   pOut->n = pOp->p1;
 | |
|   pOut->enc = encoding;
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Null * P2 * * *
 | |
| **
 | |
| ** Write a NULL into register P2.
 | |
| */
 | |
| case OP_Null: {           /* out2-prerelease */
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
| /* Opcode: Blob P1 P2 * P4
 | |
| **
 | |
| ** P4 points to a blob of data P1 bytes long.  Store this
 | |
| ** blob in register P2. This instruction is not coded directly
 | |
| ** by the compiler. Instead, the compiler layer specifies
 | |
| ** an OP_HexBlob opcode, with the hex string representation of
 | |
| ** the blob as P4. This opcode is transformed to an OP_Blob
 | |
| ** the first time it is executed.
 | |
| */
 | |
| case OP_Blob: {                /* out2-prerelease */
 | |
|   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
 | |
|   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
 | |
|   pOut->enc = encoding;
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_BLOB_LITERAL */
 | |
| 
 | |
| /* Opcode: Variable P1 P2 * * *
 | |
| **
 | |
| ** The value of variable P1 is written into register P2. A variable is
 | |
| ** an unknown in the original SQL string as handed to sqlite3_compile().
 | |
| ** Any occurance of the '?' character in the original SQL is considered
 | |
| ** a variable.  Variables in the SQL string are number from left to
 | |
| ** right beginning with 1.  The values of variables are set using the
 | |
| ** sqlite3_bind() API.
 | |
| */
 | |
| case OP_Variable: {           /* out2-prerelease */
 | |
|   int j = pOp->p1 - 1;
 | |
|   Mem *pVar;
 | |
|   assert( j>=0 && j<p->nVar );
 | |
| 
 | |
|   pVar = &p->aVar[j];
 | |
|   if( sqlite3VdbeMemTooBig(pVar) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Move P1 P2 * * *
 | |
| **
 | |
| ** Move the value in register P1 over into register P2.  Register P1
 | |
| ** is left holding a NULL.  It is an error for P1 and P2 to be the
 | |
| ** same register.
 | |
| */
 | |
| /* Opcode: Copy P1 P2 * * *
 | |
| **
 | |
| ** Make a copy of register P1 into register P2.
 | |
| **
 | |
| ** This instruction makes a deep copy of the value.  A duplicate
 | |
| ** is made of any string or blob constant.  See also OP_SCopy.
 | |
| */
 | |
| /* Opcode: SCopy P1 P2 * * *
 | |
| **
 | |
| ** Make a shallow copy of register P1 into register P2.
 | |
| **
 | |
| ** This instruction makes a shallow copy of the value.  If the value
 | |
| ** is a string or blob, then the copy is only a pointer to the
 | |
| ** original and hence if the original changes so will the copy.
 | |
| ** Worse, if the original is deallocated, the copy becomes invalid.
 | |
| ** Thus the program must guarantee that the original will not change
 | |
| ** during the lifetime of the copy.  Use OP_Copy to make a complete
 | |
| ** copy.
 | |
| */
 | |
| case OP_Move:
 | |
| case OP_Copy:
 | |
| case OP_SCopy: {
 | |
|   assert( pOp->p1>0 );
 | |
|   assert( pOp->p1<=p->nMem );
 | |
|   pIn1 = &p->aMem[pOp->p1];
 | |
|   REGISTER_TRACE(pOp->p1, pIn1);
 | |
|   assert( pOp->p2>0 );
 | |
|   assert( pOp->p2<=p->nMem );
 | |
|   pOut = &p->aMem[pOp->p2];
 | |
|   assert( pOut!=pIn1 );
 | |
|   if( pOp->opcode==OP_Move ){
 | |
|     sqlite3VdbeMemMove(pOut, pIn1);
 | |
|   }else{
 | |
|     sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
 | |
|     if( pOp->opcode==OP_Copy ){
 | |
|       Deephemeralize(pOut);
 | |
|     }
 | |
|   }
 | |
|   REGISTER_TRACE(pOp->p2, pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ResultRow P1 P2 * * *
 | |
| **
 | |
| ** The registers P1 throught P1+P2-1 contain a single row of
 | |
| ** results. This opcode causes the sqlite3_step() call to terminate
 | |
| ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
 | |
| ** structure to provide access to the top P1 values as the result
 | |
| ** row.
 | |
| */
 | |
| case OP_ResultRow: {
 | |
|   Mem *pMem;
 | |
|   int i;
 | |
|   assert( p->nResColumn==pOp->p2 );
 | |
|   assert( pOp->p1>0 );
 | |
|   assert( pOp->p1+pOp->p2<=p->nMem );
 | |
| 
 | |
|   /* Invalidate all ephemeral cursor row caches */
 | |
|   p->cacheCtr = (p->cacheCtr + 2)|1;
 | |
| 
 | |
|   /* Make sure the results of the current row are \000 terminated
 | |
|   ** and have an assigned type.  The results are deephemeralized as
 | |
|   ** as side effect.
 | |
|   */
 | |
|   pMem = p->pResultSet = &p->aMem[pOp->p1];
 | |
|   for(i=0; i<pOp->p2; i++){
 | |
|     sqlite3VdbeMemNulTerminate(&pMem[i]);
 | |
|     storeTypeInfo(&pMem[i], encoding);
 | |
|   }
 | |
|   if( db->mallocFailed ) goto no_mem;
 | |
| 
 | |
|   /* Return SQLITE_ROW
 | |
|   */
 | |
|   p->nCallback++;
 | |
|   p->pc = pc + 1;
 | |
|   rc = SQLITE_ROW;
 | |
|   goto vdbe_return;
 | |
| }
 | |
| 
 | |
| /* Opcode: Concat P1 P2 P3 * *
 | |
| **
 | |
| ** Add the text in register P1 onto the end of the text in
 | |
| ** register P2 and store the result in register P3.
 | |
| ** If either the P1 or P2 text are NULL then store NULL in P3.
 | |
| **
 | |
| **   P3 = P2 || P1
 | |
| **
 | |
| ** It is illegal for P1 and P3 to be the same register. Sometimes,
 | |
| ** if P3 is the same register as P2, the implementation is able
 | |
| ** to avoid a memcpy().
 | |
| */
 | |
| case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
 | |
|   i64 nByte;
 | |
| 
 | |
|   assert( pIn1!=pOut );
 | |
|   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
 | |
|     sqlite3VdbeMemSetNull(pOut);
 | |
|     break;
 | |
|   }
 | |
|   ExpandBlob(pIn1);
 | |
|   Stringify(pIn1, encoding);
 | |
|   ExpandBlob(pIn2);
 | |
|   Stringify(pIn2, encoding);
 | |
|   nByte = pIn1->n + pIn2->n;
 | |
|   if( nByte>SQLITE_MAX_LENGTH ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   MemSetTypeFlag(pOut, MEM_Str);
 | |
|   if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
 | |
|     goto no_mem;
 | |
|   }
 | |
|   if( pOut!=pIn2 ){
 | |
|     memcpy(pOut->z, pIn2->z, pIn2->n);
 | |
|   }
 | |
|   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
 | |
|   pOut->z[nByte] = 0;
 | |
|   pOut->z[nByte+1] = 0;
 | |
|   pOut->flags |= MEM_Term;
 | |
|   pOut->n = nByte;
 | |
|   pOut->enc = encoding;
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Add P1 P2 P3 * *
 | |
| **
 | |
| ** Add the value in register P1 to the value in register P2
 | |
| ** and store the result in regiser P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Multiply P1 P2 P3 * *
 | |
| **
 | |
| **
 | |
| ** Multiply the value in regiser P1 by the value in regiser P2
 | |
| ** and store the result in register P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Subtract P1 P2 P3 * *
 | |
| **
 | |
| ** Subtract the value in register P1 from the value in register P2
 | |
| ** and store the result in register P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Divide P1 P2 P3 * *
 | |
| **
 | |
| ** Divide the value in register P1 by the value in register P2
 | |
| ** and store the result in register P3.  If the value in register P2
 | |
| ** is zero, then the result is NULL.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: Remainder P1 P2 P3 * *
 | |
| **
 | |
| ** Compute the remainder after integer division of the value in
 | |
| ** register P1 by the value in register P2 and store the result in P3. 
 | |
| ** If the value in register P2 is zero the result is NULL.
 | |
| ** If either operand is NULL, the result is NULL.
 | |
| */
 | |
| case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
 | |
| case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
 | |
| case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
 | |
| case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
 | |
| case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
 | |
|   int flags;
 | |
|   flags = pIn1->flags | pIn2->flags;
 | |
|   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
 | |
|   if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
 | |
|     i64 a, b;
 | |
|     a = pIn1->u.i;
 | |
|     b = pIn2->u.i;
 | |
|     switch( pOp->opcode ){
 | |
|       case OP_Add:         b += a;       break;
 | |
|       case OP_Subtract:    b -= a;       break;
 | |
|       case OP_Multiply:    b *= a;       break;
 | |
|       case OP_Divide: {
 | |
|         if( a==0 ) goto arithmetic_result_is_null;
 | |
|         /* Dividing the largest possible negative 64-bit integer (1<<63) by 
 | |
|         ** -1 returns an integer to large to store in a 64-bit data-type. On
 | |
|         ** some architectures, the value overflows to (1<<63). On others,
 | |
|         ** a SIGFPE is issued. The following statement normalizes this
 | |
|         ** behaviour so that all architectures behave as if integer 
 | |
|         ** overflow occured.
 | |
|         */
 | |
|         if( a==-1 && b==(((i64)1)<<63) ) a = 1;
 | |
|         b /= a;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         if( a==0 ) goto arithmetic_result_is_null;
 | |
|         if( a==-1 ) a = 1;
 | |
|         b %= a;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     pOut->u.i = b;
 | |
|     MemSetTypeFlag(pOut, MEM_Int);
 | |
|   }else{
 | |
|     double a, b;
 | |
|     a = sqlite3VdbeRealValue(pIn1);
 | |
|     b = sqlite3VdbeRealValue(pIn2);
 | |
|     switch( pOp->opcode ){
 | |
|       case OP_Add:         b += a;       break;
 | |
|       case OP_Subtract:    b -= a;       break;
 | |
|       case OP_Multiply:    b *= a;       break;
 | |
|       case OP_Divide: {
 | |
|         if( a==0.0 ) goto arithmetic_result_is_null;
 | |
|         b /= a;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         i64 ia = (i64)a;
 | |
|         i64 ib = (i64)b;
 | |
|         if( ia==0 ) goto arithmetic_result_is_null;
 | |
|         if( ia==-1 ) ia = 1;
 | |
|         b = ib % ia;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3_isnan(b) ){
 | |
|       goto arithmetic_result_is_null;
 | |
|     }
 | |
|     pOut->r = b;
 | |
|     MemSetTypeFlag(pOut, MEM_Real);
 | |
|     if( (flags & MEM_Real)==0 ){
 | |
|       sqlite3VdbeIntegerAffinity(pOut);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| 
 | |
| arithmetic_result_is_null:
 | |
|   sqlite3VdbeMemSetNull(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: CollSeq * * P4
 | |
| **
 | |
| ** P4 is a pointer to a CollSeq struct. If the next call to a user function
 | |
| ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
 | |
| ** be returned. This is used by the built-in min(), max() and nullif()
 | |
| ** functions.
 | |
| **
 | |
| ** The interface used by the implementation of the aforementioned functions
 | |
| ** to retrieve the collation sequence set by this opcode is not available
 | |
| ** publicly, only to user functions defined in func.c.
 | |
| */
 | |
| case OP_CollSeq: {
 | |
|   assert( pOp->p4type==P4_COLLSEQ );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Function P1 P2 P3 P4 P5
 | |
| **
 | |
| ** Invoke a user function (P4 is a pointer to a Function structure that
 | |
| ** defines the function) with P5 arguments taken from register P2 and
 | |
| ** successors.  The result of the function is stored in register P3.
 | |
| ** Register P3 must not be one of the function inputs.
 | |
| **
 | |
| ** P1 is a 32-bit bitmask indicating whether or not each argument to the 
 | |
| ** function was determined to be constant at compile time. If the first
 | |
| ** argument was constant then bit 0 of P1 is set. This is used to determine
 | |
| ** whether meta data associated with a user function argument using the
 | |
| ** sqlite3_set_auxdata() API may be safely retained until the next
 | |
| ** invocation of this opcode.
 | |
| **
 | |
| ** See also: AggStep and AggFinal
 | |
| */
 | |
| case OP_Function: {
 | |
|   int i;
 | |
|   Mem *pArg;
 | |
|   sqlite3_context ctx;
 | |
|   sqlite3_value **apVal;
 | |
|   int n = pOp->p5;
 | |
| 
 | |
|   apVal = p->apArg;
 | |
|   assert( apVal || n==0 );
 | |
| 
 | |
|   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
 | |
|   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
 | |
|   pArg = &p->aMem[pOp->p2];
 | |
|   for(i=0; i<n; i++, pArg++){
 | |
|     apVal[i] = pArg;
 | |
|     storeTypeInfo(pArg, encoding);
 | |
|     REGISTER_TRACE(pOp->p2, pArg);
 | |
|   }
 | |
| 
 | |
|   assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
 | |
|   if( pOp->p4type==P4_FUNCDEF ){
 | |
|     ctx.pFunc = pOp->p4.pFunc;
 | |
|     ctx.pVdbeFunc = 0;
 | |
|   }else{
 | |
|     ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
 | |
|     ctx.pFunc = ctx.pVdbeFunc->pFunc;
 | |
|   }
 | |
| 
 | |
|   assert( pOp->p3>0 && pOp->p3<=p->nMem );
 | |
|   pOut = &p->aMem[pOp->p3];
 | |
|   ctx.s.flags = MEM_Null;
 | |
|   ctx.s.db = 0;
 | |
| 
 | |
|   /* The output cell may already have a buffer allocated. Move
 | |
|   ** the pointer to ctx.s so in case the user-function can use
 | |
|   ** the already allocated buffer instead of allocating a new one.
 | |
|   */
 | |
|   sqlite3VdbeMemMove(&ctx.s, pOut);
 | |
|   MemSetTypeFlag(&ctx.s, MEM_Null);
 | |
| 
 | |
|   ctx.isError = 0;
 | |
|   if( ctx.pFunc->needCollSeq ){
 | |
|     assert( pOp>p->aOp );
 | |
|     assert( pOp[-1].p4type==P4_COLLSEQ );
 | |
|     assert( pOp[-1].opcode==OP_CollSeq );
 | |
|     ctx.pColl = pOp[-1].p4.pColl;
 | |
|   }
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   (*ctx.pFunc->xFunc)(&ctx, n, apVal);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   if( db->mallocFailed ){
 | |
|     /* Even though a malloc() has failed, the implementation of the
 | |
|     ** user function may have called an sqlite3_result_XXX() function
 | |
|     ** to return a value. The following call releases any resources
 | |
|     ** associated with such a value.
 | |
|     **
 | |
|     ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
 | |
|     ** fails also (the if(...) statement above). But if people are
 | |
|     ** misusing sqlite, they have bigger problems than a leaked value.
 | |
|     */
 | |
|     sqlite3VdbeMemRelease(&ctx.s);
 | |
|     goto no_mem;
 | |
|   }
 | |
| 
 | |
|   /* If any auxilary data functions have been called by this user function,
 | |
|   ** immediately call the destructor for any non-static values.
 | |
|   */
 | |
|   if( ctx.pVdbeFunc ){
 | |
|     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
 | |
|     pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
 | |
|     pOp->p4type = P4_VDBEFUNC;
 | |
|   }
 | |
| 
 | |
|   /* If the function returned an error, throw an exception */
 | |
|   if( ctx.isError ){
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
 | |
|     rc = ctx.isError;
 | |
|   }
 | |
| 
 | |
|   /* Copy the result of the function into register P3 */
 | |
|   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
 | |
|   sqlite3VdbeMemMove(pOut, &ctx.s);
 | |
|   if( sqlite3VdbeMemTooBig(pOut) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   REGISTER_TRACE(pOp->p3, pOut);
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: BitAnd P1 P2 P3 * *
 | |
| **
 | |
| ** Take the bit-wise AND of the values in register P1 and P2 and
 | |
| ** store the result in register P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: BitOr P1 P2 P3 * *
 | |
| **
 | |
| ** Take the bit-wise OR of the values in register P1 and P2 and
 | |
| ** store the result in register P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: ShiftLeft P1 P2 P3 * *
 | |
| **
 | |
| ** Shift the integer value in register P2 to the left by the
 | |
| ** number of bits specified by the integer in regiser P1.
 | |
| ** Store the result in register P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| /* Opcode: ShiftRight P1 P2 P3 * *
 | |
| **
 | |
| ** Shift the integer value in register P2 to the right by the
 | |
| ** number of bits specified by the integer in register P1.
 | |
| ** Store the result in register P3.
 | |
| ** If either input is NULL, the result is NULL.
 | |
| */
 | |
| case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
 | |
| case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
 | |
| case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
 | |
| case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
 | |
|   i64 a, b;
 | |
| 
 | |
|   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
 | |
|     sqlite3VdbeMemSetNull(pOut);
 | |
|     break;
 | |
|   }
 | |
|   a = sqlite3VdbeIntValue(pIn2);
 | |
|   b = sqlite3VdbeIntValue(pIn1);
 | |
|   switch( pOp->opcode ){
 | |
|     case OP_BitAnd:      a &= b;     break;
 | |
|     case OP_BitOr:       a |= b;     break;
 | |
|     case OP_ShiftLeft:   a <<= b;    break;
 | |
|     default:  assert( pOp->opcode==OP_ShiftRight );
 | |
|                          a >>= b;    break;
 | |
|   }
 | |
|   pOut->u.i = a;
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AddImm  P1 P2 * * *
 | |
| ** 
 | |
| ** Add the constant P2 the value in register P1.
 | |
| ** The result is always an integer.
 | |
| **
 | |
| ** To force any register to be an integer, just add 0.
 | |
| */
 | |
| case OP_AddImm: {            /* in1 */
 | |
|   sqlite3VdbeMemIntegerify(pIn1);
 | |
|   pIn1->u.i += pOp->p2;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ForceInt P1 P2 P3 * *
 | |
| **
 | |
| ** Convert value in register P1 into an integer.  If the value 
 | |
| ** in P1 is not numeric (meaning that is is a NULL or a string that
 | |
| ** does not look like an integer or floating point number) then
 | |
| ** jump to P2.  If the value in P1 is numeric then
 | |
| ** convert it into the least integer that is greater than or equal to its
 | |
| ** current value if P3==0, or to the least integer that is strictly
 | |
| ** greater than its current value if P3==1.
 | |
| */
 | |
| case OP_ForceInt: {            /* jump, in1 */
 | |
|   i64 v;
 | |
|   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
 | |
|   if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
 | |
|     pc = pOp->p2 - 1;
 | |
|     break;
 | |
|   }
 | |
|   if( pIn1->flags & MEM_Int ){
 | |
|     v = pIn1->u.i + (pOp->p3!=0);
 | |
|   }else{
 | |
|     assert( pIn1->flags & MEM_Real );
 | |
|     v = (sqlite3_int64)pIn1->r;
 | |
|     if( pIn1->r>(double)v ) v++;
 | |
|     if( pOp->p3 && pIn1->r==(double)v ) v++;
 | |
|   }
 | |
|   pIn1->u.i = v;
 | |
|   MemSetTypeFlag(pIn1, MEM_Int);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MustBeInt P1 P2 * * *
 | |
| ** 
 | |
| ** Force the value in register P1 to be an integer.  If the value
 | |
| ** in P1 is not an integer and cannot be converted into an integer
 | |
| ** without data loss, then jump immediately to P2, or if P2==0
 | |
| ** raise an SQLITE_MISMATCH exception.
 | |
| */
 | |
| case OP_MustBeInt: {            /* jump, in1 */
 | |
|   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
 | |
|   if( (pIn1->flags & MEM_Int)==0 ){
 | |
|     if( pOp->p2==0 ){
 | |
|       rc = SQLITE_MISMATCH;
 | |
|       goto abort_due_to_error;
 | |
|     }else{
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }else{
 | |
|     MemSetTypeFlag(pIn1, MEM_Int);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: RealAffinity P1 * * * *
 | |
| **
 | |
| ** If register P1 holds an integer convert it to a real value.
 | |
| **
 | |
| ** This opcode is used when extracting information from a column that
 | |
| ** has REAL affinity.  Such column values may still be stored as
 | |
| ** integers, for space efficiency, but after extraction we want them
 | |
| ** to have only a real value.
 | |
| */
 | |
| case OP_RealAffinity: {                  /* in1 */
 | |
|   if( pIn1->flags & MEM_Int ){
 | |
|     sqlite3VdbeMemRealify(pIn1);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
| /* Opcode: ToText P1 * * * *
 | |
| **
 | |
| ** Force the value in register P1 to be text.
 | |
| ** If the value is numeric, convert it to a string using the
 | |
| ** equivalent of printf().  Blob values are unchanged and
 | |
| ** are afterwards simply interpreted as text.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
 | |
|   if( pIn1->flags & MEM_Null ) break;
 | |
|   assert( MEM_Str==(MEM_Blob>>3) );
 | |
|   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
 | |
|   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
 | |
|   rc = ExpandBlob(pIn1);
 | |
|   assert( pIn1->flags & MEM_Str || db->mallocFailed );
 | |
|   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
 | |
|   UPDATE_MAX_BLOBSIZE(pIn1);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ToBlob P1 * * * *
 | |
| **
 | |
| ** Force the value in register P1 to be a BLOB.
 | |
| ** If the value is numeric, convert it to a string first.
 | |
| ** Strings are simply reinterpreted as blobs with no change
 | |
| ** to the underlying data.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
 | |
|   if( pIn1->flags & MEM_Null ) break;
 | |
|   if( (pIn1->flags & MEM_Blob)==0 ){
 | |
|     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
 | |
|     assert( pIn1->flags & MEM_Str || db->mallocFailed );
 | |
|   }
 | |
|   MemSetTypeFlag(pIn1, MEM_Blob);
 | |
|   UPDATE_MAX_BLOBSIZE(pIn1);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ToNumeric P1 * * * *
 | |
| **
 | |
| ** Force the value in register P1 to be numeric (either an
 | |
| ** integer or a floating-point number.)
 | |
| ** If the value is text or blob, try to convert it to an using the
 | |
| ** equivalent of atoi() or atof() and store 0 if no such conversion 
 | |
| ** is possible.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
 | |
|   if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
 | |
|     sqlite3VdbeMemNumerify(pIn1);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_CAST */
 | |
| 
 | |
| /* Opcode: ToInt P1 * * * *
 | |
| **
 | |
| ** Force the value in register P1 be an integer.  If
 | |
| ** The value is currently a real number, drop its fractional part.
 | |
| ** If the value is text or blob, try to convert it to an integer using the
 | |
| ** equivalent of atoi() and store 0 if no such conversion is possible.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
 | |
|   if( (pIn1->flags & MEM_Null)==0 ){
 | |
|     sqlite3VdbeMemIntegerify(pIn1);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
| /* Opcode: ToReal P1 * * * *
 | |
| **
 | |
| ** Force the value in register P1 to be a floating point number.
 | |
| ** If The value is currently an integer, convert it.
 | |
| ** If the value is text or blob, try to convert it to an integer using the
 | |
| ** equivalent of atoi() and store 0.0 if no such conversion is possible.
 | |
| **
 | |
| ** A NULL value is not changed by this routine.  It remains NULL.
 | |
| */
 | |
| case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
 | |
|   if( (pIn1->flags & MEM_Null)==0 ){
 | |
|     sqlite3VdbeMemRealify(pIn1);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_CAST */
 | |
| 
 | |
| /* Opcode: Lt P1 P2 P3 P4 P5
 | |
| **
 | |
| ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
 | |
| ** jump to address P2.  
 | |
| **
 | |
| ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
 | |
| ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
 | |
| ** bit is clear then fall thru if either operand is NULL.
 | |
| **
 | |
| ** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands
 | |
| ** as being equal to one another.  Normally NULLs are not equal to 
 | |
| ** anything including other NULLs.
 | |
| **
 | |
| ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
 | |
| ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
 | |
| ** to coerce both inputs according to this affinity before the
 | |
| ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
 | |
| ** affinity is used. Note that the affinity conversions are stored
 | |
| ** back into the input registers P1 and P3.  So this opcode can cause
 | |
| ** persistent changes to registers P1 and P3.
 | |
| **
 | |
| ** Once any conversions have taken place, and neither value is NULL, 
 | |
| ** the values are compared. If both values are blobs then memcmp() is
 | |
| ** used to determine the results of the comparison.  If both values
 | |
| ** are text, then the appropriate collating function specified in
 | |
| ** P4 is  used to do the comparison.  If P4 is not specified then
 | |
| ** memcmp() is used to compare text string.  If both values are
 | |
| ** numeric, then a numeric comparison is used. If the two values
 | |
| ** are of different types, then numbers are considered less than
 | |
| ** strings and strings are considered less than blobs.
 | |
| **
 | |
| ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
 | |
| ** store a boolean result (either 0, or 1, or NULL) in register P2.
 | |
| */
 | |
| /* Opcode: Ne P1 P2 P3 P4 P5
 | |
| **
 | |
| ** This works just like the Lt opcode except that the jump is taken if
 | |
| ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
 | |
| ** additional information.
 | |
| */
 | |
| /* Opcode: Eq P1 P2 P3 P4 P5
 | |
| **
 | |
| ** This works just like the Lt opcode except that the jump is taken if
 | |
| ** the operands in registers P1 and P3 are equal.
 | |
| ** See the Lt opcode for additional information.
 | |
| */
 | |
| /* Opcode: Le P1 P2 P3 P4 P5
 | |
| **
 | |
| ** This works just like the Lt opcode except that the jump is taken if
 | |
| ** the content of register P3 is less than or equal to the content of
 | |
| ** register P1.  See the Lt opcode for additional information.
 | |
| */
 | |
| /* Opcode: Gt P1 P2 P3 P4 P5
 | |
| **
 | |
| ** This works just like the Lt opcode except that the jump is taken if
 | |
| ** the content of register P3 is greater than the content of
 | |
| ** register P1.  See the Lt opcode for additional information.
 | |
| */
 | |
| /* Opcode: Ge P1 P2 P3 P4 P5
 | |
| **
 | |
| ** This works just like the Lt opcode except that the jump is taken if
 | |
| ** the content of register P3 is greater than or equal to the content of
 | |
| ** register P1.  See the Lt opcode for additional information.
 | |
| */
 | |
| case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
 | |
| case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
 | |
| case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
 | |
| case OP_Le:               /* same as TK_LE, jump, in1, in3 */
 | |
| case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
 | |
| case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
 | |
|   int flags;
 | |
|   int res;
 | |
|   char affinity;
 | |
|   Mem x1, x3;
 | |
| 
 | |
|   flags = pIn1->flags|pIn3->flags;
 | |
| 
 | |
|   if( flags&MEM_Null ){
 | |
|     if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){
 | |
|       /*
 | |
|       ** When SQLITE_NULLEQUAL set and either operand is NULL
 | |
|       ** then both operands are converted to integers prior to being 
 | |
|       ** passed down into the normal comparison logic below.  
 | |
|       ** NULL operands are converted to zero and non-NULL operands
 | |
|       ** are converted to 1.  Thus, for example, with SQLITE_NULLEQUAL
 | |
|       ** set,  NULL==NULL is true whereas it would normally NULL.
 | |
|       ** Similarly,  NULL!=123 is true.
 | |
|       */
 | |
|       x1.flags = MEM_Int;
 | |
|       x1.u.i = (pIn1->flags & MEM_Null)==0;
 | |
|       pIn1 = &x1;
 | |
|       x3.flags = MEM_Int;
 | |
|       x3.u.i = (pIn3->flags & MEM_Null)==0;
 | |
|       pIn3 = &x3;
 | |
|     }else{
 | |
|       /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then
 | |
|       ** the result is always NULL.  The jump is taken if the 
 | |
|       ** SQLITE_JUMPIFNULL bit is set.
 | |
|       */
 | |
|       if( pOp->p5 & SQLITE_STOREP2 ){
 | |
|         pOut = &p->aMem[pOp->p2];
 | |
|         MemSetTypeFlag(pOut, MEM_Null);
 | |
|         REGISTER_TRACE(pOp->p2, pOut);
 | |
|       }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
 | |
|         pc = pOp->p2-1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   affinity = pOp->p5 & SQLITE_AFF_MASK;
 | |
|   if( affinity ){
 | |
|     applyAffinity(pIn1, affinity, encoding);
 | |
|     applyAffinity(pIn3, affinity, encoding);
 | |
|   }
 | |
| 
 | |
|   assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
 | |
|   ExpandBlob(pIn1);
 | |
|   ExpandBlob(pIn3);
 | |
|   res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
 | |
|   switch( pOp->opcode ){
 | |
|     case OP_Eq:    res = res==0;     break;
 | |
|     case OP_Ne:    res = res!=0;     break;
 | |
|     case OP_Lt:    res = res<0;      break;
 | |
|     case OP_Le:    res = res<=0;     break;
 | |
|     case OP_Gt:    res = res>0;      break;
 | |
|     default:       res = res>=0;     break;
 | |
|   }
 | |
| 
 | |
|   if( pOp->p5 & SQLITE_STOREP2 ){
 | |
|     pOut = &p->aMem[pOp->p2];
 | |
|     MemSetTypeFlag(pOut, MEM_Int);
 | |
|     pOut->u.i = res;
 | |
|     REGISTER_TRACE(pOp->p2, pOut);
 | |
|   }else if( res ){
 | |
|     pc = pOp->p2-1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: And P1 P2 P3 * *
 | |
| **
 | |
| ** Take the logical AND of the values in registers P1 and P2 and
 | |
| ** write the result into register P3.
 | |
| **
 | |
| ** If either P1 or P2 is 0 (false) then the result is 0 even if
 | |
| ** the other input is NULL.  A NULL and true or two NULLs give
 | |
| ** a NULL output.
 | |
| */
 | |
| /* Opcode: Or P1 P2 P3 * *
 | |
| **
 | |
| ** Take the logical OR of the values in register P1 and P2 and
 | |
| ** store the answer in register P3.
 | |
| **
 | |
| ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
 | |
| ** even if the other input is NULL.  A NULL and false or two NULLs
 | |
| ** give a NULL output.
 | |
| */
 | |
| case OP_And:              /* same as TK_AND, in1, in2, out3 */
 | |
| case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
 | |
|   int v1, v2;    /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
 | |
| 
 | |
|   if( pIn1->flags & MEM_Null ){
 | |
|     v1 = 2;
 | |
|   }else{
 | |
|     v1 = sqlite3VdbeIntValue(pIn1)!=0;
 | |
|   }
 | |
|   if( pIn2->flags & MEM_Null ){
 | |
|     v2 = 2;
 | |
|   }else{
 | |
|     v2 = sqlite3VdbeIntValue(pIn2)!=0;
 | |
|   }
 | |
|   if( pOp->opcode==OP_And ){
 | |
|     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
 | |
|     v1 = and_logic[v1*3+v2];
 | |
|   }else{
 | |
|     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
 | |
|     v1 = or_logic[v1*3+v2];
 | |
|   }
 | |
|   if( v1==2 ){
 | |
|     MemSetTypeFlag(pOut, MEM_Null);
 | |
|   }else{
 | |
|     pOut->u.i = v1;
 | |
|     MemSetTypeFlag(pOut, MEM_Int);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Not P1 * * * *
 | |
| **
 | |
| ** Interpret the value in register P1 as a boolean value.  Replace it
 | |
| ** with its complement.  If the value in register P1 is NULL its value
 | |
| ** is unchanged.
 | |
| */
 | |
| case OP_Not: {                /* same as TK_NOT, in1 */
 | |
|   if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
 | |
|   sqlite3VdbeMemIntegerify(pIn1);
 | |
|   pIn1->u.i = !pIn1->u.i;
 | |
|   assert( pIn1->flags&MEM_Int );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: BitNot P1 * * * *
 | |
| **
 | |
| ** Interpret the content of register P1 as an integer.  Replace it
 | |
| ** with its ones-complement.  If the value is originally NULL, leave
 | |
| ** it unchanged.
 | |
| */
 | |
| case OP_BitNot: {             /* same as TK_BITNOT, in1 */
 | |
|   if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
 | |
|   sqlite3VdbeMemIntegerify(pIn1);
 | |
|   pIn1->u.i = ~pIn1->u.i;
 | |
|   assert( pIn1->flags&MEM_Int );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: If P1 P2 P3 * *
 | |
| **
 | |
| ** Jump to P2 if the value in register P1 is true.  The value is
 | |
| ** is considered true if it is numeric and non-zero.  If the value
 | |
| ** in P1 is NULL then take the jump if P3 is true.
 | |
| */
 | |
| /* Opcode: IfNot P1 P2 P3 * *
 | |
| **
 | |
| ** Jump to P2 if the value in register P1 is False.  The value is
 | |
| ** is considered true if it has a numeric value of zero.  If the value
 | |
| ** in P1 is NULL then take the jump if P3 is true.
 | |
| */
 | |
| case OP_If:                 /* jump, in1 */
 | |
| case OP_IfNot: {            /* jump, in1 */
 | |
|   int c;
 | |
|   if( pIn1->flags & MEM_Null ){
 | |
|     c = pOp->p3;
 | |
|   }else{
 | |
| #ifdef SQLITE_OMIT_FLOATING_POINT
 | |
|     c = sqlite3VdbeIntValue(pIn1);
 | |
| #else
 | |
|     c = sqlite3VdbeRealValue(pIn1)!=0.0;
 | |
| #endif
 | |
|     if( pOp->opcode==OP_IfNot ) c = !c;
 | |
|   }
 | |
|   if( c ){
 | |
|     pc = pOp->p2-1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IsNull P1 P2 P3 * *
 | |
| **
 | |
| ** Jump to P2 if the value in register P1 is NULL.  If P3 is greater
 | |
| ** than zero, then check all values reg(P1), reg(P1+1), 
 | |
| ** reg(P1+2), ..., reg(P1+P3-1).
 | |
| */
 | |
| case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
 | |
|   int n = pOp->p3;
 | |
|   assert( pOp->p3==0 || pOp->p1>0 );
 | |
|   do{
 | |
|     if( (pIn1->flags & MEM_Null)!=0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       break;
 | |
|     }
 | |
|     pIn1++;
 | |
|   }while( --n > 0 );
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: NotNull P1 P2 * * *
 | |
| **
 | |
| ** Jump to P2 if the value in register P1 is not NULL.  
 | |
| */
 | |
| case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
 | |
|   if( (pIn1->flags & MEM_Null)==0 ){
 | |
|     pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: SetNumColumns P1 P2 * * *
 | |
| **
 | |
| ** Before the OP_Column opcode can be executed on a cursor, this
 | |
| ** opcode must be called to set the number of fields in the table.
 | |
| **
 | |
| ** This opcode sets the number of columns for cursor P1 to P2.
 | |
| **
 | |
| ** If OP_KeyAsData is to be applied to cursor P1, it must be executed
 | |
| ** before this op-code.
 | |
| */
 | |
| case OP_SetNumColumns: {
 | |
|   Cursor *pC;
 | |
|   assert( (pOp->p1)<p->nCursor );
 | |
|   assert( p->apCsr[pOp->p1]!=0 );
 | |
|   pC = p->apCsr[pOp->p1];
 | |
|   pC->nField = pOp->p2;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Column P1 P2 P3 P4 *
 | |
| **
 | |
| ** Interpret the data that cursor P1 points to as a structure built using
 | |
| ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
 | |
| ** information about the format of the data.)  Extract the P2-th column
 | |
| ** from this record.  If there are less that (P2+1) 
 | |
| ** values in the record, extract a NULL.
 | |
| **
 | |
| ** The value extracted is stored in register P3.
 | |
| **
 | |
| ** If the KeyAsData opcode has previously executed on this cursor, then the
 | |
| ** field might be extracted from the key rather than the data.
 | |
| **
 | |
| ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
 | |
| ** if the P4 argument is a P4_MEM use the value of the P4 argument as
 | |
| ** the result.
 | |
| */
 | |
| case OP_Column: {
 | |
|   u32 payloadSize;   /* Number of bytes in the record */
 | |
|   int p1 = pOp->p1;  /* P1 value of the opcode */
 | |
|   int p2 = pOp->p2;  /* column number to retrieve */
 | |
|   Cursor *pC = 0;    /* The VDBE cursor */
 | |
|   char *zRec;        /* Pointer to complete record-data */
 | |
|   BtCursor *pCrsr;   /* The BTree cursor */
 | |
|   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
 | |
|   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
 | |
|   u32 nField;        /* number of fields in the record */
 | |
|   int len;           /* The length of the serialized data for the column */
 | |
|   int i;             /* Loop counter */
 | |
|   char *zData;       /* Part of the record being decoded */
 | |
|   Mem *pDest;        /* Where to write the extracted value */
 | |
|   Mem sMem;          /* For storing the record being decoded */
 | |
| 
 | |
|   sMem.flags = 0;
 | |
|   sMem.db = 0;
 | |
|   assert( p1<p->nCursor );
 | |
|   assert( pOp->p3>0 && pOp->p3<=p->nMem );
 | |
|   pDest = &p->aMem[pOp->p3];
 | |
|   MemSetTypeFlag(pDest, MEM_Null);
 | |
| 
 | |
|   /* This block sets the variable payloadSize to be the total number of
 | |
|   ** bytes in the record.
 | |
|   **
 | |
|   ** zRec is set to be the complete text of the record if it is available.
 | |
|   ** The complete record text is always available for pseudo-tables
 | |
|   ** If the record is stored in a cursor, the complete record text
 | |
|   ** might be available in the  pC->aRow cache.  Or it might not be.
 | |
|   ** If the data is unavailable,  zRec is set to NULL.
 | |
|   **
 | |
|   ** We also compute the number of columns in the record.  For cursors,
 | |
|   ** the number of columns is stored in the Cursor.nField element.
 | |
|   */
 | |
|   pC = p->apCsr[p1];
 | |
|   assert( pC!=0 );
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   assert( pC->pVtabCursor==0 );
 | |
| #endif
 | |
|   if( pC->pCursor!=0 ){
 | |
|     /* The record is stored in a B-Tree */
 | |
|     rc = sqlite3VdbeCursorMoveto(pC);
 | |
|     if( rc ) goto abort_due_to_error;
 | |
|     zRec = 0;
 | |
|     pCrsr = pC->pCursor;
 | |
|     if( pC->nullRow ){
 | |
|       payloadSize = 0;
 | |
|     }else if( pC->cacheStatus==p->cacheCtr ){
 | |
|       payloadSize = pC->payloadSize;
 | |
|       zRec = (char*)pC->aRow;
 | |
|     }else if( pC->isIndex ){
 | |
|       i64 payloadSize64;
 | |
|       sqlite3BtreeKeySize(pCrsr, &payloadSize64);
 | |
|       payloadSize = payloadSize64;
 | |
|     }else{
 | |
|       sqlite3BtreeDataSize(pCrsr, &payloadSize);
 | |
|     }
 | |
|     nField = pC->nField;
 | |
|   }else{
 | |
|     assert( pC->pseudoTable );
 | |
|     /* The record is the sole entry of a pseudo-table */
 | |
|     payloadSize = pC->nData;
 | |
|     zRec = pC->pData;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     assert( payloadSize==0 || zRec!=0 );
 | |
|     nField = pC->nField;
 | |
|     pCrsr = 0;
 | |
|   }
 | |
| 
 | |
|   /* If payloadSize is 0, then just store a NULL */
 | |
|   if( payloadSize==0 ){
 | |
|     assert( pDest->flags&MEM_Null );
 | |
|     goto op_column_out;
 | |
|   }
 | |
|   if( payloadSize>SQLITE_MAX_LENGTH ){
 | |
|     goto too_big;
 | |
|   }
 | |
| 
 | |
|   assert( p2<nField );
 | |
| 
 | |
|   /* Read and parse the table header.  Store the results of the parse
 | |
|   ** into the record header cache fields of the cursor.
 | |
|   */
 | |
|   if( pC->cacheStatus==p->cacheCtr ){
 | |
|     aType = pC->aType;
 | |
|     aOffset = pC->aOffset;
 | |
|   }else{
 | |
|     u8 *zIdx;        /* Index into header */
 | |
|     u8 *zEndHdr;     /* Pointer to first byte after the header */
 | |
|     u32 offset;      /* Offset into the data */
 | |
|     int szHdrSz;     /* Size of the header size field at start of record */
 | |
|     int avail;       /* Number of bytes of available data */
 | |
| 
 | |
|     aType = pC->aType;
 | |
|     if( aType==0 ){
 | |
|       pC->aType = aType = sqlite3DbMallocRaw(db, 2*nField*sizeof(aType) );
 | |
|     }
 | |
|     if( aType==0 ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|     pC->aOffset = aOffset = &aType[nField];
 | |
|     pC->payloadSize = payloadSize;
 | |
|     pC->cacheStatus = p->cacheCtr;
 | |
| 
 | |
|     /* Figure out how many bytes are in the header */
 | |
|     if( zRec ){
 | |
|       zData = zRec;
 | |
|     }else{
 | |
|       if( pC->isIndex ){
 | |
|         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
 | |
|       }else{
 | |
|         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
 | |
|       }
 | |
|       /* If KeyFetch()/DataFetch() managed to get the entire payload,
 | |
|       ** save the payload in the pC->aRow cache.  That will save us from
 | |
|       ** having to make additional calls to fetch the content portion of
 | |
|       ** the record.
 | |
|       */
 | |
|       if( avail>=payloadSize ){
 | |
|         zRec = zData;
 | |
|         pC->aRow = (u8*)zData;
 | |
|       }else{
 | |
|         pC->aRow = 0;
 | |
|       }
 | |
|     }
 | |
|     /* The following assert is true in all cases accept when
 | |
|     ** the database file has been corrupted externally.
 | |
|     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
 | |
|     szHdrSz = GetVarint((u8*)zData, offset);
 | |
| 
 | |
|     /* The KeyFetch() or DataFetch() above are fast and will get the entire
 | |
|     ** record header in most cases.  But they will fail to get the complete
 | |
|     ** record header if the record header does not fit on a single page
 | |
|     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
 | |
|     ** acquire the complete header text.
 | |
|     */
 | |
|     if( !zRec && avail<offset ){
 | |
|       sMem.flags = 0;
 | |
|       sMem.db = 0;
 | |
|       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto op_column_out;
 | |
|       }
 | |
|       zData = sMem.z;
 | |
|     }
 | |
|     zEndHdr = (u8 *)&zData[offset];
 | |
|     zIdx = (u8 *)&zData[szHdrSz];
 | |
| 
 | |
|     /* Scan the header and use it to fill in the aType[] and aOffset[]
 | |
|     ** arrays.  aType[i] will contain the type integer for the i-th
 | |
|     ** column and aOffset[i] will contain the offset from the beginning
 | |
|     ** of the record to the start of the data for the i-th column
 | |
|     */
 | |
|     for(i=0; i<nField; i++){
 | |
|       if( zIdx<zEndHdr ){
 | |
|         aOffset[i] = offset;
 | |
|         zIdx += GetVarint(zIdx, aType[i]);
 | |
|         offset += sqlite3VdbeSerialTypeLen(aType[i]);
 | |
|       }else{
 | |
|         /* If i is less that nField, then there are less fields in this
 | |
|         ** record than SetNumColumns indicated there are columns in the
 | |
|         ** table. Set the offset for any extra columns not present in
 | |
|         ** the record to 0. This tells code below to store a NULL
 | |
|         ** instead of deserializing a value from the record.
 | |
|         */
 | |
|         aOffset[i] = 0;
 | |
|       }
 | |
|     }
 | |
|     Release(&sMem);
 | |
|     sMem.flags = MEM_Null;
 | |
| 
 | |
|     /* If we have read more header data than was contained in the header,
 | |
|     ** or if the end of the last field appears to be past the end of the
 | |
|     ** record, then we must be dealing with a corrupt database.
 | |
|     */
 | |
|     if( zIdx>zEndHdr || offset>payloadSize ){
 | |
|       rc = SQLITE_CORRUPT_BKPT;
 | |
|       goto op_column_out;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Get the column information. If aOffset[p2] is non-zero, then 
 | |
|   ** deserialize the value from the record. If aOffset[p2] is zero,
 | |
|   ** then there are not enough fields in the record to satisfy the
 | |
|   ** request.  In this case, set the value NULL or to P4 if P4 is
 | |
|   ** a pointer to a Mem object.
 | |
|   */
 | |
|   if( aOffset[p2] ){
 | |
|     assert( rc==SQLITE_OK );
 | |
|     if( zRec ){
 | |
|       if( pDest->flags&MEM_Dyn ){
 | |
|         sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem);
 | |
|         sMem.db = db; 
 | |
|         sqlite3VdbeMemCopy(pDest, &sMem);
 | |
|         assert( !(sMem.flags&MEM_Dyn) );
 | |
|       }else{
 | |
|         sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
 | |
|       }
 | |
|     }else{
 | |
|       len = sqlite3VdbeSerialTypeLen(aType[p2]);
 | |
|       sqlite3VdbeMemMove(&sMem, pDest);
 | |
|       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto op_column_out;
 | |
|       }
 | |
|       zData = sMem.z;
 | |
|       sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
 | |
|     }
 | |
|     pDest->enc = encoding;
 | |
|   }else{
 | |
|     if( pOp->p4type==P4_MEM ){
 | |
|       sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
 | |
|     }else{
 | |
|       assert( pDest->flags&MEM_Null );
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If we dynamically allocated space to hold the data (in the
 | |
|   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
 | |
|   ** dynamically allocated space over to the pDest structure.
 | |
|   ** This prevents a memory copy.
 | |
|   */
 | |
|   if( (sMem.flags & MEM_Dyn)!=0 ){
 | |
|     assert( !sMem.xDel );
 | |
|     assert( !(pDest->flags & MEM_Dyn) );
 | |
|     assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
 | |
|     pDest->flags &= ~(MEM_Ephem|MEM_Static);
 | |
|     pDest->flags |= MEM_Dyn|MEM_Term;
 | |
|     pDest->z = sMem.z;
 | |
|   }
 | |
| 
 | |
|   rc = sqlite3VdbeMemMakeWriteable(pDest);
 | |
| 
 | |
| op_column_out:
 | |
|   UPDATE_MAX_BLOBSIZE(pDest);
 | |
|   REGISTER_TRACE(pOp->p3, pDest);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MakeRecord P1 P2 P3 P4 *
 | |
| **
 | |
| ** Convert P2 registers beginning with P1 into a single entry
 | |
| ** suitable for use as a data record in a database table or as a key
 | |
| ** in an index.  The details of the format are irrelavant as long as
 | |
| ** the OP_Column opcode can decode the record later and as long as the
 | |
| ** sqlite3VdbeRecordCompare function will correctly compare two encoded
 | |
| ** records.  Refer to source code comments for the details of the record
 | |
| ** format.
 | |
| **
 | |
| ** P4 may be a string that is P1 characters long.  The nth character of the
 | |
| ** string indicates the column affinity that should be used for the nth
 | |
| ** field of the index key.
 | |
| **
 | |
| ** The mapping from character to affinity is given by the SQLITE_AFF_
 | |
| ** macros defined in sqliteInt.h.
 | |
| **
 | |
| ** If P4 is NULL then all index fields have the affinity NONE.
 | |
| */
 | |
| case OP_MakeRecord: {
 | |
|   /* Assuming the record contains N fields, the record format looks
 | |
|   ** like this:
 | |
|   **
 | |
|   ** ------------------------------------------------------------------------
 | |
|   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
 | |
|   ** ------------------------------------------------------------------------
 | |
|   **
 | |
|   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
 | |
|   ** and so froth.
 | |
|   **
 | |
|   ** Each type field is a varint representing the serial type of the 
 | |
|   ** corresponding data element (see sqlite3VdbeSerialType()). The
 | |
|   ** hdr-size field is also a varint which is the offset from the beginning
 | |
|   ** of the record to data0.
 | |
|   */
 | |
|   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
 | |
|   Mem *pRec;             /* The new record */
 | |
|   u64 nData = 0;         /* Number of bytes of data space */
 | |
|   int nHdr = 0;          /* Number of bytes of header space */
 | |
|   u64 nByte = 0;         /* Data space required for this record */
 | |
|   int nZero = 0;         /* Number of zero bytes at the end of the record */
 | |
|   int nVarint;           /* Number of bytes in a varint */
 | |
|   u32 serial_type;       /* Type field */
 | |
|   Mem *pData0;           /* First field to be combined into the record */
 | |
|   Mem *pLast;            /* Last field of the record */
 | |
|   int nField;            /* Number of fields in the record */
 | |
|   char *zAffinity;       /* The affinity string for the record */
 | |
|   int file_format;       /* File format to use for encoding */
 | |
|   int i;                 /* Space used in zNewRecord[] */
 | |
| 
 | |
|   nField = pOp->p1;
 | |
|   zAffinity = pOp->p4.z;
 | |
|   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
 | |
|   pData0 = &p->aMem[nField];
 | |
|   nField = pOp->p2;
 | |
|   pLast = &pData0[nField-1];
 | |
|   file_format = p->minWriteFileFormat;
 | |
| 
 | |
|   /* Loop through the elements that will make up the record to figure
 | |
|   ** out how much space is required for the new record.
 | |
|   */
 | |
|   for(pRec=pData0; pRec<=pLast; pRec++){
 | |
|     int len;
 | |
|     if( zAffinity ){
 | |
|       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
 | |
|     }
 | |
|     if( pRec->flags&MEM_Zero && pRec->n>0 ){
 | |
|       sqlite3VdbeMemExpandBlob(pRec);
 | |
|     }
 | |
|     serial_type = sqlite3VdbeSerialType(pRec, file_format);
 | |
|     len = sqlite3VdbeSerialTypeLen(serial_type);
 | |
|     nData += len;
 | |
|     nHdr += sqlite3VarintLen(serial_type);
 | |
|     if( pRec->flags & MEM_Zero ){
 | |
|       /* Only pure zero-filled BLOBs can be input to this Opcode.
 | |
|       ** We do not allow blobs with a prefix and a zero-filled tail. */
 | |
|       nZero += pRec->u.i;
 | |
|     }else if( len ){
 | |
|       nZero = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Add the initial header varint and total the size */
 | |
|   nHdr += nVarint = sqlite3VarintLen(nHdr);
 | |
|   if( nVarint<sqlite3VarintLen(nHdr) ){
 | |
|     nHdr++;
 | |
|   }
 | |
|   nByte = nHdr+nData-nZero;
 | |
|   if( nByte>SQLITE_MAX_LENGTH ){
 | |
|     goto too_big;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the output register has a buffer large enough to store 
 | |
|   ** the new record. The output register (pOp->p3) is not allowed to
 | |
|   ** be one of the input registers (because the following call to
 | |
|   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
 | |
|   */
 | |
|   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
 | |
|   pOut = &p->aMem[pOp->p3];
 | |
|   if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
 | |
|     goto no_mem;
 | |
|   }
 | |
|   zNewRecord = (u8 *)pOut->z;
 | |
| 
 | |
|   /* Write the record */
 | |
|   i = sqlite3PutVarint(zNewRecord, nHdr);
 | |
|   for(pRec=pData0; pRec<=pLast; pRec++){
 | |
|     serial_type = sqlite3VdbeSerialType(pRec, file_format);
 | |
|     i += sqlite3PutVarint(&zNewRecord[i], serial_type);      /* serial type */
 | |
|   }
 | |
|   for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
 | |
|     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
 | |
|   }
 | |
|   assert( i==nByte );
 | |
| 
 | |
|   assert( pOp->p3>0 && pOp->p3<=p->nMem );
 | |
|   pOut->n = nByte;
 | |
|   pOut->flags = MEM_Blob | MEM_Dyn;
 | |
|   pOut->xDel = 0;
 | |
|   if( nZero ){
 | |
|     pOut->u.i = nZero;
 | |
|     pOut->flags |= MEM_Zero;
 | |
|   }
 | |
|   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
 | |
|   REGISTER_TRACE(pOp->p3, pOut);
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Statement P1 * * * *
 | |
| **
 | |
| ** Begin an individual statement transaction which is part of a larger
 | |
| ** BEGIN..COMMIT transaction.  This is needed so that the statement
 | |
| ** can be rolled back after an error without having to roll back the
 | |
| ** entire transaction.  The statement transaction will automatically
 | |
| ** commit when the VDBE halts.
 | |
| **
 | |
| ** The statement is begun on the database file with index P1.  The main
 | |
| ** database file has an index of 0 and the file used for temporary tables
 | |
| ** has an index of 1.
 | |
| */
 | |
| case OP_Statement: {
 | |
|   if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
 | |
|     int i = pOp->p1;
 | |
|     Btree *pBt;
 | |
|     assert( i>=0 && i<db->nDb );
 | |
|     assert( db->aDb[i].pBt!=0 );
 | |
|     pBt = db->aDb[i].pBt;
 | |
|     assert( sqlite3BtreeIsInTrans(pBt) );
 | |
|     assert( (p->btreeMask & (1<<i))!=0 );
 | |
|     if( !sqlite3BtreeIsInStmt(pBt) ){
 | |
|       rc = sqlite3BtreeBeginStmt(pBt);
 | |
|       p->openedStatement = 1;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AutoCommit P1 P2 * * *
 | |
| **
 | |
| ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
 | |
| ** back any currently active btree transactions. If there are any active
 | |
| ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
 | |
| **
 | |
| ** This instruction causes the VM to halt.
 | |
| */
 | |
| case OP_AutoCommit: {
 | |
|   u8 i = pOp->p1;
 | |
|   u8 rollback = pOp->p2;
 | |
| 
 | |
|   assert( i==1 || i==0 );
 | |
|   assert( i==1 || rollback==0 );
 | |
| 
 | |
|   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
 | |
| 
 | |
|   if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
 | |
|     /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
 | |
|     ** still running, and a transaction is active, return an error indicating
 | |
|     ** that the other VMs must complete first. 
 | |
|     */
 | |
|     sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", 
 | |
|         " transaction - SQL statements in progress", (char*)0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else if( i!=db->autoCommit ){
 | |
|     if( pOp->p2 ){
 | |
|       assert( i==1 );
 | |
|       sqlite3RollbackAll(db);
 | |
|       db->autoCommit = 1;
 | |
|     }else{
 | |
|       db->autoCommit = i;
 | |
|       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
 | |
|         p->pc = pc;
 | |
|         db->autoCommit = 1-i;
 | |
|         p->rc = rc = SQLITE_BUSY;
 | |
|         goto vdbe_return;
 | |
|       }
 | |
|     }
 | |
|     if( p->rc==SQLITE_OK ){
 | |
|       rc = SQLITE_DONE;
 | |
|     }else{
 | |
|       rc = SQLITE_ERROR;
 | |
|     }
 | |
|     goto vdbe_return;
 | |
|   }else{
 | |
|     sqlite3SetString(&p->zErrMsg,
 | |
|         (!i)?"cannot start a transaction within a transaction":(
 | |
|         (rollback)?"cannot rollback - no transaction is active":
 | |
|                    "cannot commit - no transaction is active"), (char*)0);
 | |
|          
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Transaction P1 P2 * * *
 | |
| **
 | |
| ** Begin a transaction.  The transaction ends when a Commit or Rollback
 | |
| ** opcode is encountered.  Depending on the ON CONFLICT setting, the
 | |
| ** transaction might also be rolled back if an error is encountered.
 | |
| **
 | |
| ** P1 is the index of the database file on which the transaction is
 | |
| ** started.  Index 0 is the main database file and index 1 is the
 | |
| ** file used for temporary tables.  Indices of 2 or more are used for
 | |
| ** attached databases.
 | |
| **
 | |
| ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
 | |
| ** obtained on the database file when a write-transaction is started.  No
 | |
| ** other process can start another write transaction while this transaction is
 | |
| ** underway.  Starting a write transaction also creates a rollback journal. A
 | |
| ** write transaction must be started before any changes can be made to the
 | |
| ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
 | |
| ** on the file.
 | |
| **
 | |
| ** If P2 is zero, then a read-lock is obtained on the database file.
 | |
| */
 | |
| case OP_Transaction: {
 | |
|   int i = pOp->p1;
 | |
|   Btree *pBt;
 | |
| 
 | |
|   assert( i>=0 && i<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<i))!=0 );
 | |
|   pBt = db->aDb[i].pBt;
 | |
| 
 | |
|   if( pBt ){
 | |
|     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
 | |
|     if( rc==SQLITE_BUSY ){
 | |
|       p->pc = pc;
 | |
|       p->rc = rc = SQLITE_BUSY;
 | |
|       goto vdbe_return;
 | |
|     }
 | |
|     if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ReadCookie P1 P2 P3 * *
 | |
| **
 | |
| ** Read cookie number P3 from database P1 and write it into register P2.
 | |
| ** P3==0 is the schema version.  P3==1 is the database format.
 | |
| ** P3==2 is the recommended pager cache size, and so forth.  P1==0 is
 | |
| ** the main database file and P1==1 is the database file used to store
 | |
| ** temporary tables.
 | |
| **
 | |
| ** If P1 is negative, then this is a request to read the size of a
 | |
| ** databases free-list. P3 must be set to 1 in this case. The actual
 | |
| ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
 | |
| ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
 | |
| **
 | |
| ** There must be a read-lock on the database (either a transaction
 | |
| ** must be started or there must be an open cursor) before
 | |
| ** executing this instruction.
 | |
| */
 | |
| case OP_ReadCookie: {               /* out2-prerelease */
 | |
|   int iMeta;
 | |
|   int iDb = pOp->p1;
 | |
|   int iCookie = pOp->p3;
 | |
| 
 | |
|   assert( pOp->p3<SQLITE_N_BTREE_META );
 | |
|   if( iDb<0 ){
 | |
|     iDb = (-1*(iDb+1));
 | |
|     iCookie *= -1;
 | |
|   }
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( db->aDb[iDb].pBt!=0 );
 | |
|   assert( (p->btreeMask & (1<<iDb))!=0 );
 | |
|   /* The indexing of meta values at the schema layer is off by one from
 | |
|   ** the indexing in the btree layer.  The btree considers meta[0] to
 | |
|   ** be the number of free pages in the database (a read-only value)
 | |
|   ** and meta[1] to be the schema cookie.  The schema layer considers
 | |
|   ** meta[1] to be the schema cookie.  So we have to shift the index
 | |
|   ** by one in the following statement.
 | |
|   */
 | |
|   rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
 | |
|   pOut->u.i = iMeta;
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: SetCookie P1 P2 P3 * *
 | |
| **
 | |
| ** Write the content of register P3 (interpreted as an integer)
 | |
| ** into cookie number P2 of database P1.
 | |
| ** P2==0 is the schema version.  P2==1 is the database format.
 | |
| ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
 | |
| ** the main database file and P1==1 is the database file used to store
 | |
| ** temporary tables.
 | |
| **
 | |
| ** A transaction must be started before executing this opcode.
 | |
| */
 | |
| case OP_SetCookie: {       /* in3 */
 | |
|   Db *pDb;
 | |
|   assert( pOp->p2<SQLITE_N_BTREE_META );
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
 | |
|   pDb = &db->aDb[pOp->p1];
 | |
|   assert( pDb->pBt!=0 );
 | |
|   sqlite3VdbeMemIntegerify(pIn3);
 | |
|   /* See note about index shifting on OP_ReadCookie */
 | |
|   rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
 | |
|   if( pOp->p2==0 ){
 | |
|     /* When the schema cookie changes, record the new cookie internally */
 | |
|     pDb->pSchema->schema_cookie = pIn3->u.i;
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
|   }else if( pOp->p2==1 ){
 | |
|     /* Record changes in the file format */
 | |
|     pDb->pSchema->file_format = pIn3->u.i;
 | |
|   }
 | |
|   if( pOp->p1==1 ){
 | |
|     /* Invalidate all prepared statements whenever the TEMP database
 | |
|     ** schema is changed.  Ticket #1644 */
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: VerifyCookie P1 P2 *
 | |
| **
 | |
| ** Check the value of global database parameter number 0 (the
 | |
| ** schema version) and make sure it is equal to P2.  
 | |
| ** P1 is the database number which is 0 for the main database file
 | |
| ** and 1 for the file holding temporary tables and some higher number
 | |
| ** for auxiliary databases.
 | |
| **
 | |
| ** The cookie changes its value whenever the database schema changes.
 | |
| ** This operation is used to detect when that the cookie has changed
 | |
| ** and that the current process needs to reread the schema.
 | |
| **
 | |
| ** Either a transaction needs to have been started or an OP_Open needs
 | |
| ** to be executed (to establish a read lock) before this opcode is
 | |
| ** invoked.
 | |
| */
 | |
| case OP_VerifyCookie: {
 | |
|   int iMeta;
 | |
|   Btree *pBt;
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
 | |
|   pBt = db->aDb[pOp->p1].pBt;
 | |
|   if( pBt ){
 | |
|     rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
 | |
|   }else{
 | |
|     rc = SQLITE_OK;
 | |
|     iMeta = 0;
 | |
|   }
 | |
|   if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
 | |
|     sqlite3_free(p->zErrMsg);
 | |
|     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
 | |
|     /* If the schema-cookie from the database file matches the cookie 
 | |
|     ** stored with the in-memory representation of the schema, do
 | |
|     ** not reload the schema from the database file.
 | |
|     **
 | |
|     ** If virtual-tables are in use, this is not just an optimisation.
 | |
|     ** Often, v-tables store their data in other SQLite tables, which
 | |
|     ** are queried from within xNext() and other v-table methods using
 | |
|     ** prepared queries. If such a query is out-of-date, we do not want to
 | |
|     ** discard the database schema, as the user code implementing the
 | |
|     ** v-table would have to be ready for the sqlite3_vtab structure itself
 | |
|     ** to be invalidated whenever sqlite3_step() is called from within 
 | |
|     ** a v-table method.
 | |
|     */
 | |
|     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
 | |
|       sqlite3ResetInternalSchema(db, pOp->p1);
 | |
|     }
 | |
| 
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|     rc = SQLITE_SCHEMA;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: OpenRead P1 P2 P3 P4 P5
 | |
| **
 | |
| ** Open a read-only cursor for the database table whose root page is
 | |
| ** P2 in a database file.  The database file is determined by P3. 
 | |
| ** P3==0 means the main database, P3==1 means the database used for 
 | |
| ** temporary tables, and P3>1 means used the corresponding attached
 | |
| ** database.  Give the new cursor an identifier of P1.  The P1
 | |
| ** values need not be contiguous but all P1 values should be small integers.
 | |
| ** It is an error for P1 to be negative.
 | |
| **
 | |
| ** If P5!=0 then use the content of register P2 as the root page, not
 | |
| ** the value of P2 itself.
 | |
| **
 | |
| ** There will be a read lock on the database whenever there is an
 | |
| ** open cursor.  If the database was unlocked prior to this instruction
 | |
| ** then a read lock is acquired as part of this instruction.  A read
 | |
| ** lock allows other processes to read the database but prohibits
 | |
| ** any other process from modifying the database.  The read lock is
 | |
| ** released when all cursors are closed.  If this instruction attempts
 | |
| ** to get a read lock but fails, the script terminates with an
 | |
| ** SQLITE_BUSY error code.
 | |
| **
 | |
| ** The P4 value is a pointer to a KeyInfo structure that defines the
 | |
| ** content and collating sequence of indices.  P4 is NULL for cursors
 | |
| ** that are not pointing to indices.
 | |
| **
 | |
| ** See also OpenWrite.
 | |
| */
 | |
| /* Opcode: OpenWrite P1 P2 P3 P4 P5
 | |
| **
 | |
| ** Open a read/write cursor named P1 on the table or index whose root
 | |
| ** page is P2.  Or if P5!=0 use the content of register P2 to find the
 | |
| ** root page.
 | |
| **
 | |
| ** The P4 value is a pointer to a KeyInfo structure that defines the
 | |
| ** content and collating sequence of indices.  P4 is NULL for cursors
 | |
| ** that are not pointing to indices.
 | |
| **
 | |
| ** This instruction works just like OpenRead except that it opens the cursor
 | |
| ** in read/write mode.  For a given table, there can be one or more read-only
 | |
| ** cursors or a single read/write cursor but not both.
 | |
| **
 | |
| ** See also OpenRead.
 | |
| */
 | |
| case OP_OpenRead:
 | |
| case OP_OpenWrite: {
 | |
|   int i = pOp->p1;
 | |
|   int p2 = pOp->p2;
 | |
|   int iDb = pOp->p3;
 | |
|   int wrFlag;
 | |
|   Btree *pX;
 | |
|   Cursor *pCur;
 | |
|   Db *pDb;
 | |
|   
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<iDb))!=0 );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   pX = pDb->pBt;
 | |
|   assert( pX!=0 );
 | |
|   if( pOp->opcode==OP_OpenWrite ){
 | |
|     wrFlag = 1;
 | |
|     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
 | |
|       p->minWriteFileFormat = pDb->pSchema->file_format;
 | |
|     }
 | |
|   }else{
 | |
|     wrFlag = 0;
 | |
|   }
 | |
|   if( pOp->p5 ){
 | |
|     assert( p2>0 );
 | |
|     assert( p2<=p->nMem );
 | |
|     pIn2 = &p->aMem[p2];
 | |
|     sqlite3VdbeMemIntegerify(pIn2);
 | |
|     p2 = pIn2->u.i;
 | |
|     assert( p2>=2 );
 | |
|   }
 | |
|   assert( i>=0 );
 | |
|   pCur = allocateCursor(p, i, iDb);
 | |
|   if( pCur==0 ) goto no_mem;
 | |
|   pCur->nullRow = 1;
 | |
|   /* We always provide a key comparison function.  If the table being
 | |
|   ** opened is of type INTKEY, the comparision function will be ignored. */
 | |
|   rc = sqlite3BtreeCursor(pX, p2, wrFlag,
 | |
|            sqlite3VdbeRecordCompare, pOp->p4.p,
 | |
|            &pCur->pCursor);
 | |
|   if( pOp->p4type==P4_KEYINFO ){
 | |
|     pCur->pKeyInfo = pOp->p4.pKeyInfo;
 | |
|     pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
 | |
|     pCur->pKeyInfo->enc = ENC(p->db);
 | |
|   }else{
 | |
|     pCur->pKeyInfo = 0;
 | |
|     pCur->pIncrKey = &pCur->bogusIncrKey;
 | |
|   }
 | |
|   switch( rc ){
 | |
|     case SQLITE_BUSY: {
 | |
|       p->pc = pc;
 | |
|       p->rc = rc = SQLITE_BUSY;
 | |
|       goto vdbe_return;
 | |
|     }
 | |
|     case SQLITE_OK: {
 | |
|       int flags = sqlite3BtreeFlags(pCur->pCursor);
 | |
|       /* Sanity checking.  Only the lower four bits of the flags byte should
 | |
|       ** be used.  Bit 3 (mask 0x08) is unpreditable.  The lower 3 bits
 | |
|       ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
 | |
|       ** 2 (zerodata for indices).  If these conditions are not met it can
 | |
|       ** only mean that we are dealing with a corrupt database file
 | |
|       */
 | |
|       if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
 | |
|         rc = SQLITE_CORRUPT_BKPT;
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pCur->isTable = (flags & BTREE_INTKEY)!=0;
 | |
|       pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
 | |
|       /* If P4==0 it means we are expected to open a table.  If P4!=0 then
 | |
|       ** we expect to be opening an index.  If this is not what happened,
 | |
|       ** then the database is corrupt
 | |
|       */
 | |
|       if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
 | |
|        || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
 | |
|         rc = SQLITE_CORRUPT_BKPT;
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_EMPTY: {
 | |
|       pCur->isTable = pOp->p4type!=P4_KEYINFO;
 | |
|       pCur->isIndex = !pCur->isTable;
 | |
|       rc = SQLITE_OK;
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: OpenEphemeral P1 P2 * P4 *
 | |
| **
 | |
| ** Open a new cursor P1 to a transient table.
 | |
| ** The cursor is always opened read/write even if 
 | |
| ** the main database is read-only.  The transient or virtual
 | |
| ** table is deleted automatically when the cursor is closed.
 | |
| **
 | |
| ** P2 is the number of columns in the virtual table.
 | |
| ** The cursor points to a BTree table if P4==0 and to a BTree index
 | |
| ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
 | |
| ** that defines the format of keys in the index.
 | |
| **
 | |
| ** This opcode was once called OpenTemp.  But that created
 | |
| ** confusion because the term "temp table", might refer either
 | |
| ** to a TEMP table at the SQL level, or to a table opened by
 | |
| ** this opcode.  Then this opcode was call OpenVirtual.  But
 | |
| ** that created confusion with the whole virtual-table idea.
 | |
| */
 | |
| case OP_OpenEphemeral: {
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pCx;
 | |
|   static const int openFlags = 
 | |
|       SQLITE_OPEN_READWRITE |
 | |
|       SQLITE_OPEN_CREATE |
 | |
|       SQLITE_OPEN_EXCLUSIVE |
 | |
|       SQLITE_OPEN_DELETEONCLOSE |
 | |
|       SQLITE_OPEN_TRANSIENT_DB;
 | |
| 
 | |
|   assert( i>=0 );
 | |
|   pCx = allocateCursor(p, i, -1);
 | |
|   if( pCx==0 ) goto no_mem;
 | |
|   pCx->nullRow = 1;
 | |
|   rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
 | |
|                            &pCx->pBt);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     /* If a transient index is required, create it by calling
 | |
|     ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
 | |
|     ** opening it. If a transient table is required, just use the
 | |
|     ** automatically created table with root-page 1 (an INTKEY table).
 | |
|     */
 | |
|     if( pOp->p4.pKeyInfo ){
 | |
|       int pgno;
 | |
|       assert( pOp->p4type==P4_KEYINFO );
 | |
|       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
 | |
|       if( rc==SQLITE_OK ){
 | |
|         assert( pgno==MASTER_ROOT+1 );
 | |
|         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, sqlite3VdbeRecordCompare,
 | |
|             pOp->p4.z, &pCx->pCursor);
 | |
|         pCx->pKeyInfo = pOp->p4.pKeyInfo;
 | |
|         pCx->pKeyInfo->enc = ENC(p->db);
 | |
|         pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
 | |
|       }
 | |
|       pCx->isTable = 0;
 | |
|     }else{
 | |
|       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, 0, &pCx->pCursor);
 | |
|       pCx->isTable = 1;
 | |
|       pCx->pIncrKey = &pCx->bogusIncrKey;
 | |
|     }
 | |
|   }
 | |
|   pCx->nField = pOp->p2;
 | |
|   pCx->isIndex = !pCx->isTable;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: OpenPseudo P1 * * * *
 | |
| **
 | |
| ** Open a new cursor that points to a fake table that contains a single
 | |
| ** row of data.  Any attempt to write a second row of data causes the
 | |
| ** first row to be deleted.  All data is deleted when the cursor is
 | |
| ** closed.
 | |
| **
 | |
| ** A pseudo-table created by this opcode is useful for holding the
 | |
| ** NEW or OLD tables in a trigger.  Also used to hold the a single
 | |
| ** row output from the sorter so that the row can be decomposed into
 | |
| ** individual columns using the OP_Column opcode.
 | |
| */
 | |
| case OP_OpenPseudo: {
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pCx;
 | |
|   assert( i>=0 );
 | |
|   pCx = allocateCursor(p, i, -1);
 | |
|   if( pCx==0 ) goto no_mem;
 | |
|   pCx->nullRow = 1;
 | |
|   pCx->pseudoTable = 1;
 | |
|   pCx->pIncrKey = &pCx->bogusIncrKey;
 | |
|   pCx->isTable = 1;
 | |
|   pCx->isIndex = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Close P1 * * * *
 | |
| **
 | |
| ** Close a cursor previously opened as P1.  If P1 is not
 | |
| ** currently open, this instruction is a no-op.
 | |
| */
 | |
| case OP_Close: {
 | |
|   int i = pOp->p1;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   sqlite3VdbeFreeCursor(p, p->apCsr[i]);
 | |
|   p->apCsr[i] = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: MoveGe P1 P2 P3 * *
 | |
| **
 | |
| ** Use the value in register P3 as a key.  Reposition
 | |
| ** cursor P1 so that it points to the smallest entry that is greater
 | |
| ** than or equal to the key in register P3.
 | |
| ** If there are no records greater than or equal to the key and P2 
 | |
| ** is not zero, then jump to P2.
 | |
| **
 | |
| ** A special feature of this opcode (and different from the
 | |
| ** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
 | |
| ** zero and P1 is an SQL table (a b-tree with integer keys) then
 | |
| ** the seek is deferred until it is actually needed.  It might be
 | |
| ** the case that the cursor is never accessed.  By deferring the
 | |
| ** seek, we avoid unnecessary seeks.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
 | |
| */
 | |
| /* Opcode: MoveGt P1 P2 P3 * *
 | |
| **
 | |
| ** Use the value in register P3 as a key.  Reposition
 | |
| ** cursor P1 so that it points to the smallest entry that is greater
 | |
| ** than the key in register P3.
 | |
| ** If there are no records greater than the key 
 | |
| ** then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
 | |
| */
 | |
| /* Opcode: MoveLt P1 P2 P3 * * 
 | |
| **
 | |
| ** Use the value in register P3 as a key.  Reposition
 | |
| ** cursor P1 so that it points to the largest entry that is less
 | |
| ** than the key in register P3.
 | |
| ** If there are no records less than the key
 | |
| ** then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
 | |
| */
 | |
| /* Opcode: MoveLe P1 P2 P3 * *
 | |
| **
 | |
| ** Use the value in register P3 as a key.  Reposition
 | |
| ** cursor P1 so that it points to the largest entry that is less than
 | |
| ** or equal to the key.
 | |
| ** If there are no records less than or eqal to the key
 | |
| ** then jump to P2.
 | |
| **
 | |
| ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
 | |
| */
 | |
| case OP_MoveLt:         /* jump, in3 */
 | |
| case OP_MoveLe:         /* jump, in3 */
 | |
| case OP_MoveGe:         /* jump, in3 */
 | |
| case OP_MoveGt: {       /* jump, in3 */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   if( pC->pCursor!=0 ){
 | |
|     int res, oc;
 | |
|     oc = pOp->opcode;
 | |
|     pC->nullRow = 0;
 | |
|     *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
 | |
|     if( pC->isTable ){
 | |
|       i64 iKey = sqlite3VdbeIntValue(pIn3);
 | |
|       if( pOp->p2==0 ){
 | |
|         assert( pOp->opcode==OP_MoveGe );
 | |
|         pC->movetoTarget = iKey;
 | |
|         pC->rowidIsValid = 0;
 | |
|         pC->deferredMoveto = 1;
 | |
|         break;
 | |
|       }
 | |
|       rc = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)iKey, 0, &res);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pC->lastRowid = iKey;
 | |
|       pC->rowidIsValid = res==0;
 | |
|     }else{
 | |
|       assert( pIn3->flags & MEM_Blob );
 | |
|       ExpandBlob(pIn3);
 | |
|       rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, pIn3->n, 0, &res);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       pC->rowidIsValid = 0;
 | |
|     }
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     *pC->pIncrKey = 0;
 | |
| #ifdef SQLITE_TEST
 | |
|     sqlite3_search_count++;
 | |
| #endif
 | |
|     if( oc==OP_MoveGe || oc==OP_MoveGt ){
 | |
|       if( res<0 ){
 | |
|         rc = sqlite3BtreeNext(pC->pCursor, &res);
 | |
|         if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | |
|         pC->rowidIsValid = 0;
 | |
|       }else{
 | |
|         res = 0;
 | |
|       }
 | |
|     }else{
 | |
|       assert( oc==OP_MoveLt || oc==OP_MoveLe );
 | |
|       if( res>=0 ){
 | |
|         rc = sqlite3BtreePrevious(pC->pCursor, &res);
 | |
|         if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | |
|         pC->rowidIsValid = 0;
 | |
|       }else{
 | |
|         /* res might be negative because the table is empty.  Check to
 | |
|         ** see if this is the case.
 | |
|         */
 | |
|         res = sqlite3BtreeEof(pC->pCursor);
 | |
|       }
 | |
|     }
 | |
|     assert( pOp->p2>0 );
 | |
|     if( res ){
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Found P1 P2 P3 * *
 | |
| **
 | |
| ** Register P3 holds a blob constructed by MakeRecord.  P1 is an index.
 | |
| ** If an entry that matches the value in register p3 exists in P1 then
 | |
| ** jump to P2.  If the P3 value does not match any entry in P1
 | |
| ** then fall thru.  The P1 cursor is left pointing at the matching entry
 | |
| ** if it exists.
 | |
| **
 | |
| ** This instruction is used to implement the IN operator where the
 | |
| ** left-hand side is a SELECT statement.  P1 may be a true index, or it
 | |
| ** may be a temporary index that holds the results of the SELECT
 | |
| ** statement.   This instruction is also used to implement the
 | |
| ** DISTINCT keyword in SELECT statements.
 | |
| **
 | |
| ** This instruction checks if index P1 contains a record for which 
 | |
| ** the first N serialised values exactly match the N serialised values
 | |
| ** in the record in register P3, where N is the total number of values in
 | |
| ** the P3 record (the P3 record is a prefix of the P1 record). 
 | |
| **
 | |
| ** See also: NotFound, MoveTo, IsUnique, NotExists
 | |
| */
 | |
| /* Opcode: NotFound P1 P2 P3 * *
 | |
| **
 | |
| ** Register P3 holds a blob constructed by MakeRecord.  P1 is
 | |
| ** an index.  If no entry exists in P1 that matches the blob then jump
 | |
| ** to P2.  If an entry does existing, fall through.  The cursor is left
 | |
| ** pointing to the entry that matches.
 | |
| **
 | |
| ** See also: Found, MoveTo, NotExists, IsUnique
 | |
| */
 | |
| case OP_NotFound:       /* jump, in3 */
 | |
| case OP_Found: {        /* jump, in3 */
 | |
|   int i = pOp->p1;
 | |
|   int alreadyExists = 0;
 | |
|   Cursor *pC;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pC = p->apCsr[i])->pCursor!=0 ){
 | |
|     int res;
 | |
|     assert( pC->isTable==0 );
 | |
|     assert( pIn3->flags & MEM_Blob );
 | |
|     if( pOp->opcode==OP_Found ){
 | |
|       pC->pKeyInfo->prefixIsEqual = 1;
 | |
|     }
 | |
|     rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, pIn3->n, 0, &res);
 | |
|     pC->pKeyInfo->prefixIsEqual = 0;
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       break;
 | |
|     }
 | |
|     alreadyExists = (res==0);
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   if( pOp->opcode==OP_Found ){
 | |
|     if( alreadyExists ) pc = pOp->p2 - 1;
 | |
|   }else{
 | |
|     if( !alreadyExists ) pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IsUnique P1 P2 P3 P4 *
 | |
| **
 | |
| ** The P3 register contains an integer record number.  Call this
 | |
| ** record number R.  The P4 register contains an index key created
 | |
| ** using MakeIdxRec.  Call it K.
 | |
| **
 | |
| ** P1 is an index.  So it has no data and its key consists of a
 | |
| ** record generated by OP_MakeRecord where the last field is the 
 | |
| ** rowid of the entry that the index refers to.
 | |
| ** 
 | |
| ** This instruction asks if there is an entry in P1 where the
 | |
| ** fields matches K but the rowid is different from R.
 | |
| ** If there is no such entry, then there is an immediate
 | |
| ** jump to P2.  If any entry does exist where the index string
 | |
| ** matches K but the record number is not R, then the record
 | |
| ** number for that entry is written into P3 and control
 | |
| ** falls through to the next instruction.
 | |
| **
 | |
| ** See also: NotFound, NotExists, Found
 | |
| */
 | |
| case OP_IsUnique: {        /* jump, in3 */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pCx;
 | |
|   BtCursor *pCrsr;
 | |
|   Mem *pK;
 | |
|   i64 R;
 | |
| 
 | |
|   /* Pop the value R off the top of the stack
 | |
|   */
 | |
|   assert( pOp->p4type==P4_INT32 );
 | |
|   assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
 | |
|   pK = &p->aMem[pOp->p4.i];
 | |
|   sqlite3VdbeMemIntegerify(pIn3);
 | |
|   R = pIn3->u.i;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pCx = p->apCsr[i];
 | |
|   assert( pCx!=0 );
 | |
|   pCrsr = pCx->pCursor;
 | |
|   if( pCrsr!=0 ){
 | |
|     int res;
 | |
|     i64 v;         /* The record number on the P1 entry that matches K */
 | |
|     char *zKey;    /* The value of K */
 | |
|     int nKey;      /* Number of bytes in K */
 | |
|     int len;       /* Number of bytes in K without the rowid at the end */
 | |
|     int szRowid;   /* Size of the rowid column at the end of zKey */
 | |
| 
 | |
|     /* Make sure K is a string and make zKey point to K
 | |
|     */
 | |
|     assert( pK->flags & MEM_Blob );
 | |
|     zKey = pK->z;
 | |
|     nKey = pK->n;
 | |
| 
 | |
|     szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey);
 | |
|     len = nKey-szRowid;
 | |
| 
 | |
|     /* Search for an entry in P1 where all but the last four bytes match K.
 | |
|     ** If there is no such entry, jump immediately to P2.
 | |
|     */
 | |
|     assert( pCx->deferredMoveto==0 );
 | |
|     pCx->cacheStatus = CACHE_STALE;
 | |
|     rc = sqlite3BtreeMoveto(pCrsr, zKey, len, 0, &res);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     if( res<0 ){
 | |
|       rc = sqlite3BtreeNext(pCrsr, &res);
 | |
|       if( res ){
 | |
|         pc = pOp->p2 - 1;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     rc = sqlite3VdbeIdxKeyCompare(pCx, len, (u8*)zKey, &res); 
 | |
|     if( rc!=SQLITE_OK ) goto abort_due_to_error;
 | |
|     if( res>0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* At this point, pCrsr is pointing to an entry in P1 where all but
 | |
|     ** the final entry (the rowid) matches K.  Check to see if the
 | |
|     ** final rowid column is different from R.  If it equals R then jump
 | |
|     ** immediately to P2.
 | |
|     */
 | |
|     rc = sqlite3VdbeIdxRowid(pCrsr, &v);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     if( v==R ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* The final varint of the key is different from R.  Store it back
 | |
|     ** into register R3.  (The record number of an entry that violates
 | |
|     ** a UNIQUE constraint.)
 | |
|     */
 | |
|     pIn3->u.i = v;
 | |
|     assert( pIn3->flags&MEM_Int );
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: NotExists P1 P2 P3 * *
 | |
| **
 | |
| ** Use the content of register P3 as a integer key.  If a record 
 | |
| ** with that key does not exist in table of P1, then jump to P2. 
 | |
| ** If the record does exist, then fall thru.  The cursor is left 
 | |
| ** pointing to the record if it exists.
 | |
| **
 | |
| ** The difference between this operation and NotFound is that this
 | |
| ** operation assumes the key is an integer and that P1 is a table whereas
 | |
| ** NotFound assumes key is a blob constructed from MakeRecord and
 | |
| ** P1 is an index.
 | |
| **
 | |
| ** See also: Found, MoveTo, NotFound, IsUnique
 | |
| */
 | |
| case OP_NotExists: {        /* jump, in3 */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     int res;
 | |
|     u64 iKey;
 | |
|     assert( pIn3->flags & MEM_Int );
 | |
|     assert( p->apCsr[i]->isTable );
 | |
|     iKey = intToKey(pIn3->u.i);
 | |
|     rc = sqlite3BtreeMoveto(pCrsr, 0, iKey, 0,&res);
 | |
|     pC->lastRowid = pIn3->u.i;
 | |
|     pC->rowidIsValid = res==0;
 | |
|     pC->nullRow = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
 | |
|     ** processing is about to abort so we really do not care whether or not
 | |
|     ** the following jump is taken.  (In other words, do not stress over
 | |
|     ** the error that valgrind sometimes shows on the next statement when
 | |
|     ** running ioerr.test and similar failure-recovery test scripts.) */
 | |
|     if( res!=0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
|       assert( pC->rowidIsValid==0 );
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Sequence P1 P2 * * *
 | |
| **
 | |
| ** Find the next available sequence number for cursor P1.
 | |
| ** Write the sequence number into register P2.
 | |
| ** The sequence number on the cursor is incremented after this
 | |
| ** instruction.  
 | |
| */
 | |
| case OP_Sequence: {           /* out2-prerelease */
 | |
|   int i = pOp->p1;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   pOut->u.i = p->apCsr[i]->seqCount++;
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Opcode: NewRowid P1 P2 P3 * *
 | |
| **
 | |
| ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
 | |
| ** The record number is not previously used as a key in the database
 | |
| ** table that cursor P1 points to.  The new record number is written
 | |
| ** written to register P2.
 | |
| **
 | |
| ** If P3>0 then P3 is a register that holds the largest previously
 | |
| ** generated record number.  No new record numbers are allowed to be less
 | |
| ** than this value.  When this value reaches its maximum, a SQLITE_FULL
 | |
| ** error is generated.  The P3 register is updated with the generated
 | |
| ** record number.  This P3 mechanism is used to help implement the
 | |
| ** AUTOINCREMENT feature.
 | |
| */
 | |
| case OP_NewRowid: {           /* out2-prerelease */
 | |
|   int i = pOp->p1;
 | |
|   i64 v = 0;
 | |
|   Cursor *pC;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pC = p->apCsr[i])->pCursor==0 ){
 | |
|     /* The zero initialization above is all that is needed */
 | |
|   }else{
 | |
|     /* The next rowid or record number (different terms for the same
 | |
|     ** thing) is obtained in a two-step algorithm.
 | |
|     **
 | |
|     ** First we attempt to find the largest existing rowid and add one
 | |
|     ** to that.  But if the largest existing rowid is already the maximum
 | |
|     ** positive integer, we have to fall through to the second
 | |
|     ** probabilistic algorithm
 | |
|     **
 | |
|     ** The second algorithm is to select a rowid at random and see if
 | |
|     ** it already exists in the table.  If it does not exist, we have
 | |
|     ** succeeded.  If the random rowid does exist, we select a new one
 | |
|     ** and try again, up to 1000 times.
 | |
|     **
 | |
|     ** For a table with less than 2 billion entries, the probability
 | |
|     ** of not finding a unused rowid is about 1.0e-300.  This is a 
 | |
|     ** non-zero probability, but it is still vanishingly small and should
 | |
|     ** never cause a problem.  You are much, much more likely to have a
 | |
|     ** hardware failure than for this algorithm to fail.
 | |
|     **
 | |
|     ** The analysis in the previous paragraph assumes that you have a good
 | |
|     ** source of random numbers.  Is a library function like lrand48()
 | |
|     ** good enough?  Maybe. Maybe not. It's hard to know whether there
 | |
|     ** might be subtle bugs is some implementations of lrand48() that
 | |
|     ** could cause problems. To avoid uncertainty, SQLite uses its own 
 | |
|     ** random number generator based on the RC4 algorithm.
 | |
|     **
 | |
|     ** To promote locality of reference for repetitive inserts, the
 | |
|     ** first few attempts at chosing a random rowid pick values just a little
 | |
|     ** larger than the previous rowid.  This has been shown experimentally
 | |
|     ** to double the speed of the COPY operation.
 | |
|     */
 | |
|     int res, rx=SQLITE_OK, cnt;
 | |
|     i64 x;
 | |
|     cnt = 0;
 | |
|     if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
 | |
|           BTREE_INTKEY ){
 | |
|       rc = SQLITE_CORRUPT_BKPT;
 | |
|       goto abort_due_to_error;
 | |
|     }
 | |
|     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
 | |
|     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
 | |
| 
 | |
| #ifdef SQLITE_32BIT_ROWID
 | |
| #   define MAX_ROWID 0x7fffffff
 | |
| #else
 | |
|     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
 | |
|     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
 | |
|     ** to provide the constant while making all compilers happy.
 | |
|     */
 | |
| #   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
 | |
| #endif
 | |
| 
 | |
|     if( !pC->useRandomRowid ){
 | |
|       if( pC->nextRowidValid ){
 | |
|         v = pC->nextRowid;
 | |
|       }else{
 | |
|         rc = sqlite3BtreeLast(pC->pCursor, &res);
 | |
|         if( rc!=SQLITE_OK ){
 | |
|           goto abort_due_to_error;
 | |
|         }
 | |
|         if( res ){
 | |
|           v = 1;
 | |
|         }else{
 | |
|           sqlite3BtreeKeySize(pC->pCursor, &v);
 | |
|           v = keyToInt(v);
 | |
|           if( v==MAX_ROWID ){
 | |
|             pC->useRandomRowid = 1;
 | |
|           }else{
 | |
|             v++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|       if( pOp->p3 ){
 | |
|         Mem *pMem;
 | |
|         assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
 | |
|         pMem = &p->aMem[pOp->p3];
 | |
| 	REGISTER_TRACE(pOp->p3, pMem);
 | |
|         sqlite3VdbeMemIntegerify(pMem);
 | |
|         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
 | |
|         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
 | |
|           rc = SQLITE_FULL;
 | |
|           goto abort_due_to_error;
 | |
|         }
 | |
|         if( v<pMem->u.i+1 ){
 | |
|           v = pMem->u.i + 1;
 | |
|         }
 | |
|         pMem->u.i = v;
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       if( v<MAX_ROWID ){
 | |
|         pC->nextRowidValid = 1;
 | |
|         pC->nextRowid = v+1;
 | |
|       }else{
 | |
|         pC->nextRowidValid = 0;
 | |
|       }
 | |
|     }
 | |
|     if( pC->useRandomRowid ){
 | |
|       assert( pOp->p3==0 );  /* SQLITE_FULL must have occurred prior to this */
 | |
|       v = db->priorNewRowid;
 | |
|       cnt = 0;
 | |
|       do{
 | |
|         if( cnt==0 && (v&0xffffff)==v ){
 | |
|           v++;
 | |
|         }else{
 | |
|           sqlite3Randomness(sizeof(v), &v);
 | |
|           if( cnt<5 ) v &= 0xffffff;
 | |
|         }
 | |
|         if( v==0 ) continue;
 | |
|         x = intToKey(v);
 | |
|         rx = sqlite3BtreeMoveto(pC->pCursor, 0, (u64)x, 0, &res);
 | |
|         cnt++;
 | |
|       }while( cnt<100 && rx==SQLITE_OK && res==0 );
 | |
|       db->priorNewRowid = v;
 | |
|       if( rx==SQLITE_OK && res==0 ){
 | |
|         rc = SQLITE_FULL;
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|     }
 | |
|     pC->rowidIsValid = 0;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   pOut->u.i = v;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Insert P1 P2 P3 P4 P5
 | |
| **
 | |
| ** Write an entry into the table of cursor P1.  A new entry is
 | |
| ** created if it doesn't already exist or the data for an existing
 | |
| ** entry is overwritten.  The data is the value stored register
 | |
| ** number P2. The key is stored in register P3. The key must
 | |
| ** be an integer.
 | |
| **
 | |
| ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
 | |
| ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
 | |
| ** then rowid is stored for subsequent return by the
 | |
| ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
 | |
| **
 | |
| ** Parameter P4 may point to a string containing the table-name, or
 | |
| ** may be NULL. If it is not NULL, then the update-hook 
 | |
| ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
 | |
| **
 | |
| ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
 | |
| ** allocated, then ownership of P2 is transferred to the pseudo-cursor
 | |
| ** and register P2 becomes ephemeral.  If the cursor is changed, the
 | |
| ** value of register P2 will then change.  Make sure this does not
 | |
| ** cause any problems.)
 | |
| **
 | |
| ** This instruction only works on tables.  The equivalent instruction
 | |
| ** for indices is OP_IdxInsert.
 | |
| */
 | |
| case OP_Insert: {
 | |
|   Mem *pData = &p->aMem[pOp->p2];
 | |
|   Mem *pKey = &p->aMem[pOp->p3];
 | |
| 
 | |
|   i64 iKey;   /* The integer ROWID or key for the record to be inserted */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   assert( pC->pCursor!=0 || pC->pseudoTable );
 | |
|   assert( pKey->flags & MEM_Int );
 | |
|   assert( pC->isTable );
 | |
|   REGISTER_TRACE(pOp->p2, pData);
 | |
|   REGISTER_TRACE(pOp->p3, pKey);
 | |
| 
 | |
|   iKey = intToKey(pKey->u.i);
 | |
|   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
 | |
|   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
 | |
|   if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
 | |
|     pC->nextRowidValid = 0;
 | |
|   }
 | |
|   if( pData->flags & MEM_Null ){
 | |
|     pData->z = 0;
 | |
|     pData->n = 0;
 | |
|   }else{
 | |
|     assert( pData->flags & (MEM_Blob|MEM_Str) );
 | |
|   }
 | |
|   if( pC->pseudoTable ){
 | |
|     sqlite3_free(pC->pData);
 | |
|     pC->iKey = iKey;
 | |
|     pC->nData = pData->n;
 | |
|     if( pData->flags & MEM_Dyn ){
 | |
|       pC->pData = pData->z;
 | |
|       pData->flags &= ~MEM_Dyn;
 | |
|       pData->flags |= MEM_Ephem;
 | |
|     }else{
 | |
|       pC->pData = sqlite3_malloc( pC->nData+2 );
 | |
|       if( !pC->pData ) goto no_mem;
 | |
|       memcpy(pC->pData, pData->z, pC->nData);
 | |
|       pC->pData[pC->nData] = 0;
 | |
|       pC->pData[pC->nData+1] = 0;
 | |
|     }
 | |
|     pC->nullRow = 0;
 | |
|   }else{
 | |
|     int nZero;
 | |
|     if( pData->flags & MEM_Zero ){
 | |
|       nZero = pData->u.i;
 | |
|     }else{
 | |
|       nZero = 0;
 | |
|     }
 | |
|     rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
 | |
|                             pData->z, pData->n, nZero,
 | |
|                             pOp->p5 & OPFLAG_APPEND);
 | |
|   }
 | |
|   
 | |
|   pC->rowidIsValid = 0;
 | |
|   pC->deferredMoveto = 0;
 | |
|   pC->cacheStatus = CACHE_STALE;
 | |
| 
 | |
|   /* Invoke the update-hook if required. */
 | |
|   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
 | |
|     const char *zDb = db->aDb[pC->iDb].zName;
 | |
|     const char *zTbl = pOp->p4.z;
 | |
|     int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
 | |
|     assert( pC->isTable );
 | |
|     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
 | |
|     assert( pC->iDb>=0 );
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Delete P1 P2 * P4 *
 | |
| **
 | |
| ** Delete the record at which the P1 cursor is currently pointing.
 | |
| **
 | |
| ** The cursor will be left pointing at either the next or the previous
 | |
| ** record in the table. If it is left pointing at the next record, then
 | |
| ** the next Next instruction will be a no-op.  Hence it is OK to delete
 | |
| ** a record from within an Next loop.
 | |
| **
 | |
| ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
 | |
| ** incremented (otherwise not).
 | |
| **
 | |
| ** P1 must not be pseudo-table.  It has to be a real table with
 | |
| ** multiple rows.
 | |
| **
 | |
| ** If P4 is not NULL, then it is the name of the table that P1 is
 | |
| ** pointing to.  The update hook will be invoked, if it exists.
 | |
| ** If P4 is not NULL then the P1 cursor must have been positioned
 | |
| ** using OP_NotFound prior to invoking this opcode.
 | |
| */
 | |
| case OP_Delete: {
 | |
|   int i = pOp->p1;
 | |
|   i64 iKey;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
 | |
| 
 | |
|   /* If the update-hook will be invoked, set iKey to the rowid of the
 | |
|   ** row being deleted.
 | |
|   */
 | |
|   if( db->xUpdateCallback && pOp->p4.z ){
 | |
|     assert( pC->isTable );
 | |
|     assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
 | |
|     iKey = pC->lastRowid;
 | |
|   }
 | |
| 
 | |
|   rc = sqlite3VdbeCursorMoveto(pC);
 | |
|   if( rc ) goto abort_due_to_error;
 | |
|   rc = sqlite3BtreeDelete(pC->pCursor);
 | |
|   pC->nextRowidValid = 0;
 | |
|   pC->cacheStatus = CACHE_STALE;
 | |
| 
 | |
|   /* Invoke the update-hook if required. */
 | |
|   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
 | |
|     const char *zDb = db->aDb[pC->iDb].zName;
 | |
|     const char *zTbl = pOp->p4.z;
 | |
|     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
 | |
|     assert( pC->iDb>=0 );
 | |
|   }
 | |
|   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ResetCount P1 * *
 | |
| **
 | |
| ** This opcode resets the VMs internal change counter to 0. If P1 is true,
 | |
| ** then the value of the change counter is copied to the database handle
 | |
| ** change counter (returned by subsequent calls to sqlite3_changes())
 | |
| ** before it is reset. This is used by trigger programs.
 | |
| */
 | |
| case OP_ResetCount: {
 | |
|   if( pOp->p1 ){
 | |
|     sqlite3VdbeSetChanges(db, p->nChange);
 | |
|   }
 | |
|   p->nChange = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: RowData P1 P2 * * *
 | |
| **
 | |
| ** Write into register P2 the complete row data for cursor P1.
 | |
| ** There is no interpretation of the data.  
 | |
| ** It is just copied onto the P2 register exactly as 
 | |
| ** it is found in the database file.
 | |
| **
 | |
| ** If the P1 cursor must be pointing to a valid row (not a NULL row)
 | |
| ** of a real table, not a pseudo-table.
 | |
| */
 | |
| /* Opcode: RowKey P1 P2 * * *
 | |
| **
 | |
| ** Write into register P2 the complete row key for cursor P1.
 | |
| ** There is no interpretation of the data.  
 | |
| ** The key is copied onto the P3 register exactly as 
 | |
| ** it is found in the database file.
 | |
| **
 | |
| ** If the P1 cursor must be pointing to a valid row (not a NULL row)
 | |
| ** of a real table, not a pseudo-table.
 | |
| */
 | |
| case OP_RowKey:
 | |
| case OP_RowData: {
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   u32 n;
 | |
| 
 | |
|   pOut = &p->aMem[pOp->p2];
 | |
| 
 | |
|   /* Note that RowKey and RowData are really exactly the same instruction */
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC->isTable || pOp->opcode==OP_RowKey );
 | |
|   assert( pC->isIndex || pOp->opcode==OP_RowData );
 | |
|   assert( pC!=0 );
 | |
|   assert( pC->nullRow==0 );
 | |
|   assert( pC->pseudoTable==0 );
 | |
|   assert( pC->pCursor!=0 );
 | |
|   pCrsr = pC->pCursor;
 | |
|   rc = sqlite3VdbeCursorMoveto(pC);
 | |
|   if( rc ) goto abort_due_to_error;
 | |
|   if( pC->isIndex ){
 | |
|     i64 n64;
 | |
|     assert( !pC->isTable );
 | |
|     sqlite3BtreeKeySize(pCrsr, &n64);
 | |
|     if( n64>SQLITE_MAX_LENGTH ){
 | |
|       goto too_big;
 | |
|     }
 | |
|     n = n64;
 | |
|   }else{
 | |
|     sqlite3BtreeDataSize(pCrsr, &n);
 | |
|     if( n>SQLITE_MAX_LENGTH ){
 | |
|       goto too_big;
 | |
|     }
 | |
|   }
 | |
|   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
 | |
|     goto no_mem;
 | |
|   }
 | |
|   pOut->n = n;
 | |
|   MemSetTypeFlag(pOut, MEM_Blob);
 | |
|   if( pC->isIndex ){
 | |
|     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
 | |
|   }else{
 | |
|     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
 | |
|   }
 | |
|   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
 | |
|   UPDATE_MAX_BLOBSIZE(pOut);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Rowid P1 P2 * * *
 | |
| **
 | |
| ** Store in register P2 an integer which is the key of the table entry that
 | |
| ** P1 is currently point to.  If p2==0 then push the integer.
 | |
| */
 | |
| case OP_Rowid: {                 /* out2-prerelease */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   i64 v;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   rc = sqlite3VdbeCursorMoveto(pC);
 | |
|   if( rc ) goto abort_due_to_error;
 | |
|   if( pC->rowidIsValid ){
 | |
|     v = pC->lastRowid;
 | |
|   }else if( pC->pseudoTable ){
 | |
|     v = keyToInt(pC->iKey);
 | |
|   }else if( pC->nullRow ){
 | |
|     /* Leave the rowid set to a NULL */
 | |
|     break;
 | |
|   }else{
 | |
|     assert( pC->pCursor!=0 );
 | |
|     sqlite3BtreeKeySize(pC->pCursor, &v);
 | |
|     v = keyToInt(v);
 | |
|   }
 | |
|   pOut->u.i = v;
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: NullRow P1 * * * *
 | |
| **
 | |
| ** Move the cursor P1 to a null row.  Any OP_Column operations
 | |
| ** that occur while the cursor is on the null row will always
 | |
| ** write a NULL.
 | |
| */
 | |
| case OP_NullRow: {
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   pC->nullRow = 1;
 | |
|   pC->rowidIsValid = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Last P1 P2 * * *
 | |
| **
 | |
| ** The next use of the Rowid or Column or Next instruction for P1 
 | |
| ** will refer to the last entry in the database table or index.
 | |
| ** If the table or index is empty and P2>0, then jump immediately to P2.
 | |
| ** If P2 is 0 or if the table or index is not empty, fall through
 | |
| ** to the following instruction.
 | |
| */
 | |
| case OP_Last: {        /* jump */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   int res;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   pCrsr = pC->pCursor;
 | |
|   assert( pCrsr!=0 );
 | |
|   rc = sqlite3BtreeLast(pCrsr, &res);
 | |
|   pC->nullRow = res;
 | |
|   pC->deferredMoveto = 0;
 | |
|   pC->cacheStatus = CACHE_STALE;
 | |
|   if( res && pOp->p2>0 ){
 | |
|     pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Opcode: Sort P1 P2 * * *
 | |
| **
 | |
| ** This opcode does exactly the same thing as OP_Rewind except that
 | |
| ** it increments an undocumented global variable used for testing.
 | |
| **
 | |
| ** Sorting is accomplished by writing records into a sorting index,
 | |
| ** then rewinding that index and playing it back from beginning to
 | |
| ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
 | |
| ** rewinding so that the global variable will be incremented and
 | |
| ** regression tests can determine whether or not the optimizer is
 | |
| ** correctly optimizing out sorts.
 | |
| */
 | |
| case OP_Sort: {        /* jump */
 | |
| #ifdef SQLITE_TEST
 | |
|   sqlite3_sort_count++;
 | |
|   sqlite3_search_count--;
 | |
| #endif
 | |
|   /* Fall through into OP_Rewind */
 | |
| }
 | |
| /* Opcode: Rewind P1 P2 * * *
 | |
| **
 | |
| ** The next use of the Rowid or Column or Next instruction for P1 
 | |
| ** will refer to the first entry in the database table or index.
 | |
| ** If the table or index is empty and P2>0, then jump immediately to P2.
 | |
| ** If P2 is 0 or if the table or index is not empty, fall through
 | |
| ** to the following instruction.
 | |
| */
 | |
| case OP_Rewind: {        /* jump */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   int res;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   pC = p->apCsr[i];
 | |
|   assert( pC!=0 );
 | |
|   if( (pCrsr = pC->pCursor)!=0 ){
 | |
|     rc = sqlite3BtreeFirst(pCrsr, &res);
 | |
|     pC->atFirst = res==0;
 | |
|     pC->deferredMoveto = 0;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }else{
 | |
|     res = 1;
 | |
|   }
 | |
|   pC->nullRow = res;
 | |
|   assert( pOp->p2>0 && pOp->p2<p->nOp );
 | |
|   if( res ){
 | |
|     pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Next P1 P2 * * *
 | |
| **
 | |
| ** Advance cursor P1 so that it points to the next key/data pair in its
 | |
| ** table or index.  If there are no more key/value pairs then fall through
 | |
| ** to the following instruction.  But if the cursor advance was successful,
 | |
| ** jump immediately to P2.
 | |
| **
 | |
| ** The P1 cursor must be for a real table, not a pseudo-table.
 | |
| **
 | |
| ** See also: Prev
 | |
| */
 | |
| /* Opcode: Prev P1 P2 * * *
 | |
| **
 | |
| ** Back up cursor P1 so that it points to the previous key/data pair in its
 | |
| ** table or index.  If there is no previous key/value pairs then fall through
 | |
| ** to the following instruction.  But if the cursor backup was successful,
 | |
| ** jump immediately to P2.
 | |
| **
 | |
| ** The P1 cursor must be for a real table, not a pseudo-table.
 | |
| */
 | |
| case OP_Prev:          /* jump */
 | |
| case OP_Next: {        /* jump */
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
| 
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
 | |
|   pC = p->apCsr[pOp->p1];
 | |
|   if( pC==0 ){
 | |
|     break;  /* See ticket #2273 */
 | |
|   }
 | |
|   pCrsr = pC->pCursor;
 | |
|   assert( pCrsr );
 | |
|   if( pC->nullRow==0 ){
 | |
|     int res = 1;
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
 | |
|                                 sqlite3BtreePrevious(pCrsr, &res);
 | |
|     pC->nullRow = res;
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|     if( res==0 ){
 | |
|       pc = pOp->p2 - 1;
 | |
| #ifdef SQLITE_TEST
 | |
|       sqlite3_search_count++;
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
|   pC->rowidIsValid = 0;
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxInsert P1 P2 P3 * *
 | |
| **
 | |
| ** Register P2 holds a SQL index key made using the
 | |
| ** MakeIdxRec instructions.  This opcode writes that key
 | |
| ** into the index P1.  Data for the entry is nil.
 | |
| **
 | |
| ** P3 is a flag that provides a hint to the b-tree layer that this
 | |
| ** insert is likely to be an append.
 | |
| **
 | |
| ** This instruction only works for indices.  The equivalent instruction
 | |
| ** for tables is OP_Insert.
 | |
| */
 | |
| case OP_IdxInsert: {        /* in2 */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   assert( pIn2->flags & MEM_Blob );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     assert( pC->isTable==0 );
 | |
|     rc = ExpandBlob(pIn2);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       int nKey = pIn2->n;
 | |
|       const char *zKey = pIn2->z;
 | |
|       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
 | |
|       assert( pC->deferredMoveto==0 );
 | |
|       pC->cacheStatus = CACHE_STALE;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxDelete P1 P2 * * *
 | |
| **
 | |
| ** The content of register P2 is an index key built using the 
 | |
| ** MakeIdxRec opcode. This opcode removes that entry from the 
 | |
| ** index opened by cursor P1.
 | |
| */
 | |
| case OP_IdxDelete: {        /* in2 */
 | |
|   int i = pOp->p1;
 | |
|   Cursor *pC;
 | |
|   BtCursor *pCrsr;
 | |
|   assert( pIn2->flags & MEM_Blob );
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     int res;
 | |
|     rc = sqlite3BtreeMoveto(pCrsr, pIn2->z, pIn2->n, 0, &res);
 | |
|     if( rc==SQLITE_OK && res==0 ){
 | |
|       rc = sqlite3BtreeDelete(pCrsr);
 | |
|     }
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     pC->cacheStatus = CACHE_STALE;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxRowid P1 P2 * * *
 | |
| **
 | |
| ** Write into register P2 an integer which is the last entry in the record at
 | |
| ** the end of the index key pointed to by cursor P1.  This integer should be
 | |
| ** the rowid of the table entry to which this index entry points.
 | |
| **
 | |
| ** See also: Rowid, MakeIdxRec.
 | |
| */
 | |
| case OP_IdxRowid: {              /* out2-prerelease */
 | |
|   int i = pOp->p1;
 | |
|   BtCursor *pCrsr;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
 | |
|     i64 rowid;
 | |
| 
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     assert( pC->isTable==0 );
 | |
|     if( !pC->nullRow ){
 | |
|       rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         goto abort_due_to_error;
 | |
|       }
 | |
|       MemSetTypeFlag(pOut, MEM_Int);
 | |
|       pOut->u.i = rowid;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IdxGE P1 P2 P3 * P5
 | |
| **
 | |
| ** The value in register P3 is an index entry that omits the ROWID.  Compare
 | |
| ** this value against the index that P1 is currently pointing to.
 | |
| ** Ignore the ROWID on the P1 index.
 | |
| **
 | |
| ** If the P1 index entry is greater than or equal to the value in 
 | |
| ** register P3 then jump to P2.  Otherwise fall through to the next 
 | |
| ** instruction.
 | |
| **
 | |
| ** If P5 is non-zero then the value in register P3 is temporarily
 | |
| ** increased by an epsilon prior to the comparison.  This make the opcode work
 | |
| ** like IdxGT except that if the key from register P3 is a prefix of
 | |
| ** the key in the cursor, the result is false whereas it would be
 | |
| ** true with IdxGT.
 | |
| */
 | |
| /* Opcode: IdxLT P1 P2 P3 * P5
 | |
| **
 | |
| ** The value in register P3 is an index entry that omits the ROWID.  Compare
 | |
| ** the this value against the index that P1 is currently pointing to.
 | |
| ** Ignore the ROWID on the P1 index.
 | |
| **
 | |
| ** If the P1 index entry is less than the register P3 value
 | |
| ** then jump to P2.  Otherwise fall through to the next instruction.
 | |
| **
 | |
| ** If P5 is non-zero then the
 | |
| ** index taken from register P3 is temporarily increased by
 | |
| ** an epsilon prior to the comparison.  This makes the opcode work
 | |
| ** like IdxLE.
 | |
| */
 | |
| case OP_IdxLT:          /* jump, in3 */
 | |
| case OP_IdxGE: {        /* jump, in3 */
 | |
|   int i= pOp->p1;
 | |
|   Cursor *pC;
 | |
| 
 | |
|   assert( i>=0 && i<p->nCursor );
 | |
|   assert( p->apCsr[i]!=0 );
 | |
|   if( (pC = p->apCsr[i])->pCursor!=0 ){
 | |
|     int res;
 | |
|  
 | |
|     assert( pIn3->flags & MEM_Blob );  /* Created using OP_MakeRecord */
 | |
|     assert( pC->deferredMoveto==0 );
 | |
|     ExpandBlob(pIn3);
 | |
|     assert( pOp->p5==0 || pOp->p5==1 );
 | |
|     *pC->pIncrKey = pOp->p5;
 | |
|     rc = sqlite3VdbeIdxKeyCompare(pC, pIn3->n, (u8*)pIn3->z, &res);
 | |
|     *pC->pIncrKey = 0;
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       break;
 | |
|     }
 | |
|     if( pOp->opcode==OP_IdxLT ){
 | |
|       res = -res;
 | |
|     }else{
 | |
|       assert( pOp->opcode==OP_IdxGE );
 | |
|       res++;
 | |
|     }
 | |
|     if( res>0 ){
 | |
|       pc = pOp->p2 - 1 ;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Destroy P1 P2 P3 * *
 | |
| **
 | |
| ** Delete an entire database table or index whose root page in the database
 | |
| ** file is given by P1.
 | |
| **
 | |
| ** The table being destroyed is in the main database file if P3==0.  If
 | |
| ** P3==1 then the table to be clear is in the auxiliary database file
 | |
| ** that is used to store tables create using CREATE TEMPORARY TABLE.
 | |
| **
 | |
| ** If AUTOVACUUM is enabled then it is possible that another root page
 | |
| ** might be moved into the newly deleted root page in order to keep all
 | |
| ** root pages contiguous at the beginning of the database.  The former
 | |
| ** value of the root page that moved - its value before the move occurred -
 | |
| ** is stored in register P2.  If no page 
 | |
| ** movement was required (because the table being dropped was already 
 | |
| ** the last one in the database) then a zero is stored in register P2.
 | |
| ** If AUTOVACUUM is disabled then a zero is stored in register P2.
 | |
| **
 | |
| ** See also: Clear
 | |
| */
 | |
| case OP_Destroy: {     /* out2-prerelease */
 | |
|   int iMoved;
 | |
|   int iCnt;
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   Vdbe *pVdbe;
 | |
|   iCnt = 0;
 | |
|   for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
 | |
|     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
 | |
|       iCnt++;
 | |
|     }
 | |
|   }
 | |
| #else
 | |
|   iCnt = db->activeVdbeCnt;
 | |
| #endif
 | |
|   if( iCnt>1 ){
 | |
|     rc = SQLITE_LOCKED;
 | |
|     p->errorAction = OE_Abort;
 | |
|   }else{
 | |
|     int iDb = pOp->p3;
 | |
|     assert( iCnt==1 );
 | |
|     assert( (p->btreeMask & (1<<iDb))!=0 );
 | |
|     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
 | |
|     MemSetTypeFlag(pOut, MEM_Int);
 | |
|     pOut->u.i = iMoved;
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|     if( rc==SQLITE_OK && iMoved!=0 ){
 | |
|       sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: Clear P1 P2 *
 | |
| **
 | |
| ** Delete all contents of the database table or index whose root page
 | |
| ** in the database file is given by P1.  But, unlike Destroy, do not
 | |
| ** remove the table or index from the database file.
 | |
| **
 | |
| ** The table being clear is in the main database file if P2==0.  If
 | |
| ** P2==1 then the table to be clear is in the auxiliary database file
 | |
| ** that is used to store tables create using CREATE TEMPORARY TABLE.
 | |
| **
 | |
| ** See also: Destroy
 | |
| */
 | |
| case OP_Clear: {
 | |
|   assert( (p->btreeMask & (1<<pOp->p2))!=0 );
 | |
|   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: CreateTable P1 P2 * * *
 | |
| **
 | |
| ** Allocate a new table in the main database file if P1==0 or in the
 | |
| ** auxiliary database file if P1==1 or in an attached database if
 | |
| ** P1>1.  Write the root page number of the new table into
 | |
| ** register P2
 | |
| **
 | |
| ** The difference between a table and an index is this:  A table must
 | |
| ** have a 4-byte integer key and can have arbitrary data.  An index
 | |
| ** has an arbitrary key but no data.
 | |
| **
 | |
| ** See also: CreateIndex
 | |
| */
 | |
| /* Opcode: CreateIndex P1 P2 * * *
 | |
| **
 | |
| ** Allocate a new index in the main database file if P1==0 or in the
 | |
| ** auxiliary database file if P1==1 or in an attached database if
 | |
| ** P1>1.  Write the root page number of the new table into
 | |
| ** register P2.
 | |
| **
 | |
| ** See documentation on OP_CreateTable for additional information.
 | |
| */
 | |
| case OP_CreateIndex:            /* out2-prerelease */
 | |
| case OP_CreateTable: {          /* out2-prerelease */
 | |
|   int pgno;
 | |
|   int flags;
 | |
|   Db *pDb;
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
 | |
|   pDb = &db->aDb[pOp->p1];
 | |
|   assert( pDb->pBt!=0 );
 | |
|   if( pOp->opcode==OP_CreateTable ){
 | |
|     /* flags = BTREE_INTKEY; */
 | |
|     flags = BTREE_LEAFDATA|BTREE_INTKEY;
 | |
|   }else{
 | |
|     flags = BTREE_ZERODATA;
 | |
|   }
 | |
|   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     pOut->u.i = pgno;
 | |
|     MemSetTypeFlag(pOut, MEM_Int);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ParseSchema P1 P2 * P4 *
 | |
| **
 | |
| ** Read and parse all entries from the SQLITE_MASTER table of database P1
 | |
| ** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
 | |
| ** the parsing if P2 is true.  If P2 is false, then this routine is a
 | |
| ** no-op if the schema is not currently loaded.  In other words, if P2
 | |
| ** is false, the SQLITE_MASTER table is only parsed if the rest of the
 | |
| ** schema is already loaded into the symbol table.
 | |
| **
 | |
| ** This opcode invokes the parser to create a new virtual machine,
 | |
| ** then runs the new virtual machine.  It is thus a reentrant opcode.
 | |
| */
 | |
| case OP_ParseSchema: {
 | |
|   char *zSql;
 | |
|   int iDb = pOp->p1;
 | |
|   const char *zMaster;
 | |
|   InitData initData;
 | |
| 
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
 | |
|     break;
 | |
|   }
 | |
|   zMaster = SCHEMA_TABLE(iDb);
 | |
|   initData.db = db;
 | |
|   initData.iDb = pOp->p1;
 | |
|   initData.pzErrMsg = &p->zErrMsg;
 | |
|   zSql = sqlite3MPrintf(db,
 | |
|      "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
 | |
|      db->aDb[iDb].zName, zMaster, pOp->p4.z);
 | |
|   if( zSql==0 ) goto no_mem;
 | |
|   (void)sqlite3SafetyOff(db);
 | |
|   assert( db->init.busy==0 );
 | |
|   db->init.busy = 1;
 | |
|   assert( !db->mallocFailed );
 | |
|   rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
 | |
|   if( rc==SQLITE_ABORT ) rc = initData.rc;
 | |
|   sqlite3_free(zSql);
 | |
|   db->init.busy = 0;
 | |
|   (void)sqlite3SafetyOn(db);
 | |
|   if( rc==SQLITE_NOMEM ){
 | |
|     goto no_mem;
 | |
|   }
 | |
|   break;  
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
 | |
| /* Opcode: LoadAnalysis P1 * * * *
 | |
| **
 | |
| ** Read the sqlite_stat1 table for database P1 and load the content
 | |
| ** of that table into the internal index hash table.  This will cause
 | |
| ** the analysis to be used when preparing all subsequent queries.
 | |
| */
 | |
| case OP_LoadAnalysis: {
 | |
|   int iDb = pOp->p1;
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   rc = sqlite3AnalysisLoad(db, iDb);
 | |
|   break;  
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
 | |
| 
 | |
| /* Opcode: DropTable P1 * * P4 *
 | |
| **
 | |
| ** Remove the internal (in-memory) data structures that describe
 | |
| ** the table named P4 in database P1.  This is called after a table
 | |
| ** is dropped in order to keep the internal representation of the
 | |
| ** schema consistent with what is on disk.
 | |
| */
 | |
| case OP_DropTable: {
 | |
|   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: DropIndex P1 * * P4 *
 | |
| **
 | |
| ** Remove the internal (in-memory) data structures that describe
 | |
| ** the index named P4 in database P1.  This is called after an index
 | |
| ** is dropped in order to keep the internal representation of the
 | |
| ** schema consistent with what is on disk.
 | |
| */
 | |
| case OP_DropIndex: {
 | |
|   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: DropTrigger P1 * * P4 *
 | |
| **
 | |
| ** Remove the internal (in-memory) data structures that describe
 | |
| ** the trigger named P4 in database P1.  This is called after a trigger
 | |
| ** is dropped in order to keep the internal representation of the
 | |
| ** schema consistent with what is on disk.
 | |
| */
 | |
| case OP_DropTrigger: {
 | |
|   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
| /* Opcode: IntegrityCk P1 P2 P3 * P5
 | |
| **
 | |
| ** Do an analysis of the currently open database.  Store in
 | |
| ** register P1 the text of an error message describing any problems.
 | |
| ** If no problems are found, store a NULL in register P1.
 | |
| **
 | |
| ** The register P3 contains the maximum number of allowed errors.
 | |
| ** At most reg(P3) errors will be reported.
 | |
| ** In other words, the analysis stops as soon as reg(P1) errors are 
 | |
| ** seen.  Reg(P1) is updated with the number of errors remaining.
 | |
| **
 | |
| ** The root page numbers of all tables in the database are integer
 | |
| ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
 | |
| ** total.
 | |
| **
 | |
| ** If P5 is not zero, the check is done on the auxiliary database
 | |
| ** file, not the main database file.
 | |
| **
 | |
| ** This opcode is used to implement the integrity_check pragma.
 | |
| */
 | |
| case OP_IntegrityCk: {
 | |
|   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
 | |
|   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
 | |
|   int j;          /* Loop counter */
 | |
|   int nErr;       /* Number of errors reported */
 | |
|   char *z;        /* Text of the error report */
 | |
|   Mem *pnErr;     /* Register keeping track of errors remaining */
 | |
|   
 | |
|   nRoot = pOp->p2;
 | |
|   assert( nRoot>0 );
 | |
|   aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) );
 | |
|   if( aRoot==0 ) goto no_mem;
 | |
|   assert( pOp->p3>0 && pOp->p3<=p->nMem );
 | |
|   pnErr = &p->aMem[pOp->p3];
 | |
|   assert( (pnErr->flags & MEM_Int)!=0 );
 | |
|   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
 | |
|   pIn1 = &p->aMem[pOp->p1];
 | |
|   for(j=0; j<nRoot; j++){
 | |
|     aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
 | |
|   }
 | |
|   aRoot[j] = 0;
 | |
|   assert( pOp->p5<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<pOp->p5))!=0 );
 | |
|   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
 | |
|                                  pnErr->u.i, &nErr);
 | |
|   pnErr->u.i -= nErr;
 | |
|   sqlite3VdbeMemSetNull(pIn1);
 | |
|   if( nErr==0 ){
 | |
|     assert( z==0 );
 | |
|   }else{
 | |
|     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
 | |
|   }
 | |
|   UPDATE_MAX_BLOBSIZE(pIn1);
 | |
|   sqlite3VdbeChangeEncoding(pIn1, encoding);
 | |
|   sqlite3_free(aRoot);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| /* Opcode: FifoWrite P1 * * * *
 | |
| **
 | |
| ** Write the integer from register P1 into the Fifo.
 | |
| */
 | |
| case OP_FifoWrite: {        /* in1 */
 | |
|   if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
 | |
|     goto no_mem;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: FifoRead P1 P2 * * *
 | |
| **
 | |
| ** Attempt to read a single integer from the Fifo.  Store that
 | |
| ** integer in register P1.
 | |
| ** 
 | |
| ** If the Fifo is empty jump to P2.
 | |
| */
 | |
| case OP_FifoRead: {         /* jump */
 | |
|   CHECK_FOR_INTERRUPT;
 | |
|   assert( pOp->p1>0 && pOp->p1<=p->nMem );
 | |
|   pOut = &p->aMem[pOp->p1];
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
 | |
|     pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| /* Opcode: ContextPush * * * 
 | |
| **
 | |
| ** Save the current Vdbe context such that it can be restored by a ContextPop
 | |
| ** opcode. The context stores the last insert row id, the last statement change
 | |
| ** count, and the current statement change count.
 | |
| */
 | |
| case OP_ContextPush: {
 | |
|   int i = p->contextStackTop++;
 | |
|   Context *pContext;
 | |
| 
 | |
|   assert( i>=0 );
 | |
|   /* FIX ME: This should be allocated as part of the vdbe at compile-time */
 | |
|   if( i>=p->contextStackDepth ){
 | |
|     p->contextStackDepth = i+1;
 | |
|     p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
 | |
|                                           sizeof(Context)*(i+1));
 | |
|     if( p->contextStack==0 ) goto no_mem;
 | |
|   }
 | |
|   pContext = &p->contextStack[i];
 | |
|   pContext->lastRowid = db->lastRowid;
 | |
|   pContext->nChange = p->nChange;
 | |
|   pContext->sFifo = p->sFifo;
 | |
|   sqlite3VdbeFifoInit(&p->sFifo);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: ContextPop * * * 
 | |
| **
 | |
| ** Restore the Vdbe context to the state it was in when contextPush was last
 | |
| ** executed. The context stores the last insert row id, the last statement
 | |
| ** change count, and the current statement change count.
 | |
| */
 | |
| case OP_ContextPop: {
 | |
|   Context *pContext = &p->contextStack[--p->contextStackTop];
 | |
|   assert( p->contextStackTop>=0 );
 | |
|   db->lastRowid = pContext->lastRowid;
 | |
|   p->nChange = pContext->nChange;
 | |
|   sqlite3VdbeFifoClear(&p->sFifo);
 | |
|   p->sFifo = pContext->sFifo;
 | |
|   break;
 | |
| }
 | |
| #endif /* #ifndef SQLITE_OMIT_TRIGGER */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
| /* Opcode: MemMax P1 P2 * * *
 | |
| **
 | |
| ** Set the value of register P1 to the maximum of its current value
 | |
| ** and the value in register P2.
 | |
| **
 | |
| ** This instruction throws an error if the memory cell is not initially
 | |
| ** an integer.
 | |
| */
 | |
| case OP_MemMax: {        /* in1, in2 */
 | |
|   sqlite3VdbeMemIntegerify(pIn1);
 | |
|   sqlite3VdbeMemIntegerify(pIn2);
 | |
|   if( pIn1->u.i<pIn2->u.i){
 | |
|     pIn1->u.i = pIn2->u.i;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_AUTOINCREMENT */
 | |
| 
 | |
| /* Opcode: IfPos P1 P2 * * *
 | |
| **
 | |
| ** If the value of register P1 is 1 or greater, jump to P2.
 | |
| **
 | |
| ** It is illegal to use this instruction on a register that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_IfPos: {        /* jump, in1 */
 | |
|   assert( pIn1->flags&MEM_Int );
 | |
|   if( pIn1->u.i>0 ){
 | |
|      pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IfNeg P1 P2 * * *
 | |
| **
 | |
| ** If the value of register P1 is less than zero, jump to P2. 
 | |
| **
 | |
| ** It is illegal to use this instruction on a register that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_IfNeg: {        /* jump, in1 */
 | |
|   assert( pIn1->flags&MEM_Int );
 | |
|   if( pIn1->u.i<0 ){
 | |
|      pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: IfZero P1 P2 * * *
 | |
| **
 | |
| ** If the value of register P1 is exactly 0, jump to P2. 
 | |
| **
 | |
| ** It is illegal to use this instruction on a register that does
 | |
| ** not contain an integer.  An assertion fault will result if you try.
 | |
| */
 | |
| case OP_IfZero: {        /* jump, in1 */
 | |
|   assert( pIn1->flags&MEM_Int );
 | |
|   if( pIn1->u.i==0 ){
 | |
|      pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AggStep * P2 P3 P4 P5
 | |
| **
 | |
| ** Execute the step function for an aggregate.  The
 | |
| ** function has P5 arguments.   P4 is a pointer to the FuncDef
 | |
| ** structure that specifies the function.  Use register
 | |
| ** P3 as the accumulator.
 | |
| **
 | |
| ** The P5 arguments are taken from register P2 and its
 | |
| ** successors.
 | |
| */
 | |
| case OP_AggStep: {
 | |
|   int n = pOp->p5;
 | |
|   int i;
 | |
|   Mem *pMem, *pRec;
 | |
|   sqlite3_context ctx;
 | |
|   sqlite3_value **apVal;
 | |
| 
 | |
|   assert( n>=0 );
 | |
|   pRec = &p->aMem[pOp->p2];
 | |
|   apVal = p->apArg;
 | |
|   assert( apVal || n==0 );
 | |
|   for(i=0; i<n; i++, pRec++){
 | |
|     apVal[i] = pRec;
 | |
|     storeTypeInfo(pRec, encoding);
 | |
|   }
 | |
|   ctx.pFunc = pOp->p4.pFunc;
 | |
|   assert( pOp->p3>0 && pOp->p3<=p->nMem );
 | |
|   ctx.pMem = pMem = &p->aMem[pOp->p3];
 | |
|   pMem->n++;
 | |
|   ctx.s.flags = MEM_Null;
 | |
|   ctx.s.z = 0;
 | |
|   ctx.s.xDel = 0;
 | |
|   ctx.s.db = db;
 | |
|   ctx.isError = 0;
 | |
|   ctx.pColl = 0;
 | |
|   if( ctx.pFunc->needCollSeq ){
 | |
|     assert( pOp>p->aOp );
 | |
|     assert( pOp[-1].p4type==P4_COLLSEQ );
 | |
|     assert( pOp[-1].opcode==OP_CollSeq );
 | |
|     ctx.pColl = pOp[-1].p4.pColl;
 | |
|   }
 | |
|   (ctx.pFunc->xStep)(&ctx, n, apVal);
 | |
|   if( ctx.isError ){
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0);
 | |
|     rc = ctx.isError;
 | |
|   }
 | |
|   sqlite3VdbeMemRelease(&ctx.s);
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /* Opcode: AggFinal P1 P2 * P4 *
 | |
| **
 | |
| ** Execute the finalizer function for an aggregate.  P1 is
 | |
| ** the memory location that is the accumulator for the aggregate.
 | |
| **
 | |
| ** P2 is the number of arguments that the step function takes and
 | |
| ** P4 is a pointer to the FuncDef for this function.  The P2
 | |
| ** argument is not used by this opcode.  It is only there to disambiguate
 | |
| ** functions that can take varying numbers of arguments.  The
 | |
| ** P4 argument is only needed for the degenerate case where
 | |
| ** the step function was not previously called.
 | |
| */
 | |
| case OP_AggFinal: {
 | |
|   Mem *pMem;
 | |
|   assert( pOp->p1>0 && pOp->p1<=p->nMem );
 | |
|   pMem = &p->aMem[pOp->p1];
 | |
|   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
 | |
|   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
 | |
|   if( rc==SQLITE_ERROR ){
 | |
|     sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0);
 | |
|   }
 | |
|   UPDATE_MAX_BLOBSIZE(pMem);
 | |
|   if( sqlite3VdbeMemTooBig(pMem) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
 | |
| /* Opcode: Vacuum * * * * *
 | |
| **
 | |
| ** Vacuum the entire database.  This opcode will cause other virtual
 | |
| ** machines to be created and run.  It may not be called from within
 | |
| ** a transaction.
 | |
| */
 | |
| case OP_Vacuum: {
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
 | |
|   rc = sqlite3RunVacuum(&p->zErrMsg, db);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_AUTOVACUUM)
 | |
| /* Opcode: IncrVacuum P1 P2 * * *
 | |
| **
 | |
| ** Perform a single step of the incremental vacuum procedure on
 | |
| ** the P1 database. If the vacuum has finished, jump to instruction
 | |
| ** P2. Otherwise, fall through to the next instruction.
 | |
| */
 | |
| case OP_IncrVacuum: {        /* jump */
 | |
|   Btree *pBt;
 | |
| 
 | |
|   assert( pOp->p1>=0 && pOp->p1<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
 | |
|   pBt = db->aDb[pOp->p1].pBt;
 | |
|   rc = sqlite3BtreeIncrVacuum(pBt);
 | |
|   if( rc==SQLITE_DONE ){
 | |
|     pc = pOp->p2 - 1;
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Opcode: Expire P1 * * * *
 | |
| **
 | |
| ** Cause precompiled statements to become expired. An expired statement
 | |
| ** fails with an error code of SQLITE_SCHEMA if it is ever executed 
 | |
| ** (via sqlite3_step()).
 | |
| ** 
 | |
| ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
 | |
| ** then only the currently executing statement is affected. 
 | |
| */
 | |
| case OP_Expire: {
 | |
|   if( !pOp->p1 ){
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|   }else{
 | |
|     p->expired = 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /* Opcode: TableLock P1 P2 * P4 *
 | |
| **
 | |
| ** Obtain a lock on a particular table. This instruction is only used when
 | |
| ** the shared-cache feature is enabled. 
 | |
| **
 | |
| ** If P1 is not negative, then it is the index of the database
 | |
| ** in sqlite3.aDb[] and a read-lock is required. If P1 is negative, a 
 | |
| ** write-lock is required. In this case the index of the database is the 
 | |
| ** absolute value of P1 minus one (iDb = abs(P1) - 1;) and a write-lock is
 | |
| ** required. 
 | |
| **
 | |
| ** P2 contains the root-page of the table to lock.
 | |
| **
 | |
| ** P4 contains a pointer to the name of the table being locked. This is only
 | |
| ** used to generate an error message if the lock cannot be obtained.
 | |
| */
 | |
| case OP_TableLock: {
 | |
|   int p1 = pOp->p1; 
 | |
|   u8 isWriteLock = (p1<0);
 | |
|   if( isWriteLock ){
 | |
|     p1 = (-1*p1)-1;
 | |
|   }
 | |
|   assert( p1>=0 && p1<db->nDb );
 | |
|   assert( (p->btreeMask & (1<<p1))!=0 );
 | |
|   rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
 | |
|   if( rc==SQLITE_LOCKED ){
 | |
|     const char *z = pOp->p4.z;
 | |
|     sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0);
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_SHARED_CACHE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VBegin * * * P4 *
 | |
| **
 | |
| ** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method 
 | |
| ** for that table.
 | |
| */
 | |
| case OP_VBegin: {
 | |
|   rc = sqlite3VtabBegin(db, pOp->p4.pVtab);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VCreate P1 * * P4 *
 | |
| **
 | |
| ** P4 is the name of a virtual table in database P1. Call the xCreate method
 | |
| ** for that table.
 | |
| */
 | |
| case OP_VCreate: {
 | |
|   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VDestroy P1 * * P4 *
 | |
| **
 | |
| ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
 | |
| ** of that table.
 | |
| */
 | |
| case OP_VDestroy: {
 | |
|   p->inVtabMethod = 2;
 | |
|   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
 | |
|   p->inVtabMethod = 0;
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VOpen P1 * * P4 *
 | |
| **
 | |
| ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | |
| ** P1 is a cursor number.  This opcode opens a cursor to the virtual
 | |
| ** table and stores that cursor in P1.
 | |
| */
 | |
| case OP_VOpen: {
 | |
|   Cursor *pCur = 0;
 | |
|   sqlite3_vtab_cursor *pVtabCursor = 0;
 | |
| 
 | |
|   sqlite3_vtab *pVtab = pOp->p4.pVtab;
 | |
|   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
 | |
| 
 | |
|   assert(pVtab && pModule);
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   rc = pModule->xOpen(pVtab, &pVtabCursor);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   if( SQLITE_OK==rc ){
 | |
|     /* Initialise sqlite3_vtab_cursor base class */
 | |
|     pVtabCursor->pVtab = pVtab;
 | |
| 
 | |
|     /* Initialise vdbe cursor object */
 | |
|     pCur = allocateCursor(p, pOp->p1, -1);
 | |
|     if( pCur ){
 | |
|       pCur->pVtabCursor = pVtabCursor;
 | |
|       pCur->pModule = pVtabCursor->pVtab->pModule;
 | |
|     }else{
 | |
|       db->mallocFailed = 1;
 | |
|       pModule->xClose(pVtabCursor);
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VFilter P1 P2 P3 P4 *
 | |
| **
 | |
| ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
 | |
| ** the filtered result set is empty.
 | |
| **
 | |
| ** P4 is either NULL or a string that was generated by the xBestIndex
 | |
| ** method of the module.  The interpretation of the P4 string is left
 | |
| ** to the module implementation.
 | |
| **
 | |
| ** This opcode invokes the xFilter method on the virtual table specified
 | |
| ** by P1.  The integer query plan parameter to xFilter is stored in register
 | |
| ** P3. Register P3+1 stores the argc parameter to be passed to the
 | |
| ** xFilter method. Registers P3+2..P3+1+argc are the argc additional
 | |
| ** parametersneath additional parameters which are passed to
 | |
| ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
 | |
| **
 | |
| ** A jump is made to P2 if the result set after filtering would be empty.
 | |
| */
 | |
| case OP_VFilter: {   /* jump */
 | |
|   int nArg;
 | |
|   int iQuery;
 | |
|   const sqlite3_module *pModule;
 | |
|   Mem *pQuery = &p->aMem[pOp->p3];
 | |
|   Mem *pArgc = &pQuery[1];
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
| 
 | |
|   REGISTER_TRACE(pOp->p3, pQuery);
 | |
|   assert( pCur->pVtabCursor );
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
| 
 | |
|   /* Grab the index number and argc parameters */
 | |
|   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
 | |
|   nArg = pArgc->u.i;
 | |
|   iQuery = pQuery->u.i;
 | |
| 
 | |
|   /* Invoke the xFilter method */
 | |
|   {
 | |
|     int res = 0;
 | |
|     int i;
 | |
|     Mem **apArg = p->apArg;
 | |
|     for(i = 0; i<nArg; i++){
 | |
|       apArg[i] = &pArgc[i+1];
 | |
|       storeTypeInfo(apArg[i], 0);
 | |
|     }
 | |
| 
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     p->inVtabMethod = 1;
 | |
|     rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
 | |
|     p->inVtabMethod = 0;
 | |
|     if( rc==SQLITE_OK ){
 | |
|       res = pModule->xEof(pCur->pVtabCursor);
 | |
|     }
 | |
|     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|     if( res ){
 | |
|       pc = pOp->p2 - 1;
 | |
|     }
 | |
|   }
 | |
|   pCur->nullRow = 0;
 | |
| 
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VRowid P1 P2 * * *
 | |
| **
 | |
| ** Store into register P2  the rowid of
 | |
| ** the virtual-table that the P1 cursor is pointing to.
 | |
| */
 | |
| case OP_VRowid: {             /* out2-prerelease */
 | |
|   const sqlite3_module *pModule;
 | |
|   sqlite_int64 iRow;
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
| 
 | |
|   assert( pCur->pVtabCursor );
 | |
|   if( pCur->nullRow ){
 | |
|     break;
 | |
|   }
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
|   assert( pModule->xRowid );
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|   MemSetTypeFlag(pOut, MEM_Int);
 | |
|   pOut->u.i = iRow;
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VColumn P1 P2 P3 * *
 | |
| **
 | |
| ** Store the value of the P2-th column of
 | |
| ** the row of the virtual-table that the 
 | |
| ** P1 cursor is pointing to into register P3.
 | |
| */
 | |
| case OP_VColumn: {
 | |
|   const sqlite3_module *pModule;
 | |
|   Mem *pDest;
 | |
|   sqlite3_context sContext;
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
|   assert( pCur->pVtabCursor );
 | |
|   assert( pOp->p3>0 && pOp->p3<=p->nMem );
 | |
|   pDest = &p->aMem[pOp->p3];
 | |
|   if( pCur->nullRow ){
 | |
|     sqlite3VdbeMemSetNull(pDest);
 | |
|     break;
 | |
|   }
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
|   assert( pModule->xColumn );
 | |
|   memset(&sContext, 0, sizeof(sContext));
 | |
| 
 | |
|   /* The output cell may already have a buffer allocated. Move
 | |
|   ** the current contents to sContext.s so in case the user-function 
 | |
|   ** can use the already allocated buffer instead of allocating a 
 | |
|   ** new one.
 | |
|   */
 | |
|   sqlite3VdbeMemMove(&sContext.s, pDest);
 | |
|   MemSetTypeFlag(&sContext.s, MEM_Null);
 | |
| 
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
 | |
| 
 | |
|   /* Copy the result of the function to the P3 register. We
 | |
|   ** do this regardless of whether or not an error occured to ensure any
 | |
|   ** dynamic allocation in sContext.s (a Mem struct) is  released.
 | |
|   */
 | |
|   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
 | |
|   REGISTER_TRACE(pOp->p3, pDest);
 | |
|   sqlite3VdbeMemMove(pDest, &sContext.s);
 | |
|   UPDATE_MAX_BLOBSIZE(pDest);
 | |
| 
 | |
|   if( sqlite3SafetyOn(db) ){
 | |
|     goto abort_due_to_misuse;
 | |
|   }
 | |
|   if( sqlite3VdbeMemTooBig(pDest) ){
 | |
|     goto too_big;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VNext P1 P2 * * *
 | |
| **
 | |
| ** Advance virtual table P1 to the next row in its result set and
 | |
| ** jump to instruction P2.  Or, if the virtual table has reached
 | |
| ** the end of its result set, then fall through to the next instruction.
 | |
| */
 | |
| case OP_VNext: {   /* jump */
 | |
|   const sqlite3_module *pModule;
 | |
|   int res = 0;
 | |
| 
 | |
|   Cursor *pCur = p->apCsr[pOp->p1];
 | |
|   assert( pCur->pVtabCursor );
 | |
|   if( pCur->nullRow ){
 | |
|     break;
 | |
|   }
 | |
|   pModule = pCur->pVtabCursor->pVtab->pModule;
 | |
|   assert( pModule->xNext );
 | |
| 
 | |
|   /* Invoke the xNext() method of the module. There is no way for the
 | |
|   ** underlying implementation to return an error if one occurs during
 | |
|   ** xNext(). Instead, if an error occurs, true is returned (indicating that 
 | |
|   ** data is available) and the error code returned when xColumn or
 | |
|   ** some other method is next invoked on the save virtual table cursor.
 | |
|   */
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   p->inVtabMethod = 1;
 | |
|   rc = pModule->xNext(pCur->pVtabCursor);
 | |
|   p->inVtabMethod = 0;
 | |
|   if( rc==SQLITE_OK ){
 | |
|     res = pModule->xEof(pCur->pVtabCursor);
 | |
|   }
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|   if( !res ){
 | |
|     /* If there is data, jump to P2 */
 | |
|     pc = pOp->p2 - 1;
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VRename P1 * * P4 *
 | |
| **
 | |
| ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | |
| ** This opcode invokes the corresponding xRename method. The value
 | |
| ** in register P1 is passed as the zName argument to the xRename method.
 | |
| */
 | |
| case OP_VRename: {
 | |
|   sqlite3_vtab *pVtab = pOp->p4.pVtab;
 | |
|   Mem *pName = &p->aMem[pOp->p1];
 | |
|   assert( pVtab->pModule->xRename );
 | |
|   REGISTER_TRACE(pOp->p1, pName);
 | |
| 
 | |
|   Stringify(pName, encoding);
 | |
| 
 | |
|   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|   sqlite3VtabLock(pVtab);
 | |
|   rc = pVtab->pModule->xRename(pVtab, pName->z);
 | |
|   sqlite3VtabUnlock(db, pVtab);
 | |
|   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
| 
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Opcode: VUpdate P1 P2 P3 P4 *
 | |
| **
 | |
| ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
 | |
| ** This opcode invokes the corresponding xUpdate method. P2 values
 | |
| ** are contiguous memory cells starting at P3 to pass to the xUpdate 
 | |
| ** invocation. The value in register (P3+P2-1) corresponds to the 
 | |
| ** p2th element of the argv array passed to xUpdate.
 | |
| **
 | |
| ** The xUpdate method will do a DELETE or an INSERT or both.
 | |
| ** The argv[0] element (which corresponds to memory cell P3)
 | |
| ** is the rowid of a row to delete.  If argv[0] is NULL then no 
 | |
| ** deletion occurs.  The argv[1] element is the rowid of the new 
 | |
| ** row.  This can be NULL to have the virtual table select the new 
 | |
| ** rowid for itself.  The subsequent elements in the array are 
 | |
| ** the values of columns in the new row.
 | |
| **
 | |
| ** If P2==1 then no insert is performed.  argv[0] is the rowid of
 | |
| ** a row to delete.
 | |
| **
 | |
| ** P1 is a boolean flag. If it is set to true and the xUpdate call
 | |
| ** is successful, then the value returned by sqlite3_last_insert_rowid() 
 | |
| ** is set to the value of the rowid for the row just inserted.
 | |
| */
 | |
| case OP_VUpdate: {
 | |
|   sqlite3_vtab *pVtab = pOp->p4.pVtab;
 | |
|   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
 | |
|   int nArg = pOp->p2;
 | |
|   assert( pOp->p4type==P4_VTAB );
 | |
|   if( pModule->xUpdate==0 ){
 | |
|     sqlite3SetString(&p->zErrMsg, "read-only table", 0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     int i;
 | |
|     sqlite_int64 rowid;
 | |
|     Mem **apArg = p->apArg;
 | |
|     Mem *pX = &p->aMem[pOp->p3];
 | |
|     for(i=0; i<nArg; i++){
 | |
|       storeTypeInfo(pX, 0);
 | |
|       apArg[i] = pX;
 | |
|       pX++;
 | |
|     }
 | |
|     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
 | |
|     sqlite3VtabLock(pVtab);
 | |
|     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
 | |
|     sqlite3VtabUnlock(db, pVtab);
 | |
|     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
 | |
|     if( pOp->p1 && rc==SQLITE_OK ){
 | |
|       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
 | |
|       db->lastRowid = rowid;
 | |
|     }
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
| /* Opcode: Trace * * * P4 *
 | |
| **
 | |
| ** If tracing is enabled (by the sqlite3_trace()) interface, then
 | |
| ** the UTF-8 string contained in P4 is emitted on the trace callback.
 | |
| */
 | |
| case OP_Trace: {
 | |
|   if( pOp->p4.z ){
 | |
|     if( db->xTrace ){
 | |
|       db->xTrace(db->pTraceArg, pOp->p4.z);
 | |
|     }
 | |
| #ifdef SQLITE_DEBUG
 | |
|     if( (db->flags & SQLITE_SqlTrace)!=0 ){
 | |
|       sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
 | |
|     }
 | |
| #endif /* SQLITE_DEBUG */
 | |
|   }
 | |
|   break;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* Opcode: Noop * * * * *
 | |
| **
 | |
| ** Do nothing.  This instruction is often useful as a jump
 | |
| ** destination.
 | |
| */
 | |
| /*
 | |
| ** The magic Explain opcode are only inserted when explain==2 (which
 | |
| ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
 | |
| ** This opcode records information from the optimizer.  It is the
 | |
| ** the same as a no-op.  This opcodesnever appears in a real VM program.
 | |
| */
 | |
| default: {          /* This is really OP_Noop and OP_Explain */
 | |
|   break;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************
 | |
| ** The cases of the switch statement above this line should all be indented
 | |
| ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
 | |
| ** readability.  From this point on down, the normal indentation rules are
 | |
| ** restored.
 | |
| *****************************************************************************/
 | |
|     }
 | |
| 
 | |
| #ifdef VDBE_PROFILE
 | |
|     {
 | |
|       long long elapse = hwtime() - start;
 | |
|       pOp->cycles += elapse;
 | |
|       pOp->cnt++;
 | |
| #if 0
 | |
|         fprintf(stdout, "%10lld ", elapse);
 | |
|         sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* The following code adds nothing to the actual functionality
 | |
|     ** of the program.  It is only here for testing and debugging.
 | |
|     ** On the other hand, it does burn CPU cycles every time through
 | |
|     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
 | |
|     */
 | |
| #ifndef NDEBUG
 | |
|     assert( pc>=-1 && pc<p->nOp );
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
|     if( p->trace ){
 | |
|       if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
 | |
|       if( opProperty & OPFLG_OUT2_PRERELEASE ){
 | |
|         registerTrace(p->trace, pOp->p2, pOut);
 | |
|       }
 | |
|       if( opProperty & OPFLG_OUT3 ){
 | |
|         registerTrace(p->trace, pOp->p3, pOut);
 | |
|       }
 | |
|     }
 | |
| #endif  /* SQLITE_DEBUG */
 | |
| #endif  /* NDEBUG */
 | |
|   }  /* The end of the for(;;) loop the loops through opcodes */
 | |
| 
 | |
|   /* If we reach this point, it means that execution is finished with
 | |
|   ** an error of some kind.
 | |
|   */
 | |
| vdbe_error_halt:
 | |
|   assert( rc );
 | |
|   p->rc = rc;
 | |
|   rc = SQLITE_ERROR;
 | |
|   sqlite3VdbeHalt(p);
 | |
| 
 | |
|   /* This is the only way out of this procedure.  We have to
 | |
|   ** release the mutexes on btrees that were acquired at the
 | |
|   ** top. */
 | |
| vdbe_return:
 | |
|   sqlite3BtreeMutexArrayLeave(&p->aMutex);
 | |
|   return rc;
 | |
| 
 | |
|   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
 | |
|   ** is encountered.
 | |
|   */
 | |
| too_big:
 | |
|   sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0);
 | |
|   rc = SQLITE_TOOBIG;
 | |
|   goto vdbe_error_halt;
 | |
| 
 | |
|   /* Jump to here if a malloc() fails.
 | |
|   */
 | |
| no_mem:
 | |
|   db->mallocFailed = 1;
 | |
|   sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0);
 | |
|   rc = SQLITE_NOMEM;
 | |
|   goto vdbe_error_halt;
 | |
| 
 | |
|   /* Jump to here for an SQLITE_MISUSE error.
 | |
|   */
 | |
| abort_due_to_misuse:
 | |
|   rc = SQLITE_MISUSE;
 | |
|   /* Fall thru into abort_due_to_error */
 | |
| 
 | |
|   /* Jump to here for any other kind of fatal error.  The "rc" variable
 | |
|   ** should hold the error number.
 | |
|   */
 | |
| abort_due_to_error:
 | |
|   assert( p->zErrMsg==0 );
 | |
|   if( db->mallocFailed ) rc = SQLITE_NOMEM;
 | |
|   sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
 | |
|   goto vdbe_error_halt;
 | |
| 
 | |
|   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
 | |
|   ** flag.
 | |
|   */
 | |
| abort_due_to_interrupt:
 | |
|   assert( db->u1.isInterrupted );
 | |
|   rc = SQLITE_INTERRUPT;
 | |
|   p->rc = rc;
 | |
|   sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0);
 | |
|   goto vdbe_error_halt;
 | |
| }
 | |
| 
 | |
| /************** End of vdbe.c ************************************************/
 | |
| /************** Begin file vdbeblob.c ****************************************/
 | |
| /*
 | |
| ** 2007 May 1
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file contains code used to implement incremental BLOB I/O.
 | |
| **
 | |
| ** $Id: vdbeblob.c,v 1.20 2008/01/25 15:04:50 drh Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INCRBLOB
 | |
| 
 | |
| /*
 | |
| ** Valid sqlite3_blob* handles point to Incrblob structures.
 | |
| */
 | |
| typedef struct Incrblob Incrblob;
 | |
| struct Incrblob {
 | |
|   int flags;              /* Copy of "flags" passed to sqlite3_blob_open() */
 | |
|   int nByte;              /* Size of open blob, in bytes */
 | |
|   int iOffset;            /* Byte offset of blob in cursor data */
 | |
|   BtCursor *pCsr;         /* Cursor pointing at blob row */
 | |
|   sqlite3_stmt *pStmt;    /* Statement holding cursor open */
 | |
|   sqlite3 *db;            /* The associated database */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Open a blob handle.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_open(
 | |
|   sqlite3* db,            /* The database connection */
 | |
|   const char *zDb,        /* The attached database containing the blob */
 | |
|   const char *zTable,     /* The table containing the blob */
 | |
|   const char *zColumn,    /* The column containing the blob */
 | |
|   sqlite_int64 iRow,      /* The row containing the glob */
 | |
|   int flags,              /* True -> read/write access, false -> read-only */
 | |
|   sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
 | |
| ){
 | |
|   int nAttempt = 0;
 | |
|   int iCol;               /* Index of zColumn in row-record */
 | |
| 
 | |
|   /* This VDBE program seeks a btree cursor to the identified 
 | |
|   ** db/table/row entry. The reason for using a vdbe program instead
 | |
|   ** of writing code to use the b-tree layer directly is that the
 | |
|   ** vdbe program will take advantage of the various transaction,
 | |
|   ** locking and error handling infrastructure built into the vdbe.
 | |
|   **
 | |
|   ** After seeking the cursor, the vdbe executes an OP_ResultRow.
 | |
|   ** Code external to the Vdbe then "borrows" the b-tree cursor and
 | |
|   ** uses it to implement the blob_read(), blob_write() and 
 | |
|   ** blob_bytes() functions.
 | |
|   **
 | |
|   ** The sqlite3_blob_close() function finalizes the vdbe program,
 | |
|   ** which closes the b-tree cursor and (possibly) commits the 
 | |
|   ** transaction.
 | |
|   */
 | |
|   static const VdbeOpList openBlob[] = {
 | |
|     {OP_Transaction, 0, 0, 0},     /* 0: Start a transaction */
 | |
|     {OP_VerifyCookie, 0, 0, 0},    /* 1: Check the schema cookie */
 | |
| 
 | |
|     /* One of the following two instructions is replaced by an
 | |
|     ** OP_Noop before exection.
 | |
|     */
 | |
|     {OP_OpenRead, 0, 0, 0},        /* 2: Open cursor 0 for reading */
 | |
|     {OP_OpenWrite, 0, 0, 0},       /* 3: Open cursor 0 for read/write */
 | |
|     {OP_SetNumColumns, 0, 0, 0},   /* 4: Num cols for cursor */
 | |
| 
 | |
|     {OP_Variable, 1, 1, 0},        /* 5: Push the rowid to the stack */
 | |
|     {OP_NotExists, 0, 10, 1},      /* 6: Seek the cursor */
 | |
|     {OP_Column, 0, 0, 1},          /* 7  */
 | |
|     {OP_ResultRow, 1, 0, 0},       /* 8  */
 | |
|     {OP_Close, 0, 0, 0},           /* 9  */
 | |
|     {OP_Halt, 0, 0, 0},            /* 10 */
 | |
|   };
 | |
| 
 | |
|   Vdbe *v = 0;
 | |
|   int rc = SQLITE_OK;
 | |
|   char zErr[128];
 | |
| 
 | |
|   zErr[0] = 0;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   do {
 | |
|     Parse sParse;
 | |
|     Table *pTab;
 | |
| 
 | |
|     memset(&sParse, 0, sizeof(Parse));
 | |
|     sParse.db = db;
 | |
| 
 | |
|     rc = sqlite3SafetyOn(db);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3_mutex_leave(db->mutex);
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     sqlite3BtreeEnterAll(db);
 | |
|     pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb);
 | |
|     if( !pTab ){
 | |
|       if( sParse.zErrMsg ){
 | |
|         sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg);
 | |
|       }
 | |
|       sqlite3_free(sParse.zErrMsg);
 | |
|       rc = SQLITE_ERROR;
 | |
|       (void)sqlite3SafetyOff(db);
 | |
|       sqlite3BtreeLeaveAll(db);
 | |
|       goto blob_open_out;
 | |
|     }
 | |
| 
 | |
|     /* Now search pTab for the exact column. */
 | |
|     for(iCol=0; iCol < pTab->nCol; iCol++) {
 | |
|       if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( iCol==pTab->nCol ){
 | |
|       sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn);
 | |
|       rc = SQLITE_ERROR;
 | |
|       (void)sqlite3SafetyOff(db);
 | |
|       sqlite3BtreeLeaveAll(db);
 | |
|       goto blob_open_out;
 | |
|     }
 | |
| 
 | |
|     /* If the value is being opened for writing, check that the
 | |
|     ** column is not indexed. It is against the rules to open an
 | |
|     ** indexed column for writing.
 | |
|     */
 | |
|     if( flags ){
 | |
|       Index *pIdx;
 | |
|       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|         int j;
 | |
|         for(j=0; j<pIdx->nColumn; j++){
 | |
|           if( pIdx->aiColumn[j]==iCol ){
 | |
|             sqlite3_snprintf(sizeof(zErr), zErr,
 | |
|                              "cannot open indexed column for writing");
 | |
|             rc = SQLITE_ERROR;
 | |
|             (void)sqlite3SafetyOff(db);
 | |
|             sqlite3BtreeLeaveAll(db);
 | |
|             goto blob_open_out;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     v = sqlite3VdbeCreate(db);
 | |
|     if( v ){
 | |
|       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|       sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);
 | |
| 
 | |
|       /* Configure the OP_Transaction */
 | |
|       sqlite3VdbeChangeP1(v, 0, iDb);
 | |
|       sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0));
 | |
| 
 | |
|       /* Configure the OP_VerifyCookie */
 | |
|       sqlite3VdbeChangeP1(v, 1, iDb);
 | |
|       sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
 | |
| 
 | |
|       /* Make sure a mutex is held on the table to be accessed */
 | |
|       sqlite3VdbeUsesBtree(v, iDb); 
 | |
| 
 | |
|       /* Remove either the OP_OpenWrite or OpenRead. Set the P2 
 | |
|       ** parameter of the other to pTab->tnum. 
 | |
|       */
 | |
|       sqlite3VdbeChangeToNoop(v, (flags ? 2 : 3), 1);
 | |
|       sqlite3VdbeChangeP2(v, (flags ? 3 : 2), pTab->tnum);
 | |
|       sqlite3VdbeChangeP3(v, (flags ? 3 : 2), iDb);
 | |
| 
 | |
|       /* Configure the OP_SetNumColumns. Configure the cursor to
 | |
|       ** think that the table has one more column than it really
 | |
|       ** does. An OP_Column to retrieve this imaginary column will
 | |
|       ** always return an SQL NULL. This is useful because it means
 | |
|       ** we can invoke OP_Column to fill in the vdbe cursors type 
 | |
|       ** and offset cache without causing any IO.
 | |
|       */
 | |
|       sqlite3VdbeChangeP2(v, 4, pTab->nCol+1);
 | |
|       if( !db->mallocFailed ){
 | |
|         sqlite3VdbeMakeReady(v, 1, 1, 1, 0);
 | |
|       }
 | |
|     }
 | |
|    
 | |
|     sqlite3BtreeLeaveAll(db);
 | |
|     rc = sqlite3SafetyOff(db);
 | |
|     if( rc!=SQLITE_OK || db->mallocFailed ){
 | |
|       goto blob_open_out;
 | |
|     }
 | |
| 
 | |
|     sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow);
 | |
|     rc = sqlite3_step((sqlite3_stmt *)v);
 | |
|     if( rc!=SQLITE_ROW ){
 | |
|       nAttempt++;
 | |
|       rc = sqlite3_finalize((sqlite3_stmt *)v);
 | |
|       sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db));
 | |
|       v = 0;
 | |
|     }
 | |
|   } while( nAttempt<5 && rc==SQLITE_SCHEMA );
 | |
| 
 | |
|   if( rc==SQLITE_ROW ){
 | |
|     /* The row-record has been opened successfully. Check that the
 | |
|     ** column in question contains text or a blob. If it contains
 | |
|     ** text, it is up to the caller to get the encoding right.
 | |
|     */
 | |
|     Incrblob *pBlob;
 | |
|     u32 type = v->apCsr[0]->aType[iCol];
 | |
| 
 | |
|     if( type<12 ){
 | |
|       sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s",
 | |
|           type==0?"null": type==7?"real": "integer"
 | |
|       );
 | |
|       rc = SQLITE_ERROR;
 | |
|       goto blob_open_out;
 | |
|     }
 | |
|     pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
 | |
|     if( db->mallocFailed ){
 | |
|       sqlite3_free(pBlob);
 | |
|       goto blob_open_out;
 | |
|     }
 | |
|     pBlob->flags = flags;
 | |
|     pBlob->pCsr =  v->apCsr[0]->pCursor;
 | |
|     sqlite3BtreeEnterCursor(pBlob->pCsr);
 | |
|     sqlite3BtreeCacheOverflow(pBlob->pCsr);
 | |
|     sqlite3BtreeLeaveCursor(pBlob->pCsr);
 | |
|     pBlob->pStmt = (sqlite3_stmt *)v;
 | |
|     pBlob->iOffset = v->apCsr[0]->aOffset[iCol];
 | |
|     pBlob->nByte = sqlite3VdbeSerialTypeLen(type);
 | |
|     pBlob->db = db;
 | |
|     *ppBlob = (sqlite3_blob *)pBlob;
 | |
|     rc = SQLITE_OK;
 | |
|   }else if( rc==SQLITE_OK ){
 | |
|     sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
| blob_open_out:
 | |
|   zErr[sizeof(zErr)-1] = '\0';
 | |
|   if( rc!=SQLITE_OK || db->mallocFailed ){
 | |
|     sqlite3_finalize((sqlite3_stmt *)v);
 | |
|   }
 | |
|   sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr));
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a blob handle that was previously created using
 | |
| ** sqlite3_blob_open().
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
 | |
|   Incrblob *p = (Incrblob *)pBlob;
 | |
|   int rc;
 | |
| 
 | |
|   rc = sqlite3_finalize(p->pStmt);
 | |
|   sqlite3_free(p);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Perform a read or write operation on a blob
 | |
| */
 | |
| static int blobReadWrite(
 | |
|   sqlite3_blob *pBlob, 
 | |
|   void *z, 
 | |
|   int n, 
 | |
|   int iOffset, 
 | |
|   int (*xCall)(BtCursor*, u32, u32, void*)
 | |
| ){
 | |
|   int rc;
 | |
|   Incrblob *p = (Incrblob *)pBlob;
 | |
|   Vdbe *v;
 | |
|   sqlite3 *db = p->db;  
 | |
| 
 | |
|   /* Request is out of range. Return a transient error. */
 | |
|   if( (iOffset+n)>p->nByte ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
| 
 | |
|   /* If there is no statement handle, then the blob-handle has
 | |
|   ** already been invalidated. Return SQLITE_ABORT in this case.
 | |
|   */
 | |
|   v = (Vdbe*)p->pStmt;
 | |
|   if( v==0 ){
 | |
|     rc = SQLITE_ABORT;
 | |
|   }else{
 | |
|     /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
 | |
|     ** returned, clean-up the statement handle.
 | |
|     */
 | |
|     assert( db == v->db );
 | |
|     sqlite3BtreeEnterCursor(p->pCsr);
 | |
|     rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
 | |
|     sqlite3BtreeLeaveCursor(p->pCsr);
 | |
|     if( rc==SQLITE_ABORT ){
 | |
|       sqlite3VdbeFinalize(v);
 | |
|       p->pStmt = 0;
 | |
|     }else{
 | |
|       db->errCode = rc;
 | |
|       v->rc = rc;
 | |
|     }
 | |
|   }
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read data from a blob handle.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
 | |
|   return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write data to a blob handle.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
 | |
|   return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Query a blob handle for the size of the data.
 | |
| **
 | |
| ** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
 | |
| ** so no mutex is required for access.
 | |
| */
 | |
| SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
 | |
|   Incrblob *p = (Incrblob *)pBlob;
 | |
|   return p->nByte;
 | |
| }
 | |
| 
 | |
| #endif /* #ifndef SQLITE_OMIT_INCRBLOB */
 | |
| 
 | |
| /************** End of vdbeblob.c ********************************************/
 | |
| /************** Begin file journal.c *****************************************/
 | |
| /*
 | |
| ** 2007 August 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** @(#) $Id: journal.c,v 1.7 2007/09/06 13:49:37 drh Exp $
 | |
| */
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_ATOMIC_WRITE
 | |
| 
 | |
| /*
 | |
| ** This file implements a special kind of sqlite3_file object used
 | |
| ** by SQLite to create journal files if the atomic-write optimization
 | |
| ** is enabled.
 | |
| **
 | |
| ** The distinctive characteristic of this sqlite3_file is that the
 | |
| ** actual on disk file is created lazily. When the file is created,
 | |
| ** the caller specifies a buffer size for an in-memory buffer to
 | |
| ** be used to service read() and write() requests. The actual file
 | |
| ** on disk is not created or populated until either:
 | |
| **
 | |
| **   1) The in-memory representation grows too large for the allocated 
 | |
| **      buffer, or
 | |
| **   2) The xSync() method is called.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** A JournalFile object is a subclass of sqlite3_file used by
 | |
| ** as an open file handle for journal files.
 | |
| */
 | |
| struct JournalFile {
 | |
|   sqlite3_io_methods *pMethod;    /* I/O methods on journal files */
 | |
|   int nBuf;                       /* Size of zBuf[] in bytes */
 | |
|   char *zBuf;                     /* Space to buffer journal writes */
 | |
|   int iSize;                      /* Amount of zBuf[] currently used */
 | |
|   int flags;                      /* xOpen flags */
 | |
|   sqlite3_vfs *pVfs;              /* The "real" underlying VFS */
 | |
|   sqlite3_file *pReal;            /* The "real" underlying file descriptor */
 | |
|   const char *zJournal;           /* Name of the journal file */
 | |
| };
 | |
| typedef struct JournalFile JournalFile;
 | |
| 
 | |
| /*
 | |
| ** If it does not already exists, create and populate the on-disk file 
 | |
| ** for JournalFile p.
 | |
| */
 | |
| static int createFile(JournalFile *p){
 | |
|   int rc = SQLITE_OK;
 | |
|   if( !p->pReal ){
 | |
|     sqlite3_file *pReal = (sqlite3_file *)&p[1];
 | |
|     rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       p->pReal = pReal;
 | |
|       if( p->iSize>0 ){
 | |
|         assert(p->iSize<=p->nBuf);
 | |
|         rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close the file.
 | |
| */
 | |
| static int jrnlClose(sqlite3_file *pJfd){
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   if( p->pReal ){
 | |
|     sqlite3OsClose(p->pReal);
 | |
|   }
 | |
|   sqlite3_free(p->zBuf);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Read data from the file.
 | |
| */
 | |
| static int jrnlRead(
 | |
|   sqlite3_file *pJfd,    /* The journal file from which to read */
 | |
|   void *zBuf,            /* Put the results here */
 | |
|   int iAmt,              /* Number of bytes to read */
 | |
|   sqlite_int64 iOfst     /* Begin reading at this offset */
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   if( p->pReal ){
 | |
|     rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst);
 | |
|   }else{
 | |
|     assert( iAmt+iOfst<=p->iSize );
 | |
|     memcpy(zBuf, &p->zBuf[iOfst], iAmt);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write data to the file.
 | |
| */
 | |
| static int jrnlWrite(
 | |
|   sqlite3_file *pJfd,    /* The journal file into which to write */
 | |
|   const void *zBuf,      /* Take data to be written from here */
 | |
|   int iAmt,              /* Number of bytes to write */
 | |
|   sqlite_int64 iOfst     /* Begin writing at this offset into the file */
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
 | |
|     rc = createFile(p);
 | |
|   }
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( p->pReal ){
 | |
|       rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst);
 | |
|     }else{
 | |
|       memcpy(&p->zBuf[iOfst], zBuf, iAmt);
 | |
|       if( p->iSize<(iOfst+iAmt) ){
 | |
|         p->iSize = (iOfst+iAmt);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Truncate the file.
 | |
| */
 | |
| static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){
 | |
|   int rc = SQLITE_OK;
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   if( p->pReal ){
 | |
|     rc = sqlite3OsTruncate(p->pReal, size);
 | |
|   }else if( size<p->iSize ){
 | |
|     p->iSize = size;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Sync the file.
 | |
| */
 | |
| static int jrnlSync(sqlite3_file *pJfd, int flags){
 | |
|   int rc;
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   rc = createFile(p);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = sqlite3OsSync(p->pReal, flags);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Query the size of the file in bytes.
 | |
| */
 | |
| static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){
 | |
|   int rc = SQLITE_OK;
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   if( p->pReal ){
 | |
|     rc = sqlite3OsFileSize(p->pReal, pSize);
 | |
|   }else{
 | |
|     *pSize = (sqlite_int64) p->iSize;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Table of methods for JournalFile sqlite3_file object.
 | |
| */
 | |
| static struct sqlite3_io_methods JournalFileMethods = {
 | |
|   1,             /* iVersion */
 | |
|   jrnlClose,     /* xClose */
 | |
|   jrnlRead,      /* xRead */
 | |
|   jrnlWrite,     /* xWrite */
 | |
|   jrnlTruncate,  /* xTruncate */
 | |
|   jrnlSync,      /* xSync */
 | |
|   jrnlFileSize,  /* xFileSize */
 | |
|   0,             /* xLock */
 | |
|   0,             /* xUnlock */
 | |
|   0,             /* xCheckReservedLock */
 | |
|   0,             /* xFileControl */
 | |
|   0,             /* xSectorSize */
 | |
|   0              /* xDeviceCharacteristics */
 | |
| };
 | |
| 
 | |
| /* 
 | |
| ** Open a journal file.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3JournalOpen(
 | |
|   sqlite3_vfs *pVfs,         /* The VFS to use for actual file I/O */
 | |
|   const char *zName,         /* Name of the journal file */
 | |
|   sqlite3_file *pJfd,        /* Preallocated, blank file handle */
 | |
|   int flags,                 /* Opening flags */
 | |
|   int nBuf                   /* Bytes buffered before opening the file */
 | |
| ){
 | |
|   JournalFile *p = (JournalFile *)pJfd;
 | |
|   memset(p, 0, sqlite3JournalSize(pVfs));
 | |
|   if( nBuf>0 ){
 | |
|     p->zBuf = sqlite3MallocZero(nBuf);
 | |
|     if( !p->zBuf ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|   }else{
 | |
|     return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0);
 | |
|   }
 | |
|   p->pMethod = &JournalFileMethods;
 | |
|   p->nBuf = nBuf;
 | |
|   p->flags = flags;
 | |
|   p->zJournal = zName;
 | |
|   p->pVfs = pVfs;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the argument p points to a JournalFile structure, and the underlying
 | |
| ** file has not yet been created, create it now.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){
 | |
|   if( p->pMethods!=&JournalFileMethods ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   return createFile((JournalFile *)p);
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Return the number of bytes required to store a JournalFile that uses vfs
 | |
| ** pVfs to create the underlying on-disk files.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){
 | |
|   return (pVfs->szOsFile+sizeof(JournalFile));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /************** End of journal.c *********************************************/
 | |
| /************** Begin file expr.c ********************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains routines used for analyzing expressions and
 | |
| ** for generating VDBE code that evaluates expressions in SQLite.
 | |
| **
 | |
| ** $Id: expr.c,v 1.354 2008/03/12 10:39:00 danielk1977 Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Return the 'affinity' of the expression pExpr if any.
 | |
| **
 | |
| ** If pExpr is a column, a reference to a column via an 'AS' alias,
 | |
| ** or a sub-select with a column as the return value, then the 
 | |
| ** affinity of that column is returned. Otherwise, 0x00 is returned,
 | |
| ** indicating no affinity for the expression.
 | |
| **
 | |
| ** i.e. the WHERE clause expresssions in the following statements all
 | |
| ** have an affinity:
 | |
| **
 | |
| ** CREATE TABLE t1(a);
 | |
| ** SELECT * FROM t1 WHERE a;
 | |
| ** SELECT a AS b FROM t1 WHERE b;
 | |
| ** SELECT * FROM t1 WHERE (select a from t1);
 | |
| */
 | |
| SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){
 | |
|   int op = pExpr->op;
 | |
|   if( op==TK_SELECT ){
 | |
|     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
|   if( op==TK_CAST ){
 | |
|     return sqlite3AffinityType(&pExpr->token);
 | |
|   }
 | |
| #endif
 | |
|   return pExpr->affinity;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the collating sequence for expression pExpr to be the collating
 | |
| ** sequence named by pToken.   Return a pointer to the revised expression.
 | |
| ** The collating sequence is marked as "explicit" using the EP_ExpCollate
 | |
| ** flag.  An explicit collating sequence will override implicit
 | |
| ** collating sequences.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
 | |
|   char *zColl = 0;            /* Dequoted name of collation sequence */
 | |
|   CollSeq *pColl;
 | |
|   zColl = sqlite3NameFromToken(pParse->db, pName);
 | |
|   if( pExpr && zColl ){
 | |
|     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
 | |
|     if( pColl ){
 | |
|       pExpr->pColl = pColl;
 | |
|       pExpr->flags |= EP_ExpCollate;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_free(zColl);
 | |
|   return pExpr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the default collation sequence for the expression pExpr. If
 | |
| ** there is no default collation type, return 0.
 | |
| */
 | |
| SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
 | |
|   CollSeq *pColl = 0;
 | |
|   if( pExpr ){
 | |
|     int op;
 | |
|     pColl = pExpr->pColl;
 | |
|     op = pExpr->op;
 | |
|     if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
 | |
|       return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
 | |
|     }
 | |
|   }
 | |
|   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
 | |
|     pColl = 0;
 | |
|   }
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is an operand of a comparison operator.  aff2 is the
 | |
| ** type affinity of the other operand.  This routine returns the
 | |
| ** type affinity that should be used for the comparison operator.
 | |
| */
 | |
| SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){
 | |
|   char aff1 = sqlite3ExprAffinity(pExpr);
 | |
|   if( aff1 && aff2 ){
 | |
|     /* Both sides of the comparison are columns. If one has numeric
 | |
|     ** affinity, use that. Otherwise use no affinity.
 | |
|     */
 | |
|     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
 | |
|       return SQLITE_AFF_NUMERIC;
 | |
|     }else{
 | |
|       return SQLITE_AFF_NONE;
 | |
|     }
 | |
|   }else if( !aff1 && !aff2 ){
 | |
|     /* Neither side of the comparison is a column.  Compare the
 | |
|     ** results directly.
 | |
|     */
 | |
|     return SQLITE_AFF_NONE;
 | |
|   }else{
 | |
|     /* One side is a column, the other is not. Use the columns affinity. */
 | |
|     assert( aff1==0 || aff2==0 );
 | |
|     return (aff1 + aff2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is a comparison operator.  Return the type affinity that should
 | |
| ** be applied to both operands prior to doing the comparison.
 | |
| */
 | |
| static char comparisonAffinity(Expr *pExpr){
 | |
|   char aff;
 | |
|   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
 | |
|           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
 | |
|           pExpr->op==TK_NE );
 | |
|   assert( pExpr->pLeft );
 | |
|   aff = sqlite3ExprAffinity(pExpr->pLeft);
 | |
|   if( pExpr->pRight ){
 | |
|     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
 | |
|   }
 | |
|   else if( pExpr->pSelect ){
 | |
|     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
 | |
|   }
 | |
|   else if( !aff ){
 | |
|     aff = SQLITE_AFF_NONE;
 | |
|   }
 | |
|   return aff;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
 | |
| ** idx_affinity is the affinity of an indexed column. Return true
 | |
| ** if the index with affinity idx_affinity may be used to implement
 | |
| ** the comparison in pExpr.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
 | |
|   char aff = comparisonAffinity(pExpr);
 | |
|   switch( aff ){
 | |
|     case SQLITE_AFF_NONE:
 | |
|       return 1;
 | |
|     case SQLITE_AFF_TEXT:
 | |
|       return idx_affinity==SQLITE_AFF_TEXT;
 | |
|     default:
 | |
|       return sqlite3IsNumericAffinity(idx_affinity);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the P5 value that should be used for a binary comparison
 | |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
 | |
| */
 | |
| static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
 | |
|   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
 | |
|   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
 | |
|   return aff;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the collation sequence that should be used by
 | |
| ** a binary comparison operator comparing pLeft and pRight.
 | |
| **
 | |
| ** If the left hand expression has a collating sequence type, then it is
 | |
| ** used. Otherwise the collation sequence for the right hand expression
 | |
| ** is used, or the default (BINARY) if neither expression has a collating
 | |
| ** type.
 | |
| **
 | |
| ** Argument pRight (but not pLeft) may be a null pointer. In this case,
 | |
| ** it is not considered.
 | |
| */
 | |
| SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(
 | |
|   Parse *pParse, 
 | |
|   Expr *pLeft, 
 | |
|   Expr *pRight
 | |
| ){
 | |
|   CollSeq *pColl;
 | |
|   assert( pLeft );
 | |
|   if( pLeft->flags & EP_ExpCollate ){
 | |
|     assert( pLeft->pColl );
 | |
|     pColl = pLeft->pColl;
 | |
|   }else if( pRight && pRight->flags & EP_ExpCollate ){
 | |
|     assert( pRight->pColl );
 | |
|     pColl = pRight->pColl;
 | |
|   }else{
 | |
|     pColl = sqlite3ExprCollSeq(pParse, pLeft);
 | |
|     if( !pColl ){
 | |
|       pColl = sqlite3ExprCollSeq(pParse, pRight);
 | |
|     }
 | |
|   }
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a comparison operator.
 | |
| */
 | |
| static int codeCompare(
 | |
|   Parse *pParse,    /* The parsing (and code generating) context */
 | |
|   Expr *pLeft,      /* The left operand */
 | |
|   Expr *pRight,     /* The right operand */
 | |
|   int opcode,       /* The comparison opcode */
 | |
|   int in1, int in2, /* Register holding operands */
 | |
|   int dest,         /* Jump here if true.  */
 | |
|   int jumpIfNull    /* If true, jump if either operand is NULL */
 | |
| ){
 | |
|   int p5;
 | |
|   int addr;
 | |
|   CollSeq *p4;
 | |
| 
 | |
|   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
 | |
|   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
 | |
|   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
 | |
|                            (void*)p4, P4_COLLSEQ);
 | |
|   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
 | |
|   return addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a new expression node and return a pointer to it.  Memory
 | |
| ** for this node is obtained from sqlite3_malloc().  The calling function
 | |
| ** is responsible for making sure the node eventually gets freed.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3Expr(
 | |
|   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
 | |
|   int op,                 /* Expression opcode */
 | |
|   Expr *pLeft,            /* Left operand */
 | |
|   Expr *pRight,           /* Right operand */
 | |
|   const Token *pToken     /* Argument token */
 | |
| ){
 | |
|   Expr *pNew;
 | |
|   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
 | |
|   if( pNew==0 ){
 | |
|     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
 | |
|     ** this function must always be allocated with sqlite3Expr() for this 
 | |
|     ** reason. 
 | |
|     */
 | |
|     sqlite3ExprDelete(pLeft);
 | |
|     sqlite3ExprDelete(pRight);
 | |
|     return 0;
 | |
|   }
 | |
|   pNew->op = op;
 | |
|   pNew->pLeft = pLeft;
 | |
|   pNew->pRight = pRight;
 | |
|   pNew->iAgg = -1;
 | |
|   if( pToken ){
 | |
|     assert( pToken->dyn==0 );
 | |
|     pNew->span = pNew->token = *pToken;
 | |
|   }else if( pLeft ){
 | |
|     if( pRight ){
 | |
|       sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
 | |
|       if( pRight->flags & EP_ExpCollate ){
 | |
|         pNew->flags |= EP_ExpCollate;
 | |
|         pNew->pColl = pRight->pColl;
 | |
|       }
 | |
|     }
 | |
|     if( pLeft->flags & EP_ExpCollate ){
 | |
|       pNew->flags |= EP_ExpCollate;
 | |
|       pNew->pColl = pLeft->pColl;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3ExprSetHeight(pNew);
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Works like sqlite3Expr() except that it takes an extra Parse*
 | |
| ** argument and notifies the associated connection object if malloc fails.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3PExpr(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   int op,                 /* Expression opcode */
 | |
|   Expr *pLeft,            /* Left operand */
 | |
|   Expr *pRight,           /* Right operand */
 | |
|   const Token *pToken     /* Argument token */
 | |
| ){
 | |
|   return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** When doing a nested parse, you can include terms in an expression
 | |
| ** that look like this:   #1 #2 ...  These terms refer to registers
 | |
| ** in the virtual machine.  #N is the N-th register.
 | |
| **
 | |
| ** This routine is called by the parser to deal with on of those terms.
 | |
| ** It immediately generates code to store the value in a memory location.
 | |
| ** The returns an expression that will code to extract the value from
 | |
| ** that memory location as needed.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   Expr *p;
 | |
|   if( pParse->nested==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
 | |
|     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
 | |
|   }
 | |
|   if( v==0 ) return 0;
 | |
|   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
 | |
|   if( p==0 ){
 | |
|     return 0;  /* Malloc failed */
 | |
|   }
 | |
|   p->iTable = atoi((char*)&pToken->z[1]);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Join two expressions using an AND operator.  If either expression is
 | |
| ** NULL, then just return the other expression.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
 | |
|   if( pLeft==0 ){
 | |
|     return pRight;
 | |
|   }else if( pRight==0 ){
 | |
|     return pLeft;
 | |
|   }else{
 | |
|     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the Expr.span field of the given expression to span all
 | |
| ** text between the two given tokens.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
 | |
|   assert( pRight!=0 );
 | |
|   assert( pLeft!=0 );
 | |
|   if( pExpr && pRight->z && pLeft->z ){
 | |
|     assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
 | |
|     if( pLeft->dyn==0 && pRight->dyn==0 ){
 | |
|       pExpr->span.z = pLeft->z;
 | |
|       pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
 | |
|     }else{
 | |
|       pExpr->span.z = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a new expression node for a function with multiple
 | |
| ** arguments.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
 | |
|   Expr *pNew;
 | |
|   assert( pToken );
 | |
|   pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) );
 | |
|   if( pNew==0 ){
 | |
|     sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
 | |
|     return 0;
 | |
|   }
 | |
|   pNew->op = TK_FUNCTION;
 | |
|   pNew->pList = pList;
 | |
|   assert( pToken->dyn==0 );
 | |
|   pNew->token = *pToken;
 | |
|   pNew->span = pNew->token;
 | |
| 
 | |
|   sqlite3ExprSetHeight(pNew);
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Assign a variable number to an expression that encodes a wildcard
 | |
| ** in the original SQL statement.  
 | |
| **
 | |
| ** Wildcards consisting of a single "?" are assigned the next sequential
 | |
| ** variable number.
 | |
| **
 | |
| ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
 | |
| ** sure "nnn" is not too be to avoid a denial of service attack when
 | |
| ** the SQL statement comes from an external source.
 | |
| **
 | |
| ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
 | |
| ** as the previous instance of the same wildcard.  Or if this is the first
 | |
| ** instance of the wildcard, the next sequenial variable number is
 | |
| ** assigned.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
 | |
|   Token *pToken;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( pExpr==0 ) return;
 | |
|   pToken = &pExpr->token;
 | |
|   assert( pToken->n>=1 );
 | |
|   assert( pToken->z!=0 );
 | |
|   assert( pToken->z[0]!=0 );
 | |
|   if( pToken->n==1 ){
 | |
|     /* Wildcard of the form "?".  Assign the next variable number */
 | |
|     pExpr->iTable = ++pParse->nVar;
 | |
|   }else if( pToken->z[0]=='?' ){
 | |
|     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
 | |
|     ** use it as the variable number */
 | |
|     int i;
 | |
|     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
 | |
|     if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
 | |
|       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
 | |
|           SQLITE_MAX_VARIABLE_NUMBER);
 | |
|     }
 | |
|     if( i>pParse->nVar ){
 | |
|       pParse->nVar = i;
 | |
|     }
 | |
|   }else{
 | |
|     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
 | |
|     ** number as the prior appearance of the same name, or if the name
 | |
|     ** has never appeared before, reuse the same variable number
 | |
|     */
 | |
|     int i, n;
 | |
|     n = pToken->n;
 | |
|     for(i=0; i<pParse->nVarExpr; i++){
 | |
|       Expr *pE;
 | |
|       if( (pE = pParse->apVarExpr[i])!=0
 | |
|           && pE->token.n==n
 | |
|           && memcmp(pE->token.z, pToken->z, n)==0 ){
 | |
|         pExpr->iTable = pE->iTable;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( i>=pParse->nVarExpr ){
 | |
|       pExpr->iTable = ++pParse->nVar;
 | |
|       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
 | |
|         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
 | |
|         pParse->apVarExpr =
 | |
|             sqlite3DbReallocOrFree(
 | |
|               db,
 | |
|               pParse->apVarExpr,
 | |
|               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
 | |
|             );
 | |
|       }
 | |
|       if( !db->mallocFailed ){
 | |
|         assert( pParse->apVarExpr!=0 );
 | |
|         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
 | |
|       }
 | |
|     }
 | |
|   } 
 | |
|   if( !pParse->nErr && pParse->nVar>SQLITE_MAX_VARIABLE_NUMBER ){
 | |
|     sqlite3ErrorMsg(pParse, "too many SQL variables");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Recursively delete an expression tree.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprDelete(Expr *p){
 | |
|   if( p==0 ) return;
 | |
|   if( p->span.dyn ) sqlite3_free((char*)p->span.z);
 | |
|   if( p->token.dyn ) sqlite3_free((char*)p->token.z);
 | |
|   sqlite3ExprDelete(p->pLeft);
 | |
|   sqlite3ExprDelete(p->pRight);
 | |
|   sqlite3ExprListDelete(p->pList);
 | |
|   sqlite3SelectDelete(p->pSelect);
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The Expr.token field might be a string literal that is quoted.
 | |
| ** If so, remove the quotation marks.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
 | |
|   if( ExprHasAnyProperty(p, EP_Dequoted) ){
 | |
|     return;
 | |
|   }
 | |
|   ExprSetProperty(p, EP_Dequoted);
 | |
|   if( p->token.dyn==0 ){
 | |
|     sqlite3TokenCopy(db, &p->token, &p->token);
 | |
|   }
 | |
|   sqlite3Dequote((char*)p->token.z);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** The following group of routines make deep copies of expressions,
 | |
| ** expression lists, ID lists, and select statements.  The copies can
 | |
| ** be deleted (by being passed to their respective ...Delete() routines)
 | |
| ** without effecting the originals.
 | |
| **
 | |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
 | |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
 | |
| ** by subsequent calls to sqlite*ListAppend() routines.
 | |
| **
 | |
| ** Any tables that the SrcList might point to are not duplicated.
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
 | |
|   Expr *pNew;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   memcpy(pNew, p, sizeof(*pNew));
 | |
|   if( p->token.z!=0 ){
 | |
|     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
 | |
|     pNew->token.dyn = 1;
 | |
|   }else{
 | |
|     assert( pNew->token.z==0 );
 | |
|   }
 | |
|   pNew->span.z = 0;
 | |
|   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
 | |
|   pNew->pRight = sqlite3ExprDup(db, p->pRight);
 | |
|   pNew->pList = sqlite3ExprListDup(db, p->pList);
 | |
|   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
 | |
|   return pNew;
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
 | |
|   if( pTo->dyn ) sqlite3_free((char*)pTo->z);
 | |
|   if( pFrom->z ){
 | |
|     pTo->n = pFrom->n;
 | |
|     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
 | |
|     pTo->dyn = 1;
 | |
|   }else{
 | |
|     pTo->z = 0;
 | |
|   }
 | |
| }
 | |
| SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
 | |
|   ExprList *pNew;
 | |
|   struct ExprList_item *pItem, *pOldItem;
 | |
|   int i;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->iECursor = 0;
 | |
|   pNew->nExpr = pNew->nAlloc = p->nExpr;
 | |
|   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
 | |
|   if( pItem==0 ){
 | |
|     sqlite3_free(pNew);
 | |
|     return 0;
 | |
|   } 
 | |
|   pOldItem = p->a;
 | |
|   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
 | |
|     Expr *pNewExpr, *pOldExpr;
 | |
|     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
 | |
|     if( pOldExpr->span.z!=0 && pNewExpr ){
 | |
|       /* Always make a copy of the span for top-level expressions in the
 | |
|       ** expression list.  The logic in SELECT processing that determines
 | |
|       ** the names of columns in the result set needs this information */
 | |
|       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
 | |
|     }
 | |
|     assert( pNewExpr==0 || pNewExpr->span.z!=0 
 | |
|             || pOldExpr->span.z==0
 | |
|             || db->mallocFailed );
 | |
|     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
 | |
|     pItem->sortOrder = pOldItem->sortOrder;
 | |
|     pItem->isAgg = pOldItem->isAgg;
 | |
|     pItem->done = 0;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If cursors, triggers, views and subqueries are all omitted from
 | |
| ** the build, then none of the following routines, except for 
 | |
| ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
 | |
| ** called with a NULL argument.
 | |
| */
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
 | |
|  || !defined(SQLITE_OMIT_SUBQUERY)
 | |
| SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
 | |
|   SrcList *pNew;
 | |
|   int i;
 | |
|   int nByte;
 | |
|   if( p==0 ) return 0;
 | |
|   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
 | |
|   pNew = sqlite3DbMallocRaw(db, nByte );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nSrc = pNew->nAlloc = p->nSrc;
 | |
|   for(i=0; i<p->nSrc; i++){
 | |
|     struct SrcList_item *pNewItem = &pNew->a[i];
 | |
|     struct SrcList_item *pOldItem = &p->a[i];
 | |
|     Table *pTab;
 | |
|     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
 | |
|     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
 | |
|     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
 | |
|     pNewItem->jointype = pOldItem->jointype;
 | |
|     pNewItem->iCursor = pOldItem->iCursor;
 | |
|     pNewItem->isPopulated = pOldItem->isPopulated;
 | |
|     pTab = pNewItem->pTab = pOldItem->pTab;
 | |
|     if( pTab ){
 | |
|       pTab->nRef++;
 | |
|     }
 | |
|     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
 | |
|     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
 | |
|     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
 | |
|     pNewItem->colUsed = pOldItem->colUsed;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
 | |
|   IdList *pNew;
 | |
|   int i;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->nId = pNew->nAlloc = p->nId;
 | |
|   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
 | |
|   if( pNew->a==0 ){
 | |
|     sqlite3_free(pNew);
 | |
|     return 0;
 | |
|   }
 | |
|   for(i=0; i<p->nId; i++){
 | |
|     struct IdList_item *pNewItem = &pNew->a[i];
 | |
|     struct IdList_item *pOldItem = &p->a[i];
 | |
|     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
 | |
|     pNewItem->idx = pOldItem->idx;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
 | |
|   Select *pNew;
 | |
|   if( p==0 ) return 0;
 | |
|   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
 | |
|   if( pNew==0 ) return 0;
 | |
|   pNew->isDistinct = p->isDistinct;
 | |
|   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
 | |
|   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
 | |
|   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
 | |
|   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
 | |
|   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
 | |
|   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
 | |
|   pNew->op = p->op;
 | |
|   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
 | |
|   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
 | |
|   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
 | |
|   pNew->iLimit = -1;
 | |
|   pNew->iOffset = -1;
 | |
|   pNew->isResolved = p->isResolved;
 | |
|   pNew->isAgg = p->isAgg;
 | |
|   pNew->usesEphm = 0;
 | |
|   pNew->disallowOrderBy = 0;
 | |
|   pNew->pRightmost = 0;
 | |
|   pNew->addrOpenEphm[0] = -1;
 | |
|   pNew->addrOpenEphm[1] = -1;
 | |
|   pNew->addrOpenEphm[2] = -1;
 | |
|   return pNew;
 | |
| }
 | |
| #else
 | |
| SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){
 | |
|   assert( p==0 );
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the end of an expression list.  If pList is
 | |
| ** initially NULL, then create a new expression list.
 | |
| */
 | |
| SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   ExprList *pList,        /* List to which to append. Might be NULL */
 | |
|   Expr *pExpr,            /* Expression to be appended */
 | |
|   Token *pName            /* AS keyword for the expression */
 | |
| ){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( pList==0 ){
 | |
|     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
 | |
|     if( pList==0 ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|     assert( pList->nAlloc==0 );
 | |
|   }
 | |
|   if( pList->nAlloc<=pList->nExpr ){
 | |
|     struct ExprList_item *a;
 | |
|     int n = pList->nAlloc*2 + 4;
 | |
|     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
 | |
|     if( a==0 ){
 | |
|       goto no_mem;
 | |
|     }
 | |
|     pList->a = a;
 | |
|     pList->nAlloc = n;
 | |
|   }
 | |
|   assert( pList->a!=0 );
 | |
|   if( pExpr || pName ){
 | |
|     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
 | |
|     memset(pItem, 0, sizeof(*pItem));
 | |
|     pItem->zName = sqlite3NameFromToken(db, pName);
 | |
|     pItem->pExpr = pExpr;
 | |
|   }
 | |
|   return pList;
 | |
| 
 | |
| no_mem:     
 | |
|   /* Avoid leaking memory if malloc has failed. */
 | |
|   sqlite3ExprDelete(pExpr);
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the expression list pEList contains more than iLimit elements,
 | |
| ** leave an error message in pParse.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprListCheckLength(
 | |
|   Parse *pParse,
 | |
|   ExprList *pEList,
 | |
|   int iLimit,
 | |
|   const char *zObject
 | |
| ){
 | |
|   if( pEList && pEList->nExpr>iLimit ){
 | |
|     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
| /* The following three functions, heightOfExpr(), heightOfExprList()
 | |
| ** and heightOfSelect(), are used to determine the maximum height
 | |
| ** of any expression tree referenced by the structure passed as the
 | |
| ** first argument.
 | |
| **
 | |
| ** If this maximum height is greater than the current value pointed
 | |
| ** to by pnHeight, the second parameter, then set *pnHeight to that
 | |
| ** value.
 | |
| */
 | |
| static void heightOfExpr(Expr *p, int *pnHeight){
 | |
|   if( p ){
 | |
|     if( p->nHeight>*pnHeight ){
 | |
|       *pnHeight = p->nHeight;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void heightOfExprList(ExprList *p, int *pnHeight){
 | |
|   if( p ){
 | |
|     int i;
 | |
|     for(i=0; i<p->nExpr; i++){
 | |
|       heightOfExpr(p->a[i].pExpr, pnHeight);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void heightOfSelect(Select *p, int *pnHeight){
 | |
|   if( p ){
 | |
|     heightOfExpr(p->pWhere, pnHeight);
 | |
|     heightOfExpr(p->pHaving, pnHeight);
 | |
|     heightOfExpr(p->pLimit, pnHeight);
 | |
|     heightOfExpr(p->pOffset, pnHeight);
 | |
|     heightOfExprList(p->pEList, pnHeight);
 | |
|     heightOfExprList(p->pGroupBy, pnHeight);
 | |
|     heightOfExprList(p->pOrderBy, pnHeight);
 | |
|     heightOfSelect(p->pPrior, pnHeight);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the Expr.nHeight variable in the structure passed as an 
 | |
| ** argument. An expression with no children, Expr.pList or 
 | |
| ** Expr.pSelect member has a height of 1. Any other expression
 | |
| ** has a height equal to the maximum height of any other 
 | |
| ** referenced Expr plus one.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *p){
 | |
|   int nHeight = 0;
 | |
|   heightOfExpr(p->pLeft, &nHeight);
 | |
|   heightOfExpr(p->pRight, &nHeight);
 | |
|   heightOfExprList(p->pList, &nHeight);
 | |
|   heightOfSelect(p->pSelect, &nHeight);
 | |
|   p->nHeight = nHeight + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the maximum height of any expression tree referenced
 | |
| ** by the select statement passed as an argument.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
 | |
|   int nHeight = 0;
 | |
|   heightOfSelect(p, &nHeight);
 | |
|   return nHeight;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Delete an entire expression list.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *pList){
 | |
|   int i;
 | |
|   struct ExprList_item *pItem;
 | |
|   if( pList==0 ) return;
 | |
|   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
 | |
|   assert( pList->nExpr<=pList->nAlloc );
 | |
|   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
 | |
|     sqlite3ExprDelete(pItem->pExpr);
 | |
|     sqlite3_free(pItem->zName);
 | |
|   }
 | |
|   sqlite3_free(pList->a);
 | |
|   sqlite3_free(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Call xFunc for each node visited.
 | |
| **
 | |
| ** The return value from xFunc determines whether the tree walk continues.
 | |
| ** 0 means continue walking the tree.  1 means do not walk children
 | |
| ** of the current node but continue with siblings.  2 means abandon
 | |
| ** the tree walk completely.
 | |
| **
 | |
| ** The return value from this routine is 1 to abandon the tree walk
 | |
| ** and 0 to continue.
 | |
| **
 | |
| ** NOTICE:  This routine does *not* descend into subqueries.
 | |
| */
 | |
| static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
 | |
| static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
 | |
|   int rc;
 | |
|   if( pExpr==0 ) return 0;
 | |
|   rc = (*xFunc)(pArg, pExpr);
 | |
|   if( rc==0 ){
 | |
|     if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
 | |
|     if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
 | |
|     if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
 | |
|   }
 | |
|   return rc>1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call walkExprTree() for every expression in list p.
 | |
| */
 | |
| static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
 | |
|   int i;
 | |
|   struct ExprList_item *pItem;
 | |
|   if( !p ) return 0;
 | |
|   for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
 | |
|     if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call walkExprTree() for every expression in Select p, not including
 | |
| ** expressions that are part of sub-selects in any FROM clause or the LIMIT
 | |
| ** or OFFSET expressions..
 | |
| */
 | |
| static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
 | |
|   walkExprList(p->pEList, xFunc, pArg);
 | |
|   walkExprTree(p->pWhere, xFunc, pArg);
 | |
|   walkExprList(p->pGroupBy, xFunc, pArg);
 | |
|   walkExprTree(p->pHaving, xFunc, pArg);
 | |
|   walkExprList(p->pOrderBy, xFunc, pArg);
 | |
|   if( p->pPrior ){
 | |
|     walkSelectExpr(p->pPrior, xFunc, pArg);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine is designed as an xFunc for walkExprTree().
 | |
| **
 | |
| ** pArg is really a pointer to an integer.  If we can tell by looking
 | |
| ** at pExpr that the expression that contains pExpr is not a constant
 | |
| ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
 | |
| ** If pExpr does does not disqualify the expression from being a constant
 | |
| ** then do nothing.
 | |
| **
 | |
| ** After walking the whole tree, if no nodes are found that disqualify
 | |
| ** the expression as constant, then we assume the whole expression
 | |
| ** is constant.  See sqlite3ExprIsConstant() for additional information.
 | |
| */
 | |
| static int exprNodeIsConstant(void *pArg, Expr *pExpr){
 | |
|   int *pN = (int*)pArg;
 | |
| 
 | |
|   /* If *pArg is 3 then any term of the expression that comes from
 | |
|   ** the ON or USING clauses of a join disqualifies the expression
 | |
|   ** from being considered constant. */
 | |
|   if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
 | |
|     *pN = 0;
 | |
|     return 2;
 | |
|   }
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     /* Consider functions to be constant if all their arguments are constant
 | |
|     ** and *pArg==2 */
 | |
|     case TK_FUNCTION:
 | |
|       if( (*pN)==2 ) return 0;
 | |
|       /* Fall through */
 | |
|     case TK_ID:
 | |
|     case TK_COLUMN:
 | |
|     case TK_DOT:
 | |
|     case TK_AGG_FUNCTION:
 | |
|     case TK_AGG_COLUMN:
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_SELECT:
 | |
|     case TK_EXISTS:
 | |
| #endif
 | |
|       *pN = 0;
 | |
|       return 2;
 | |
|     case TK_IN:
 | |
|       if( pExpr->pSelect ){
 | |
|         *pN = 0;
 | |
|         return 2;
 | |
|       }
 | |
|     default:
 | |
|       return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** and 0 if it involves variables or function calls.
 | |
| **
 | |
| ** For the purposes of this function, a double-quoted string (ex: "abc")
 | |
| ** is considered a variable but a single-quoted string (ex: 'abc') is
 | |
| ** a constant.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
 | |
|   int isConst = 1;
 | |
|   walkExprTree(p, exprNodeIsConstant, &isConst);
 | |
|   return isConst;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** that does no originate from the ON or USING clauses of a join.
 | |
| ** Return 0 if it involves variables or function calls or terms from
 | |
| ** an ON or USING clause.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
 | |
|   int isConst = 3;
 | |
|   walkExprTree(p, exprNodeIsConstant, &isConst);
 | |
|   return isConst!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Walk an expression tree.  Return 1 if the expression is constant
 | |
| ** or a function call with constant arguments.  Return and 0 if there
 | |
| ** are any variables.
 | |
| **
 | |
| ** For the purposes of this function, a double-quoted string (ex: "abc")
 | |
| ** is considered a variable but a single-quoted string (ex: 'abc') is
 | |
| ** a constant.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){
 | |
|   int isConst = 2;
 | |
|   walkExprTree(p, exprNodeIsConstant, &isConst);
 | |
|   return isConst!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the expression p codes a constant integer that is small enough
 | |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer
 | |
| ** in *pValue.  If the expression is not an integer or if it is too big
 | |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){
 | |
|   switch( p->op ){
 | |
|     case TK_INTEGER: {
 | |
|       if( sqlite3GetInt32((char*)p->token.z, pValue) ){
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_UPLUS: {
 | |
|       return sqlite3ExprIsInteger(p->pLeft, pValue);
 | |
|     }
 | |
|     case TK_UMINUS: {
 | |
|       int v;
 | |
|       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
 | |
|         *pValue = -v;
 | |
|         return 1;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given string is a row-id column name.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
 | |
|   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
 | |
|   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
 | |
|   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
 | |
| ** that name in the set of source tables in pSrcList and make the pExpr 
 | |
| ** expression node refer back to that source column.  The following changes
 | |
| ** are made to pExpr:
 | |
| **
 | |
| **    pExpr->iDb           Set the index in db->aDb[] of the database holding
 | |
| **                         the table.
 | |
| **    pExpr->iTable        Set to the cursor number for the table obtained
 | |
| **                         from pSrcList.
 | |
| **    pExpr->iColumn       Set to the column number within the table.
 | |
| **    pExpr->op            Set to TK_COLUMN.
 | |
| **    pExpr->pLeft         Any expression this points to is deleted
 | |
| **    pExpr->pRight        Any expression this points to is deleted.
 | |
| **
 | |
| ** The pDbToken is the name of the database (the "X").  This value may be
 | |
| ** NULL meaning that name is of the form Y.Z or Z.  Any available database
 | |
| ** can be used.  The pTableToken is the name of the table (the "Y").  This
 | |
| ** value can be NULL if pDbToken is also NULL.  If pTableToken is NULL it
 | |
| ** means that the form of the name is Z and that columns from any table
 | |
| ** can be used.
 | |
| **
 | |
| ** If the name cannot be resolved unambiguously, leave an error message
 | |
| ** in pParse and return non-zero.  Return zero on success.
 | |
| */
 | |
| static int lookupName(
 | |
|   Parse *pParse,       /* The parsing context */
 | |
|   Token *pDbToken,     /* Name of the database containing table, or NULL */
 | |
|   Token *pTableToken,  /* Name of table containing column, or NULL */
 | |
|   Token *pColumnToken, /* Name of the column. */
 | |
|   NameContext *pNC,    /* The name context used to resolve the name */
 | |
|   Expr *pExpr          /* Make this EXPR node point to the selected column */
 | |
| ){
 | |
|   char *zDb = 0;       /* Name of the database.  The "X" in X.Y.Z */
 | |
|   char *zTab = 0;      /* Name of the table.  The "Y" in X.Y.Z or Y.Z */
 | |
|   char *zCol = 0;      /* Name of the column.  The "Z" */
 | |
|   int i, j;            /* Loop counters */
 | |
|   int cnt = 0;         /* Number of matching column names */
 | |
|   int cntTab = 0;      /* Number of matching table names */
 | |
|   sqlite3 *db = pParse->db;  /* The database */
 | |
|   struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
 | |
|   struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
 | |
|   NameContext *pTopNC = pNC;        /* First namecontext in the list */
 | |
|   Schema *pSchema = 0;              /* Schema of the expression */
 | |
| 
 | |
|   assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
 | |
|   zDb = sqlite3NameFromToken(db, pDbToken);
 | |
|   zTab = sqlite3NameFromToken(db, pTableToken);
 | |
|   zCol = sqlite3NameFromToken(db, pColumnToken);
 | |
|   if( db->mallocFailed ){
 | |
|     goto lookupname_end;
 | |
|   }
 | |
| 
 | |
|   pExpr->iTable = -1;
 | |
|   while( pNC && cnt==0 ){
 | |
|     ExprList *pEList;
 | |
|     SrcList *pSrcList = pNC->pSrcList;
 | |
| 
 | |
|     if( pSrcList ){
 | |
|       for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
 | |
|         Table *pTab;
 | |
|         int iDb;
 | |
|         Column *pCol;
 | |
|   
 | |
|         pTab = pItem->pTab;
 | |
|         assert( pTab!=0 );
 | |
|         iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|         assert( pTab->nCol>0 );
 | |
|         if( zTab ){
 | |
|           if( pItem->zAlias ){
 | |
|             char *zTabName = pItem->zAlias;
 | |
|             if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
 | |
|           }else{
 | |
|             char *zTabName = pTab->zName;
 | |
|             if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
 | |
|             if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( 0==(cntTab++) ){
 | |
|           pExpr->iTable = pItem->iCursor;
 | |
|           pSchema = pTab->pSchema;
 | |
|           pMatch = pItem;
 | |
|         }
 | |
|         for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
 | |
|           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
 | |
|             const char *zColl = pTab->aCol[j].zColl;
 | |
|             IdList *pUsing;
 | |
|             cnt++;
 | |
|             pExpr->iTable = pItem->iCursor;
 | |
|             pMatch = pItem;
 | |
|             pSchema = pTab->pSchema;
 | |
|             /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
 | |
|             pExpr->iColumn = j==pTab->iPKey ? -1 : j;
 | |
|             pExpr->affinity = pTab->aCol[j].affinity;
 | |
|             if( (pExpr->flags & EP_ExpCollate)==0 ){
 | |
|               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
 | |
|             }
 | |
|             if( i<pSrcList->nSrc-1 ){
 | |
|               if( pItem[1].jointype & JT_NATURAL ){
 | |
|                 /* If this match occurred in the left table of a natural join,
 | |
|                 ** then skip the right table to avoid a duplicate match */
 | |
|                 pItem++;
 | |
|                 i++;
 | |
|               }else if( (pUsing = pItem[1].pUsing)!=0 ){
 | |
|                 /* If this match occurs on a column that is in the USING clause
 | |
|                 ** of a join, skip the search of the right table of the join
 | |
|                 ** to avoid a duplicate match there. */
 | |
|                 int k;
 | |
|                 for(k=0; k<pUsing->nId; k++){
 | |
|                   if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
 | |
|                     pItem++;
 | |
|                     i++;
 | |
|                     break;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|     /* If we have not already resolved the name, then maybe 
 | |
|     ** it is a new.* or old.* trigger argument reference
 | |
|     */
 | |
|     if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
 | |
|       TriggerStack *pTriggerStack = pParse->trigStack;
 | |
|       Table *pTab = 0;
 | |
|       u32 *piColMask;
 | |
|       if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
 | |
|         pExpr->iTable = pTriggerStack->newIdx;
 | |
|         assert( pTriggerStack->pTab );
 | |
|         pTab = pTriggerStack->pTab;
 | |
|         piColMask = &(pTriggerStack->newColMask);
 | |
|       }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
 | |
|         pExpr->iTable = pTriggerStack->oldIdx;
 | |
|         assert( pTriggerStack->pTab );
 | |
|         pTab = pTriggerStack->pTab;
 | |
|         piColMask = &(pTriggerStack->oldColMask);
 | |
|       }
 | |
| 
 | |
|       if( pTab ){ 
 | |
|         int iCol;
 | |
|         Column *pCol = pTab->aCol;
 | |
| 
 | |
|         pSchema = pTab->pSchema;
 | |
|         cntTab++;
 | |
|         for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
 | |
|           if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
 | |
|             const char *zColl = pTab->aCol[iCol].zColl;
 | |
|             cnt++;
 | |
|             pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
 | |
|             pExpr->affinity = pTab->aCol[iCol].affinity;
 | |
|             if( (pExpr->flags & EP_ExpCollate)==0 ){
 | |
|               pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
 | |
|             }
 | |
|             pExpr->pTab = pTab;
 | |
|             if( iCol>=0 ){
 | |
|               *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
 | |
|             }
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #endif /* !defined(SQLITE_OMIT_TRIGGER) */
 | |
| 
 | |
|     /*
 | |
|     ** Perhaps the name is a reference to the ROWID
 | |
|     */
 | |
|     if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
 | |
|       cnt = 1;
 | |
|       pExpr->iColumn = -1;
 | |
|       pExpr->affinity = SQLITE_AFF_INTEGER;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
 | |
|     ** might refer to an result-set alias.  This happens, for example, when
 | |
|     ** we are resolving names in the WHERE clause of the following command:
 | |
|     **
 | |
|     **     SELECT a+b AS x FROM table WHERE x<10;
 | |
|     **
 | |
|     ** In cases like this, replace pExpr with a copy of the expression that
 | |
|     ** forms the result set entry ("a+b" in the example) and return immediately.
 | |
|     ** Note that the expression in the result set should have already been
 | |
|     ** resolved by the time the WHERE clause is resolved.
 | |
|     */
 | |
|     if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
 | |
|       for(j=0; j<pEList->nExpr; j++){
 | |
|         char *zAs = pEList->a[j].zName;
 | |
|         if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
 | |
|           Expr *pDup, *pOrig;
 | |
|           assert( pExpr->pLeft==0 && pExpr->pRight==0 );
 | |
|           assert( pExpr->pList==0 );
 | |
|           assert( pExpr->pSelect==0 );
 | |
|           pOrig = pEList->a[j].pExpr;
 | |
|           if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
 | |
|             sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
 | |
|             sqlite3_free(zCol);
 | |
|             return 2;
 | |
|           }
 | |
|           pDup = sqlite3ExprDup(db, pOrig);
 | |
|           if( pExpr->flags & EP_ExpCollate ){
 | |
|             pDup->pColl = pExpr->pColl;
 | |
|             pDup->flags |= EP_ExpCollate;
 | |
|           }
 | |
|           if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z);
 | |
|           if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z);
 | |
|           memcpy(pExpr, pDup, sizeof(*pExpr));
 | |
|           sqlite3_free(pDup);
 | |
|           cnt = 1;
 | |
|           pMatch = 0;
 | |
|           assert( zTab==0 && zDb==0 );
 | |
|           goto lookupname_end_2;
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
| 
 | |
|     /* Advance to the next name context.  The loop will exit when either
 | |
|     ** we have a match (cnt>0) or when we run out of name contexts.
 | |
|     */
 | |
|     if( cnt==0 ){
 | |
|       pNC = pNC->pNext;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** If X and Y are NULL (in other words if only the column name Z is
 | |
|   ** supplied) and the value of Z is enclosed in double-quotes, then
 | |
|   ** Z is a string literal if it doesn't match any column names.  In that
 | |
|   ** case, we need to return right away and not make any changes to
 | |
|   ** pExpr.
 | |
|   **
 | |
|   ** Because no reference was made to outer contexts, the pNC->nRef
 | |
|   ** fields are not changed in any context.
 | |
|   */
 | |
|   if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
 | |
|     sqlite3_free(zCol);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** cnt==0 means there was not match.  cnt>1 means there were two or
 | |
|   ** more matches.  Either way, we have an error.
 | |
|   */
 | |
|   if( cnt!=1 ){
 | |
|     const char *zErr;
 | |
|     zErr = cnt==0 ? "no such column" : "ambiguous column name";
 | |
|     if( zDb ){
 | |
|       sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
 | |
|     }else if( zTab ){
 | |
|       sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
 | |
|     }else{
 | |
|       sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
 | |
|     }
 | |
|     pTopNC->nErr++;
 | |
|   }
 | |
| 
 | |
|   /* If a column from a table in pSrcList is referenced, then record
 | |
|   ** this fact in the pSrcList.a[].colUsed bitmask.  Column 0 causes
 | |
|   ** bit 0 to be set.  Column 1 sets bit 1.  And so forth.  If the
 | |
|   ** column number is greater than the number of bits in the bitmask
 | |
|   ** then set the high-order bit of the bitmask.
 | |
|   */
 | |
|   if( pExpr->iColumn>=0 && pMatch!=0 ){
 | |
|     int n = pExpr->iColumn;
 | |
|     if( n>=sizeof(Bitmask)*8 ){
 | |
|       n = sizeof(Bitmask)*8-1;
 | |
|     }
 | |
|     assert( pMatch->iCursor==pExpr->iTable );
 | |
|     pMatch->colUsed |= ((Bitmask)1)<<n;
 | |
|   }
 | |
| 
 | |
| lookupname_end:
 | |
|   /* Clean up and return
 | |
|   */
 | |
|   sqlite3_free(zDb);
 | |
|   sqlite3_free(zTab);
 | |
|   sqlite3ExprDelete(pExpr->pLeft);
 | |
|   pExpr->pLeft = 0;
 | |
|   sqlite3ExprDelete(pExpr->pRight);
 | |
|   pExpr->pRight = 0;
 | |
|   pExpr->op = TK_COLUMN;
 | |
| lookupname_end_2:
 | |
|   sqlite3_free(zCol);
 | |
|   if( cnt==1 ){
 | |
|     assert( pNC!=0 );
 | |
|     sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
 | |
|     if( pMatch && !pMatch->pSelect ){
 | |
|       pExpr->pTab = pMatch->pTab;
 | |
|     }
 | |
|     /* Increment the nRef value on all name contexts from TopNC up to
 | |
|     ** the point where the name matched. */
 | |
|     for(;;){
 | |
|       assert( pTopNC!=0 );
 | |
|       pTopNC->nRef++;
 | |
|       if( pTopNC==pNC ) break;
 | |
|       pTopNC = pTopNC->pNext;
 | |
|     }
 | |
|     return 0;
 | |
|   } else {
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is designed as an xFunc for walkExprTree().
 | |
| **
 | |
| ** Resolve symbolic names into TK_COLUMN operators for the current
 | |
| ** node in the expression tree.  Return 0 to continue the search down
 | |
| ** the tree or 2 to abort the tree walk.
 | |
| **
 | |
| ** This routine also does error checking and name resolution for
 | |
| ** function names.  The operator for aggregate functions is changed
 | |
| ** to TK_AGG_FUNCTION.
 | |
| */
 | |
| static int nameResolverStep(void *pArg, Expr *pExpr){
 | |
|   NameContext *pNC = (NameContext*)pArg;
 | |
|   Parse *pParse;
 | |
| 
 | |
|   if( pExpr==0 ) return 1;
 | |
|   assert( pNC!=0 );
 | |
|   pParse = pNC->pParse;
 | |
| 
 | |
|   if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
 | |
|   ExprSetProperty(pExpr, EP_Resolved);
 | |
| #ifndef NDEBUG
 | |
|   if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
 | |
|     SrcList *pSrcList = pNC->pSrcList;
 | |
|     int i;
 | |
|     for(i=0; i<pNC->pSrcList->nSrc; i++){
 | |
|       assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   switch( pExpr->op ){
 | |
|     /* Double-quoted strings (ex: "abc") are used as identifiers if
 | |
|     ** possible.  Otherwise they remain as strings.  Single-quoted
 | |
|     ** strings (ex: 'abc') are always string literals.
 | |
|     */
 | |
|     case TK_STRING: {
 | |
|       if( pExpr->token.z[0]=='\'' ) break;
 | |
|       /* Fall thru into the TK_ID case if this is a double-quoted string */
 | |
|     }
 | |
|     /* A lone identifier is the name of a column.
 | |
|     */
 | |
|     case TK_ID: {
 | |
|       lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
 | |
|       return 1;
 | |
|     }
 | |
|   
 | |
|     /* A table name and column name:     ID.ID
 | |
|     ** Or a database, table and column:  ID.ID.ID
 | |
|     */
 | |
|     case TK_DOT: {
 | |
|       Token *pColumn;
 | |
|       Token *pTable;
 | |
|       Token *pDb;
 | |
|       Expr *pRight;
 | |
| 
 | |
|       /* if( pSrcList==0 ) break; */
 | |
|       pRight = pExpr->pRight;
 | |
|       if( pRight->op==TK_ID ){
 | |
|         pDb = 0;
 | |
|         pTable = &pExpr->pLeft->token;
 | |
|         pColumn = &pRight->token;
 | |
|       }else{
 | |
|         assert( pRight->op==TK_DOT );
 | |
|         pDb = &pExpr->pLeft->token;
 | |
|         pTable = &pRight->pLeft->token;
 | |
|         pColumn = &pRight->pRight->token;
 | |
|       }
 | |
|       lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     /* Resolve function names
 | |
|     */
 | |
|     case TK_CONST_FUNC:
 | |
|     case TK_FUNCTION: {
 | |
|       ExprList *pList = pExpr->pList;    /* The argument list */
 | |
|       int n = pList ? pList->nExpr : 0;  /* Number of arguments */
 | |
|       int no_such_func = 0;       /* True if no such function exists */
 | |
|       int wrong_num_args = 0;     /* True if wrong number of arguments */
 | |
|       int is_agg = 0;             /* True if is an aggregate function */
 | |
|       int i;
 | |
|       int auth;                   /* Authorization to use the function */
 | |
|       int nId;                    /* Number of characters in function name */
 | |
|       const char *zId;            /* The function name. */
 | |
|       FuncDef *pDef;              /* Information about the function */
 | |
|       int enc = ENC(pParse->db);  /* The database encoding */
 | |
| 
 | |
|       zId = (char*)pExpr->token.z;
 | |
|       nId = pExpr->token.n;
 | |
|       pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
 | |
|       if( pDef==0 ){
 | |
|         pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
 | |
|         if( pDef==0 ){
 | |
|           no_such_func = 1;
 | |
|         }else{
 | |
|           wrong_num_args = 1;
 | |
|         }
 | |
|       }else{
 | |
|         is_agg = pDef->xFunc==0;
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|       if( pDef ){
 | |
|         auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
 | |
|         if( auth!=SQLITE_OK ){
 | |
|           if( auth==SQLITE_DENY ){
 | |
|             sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
 | |
|                                     pDef->zName);
 | |
|             pNC->nErr++;
 | |
|           }
 | |
|           pExpr->op = TK_NULL;
 | |
|           return 1;
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|       if( is_agg && !pNC->allowAgg ){
 | |
|         sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
 | |
|         pNC->nErr++;
 | |
|         is_agg = 0;
 | |
|       }else if( no_such_func ){
 | |
|         sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
 | |
|         pNC->nErr++;
 | |
|       }else if( wrong_num_args ){
 | |
|         sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
 | |
|              nId, zId);
 | |
|         pNC->nErr++;
 | |
|       }
 | |
|       if( is_agg ){
 | |
|         pExpr->op = TK_AGG_FUNCTION;
 | |
|         pNC->hasAgg = 1;
 | |
|       }
 | |
|       if( is_agg ) pNC->allowAgg = 0;
 | |
|       for(i=0; pNC->nErr==0 && i<n; i++){
 | |
|         walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
 | |
|       }
 | |
|       if( is_agg ) pNC->allowAgg = 1;
 | |
|       /* FIX ME:  Compute pExpr->affinity based on the expected return
 | |
|       ** type of the function 
 | |
|       */
 | |
|       return is_agg;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_SELECT:
 | |
|     case TK_EXISTS:
 | |
| #endif
 | |
|     case TK_IN: {
 | |
|       if( pExpr->pSelect ){
 | |
|         int nRef = pNC->nRef;
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|         if( pNC->isCheck ){
 | |
|           sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
 | |
|         }
 | |
| #endif
 | |
|         sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
 | |
|         assert( pNC->nRef>=nRef );
 | |
|         if( nRef!=pNC->nRef ){
 | |
|           ExprSetProperty(pExpr, EP_VarSelect);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|     case TK_VARIABLE: {
 | |
|       if( pNC->isCheck ){
 | |
|         sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine walks an expression tree and resolves references to
 | |
| ** table columns.  Nodes of the form ID.ID or ID resolve into an
 | |
| ** index to the table in the table list and a column offset.  The 
 | |
| ** Expr.opcode for such nodes is changed to TK_COLUMN.  The Expr.iTable
 | |
| ** value is changed to the index of the referenced table in pTabList
 | |
| ** plus the "base" value.  The base value will ultimately become the
 | |
| ** VDBE cursor number for a cursor that is pointing into the referenced
 | |
| ** table.  The Expr.iColumn value is changed to the index of the column 
 | |
| ** of the referenced table.  The Expr.iColumn value for the special
 | |
| ** ROWID column is -1.  Any INTEGER PRIMARY KEY column is tried as an
 | |
| ** alias for ROWID.
 | |
| **
 | |
| ** Also resolve function names and check the functions for proper
 | |
| ** usage.  Make sure all function names are recognized and all functions
 | |
| ** have the correct number of arguments.  Leave an error message
 | |
| ** in pParse->zErrMsg if anything is amiss.  Return the number of errors.
 | |
| **
 | |
| ** If the expression contains aggregate functions then set the EP_Agg
 | |
| ** property on the expression.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprResolveNames( 
 | |
|   NameContext *pNC,       /* Namespace to resolve expressions in. */
 | |
|   Expr *pExpr             /* The expression to be analyzed. */
 | |
| ){
 | |
|   int savedHasAgg;
 | |
|   if( pExpr==0 ) return 0;
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
|   if( (pExpr->nHeight+pNC->pParse->nHeight)>SQLITE_MAX_EXPR_DEPTH ){
 | |
|     sqlite3ErrorMsg(pNC->pParse, 
 | |
|        "Expression tree is too large (maximum depth %d)",
 | |
|        SQLITE_MAX_EXPR_DEPTH
 | |
|     );
 | |
|     return 1;
 | |
|   }
 | |
|   pNC->pParse->nHeight += pExpr->nHeight;
 | |
| #endif
 | |
|   savedHasAgg = pNC->hasAgg;
 | |
|   pNC->hasAgg = 0;
 | |
|   walkExprTree(pExpr, nameResolverStep, pNC);
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
|   pNC->pParse->nHeight -= pExpr->nHeight;
 | |
| #endif
 | |
|   if( pNC->nErr>0 ){
 | |
|     ExprSetProperty(pExpr, EP_Error);
 | |
|   }
 | |
|   if( pNC->hasAgg ){
 | |
|     ExprSetProperty(pExpr, EP_Agg);
 | |
|   }else if( savedHasAgg ){
 | |
|     pNC->hasAgg = 1;
 | |
|   }
 | |
|   return ExprHasProperty(pExpr, EP_Error);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A pointer instance of this structure is used to pass information
 | |
| ** through walkExprTree into codeSubqueryStep().
 | |
| */
 | |
| typedef struct QueryCoder QueryCoder;
 | |
| struct QueryCoder {
 | |
|   Parse *pParse;       /* The parsing context */
 | |
|   NameContext *pNC;    /* Namespace of first enclosing query */
 | |
| };
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
|   int sqlite3_enable_in_opt = 1;
 | |
| #else
 | |
|   #define sqlite3_enable_in_opt 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This function is used by the implementation of the IN (...) operator.
 | |
| ** It's job is to find or create a b-tree structure that may be used
 | |
| ** either to test for membership of the (...) set or to iterate through
 | |
| ** its members, skipping duplicates.
 | |
| **
 | |
| ** The cursor opened on the structure (database table, database index 
 | |
| ** or ephermal table) is stored in pX->iTable before this function returns.
 | |
| ** The returned value indicates the structure type, as follows:
 | |
| **
 | |
| **   IN_INDEX_ROWID - The cursor was opened on a database table.
 | |
| **   IN_INDEX_INDEX - The cursor was opened on a database index.
 | |
| **   IN_INDEX_EPH -   The cursor was opened on a specially created and
 | |
| **                    populated epheremal table.
 | |
| **
 | |
| ** An existing structure may only be used if the SELECT is of the simple
 | |
| ** form:
 | |
| **
 | |
| **     SELECT <column> FROM <table>
 | |
| **
 | |
| ** If the mustBeUnique parameter is false, the structure will be used 
 | |
| ** for fast set membership tests. In this case an epheremal table must 
 | |
| ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
 | |
| ** be found with <column> as its left-most column.
 | |
| **
 | |
| ** If mustBeUnique is true, then the structure will be used to iterate
 | |
| ** through the set members, skipping any duplicates. In this case an
 | |
| ** epheremal table must be used unless the selected <column> is guaranteed
 | |
| ** to be unique - either because it is an INTEGER PRIMARY KEY or it
 | |
| ** is unique by virtue of a constraint or implicit index.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
| SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){
 | |
|   Select *p;
 | |
|   int eType = 0;
 | |
|   int iTab = pParse->nTab++;
 | |
| 
 | |
|   /* The follwing if(...) expression is true if the SELECT is of the 
 | |
|   ** simple form:
 | |
|   **
 | |
|   **     SELECT <column> FROM <table>
 | |
|   **
 | |
|   ** If this is the case, it may be possible to use an existing table
 | |
|   ** or index instead of generating an epheremal table.
 | |
|   */
 | |
|   if( sqlite3_enable_in_opt
 | |
|    && (p=pX->pSelect)!=0 && !p->pPrior
 | |
|    && !p->isDistinct && !p->isAgg && !p->pGroupBy
 | |
|    && p->pSrc && p->pSrc->nSrc==1 && !p->pSrc->a[0].pSelect
 | |
|    && p->pSrc->a[0].pTab && !p->pSrc->a[0].pTab->pSelect
 | |
|    && p->pEList->nExpr==1 && p->pEList->a[0].pExpr->op==TK_COLUMN
 | |
|    && !p->pLimit && !p->pOffset && !p->pWhere
 | |
|   ){
 | |
|     sqlite3 *db = pParse->db;
 | |
|     Index *pIdx;
 | |
|     Expr *pExpr = p->pEList->a[0].pExpr;
 | |
|     int iCol = pExpr->iColumn;
 | |
|     Vdbe *v = sqlite3GetVdbe(pParse);
 | |
| 
 | |
|     /* This function is only called from two places. In both cases the vdbe
 | |
|     ** has already been allocated. So assume sqlite3GetVdbe() is always
 | |
|     ** successful here.
 | |
|     */
 | |
|     assert(v);
 | |
|     if( iCol<0 ){
 | |
|       int iMem = ++pParse->nMem;
 | |
|       int iAddr;
 | |
|       Table *pTab = p->pSrc->a[0].pTab;
 | |
|       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|       sqlite3VdbeUsesBtree(v, iDb);
 | |
| 
 | |
|       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
 | |
| 
 | |
|       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
 | |
|       eType = IN_INDEX_ROWID;
 | |
| 
 | |
|       sqlite3VdbeJumpHere(v, iAddr);
 | |
|     }else{
 | |
|       /* The collation sequence used by the comparison. If an index is to 
 | |
|       ** be used in place of a temp-table, it must be ordered according
 | |
|       ** to this collation sequence.
 | |
|       */
 | |
|       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
 | |
| 
 | |
|       /* Check that the affinity that will be used to perform the 
 | |
|       ** comparison is the same as the affinity of the column. If
 | |
|       ** it is not, it is not possible to use any index.
 | |
|       */
 | |
|       Table *pTab = p->pSrc->a[0].pTab;
 | |
|       char aff = comparisonAffinity(pX);
 | |
|       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
 | |
| 
 | |
|       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
 | |
|         if( (pIdx->aiColumn[0]==iCol)
 | |
|          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
 | |
|          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
 | |
|         ){
 | |
|           int iDb;
 | |
|           int iMem = ++pParse->nMem;
 | |
|           int iAddr;
 | |
|           char *pKey;
 | |
|   
 | |
|           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
 | |
|           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
 | |
|           sqlite3VdbeUsesBtree(v, iDb);
 | |
| 
 | |
|           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
 | |
|           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
 | |
|   
 | |
|           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
 | |
|                                pKey,P4_KEYINFO_HANDOFF);
 | |
|           VdbeComment((v, "%s", pIdx->zName));
 | |
|           eType = IN_INDEX_INDEX;
 | |
|           sqlite3VdbeAddOp2(v, OP_SetNumColumns, iTab, pIdx->nColumn);
 | |
| 
 | |
|           sqlite3VdbeJumpHere(v, iAddr);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( eType==0 ){
 | |
|     sqlite3CodeSubselect(pParse, pX);
 | |
|     eType = IN_INDEX_EPH;
 | |
|   }else{
 | |
|     pX->iTable = iTab;
 | |
|   }
 | |
|   return eType;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Generate code for scalar subqueries used as an expression
 | |
| ** and IN operators.  Examples:
 | |
| **
 | |
| **     (SELECT a FROM b)          -- subquery
 | |
| **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
 | |
| **     x IN (4,5,11)              -- IN operator with list on right-hand side
 | |
| **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
 | |
| **
 | |
| ** The pExpr parameter describes the expression that contains the IN
 | |
| ** operator or subquery.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
| SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
 | |
|   int testAddr = 0;                       /* One-time test address */
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;
 | |
| 
 | |
| 
 | |
|   /* This code must be run in its entirety every time it is encountered
 | |
|   ** if any of the following is true:
 | |
|   **
 | |
|   **    *  The right-hand side is a correlated subquery
 | |
|   **    *  The right-hand side is an expression list containing variables
 | |
|   **    *  We are inside a trigger
 | |
|   **
 | |
|   ** If all of the above are false, then we can run this code just once
 | |
|   ** save the results, and reuse the same result on subsequent invocations.
 | |
|   */
 | |
|   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
 | |
|     int mem = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp1(v, OP_If, mem);
 | |
|     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
 | |
|     assert( testAddr>0 || pParse->db->mallocFailed );
 | |
|   }
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_IN: {
 | |
|       char affinity;
 | |
|       KeyInfo keyInfo;
 | |
|       int addr;        /* Address of OP_OpenEphemeral instruction */
 | |
| 
 | |
|       affinity = sqlite3ExprAffinity(pExpr->pLeft);
 | |
| 
 | |
|       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
 | |
|       ** expression it is handled the same way. A virtual table is 
 | |
|       ** filled with single-field index keys representing the results
 | |
|       ** from the SELECT or the <exprlist>.
 | |
|       **
 | |
|       ** If the 'x' expression is a column value, or the SELECT...
 | |
|       ** statement returns a column value, then the affinity of that
 | |
|       ** column is used to build the index keys. If both 'x' and the
 | |
|       ** SELECT... statement are columns, then numeric affinity is used
 | |
|       ** if either column has NUMERIC or INTEGER affinity. If neither
 | |
|       ** 'x' nor the SELECT... statement are columns, then numeric affinity
 | |
|       ** is used.
 | |
|       */
 | |
|       pExpr->iTable = pParse->nTab++;
 | |
|       addr = sqlite3VdbeAddOp1(v, OP_OpenEphemeral, pExpr->iTable);
 | |
|       memset(&keyInfo, 0, sizeof(keyInfo));
 | |
|       keyInfo.nField = 1;
 | |
|       sqlite3VdbeAddOp2(v, OP_SetNumColumns, pExpr->iTable, 1);
 | |
| 
 | |
|       if( pExpr->pSelect ){
 | |
|         /* Case 1:     expr IN (SELECT ...)
 | |
|         **
 | |
|         ** Generate code to write the results of the select into the temporary
 | |
|         ** table allocated and opened above.
 | |
|         */
 | |
|         SelectDest dest;
 | |
|         ExprList *pEList;
 | |
| 
 | |
|         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
 | |
|         dest.affinity = (int)affinity;
 | |
|         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
 | |
|         if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){
 | |
|           return;
 | |
|         }
 | |
|         pEList = pExpr->pSelect->pEList;
 | |
|         if( pEList && pEList->nExpr>0 ){ 
 | |
|           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
 | |
|               pEList->a[0].pExpr);
 | |
|         }
 | |
|       }else if( pExpr->pList ){
 | |
|         /* Case 2:     expr IN (exprlist)
 | |
|         **
 | |
|         ** For each expression, build an index key from the evaluation and
 | |
|         ** store it in the temporary table. If <expr> is a column, then use
 | |
|         ** that columns affinity when building index keys. If <expr> is not
 | |
|         ** a column, use numeric affinity.
 | |
|         */
 | |
|         int i;
 | |
|         ExprList *pList = pExpr->pList;
 | |
|         struct ExprList_item *pItem;
 | |
|         int r1, r2;
 | |
| 
 | |
|         if( !affinity ){
 | |
|           affinity = SQLITE_AFF_NONE;
 | |
|         }
 | |
|         keyInfo.aColl[0] = pExpr->pLeft->pColl;
 | |
| 
 | |
|         /* Loop through each expression in <exprlist>. */
 | |
|         r1 = sqlite3GetTempReg(pParse);
 | |
|         r2 = sqlite3GetTempReg(pParse);
 | |
|         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
 | |
|           Expr *pE2 = pItem->pExpr;
 | |
| 
 | |
|           /* If the expression is not constant then we will need to
 | |
|           ** disable the test that was generated above that makes sure
 | |
|           ** this code only executes once.  Because for a non-constant
 | |
|           ** expression we need to rerun this code each time.
 | |
|           */
 | |
|           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
 | |
|             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
 | |
|             testAddr = 0;
 | |
|           }
 | |
| 
 | |
|           /* Evaluate the expression and insert it into the temp table */
 | |
|           sqlite3ExprCode(pParse, pE2, r1);
 | |
|           sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
 | |
|           sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
 | |
|         }
 | |
|         sqlite3ReleaseTempReg(pParse, r1);
 | |
|         sqlite3ReleaseTempReg(pParse, r2);
 | |
|       }
 | |
|       sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TK_EXISTS:
 | |
|     case TK_SELECT: {
 | |
|       /* This has to be a scalar SELECT.  Generate code to put the
 | |
|       ** value of this select in a memory cell and record the number
 | |
|       ** of the memory cell in iColumn.
 | |
|       */
 | |
|       static const Token one = { (u8*)"1", 0, 1 };
 | |
|       Select *pSel;
 | |
|       SelectDest dest;
 | |
| 
 | |
|       pSel = pExpr->pSelect;
 | |
|       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
 | |
|       if( pExpr->op==TK_SELECT ){
 | |
|         dest.eDest = SRT_Mem;
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
 | |
|         VdbeComment((v, "Init subquery result"));
 | |
|       }else{
 | |
|         dest.eDest = SRT_Exists;
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
 | |
|         VdbeComment((v, "Init EXISTS result"));
 | |
|       }
 | |
|       sqlite3ExprDelete(pSel->pLimit);
 | |
|       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
 | |
|       if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){
 | |
|         return;
 | |
|       }
 | |
|       pExpr->iColumn = dest.iParm;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( testAddr ){
 | |
|     sqlite3VdbeJumpHere(v, testAddr-1);
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_SUBQUERY */
 | |
| 
 | |
| /*
 | |
| ** Duplicate an 8-byte value
 | |
| */
 | |
| static char *dup8bytes(Vdbe *v, const char *in){
 | |
|   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
 | |
|   if( out ){
 | |
|     memcpy(out, in, 8);
 | |
|   }
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate an instruction that will put the floating point
 | |
| ** value described by z[0..n-1] into register iMem.
 | |
| **
 | |
| ** The z[] string will probably not be zero-terminated.  But the 
 | |
| ** z[n] character is guaranteed to be something that does not look
 | |
| ** like the continuation of the number.
 | |
| */
 | |
| static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
 | |
|   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
 | |
|   if( z ){
 | |
|     double value;
 | |
|     char *zV;
 | |
|     assert( !isdigit(z[n]) );
 | |
|     sqlite3AtoF(z, &value);
 | |
|     if( negateFlag ) value = -value;
 | |
|     zV = dup8bytes(v, (char*)&value);
 | |
|     sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate an instruction that will put the integer describe by
 | |
| ** text z[0..n-1] into register iMem.
 | |
| **
 | |
| ** The z[] string will probably not be zero-terminated.  But the 
 | |
| ** z[n] character is guaranteed to be something that does not look
 | |
| ** like the continuation of the number.
 | |
| */
 | |
| static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){
 | |
|   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
 | |
|   if( z ){
 | |
|     int i;
 | |
|     assert( !isdigit(z[n]) );
 | |
|     if( sqlite3GetInt32(z, &i) ){
 | |
|       if( negFlag ) i = -i;
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
 | |
|     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
 | |
|       i64 value;
 | |
|       char *zV;
 | |
|       sqlite3Atoi64(z, &value);
 | |
|       if( negFlag ) value = -value;
 | |
|       zV = dup8bytes(v, (char*)&value);
 | |
|       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
 | |
|     }else{
 | |
|       codeReal(v, z, n, negFlag, iMem);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code that will extract the iColumn-th column from
 | |
| ** table pTab and store the column value in register iReg.
 | |
| ** There is an open cursor to pTab in 
 | |
| ** iTable.  If iColumn<0 then code is generated that extracts the rowid.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprCodeGetColumn(
 | |
|   Vdbe *v,         /* The VM being created */
 | |
|   Table *pTab,     /* Description of the table we are reading from */
 | |
|   int iColumn,     /* Index of the table column */
 | |
|   int iTable,      /* The cursor pointing to the table */
 | |
|   int iReg         /* Store results here */
 | |
| ){
 | |
|   if( iColumn<0 ){
 | |
|     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
 | |
|     sqlite3VdbeAddOp2(v, op, iTable, iReg);
 | |
|   }else if( pTab==0 ){
 | |
|     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
 | |
|   }else{
 | |
|     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
 | |
|     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
 | |
|     sqlite3ColumnDefault(v, pTab, iColumn);
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
 | |
|       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code into the current Vdbe to evaluate the given
 | |
| ** expression.  Attempt to store the results in register "target".
 | |
| ** Return the register where results are stored.
 | |
| **
 | |
| ** With this routine, there is no guaranteed that results will
 | |
| ** be stored in target.  The result might be stored in some other
 | |
| ** register if it is convenient to do so.  The calling function
 | |
| ** must check the return code and move the results to the desired
 | |
| ** register.
 | |
| */
 | |
| static int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
 | |
|   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
 | |
|   int op;                   /* The opcode being coded */
 | |
|   int inReg = target;       /* Results stored in register inReg */
 | |
|   int regFree1 = 0;         /* If non-zero free this temporary register */
 | |
|   int regFree2 = 0;         /* If non-zero free this temporary register */
 | |
|   int r1, r2, r3;           /* Various register numbers */
 | |
| 
 | |
|   assert( v!=0 || pParse->db->mallocFailed );
 | |
|   assert( target>0 && target<=pParse->nMem );
 | |
|   if( v==0 ) return 0;
 | |
| 
 | |
|   if( pExpr==0 ){
 | |
|     op = TK_NULL;
 | |
|   }else{
 | |
|     op = pExpr->op;
 | |
|   }
 | |
|   switch( op ){
 | |
|     case TK_AGG_COLUMN: {
 | |
|       AggInfo *pAggInfo = pExpr->pAggInfo;
 | |
|       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
 | |
|       if( !pAggInfo->directMode ){
 | |
|         assert( pCol->iMem>0 );
 | |
|         inReg = pCol->iMem;
 | |
|         break;
 | |
|       }else if( pAggInfo->useSortingIdx ){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
 | |
|                               pCol->iSorterColumn, target);
 | |
|         break;
 | |
|       }
 | |
|       /* Otherwise, fall thru into the TK_COLUMN case */
 | |
|     }
 | |
|     case TK_COLUMN: {
 | |
|       if( pExpr->iTable<0 ){
 | |
|         /* This only happens when coding check constraints */
 | |
|         assert( pParse->ckBase>0 );
 | |
|         inReg = pExpr->iColumn + pParse->ckBase;
 | |
|       }else{
 | |
|         sqlite3ExprCodeGetColumn(v, pExpr->pTab,
 | |
|                                  pExpr->iColumn, pExpr->iTable, target);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_INTEGER: {
 | |
|       codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
 | |
|       break;
 | |
|     }
 | |
|     case TK_FLOAT: {
 | |
|       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
 | |
|       break;
 | |
|     }
 | |
|     case TK_STRING: {
 | |
|       sqlite3DequoteExpr(pParse->db, pExpr);
 | |
|       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
 | |
|                         (char*)pExpr->token.z, pExpr->token.n);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NULL: {
 | |
|       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
|     case TK_BLOB: {
 | |
|       int n;
 | |
|       const char *z;
 | |
|       char *zBlob;
 | |
|       assert( pExpr->token.n>=3 );
 | |
|       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
 | |
|       assert( pExpr->token.z[1]=='\'' );
 | |
|       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
 | |
|       n = pExpr->token.n - 3;
 | |
|       z = (char*)pExpr->token.z + 2;
 | |
|       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
 | |
|       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case TK_VARIABLE: {
 | |
|       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
 | |
|       if( pExpr->token.n>1 ){
 | |
|         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_REGISTER: {
 | |
|       inReg = pExpr->iTable;
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_CAST
 | |
|     case TK_CAST: {
 | |
|       /* Expressions of the form:   CAST(pLeft AS token) */
 | |
|       int aff, to_op;
 | |
|       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 | |
|       aff = sqlite3AffinityType(&pExpr->token);
 | |
|       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
 | |
|       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
 | |
|       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
 | |
|       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
 | |
|       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
 | |
|       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
 | |
|       sqlite3VdbeAddOp1(v, to_op, inReg);
 | |
|       break;
 | |
|     }
 | |
| #endif /* SQLITE_OMIT_CAST */
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       assert( TK_LT==OP_Lt );
 | |
|       assert( TK_LE==OP_Le );
 | |
|       assert( TK_GT==OP_Gt );
 | |
|       assert( TK_GE==OP_Ge );
 | |
|       assert( TK_EQ==OP_Eq );
 | |
|       assert( TK_NE==OP_Ne );
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
 | |
|       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 | |
|                   r1, r2, inReg, SQLITE_STOREP2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_AND:
 | |
|     case TK_OR:
 | |
|     case TK_PLUS:
 | |
|     case TK_STAR:
 | |
|     case TK_MINUS:
 | |
|     case TK_REM:
 | |
|     case TK_BITAND:
 | |
|     case TK_BITOR:
 | |
|     case TK_SLASH:
 | |
|     case TK_LSHIFT:
 | |
|     case TK_RSHIFT: 
 | |
|     case TK_CONCAT: {
 | |
|       assert( TK_AND==OP_And );
 | |
|       assert( TK_OR==OP_Or );
 | |
|       assert( TK_PLUS==OP_Add );
 | |
|       assert( TK_MINUS==OP_Subtract );
 | |
|       assert( TK_REM==OP_Remainder );
 | |
|       assert( TK_BITAND==OP_BitAnd );
 | |
|       assert( TK_BITOR==OP_BitOr );
 | |
|       assert( TK_SLASH==OP_Divide );
 | |
|       assert( TK_LSHIFT==OP_ShiftLeft );
 | |
|       assert( TK_RSHIFT==OP_ShiftRight );
 | |
|       assert( TK_CONCAT==OP_Concat );
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
 | |
|       sqlite3VdbeAddOp3(v, op, r2, r1, target);
 | |
|       break;
 | |
|     }
 | |
|     case TK_UMINUS: {
 | |
|       Expr *pLeft = pExpr->pLeft;
 | |
|       assert( pLeft );
 | |
|       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
 | |
|         Token *p = &pLeft->token;
 | |
|         if( pLeft->op==TK_FLOAT ){
 | |
|           codeReal(v, (char*)p->z, p->n, 1, target);
 | |
|         }else{
 | |
|           codeInteger(v, (char*)p->z, p->n, 1, target);
 | |
|         }
 | |
|       }else{
 | |
|         regFree1 = r1 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
 | |
|         r2 = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 | |
|         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
 | |
|       }
 | |
|       inReg = target;
 | |
|       break;
 | |
|     }
 | |
|     case TK_BITNOT:
 | |
|     case TK_NOT: {
 | |
|       assert( TK_BITNOT==OP_BitNot );
 | |
|       assert( TK_NOT==OP_Not );
 | |
|       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 | |
|       sqlite3VdbeAddOp1(v, op, inReg);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       int addr;
 | |
|       assert( TK_ISNULL==OP_IsNull );
 | |
|       assert( TK_NOTNULL==OP_NotNull );
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       addr = sqlite3VdbeAddOp1(v, op, r1);
 | |
|       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
|       break;
 | |
|     }
 | |
|     case TK_AGG_FUNCTION: {
 | |
|       AggInfo *pInfo = pExpr->pAggInfo;
 | |
|       if( pInfo==0 ){
 | |
|         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
 | |
|             &pExpr->span);
 | |
|       }else{
 | |
|         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_CONST_FUNC:
 | |
|     case TK_FUNCTION: {
 | |
|       ExprList *pList = pExpr->pList;
 | |
|       int nExpr = pList ? pList->nExpr : 0;
 | |
|       FuncDef *pDef;
 | |
|       int nId;
 | |
|       const char *zId;
 | |
|       int constMask = 0;
 | |
|       int i;
 | |
|       sqlite3 *db = pParse->db;
 | |
|       u8 enc = ENC(db);
 | |
|       CollSeq *pColl = 0;
 | |
| 
 | |
|       zId = (char*)pExpr->token.z;
 | |
|       nId = pExpr->token.n;
 | |
|       pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
 | |
|       assert( pDef!=0 );
 | |
|       if( pList ){
 | |
|         nExpr = pList->nExpr;
 | |
|         r1 = sqlite3GetTempRange(pParse, nExpr);
 | |
|         sqlite3ExprCodeExprList(pParse, pList, r1);
 | |
|       }else{
 | |
|         nExpr = r1 = 0;
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       /* Possibly overload the function if the first argument is
 | |
|       ** a virtual table column.
 | |
|       **
 | |
|       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
 | |
|       ** second argument, not the first, as the argument to test to
 | |
|       ** see if it is a column in a virtual table.  This is done because
 | |
|       ** the left operand of infix functions (the operand we want to
 | |
|       ** control overloading) ends up as the second argument to the
 | |
|       ** function.  The expression "A glob B" is equivalent to 
 | |
|       ** "glob(B,A).  We want to use the A in "A glob B" to test
 | |
|       ** for function overloading.  But we use the B term in "glob(B,A)".
 | |
|       */
 | |
|       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
 | |
|         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
 | |
|       }else if( nExpr>0 ){
 | |
|         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
 | |
|       }
 | |
| #endif
 | |
|       for(i=0; i<nExpr && i<32; i++){
 | |
|         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
 | |
|           constMask |= (1<<i);
 | |
|         }
 | |
|         if( pDef->needCollSeq && !pColl ){
 | |
|           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
 | |
|         }
 | |
|       }
 | |
|       if( pDef->needCollSeq ){
 | |
|         if( !pColl ) pColl = pParse->db->pDfltColl; 
 | |
|         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
 | |
|       }
 | |
|       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
 | |
|                         (char*)pDef, P4_FUNCDEF);
 | |
|       sqlite3VdbeChangeP5(v, nExpr);
 | |
|       if( nExpr ){
 | |
|         sqlite3ReleaseTempRange(pParse, r1, nExpr);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_EXISTS:
 | |
|     case TK_SELECT: {
 | |
|       if( pExpr->iColumn==0 ){
 | |
|         sqlite3CodeSubselect(pParse, pExpr);
 | |
|       }
 | |
|       inReg = pExpr->iColumn;
 | |
|       break;
 | |
|     }
 | |
|     case TK_IN: {
 | |
|       int j1, j2, j3, j4, j5;
 | |
|       char affinity;
 | |
|       int eType;
 | |
| 
 | |
|       eType = sqlite3FindInIndex(pParse, pExpr, 0);
 | |
| 
 | |
|       /* Figure out the affinity to use to create a key from the results
 | |
|       ** of the expression. affinityStr stores a static string suitable for
 | |
|       ** P4 of OP_MakeRecord.
 | |
|       */
 | |
|       affinity = comparisonAffinity(pExpr);
 | |
| 
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
 | |
| 
 | |
|       /* Code the <expr> from "<expr> IN (...)". The temporary table
 | |
|       ** pExpr->iTable contains the values that make up the (...) set.
 | |
|       */
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
 | |
|       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
 | |
|       j2  = sqlite3VdbeAddOp0(v, OP_Goto);
 | |
|       sqlite3VdbeJumpHere(v, j1);
 | |
|       if( eType==IN_INDEX_ROWID ){
 | |
|         j3 = sqlite3VdbeAddOp3(v, OP_MustBeInt, r1, 0, 1);
 | |
|         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1);
 | |
|         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
 | |
|         sqlite3VdbeJumpHere(v, j3);
 | |
|         sqlite3VdbeJumpHere(v, j4);
 | |
|       }else{
 | |
|         r2 = regFree2 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
 | |
|         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
 | |
|       sqlite3VdbeJumpHere(v, j2);
 | |
|       sqlite3VdbeJumpHere(v, j5);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     /*
 | |
|     **    x BETWEEN y AND z
 | |
|     **
 | |
|     ** This is equivalent to
 | |
|     **
 | |
|     **    x>=y AND x<=z
 | |
|     **
 | |
|     ** X is stored in pExpr->pLeft.
 | |
|     ** Y is stored in pExpr->pList->a[0].pExpr.
 | |
|     ** Z is stored in pExpr->pList->a[1].pExpr.
 | |
|     */
 | |
|     case TK_BETWEEN: {
 | |
|       Expr *pLeft = pExpr->pLeft;
 | |
|       struct ExprList_item *pLItem = pExpr->pList->a;
 | |
|       Expr *pRight = pLItem->pExpr;
 | |
| 
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
 | |
|       r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
 | |
|       r3 = sqlite3GetTempReg(pParse);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Ge,
 | |
|                   r1, r2, r3, SQLITE_STOREP2);
 | |
|       pLItem++;
 | |
|       pRight = pLItem->pExpr;
 | |
|       sqlite3ReleaseTempReg(pParse, regFree2);
 | |
|       r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
 | |
|       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r2, SQLITE_STOREP2);
 | |
|       sqlite3VdbeAddOp3(v, OP_And, r3, r2, target);
 | |
|       sqlite3ReleaseTempReg(pParse, r3);
 | |
|       break;
 | |
|     }
 | |
|     case TK_UPLUS: {
 | |
|       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     ** Form A:
 | |
|     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
 | |
|     **
 | |
|     ** Form B:
 | |
|     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
 | |
|     **
 | |
|     ** Form A is can be transformed into the equivalent form B as follows:
 | |
|     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
 | |
|     **        WHEN x=eN THEN rN ELSE y END
 | |
|     **
 | |
|     ** X (if it exists) is in pExpr->pLeft.
 | |
|     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
 | |
|     ** ELSE clause and no other term matches, then the result of the
 | |
|     ** exprssion is NULL.
 | |
|     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
 | |
|     **
 | |
|     ** The result of the expression is the Ri for the first matching Ei,
 | |
|     ** or if there is no matching Ei, the ELSE term Y, or if there is
 | |
|     ** no ELSE term, NULL.
 | |
|     */
 | |
|     case TK_CASE: {
 | |
|       int endLabel;                     /* GOTO label for end of CASE stmt */
 | |
|       int nextCase;                     /* GOTO label for next WHEN clause */
 | |
|       int nExpr;                        /* 2x number of WHEN terms */
 | |
|       int i;                            /* Loop counter */
 | |
|       ExprList *pEList;                 /* List of WHEN terms */
 | |
|       struct ExprList_item *aListelem;  /* Array of WHEN terms */
 | |
|       Expr opCompare;                   /* The X==Ei expression */
 | |
|       Expr cacheX;                      /* Cached expression X */
 | |
|       Expr *pX;                         /* The X expression */
 | |
|       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
 | |
| 
 | |
|       assert(pExpr->pList);
 | |
|       assert((pExpr->pList->nExpr % 2) == 0);
 | |
|       assert(pExpr->pList->nExpr > 0);
 | |
|       pEList = pExpr->pList;
 | |
|       aListelem = pEList->a;
 | |
|       nExpr = pEList->nExpr;
 | |
|       endLabel = sqlite3VdbeMakeLabel(v);
 | |
|       if( (pX = pExpr->pLeft)!=0 ){
 | |
|         cacheX = *pX;
 | |
|         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
 | |
|         cacheX.op = TK_REGISTER;
 | |
|         opCompare.op = TK_EQ;
 | |
|         opCompare.pLeft = &cacheX;
 | |
|         pTest = &opCompare;
 | |
|       }
 | |
|       for(i=0; i<nExpr; i=i+2){
 | |
|         if( pX ){
 | |
|           opCompare.pRight = aListelem[i].pExpr;
 | |
|         }else{
 | |
|           pTest = aListelem[i].pExpr;
 | |
|         }
 | |
|         nextCase = sqlite3VdbeMakeLabel(v);
 | |
|         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
 | |
|         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
 | |
|         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
 | |
|         sqlite3VdbeResolveLabel(v, nextCase);
 | |
|       }
 | |
|       if( pExpr->pRight ){
 | |
|         sqlite3ExprCode(pParse, pExpr->pRight, target);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
 | |
|       }
 | |
|       sqlite3VdbeResolveLabel(v, endLabel);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|     case TK_RAISE: {
 | |
|       if( !pParse->trigStack ){
 | |
|         sqlite3ErrorMsg(pParse,
 | |
|                        "RAISE() may only be used within a trigger-program");
 | |
|         return 0;
 | |
|       }
 | |
|       if( pExpr->iColumn!=OE_Ignore ){
 | |
|          assert( pExpr->iColumn==OE_Rollback ||
 | |
|                  pExpr->iColumn == OE_Abort ||
 | |
|                  pExpr->iColumn == OE_Fail );
 | |
|          sqlite3DequoteExpr(pParse->db, pExpr);
 | |
|          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
 | |
|                         (char*)pExpr->token.z, pExpr->token.n);
 | |
|       } else {
 | |
|          assert( pExpr->iColumn == OE_Ignore );
 | |
|          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
 | |
|          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
 | |
|          VdbeComment((v, "raise(IGNORE)"));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   sqlite3ReleaseTempReg(pParse, regFree1);
 | |
|   sqlite3ReleaseTempReg(pParse, regFree2);
 | |
|   return inReg;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to evaluate an expression and store the results
 | |
| ** into a register.  Return the register number where the results
 | |
| ** are stored.
 | |
| **
 | |
| ** If the register is a temporary register that can be deallocated,
 | |
| ** then write its number into *pReg.  If the result register is no
 | |
| ** a temporary, then set *pReg to zero.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
 | |
|   int r1 = sqlite3GetTempReg(pParse);
 | |
|   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
 | |
|   if( r2==r1 ){
 | |
|     *pReg = r1;
 | |
|   }else{
 | |
|     sqlite3ReleaseTempReg(pParse, r1);
 | |
|     *pReg = 0;
 | |
|   }
 | |
|   return r2;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will evaluate expression pExpr and store the
 | |
| ** results in register target.  The results are guaranteed to appear
 | |
| ** in register target.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
 | |
|   int inReg;
 | |
| 
 | |
|   assert( target>0 && target<=pParse->nMem );
 | |
|   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
 | |
|   assert( pParse->pVdbe || pParse->db->mallocFailed );
 | |
|   if( inReg!=target && pParse->pVdbe ){
 | |
|     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
 | |
|   }
 | |
|   return target;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that evalutes the given expression and puts the result
 | |
| ** in register target.
 | |
| **
 | |
| ** Also make a copy of the expression results into another "cache" register
 | |
| ** and modify the expression so that the next time it is evaluated,
 | |
| ** the result is a copy of the cache register.
 | |
| **
 | |
| ** This routine is used for expressions that are used multiple 
 | |
| ** times.  They are evaluated once and the results of the expression
 | |
| ** are reused.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int inReg;
 | |
|   inReg = sqlite3ExprCode(pParse, pExpr, target);
 | |
|   assert( target>0 );
 | |
|   if( pExpr->op!=TK_REGISTER ){  
 | |
|     int iMem;
 | |
|     iMem = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
 | |
|     pExpr->iTable = iMem;
 | |
|     pExpr->op = TK_REGISTER;
 | |
|   }
 | |
|   return inReg;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code that pushes the value of every element of the given
 | |
| ** expression list into a sequence of registers beginning at target.
 | |
| **
 | |
| ** Return the number of elements evaluated.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprCodeExprList(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   ExprList *pList,   /* The expression list to be coded */
 | |
|   int target         /* Where to write results */
 | |
| ){
 | |
|   struct ExprList_item *pItem;
 | |
|   int i, n;
 | |
|   assert( pList!=0 || pParse->db->mallocFailed );
 | |
|   if( pList==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   assert( target>0 );
 | |
|   n = pList->nExpr;
 | |
|   for(pItem=pList->a, i=n; i>0; i--, pItem++){
 | |
|     sqlite3ExprCode(pParse, pItem->pExpr, target);
 | |
|     target++;
 | |
|   }
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a boolean expression such that a jump is made
 | |
| ** to the label "dest" if the expression is true but execution
 | |
| ** continues straight thru if the expression is false.
 | |
| **
 | |
| ** If the expression evaluates to NULL (neither true nor false), then
 | |
| ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
 | |
| **
 | |
| ** This code depends on the fact that certain token values (ex: TK_EQ)
 | |
| ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
 | |
| ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
 | |
| ** the make process cause these values to align.  Assert()s in the code
 | |
| ** below verify that the numbers are aligned correctly.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op = 0;
 | |
|   int regFree1 = 0;
 | |
|   int regFree2 = 0;
 | |
|   int r1, r2;
 | |
| 
 | |
|   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
|   op = pExpr->op;
 | |
|   switch( op ){
 | |
|     case TK_AND: {
 | |
|       int d2 = sqlite3VdbeMakeLabel(v);
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       sqlite3VdbeResolveLabel(v, d2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_OR: {
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NOT: {
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       assert( TK_LT==OP_Lt );
 | |
|       assert( TK_LE==OP_Le );
 | |
|       assert( TK_GT==OP_Gt );
 | |
|       assert( TK_GE==OP_Ge );
 | |
|       assert( TK_EQ==OP_Eq );
 | |
|       assert( TK_NE==OP_Ne );
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
 | |
|       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 | |
|                   r1, r2, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       assert( TK_ISNULL==OP_IsNull );
 | |
|       assert( TK_NOTNULL==OP_NotNull );
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       sqlite3VdbeAddOp2(v, op, r1, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       /*    x BETWEEN y AND z
 | |
|       **
 | |
|       ** Is equivalent to 
 | |
|       **
 | |
|       **    x>=y AND x<=z
 | |
|       **
 | |
|       ** Code it as such, taking care to do the common subexpression
 | |
|       ** elementation of x.
 | |
|       */
 | |
|       Expr exprAnd;
 | |
|       Expr compLeft;
 | |
|       Expr compRight;
 | |
|       Expr exprX;
 | |
| 
 | |
|       exprX = *pExpr->pLeft;
 | |
|       exprAnd.op = TK_AND;
 | |
|       exprAnd.pLeft = &compLeft;
 | |
|       exprAnd.pRight = &compRight;
 | |
|       compLeft.op = TK_GE;
 | |
|       compLeft.pLeft = &exprX;
 | |
|       compLeft.pRight = pExpr->pList->a[0].pExpr;
 | |
|       compRight.op = TK_LE;
 | |
|       compRight.pLeft = &exprX;
 | |
|       compRight.pRight = pExpr->pList->a[1].pExpr;
 | |
|       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
 | |
|       exprX.op = TK_REGISTER;
 | |
|       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
 | |
|       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   sqlite3ReleaseTempReg(pParse, regFree1);
 | |
|   sqlite3ReleaseTempReg(pParse, regFree2);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for a boolean expression such that a jump is made
 | |
| ** to the label "dest" if the expression is false but execution
 | |
| ** continues straight thru if the expression is true.
 | |
| **
 | |
| ** If the expression evaluates to NULL (neither true nor false) then
 | |
| ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
 | |
| ** is 0.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int op = 0;
 | |
|   int regFree1 = 0;
 | |
|   int regFree2 = 0;
 | |
|   int r1, r2;
 | |
| 
 | |
|   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
 | |
|   if( v==0 || pExpr==0 ) return;
 | |
| 
 | |
|   /* The value of pExpr->op and op are related as follows:
 | |
|   **
 | |
|   **       pExpr->op            op
 | |
|   **       ---------          ----------
 | |
|   **       TK_ISNULL          OP_NotNull
 | |
|   **       TK_NOTNULL         OP_IsNull
 | |
|   **       TK_NE              OP_Eq
 | |
|   **       TK_EQ              OP_Ne
 | |
|   **       TK_GT              OP_Le
 | |
|   **       TK_LE              OP_Gt
 | |
|   **       TK_GE              OP_Lt
 | |
|   **       TK_LT              OP_Ge
 | |
|   **
 | |
|   ** For other values of pExpr->op, op is undefined and unused.
 | |
|   ** The value of TK_ and OP_ constants are arranged such that we
 | |
|   ** can compute the mapping above using the following expression.
 | |
|   ** Assert()s verify that the computation is correct.
 | |
|   */
 | |
|   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
 | |
| 
 | |
|   /* Verify correct alignment of TK_ and OP_ constants
 | |
|   */
 | |
|   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
 | |
|   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
 | |
|   assert( pExpr->op!=TK_NE || op==OP_Eq );
 | |
|   assert( pExpr->op!=TK_EQ || op==OP_Ne );
 | |
|   assert( pExpr->op!=TK_LT || op==OP_Ge );
 | |
|   assert( pExpr->op!=TK_LE || op==OP_Gt );
 | |
|   assert( pExpr->op!=TK_GT || op==OP_Le );
 | |
|   assert( pExpr->op!=TK_GE || op==OP_Lt );
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AND: {
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_OR: {
 | |
|       int d2 = sqlite3VdbeMakeLabel(v);
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
 | |
|       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
 | |
|       sqlite3VdbeResolveLabel(v, d2);
 | |
|       break;
 | |
|     }
 | |
|     case TK_NOT: {
 | |
|       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_LT:
 | |
|     case TK_LE:
 | |
|     case TK_GT:
 | |
|     case TK_GE:
 | |
|     case TK_NE:
 | |
|     case TK_EQ: {
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
 | |
|       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
 | |
|                   r1, r2, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     case TK_ISNULL:
 | |
|     case TK_NOTNULL: {
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
 | |
|       sqlite3VdbeAddOp2(v, op, r1, dest);
 | |
|       break;
 | |
|     }
 | |
|     case TK_BETWEEN: {
 | |
|       /*    x BETWEEN y AND z
 | |
|       **
 | |
|       ** Is equivalent to 
 | |
|       **
 | |
|       **    x>=y AND x<=z
 | |
|       **
 | |
|       ** Code it as such, taking care to do the common subexpression
 | |
|       ** elementation of x.
 | |
|       */
 | |
|       Expr exprAnd;
 | |
|       Expr compLeft;
 | |
|       Expr compRight;
 | |
|       Expr exprX;
 | |
| 
 | |
|       exprX = *pExpr->pLeft;
 | |
|       exprAnd.op = TK_AND;
 | |
|       exprAnd.pLeft = &compLeft;
 | |
|       exprAnd.pRight = &compRight;
 | |
|       compLeft.op = TK_GE;
 | |
|       compLeft.pLeft = &exprX;
 | |
|       compLeft.pRight = pExpr->pList->a[0].pExpr;
 | |
|       compRight.op = TK_LE;
 | |
|       compRight.pLeft = &exprX;
 | |
|       compRight.pRight = pExpr->pList->a[1].pExpr;
 | |
|       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
 | |
|       exprX.op = TK_REGISTER;
 | |
|       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
 | |
|       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   sqlite3ReleaseTempReg(pParse, regFree1);
 | |
|   sqlite3ReleaseTempReg(pParse, regFree2);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
 | |
| ** if they are identical and return FALSE if they differ in any way.
 | |
| **
 | |
| ** Sometimes this routine will return FALSE even if the two expressions
 | |
| ** really are equivalent.  If we cannot prove that the expressions are
 | |
| ** identical, we return FALSE just to be safe.  So if this routine
 | |
| ** returns false, then you do not really know for certain if the two
 | |
| ** expressions are the same.  But if you get a TRUE return, then you
 | |
| ** can be sure the expressions are the same.  In the places where
 | |
| ** this routine is used, it does not hurt to get an extra FALSE - that
 | |
| ** just might result in some slightly slower code.  But returning
 | |
| ** an incorrect TRUE could lead to a malfunction.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){
 | |
|   int i;
 | |
|   if( pA==0||pB==0 ){
 | |
|     return pB==pA;
 | |
|   }
 | |
|   if( pA->op!=pB->op ) return 0;
 | |
|   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
 | |
|   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
 | |
|   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
 | |
|   if( pA->pList ){
 | |
|     if( pB->pList==0 ) return 0;
 | |
|     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
 | |
|     for(i=0; i<pA->pList->nExpr; i++){
 | |
|       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|   }else if( pB->pList ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pA->pSelect || pB->pSelect ) return 0;
 | |
|   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
 | |
|   if( pA->op!=TK_COLUMN && pA->token.z ){
 | |
|     if( pB->token.z==0 ) return 0;
 | |
|     if( pB->token.n!=pA->token.n ) return 0;
 | |
|     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
 | |
| ** the new element.  Return a negative number if malloc fails.
 | |
| */
 | |
| static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
 | |
|   int i;
 | |
|   pInfo->aCol = sqlite3ArrayAllocate(
 | |
|        db,
 | |
|        pInfo->aCol,
 | |
|        sizeof(pInfo->aCol[0]),
 | |
|        3,
 | |
|        &pInfo->nColumn,
 | |
|        &pInfo->nColumnAlloc,
 | |
|        &i
 | |
|   );
 | |
|   return i;
 | |
| }    
 | |
| 
 | |
| /*
 | |
| ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
 | |
| ** the new element.  Return a negative number if malloc fails.
 | |
| */
 | |
| static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
 | |
|   int i;
 | |
|   pInfo->aFunc = sqlite3ArrayAllocate(
 | |
|        db, 
 | |
|        pInfo->aFunc,
 | |
|        sizeof(pInfo->aFunc[0]),
 | |
|        3,
 | |
|        &pInfo->nFunc,
 | |
|        &pInfo->nFuncAlloc,
 | |
|        &i
 | |
|   );
 | |
|   return i;
 | |
| }    
 | |
| 
 | |
| /*
 | |
| ** This is an xFunc for walkExprTree() used to implement 
 | |
| ** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
 | |
| ** for additional information.
 | |
| **
 | |
| ** This routine analyzes the aggregate function at pExpr.
 | |
| */
 | |
| static int analyzeAggregate(void *pArg, Expr *pExpr){
 | |
|   int i;
 | |
|   NameContext *pNC = (NameContext *)pArg;
 | |
|   Parse *pParse = pNC->pParse;
 | |
|   SrcList *pSrcList = pNC->pSrcList;
 | |
|   AggInfo *pAggInfo = pNC->pAggInfo;
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AGG_COLUMN:
 | |
|     case TK_COLUMN: {
 | |
|       /* Check to see if the column is in one of the tables in the FROM
 | |
|       ** clause of the aggregate query */
 | |
|       if( pSrcList ){
 | |
|         struct SrcList_item *pItem = pSrcList->a;
 | |
|         for(i=0; i<pSrcList->nSrc; i++, pItem++){
 | |
|           struct AggInfo_col *pCol;
 | |
|           if( pExpr->iTable==pItem->iCursor ){
 | |
|             /* If we reach this point, it means that pExpr refers to a table
 | |
|             ** that is in the FROM clause of the aggregate query.  
 | |
|             **
 | |
|             ** Make an entry for the column in pAggInfo->aCol[] if there
 | |
|             ** is not an entry there already.
 | |
|             */
 | |
|             int k;
 | |
|             pCol = pAggInfo->aCol;
 | |
|             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
 | |
|               if( pCol->iTable==pExpr->iTable &&
 | |
|                   pCol->iColumn==pExpr->iColumn ){
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|             if( (k>=pAggInfo->nColumn)
 | |
|              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
 | |
|             ){
 | |
|               pCol = &pAggInfo->aCol[k];
 | |
|               pCol->pTab = pExpr->pTab;
 | |
|               pCol->iTable = pExpr->iTable;
 | |
|               pCol->iColumn = pExpr->iColumn;
 | |
|               pCol->iMem = ++pParse->nMem;
 | |
|               pCol->iSorterColumn = -1;
 | |
|               pCol->pExpr = pExpr;
 | |
|               if( pAggInfo->pGroupBy ){
 | |
|                 int j, n;
 | |
|                 ExprList *pGB = pAggInfo->pGroupBy;
 | |
|                 struct ExprList_item *pTerm = pGB->a;
 | |
|                 n = pGB->nExpr;
 | |
|                 for(j=0; j<n; j++, pTerm++){
 | |
|                   Expr *pE = pTerm->pExpr;
 | |
|                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
 | |
|                       pE->iColumn==pExpr->iColumn ){
 | |
|                     pCol->iSorterColumn = j;
 | |
|                     break;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|               if( pCol->iSorterColumn<0 ){
 | |
|                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
 | |
|               }
 | |
|             }
 | |
|             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
 | |
|             ** because it was there before or because we just created it).
 | |
|             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
 | |
|             ** pAggInfo->aCol[] entry.
 | |
|             */
 | |
|             pExpr->pAggInfo = pAggInfo;
 | |
|             pExpr->op = TK_AGG_COLUMN;
 | |
|             pExpr->iAgg = k;
 | |
|             break;
 | |
|           } /* endif pExpr->iTable==pItem->iCursor */
 | |
|         } /* end loop over pSrcList */
 | |
|       }
 | |
|       return 1;
 | |
|     }
 | |
|     case TK_AGG_FUNCTION: {
 | |
|       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
 | |
|       ** to be ignored */
 | |
|       if( pNC->nDepth==0 ){
 | |
|         /* Check to see if pExpr is a duplicate of another aggregate 
 | |
|         ** function that is already in the pAggInfo structure
 | |
|         */
 | |
|         struct AggInfo_func *pItem = pAggInfo->aFunc;
 | |
|         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
 | |
|           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if( i>=pAggInfo->nFunc ){
 | |
|           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
 | |
|           */
 | |
|           u8 enc = ENC(pParse->db);
 | |
|           i = addAggInfoFunc(pParse->db, pAggInfo);
 | |
|           if( i>=0 ){
 | |
|             pItem = &pAggInfo->aFunc[i];
 | |
|             pItem->pExpr = pExpr;
 | |
|             pItem->iMem = ++pParse->nMem;
 | |
|             pItem->pFunc = sqlite3FindFunction(pParse->db,
 | |
|                    (char*)pExpr->token.z, pExpr->token.n,
 | |
|                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
 | |
|             if( pExpr->flags & EP_Distinct ){
 | |
|               pItem->iDistinct = pParse->nTab++;
 | |
|             }else{
 | |
|               pItem->iDistinct = -1;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
 | |
|         */
 | |
|         pExpr->iAgg = i;
 | |
|         pExpr->pAggInfo = pAggInfo;
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Recursively walk subqueries looking for TK_COLUMN nodes that need
 | |
|   ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
 | |
|   ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
 | |
|   */
 | |
|   if( pExpr->pSelect ){
 | |
|     pNC->nDepth++;
 | |
|     walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
 | |
|     pNC->nDepth--;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Analyze the given expression looking for aggregate functions and
 | |
| ** for variables that need to be added to the pParse->aAgg[] array.
 | |
| ** Make additional entries to the pParse->aAgg[] array as necessary.
 | |
| **
 | |
| ** This routine should only be called after the expression has been
 | |
| ** analyzed by sqlite3ExprResolveNames().
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
 | |
|   walkExprTree(pExpr, analyzeAggregate, pNC);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
 | |
| ** expression list.  Return the number of errors.
 | |
| **
 | |
| ** If an error is found, the analysis is cut short.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
 | |
|   struct ExprList_item *pItem;
 | |
|   int i;
 | |
|   if( pList ){
 | |
|     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
 | |
|       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate or deallocate temporary use registers during code generation.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){
 | |
|   if( pParse->nTempReg ){
 | |
|     return pParse->aTempReg[--pParse->nTempReg];
 | |
|   }else{
 | |
|     return ++pParse->nMem;
 | |
|   }
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
 | |
|   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
 | |
|     assert( iReg>0 );
 | |
|     pParse->aTempReg[pParse->nTempReg++] = iReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate or deallocate a block of nReg consecutive registers
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){
 | |
|   int i;
 | |
|   if( nReg<=pParse->nRangeReg ){
 | |
|     i  = pParse->iRangeReg;
 | |
|     pParse->iRangeReg += nReg;
 | |
|     pParse->nRangeReg -= nReg;
 | |
|   }else{
 | |
|     i = pParse->nMem+1;
 | |
|     pParse->nMem += nReg;
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
 | |
|   if( nReg>pParse->nRangeReg ){
 | |
|     pParse->nRangeReg = nReg;
 | |
|     pParse->iRangeReg = iReg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /************** End of expr.c ************************************************/
 | |
| /************** Begin file alter.c *******************************************/
 | |
| /*
 | |
| ** 2005 February 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that used to generate VDBE code
 | |
| ** that implements the ALTER TABLE command.
 | |
| **
 | |
| ** $Id: alter.c,v 1.42 2008/02/09 14:30:30 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file only exists if we are not omitting the
 | |
| ** ALTER TABLE logic from the build.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_ALTERTABLE
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is used by SQL generated to implement the 
 | |
| ** ALTER TABLE command. The first argument is the text of a CREATE TABLE or
 | |
| ** CREATE INDEX command. The second is a table name. The table name in 
 | |
| ** the CREATE TABLE or CREATE INDEX statement is replaced with the third
 | |
| ** argument and the result returned. Examples:
 | |
| **
 | |
| ** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def')
 | |
| **     -> 'CREATE TABLE def(a, b, c)'
 | |
| **
 | |
| ** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def')
 | |
| **     -> 'CREATE INDEX i ON def(a, b, c)'
 | |
| */
 | |
| static void renameTableFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   unsigned char const *zSql = sqlite3_value_text(argv[0]);
 | |
|   unsigned char const *zTableName = sqlite3_value_text(argv[1]);
 | |
| 
 | |
|   int token;
 | |
|   Token tname;
 | |
|   unsigned char const *zCsr = zSql;
 | |
|   int len = 0;
 | |
|   char *zRet;
 | |
| 
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
| 
 | |
|   /* The principle used to locate the table name in the CREATE TABLE 
 | |
|   ** statement is that the table name is the first token that is immediatedly
 | |
|   ** followed by a left parenthesis - TK_LP - or "USING" TK_USING.
 | |
|   */
 | |
|   if( zSql ){
 | |
|     do {
 | |
|       if( !*zCsr ){
 | |
|         /* Ran out of input before finding an opening bracket. Return NULL. */
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       /* Store the token that zCsr points to in tname. */
 | |
|       tname.z = zCsr;
 | |
|       tname.n = len;
 | |
| 
 | |
|       /* Advance zCsr to the next token. Store that token type in 'token',
 | |
|       ** and its length in 'len' (to be used next iteration of this loop).
 | |
|       */
 | |
|       do {
 | |
|         zCsr += len;
 | |
|         len = sqlite3GetToken(zCsr, &token);
 | |
|       } while( token==TK_SPACE );
 | |
|       assert( len>0 );
 | |
|     } while( token!=TK_LP && token!=TK_USING );
 | |
| 
 | |
|     zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql, 
 | |
|        zTableName, tname.z+tname.n);
 | |
|     sqlite3_result_text(context, zRet, -1, sqlite3_free);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| /* This function is used by SQL generated to implement the
 | |
| ** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER 
 | |
| ** statement. The second is a table name. The table name in the CREATE 
 | |
| ** TRIGGER statement is replaced with the third argument and the result 
 | |
| ** returned. This is analagous to renameTableFunc() above, except for CREATE
 | |
| ** TRIGGER, not CREATE INDEX and CREATE TABLE.
 | |
| */
 | |
| static void renameTriggerFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   unsigned char const *zSql = sqlite3_value_text(argv[0]);
 | |
|   unsigned char const *zTableName = sqlite3_value_text(argv[1]);
 | |
| 
 | |
|   int token;
 | |
|   Token tname;
 | |
|   int dist = 3;
 | |
|   unsigned char const *zCsr = zSql;
 | |
|   int len = 0;
 | |
|   char *zRet;
 | |
| 
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
| 
 | |
|   /* The principle used to locate the table name in the CREATE TRIGGER 
 | |
|   ** statement is that the table name is the first token that is immediatedly
 | |
|   ** preceded by either TK_ON or TK_DOT and immediatedly followed by one
 | |
|   ** of TK_WHEN, TK_BEGIN or TK_FOR.
 | |
|   */
 | |
|   if( zSql ){
 | |
|     do {
 | |
| 
 | |
|       if( !*zCsr ){
 | |
|         /* Ran out of input before finding the table name. Return NULL. */
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       /* Store the token that zCsr points to in tname. */
 | |
|       tname.z = zCsr;
 | |
|       tname.n = len;
 | |
| 
 | |
|       /* Advance zCsr to the next token. Store that token type in 'token',
 | |
|       ** and its length in 'len' (to be used next iteration of this loop).
 | |
|       */
 | |
|       do {
 | |
|         zCsr += len;
 | |
|         len = sqlite3GetToken(zCsr, &token);
 | |
|       }while( token==TK_SPACE );
 | |
|       assert( len>0 );
 | |
| 
 | |
|       /* Variable 'dist' stores the number of tokens read since the most
 | |
|       ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN 
 | |
|       ** token is read and 'dist' equals 2, the condition stated above
 | |
|       ** to be met.
 | |
|       **
 | |
|       ** Note that ON cannot be a database, table or column name, so
 | |
|       ** there is no need to worry about syntax like 
 | |
|       ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc.
 | |
|       */
 | |
|       dist++;
 | |
|       if( token==TK_DOT || token==TK_ON ){
 | |
|         dist = 0;
 | |
|       }
 | |
|     } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) );
 | |
| 
 | |
|     /* Variable tname now contains the token that is the old table-name
 | |
|     ** in the CREATE TRIGGER statement.
 | |
|     */
 | |
|     zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql, 
 | |
|        zTableName, tname.z+tname.n);
 | |
|     sqlite3_result_text(context, zRet, -1, sqlite3_free);
 | |
|   }
 | |
| }
 | |
| #endif   /* !SQLITE_OMIT_TRIGGER */
 | |
| 
 | |
| /*
 | |
| ** Register built-in functions used to help implement ALTER TABLE
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      signed char nArg;
 | |
|      void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
 | |
|   } aFuncs[] = {
 | |
|     { "sqlite_rename_table",    2, renameTableFunc},
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|     { "sqlite_rename_trigger",  2, renameTriggerFunc},
 | |
| #endif
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
 | |
|         SQLITE_UTF8, (void *)db, aFuncs[i].xFunc, 0, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate the text of a WHERE expression which can be used to select all
 | |
| ** temporary triggers on table pTab from the sqlite_temp_master table. If
 | |
| ** table pTab has no temporary triggers, or is itself stored in the 
 | |
| ** temporary database, NULL is returned.
 | |
| */
 | |
| static char *whereTempTriggers(Parse *pParse, Table *pTab){
 | |
|   Trigger *pTrig;
 | |
|   char *zWhere = 0;
 | |
|   char *tmp = 0;
 | |
|   const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */
 | |
| 
 | |
|   /* If the table is not located in the temp-db (in which case NULL is 
 | |
|   ** returned, loop through the tables list of triggers. For each trigger
 | |
|   ** that is not part of the temp-db schema, add a clause to the WHERE 
 | |
|   ** expression being built up in zWhere.
 | |
|   */
 | |
|   if( pTab->pSchema!=pTempSchema ){
 | |
|     sqlite3 *db = pParse->db;
 | |
|     for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
 | |
|       if( pTrig->pSchema==pTempSchema ){
 | |
|         if( !zWhere ){
 | |
|           zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name);
 | |
|         }else{
 | |
|           tmp = zWhere;
 | |
|           zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name);
 | |
|           sqlite3_free(tmp);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return zWhere;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to drop and reload the internal representation of table
 | |
| ** pTab from the database, including triggers and temporary triggers.
 | |
| ** Argument zName is the name of the table in the database schema at
 | |
| ** the time the generated code is executed. This can be different from
 | |
| ** pTab->zName if this function is being called to code part of an 
 | |
| ** "ALTER TABLE RENAME TO" statement.
 | |
| */
 | |
| static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
 | |
|   Vdbe *v;
 | |
|   char *zWhere;
 | |
|   int iDb;                   /* Index of database containing pTab */
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   Trigger *pTrig;
 | |
| #endif
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( !v ) return;
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   assert( iDb>=0 );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   /* Drop any table triggers from the internal schema. */
 | |
|   for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
 | |
|     int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
 | |
|     assert( iTrigDb==iDb || iTrigDb==1 );
 | |
|     sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Drop the table and index from the internal schema */
 | |
|   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
 | |
| 
 | |
|   /* Reload the table, index and permanent trigger schemas. */
 | |
|   zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
 | |
|   if( !zWhere ) return;
 | |
|   sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   /* Now, if the table is not stored in the temp database, reload any temp 
 | |
|   ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
 | |
|   */
 | |
|   if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
 | |
|     sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" 
 | |
| ** command. 
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AlterRenameTable(
 | |
|   Parse *pParse,            /* Parser context. */
 | |
|   SrcList *pSrc,            /* The table to rename. */
 | |
|   Token *pName              /* The new table name. */
 | |
| ){
 | |
|   int iDb;                  /* Database that contains the table */
 | |
|   char *zDb;                /* Name of database iDb */
 | |
|   Table *pTab;              /* Table being renamed */
 | |
|   char *zName = 0;          /* NULL-terminated version of pName */ 
 | |
|   sqlite3 *db = pParse->db; /* Database connection */
 | |
|   int nTabName;             /* Number of UTF-8 characters in zTabName */
 | |
|   const char *zTabName;     /* Original name of the table */
 | |
|   Vdbe *v;
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   char *zWhere = 0;         /* Where clause to locate temp triggers */
 | |
| #endif
 | |
|   int isVirtualRename = 0;  /* True if this is a v-table with an xRename() */
 | |
|   
 | |
|   if( db->mallocFailed ) goto exit_rename_table;
 | |
|   assert( pSrc->nSrc==1 );
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
 | |
| 
 | |
|   pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
 | |
|   if( !pTab ) goto exit_rename_table;
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   zDb = db->aDb[iDb].zName;
 | |
| 
 | |
|   /* Get a NULL terminated version of the new table name. */
 | |
|   zName = sqlite3NameFromToken(db, pName);
 | |
|   if( !zName ) goto exit_rename_table;
 | |
| 
 | |
|   /* Check that a table or index named 'zName' does not already exist
 | |
|   ** in database iDb. If so, this is an error.
 | |
|   */
 | |
|   if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|         "there is already another table or index with this name: %s", zName);
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
| 
 | |
|   /* Make sure it is not a system table being altered, or a reserved name
 | |
|   ** that the table is being renamed to.
 | |
|   */
 | |
|   if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){
 | |
|     sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName);
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
|   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   if( pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName);
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   /* Invoke the authorization callback. */
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
|   if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){
 | |
|     isVirtualRename = 1;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Begin a transaction and code the VerifyCookie for database iDb. 
 | |
|   ** Then modify the schema cookie (since the ALTER TABLE modifies the
 | |
|   ** schema). Open a statement transaction if the table is a virtual
 | |
|   ** table.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ){
 | |
|     goto exit_rename_table;
 | |
|   }
 | |
|   sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb);
 | |
|   sqlite3ChangeCookie(pParse, iDb);
 | |
| 
 | |
|   /* If this is a virtual table, invoke the xRename() function if
 | |
|   ** one is defined. The xRename() callback will modify the names
 | |
|   ** of any resources used by the v-table implementation (including other
 | |
|   ** SQLite tables) that are identified by the name of the virtual table.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( isVirtualRename ){
 | |
|     int i = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0);
 | |
|     sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* figure out how many UTF-8 characters are in zName */
 | |
|   zTabName = pTab->zName;
 | |
|   nTabName = sqlite3Utf8CharLen(zTabName, -1);
 | |
| 
 | |
|   /* Modify the sqlite_master table to use the new table name. */
 | |
|   sqlite3NestedParse(pParse,
 | |
|       "UPDATE %Q.%s SET "
 | |
| #ifdef SQLITE_OMIT_TRIGGER
 | |
|           "sql = sqlite_rename_table(sql, %Q), "
 | |
| #else
 | |
|           "sql = CASE "
 | |
|             "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)"
 | |
|             "ELSE sqlite_rename_table(sql, %Q) END, "
 | |
| #endif
 | |
|           "tbl_name = %Q, "
 | |
|           "name = CASE "
 | |
|             "WHEN type='table' THEN %Q "
 | |
|             "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN "
 | |
|              "'sqlite_autoindex_' || %Q || substr(name,%d+18) "
 | |
|             "ELSE name END "
 | |
|       "WHERE tbl_name=%Q AND "
 | |
|           "(type='table' OR type='index' OR type='trigger');", 
 | |
|       zDb, SCHEMA_TABLE(iDb), zName, zName, zName, 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|       zName,
 | |
| #endif
 | |
|       zName, nTabName, zTabName
 | |
|   );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|   /* If the sqlite_sequence table exists in this database, then update 
 | |
|   ** it with the new table name.
 | |
|   */
 | |
|   if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){
 | |
|     sqlite3NestedParse(pParse,
 | |
|         "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q",
 | |
|         zDb, zName, pTab->zName);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   /* If there are TEMP triggers on this table, modify the sqlite_temp_master
 | |
|   ** table. Don't do this if the table being ALTERed is itself located in
 | |
|   ** the temp database.
 | |
|   */
 | |
|   if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
 | |
|     sqlite3NestedParse(pParse, 
 | |
|         "UPDATE sqlite_temp_master SET "
 | |
|             "sql = sqlite_rename_trigger(sql, %Q), "
 | |
|             "tbl_name = %Q "
 | |
|             "WHERE %s;", zName, zName, zWhere);
 | |
|     sqlite3_free(zWhere);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Drop and reload the internal table schema. */
 | |
|   reloadTableSchema(pParse, pTab, zName);
 | |
| 
 | |
| exit_rename_table:
 | |
|   sqlite3SrcListDelete(pSrc);
 | |
|   sqlite3_free(zName);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is called after an "ALTER TABLE ... ADD" statement
 | |
| ** has been parsed. Argument pColDef contains the text of the new
 | |
| ** column definition.
 | |
| **
 | |
| ** The Table structure pParse->pNewTable was extended to include
 | |
| ** the new column during parsing.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){
 | |
|   Table *pNew;              /* Copy of pParse->pNewTable */
 | |
|   Table *pTab;              /* Table being altered */
 | |
|   int iDb;                  /* Database number */
 | |
|   const char *zDb;          /* Database name */
 | |
|   const char *zTab;         /* Table name */
 | |
|   char *zCol;               /* Null-terminated column definition */
 | |
|   Column *pCol;             /* The new column */
 | |
|   Expr *pDflt;              /* Default value for the new column */
 | |
|   sqlite3 *db;              /* The database connection; */
 | |
| 
 | |
|   if( pParse->nErr ) return;
 | |
|   pNew = pParse->pNewTable;
 | |
|   assert( pNew );
 | |
| 
 | |
|   db = pParse->db;
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(db) );
 | |
|   iDb = sqlite3SchemaToIndex(db, pNew->pSchema);
 | |
|   zDb = db->aDb[iDb].zName;
 | |
|   zTab = pNew->zName;
 | |
|   pCol = &pNew->aCol[pNew->nCol-1];
 | |
|   pDflt = pCol->pDflt;
 | |
|   pTab = sqlite3FindTable(db, zTab, zDb);
 | |
|   assert( pTab );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   /* Invoke the authorization callback. */
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If the default value for the new column was specified with a 
 | |
|   ** literal NULL, then set pDflt to 0. This simplifies checking
 | |
|   ** for an SQL NULL default below.
 | |
|   */
 | |
|   if( pDflt && pDflt->op==TK_NULL ){
 | |
|     pDflt = 0;
 | |
|   }
 | |
| 
 | |
|   /* Check that the new column is not specified as PRIMARY KEY or UNIQUE.
 | |
|   ** If there is a NOT NULL constraint, then the default value for the
 | |
|   ** column must not be NULL.
 | |
|   */
 | |
|   if( pCol->isPrimKey ){
 | |
|     sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column");
 | |
|     return;
 | |
|   }
 | |
|   if( pNew->pIndex ){
 | |
|     sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column");
 | |
|     return;
 | |
|   }
 | |
|   if( pCol->notNull && !pDflt ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|         "Cannot add a NOT NULL column with default value NULL");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* Ensure the default expression is something that sqlite3ValueFromExpr()
 | |
|   ** can handle (i.e. not CURRENT_TIME etc.)
 | |
|   */
 | |
|   if( pDflt ){
 | |
|     sqlite3_value *pVal;
 | |
|     if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){
 | |
|       db->mallocFailed = 1;
 | |
|       return;
 | |
|     }
 | |
|     if( !pVal ){
 | |
|       sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
 | |
|       return;
 | |
|     }
 | |
|     sqlite3ValueFree(pVal);
 | |
|   }
 | |
| 
 | |
|   /* Modify the CREATE TABLE statement. */
 | |
|   zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n);
 | |
|   if( zCol ){
 | |
|     char *zEnd = &zCol[pColDef->n-1];
 | |
|     while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){
 | |
|       *zEnd-- = '\0';
 | |
|     }
 | |
|     sqlite3NestedParse(pParse, 
 | |
|         "UPDATE \"%w\".%s SET "
 | |
|           "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) "
 | |
|         "WHERE type = 'table' AND name = %Q", 
 | |
|       zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
 | |
|       zTab
 | |
|     );
 | |
|     sqlite3_free(zCol);
 | |
|   }
 | |
| 
 | |
|   /* If the default value of the new column is NULL, then set the file
 | |
|   ** format to 2. If the default value of the new column is not NULL,
 | |
|   ** the file format becomes 3.
 | |
|   */
 | |
|   sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);
 | |
| 
 | |
|   /* Reload the schema of the modified table. */
 | |
|   reloadTableSchema(pParse, pTab, pTab->zName);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is called by the parser after the table-name in
 | |
| ** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument 
 | |
| ** pSrc is the full-name of the table being altered.
 | |
| **
 | |
| ** This routine makes a (partial) copy of the Table structure
 | |
| ** for the table being altered and sets Parse.pNewTable to point
 | |
| ** to it. Routines called by the parser as the column definition
 | |
| ** is parsed (i.e. sqlite3AddColumn()) add the new Column data to 
 | |
| ** the copy. The copy of the Table structure is deleted by tokenize.c 
 | |
| ** after parsing is finished.
 | |
| **
 | |
| ** Routine sqlite3AlterFinishAddColumn() will be called to complete
 | |
| ** coding the "ALTER TABLE ... ADD" statement.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){
 | |
|   Table *pNew;
 | |
|   Table *pTab;
 | |
|   Vdbe *v;
 | |
|   int iDb;
 | |
|   int i;
 | |
|   int nAlloc;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   /* Look up the table being altered. */
 | |
|   assert( pParse->pNewTable==0 );
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(db) );
 | |
|   if( db->mallocFailed ) goto exit_begin_add_column;
 | |
|   pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
 | |
|   if( !pTab ) goto exit_begin_add_column;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( IsVirtual(pTab) ){
 | |
|     sqlite3ErrorMsg(pParse, "virtual tables may not be altered");
 | |
|     goto exit_begin_add_column;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Make sure this is not an attempt to ALTER a view. */
 | |
|   if( pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
 | |
|     goto exit_begin_add_column;
 | |
|   }
 | |
| 
 | |
|   assert( pTab->addColOffset>0 );
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
| 
 | |
|   /* Put a copy of the Table struct in Parse.pNewTable for the
 | |
|   ** sqlite3AddColumn() function and friends to modify.
 | |
|   */
 | |
|   pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table));
 | |
|   if( !pNew ) goto exit_begin_add_column;
 | |
|   pParse->pNewTable = pNew;
 | |
|   pNew->nRef = 1;
 | |
|   pNew->nCol = pTab->nCol;
 | |
|   assert( pNew->nCol>0 );
 | |
|   nAlloc = (((pNew->nCol-1)/8)*8)+8;
 | |
|   assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 );
 | |
|   pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc);
 | |
|   pNew->zName = sqlite3DbStrDup(db, pTab->zName);
 | |
|   if( !pNew->aCol || !pNew->zName ){
 | |
|     db->mallocFailed = 1;
 | |
|     goto exit_begin_add_column;
 | |
|   }
 | |
|   memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
 | |
|   for(i=0; i<pNew->nCol; i++){
 | |
|     Column *pCol = &pNew->aCol[i];
 | |
|     pCol->zName = sqlite3DbStrDup(db, pCol->zName);
 | |
|     pCol->zColl = 0;
 | |
|     pCol->zType = 0;
 | |
|     pCol->pDflt = 0;
 | |
|   }
 | |
|   pNew->pSchema = db->aDb[iDb].pSchema;
 | |
|   pNew->addColOffset = pTab->addColOffset;
 | |
|   pNew->nRef = 1;
 | |
| 
 | |
|   /* Begin a transaction and increment the schema cookie.  */
 | |
|   sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( !v ) goto exit_begin_add_column;
 | |
|   sqlite3ChangeCookie(pParse, iDb);
 | |
| 
 | |
| exit_begin_add_column:
 | |
|   sqlite3SrcListDelete(pSrc);
 | |
|   return;
 | |
| }
 | |
| #endif  /* SQLITE_ALTER_TABLE */
 | |
| 
 | |
| /************** End of alter.c ***********************************************/
 | |
| /************** Begin file analyze.c *****************************************/
 | |
| /*
 | |
| ** 2005 July 8
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code associated with the ANALYZE command.
 | |
| **
 | |
| ** @(#) $Id: analyze.c,v 1.41 2008/01/25 15:04:49 drh Exp $
 | |
| */
 | |
| #ifndef SQLITE_OMIT_ANALYZE
 | |
| 
 | |
| /*
 | |
| ** This routine generates code that opens the sqlite_stat1 table on cursor
 | |
| ** iStatCur.
 | |
| **
 | |
| ** If the sqlite_stat1 tables does not previously exist, it is created.
 | |
| ** If it does previously exist, all entires associated with table zWhere
 | |
| ** are removed.  If zWhere==0 then all entries are removed.
 | |
| */
 | |
| static void openStatTable(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   int iDb,                /* The database we are looking in */
 | |
|   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
 | |
|   const char *zWhere      /* Delete entries associated with this table */
 | |
| ){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Db *pDb;
 | |
|   int iRootPage;
 | |
|   int createStat1 = 0;
 | |
|   Table *pStat;
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
| 
 | |
|   if( v==0 ) return;
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(db) );
 | |
|   assert( sqlite3VdbeDb(v)==db );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){
 | |
|     /* The sqlite_stat1 tables does not exist.  Create it.  
 | |
|     ** Note that a side-effect of the CREATE TABLE statement is to leave
 | |
|     ** the rootpage of the new table in register pParse->regRoot.  This is
 | |
|     ** important because the OpenWrite opcode below will be needing it. */
 | |
|     sqlite3NestedParse(pParse,
 | |
|       "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)",
 | |
|       pDb->zName
 | |
|     );
 | |
|     iRootPage = pParse->regRoot;
 | |
|     createStat1 = 1;  /* Cause rootpage to be taken from top of stack */
 | |
|   }else if( zWhere ){
 | |
|     /* The sqlite_stat1 table exists.  Delete all entries associated with
 | |
|     ** the table zWhere. */
 | |
|     sqlite3NestedParse(pParse,
 | |
|        "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q",
 | |
|        pDb->zName, zWhere
 | |
|     );
 | |
|     iRootPage = pStat->tnum;
 | |
|   }else{
 | |
|     /* The sqlite_stat1 table already exists.  Delete all rows. */
 | |
|     iRootPage = pStat->tnum;
 | |
|     sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb);
 | |
|   }
 | |
| 
 | |
|   /* Open the sqlite_stat1 table for writing. Unless it was created
 | |
|   ** by this vdbe program, lock it for writing at the shared-cache level. 
 | |
|   ** If this vdbe did create the sqlite_stat1 table, then it must have 
 | |
|   ** already obtained a schema-lock, making the write-lock redundant.
 | |
|   */
 | |
|   if( !createStat1 ){
 | |
|     sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1");
 | |
|   }
 | |
|   sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb);
 | |
|   sqlite3VdbeChangeP5(v, createStat1);
 | |
|   sqlite3VdbeAddOp2(v, OP_SetNumColumns, iStatCur, 3);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to do an analysis of all indices associated with
 | |
| ** a single table.
 | |
| */
 | |
| static void analyzeOneTable(
 | |
|   Parse *pParse,   /* Parser context */
 | |
|   Table *pTab,     /* Table whose indices are to be analyzed */
 | |
|   int iStatCur,    /* Cursor that writes to the sqlite_stat1 table */
 | |
|   int iMem         /* Available memory locations begin here */
 | |
| ){
 | |
|   Index *pIdx;     /* An index to being analyzed */
 | |
|   int iIdxCur;     /* Cursor number for index being analyzed */
 | |
|   int nCol;        /* Number of columns in the index */
 | |
|   Vdbe *v;         /* The virtual machine being built up */
 | |
|   int i;           /* Loop counter */
 | |
|   int topOfLoop;   /* The top of the loop */
 | |
|   int endOfLoop;   /* The end of the loop */
 | |
|   int addr;        /* The address of an instruction */
 | |
|   int iDb;         /* Index of database containing pTab */
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 || pTab==0 || pTab->pIndex==0 ){
 | |
|     /* Do no analysis for tables that have no indices */
 | |
|     return;
 | |
|   }
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   assert( iDb>=0 );
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
 | |
|       pParse->db->aDb[iDb].zName ) ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Establish a read-lock on the table at the shared-cache level. */
 | |
|   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | |
| 
 | |
|   iIdxCur = pParse->nTab;
 | |
|   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | |
|     int regFields;    /* Register block for building records */
 | |
|     int regRec;       /* Register holding completed record */
 | |
|     int regTemp;      /* Temporary use register */
 | |
|     int regCol;       /* Content of a column from the table being analyzed */
 | |
|     int regRowid;     /* Rowid for the inserted record */
 | |
|     int regF2;
 | |
| 
 | |
|     /* Open a cursor to the index to be analyzed
 | |
|     */
 | |
|     assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
 | |
|     sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
 | |
|         (char *)pKey, P4_KEYINFO_HANDOFF);
 | |
|     VdbeComment((v, "%s", pIdx->zName));
 | |
|     nCol = pIdx->nColumn;
 | |
|     regFields = iMem+nCol*2;
 | |
|     regTemp = regRowid = regCol = regFields+3;
 | |
|     regRec = regCol+1;
 | |
|     if( regRec>pParse->nMem ){
 | |
|       pParse->nMem = regRec;
 | |
|     }
 | |
|     sqlite3VdbeAddOp2(v, OP_SetNumColumns, iIdxCur, nCol+1);
 | |
| 
 | |
|     /* Memory cells are used as follows:
 | |
|     **
 | |
|     **    mem[iMem]:             The total number of rows in the table.
 | |
|     **    mem[iMem+1]:           Number of distinct values in column 1
 | |
|     **    ...
 | |
|     **    mem[iMem+nCol]:        Number of distinct values in column N
 | |
|     **    mem[iMem+nCol+1]       Last observed value of column 1
 | |
|     **    ...
 | |
|     **    mem[iMem+nCol+nCol]:   Last observed value of column N
 | |
|     **
 | |
|     ** Cells iMem through iMem+nCol are initialized to 0.  The others
 | |
|     ** are initialized to NULL.
 | |
|     */
 | |
|     for(i=0; i<=nCol; i++){
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
 | |
|     }
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
 | |
|     }
 | |
| 
 | |
|     /* Do the analysis.
 | |
|     */
 | |
|     endOfLoop = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
 | |
|     topOfLoop = sqlite3VdbeCurrentAddr(v);
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
 | |
|       sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
 | |
|       /**** TODO:  add collating sequence *****/
 | |
|       sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
 | |
|     }
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1));
 | |
|       sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
 | |
|       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, endOfLoop);
 | |
|     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
 | |
|     sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
 | |
| 
 | |
|     /* Store the results.  
 | |
|     **
 | |
|     ** The result is a single row of the sqlite_stat1 table.  The first
 | |
|     ** two columns are the names of the table and index.  The third column
 | |
|     ** is a string composed of a list of integer statistics about the
 | |
|     ** index.  The first integer in the list is the total number of entires
 | |
|     ** in the index.  There is one additional integer in the list for each
 | |
|     ** column of the table.  This additional integer is a guess of how many
 | |
|     ** rows of the table the index will select.  If D is the count of distinct
 | |
|     ** values and K is the total number of rows, then the integer is computed
 | |
|     ** as:
 | |
|     **
 | |
|     **        I = (K+D-1)/D
 | |
|     **
 | |
|     ** If K==0 then no entry is made into the sqlite_stat1 table.  
 | |
|     ** If K>0 then it is always the case the D>0 so division by zero
 | |
|     ** is never possible.
 | |
|     */
 | |
|     addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
 | |
|     sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
 | |
|     sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
 | |
|     regF2 = regFields+2;
 | |
|     sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
 | |
|     for(i=0; i<nCol; i++){
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
 | |
|       sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
 | |
|       sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
 | |
|       sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
 | |
|       sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
 | |
|       sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
 | |
|       sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
 | |
|     }
 | |
|     sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
 | |
|     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
 | |
|     sqlite3VdbeJumpHere(v, addr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will cause the most recent index analysis to
 | |
| ** be laoded into internal hash tables where is can be used.
 | |
| */
 | |
| static void loadAnalysis(Parse *pParse, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will do an analysis of an entire database
 | |
| */
 | |
| static void analyzeDatabase(Parse *pParse, int iDb){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
 | |
|   HashElem *k;
 | |
|   int iStatCur;
 | |
|   int iMem;
 | |
| 
 | |
|   sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|   iStatCur = pParse->nTab++;
 | |
|   openStatTable(pParse, iDb, iStatCur, 0);
 | |
|   iMem = pParse->nMem+1;
 | |
|   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
 | |
|     Table *pTab = (Table*)sqliteHashData(k);
 | |
|     analyzeOneTable(pParse, pTab, iStatCur, iMem);
 | |
|   }
 | |
|   loadAnalysis(pParse, iDb);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will do an analysis of a single table in
 | |
| ** a database.
 | |
| */
 | |
| static void analyzeTable(Parse *pParse, Table *pTab){
 | |
|   int iDb;
 | |
|   int iStatCur;
 | |
| 
 | |
|   assert( pTab!=0 );
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|   iStatCur = pParse->nTab++;
 | |
|   openStatTable(pParse, iDb, iStatCur, pTab->zName);
 | |
|   analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1);
 | |
|   loadAnalysis(pParse, iDb);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code for the ANALYZE command.  The parser calls this routine
 | |
| ** when it recognizes an ANALYZE command.
 | |
| **
 | |
| **        ANALYZE                            -- 1
 | |
| **        ANALYZE  <database>                -- 2
 | |
| **        ANALYZE  ?<database>.?<tablename>  -- 3
 | |
| **
 | |
| ** Form 1 causes all indices in all attached databases to be analyzed.
 | |
| ** Form 2 analyzes all indices the single database named.
 | |
| ** Form 3 analyzes all indices associated with the named table.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
|   int i;
 | |
|   char *z, *zDb;
 | |
|   Table *pTab;
 | |
|   Token *pTableName;
 | |
| 
 | |
|   /* Read the database schema. If an error occurs, leave an error message
 | |
|   ** and code in pParse and return NULL. */
 | |
|   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if( pName1==0 ){
 | |
|     /* Form 1:  Analyze everything */
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       if( i==1 ) continue;  /* Do not analyze the TEMP database */
 | |
|       analyzeDatabase(pParse, i);
 | |
|     }
 | |
|   }else if( pName2==0 || pName2->n==0 ){
 | |
|     /* Form 2:  Analyze the database or table named */
 | |
|     iDb = sqlite3FindDb(db, pName1);
 | |
|     if( iDb>=0 ){
 | |
|       analyzeDatabase(pParse, iDb);
 | |
|     }else{
 | |
|       z = sqlite3NameFromToken(db, pName1);
 | |
|       if( z ){
 | |
|         pTab = sqlite3LocateTable(pParse, 0, z, 0);
 | |
|         sqlite3_free(z);
 | |
|         if( pTab ){
 | |
|           analyzeTable(pParse, pTab);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }else{
 | |
|     /* Form 3: Analyze the fully qualified table name */
 | |
|     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
 | |
|     if( iDb>=0 ){
 | |
|       zDb = db->aDb[iDb].zName;
 | |
|       z = sqlite3NameFromToken(db, pTableName);
 | |
|       if( z ){
 | |
|         pTab = sqlite3LocateTable(pParse, 0, z, zDb);
 | |
|         sqlite3_free(z);
 | |
|         if( pTab ){
 | |
|           analyzeTable(pParse, pTab);
 | |
|         }
 | |
|       }
 | |
|     }   
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Used to pass information from the analyzer reader through to the
 | |
| ** callback routine.
 | |
| */
 | |
| typedef struct analysisInfo analysisInfo;
 | |
| struct analysisInfo {
 | |
|   sqlite3 *db;
 | |
|   const char *zDatabase;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** This callback is invoked once for each index when reading the
 | |
| ** sqlite_stat1 table.  
 | |
| **
 | |
| **     argv[0] = name of the index
 | |
| **     argv[1] = results of analysis - on integer for each column
 | |
| */
 | |
| static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){
 | |
|   analysisInfo *pInfo = (analysisInfo*)pData;
 | |
|   Index *pIndex;
 | |
|   int i, c;
 | |
|   unsigned int v;
 | |
|   const char *z;
 | |
| 
 | |
|   assert( argc==2 );
 | |
|   if( argv==0 || argv[0]==0 || argv[1]==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase);
 | |
|   if( pIndex==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   z = argv[1];
 | |
|   for(i=0; *z && i<=pIndex->nColumn; i++){
 | |
|     v = 0;
 | |
|     while( (c=z[0])>='0' && c<='9' ){
 | |
|       v = v*10 + c - '0';
 | |
|       z++;
 | |
|     }
 | |
|     pIndex->aiRowEst[i] = v;
 | |
|     if( *z==' ' ) z++;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Load the content of the sqlite_stat1 table into the index hash tables.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
 | |
|   analysisInfo sInfo;
 | |
|   HashElem *i;
 | |
|   char *zSql;
 | |
|   int rc;
 | |
| 
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( db->aDb[iDb].pBt!=0 );
 | |
|   assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
 | |
| 
 | |
|   /* Clear any prior statistics */
 | |
|   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
 | |
|     Index *pIdx = sqliteHashData(i);
 | |
|     sqlite3DefaultRowEst(pIdx);
 | |
|   }
 | |
| 
 | |
|   /* Check to make sure the sqlite_stat1 table existss */
 | |
|   sInfo.db = db;
 | |
|   sInfo.zDatabase = db->aDb[iDb].zName;
 | |
|   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
 | |
|      return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Load new statistics out of the sqlite_stat1 table */
 | |
|   zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1",
 | |
|                         sInfo.zDatabase);
 | |
|   (void)sqlite3SafetyOff(db);
 | |
|   rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
 | |
|   (void)sqlite3SafetyOn(db);
 | |
|   sqlite3_free(zSql);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* SQLITE_OMIT_ANALYZE */
 | |
| 
 | |
| /************** End of analyze.c *********************************************/
 | |
| /************** Begin file attach.c ******************************************/
 | |
| /*
 | |
| ** 2003 April 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to implement the ATTACH and DETACH commands.
 | |
| **
 | |
| ** $Id: attach.c,v 1.72 2008/02/13 18:25:27 danielk1977 Exp $
 | |
| */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_ATTACH
 | |
| /*
 | |
| ** Resolve an expression that was part of an ATTACH or DETACH statement. This
 | |
| ** is slightly different from resolving a normal SQL expression, because simple
 | |
| ** identifiers are treated as strings, not possible column names or aliases.
 | |
| **
 | |
| ** i.e. if the parser sees:
 | |
| **
 | |
| **     ATTACH DATABASE abc AS def
 | |
| **
 | |
| ** it treats the two expressions as literal strings 'abc' and 'def' instead of
 | |
| ** looking for columns of the same name.
 | |
| **
 | |
| ** This only applies to the root node of pExpr, so the statement:
 | |
| **
 | |
| **     ATTACH DATABASE abc||def AS 'db2'
 | |
| **
 | |
| ** will fail because neither abc or def can be resolved.
 | |
| */
 | |
| static int resolveAttachExpr(NameContext *pName, Expr *pExpr)
 | |
| {
 | |
|   int rc = SQLITE_OK;
 | |
|   if( pExpr ){
 | |
|     if( pExpr->op!=TK_ID ){
 | |
|       rc = sqlite3ExprResolveNames(pName, pExpr);
 | |
|       if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){
 | |
|         sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span);
 | |
|         return SQLITE_ERROR;
 | |
|       }
 | |
|     }else{
 | |
|       pExpr->op = TK_STRING;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** An SQL user-function registered to do the work of an ATTACH statement. The
 | |
| ** three arguments to the function come directly from an attach statement:
 | |
| **
 | |
| **     ATTACH DATABASE x AS y KEY z
 | |
| **
 | |
| **     SELECT sqlite_attach(x, y, z)
 | |
| **
 | |
| ** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the
 | |
| ** third argument.
 | |
| */
 | |
| static void attachFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   int rc = 0;
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   const char *zName;
 | |
|   const char *zFile;
 | |
|   Db *aNew;
 | |
|   char *zErrDyn = 0;
 | |
|   char zErr[128];
 | |
| 
 | |
|   zFile = (const char *)sqlite3_value_text(argv[0]);
 | |
|   zName = (const char *)sqlite3_value_text(argv[1]);
 | |
|   if( zFile==0 ) zFile = "";
 | |
|   if( zName==0 ) zName = "";
 | |
| 
 | |
|   /* Check for the following errors:
 | |
|   **
 | |
|   **     * Too many attached databases,
 | |
|   **     * Transaction currently open
 | |
|   **     * Specified database name already being used.
 | |
|   */
 | |
|   if( db->nDb>=SQLITE_MAX_ATTACHED+2 ){
 | |
|     sqlite3_snprintf(
 | |
|       sizeof(zErr), zErr, "too many attached databases - max %d", 
 | |
|       SQLITE_MAX_ATTACHED
 | |
|     );
 | |
|     goto attach_error;
 | |
|   }
 | |
|   if( !db->autoCommit ){
 | |
|     sqlite3_snprintf(sizeof(zErr), zErr,
 | |
|                      "cannot ATTACH database within transaction");
 | |
|     goto attach_error;
 | |
|   }
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     char *z = db->aDb[i].zName;
 | |
|     if( z && zName && sqlite3StrICmp(z, zName)==0 ){
 | |
|       sqlite3_snprintf(sizeof(zErr), zErr, 
 | |
|                        "database %s is already in use", zName);
 | |
|       goto attach_error;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Allocate the new entry in the db->aDb[] array and initialise the schema
 | |
|   ** hash tables.
 | |
|   */
 | |
|   if( db->aDb==db->aDbStatic ){
 | |
|     aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 );
 | |
|     if( aNew==0 ){
 | |
|       db->mallocFailed = 1;
 | |
|       return;
 | |
|     }
 | |
|     memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
 | |
|   }else{
 | |
|     aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
 | |
|     if( aNew==0 ){
 | |
|       db->mallocFailed = 1;
 | |
|       return;
 | |
|     } 
 | |
|   }
 | |
|   db->aDb = aNew;
 | |
|   aNew = &db->aDb[db->nDb++];
 | |
|   memset(aNew, 0, sizeof(*aNew));
 | |
| 
 | |
|   /* Open the database file. If the btree is successfully opened, use
 | |
|   ** it to obtain the database schema. At this point the schema may
 | |
|   ** or may not be initialised.
 | |
|   */
 | |
|   rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE,
 | |
|                            db->openFlags | SQLITE_OPEN_MAIN_DB,
 | |
|                            &aNew->pBt);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt);
 | |
|     if( !aNew->pSchema ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
 | |
|       sqlite3_snprintf(sizeof(zErr), zErr, 
 | |
|         "attached databases must use the same text encoding as main database");
 | |
|       goto attach_error;
 | |
|     }
 | |
|     sqlite3PagerLockingMode(sqlite3BtreePager(aNew->pBt), db->dfltLockMode);
 | |
|   }
 | |
|   aNew->zName = sqlite3DbStrDup(db, zName);
 | |
|   aNew->safety_level = 3;
 | |
| 
 | |
| #if SQLITE_HAS_CODEC
 | |
|   {
 | |
|     extern int sqlite3CodecAttach(sqlite3*, int, const void*, int);
 | |
|     extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
 | |
|     int nKey;
 | |
|     char *zKey;
 | |
|     int t = sqlite3_value_type(argv[2]);
 | |
|     switch( t ){
 | |
|       case SQLITE_INTEGER:
 | |
|       case SQLITE_FLOAT:
 | |
|         zErrDyn = sqlite3DbStrDup(db, "Invalid key value");
 | |
|         rc = SQLITE_ERROR;
 | |
|         break;
 | |
|         
 | |
|       case SQLITE_TEXT:
 | |
|       case SQLITE_BLOB:
 | |
|         nKey = sqlite3_value_bytes(argv[2]);
 | |
|         zKey = (char *)sqlite3_value_blob(argv[2]);
 | |
|         sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
 | |
|         break;
 | |
| 
 | |
|       case SQLITE_NULL:
 | |
|         /* No key specified.  Use the key from the main database */
 | |
|         sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
 | |
|         sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If the file was opened successfully, read the schema for the new database.
 | |
|   ** If this fails, or if opening the file failed, then close the file and 
 | |
|   ** remove the entry from the db->aDb[] array. i.e. put everything back the way
 | |
|   ** we found it.
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     (void)sqlite3SafetyOn(db);
 | |
|     sqlite3BtreeEnterAll(db);
 | |
|     rc = sqlite3Init(db, &zErrDyn);
 | |
|     sqlite3BtreeLeaveAll(db);
 | |
|     (void)sqlite3SafetyOff(db);
 | |
|   }
 | |
|   if( rc ){
 | |
|     int iDb = db->nDb - 1;
 | |
|     assert( iDb>=2 );
 | |
|     if( db->aDb[iDb].pBt ){
 | |
|       sqlite3BtreeClose(db->aDb[iDb].pBt);
 | |
|       db->aDb[iDb].pBt = 0;
 | |
|       db->aDb[iDb].pSchema = 0;
 | |
|     }
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|     db->nDb = iDb;
 | |
|     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
 | |
|       db->mallocFailed = 1;
 | |
|       sqlite3_snprintf(sizeof(zErr),zErr, "out of memory");
 | |
|     }else{
 | |
|       sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile);
 | |
|     }
 | |
|     goto attach_error;
 | |
|   }
 | |
|   
 | |
|   return;
 | |
| 
 | |
| attach_error:
 | |
|   /* Return an error if we get here */
 | |
|   if( zErrDyn ){
 | |
|     sqlite3_result_error(context, zErrDyn, -1);
 | |
|     sqlite3_free(zErrDyn);
 | |
|   }else{
 | |
|     zErr[sizeof(zErr)-1] = 0;
 | |
|     sqlite3_result_error(context, zErr, -1);
 | |
|   }
 | |
|   if( rc ) sqlite3_result_error_code(context, rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** An SQL user-function registered to do the work of an DETACH statement. The
 | |
| ** three arguments to the function come directly from a detach statement:
 | |
| **
 | |
| **     DETACH DATABASE x
 | |
| **
 | |
| **     SELECT sqlite_detach(x)
 | |
| */
 | |
| static void detachFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const char *zName = (const char *)sqlite3_value_text(argv[0]);
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   int i;
 | |
|   Db *pDb = 0;
 | |
|   char zErr[128];
 | |
| 
 | |
|   if( zName==0 ) zName = "";
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     pDb = &db->aDb[i];
 | |
|     if( pDb->pBt==0 ) continue;
 | |
|     if( sqlite3StrICmp(pDb->zName, zName)==0 ) break;
 | |
|   }
 | |
| 
 | |
|   if( i>=db->nDb ){
 | |
|     sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
 | |
|     goto detach_error;
 | |
|   }
 | |
|   if( i<2 ){
 | |
|     sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
 | |
|     goto detach_error;
 | |
|   }
 | |
|   if( !db->autoCommit ){
 | |
|     sqlite3_snprintf(sizeof(zErr), zErr,
 | |
|                      "cannot DETACH database within transaction");
 | |
|     goto detach_error;
 | |
|   }
 | |
|   if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){
 | |
|     sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
 | |
|     goto detach_error;
 | |
|   }
 | |
| 
 | |
|   sqlite3BtreeClose(pDb->pBt);
 | |
|   pDb->pBt = 0;
 | |
|   pDb->pSchema = 0;
 | |
|   sqlite3ResetInternalSchema(db, 0);
 | |
|   return;
 | |
| 
 | |
| detach_error:
 | |
|   sqlite3_result_error(context, zErr, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This procedure generates VDBE code for a single invocation of either the
 | |
| ** sqlite_detach() or sqlite_attach() SQL user functions.
 | |
| */
 | |
| static void codeAttach(
 | |
|   Parse *pParse,       /* The parser context */
 | |
|   int type,            /* Either SQLITE_ATTACH or SQLITE_DETACH */
 | |
|   const char *zFunc,   /* Either "sqlite_attach" or "sqlite_detach */
 | |
|   int nFunc,           /* Number of args to pass to zFunc */
 | |
|   Expr *pAuthArg,      /* Expression to pass to authorization callback */
 | |
|   Expr *pFilename,     /* Name of database file */
 | |
|   Expr *pDbname,       /* Name of the database to use internally */
 | |
|   Expr *pKey           /* Database key for encryption extension */
 | |
| ){
 | |
|   int rc;
 | |
|   NameContext sName;
 | |
|   Vdbe *v;
 | |
|   FuncDef *pFunc;
 | |
|   sqlite3* db = pParse->db;
 | |
|   int regArgs;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   assert( db->mallocFailed || pAuthArg );
 | |
|   if( pAuthArg ){
 | |
|     char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span);
 | |
|     if( !zAuthArg ){
 | |
|       goto attach_end;
 | |
|     }
 | |
|     rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0);
 | |
|     sqlite3_free(zAuthArg);
 | |
|     if(rc!=SQLITE_OK ){
 | |
|       goto attach_end;
 | |
|     }
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_AUTHORIZATION */
 | |
| 
 | |
|   memset(&sName, 0, sizeof(NameContext));
 | |
|   sName.pParse = pParse;
 | |
| 
 | |
|   if( 
 | |
|       SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) ||
 | |
|       SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) ||
 | |
|       SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey))
 | |
|   ){
 | |
|     pParse->nErr++;
 | |
|     goto attach_end;
 | |
|   }
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   regArgs = sqlite3GetTempRange(pParse, 4);
 | |
|   sqlite3ExprCode(pParse, pFilename, regArgs);
 | |
|   sqlite3ExprCode(pParse, pDbname, regArgs+1);
 | |
|   sqlite3ExprCode(pParse, pKey, regArgs+2);
 | |
| 
 | |
|   assert( v || db->mallocFailed );
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-nFunc, regArgs+3);
 | |
|     sqlite3VdbeChangeP5(v, nFunc);
 | |
|     pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0);
 | |
|     sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF);
 | |
| 
 | |
|     /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this
 | |
|     ** statement only). For DETACH, set it to false (expire all existing
 | |
|     ** statements).
 | |
|     */
 | |
|     sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH));
 | |
|   }
 | |
|   
 | |
| attach_end:
 | |
|   sqlite3ExprDelete(pFilename);
 | |
|   sqlite3ExprDelete(pDbname);
 | |
|   sqlite3ExprDelete(pKey);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Called by the parser to compile a DETACH statement.
 | |
| **
 | |
| **     DETACH pDbname
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){
 | |
|   codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Called by the parser to compile an ATTACH statement.
 | |
| **
 | |
| **     ATTACH p AS pDbname KEY pKey
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){
 | |
|   codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_ATTACH */
 | |
| 
 | |
| /*
 | |
| ** Register the functions sqlite_attach and sqlite_detach.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *db){
 | |
| #ifndef SQLITE_OMIT_ATTACH
 | |
|   static const int enc = SQLITE_UTF8;
 | |
|   sqlite3CreateFunc(db, "sqlite_attach", 3, enc, db, attachFunc, 0, 0);
 | |
|   sqlite3CreateFunc(db, "sqlite_detach", 1, enc, db, detachFunc, 0, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize a DbFixer structure.  This routine must be called prior
 | |
| ** to passing the structure to one of the sqliteFixAAAA() routines below.
 | |
| **
 | |
| ** The return value indicates whether or not fixation is required.  TRUE
 | |
| ** means we do need to fix the database references, FALSE means we do not.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FixInit(
 | |
|   DbFixer *pFix,      /* The fixer to be initialized */
 | |
|   Parse *pParse,      /* Error messages will be written here */
 | |
|   int iDb,            /* This is the database that must be used */
 | |
|   const char *zType,  /* "view", "trigger", or "index" */
 | |
|   const Token *pName  /* Name of the view, trigger, or index */
 | |
| ){
 | |
|   sqlite3 *db;
 | |
| 
 | |
|   if( iDb<0 || iDb==1 ) return 0;
 | |
|   db = pParse->db;
 | |
|   assert( db->nDb>iDb );
 | |
|   pFix->pParse = pParse;
 | |
|   pFix->zDb = db->aDb[iDb].zName;
 | |
|   pFix->zType = zType;
 | |
|   pFix->pName = pName;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following set of routines walk through the parse tree and assign
 | |
| ** a specific database to all table references where the database name
 | |
| ** was left unspecified in the original SQL statement.  The pFix structure
 | |
| ** must have been initialized by a prior call to sqlite3FixInit().
 | |
| **
 | |
| ** These routines are used to make sure that an index, trigger, or
 | |
| ** view in one database does not refer to objects in a different database.
 | |
| ** (Exception: indices, triggers, and views in the TEMP database are
 | |
| ** allowed to refer to anything.)  If a reference is explicitly made
 | |
| ** to an object in a different database, an error message is added to
 | |
| ** pParse->zErrMsg and these routines return non-zero.  If everything
 | |
| ** checks out, these routines return 0.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FixSrcList(
 | |
|   DbFixer *pFix,       /* Context of the fixation */
 | |
|   SrcList *pList       /* The Source list to check and modify */
 | |
| ){
 | |
|   int i;
 | |
|   const char *zDb;
 | |
|   struct SrcList_item *pItem;
 | |
| 
 | |
|   if( pList==0 ) return 0;
 | |
|   zDb = pFix->zDb;
 | |
|   for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
 | |
|     if( pItem->zDatabase==0 ){
 | |
|       pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb);
 | |
|     }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){
 | |
|       sqlite3ErrorMsg(pFix->pParse,
 | |
|          "%s %T cannot reference objects in database %s",
 | |
|          pFix->zType, pFix->pName, pItem->zDatabase);
 | |
|       return 1;
 | |
|     }
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
 | |
|     if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1;
 | |
|     if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1;
 | |
| #endif
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER)
 | |
| SQLITE_PRIVATE int sqlite3FixSelect(
 | |
|   DbFixer *pFix,       /* Context of the fixation */
 | |
|   Select *pSelect      /* The SELECT statement to be fixed to one database */
 | |
| ){
 | |
|   while( pSelect ){
 | |
|     if( sqlite3FixExprList(pFix, pSelect->pEList) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixExpr(pFix, pSelect->pWhere) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixExpr(pFix, pSelect->pHaving) ){
 | |
|       return 1;
 | |
|     }
 | |
|     pSelect = pSelect->pPrior;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3FixExpr(
 | |
|   DbFixer *pFix,     /* Context of the fixation */
 | |
|   Expr *pExpr        /* The expression to be fixed to one database */
 | |
| ){
 | |
|   while( pExpr ){
 | |
|     if( sqlite3FixSelect(pFix, pExpr->pSelect) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixExprList(pFix, pExpr->pList) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixExpr(pFix, pExpr->pRight) ){
 | |
|       return 1;
 | |
|     }
 | |
|     pExpr = pExpr->pLeft;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3FixExprList(
 | |
|   DbFixer *pFix,     /* Context of the fixation */
 | |
|   ExprList *pList    /* The expression to be fixed to one database */
 | |
| ){
 | |
|   int i;
 | |
|   struct ExprList_item *pItem;
 | |
|   if( pList==0 ) return 0;
 | |
|   for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){
 | |
|     if( sqlite3FixExpr(pFix, pItem->pExpr) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| SQLITE_PRIVATE int sqlite3FixTriggerStep(
 | |
|   DbFixer *pFix,     /* Context of the fixation */
 | |
|   TriggerStep *pStep /* The trigger step be fixed to one database */
 | |
| ){
 | |
|   while( pStep ){
 | |
|     if( sqlite3FixSelect(pFix, pStep->pSelect) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixExpr(pFix, pStep->pWhere) ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( sqlite3FixExprList(pFix, pStep->pExprList) ){
 | |
|       return 1;
 | |
|     }
 | |
|     pStep = pStep->pNext;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /************** End of attach.c **********************************************/
 | |
| /************** Begin file auth.c ********************************************/
 | |
| /*
 | |
| ** 2003 January 11
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to implement the sqlite3_set_authorizer()
 | |
| ** API.  This facility is an optional feature of the library.  Embedded
 | |
| ** systems that do not need this facility may omit it by recompiling
 | |
| ** the library with -DSQLITE_OMIT_AUTHORIZATION=1
 | |
| **
 | |
| ** $Id: auth.c,v 1.29 2007/09/18 15:55:07 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** All of the code in this file may be omitted by defining a single
 | |
| ** macro.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
| 
 | |
| /*
 | |
| ** Set or clear the access authorization function.
 | |
| **
 | |
| ** The access authorization function is be called during the compilation
 | |
| ** phase to verify that the user has read and/or write access permission on
 | |
| ** various fields of the database.  The first argument to the auth function
 | |
| ** is a copy of the 3rd argument to this routine.  The second argument
 | |
| ** to the auth function is one of these constants:
 | |
| **
 | |
| **       SQLITE_CREATE_INDEX
 | |
| **       SQLITE_CREATE_TABLE
 | |
| **       SQLITE_CREATE_TEMP_INDEX
 | |
| **       SQLITE_CREATE_TEMP_TABLE
 | |
| **       SQLITE_CREATE_TEMP_TRIGGER
 | |
| **       SQLITE_CREATE_TEMP_VIEW
 | |
| **       SQLITE_CREATE_TRIGGER
 | |
| **       SQLITE_CREATE_VIEW
 | |
| **       SQLITE_DELETE
 | |
| **       SQLITE_DROP_INDEX
 | |
| **       SQLITE_DROP_TABLE
 | |
| **       SQLITE_DROP_TEMP_INDEX
 | |
| **       SQLITE_DROP_TEMP_TABLE
 | |
| **       SQLITE_DROP_TEMP_TRIGGER
 | |
| **       SQLITE_DROP_TEMP_VIEW
 | |
| **       SQLITE_DROP_TRIGGER
 | |
| **       SQLITE_DROP_VIEW
 | |
| **       SQLITE_INSERT
 | |
| **       SQLITE_PRAGMA
 | |
| **       SQLITE_READ
 | |
| **       SQLITE_SELECT
 | |
| **       SQLITE_TRANSACTION
 | |
| **       SQLITE_UPDATE
 | |
| **
 | |
| ** The third and fourth arguments to the auth function are the name of
 | |
| ** the table and the column that are being accessed.  The auth function
 | |
| ** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE.  If
 | |
| ** SQLITE_OK is returned, it means that access is allowed.  SQLITE_DENY
 | |
| ** means that the SQL statement will never-run - the sqlite3_exec() call
 | |
| ** will return with an error.  SQLITE_IGNORE means that the SQL statement
 | |
| ** should run but attempts to read the specified column will return NULL
 | |
| ** and attempts to write the column will be ignored.
 | |
| **
 | |
| ** Setting the auth function to NULL disables this hook.  The default
 | |
| ** setting of the auth function is NULL.
 | |
| */
 | |
| SQLITE_API int sqlite3_set_authorizer(
 | |
|   sqlite3 *db,
 | |
|   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
 | |
|   void *pArg
 | |
| ){
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   db->xAuth = xAuth;
 | |
|   db->pAuthArg = pArg;
 | |
|   sqlite3ExpirePreparedStatements(db);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write an error message into pParse->zErrMsg that explains that the
 | |
| ** user-supplied authorization function returned an illegal value.
 | |
| */
 | |
| static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
 | |
|   sqlite3ErrorMsg(pParse, "illegal return value (%d) from the "
 | |
|     "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
 | |
|     "or SQLITE_DENY", rc);
 | |
|   pParse->rc = SQLITE_ERROR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The pExpr should be a TK_COLUMN expression.  The table referred to
 | |
| ** is in pTabList or else it is the NEW or OLD table of a trigger.  
 | |
| ** Check to see if it is OK to read this particular column.
 | |
| **
 | |
| ** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN 
 | |
| ** instruction into a TK_NULL.  If the auth function returns SQLITE_DENY,
 | |
| ** then generate an error.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AuthRead(
 | |
|   Parse *pParse,        /* The parser context */
 | |
|   Expr *pExpr,          /* The expression to check authorization on */
 | |
|   Schema *pSchema,      /* The schema of the expression */
 | |
|   SrcList *pTabList     /* All table that pExpr might refer to */
 | |
| ){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int rc;
 | |
|   Table *pTab = 0;      /* The table being read */
 | |
|   const char *zCol;     /* Name of the column of the table */
 | |
|   int iSrc;             /* Index in pTabList->a[] of table being read */
 | |
|   const char *zDBase;   /* Name of database being accessed */
 | |
|   TriggerStack *pStack; /* The stack of current triggers */
 | |
|   int iDb;              /* The index of the database the expression refers to */
 | |
| 
 | |
|   if( db->xAuth==0 ) return;
 | |
|   if( pExpr->op!=TK_COLUMN ) return;
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
 | |
|   if( iDb<0 ){
 | |
|     /* An attempt to read a column out of a subquery or other
 | |
|     ** temporary table. */
 | |
|     return;
 | |
|   }
 | |
|   for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
 | |
|     if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
 | |
|   }
 | |
|   if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
 | |
|     pTab = pTabList->a[iSrc].pTab;
 | |
|   }else if( (pStack = pParse->trigStack)!=0 ){
 | |
|     /* This must be an attempt to read the NEW or OLD pseudo-tables
 | |
|     ** of a trigger.
 | |
|     */
 | |
|     assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
 | |
|     pTab = pStack->pTab;
 | |
|   }
 | |
|   if( pTab==0 ) return;
 | |
|   if( pExpr->iColumn>=0 ){
 | |
|     assert( pExpr->iColumn<pTab->nCol );
 | |
|     zCol = pTab->aCol[pExpr->iColumn].zName;
 | |
|   }else if( pTab->iPKey>=0 ){
 | |
|     assert( pTab->iPKey<pTab->nCol );
 | |
|     zCol = pTab->aCol[pTab->iPKey].zName;
 | |
|   }else{
 | |
|     zCol = "ROWID";
 | |
|   }
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   zDBase = db->aDb[iDb].zName;
 | |
|   rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, 
 | |
|                  pParse->zAuthContext);
 | |
|   if( rc==SQLITE_IGNORE ){
 | |
|     pExpr->op = TK_NULL;
 | |
|   }else if( rc==SQLITE_DENY ){
 | |
|     if( db->nDb>2 || iDb!=0 ){
 | |
|       sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited", 
 | |
|          zDBase, pTab->zName, zCol);
 | |
|     }else{
 | |
|       sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
 | |
|     }
 | |
|     pParse->rc = SQLITE_AUTH;
 | |
|   }else if( rc!=SQLITE_OK ){
 | |
|     sqliteAuthBadReturnCode(pParse, rc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Do an authorization check using the code and arguments given.  Return
 | |
| ** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY.  If SQLITE_DENY
 | |
| ** is returned, then the error count and error message in pParse are
 | |
| ** modified appropriately.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3AuthCheck(
 | |
|   Parse *pParse,
 | |
|   int code,
 | |
|   const char *zArg1,
 | |
|   const char *zArg2,
 | |
|   const char *zArg3
 | |
| ){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int rc;
 | |
| 
 | |
|   /* Don't do any authorization checks if the database is initialising
 | |
|   ** or if the parser is being invoked from within sqlite3_declare_vtab.
 | |
|   */
 | |
|   if( db->init.busy || IN_DECLARE_VTAB ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   if( db->xAuth==0 ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
 | |
|   if( rc==SQLITE_DENY ){
 | |
|     sqlite3ErrorMsg(pParse, "not authorized");
 | |
|     pParse->rc = SQLITE_AUTH;
 | |
|   }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
 | |
|     rc = SQLITE_DENY;
 | |
|     sqliteAuthBadReturnCode(pParse, rc);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Push an authorization context.  After this routine is called, the
 | |
| ** zArg3 argument to authorization callbacks will be zContext until
 | |
| ** popped.  Or if pParse==0, this routine is a no-op.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AuthContextPush(
 | |
|   Parse *pParse,
 | |
|   AuthContext *pContext, 
 | |
|   const char *zContext
 | |
| ){
 | |
|   pContext->pParse = pParse;
 | |
|   if( pParse ){
 | |
|     pContext->zAuthContext = pParse->zAuthContext;
 | |
|     pParse->zAuthContext = zContext;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Pop an authorization context that was previously pushed
 | |
| ** by sqlite3AuthContextPush
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){
 | |
|   if( pContext->pParse ){
 | |
|     pContext->pParse->zAuthContext = pContext->zAuthContext;
 | |
|     pContext->pParse = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_AUTHORIZATION */
 | |
| 
 | |
| /************** End of auth.c ************************************************/
 | |
| /************** Begin file build.c *******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the SQLite parser
 | |
| ** when syntax rules are reduced.  The routines in this file handle the
 | |
| ** following kinds of SQL syntax:
 | |
| **
 | |
| **     CREATE TABLE
 | |
| **     DROP TABLE
 | |
| **     CREATE INDEX
 | |
| **     DROP INDEX
 | |
| **     creating ID lists
 | |
| **     BEGIN TRANSACTION
 | |
| **     COMMIT
 | |
| **     ROLLBACK
 | |
| **
 | |
| ** $Id: build.c,v 1.474 2008/03/06 09:58:50 mlcreech Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** This routine is called when a new SQL statement is beginning to
 | |
| ** be parsed.  Initialize the pParse structure as needed.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){
 | |
|   pParse->explain = explainFlag;
 | |
|   pParse->nVar = 0;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
| /*
 | |
| ** The TableLock structure is only used by the sqlite3TableLock() and
 | |
| ** codeTableLocks() functions.
 | |
| */
 | |
| struct TableLock {
 | |
|   int iDb;             /* The database containing the table to be locked */
 | |
|   int iTab;            /* The root page of the table to be locked */
 | |
|   u8 isWriteLock;      /* True for write lock.  False for a read lock */
 | |
|   const char *zName;   /* Name of the table */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Record the fact that we want to lock a table at run-time.  
 | |
| **
 | |
| ** The table to be locked has root page iTab and is found in database iDb.
 | |
| ** A read or a write lock can be taken depending on isWritelock.
 | |
| **
 | |
| ** This routine just records the fact that the lock is desired.  The
 | |
| ** code to make the lock occur is generated by a later call to
 | |
| ** codeTableLocks() which occurs during sqlite3FinishCoding().
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3TableLock(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   int iDb,           /* Index of the database containing the table to lock */
 | |
|   int iTab,          /* Root page number of the table to be locked */
 | |
|   u8 isWriteLock,    /* True for a write lock */
 | |
|   const char *zName  /* Name of the table to be locked */
 | |
| ){
 | |
|   int i;
 | |
|   int nBytes;
 | |
|   TableLock *p;
 | |
| 
 | |
|   if( iDb<0 ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for(i=0; i<pParse->nTableLock; i++){
 | |
|     p = &pParse->aTableLock[i];
 | |
|     if( p->iDb==iDb && p->iTab==iTab ){
 | |
|       p->isWriteLock = (p->isWriteLock || isWriteLock);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
 | |
|   pParse->aTableLock = 
 | |
|       sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
 | |
|   if( pParse->aTableLock ){
 | |
|     p = &pParse->aTableLock[pParse->nTableLock++];
 | |
|     p->iDb = iDb;
 | |
|     p->iTab = iTab;
 | |
|     p->isWriteLock = isWriteLock;
 | |
|     p->zName = zName;
 | |
|   }else{
 | |
|     pParse->nTableLock = 0;
 | |
|     pParse->db->mallocFailed = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Code an OP_TableLock instruction for each table locked by the
 | |
| ** statement (configured by calls to sqlite3TableLock()).
 | |
| */
 | |
| static void codeTableLocks(Parse *pParse){
 | |
|   int i;
 | |
|   Vdbe *pVdbe; 
 | |
| 
 | |
|   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for(i=0; i<pParse->nTableLock; i++){
 | |
|     TableLock *p = &pParse->aTableLock[i];
 | |
|     int p1 = p->iDb;
 | |
|     if( p->isWriteLock ){
 | |
|       p1 = -1*(p1+1);
 | |
|     }
 | |
|     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, 0, p->zName, P4_STATIC);
 | |
|   }
 | |
| }
 | |
| #else
 | |
|   #define codeTableLocks(x)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This routine is called after a single SQL statement has been
 | |
| ** parsed and a VDBE program to execute that statement has been
 | |
| ** prepared.  This routine puts the finishing touches on the
 | |
| ** VDBE program and resets the pParse structure for the next
 | |
| ** parse.
 | |
| **
 | |
| ** Note that if an error occurred, it might be the case that
 | |
| ** no VDBE code was generated.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   db = pParse->db;
 | |
|   if( db->mallocFailed ) return;
 | |
|   if( pParse->nested ) return;
 | |
|   if( pParse->nErr ) return;
 | |
|   if( !pParse->pVdbe ){
 | |
|     if( pParse->rc==SQLITE_OK && pParse->nErr ){
 | |
|       pParse->rc = SQLITE_ERROR;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Begin by generating some termination code at the end of the
 | |
|   ** vdbe program
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp0(v, OP_Halt);
 | |
| 
 | |
|     /* The cookie mask contains one bit for each database file open.
 | |
|     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
 | |
|     ** set for each database that is used.  Generate code to start a
 | |
|     ** transaction on each used database and to verify the schema cookie
 | |
|     ** on each used database.
 | |
|     */
 | |
|     if( pParse->cookieGoto>0 ){
 | |
|       u32 mask;
 | |
|       int iDb;
 | |
|       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
 | |
|       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
 | |
|         if( (mask & pParse->cookieMask)==0 ) continue;
 | |
|         sqlite3VdbeUsesBtree(v, iDb);
 | |
|         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
 | |
|         sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       if( pParse->pVirtualLock ){
 | |
|         char *vtab = (char *)pParse->pVirtualLock->pVtab;
 | |
|         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       /* Once all the cookies have been verified and transactions opened, 
 | |
|       ** obtain the required table-locks. This is a no-op unless the 
 | |
|       ** shared-cache feature is enabled.
 | |
|       */
 | |
|       codeTableLocks(pParse);
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
|     if( !db->init.busy ){
 | |
|       /* Change the P4 argument of the first opcode (which will always be
 | |
|       ** an OP_Trace) to be the complete text of the current SQL statement.
 | |
|       */
 | |
|       VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
 | |
|       if( pOp && pOp->opcode==OP_Trace ){
 | |
|         sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
 | |
|       }
 | |
|     }
 | |
| #endif /* SQLITE_OMIT_TRACE */
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Get the VDBE program ready for execution
 | |
|   */
 | |
|   if( v && pParse->nErr==0 && !db->mallocFailed ){
 | |
| #ifdef SQLITE_DEBUG
 | |
|     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
 | |
|     sqlite3VdbeTrace(v, trace);
 | |
| #endif
 | |
|     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
 | |
|                          pParse->nTab+3, pParse->explain);
 | |
|     pParse->rc = SQLITE_DONE;
 | |
|     pParse->colNamesSet = 0;
 | |
|   }else if( pParse->rc==SQLITE_OK ){
 | |
|     pParse->rc = SQLITE_ERROR;
 | |
|   }
 | |
|   pParse->nTab = 0;
 | |
|   pParse->nMem = 0;
 | |
|   pParse->nSet = 0;
 | |
|   pParse->nVar = 0;
 | |
|   pParse->cookieMask = 0;
 | |
|   pParse->cookieGoto = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Run the parser and code generator recursively in order to generate
 | |
| ** code for the SQL statement given onto the end of the pParse context
 | |
| ** currently under construction.  When the parser is run recursively
 | |
| ** this way, the final OP_Halt is not appended and other initialization
 | |
| ** and finalization steps are omitted because those are handling by the
 | |
| ** outermost parser.
 | |
| **
 | |
| ** Not everything is nestable.  This facility is designed to permit
 | |
| ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
 | |
| ** care if you decide to try to use this routine for some other purposes.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
 | |
|   va_list ap;
 | |
|   char *zSql;
 | |
| # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
 | |
|   char saveBuf[SAVE_SZ];
 | |
| 
 | |
|   if( pParse->nErr ) return;
 | |
|   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
 | |
|   va_start(ap, zFormat);
 | |
|   zSql = sqlite3VMPrintf(pParse->db, zFormat, ap);
 | |
|   va_end(ap);
 | |
|   if( zSql==0 ){
 | |
|     pParse->db->mallocFailed = 1;
 | |
|     return;   /* A malloc must have failed */
 | |
|   }
 | |
|   pParse->nested++;
 | |
|   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
 | |
|   memset(&pParse->nVar, 0, SAVE_SZ);
 | |
|   sqlite3RunParser(pParse, zSql, 0);
 | |
|   sqlite3_free(zSql);
 | |
|   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
 | |
|   pParse->nested--;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate the in-memory structure that describes a particular database
 | |
| ** table given the name of that table and (optionally) the name of the
 | |
| ** database containing the table.  Return NULL if not found.
 | |
| **
 | |
| ** If zDatabase is 0, all databases are searched for the table and the
 | |
| ** first matching table is returned.  (No checking for duplicate table
 | |
| ** names is done.)  The search order is TEMP first, then MAIN, then any
 | |
| ** auxiliary databases added using the ATTACH command.
 | |
| **
 | |
| ** See also sqlite3LocateTable().
 | |
| */
 | |
| SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
 | |
|   Table *p = 0;
 | |
|   int i;
 | |
|   assert( zName!=0 );
 | |
|   for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | |
|     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
 | |
|     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
 | |
|     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
 | |
|     if( p ) break;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate the in-memory structure that describes a particular database
 | |
| ** table given the name of that table and (optionally) the name of the
 | |
| ** database containing the table.  Return NULL if not found.  Also leave an
 | |
| ** error message in pParse->zErrMsg.
 | |
| **
 | |
| ** The difference between this routine and sqlite3FindTable() is that this
 | |
| ** routine leaves an error message in pParse->zErrMsg where
 | |
| ** sqlite3FindTable() does not.
 | |
| */
 | |
| SQLITE_PRIVATE Table *sqlite3LocateTable(
 | |
|   Parse *pParse,         /* context in which to report errors */
 | |
|   int isView,            /* True if looking for a VIEW rather than a TABLE */
 | |
|   const char *zName,     /* Name of the table we are looking for */
 | |
|   const char *zDbase     /* Name of the database.  Might be NULL */
 | |
| ){
 | |
|   Table *p;
 | |
| 
 | |
|   /* Read the database schema. If an error occurs, leave an error message
 | |
|   ** and code in pParse and return NULL. */
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   p = sqlite3FindTable(pParse->db, zName, zDbase);
 | |
|   if( p==0 ){
 | |
|     const char *zMsg = isView ? "no such view" : "no such table";
 | |
|     if( zDbase ){
 | |
|       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
 | |
|     }else{
 | |
|       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
 | |
|     }
 | |
|     pParse->checkSchema = 1;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate the in-memory structure that describes 
 | |
| ** a particular index given the name of that index
 | |
| ** and the name of the database that contains the index.
 | |
| ** Return NULL if not found.
 | |
| **
 | |
| ** If zDatabase is 0, all databases are searched for the
 | |
| ** table and the first matching index is returned.  (No checking
 | |
| ** for duplicate index names is done.)  The search order is
 | |
| ** TEMP first, then MAIN, then any auxiliary databases added
 | |
| ** using the ATTACH command.
 | |
| */
 | |
| SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
 | |
|   Index *p = 0;
 | |
|   int i;
 | |
|   for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | |
|     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
 | |
|     Schema *pSchema = db->aDb[j].pSchema;
 | |
|     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
 | |
|     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
 | |
|     if( pSchema ){
 | |
|       p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
 | |
|     }
 | |
|     if( p ) break;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Reclaim the memory used by an index
 | |
| */
 | |
| static void freeIndex(Index *p){
 | |
|   sqlite3_free(p->zColAff);
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the given index from the index hash table, and free
 | |
| ** its memory structures.
 | |
| **
 | |
| ** The index is removed from the database hash tables but
 | |
| ** it is not unlinked from the Table that it indexes.
 | |
| ** Unlinking from the Table must be done by the calling function.
 | |
| */
 | |
| static void sqliteDeleteIndex(Index *p){
 | |
|   Index *pOld;
 | |
|   const char *zName = p->zName;
 | |
| 
 | |
|   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
 | |
|   assert( pOld==0 || pOld==p );
 | |
|   freeIndex(p);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** For the index called zIdxName which is found in the database iDb,
 | |
| ** unlike that index from its Table then remove the index from
 | |
| ** the index hash table and free all memory structures associated
 | |
| ** with the index.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
 | |
|   Index *pIndex;
 | |
|   int len;
 | |
|   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
 | |
| 
 | |
|   len = strlen(zIdxName);
 | |
|   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
 | |
|   if( pIndex ){
 | |
|     if( pIndex->pTable->pIndex==pIndex ){
 | |
|       pIndex->pTable->pIndex = pIndex->pNext;
 | |
|     }else{
 | |
|       Index *p;
 | |
|       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
 | |
|       if( p && p->pNext==pIndex ){
 | |
|         p->pNext = pIndex->pNext;
 | |
|       }
 | |
|     }
 | |
|     freeIndex(pIndex);
 | |
|   }
 | |
|   db->flags |= SQLITE_InternChanges;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Erase all schema information from the in-memory hash tables of
 | |
| ** a single database.  This routine is called to reclaim memory
 | |
| ** before the database closes.  It is also called during a rollback
 | |
| ** if there were schema changes during the transaction or if a
 | |
| ** schema-cookie mismatch occurs.
 | |
| **
 | |
| ** If iDb<=0 then reset the internal schema tables for all database
 | |
| ** files.  If iDb>=2 then reset the internal schema for only the
 | |
| ** single file indicated.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
 | |
|   int i, j;
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
| 
 | |
|   if( iDb==0 ){
 | |
|     sqlite3BtreeEnterAll(db);
 | |
|   }
 | |
|   for(i=iDb; i<db->nDb; i++){
 | |
|     Db *pDb = &db->aDb[i];
 | |
|     if( pDb->pSchema ){
 | |
|       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
 | |
|       sqlite3SchemaFree(pDb->pSchema);
 | |
|     }
 | |
|     if( iDb>0 ) return;
 | |
|   }
 | |
|   assert( iDb==0 );
 | |
|   db->flags &= ~SQLITE_InternChanges;
 | |
|   sqlite3BtreeLeaveAll(db);
 | |
| 
 | |
|   /* If one or more of the auxiliary database files has been closed,
 | |
|   ** then remove them from the auxiliary database list.  We take the
 | |
|   ** opportunity to do this here since we have just deleted all of the
 | |
|   ** schema hash tables and therefore do not have to make any changes
 | |
|   ** to any of those tables.
 | |
|   */
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     struct Db *pDb = &db->aDb[i];
 | |
|     if( pDb->pBt==0 ){
 | |
|       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
 | |
|       pDb->pAux = 0;
 | |
|     }
 | |
|   }
 | |
|   for(i=j=2; i<db->nDb; i++){
 | |
|     struct Db *pDb = &db->aDb[i];
 | |
|     if( pDb->pBt==0 ){
 | |
|       sqlite3_free(pDb->zName);
 | |
|       pDb->zName = 0;
 | |
|       continue;
 | |
|     }
 | |
|     if( j<i ){
 | |
|       db->aDb[j] = db->aDb[i];
 | |
|     }
 | |
|     j++;
 | |
|   }
 | |
|   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
 | |
|   db->nDb = j;
 | |
|   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
 | |
|     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
 | |
|     sqlite3_free(db->aDb);
 | |
|     db->aDb = db->aDbStatic;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called when a commit occurs.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
 | |
|   db->flags &= ~SQLITE_InternChanges;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear the column names from a table or view.
 | |
| */
 | |
| static void sqliteResetColumnNames(Table *pTable){
 | |
|   int i;
 | |
|   Column *pCol;
 | |
|   assert( pTable!=0 );
 | |
|   if( (pCol = pTable->aCol)!=0 ){
 | |
|     for(i=0; i<pTable->nCol; i++, pCol++){
 | |
|       sqlite3_free(pCol->zName);
 | |
|       sqlite3ExprDelete(pCol->pDflt);
 | |
|       sqlite3_free(pCol->zType);
 | |
|       sqlite3_free(pCol->zColl);
 | |
|     }
 | |
|     sqlite3_free(pTable->aCol);
 | |
|   }
 | |
|   pTable->aCol = 0;
 | |
|   pTable->nCol = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove the memory data structures associated with the given
 | |
| ** Table.  No changes are made to disk by this routine.
 | |
| **
 | |
| ** This routine just deletes the data structure.  It does not unlink
 | |
| ** the table data structure from the hash table.  Nor does it remove
 | |
| ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
 | |
| ** memory structures of the indices and foreign keys associated with 
 | |
| ** the table.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){
 | |
|   Index *pIndex, *pNext;
 | |
|   FKey *pFKey, *pNextFKey;
 | |
| 
 | |
|   if( pTable==0 ) return;
 | |
| 
 | |
|   /* Do not delete the table until the reference count reaches zero. */
 | |
|   pTable->nRef--;
 | |
|   if( pTable->nRef>0 ){
 | |
|     return;
 | |
|   }
 | |
|   assert( pTable->nRef==0 );
 | |
| 
 | |
|   /* Delete all indices associated with this table
 | |
|   */
 | |
|   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
 | |
|     pNext = pIndex->pNext;
 | |
|     assert( pIndex->pSchema==pTable->pSchema );
 | |
|     sqliteDeleteIndex(pIndex);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   /* Delete all foreign keys associated with this table.  The keys
 | |
|   ** should have already been unlinked from the pSchema->aFKey hash table 
 | |
|   */
 | |
|   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
 | |
|     pNextFKey = pFKey->pNextFrom;
 | |
|     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
 | |
|                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
 | |
|     sqlite3_free(pFKey);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Delete the Table structure itself.
 | |
|   */
 | |
|   sqliteResetColumnNames(pTable);
 | |
|   sqlite3_free(pTable->zName);
 | |
|   sqlite3_free(pTable->zColAff);
 | |
|   sqlite3SelectDelete(pTable->pSelect);
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   sqlite3ExprDelete(pTable->pCheck);
 | |
| #endif
 | |
|   sqlite3VtabClear(pTable);
 | |
|   sqlite3_free(pTable);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlink the given table from the hash tables and the delete the
 | |
| ** table structure with all its indices and foreign keys.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
 | |
|   Table *p;
 | |
|   FKey *pF1, *pF2;
 | |
|   Db *pDb;
 | |
| 
 | |
|   assert( db!=0 );
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( zTabName && zTabName[0] );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
 | |
|   if( p ){
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
 | |
|       int nTo = strlen(pF1->zTo) + 1;
 | |
|       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
 | |
|       if( pF2==pF1 ){
 | |
|         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
 | |
|       }else{
 | |
|         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
 | |
|         if( pF2 ){
 | |
|           pF2->pNextTo = pF1->pNextTo;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     sqlite3DeleteTable(p);
 | |
|   }
 | |
|   db->flags |= SQLITE_InternChanges;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given a token, return a string that consists of the text of that
 | |
| ** token with any quotations removed.  Space to hold the returned string
 | |
| ** is obtained from sqliteMalloc() and must be freed by the calling
 | |
| ** function.
 | |
| **
 | |
| ** Tokens are often just pointers into the original SQL text and so
 | |
| ** are not \000 terminated and are not persistent.  The returned string
 | |
| ** is \000 terminated and is persistent.
 | |
| */
 | |
| SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
 | |
|   char *zName;
 | |
|   if( pName ){
 | |
|     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
 | |
|     sqlite3Dequote(zName);
 | |
|   }else{
 | |
|     zName = 0;
 | |
|   }
 | |
|   return zName;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open the sqlite_master table stored in database number iDb for
 | |
| ** writing. The table is opened using cursor 0.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(p);
 | |
|   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
 | |
|   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
 | |
|   sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The token *pName contains the name of a database (either "main" or
 | |
| ** "temp" or the name of an attached db). This routine returns the
 | |
| ** index of the named database in db->aDb[], or -1 if the named db 
 | |
| ** does not exist.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){
 | |
|   int i = -1;    /* Database number */
 | |
|   int n;         /* Number of characters in the name */
 | |
|   Db *pDb;       /* A database whose name space is being searched */
 | |
|   char *zName;   /* Name we are searching for */
 | |
| 
 | |
|   zName = sqlite3NameFromToken(db, pName);
 | |
|   if( zName ){
 | |
|     n = strlen(zName);
 | |
|     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
 | |
|       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
 | |
|           0==sqlite3StrICmp(pDb->zName, zName) ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(zName);
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /* The table or view or trigger name is passed to this routine via tokens
 | |
| ** pName1 and pName2. If the table name was fully qualified, for example:
 | |
| **
 | |
| ** CREATE TABLE xxx.yyy (...);
 | |
| ** 
 | |
| ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
 | |
| ** the table name is not fully qualified, i.e.:
 | |
| **
 | |
| ** CREATE TABLE yyy(...);
 | |
| **
 | |
| ** Then pName1 is set to "yyy" and pName2 is "".
 | |
| **
 | |
| ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
 | |
| ** pName2) that stores the unqualified table name.  The index of the
 | |
| ** database "xxx" is returned.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3TwoPartName(
 | |
|   Parse *pParse,      /* Parsing and code generating context */
 | |
|   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
 | |
|   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
 | |
|   Token **pUnqual     /* Write the unqualified object name here */
 | |
| ){
 | |
|   int iDb;                    /* Database holding the object */
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( pName2 && pName2->n>0 ){
 | |
|     assert( !db->init.busy );
 | |
|     *pUnqual = pName2;
 | |
|     iDb = sqlite3FindDb(db, pName1);
 | |
|     if( iDb<0 ){
 | |
|       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
 | |
|       pParse->nErr++;
 | |
|       return -1;
 | |
|     }
 | |
|   }else{
 | |
|     assert( db->init.iDb==0 || db->init.busy );
 | |
|     iDb = db->init.iDb;
 | |
|     *pUnqual = pName1;
 | |
|   }
 | |
|   return iDb;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is used to check if the UTF-8 string zName is a legal
 | |
| ** unqualified name for a new schema object (table, index, view or
 | |
| ** trigger). All names are legal except those that begin with the string
 | |
| ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
 | |
| ** is reserved for internal use.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
 | |
|   if( !pParse->db->init.busy && pParse->nested==0 
 | |
|           && (pParse->db->flags & SQLITE_WriteSchema)==0
 | |
|           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
 | |
|     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Begin constructing a new table representation in memory.  This is
 | |
| ** the first of several action routines that get called in response
 | |
| ** to a CREATE TABLE statement.  In particular, this routine is called
 | |
| ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
 | |
| ** flag is true if the table should be stored in the auxiliary database
 | |
| ** file instead of in the main database file.  This is normally the case
 | |
| ** when the "TEMP" or "TEMPORARY" keyword occurs in between
 | |
| ** CREATE and TABLE.
 | |
| **
 | |
| ** The new table record is initialized and put in pParse->pNewTable.
 | |
| ** As more of the CREATE TABLE statement is parsed, additional action
 | |
| ** routines will be called to add more information to this record.
 | |
| ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
 | |
| ** is called to complete the construction of the new table record.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3StartTable(
 | |
|   Parse *pParse,   /* Parser context */
 | |
|   Token *pName1,   /* First part of the name of the table or view */
 | |
|   Token *pName2,   /* Second part of the name of the table or view */
 | |
|   int isTemp,      /* True if this is a TEMP table */
 | |
|   int isView,      /* True if this is a VIEW */
 | |
|   int isVirtual,   /* True if this is a VIRTUAL table */
 | |
|   int noErr        /* Do nothing if table already exists */
 | |
| ){
 | |
|   Table *pTable;
 | |
|   char *zName = 0; /* The name of the new table */
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Vdbe *v;
 | |
|   int iDb;         /* Database number to create the table in */
 | |
|   Token *pName;    /* Unqualified name of the table to create */
 | |
| 
 | |
|   /* The table or view name to create is passed to this routine via tokens
 | |
|   ** pName1 and pName2. If the table name was fully qualified, for example:
 | |
|   **
 | |
|   ** CREATE TABLE xxx.yyy (...);
 | |
|   ** 
 | |
|   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
 | |
|   ** the table name is not fully qualified, i.e.:
 | |
|   **
 | |
|   ** CREATE TABLE yyy(...);
 | |
|   **
 | |
|   ** Then pName1 is set to "yyy" and pName2 is "".
 | |
|   **
 | |
|   ** The call below sets the pName pointer to point at the token (pName1 or
 | |
|   ** pName2) that stores the unqualified table name. The variable iDb is
 | |
|   ** set to the index of the database that the table or view is to be
 | |
|   ** created in.
 | |
|   */
 | |
|   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|   if( iDb<0 ) return;
 | |
|   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
 | |
|     /* If creating a temp table, the name may not be qualified */
 | |
|     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
 | |
|     return;
 | |
|   }
 | |
|   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
 | |
| 
 | |
|   pParse->sNameToken = *pName;
 | |
|   zName = sqlite3NameFromToken(db, pName);
 | |
|   if( zName==0 ) return;
 | |
|   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | |
|     goto begin_table_error;
 | |
|   }
 | |
|   if( db->init.iDb==1 ) isTemp = 1;
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   assert( (isTemp & 1)==isTemp );
 | |
|   {
 | |
|     int code;
 | |
|     char *zDb = db->aDb[iDb].zName;
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|     if( isView ){
 | |
|       if( !OMIT_TEMPDB && isTemp ){
 | |
|         code = SQLITE_CREATE_TEMP_VIEW;
 | |
|       }else{
 | |
|         code = SQLITE_CREATE_VIEW;
 | |
|       }
 | |
|     }else{
 | |
|       if( !OMIT_TEMPDB && isTemp ){
 | |
|         code = SQLITE_CREATE_TEMP_TABLE;
 | |
|       }else{
 | |
|         code = SQLITE_CREATE_TABLE;
 | |
|       }
 | |
|     }
 | |
|     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Make sure the new table name does not collide with an existing
 | |
|   ** index or table name in the same database.  Issue an error message if
 | |
|   ** it does. The exception is if the statement being parsed was passed
 | |
|   ** to an sqlite3_declare_vtab() call. In that case only the column names
 | |
|   ** and types will be used, so there is no need to test for namespace
 | |
|   ** collisions.
 | |
|   */
 | |
|   if( !IN_DECLARE_VTAB ){
 | |
|     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
 | |
|     if( pTable ){
 | |
|       if( !noErr ){
 | |
|         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
 | |
|       }
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
 | |
|       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
 | |
|       goto begin_table_error;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   pTable = sqlite3DbMallocZero(db, sizeof(Table));
 | |
|   if( pTable==0 ){
 | |
|     db->mallocFailed = 1;
 | |
|     pParse->rc = SQLITE_NOMEM;
 | |
|     pParse->nErr++;
 | |
|     goto begin_table_error;
 | |
|   }
 | |
|   pTable->zName = zName;
 | |
|   pTable->iPKey = -1;
 | |
|   pTable->pSchema = db->aDb[iDb].pSchema;
 | |
|   pTable->nRef = 1;
 | |
|   if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
 | |
|   pParse->pNewTable = pTable;
 | |
| 
 | |
|   /* If this is the magic sqlite_sequence table used by autoincrement,
 | |
|   ** then record a pointer to this table in the main database structure
 | |
|   ** so that INSERT can find the table easily.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
 | |
|     pTable->pSchema->pSeqTab = pTable;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Begin generating the code that will insert the table record into
 | |
|   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
 | |
|   ** and allocate the record number for the table entry now.  Before any
 | |
|   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
 | |
|   ** indices to be created and the table record must come before the 
 | |
|   ** indices.  Hence, the record number for the table must be allocated
 | |
|   ** now.
 | |
|   */
 | |
|   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
 | |
|     int j1;
 | |
|     int fileFormat;
 | |
|     int reg1, reg2, reg3;
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( isVirtual ){
 | |
|       sqlite3VdbeAddOp0(v, OP_VBegin);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* If the file format and encoding in the database have not been set, 
 | |
|     ** set them now.
 | |
|     */
 | |
|     reg1 = pParse->regRowid = ++pParse->nMem;
 | |
|     reg2 = pParse->regRoot = ++pParse->nMem;
 | |
|     reg3 = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1);   /* file_format */
 | |
|     sqlite3VdbeUsesBtree(v, iDb);
 | |
|     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
 | |
|     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
 | |
|                   1 : SQLITE_MAX_FILE_FORMAT;
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
 | |
|     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
 | |
|     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
 | |
|     sqlite3VdbeJumpHere(v, j1);
 | |
| 
 | |
|     /* This just creates a place-holder record in the sqlite_master table.
 | |
|     ** The record created does not contain anything yet.  It will be replaced
 | |
|     ** by the real entry in code generated at sqlite3EndTable().
 | |
|     **
 | |
|     ** The rowid for the new entry is left on the top of the stack.
 | |
|     ** The rowid value is needed by the code that sqlite3EndTable will
 | |
|     ** generate.
 | |
|     */
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
 | |
|     if( isView || isVirtual ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
 | |
|     }
 | |
|     sqlite3OpenMasterTable(pParse, iDb);
 | |
|     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
 | |
|     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
 | |
|     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
 | |
|     sqlite3VdbeAddOp0(v, OP_Close);
 | |
|   }
 | |
| 
 | |
|   /* Normal (non-error) return. */
 | |
|   return;
 | |
| 
 | |
|   /* If an error occurs, we jump here */
 | |
| begin_table_error:
 | |
|   sqlite3_free(zName);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This macro is used to compare two strings in a case-insensitive manner.
 | |
| ** It is slightly faster than calling sqlite3StrICmp() directly, but
 | |
| ** produces larger code.
 | |
| **
 | |
| ** WARNING: This macro is not compatible with the strcmp() family. It
 | |
| ** returns true if the two strings are equal, otherwise false.
 | |
| */
 | |
| #define STRICMP(x, y) (\
 | |
| sqlite3UpperToLower[*(unsigned char *)(x)]==   \
 | |
| sqlite3UpperToLower[*(unsigned char *)(y)]     \
 | |
| && sqlite3StrICmp((x)+1,(y)+1)==0 )
 | |
| 
 | |
| /*
 | |
| ** Add a new column to the table currently being constructed.
 | |
| **
 | |
| ** The parser calls this routine once for each column declaration
 | |
| ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
 | |
| ** first to get things going.  Then this routine is called for each
 | |
| ** column.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   char *z;
 | |
|   Column *pCol;
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   if( p->nCol+1>SQLITE_MAX_COLUMN ){
 | |
|     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
 | |
|     return;
 | |
|   }
 | |
|   z = sqlite3NameFromToken(pParse->db, pName);
 | |
|   if( z==0 ) return;
 | |
|   for(i=0; i<p->nCol; i++){
 | |
|     if( STRICMP(z, p->aCol[i].zName) ){
 | |
|       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
 | |
|       sqlite3_free(z);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if( (p->nCol & 0x7)==0 ){
 | |
|     Column *aNew;
 | |
|     aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
 | |
|     if( aNew==0 ){
 | |
|       sqlite3_free(z);
 | |
|       return;
 | |
|     }
 | |
|     p->aCol = aNew;
 | |
|   }
 | |
|   pCol = &p->aCol[p->nCol];
 | |
|   memset(pCol, 0, sizeof(p->aCol[0]));
 | |
|   pCol->zName = z;
 | |
|  
 | |
|   /* If there is no type specified, columns have the default affinity
 | |
|   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
 | |
|   ** be called next to set pCol->affinity correctly.
 | |
|   */
 | |
|   pCol->affinity = SQLITE_AFF_NONE;
 | |
|   p->nCol++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called by the parser while in the middle of
 | |
| ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
 | |
| ** been seen on a column.  This routine sets the notNull flag on
 | |
| ** the column currently under construction.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   i = p->nCol-1;
 | |
|   if( i>=0 ) p->aCol[i].notNull = onError;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Scan the column type name zType (length nType) and return the
 | |
| ** associated affinity type.
 | |
| **
 | |
| ** This routine does a case-independent search of zType for the 
 | |
| ** substrings in the following table. If one of the substrings is
 | |
| ** found, the corresponding affinity is returned. If zType contains
 | |
| ** more than one of the substrings, entries toward the top of 
 | |
| ** the table take priority. For example, if zType is 'BLOBINT', 
 | |
| ** SQLITE_AFF_INTEGER is returned.
 | |
| **
 | |
| ** Substring     | Affinity
 | |
| ** --------------------------------
 | |
| ** 'INT'         | SQLITE_AFF_INTEGER
 | |
| ** 'CHAR'        | SQLITE_AFF_TEXT
 | |
| ** 'CLOB'        | SQLITE_AFF_TEXT
 | |
| ** 'TEXT'        | SQLITE_AFF_TEXT
 | |
| ** 'BLOB'        | SQLITE_AFF_NONE
 | |
| ** 'REAL'        | SQLITE_AFF_REAL
 | |
| ** 'FLOA'        | SQLITE_AFF_REAL
 | |
| ** 'DOUB'        | SQLITE_AFF_REAL
 | |
| **
 | |
| ** If none of the substrings in the above table are found,
 | |
| ** SQLITE_AFF_NUMERIC is returned.
 | |
| */
 | |
| SQLITE_PRIVATE char sqlite3AffinityType(const Token *pType){
 | |
|   u32 h = 0;
 | |
|   char aff = SQLITE_AFF_NUMERIC;
 | |
|   const unsigned char *zIn = pType->z;
 | |
|   const unsigned char *zEnd = &pType->z[pType->n];
 | |
| 
 | |
|   while( zIn!=zEnd ){
 | |
|     h = (h<<8) + sqlite3UpperToLower[*zIn];
 | |
|     zIn++;
 | |
|     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
 | |
|       aff = SQLITE_AFF_TEXT; 
 | |
|     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
 | |
|       aff = SQLITE_AFF_TEXT;
 | |
|     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
 | |
|       aff = SQLITE_AFF_TEXT;
 | |
|     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
 | |
|         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
 | |
|       aff = SQLITE_AFF_NONE;
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
 | |
|         && aff==SQLITE_AFF_NUMERIC ){
 | |
|       aff = SQLITE_AFF_REAL;
 | |
|     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
 | |
|         && aff==SQLITE_AFF_NUMERIC ){
 | |
|       aff = SQLITE_AFF_REAL;
 | |
|     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
 | |
|         && aff==SQLITE_AFF_NUMERIC ){
 | |
|       aff = SQLITE_AFF_REAL;
 | |
| #endif
 | |
|     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
 | |
|       aff = SQLITE_AFF_INTEGER;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return aff;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called by the parser while in the middle of
 | |
| ** parsing a CREATE TABLE statement.  The pFirst token is the first
 | |
| ** token in the sequence of tokens that describe the type of the
 | |
| ** column currently under construction.   pLast is the last token
 | |
| ** in the sequence.  Use this information to construct a string
 | |
| ** that contains the typename of the column and store that string
 | |
| ** in zType.
 | |
| */ 
 | |
| SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   Column *pCol;
 | |
| 
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   i = p->nCol-1;
 | |
|   if( i<0 ) return;
 | |
|   pCol = &p->aCol[i];
 | |
|   sqlite3_free(pCol->zType);
 | |
|   pCol->zType = sqlite3NameFromToken(pParse->db, pType);
 | |
|   pCol->affinity = sqlite3AffinityType(pType);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The expression is the default value for the most recently added column
 | |
| ** of the table currently under construction.
 | |
| **
 | |
| ** Default value expressions must be constant.  Raise an exception if this
 | |
| ** is not the case.
 | |
| **
 | |
| ** This routine is called by the parser while in the middle of
 | |
| ** parsing a CREATE TABLE statement.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
 | |
|   Table *p;
 | |
|   Column *pCol;
 | |
|   if( (p = pParse->pNewTable)!=0 ){
 | |
|     pCol = &(p->aCol[p->nCol-1]);
 | |
|     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
 | |
|       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
 | |
|           pCol->zName);
 | |
|     }else{
 | |
|       Expr *pCopy;
 | |
|       sqlite3 *db = pParse->db;
 | |
|       sqlite3ExprDelete(pCol->pDflt);
 | |
|       pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
 | |
|       if( pCopy ){
 | |
|         sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3ExprDelete(pExpr);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Designate the PRIMARY KEY for the table.  pList is a list of names 
 | |
| ** of columns that form the primary key.  If pList is NULL, then the
 | |
| ** most recently added column of the table is the primary key.
 | |
| **
 | |
| ** A table can have at most one primary key.  If the table already has
 | |
| ** a primary key (and this is the second primary key) then create an
 | |
| ** error.
 | |
| **
 | |
| ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
 | |
| ** then we will try to use that column as the rowid.  Set the Table.iPKey
 | |
| ** field of the table under construction to be the index of the
 | |
| ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
 | |
| ** no INTEGER PRIMARY KEY.
 | |
| **
 | |
| ** If the key is not an INTEGER PRIMARY KEY, then create a unique
 | |
| ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AddPrimaryKey(
 | |
|   Parse *pParse,    /* Parsing context */
 | |
|   ExprList *pList,  /* List of field names to be indexed */
 | |
|   int onError,      /* What to do with a uniqueness conflict */
 | |
|   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
 | |
|   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
 | |
| ){
 | |
|   Table *pTab = pParse->pNewTable;
 | |
|   char *zType = 0;
 | |
|   int iCol = -1, i;
 | |
|   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
 | |
|   if( pTab->hasPrimKey ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|       "table \"%s\" has more than one primary key", pTab->zName);
 | |
|     goto primary_key_exit;
 | |
|   }
 | |
|   pTab->hasPrimKey = 1;
 | |
|   if( pList==0 ){
 | |
|     iCol = pTab->nCol - 1;
 | |
|     pTab->aCol[iCol].isPrimKey = 1;
 | |
|   }else{
 | |
|     for(i=0; i<pList->nExpr; i++){
 | |
|       for(iCol=0; iCol<pTab->nCol; iCol++){
 | |
|         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( iCol<pTab->nCol ){
 | |
|         pTab->aCol[iCol].isPrimKey = 1;
 | |
|       }
 | |
|     }
 | |
|     if( pList->nExpr>1 ) iCol = -1;
 | |
|   }
 | |
|   if( iCol>=0 && iCol<pTab->nCol ){
 | |
|     zType = pTab->aCol[iCol].zType;
 | |
|   }
 | |
|   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
 | |
|         && sortOrder==SQLITE_SO_ASC ){
 | |
|     pTab->iPKey = iCol;
 | |
|     pTab->keyConf = onError;
 | |
|     pTab->autoInc = autoInc;
 | |
|   }else if( autoInc ){
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
 | |
|        "INTEGER PRIMARY KEY");
 | |
| #endif
 | |
|   }else{
 | |
|     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
 | |
|     pList = 0;
 | |
|   }
 | |
| 
 | |
| primary_key_exit:
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new CHECK constraint to the table currently under construction.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AddCheckConstraint(
 | |
|   Parse *pParse,    /* Parsing context */
 | |
|   Expr *pCheckExpr  /* The check expression */
 | |
| ){
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   Table *pTab = pParse->pNewTable;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( pTab && !IN_DECLARE_VTAB ){
 | |
|     /* The CHECK expression must be duplicated so that tokens refer
 | |
|     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
 | |
|     ** statement */
 | |
|     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 
 | |
|                                   sqlite3ExprDup(db, pCheckExpr));
 | |
|   }
 | |
| #endif
 | |
|   sqlite3ExprDelete(pCheckExpr);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the collation function of the most recently parsed table column
 | |
| ** to the CollSeq given.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){
 | |
|   Table *p;
 | |
|   int i;
 | |
|   char *zColl;              /* Dequoted name of collation sequence */
 | |
| 
 | |
|   if( (p = pParse->pNewTable)==0 ) return;
 | |
|   i = p->nCol-1;
 | |
| 
 | |
|   zColl = sqlite3NameFromToken(pParse->db, pToken);
 | |
|   if( !zColl ) return;
 | |
| 
 | |
|   if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
 | |
|     Index *pIdx;
 | |
|     p->aCol[i].zColl = zColl;
 | |
|   
 | |
|     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
 | |
|     ** then an index may have been created on this column before the
 | |
|     ** collation type was added. Correct this if it is the case.
 | |
|     */
 | |
|     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       assert( pIdx->nColumn==1 );
 | |
|       if( pIdx->aiColumn[0]==i ){
 | |
|         pIdx->azColl[0] = p->aCol[i].zColl;
 | |
|       }
 | |
|     }
 | |
|   }else{
 | |
|     sqlite3_free(zColl);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function returns the collation sequence for database native text
 | |
| ** encoding identified by the string zName, length nName.
 | |
| **
 | |
| ** If the requested collation sequence is not available, or not available
 | |
| ** in the database native encoding, the collation factory is invoked to
 | |
| ** request it. If the collation factory does not supply such a sequence,
 | |
| ** and the sequence is available in another text encoding, then that is
 | |
| ** returned instead.
 | |
| **
 | |
| ** If no versions of the requested collations sequence are available, or
 | |
| ** another error occurs, NULL is returned and an error message written into
 | |
| ** pParse.
 | |
| **
 | |
| ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
 | |
| ** invokes the collation factory if the named collation cannot be found
 | |
| ** and generates an error message.
 | |
| */
 | |
| SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   u8 enc = ENC(db);
 | |
|   u8 initbusy = db->init.busy;
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
 | |
|   if( !initbusy && (!pColl || !pColl->xCmp) ){
 | |
|     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
 | |
|     if( !pColl ){
 | |
|       if( nName<0 ){
 | |
|         nName = strlen(zName);
 | |
|       }
 | |
|       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
 | |
|       pColl = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code that will increment the schema cookie.
 | |
| **
 | |
| ** The schema cookie is used to determine when the schema for the
 | |
| ** database changes.  After each schema change, the cookie value
 | |
| ** changes.  When a process first reads the schema it records the
 | |
| ** cookie.  Thereafter, whenever it goes to access the database,
 | |
| ** it checks the cookie to make sure the schema has not changed
 | |
| ** since it was last read.
 | |
| **
 | |
| ** This plan is not completely bullet-proof.  It is possible for
 | |
| ** the schema to change multiple times and for the cookie to be
 | |
| ** set back to prior value.  But schema changes are infrequent
 | |
| ** and the probability of hitting the same cookie value is only
 | |
| ** 1 chance in 2^32.  So we're safe enough.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){
 | |
|   int r1 = sqlite3GetTempReg(pParse);
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
 | |
|   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
 | |
|   sqlite3ReleaseTempReg(pParse, r1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Measure the number of characters needed to output the given
 | |
| ** identifier.  The number returned includes any quotes used
 | |
| ** but does not include the null terminator.
 | |
| **
 | |
| ** The estimate is conservative.  It might be larger that what is
 | |
| ** really needed.
 | |
| */
 | |
| static int identLength(const char *z){
 | |
|   int n;
 | |
|   for(n=0; *z; n++, z++){
 | |
|     if( *z=='"' ){ n++; }
 | |
|   }
 | |
|   return n + 2;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write an identifier onto the end of the given string.  Add
 | |
| ** quote characters as needed.
 | |
| */
 | |
| static void identPut(char *z, int *pIdx, char *zSignedIdent){
 | |
|   unsigned char *zIdent = (unsigned char*)zSignedIdent;
 | |
|   int i, j, needQuote;
 | |
|   i = *pIdx;
 | |
|   for(j=0; zIdent[j]; j++){
 | |
|     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
 | |
|   }
 | |
|   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
 | |
|                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
 | |
|   if( needQuote ) z[i++] = '"';
 | |
|   for(j=0; zIdent[j]; j++){
 | |
|     z[i++] = zIdent[j];
 | |
|     if( zIdent[j]=='"' ) z[i++] = '"';
 | |
|   }
 | |
|   if( needQuote ) z[i++] = '"';
 | |
|   z[i] = 0;
 | |
|   *pIdx = i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate a CREATE TABLE statement appropriate for the given
 | |
| ** table.  Memory to hold the text of the statement is obtained
 | |
| ** from sqliteMalloc() and must be freed by the calling function.
 | |
| */
 | |
| static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
 | |
|   int i, k, n;
 | |
|   char *zStmt;
 | |
|   char *zSep, *zSep2, *zEnd, *z;
 | |
|   Column *pCol;
 | |
|   n = 0;
 | |
|   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
 | |
|     n += identLength(pCol->zName);
 | |
|     z = pCol->zType;
 | |
|     if( z ){
 | |
|       n += (strlen(z) + 1);
 | |
|     }
 | |
|   }
 | |
|   n += identLength(p->zName);
 | |
|   if( n<50 ){
 | |
|     zSep = "";
 | |
|     zSep2 = ",";
 | |
|     zEnd = ")";
 | |
|   }else{
 | |
|     zSep = "\n  ";
 | |
|     zSep2 = ",\n  ";
 | |
|     zEnd = "\n)";
 | |
|   }
 | |
|   n += 35 + 6*p->nCol;
 | |
|   zStmt = sqlite3_malloc( n );
 | |
|   if( zStmt==0 ){
 | |
|     db->mallocFailed = 1;
 | |
|     return 0;
 | |
|   }
 | |
|   sqlite3_snprintf(n, zStmt,
 | |
|                   !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
 | |
|   k = strlen(zStmt);
 | |
|   identPut(zStmt, &k, p->zName);
 | |
|   zStmt[k++] = '(';
 | |
|   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
 | |
|     sqlite3_snprintf(n-k, &zStmt[k], zSep);
 | |
|     k += strlen(&zStmt[k]);
 | |
|     zSep = zSep2;
 | |
|     identPut(zStmt, &k, pCol->zName);
 | |
|     if( (z = pCol->zType)!=0 ){
 | |
|       zStmt[k++] = ' ';
 | |
|       assert( strlen(z)+k+1<=n );
 | |
|       sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
 | |
|       k += strlen(z);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
 | |
|   return zStmt;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to report the final ")" that terminates
 | |
| ** a CREATE TABLE statement.
 | |
| **
 | |
| ** The table structure that other action routines have been building
 | |
| ** is added to the internal hash tables, assuming no errors have
 | |
| ** occurred.
 | |
| **
 | |
| ** An entry for the table is made in the master table on disk, unless
 | |
| ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
 | |
| ** it means we are reading the sqlite_master table because we just
 | |
| ** connected to the database or because the sqlite_master table has
 | |
| ** recently changed, so the entry for this table already exists in
 | |
| ** the sqlite_master table.  We do not want to create it again.
 | |
| **
 | |
| ** If the pSelect argument is not NULL, it means that this routine
 | |
| ** was called to create a table generated from a 
 | |
| ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
 | |
| ** the new table will match the result set of the SELECT.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3EndTable(
 | |
|   Parse *pParse,          /* Parse context */
 | |
|   Token *pCons,           /* The ',' token after the last column defn. */
 | |
|   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
 | |
|   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
 | |
| ){
 | |
|   Table *p;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
 | |
|     return;
 | |
|   }
 | |
|   p = pParse->pNewTable;
 | |
|   if( p==0 ) return;
 | |
| 
 | |
|   assert( !db->init.busy || !pSelect );
 | |
| 
 | |
|   iDb = sqlite3SchemaToIndex(db, p->pSchema);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   /* Resolve names in all CHECK constraint expressions.
 | |
|   */
 | |
|   if( p->pCheck ){
 | |
|     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
 | |
|     NameContext sNC;                /* Name context for pParse->pNewTable */
 | |
| 
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     memset(&sSrc, 0, sizeof(sSrc));
 | |
|     sSrc.nSrc = 1;
 | |
|     sSrc.a[0].zName = p->zName;
 | |
|     sSrc.a[0].pTab = p;
 | |
|     sSrc.a[0].iCursor = -1;
 | |
|     sNC.pParse = pParse;
 | |
|     sNC.pSrcList = &sSrc;
 | |
|     sNC.isCheck = 1;
 | |
|     if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| #endif /* !defined(SQLITE_OMIT_CHECK) */
 | |
| 
 | |
|   /* If the db->init.busy is 1 it means we are reading the SQL off the
 | |
|   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
 | |
|   ** So do not write to the disk again.  Extract the root page number
 | |
|   ** for the table from the db->init.newTnum field.  (The page number
 | |
|   ** should have been put there by the sqliteOpenCb routine.)
 | |
|   */
 | |
|   if( db->init.busy ){
 | |
|     p->tnum = db->init.newTnum;
 | |
|   }
 | |
| 
 | |
|   /* If not initializing, then create a record for the new table
 | |
|   ** in the SQLITE_MASTER table of the database.  The record number
 | |
|   ** for the new table entry should already be on the stack.
 | |
|   **
 | |
|   ** If this is a TEMPORARY table, write the entry into the auxiliary
 | |
|   ** file instead of into the main database file.
 | |
|   */
 | |
|   if( !db->init.busy ){
 | |
|     int n;
 | |
|     Vdbe *v;
 | |
|     char *zType;    /* "view" or "table" */
 | |
|     char *zType2;   /* "VIEW" or "TABLE" */
 | |
|     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
 | |
| 
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) return;
 | |
| 
 | |
|     sqlite3VdbeAddOp1(v, OP_Close, 0);
 | |
| 
 | |
|     /* Create the rootpage for the new table and push it onto the stack.
 | |
|     ** A view has no rootpage, so just push a zero onto the stack for
 | |
|     ** views.  Initialize zType at the same time.
 | |
|     */
 | |
|     if( p->pSelect==0 ){
 | |
|       /* A regular table */
 | |
|       zType = "table";
 | |
|       zType2 = "TABLE";
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|     }else{
 | |
|       /* A view */
 | |
|       zType = "view";
 | |
|       zType2 = "VIEW";
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
 | |
|     ** statement to populate the new table. The root-page number for the
 | |
|     ** new table is on the top of the vdbe stack.
 | |
|     **
 | |
|     ** Once the SELECT has been coded by sqlite3Select(), it is in a
 | |
|     ** suitable state to query for the column names and types to be used
 | |
|     ** by the new table.
 | |
|     **
 | |
|     ** A shared-cache write-lock is not required to write to the new table,
 | |
|     ** as a schema-lock must have already been obtained to create it. Since
 | |
|     ** a schema-lock excludes all other database users, the write-lock would
 | |
|     ** be redundant.
 | |
|     */
 | |
|     if( pSelect ){
 | |
|       SelectDest dest;
 | |
|       Table *pSelTab;
 | |
| 
 | |
|       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
 | |
|       sqlite3VdbeChangeP5(v, 1);
 | |
|       pParse->nTab = 2;
 | |
|       sqlite3SelectDestInit(&dest, SRT_Table, 1);
 | |
|       sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
 | |
|       sqlite3VdbeAddOp1(v, OP_Close, 1);
 | |
|       if( pParse->nErr==0 ){
 | |
|         pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
 | |
|         if( pSelTab==0 ) return;
 | |
|         assert( p->aCol==0 );
 | |
|         p->nCol = pSelTab->nCol;
 | |
|         p->aCol = pSelTab->aCol;
 | |
|         pSelTab->nCol = 0;
 | |
|         pSelTab->aCol = 0;
 | |
|         sqlite3DeleteTable(pSelTab);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Compute the complete text of the CREATE statement */
 | |
|     if( pSelect ){
 | |
|       zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
 | |
|     }else{
 | |
|       n = pEnd->z - pParse->sNameToken.z + 1;
 | |
|       zStmt = sqlite3MPrintf(db, 
 | |
|           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
 | |
|       );
 | |
|     }
 | |
| 
 | |
|     /* A slot for the record has already been allocated in the 
 | |
|     ** SQLITE_MASTER table.  We just need to update that slot with all
 | |
|     ** the information we've collected.  The rowid for the preallocated
 | |
|     ** slot is the 2nd item on the stack.  The top of the stack is the
 | |
|     ** root page for the new table (or a 0 if this is a view).
 | |
|     */
 | |
|     sqlite3NestedParse(pParse,
 | |
|       "UPDATE %Q.%s "
 | |
|          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
 | |
|        "WHERE rowid=#%d",
 | |
|       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|       zType,
 | |
|       p->zName,
 | |
|       p->zName,
 | |
|       pParse->regRoot,
 | |
|       zStmt,
 | |
|       pParse->regRowid
 | |
|     );
 | |
|     sqlite3_free(zStmt);
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|     /* Check to see if we need to create an sqlite_sequence table for
 | |
|     ** keeping track of autoincrement keys.
 | |
|     */
 | |
|     if( p->autoInc ){
 | |
|       Db *pDb = &db->aDb[iDb];
 | |
|       if( pDb->pSchema->pSeqTab==0 ){
 | |
|         sqlite3NestedParse(pParse,
 | |
|           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
 | |
|           pDb->zName
 | |
|         );
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Reparse everything to update our internal data structures */
 | |
|     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
 | |
|         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Add the table to the in-memory representation of the database.
 | |
|   */
 | |
|   if( db->init.busy && pParse->nErr==0 ){
 | |
|     Table *pOld;
 | |
|     FKey *pFKey; 
 | |
|     Schema *pSchema = p->pSchema;
 | |
|     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
 | |
|     if( pOld ){
 | |
|       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
 | |
|       db->mallocFailed = 1;
 | |
|       return;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
 | |
|       void *data;
 | |
|       int nTo = strlen(pFKey->zTo) + 1;
 | |
|       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
 | |
|       data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
 | |
|       if( data==(void *)pFKey ){
 | |
|         db->mallocFailed = 1;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     pParse->pNewTable = 0;
 | |
|     db->nTable++;
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_ALTERTABLE
 | |
|     if( !p->pSelect ){
 | |
|       const char *zName = (const char *)pParse->sNameToken.z;
 | |
|       int nName;
 | |
|       assert( !pSelect && pCons && pEnd );
 | |
|       if( pCons->z==0 ){
 | |
|         pCons = pEnd;
 | |
|       }
 | |
|       nName = (const char *)pCons->z - zName;
 | |
|       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** The parser calls this routine in order to create a new VIEW
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CreateView(
 | |
|   Parse *pParse,     /* The parsing context */
 | |
|   Token *pBegin,     /* The CREATE token that begins the statement */
 | |
|   Token *pName1,     /* The token that holds the name of the view */
 | |
|   Token *pName2,     /* The token that holds the name of the view */
 | |
|   Select *pSelect,   /* A SELECT statement that will become the new view */
 | |
|   int isTemp,        /* TRUE for a TEMPORARY view */
 | |
|   int noErr          /* Suppress error messages if VIEW already exists */
 | |
| ){
 | |
|   Table *p;
 | |
|   int n;
 | |
|   const unsigned char *z;
 | |
|   Token sEnd;
 | |
|   DbFixer sFix;
 | |
|   Token *pName;
 | |
|   int iDb;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( pParse->nVar>0 ){
 | |
|     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return;
 | |
|   }
 | |
|   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
 | |
|   p = pParse->pNewTable;
 | |
|   if( p==0 || pParse->nErr ){
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return;
 | |
|   }
 | |
|   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|   iDb = sqlite3SchemaToIndex(db, p->pSchema);
 | |
|   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
 | |
|     && sqlite3FixSelect(&sFix, pSelect)
 | |
|   ){
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* Make a copy of the entire SELECT statement that defines the view.
 | |
|   ** This will force all the Expr.token.z values to be dynamically
 | |
|   ** allocated rather than point to the input string - which means that
 | |
|   ** they will persist after the current sqlite3_exec() call returns.
 | |
|   */
 | |
|   p->pSelect = sqlite3SelectDup(db, pSelect);
 | |
|   sqlite3SelectDelete(pSelect);
 | |
|   if( db->mallocFailed ){
 | |
|     return;
 | |
|   }
 | |
|   if( !db->init.busy ){
 | |
|     sqlite3ViewGetColumnNames(pParse, p);
 | |
|   }
 | |
| 
 | |
|   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
 | |
|   ** the end.
 | |
|   */
 | |
|   sEnd = pParse->sLastToken;
 | |
|   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
 | |
|     sEnd.z += sEnd.n;
 | |
|   }
 | |
|   sEnd.n = 0;
 | |
|   n = sEnd.z - pBegin->z;
 | |
|   z = (const unsigned char*)pBegin->z;
 | |
|   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
 | |
|   sEnd.z = &z[n-1];
 | |
|   sEnd.n = 1;
 | |
| 
 | |
|   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
 | |
|   sqlite3EndTable(pParse, 0, &sEnd, 0);
 | |
|   return;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
 | |
| /*
 | |
| ** The Table structure pTable is really a VIEW.  Fill in the names of
 | |
| ** the columns of the view in the pTable structure.  Return the number
 | |
| ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
 | |
|   Table *pSelTab;   /* A fake table from which we get the result set */
 | |
|   Select *pSel;     /* Copy of the SELECT that implements the view */
 | |
|   int nErr = 0;     /* Number of errors encountered */
 | |
|   int n;            /* Temporarily holds the number of cursors assigned */
 | |
|   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
 | |
|   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
 | |
| 
 | |
|   assert( pTable );
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( sqlite3VtabCallConnect(pParse, pTable) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   if( IsVirtual(pTable) ) return 0;
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   /* A positive nCol means the columns names for this view are
 | |
|   ** already known.
 | |
|   */
 | |
|   if( pTable->nCol>0 ) return 0;
 | |
| 
 | |
|   /* A negative nCol is a special marker meaning that we are currently
 | |
|   ** trying to compute the column names.  If we enter this routine with
 | |
|   ** a negative nCol, it means two or more views form a loop, like this:
 | |
|   **
 | |
|   **     CREATE VIEW one AS SELECT * FROM two;
 | |
|   **     CREATE VIEW two AS SELECT * FROM one;
 | |
|   **
 | |
|   ** Actually, this error is caught previously and so the following test
 | |
|   ** should always fail.  But we will leave it in place just to be safe.
 | |
|   */
 | |
|   if( pTable->nCol<0 ){
 | |
|     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
 | |
|     return 1;
 | |
|   }
 | |
|   assert( pTable->nCol>=0 );
 | |
| 
 | |
|   /* If we get this far, it means we need to compute the table names.
 | |
|   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
 | |
|   ** "*" elements in the results set of the view and will assign cursors
 | |
|   ** to the elements of the FROM clause.  But we do not want these changes
 | |
|   ** to be permanent.  So the computation is done on a copy of the SELECT
 | |
|   ** statement that defines the view.
 | |
|   */
 | |
|   assert( pTable->pSelect );
 | |
|   pSel = sqlite3SelectDup(db, pTable->pSelect);
 | |
|   if( pSel ){
 | |
|     n = pParse->nTab;
 | |
|     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
 | |
|     pTable->nCol = -1;
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|     xAuth = db->xAuth;
 | |
|     db->xAuth = 0;
 | |
|     pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
 | |
|     db->xAuth = xAuth;
 | |
| #else
 | |
|     pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
 | |
| #endif
 | |
|     pParse->nTab = n;
 | |
|     if( pSelTab ){
 | |
|       assert( pTable->aCol==0 );
 | |
|       pTable->nCol = pSelTab->nCol;
 | |
|       pTable->aCol = pSelTab->aCol;
 | |
|       pSelTab->nCol = 0;
 | |
|       pSelTab->aCol = 0;
 | |
|       sqlite3DeleteTable(pSelTab);
 | |
|       pTable->pSchema->flags |= DB_UnresetViews;
 | |
|     }else{
 | |
|       pTable->nCol = 0;
 | |
|       nErr++;
 | |
|     }
 | |
|     sqlite3SelectDelete(pSel);
 | |
|   } else {
 | |
|     nErr++;
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
|   return nErr;  
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** Clear the column names from every VIEW in database idx.
 | |
| */
 | |
| static void sqliteViewResetAll(sqlite3 *db, int idx){
 | |
|   HashElem *i;
 | |
|   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
 | |
|   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
 | |
|     Table *pTab = sqliteHashData(i);
 | |
|     if( pTab->pSelect ){
 | |
|       sqliteResetColumnNames(pTab);
 | |
|     }
 | |
|   }
 | |
|   DbClearProperty(db, idx, DB_UnresetViews);
 | |
| }
 | |
| #else
 | |
| # define sqliteViewResetAll(A,B)
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
| 
 | |
| /*
 | |
| ** This function is called by the VDBE to adjust the internal schema
 | |
| ** used by SQLite when the btree layer moves a table root page. The
 | |
| ** root-page of a table or index in database iDb has changed from iFrom
 | |
| ** to iTo.
 | |
| **
 | |
| ** Ticket #1728:  The symbol table might still contain information
 | |
| ** on tables and/or indices that are the process of being deleted.
 | |
| ** If you are unlucky, one of those deleted indices or tables might
 | |
| ** have the same rootpage number as the real table or index that is
 | |
| ** being moved.  So we cannot stop searching after the first match 
 | |
| ** because the first match might be for one of the deleted indices
 | |
| ** or tables and not the table/index that is actually being moved.
 | |
| ** We must continue looping until all tables and indices with
 | |
| ** rootpage==iFrom have been converted to have a rootpage of iTo
 | |
| ** in order to be certain that we got the right one.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| SQLITE_PRIVATE void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
 | |
|   HashElem *pElem;
 | |
|   Hash *pHash;
 | |
| 
 | |
|   pHash = &pDb->pSchema->tblHash;
 | |
|   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
 | |
|     Table *pTab = sqliteHashData(pElem);
 | |
|     if( pTab->tnum==iFrom ){
 | |
|       pTab->tnum = iTo;
 | |
|     }
 | |
|   }
 | |
|   pHash = &pDb->pSchema->idxHash;
 | |
|   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
 | |
|     Index *pIdx = sqliteHashData(pElem);
 | |
|     if( pIdx->tnum==iFrom ){
 | |
|       pIdx->tnum = iTo;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Write code to erase the table with root-page iTable from database iDb.
 | |
| ** Also write code to modify the sqlite_master table and internal schema
 | |
| ** if a root-page of another table is moved by the btree-layer whilst
 | |
| ** erasing iTable (this can happen with an auto-vacuum database).
 | |
| */ 
 | |
| static void destroyRootPage(Parse *pParse, int iTable, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   int r1 = sqlite3GetTempReg(pParse);
 | |
|   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   /* OP_Destroy stores an in integer r1. If this integer
 | |
|   ** is non-zero, then it is the root page number of a table moved to
 | |
|   ** location iTable. The following code modifies the sqlite_master table to
 | |
|   ** reflect this.
 | |
|   **
 | |
|   ** The "#%d" in the SQL is a special constant that means whatever value
 | |
|   ** is on the top of the stack.  See sqlite3RegisterExpr().
 | |
|   */
 | |
|   sqlite3NestedParse(pParse, 
 | |
|      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
 | |
|      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
 | |
| #endif
 | |
|   sqlite3ReleaseTempReg(pParse, r1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Write VDBE code to erase table pTab and all associated indices on disk.
 | |
| ** Code to update the sqlite_master tables and internal schema definitions
 | |
| ** in case a root-page belonging to another table is moved by the btree layer
 | |
| ** is also added (this can happen with an auto-vacuum database).
 | |
| */
 | |
| static void destroyTable(Parse *pParse, Table *pTab){
 | |
| #ifdef SQLITE_OMIT_AUTOVACUUM
 | |
|   Index *pIdx;
 | |
|   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   destroyRootPage(pParse, pTab->tnum, iDb);
 | |
|   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|     destroyRootPage(pParse, pIdx->tnum, iDb);
 | |
|   }
 | |
| #else
 | |
|   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
 | |
|   ** is not defined), then it is important to call OP_Destroy on the
 | |
|   ** table and index root-pages in order, starting with the numerically 
 | |
|   ** largest root-page number. This guarantees that none of the root-pages
 | |
|   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
 | |
|   ** following were coded:
 | |
|   **
 | |
|   ** OP_Destroy 4 0
 | |
|   ** ...
 | |
|   ** OP_Destroy 5 0
 | |
|   **
 | |
|   ** and root page 5 happened to be the largest root-page number in the
 | |
|   ** database, then root page 5 would be moved to page 4 by the 
 | |
|   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
 | |
|   ** a free-list page.
 | |
|   */
 | |
|   int iTab = pTab->tnum;
 | |
|   int iDestroyed = 0;
 | |
| 
 | |
|   while( 1 ){
 | |
|     Index *pIdx;
 | |
|     int iLargest = 0;
 | |
| 
 | |
|     if( iDestroyed==0 || iTab<iDestroyed ){
 | |
|       iLargest = iTab;
 | |
|     }
 | |
|     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       int iIdx = pIdx->tnum;
 | |
|       assert( pIdx->pSchema==pTab->pSchema );
 | |
|       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
 | |
|         iLargest = iIdx;
 | |
|       }
 | |
|     }
 | |
|     if( iLargest==0 ){
 | |
|       return;
 | |
|     }else{
 | |
|       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|       destroyRootPage(pParse, iLargest, iDb);
 | |
|       iDestroyed = iLargest;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to do the work of a DROP TABLE statement.
 | |
| ** pName is the name of the table to be dropped.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
 | |
|   Table *pTab;
 | |
|   Vdbe *v;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   if( pParse->nErr || db->mallocFailed ){
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
|   assert( pName->nSrc==1 );
 | |
|   pTab = sqlite3LocateTable(pParse, isView, 
 | |
|                             pName->a[0].zName, pName->a[0].zDatabase);
 | |
| 
 | |
|   if( pTab==0 ){
 | |
|     if( noErr ){
 | |
|       sqlite3ErrorClear(pParse);
 | |
|     }
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
| 
 | |
|   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
 | |
|   ** it is initialized.
 | |
|   */
 | |
|   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     int code;
 | |
|     const char *zTab = SCHEMA_TABLE(iDb);
 | |
|     const char *zDb = db->aDb[iDb].zName;
 | |
|     const char *zArg2 = 0;
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
 | |
|       goto exit_drop_table;
 | |
|     }
 | |
|     if( isView ){
 | |
|       if( !OMIT_TEMPDB && iDb==1 ){
 | |
|         code = SQLITE_DROP_TEMP_VIEW;
 | |
|       }else{
 | |
|         code = SQLITE_DROP_VIEW;
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     }else if( IsVirtual(pTab) ){
 | |
|       code = SQLITE_DROP_VTABLE;
 | |
|       zArg2 = pTab->pMod->zName;
 | |
| #endif
 | |
|     }else{
 | |
|       if( !OMIT_TEMPDB && iDb==1 ){
 | |
|         code = SQLITE_DROP_TEMP_TABLE;
 | |
|       }else{
 | |
|         code = SQLITE_DROP_TABLE;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
 | |
|       goto exit_drop_table;
 | |
|     }
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
 | |
|       goto exit_drop_table;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
 | |
|     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
 | |
|   ** on a table.
 | |
|   */
 | |
|   if( isView && pTab->pSelect==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
|   if( !isView && pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
 | |
|     goto exit_drop_table;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Generate code to remove the table from the master table
 | |
|   ** on disk.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     Trigger *pTrigger;
 | |
|     Db *pDb = &db->aDb[iDb];
 | |
|     sqlite3BeginWriteOperation(pParse, 1, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( IsVirtual(pTab) ){
 | |
|       Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|       if( v ){
 | |
|         sqlite3VdbeAddOp0(v, OP_VBegin);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Drop all triggers associated with the table being dropped. Code
 | |
|     ** is generated to remove entries from sqlite_master and/or
 | |
|     ** sqlite_temp_master if required.
 | |
|     */
 | |
|     pTrigger = pTab->pTrigger;
 | |
|     while( pTrigger ){
 | |
|       assert( pTrigger->pSchema==pTab->pSchema || 
 | |
|           pTrigger->pSchema==db->aDb[1].pSchema );
 | |
|       sqlite3DropTriggerPtr(pParse, pTrigger);
 | |
|       pTrigger = pTrigger->pNext;
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
|     /* Remove any entries of the sqlite_sequence table associated with
 | |
|     ** the table being dropped. This is done before the table is dropped
 | |
|     ** at the btree level, in case the sqlite_sequence table needs to
 | |
|     ** move as a result of the drop (can happen in auto-vacuum mode).
 | |
|     */
 | |
|     if( pTab->autoInc ){
 | |
|       sqlite3NestedParse(pParse,
 | |
|         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
 | |
|         pDb->zName, pTab->zName
 | |
|       );
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Drop all SQLITE_MASTER table and index entries that refer to the
 | |
|     ** table. The program name loops through the master table and deletes
 | |
|     ** every row that refers to a table of the same name as the one being
 | |
|     ** dropped. Triggers are handled seperately because a trigger can be
 | |
|     ** created in the temp database that refers to a table in another
 | |
|     ** database.
 | |
|     */
 | |
|     sqlite3NestedParse(pParse, 
 | |
|         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
 | |
|         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
 | |
|     if( !isView && !IsVirtual(pTab) ){
 | |
|       destroyTable(pParse, pTab);
 | |
|     }
 | |
| 
 | |
|     /* Remove the table entry from SQLite's internal schema and modify
 | |
|     ** the schema cookie.
 | |
|     */
 | |
|     if( IsVirtual(pTab) ){
 | |
|       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
 | |
|     }
 | |
|     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
|   }
 | |
|   sqliteViewResetAll(db, iDb);
 | |
| 
 | |
| exit_drop_table:
 | |
|   sqlite3SrcListDelete(pName);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to create a new foreign key on the table
 | |
| ** currently under construction.  pFromCol determines which columns
 | |
| ** in the current table point to the foreign key.  If pFromCol==0 then
 | |
| ** connect the key to the last column inserted.  pTo is the name of
 | |
| ** the table referred to.  pToCol is a list of tables in the other
 | |
| ** pTo table that the foreign key points to.  flags contains all
 | |
| ** information about the conflict resolution algorithms specified
 | |
| ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
 | |
| **
 | |
| ** An FKey structure is created and added to the table currently
 | |
| ** under construction in the pParse->pNewTable field.  The new FKey
 | |
| ** is not linked into db->aFKey at this point - that does not happen
 | |
| ** until sqlite3EndTable().
 | |
| **
 | |
| ** The foreign key is set for IMMEDIATE processing.  A subsequent call
 | |
| ** to sqlite3DeferForeignKey() might change this to DEFERRED.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CreateForeignKey(
 | |
|   Parse *pParse,       /* Parsing context */
 | |
|   ExprList *pFromCol,  /* Columns in this table that point to other table */
 | |
|   Token *pTo,          /* Name of the other table */
 | |
|   ExprList *pToCol,    /* Columns in the other table */
 | |
|   int flags            /* Conflict resolution algorithms. */
 | |
| ){
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   FKey *pFKey = 0;
 | |
|   Table *p = pParse->pNewTable;
 | |
|   int nByte;
 | |
|   int i;
 | |
|   int nCol;
 | |
|   char *z;
 | |
| 
 | |
|   assert( pTo!=0 );
 | |
|   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
 | |
|   if( pFromCol==0 ){
 | |
|     int iCol = p->nCol-1;
 | |
|     if( iCol<0 ) goto fk_end;
 | |
|     if( pToCol && pToCol->nExpr!=1 ){
 | |
|       sqlite3ErrorMsg(pParse, "foreign key on %s"
 | |
|          " should reference only one column of table %T",
 | |
|          p->aCol[iCol].zName, pTo);
 | |
|       goto fk_end;
 | |
|     }
 | |
|     nCol = 1;
 | |
|   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
 | |
|     sqlite3ErrorMsg(pParse,
 | |
|         "number of columns in foreign key does not match the number of "
 | |
|         "columns in the referenced table");
 | |
|     goto fk_end;
 | |
|   }else{
 | |
|     nCol = pFromCol->nExpr;
 | |
|   }
 | |
|   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
 | |
|   if( pToCol ){
 | |
|     for(i=0; i<pToCol->nExpr; i++){
 | |
|       nByte += strlen(pToCol->a[i].zName) + 1;
 | |
|     }
 | |
|   }
 | |
|   pFKey = sqlite3DbMallocZero(pParse->db, nByte );
 | |
|   if( pFKey==0 ){
 | |
|     goto fk_end;
 | |
|   }
 | |
|   pFKey->pFrom = p;
 | |
|   pFKey->pNextFrom = p->pFKey;
 | |
|   z = (char*)&pFKey[1];
 | |
|   pFKey->aCol = (struct sColMap*)z;
 | |
|   z += sizeof(struct sColMap)*nCol;
 | |
|   pFKey->zTo = z;
 | |
|   memcpy(z, pTo->z, pTo->n);
 | |
|   z[pTo->n] = 0;
 | |
|   z += pTo->n+1;
 | |
|   pFKey->pNextTo = 0;
 | |
|   pFKey->nCol = nCol;
 | |
|   if( pFromCol==0 ){
 | |
|     pFKey->aCol[0].iFrom = p->nCol-1;
 | |
|   }else{
 | |
|     for(i=0; i<nCol; i++){
 | |
|       int j;
 | |
|       for(j=0; j<p->nCol; j++){
 | |
|         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
 | |
|           pFKey->aCol[i].iFrom = j;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( j>=p->nCol ){
 | |
|         sqlite3ErrorMsg(pParse, 
 | |
|           "unknown column \"%s\" in foreign key definition", 
 | |
|           pFromCol->a[i].zName);
 | |
|         goto fk_end;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( pToCol ){
 | |
|     for(i=0; i<nCol; i++){
 | |
|       int n = strlen(pToCol->a[i].zName);
 | |
|       pFKey->aCol[i].zCol = z;
 | |
|       memcpy(z, pToCol->a[i].zName, n);
 | |
|       z[n] = 0;
 | |
|       z += n+1;
 | |
|     }
 | |
|   }
 | |
|   pFKey->isDeferred = 0;
 | |
|   pFKey->deleteConf = flags & 0xff;
 | |
|   pFKey->updateConf = (flags >> 8 ) & 0xff;
 | |
|   pFKey->insertConf = (flags >> 16 ) & 0xff;
 | |
| 
 | |
|   /* Link the foreign key to the table as the last step.
 | |
|   */
 | |
|   p->pFKey = pFKey;
 | |
|   pFKey = 0;
 | |
| 
 | |
| fk_end:
 | |
|   sqlite3_free(pFKey);
 | |
| #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
 | |
|   sqlite3ExprListDelete(pFromCol);
 | |
|   sqlite3ExprListDelete(pToCol);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
 | |
| ** clause is seen as part of a foreign key definition.  The isDeferred
 | |
| ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
 | |
| ** The behavior of the most recently created foreign key is adjusted
 | |
| ** accordingly.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   Table *pTab;
 | |
|   FKey *pFKey;
 | |
|   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
 | |
|   pFKey->isDeferred = isDeferred;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will erase and refill index *pIdx.  This is
 | |
| ** used to initialize a newly created index or to recompute the
 | |
| ** content of an index in response to a REINDEX command.
 | |
| **
 | |
| ** if memRootPage is not negative, it means that the index is newly
 | |
| ** created.  The register specified by memRootPage contains the
 | |
| ** root page number of the index.  If memRootPage is negative, then
 | |
| ** the index already exists and must be cleared before being refilled and
 | |
| ** the root page number of the index is taken from pIndex->tnum.
 | |
| */
 | |
| static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
 | |
|   Table *pTab = pIndex->pTable;  /* The table that is indexed */
 | |
|   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
 | |
|   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
 | |
|   int addr1;                     /* Address of top of loop */
 | |
|   int tnum;                      /* Root page of index */
 | |
|   Vdbe *v;                       /* Generate code into this virtual machine */
 | |
|   KeyInfo *pKey;                 /* KeyInfo for index */
 | |
|   int regIdxKey;                 /* Registers containing the index key */
 | |
|   int regRecord;                 /* Register holding assemblied index record */
 | |
|   sqlite3 *db = pParse->db;      /* The database connection */
 | |
|   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
 | |
|       db->aDb[iDb].zName ) ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Require a write-lock on the table to perform this operation */
 | |
|   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;
 | |
|   if( memRootPage>=0 ){
 | |
|     tnum = memRootPage;
 | |
|   }else{
 | |
|     tnum = pIndex->tnum;
 | |
|     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
 | |
|   }
 | |
|   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
 | |
|   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
 | |
|                     (char *)pKey, P4_KEYINFO_HANDOFF);
 | |
|   if( memRootPage>=0 ){
 | |
|     sqlite3VdbeChangeP5(v, 1);
 | |
|   }
 | |
|   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
 | |
|   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
 | |
|   regRecord = sqlite3GetTempReg(pParse);
 | |
|   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord);
 | |
|   if( pIndex->onError!=OE_None ){
 | |
|     int j1, j2;
 | |
|     int regRowid;
 | |
| 
 | |
|     regRowid = regIdxKey + pIndex->nColumn;
 | |
|     j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
 | |
|     j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
 | |
|                            0, regRowid, (char*)(sqlite3_intptr_t)regRecord, P4_INT32);
 | |
|     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
 | |
|                     "indexed columns are not unique", P4_STATIC);
 | |
|     sqlite3VdbeJumpHere(v, j1);
 | |
|     sqlite3VdbeJumpHere(v, j2);
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
 | |
|   sqlite3ReleaseTempReg(pParse, regRecord);
 | |
|   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
 | |
|   sqlite3VdbeJumpHere(v, addr1);
 | |
|   sqlite3VdbeAddOp1(v, OP_Close, iTab);
 | |
|   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
 | |
| ** and pTblList is the name of the table that is to be indexed.  Both will 
 | |
| ** be NULL for a primary key or an index that is created to satisfy a
 | |
| ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
 | |
| ** as the table to be indexed.  pParse->pNewTable is a table that is
 | |
| ** currently being constructed by a CREATE TABLE statement.
 | |
| **
 | |
| ** pList is a list of columns to be indexed.  pList will be NULL if this
 | |
| ** is a primary key or unique-constraint on the most recent column added
 | |
| ** to the table currently under construction.  
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CreateIndex(
 | |
|   Parse *pParse,     /* All information about this parse */
 | |
|   Token *pName1,     /* First part of index name. May be NULL */
 | |
|   Token *pName2,     /* Second part of index name. May be NULL */
 | |
|   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
 | |
|   ExprList *pList,   /* A list of columns to be indexed */
 | |
|   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
 | |
|   Token *pStart,     /* The CREATE token that begins this statement */
 | |
|   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
 | |
|   int sortOrder,     /* Sort order of primary key when pList==NULL */
 | |
|   int ifNotExist     /* Omit error if index already exists */
 | |
| ){
 | |
|   Table *pTab = 0;     /* Table to be indexed */
 | |
|   Index *pIndex = 0;   /* The index to be created */
 | |
|   char *zName = 0;     /* Name of the index */
 | |
|   int nName;           /* Number of characters in zName */
 | |
|   int i, j;
 | |
|   Token nullId;        /* Fake token for an empty ID list */
 | |
|   DbFixer sFix;        /* For assigning database names to pTable */
 | |
|   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Db *pDb;             /* The specific table containing the indexed database */
 | |
|   int iDb;             /* Index of the database that is being written */
 | |
|   Token *pName = 0;    /* Unqualified name of the index to create */
 | |
|   struct ExprList_item *pListItem; /* For looping over pList */
 | |
|   int nCol;
 | |
|   int nExtra = 0;
 | |
|   char *zExtra;
 | |
| 
 | |
|   if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Find the table that is to be indexed.  Return early if not found.
 | |
|   */
 | |
|   if( pTblName!=0 ){
 | |
| 
 | |
|     /* Use the two-part index name to determine the database 
 | |
|     ** to search for the table. 'Fix' the table name to this db
 | |
|     ** before looking up the table.
 | |
|     */
 | |
|     assert( pName1 && pName2 );
 | |
|     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|     if( iDb<0 ) goto exit_create_index;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TEMPDB
 | |
|     /* If the index name was unqualified, check if the the table
 | |
|     ** is a temp table. If so, set the database to 1. Do not do this
 | |
|     ** if initialising a database schema.
 | |
|     */
 | |
|     if( !db->init.busy ){
 | |
|       pTab = sqlite3SrcListLookup(pParse, pTblName);
 | |
|       if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
 | |
|         iDb = 1;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
 | |
|         sqlite3FixSrcList(&sFix, pTblName)
 | |
|     ){
 | |
|       /* Because the parser constructs pTblName from a single identifier,
 | |
|       ** sqlite3FixSrcList can never fail. */
 | |
|       assert(0);
 | |
|     }
 | |
|     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 
 | |
|         pTblName->a[0].zDatabase);
 | |
|     if( !pTab ) goto exit_create_index;
 | |
|     assert( db->aDb[iDb].pSchema==pTab->pSchema );
 | |
|   }else{
 | |
|     assert( pName==0 );
 | |
|     pTab = pParse->pNewTable;
 | |
|     if( !pTab ) goto exit_create_index;
 | |
|     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   }
 | |
|   pDb = &db->aDb[iDb];
 | |
| 
 | |
|   if( pTab==0 || pParse->nErr ) goto exit_create_index;
 | |
|   if( pTab->readOnly ){
 | |
|     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   if( pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse, "views may not be indexed");
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( IsVirtual(pTab) ){
 | |
|     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
 | |
|     goto exit_create_index;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /*
 | |
|   ** Find the name of the index.  Make sure there is not already another
 | |
|   ** index or table with the same name.  
 | |
|   **
 | |
|   ** Exception:  If we are reading the names of permanent indices from the
 | |
|   ** sqlite_master table (because some other process changed the schema) and
 | |
|   ** one of the index names collides with the name of a temporary table or
 | |
|   ** index, then we will continue to process this index.
 | |
|   **
 | |
|   ** If pName==0 it means that we are
 | |
|   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
 | |
|   ** own name.
 | |
|   */
 | |
|   if( pName ){
 | |
|     zName = sqlite3NameFromToken(db, pName);
 | |
|     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
 | |
|     if( zName==0 ) goto exit_create_index;
 | |
|     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     if( !db->init.busy ){
 | |
|       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
 | |
|       if( sqlite3FindTable(db, zName, 0)!=0 ){
 | |
|         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
 | |
|         goto exit_create_index;
 | |
|       }
 | |
|     }
 | |
|     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
 | |
|       if( !ifNotExist ){
 | |
|         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
 | |
|       }
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|   }else{
 | |
|     char zBuf[30];
 | |
|     int n;
 | |
|     Index *pLoop;
 | |
|     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
 | |
|     sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n);
 | |
|     zName = 0;
 | |
|     sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
 | |
|     if( zName==0 ){
 | |
|       db->mallocFailed = 1;
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Check for authorization to create an index.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     const char *zDb = pDb->zName;
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     i = SQLITE_CREATE_INDEX;
 | |
|     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
 | |
|     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If pList==0, it means this routine was called to make a primary
 | |
|   ** key out of the last column added to the table under construction.
 | |
|   ** So create a fake list to simulate this.
 | |
|   */
 | |
|   if( pList==0 ){
 | |
|     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
 | |
|     nullId.n = strlen((char*)nullId.z);
 | |
|     pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
 | |
|     if( pList==0 ) goto exit_create_index;
 | |
|     pList->a[0].sortOrder = sortOrder;
 | |
|   }
 | |
| 
 | |
|   /* Figure out how many bytes of space are required to store explicitly
 | |
|   ** specified collation sequence names.
 | |
|   */
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     Expr *pExpr = pList->a[i].pExpr;
 | |
|     if( pExpr ){
 | |
|       nExtra += (1 + strlen(pExpr->pColl->zName));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 
 | |
|   ** Allocate the index structure. 
 | |
|   */
 | |
|   nName = strlen(zName);
 | |
|   nCol = pList->nExpr;
 | |
|   pIndex = sqlite3DbMallocZero(db, 
 | |
|       sizeof(Index) +              /* Index structure  */
 | |
|       sizeof(int)*nCol +           /* Index.aiColumn   */
 | |
|       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
 | |
|       sizeof(char *)*nCol +        /* Index.azColl     */
 | |
|       sizeof(u8)*nCol +            /* Index.aSortOrder */
 | |
|       nName + 1 +                  /* Index.zName      */
 | |
|       nExtra                       /* Collation sequence names */
 | |
|   );
 | |
|   if( db->mallocFailed ){
 | |
|     goto exit_create_index;
 | |
|   }
 | |
|   pIndex->azColl = (char**)(&pIndex[1]);
 | |
|   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
 | |
|   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
 | |
|   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
 | |
|   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
 | |
|   zExtra = (char *)(&pIndex->zName[nName+1]);
 | |
|   memcpy(pIndex->zName, zName, nName+1);
 | |
|   pIndex->pTable = pTab;
 | |
|   pIndex->nColumn = pList->nExpr;
 | |
|   pIndex->onError = onError;
 | |
|   pIndex->autoIndex = pName==0;
 | |
|   pIndex->pSchema = db->aDb[iDb].pSchema;
 | |
| 
 | |
|   /* Check to see if we should honor DESC requests on index columns
 | |
|   */
 | |
|   if( pDb->pSchema->file_format>=4 ){
 | |
|     sortOrderMask = -1;   /* Honor DESC */
 | |
|   }else{
 | |
|     sortOrderMask = 0;    /* Ignore DESC */
 | |
|   }
 | |
| 
 | |
|   /* Scan the names of the columns of the table to be indexed and
 | |
|   ** load the column indices into the Index structure.  Report an error
 | |
|   ** if any column is not found.
 | |
|   */
 | |
|   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
 | |
|     const char *zColName = pListItem->zName;
 | |
|     Column *pTabCol;
 | |
|     int requestedSortOrder;
 | |
|     char *zColl;                   /* Collation sequence name */
 | |
| 
 | |
|     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
 | |
|       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
 | |
|     }
 | |
|     if( j>=pTab->nCol ){
 | |
|       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
 | |
|         pTab->zName, zColName);
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     /* TODO:  Add a test to make sure that the same column is not named
 | |
|     ** more than once within the same index.  Only the first instance of
 | |
|     ** the column will ever be used by the optimizer.  Note that using the
 | |
|     ** same column more than once cannot be an error because that would 
 | |
|     ** break backwards compatibility - it needs to be a warning.
 | |
|     */
 | |
|     pIndex->aiColumn[i] = j;
 | |
|     if( pListItem->pExpr ){
 | |
|       assert( pListItem->pExpr->pColl );
 | |
|       zColl = zExtra;
 | |
|       sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
 | |
|       zExtra += (strlen(zColl) + 1);
 | |
|     }else{
 | |
|       zColl = pTab->aCol[j].zColl;
 | |
|       if( !zColl ){
 | |
|         zColl = db->pDfltColl->zName;
 | |
|       }
 | |
|     }
 | |
|     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     pIndex->azColl[i] = zColl;
 | |
|     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
 | |
|     pIndex->aSortOrder[i] = requestedSortOrder;
 | |
|   }
 | |
|   sqlite3DefaultRowEst(pIndex);
 | |
| 
 | |
|   if( pTab==pParse->pNewTable ){
 | |
|     /* This routine has been called to create an automatic index as a
 | |
|     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
 | |
|     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
 | |
|     ** i.e. one of:
 | |
|     **
 | |
|     ** CREATE TABLE t(x PRIMARY KEY, y);
 | |
|     ** CREATE TABLE t(x, y, UNIQUE(x, y));
 | |
|     **
 | |
|     ** Either way, check to see if the table already has such an index. If
 | |
|     ** so, don't bother creating this one. This only applies to
 | |
|     ** automatically created indices. Users can do as they wish with
 | |
|     ** explicit indices.
 | |
|     */
 | |
|     Index *pIdx;
 | |
|     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|       int k;
 | |
|       assert( pIdx->onError!=OE_None );
 | |
|       assert( pIdx->autoIndex );
 | |
|       assert( pIndex->onError!=OE_None );
 | |
| 
 | |
|       if( pIdx->nColumn!=pIndex->nColumn ) continue;
 | |
|       for(k=0; k<pIdx->nColumn; k++){
 | |
|         const char *z1 = pIdx->azColl[k];
 | |
|         const char *z2 = pIndex->azColl[k];
 | |
|         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
 | |
|         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
 | |
|         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
 | |
|       }
 | |
|       if( k==pIdx->nColumn ){
 | |
|         if( pIdx->onError!=pIndex->onError ){
 | |
|           /* This constraint creates the same index as a previous
 | |
|           ** constraint specified somewhere in the CREATE TABLE statement.
 | |
|           ** However the ON CONFLICT clauses are different. If both this 
 | |
|           ** constraint and the previous equivalent constraint have explicit
 | |
|           ** ON CONFLICT clauses this is an error. Otherwise, use the
 | |
|           ** explicitly specified behaviour for the index.
 | |
|           */
 | |
|           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
 | |
|             sqlite3ErrorMsg(pParse, 
 | |
|                 "conflicting ON CONFLICT clauses specified", 0);
 | |
|           }
 | |
|           if( pIdx->onError==OE_Default ){
 | |
|             pIdx->onError = pIndex->onError;
 | |
|           }
 | |
|         }
 | |
|         goto exit_create_index;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Link the new Index structure to its table and to the other
 | |
|   ** in-memory database structures. 
 | |
|   */
 | |
|   if( db->init.busy ){
 | |
|     Index *p;
 | |
|     p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
 | |
|                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
 | |
|     if( p ){
 | |
|       assert( p==pIndex );  /* Malloc must have failed */
 | |
|       db->mallocFailed = 1;
 | |
|       goto exit_create_index;
 | |
|     }
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
|     if( pTblName!=0 ){
 | |
|       pIndex->tnum = db->init.newTnum;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the db->init.busy is 0 then create the index on disk.  This
 | |
|   ** involves writing the index into the master table and filling in the
 | |
|   ** index with the current table contents.
 | |
|   **
 | |
|   ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
 | |
|   ** command.  db->init.busy is 1 when a database is opened and 
 | |
|   ** CREATE INDEX statements are read out of the master table.  In
 | |
|   ** the latter case the index already exists on disk, which is why
 | |
|   ** we don't want to recreate it.
 | |
|   **
 | |
|   ** If pTblName==0 it means this index is generated as a primary key
 | |
|   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
 | |
|   ** has just been created, it contains no data and the index initialization
 | |
|   ** step can be skipped.
 | |
|   */
 | |
|   else if( db->init.busy==0 ){
 | |
|     Vdbe *v;
 | |
|     char *zStmt;
 | |
|     int iMem = ++pParse->nMem;
 | |
| 
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) goto exit_create_index;
 | |
| 
 | |
| 
 | |
|     /* Create the rootpage for the index
 | |
|     */
 | |
|     sqlite3BeginWriteOperation(pParse, 1, iDb);
 | |
|     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
 | |
| 
 | |
|     /* Gather the complete text of the CREATE INDEX statement into
 | |
|     ** the zStmt variable
 | |
|     */
 | |
|     if( pStart && pEnd ){
 | |
|       /* A named index with an explicit CREATE INDEX statement */
 | |
|       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
 | |
|         onError==OE_None ? "" : " UNIQUE",
 | |
|         pEnd->z - pName->z + 1,
 | |
|         pName->z);
 | |
|     }else{
 | |
|       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
 | |
|       /* zStmt = sqlite3MPrintf(""); */
 | |
|       zStmt = 0;
 | |
|     }
 | |
| 
 | |
|     /* Add an entry in sqlite_master for this index
 | |
|     */
 | |
|     sqlite3NestedParse(pParse, 
 | |
|         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
 | |
|         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|         pIndex->zName,
 | |
|         pTab->zName,
 | |
|         iMem,
 | |
|         zStmt
 | |
|     );
 | |
|     sqlite3_free(zStmt);
 | |
| 
 | |
|     /* Fill the index with data and reparse the schema. Code an OP_Expire
 | |
|     ** to invalidate all pre-compiled statements.
 | |
|     */
 | |
|     if( pTblName ){
 | |
|       sqlite3RefillIndex(pParse, pIndex, iMem);
 | |
|       sqlite3ChangeCookie(pParse, iDb);
 | |
|       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
 | |
|          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
 | |
|       sqlite3VdbeAddOp1(v, OP_Expire, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* When adding an index to the list of indices for a table, make
 | |
|   ** sure all indices labeled OE_Replace come after all those labeled
 | |
|   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
 | |
|   ** and INSERT.
 | |
|   */
 | |
|   if( db->init.busy || pTblName==0 ){
 | |
|     if( onError!=OE_Replace || pTab->pIndex==0
 | |
|          || pTab->pIndex->onError==OE_Replace){
 | |
|       pIndex->pNext = pTab->pIndex;
 | |
|       pTab->pIndex = pIndex;
 | |
|     }else{
 | |
|       Index *pOther = pTab->pIndex;
 | |
|       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
 | |
|         pOther = pOther->pNext;
 | |
|       }
 | |
|       pIndex->pNext = pOther->pNext;
 | |
|       pOther->pNext = pIndex;
 | |
|     }
 | |
|     pIndex = 0;
 | |
|   }
 | |
| 
 | |
|   /* Clean up before exiting */
 | |
| exit_create_index:
 | |
|   if( pIndex ){
 | |
|     freeIndex(pIndex);
 | |
|   }
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   sqlite3SrcListDelete(pTblName);
 | |
|   sqlite3_free(zName);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to make sure the file format number is at least minFormat.
 | |
| ** The generated code will increase the file format number if necessary.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
 | |
|   Vdbe *v;
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     int r1 = sqlite3GetTempReg(pParse);
 | |
|     int r2 = sqlite3GetTempReg(pParse);
 | |
|     int j1;
 | |
|     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
 | |
|     sqlite3VdbeUsesBtree(v, iDb);
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
 | |
|     j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
 | |
|     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
 | |
|     sqlite3VdbeJumpHere(v, j1);
 | |
|     sqlite3ReleaseTempReg(pParse, r1);
 | |
|     sqlite3ReleaseTempReg(pParse, r2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Fill the Index.aiRowEst[] array with default information - information
 | |
| ** to be used when we have not run the ANALYZE command.
 | |
| **
 | |
| ** aiRowEst[0] is suppose to contain the number of elements in the index.
 | |
| ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
 | |
| ** number of rows in the table that match any particular value of the
 | |
| ** first column of the index.  aiRowEst[2] is an estimate of the number
 | |
| ** of rows that match any particular combiniation of the first 2 columns
 | |
| ** of the index.  And so forth.  It must always be the case that
 | |
| *
 | |
| **           aiRowEst[N]<=aiRowEst[N-1]
 | |
| **           aiRowEst[N]>=1
 | |
| **
 | |
| ** Apart from that, we have little to go on besides intuition as to
 | |
| ** how aiRowEst[] should be initialized.  The numbers generated here
 | |
| ** are based on typical values found in actual indices.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){
 | |
|   unsigned *a = pIdx->aiRowEst;
 | |
|   int i;
 | |
|   assert( a!=0 );
 | |
|   a[0] = 1000000;
 | |
|   for(i=pIdx->nColumn; i>=5; i--){
 | |
|     a[i] = 5;
 | |
|   }
 | |
|   while( i>=1 ){
 | |
|     a[i] = 11 - i;
 | |
|     i--;
 | |
|   }
 | |
|   if( pIdx->onError!=OE_None ){
 | |
|     a[pIdx->nColumn] = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine will drop an existing named index.  This routine
 | |
| ** implements the DROP INDEX statement.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
 | |
|   Index *pIndex;
 | |
|   Vdbe *v;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   if( pParse->nErr || db->mallocFailed ){
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   assert( pName->nSrc==1 );
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
 | |
|   if( pIndex==0 ){
 | |
|     if( !ifExists ){
 | |
|       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
 | |
|     }
 | |
|     pParse->checkSchema = 1;
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   if( pIndex->autoIndex ){
 | |
|     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
 | |
|       "or PRIMARY KEY constraint cannot be dropped", 0);
 | |
|     goto exit_drop_index;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     int code = SQLITE_DROP_INDEX;
 | |
|     Table *pTab = pIndex->pTable;
 | |
|     const char *zDb = db->aDb[iDb].zName;
 | |
|     const char *zTab = SCHEMA_TABLE(iDb);
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
 | |
|       goto exit_drop_index;
 | |
|     }
 | |
|     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
 | |
|     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
 | |
|       goto exit_drop_index;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Generate code to remove the index and from the master table */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3BeginWriteOperation(pParse, 1, iDb);
 | |
|     sqlite3NestedParse(pParse,
 | |
|        "DELETE FROM %Q.%s WHERE name=%Q",
 | |
|        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|        pIndex->zName
 | |
|     );
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
|     destroyRootPage(pParse, pIndex->tnum, iDb);
 | |
|     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
 | |
|   }
 | |
| 
 | |
| exit_drop_index:
 | |
|   sqlite3SrcListDelete(pName);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pArray is a pointer to an array of objects.  Each object in the
 | |
| ** array is szEntry bytes in size.  This routine allocates a new
 | |
| ** object on the end of the array.
 | |
| **
 | |
| ** *pnEntry is the number of entries already in use.  *pnAlloc is
 | |
| ** the previously allocated size of the array.  initSize is the
 | |
| ** suggested initial array size allocation.
 | |
| **
 | |
| ** The index of the new entry is returned in *pIdx.
 | |
| **
 | |
| ** This routine returns a pointer to the array of objects.  This
 | |
| ** might be the same as the pArray parameter or it might be a different
 | |
| ** pointer if the array was resized.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3ArrayAllocate(
 | |
|   sqlite3 *db,      /* Connection to notify of malloc failures */
 | |
|   void *pArray,     /* Array of objects.  Might be reallocated */
 | |
|   int szEntry,      /* Size of each object in the array */
 | |
|   int initSize,     /* Suggested initial allocation, in elements */
 | |
|   int *pnEntry,     /* Number of objects currently in use */
 | |
|   int *pnAlloc,     /* Current size of the allocation, in elements */
 | |
|   int *pIdx         /* Write the index of a new slot here */
 | |
| ){
 | |
|   char *z;
 | |
|   if( *pnEntry >= *pnAlloc ){
 | |
|     void *pNew;
 | |
|     int newSize;
 | |
|     newSize = (*pnAlloc)*2 + initSize;
 | |
|     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
 | |
|     if( pNew==0 ){
 | |
|       *pIdx = -1;
 | |
|       return pArray;
 | |
|     }
 | |
|     *pnAlloc = newSize;
 | |
|     pArray = pNew;
 | |
|   }
 | |
|   z = (char*)pArray;
 | |
|   memset(&z[*pnEntry * szEntry], 0, szEntry);
 | |
|   *pIdx = *pnEntry;
 | |
|   ++*pnEntry;
 | |
|   return pArray;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Append a new element to the given IdList.  Create a new IdList if
 | |
| ** need be.
 | |
| **
 | |
| ** A new IdList is returned, or NULL if malloc() fails.
 | |
| */
 | |
| SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
 | |
|   int i;
 | |
|   if( pList==0 ){
 | |
|     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
 | |
|     if( pList==0 ) return 0;
 | |
|     pList->nAlloc = 0;
 | |
|   }
 | |
|   pList->a = sqlite3ArrayAllocate(
 | |
|       db,
 | |
|       pList->a,
 | |
|       sizeof(pList->a[0]),
 | |
|       5,
 | |
|       &pList->nId,
 | |
|       &pList->nAlloc,
 | |
|       &i
 | |
|   );
 | |
|   if( i<0 ){
 | |
|     sqlite3IdListDelete(pList);
 | |
|     return 0;
 | |
|   }
 | |
|   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
 | |
|   return pList;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an IdList.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3IdListDelete(IdList *pList){
 | |
|   int i;
 | |
|   if( pList==0 ) return;
 | |
|   for(i=0; i<pList->nId; i++){
 | |
|     sqlite3_free(pList->a[i].zName);
 | |
|   }
 | |
|   sqlite3_free(pList->a);
 | |
|   sqlite3_free(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the index in pList of the identifier named zId.  Return -1
 | |
| ** if not found.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){
 | |
|   int i;
 | |
|   if( pList==0 ) return -1;
 | |
|   for(i=0; i<pList->nId; i++){
 | |
|     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Append a new table name to the given SrcList.  Create a new SrcList if
 | |
| ** need be.  A new entry is created in the SrcList even if pToken is NULL.
 | |
| **
 | |
| ** A new SrcList is returned, or NULL if malloc() fails.
 | |
| **
 | |
| ** If pDatabase is not null, it means that the table has an optional
 | |
| ** database name prefix.  Like this:  "database.table".  The pDatabase
 | |
| ** points to the table name and the pTable points to the database name.
 | |
| ** The SrcList.a[].zName field is filled with the table name which might
 | |
| ** come from pTable (if pDatabase is NULL) or from pDatabase.  
 | |
| ** SrcList.a[].zDatabase is filled with the database name from pTable,
 | |
| ** or with NULL if no database is specified.
 | |
| **
 | |
| ** In other words, if call like this:
 | |
| **
 | |
| **         sqlite3SrcListAppend(D,A,B,0);
 | |
| **
 | |
| ** Then B is a table name and the database name is unspecified.  If called
 | |
| ** like this:
 | |
| **
 | |
| **         sqlite3SrcListAppend(D,A,B,C);
 | |
| **
 | |
| ** Then C is the table name and B is the database name.
 | |
| */
 | |
| SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(
 | |
|   sqlite3 *db,        /* Connection to notify of malloc failures */
 | |
|   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
 | |
|   Token *pTable,      /* Table to append */
 | |
|   Token *pDatabase    /* Database of the table */
 | |
| ){
 | |
|   struct SrcList_item *pItem;
 | |
|   if( pList==0 ){
 | |
|     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
 | |
|     if( pList==0 ) return 0;
 | |
|     pList->nAlloc = 1;
 | |
|   }
 | |
|   if( pList->nSrc>=pList->nAlloc ){
 | |
|     SrcList *pNew;
 | |
|     pList->nAlloc *= 2;
 | |
|     pNew = sqlite3DbRealloc(db, pList,
 | |
|                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
 | |
|     if( pNew==0 ){
 | |
|       sqlite3SrcListDelete(pList);
 | |
|       return 0;
 | |
|     }
 | |
|     pList = pNew;
 | |
|   }
 | |
|   pItem = &pList->a[pList->nSrc];
 | |
|   memset(pItem, 0, sizeof(pList->a[0]));
 | |
|   if( pDatabase && pDatabase->z==0 ){
 | |
|     pDatabase = 0;
 | |
|   }
 | |
|   if( pDatabase && pTable ){
 | |
|     Token *pTemp = pDatabase;
 | |
|     pDatabase = pTable;
 | |
|     pTable = pTemp;
 | |
|   }
 | |
|   pItem->zName = sqlite3NameFromToken(db, pTable);
 | |
|   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
 | |
|   pItem->iCursor = -1;
 | |
|   pItem->isPopulated = 0;
 | |
|   pList->nSrc++;
 | |
|   return pList;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Assign cursors to all tables in a SrcList
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
 | |
|   int i;
 | |
|   struct SrcList_item *pItem;
 | |
|   assert(pList || pParse->db->mallocFailed );
 | |
|   if( pList ){
 | |
|     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
 | |
|       if( pItem->iCursor>=0 ) break;
 | |
|       pItem->iCursor = pParse->nTab++;
 | |
|       if( pItem->pSelect ){
 | |
|         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete an entire SrcList including all its substructure.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *pList){
 | |
|   int i;
 | |
|   struct SrcList_item *pItem;
 | |
|   if( pList==0 ) return;
 | |
|   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
 | |
|     sqlite3_free(pItem->zDatabase);
 | |
|     sqlite3_free(pItem->zName);
 | |
|     sqlite3_free(pItem->zAlias);
 | |
|     sqlite3DeleteTable(pItem->pTab);
 | |
|     sqlite3SelectDelete(pItem->pSelect);
 | |
|     sqlite3ExprDelete(pItem->pOn);
 | |
|     sqlite3IdListDelete(pItem->pUsing);
 | |
|   }
 | |
|   sqlite3_free(pList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called by the parser to add a new term to the
 | |
| ** end of a growing FROM clause.  The "p" parameter is the part of
 | |
| ** the FROM clause that has already been constructed.  "p" is NULL
 | |
| ** if this is the first term of the FROM clause.  pTable and pDatabase
 | |
| ** are the name of the table and database named in the FROM clause term.
 | |
| ** pDatabase is NULL if the database name qualifier is missing - the
 | |
| ** usual case.  If the term has a alias, then pAlias points to the
 | |
| ** alias token.  If the term is a subquery, then pSubquery is the
 | |
| ** SELECT statement that the subquery encodes.  The pTable and
 | |
| ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
 | |
| ** parameters are the content of the ON and USING clauses.
 | |
| **
 | |
| ** Return a new SrcList which encodes is the FROM with the new
 | |
| ** term added.
 | |
| */
 | |
| SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   SrcList *p,             /* The left part of the FROM clause already seen */
 | |
|   Token *pTable,          /* Name of the table to add to the FROM clause */
 | |
|   Token *pDatabase,       /* Name of the database containing pTable */
 | |
|   Token *pAlias,          /* The right-hand side of the AS subexpression */
 | |
|   Select *pSubquery,      /* A subquery used in place of a table name */
 | |
|   Expr *pOn,              /* The ON clause of a join */
 | |
|   IdList *pUsing          /* The USING clause of a join */
 | |
| ){
 | |
|   struct SrcList_item *pItem;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
 | |
|   if( p==0 || p->nSrc==0 ){
 | |
|     sqlite3ExprDelete(pOn);
 | |
|     sqlite3IdListDelete(pUsing);
 | |
|     sqlite3SelectDelete(pSubquery);
 | |
|     return p;
 | |
|   }
 | |
|   pItem = &p->a[p->nSrc-1];
 | |
|   if( pAlias && pAlias->n ){
 | |
|     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
 | |
|   }
 | |
|   pItem->pSelect = pSubquery;
 | |
|   pItem->pOn = pOn;
 | |
|   pItem->pUsing = pUsing;
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** When building up a FROM clause in the parser, the join operator
 | |
| ** is initially attached to the left operand.  But the code generator
 | |
| ** expects the join operator to be on the right operand.  This routine
 | |
| ** Shifts all join operators from left to right for an entire FROM
 | |
| ** clause.
 | |
| **
 | |
| ** Example: Suppose the join is like this:
 | |
| **
 | |
| **           A natural cross join B
 | |
| **
 | |
| ** The operator is "natural cross join".  The A and B operands are stored
 | |
| ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
 | |
| ** operator with A.  This routine shifts that operator over to B.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){
 | |
|   if( p && p->a ){
 | |
|     int i;
 | |
|     for(i=p->nSrc-1; i>0; i--){
 | |
|       p->a[i].jointype = p->a[i-1].jointype;
 | |
|     }
 | |
|     p->a[0].jointype = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Begin a transaction
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
|   int i;
 | |
| 
 | |
|   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | |
|   if( pParse->nErr || db->mallocFailed ) return;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( !v ) return;
 | |
|   if( type!=TK_DEFERRED ){
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
 | |
|       sqlite3VdbeUsesBtree(v, i);
 | |
|     }
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Commit a transaction
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | |
|   if( pParse->nErr || db->mallocFailed ) return;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback a transaction
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
 | |
|   if( pParse->nErr || db->mallocFailed ) return;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make sure the TEMP database is open and available for use.  Return
 | |
| ** the number of errors.  Leave any error messages in the pParse structure.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( db->aDb[1].pBt==0 && !pParse->explain ){
 | |
|     int rc;
 | |
|     static const int flags = 
 | |
|           SQLITE_OPEN_READWRITE |
 | |
|           SQLITE_OPEN_CREATE |
 | |
|           SQLITE_OPEN_EXCLUSIVE |
 | |
|           SQLITE_OPEN_DELETEONCLOSE |
 | |
|           SQLITE_OPEN_TEMP_DB;
 | |
| 
 | |
|     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
 | |
|                                  &db->aDb[1].pBt);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
 | |
|         "file for storing temporary tables");
 | |
|       pParse->rc = rc;
 | |
|       return 1;
 | |
|     }
 | |
|     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
 | |
|     assert( db->aDb[1].pSchema );
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate VDBE code that will verify the schema cookie and start
 | |
| ** a read-transaction for all named database files.
 | |
| **
 | |
| ** It is important that all schema cookies be verified and all
 | |
| ** read transactions be started before anything else happens in
 | |
| ** the VDBE program.  But this routine can be called after much other
 | |
| ** code has been generated.  So here is what we do:
 | |
| **
 | |
| ** The first time this routine is called, we code an OP_Goto that
 | |
| ** will jump to a subroutine at the end of the program.  Then we
 | |
| ** record every database that needs its schema verified in the
 | |
| ** pParse->cookieMask field.  Later, after all other code has been
 | |
| ** generated, the subroutine that does the cookie verifications and
 | |
| ** starts the transactions will be coded and the OP_Goto P2 value
 | |
| ** will be made to point to that subroutine.  The generation of the
 | |
| ** cookie verification subroutine code happens in sqlite3FinishCoding().
 | |
| **
 | |
| ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
 | |
| ** schema on any databases.  This can be used to position the OP_Goto
 | |
| ** early in the code, before we know if any database tables will be used.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
 | |
|   sqlite3 *db;
 | |
|   Vdbe *v;
 | |
|   int mask;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;  /* This only happens if there was a prior error */
 | |
|   db = pParse->db;
 | |
|   if( pParse->cookieGoto==0 ){
 | |
|     pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
 | |
|   }
 | |
|   if( iDb>=0 ){
 | |
|     assert( iDb<db->nDb );
 | |
|     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
 | |
|     assert( iDb<SQLITE_MAX_ATTACHED+2 );
 | |
|     mask = 1<<iDb;
 | |
|     if( (pParse->cookieMask & mask)==0 ){
 | |
|       pParse->cookieMask |= mask;
 | |
|       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
 | |
|       if( !OMIT_TEMPDB && iDb==1 ){
 | |
|         sqlite3OpenTempDatabase(pParse);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate VDBE code that prepares for doing an operation that
 | |
| ** might change the database.
 | |
| **
 | |
| ** This routine starts a new transaction if we are not already within
 | |
| ** a transaction.  If we are already within a transaction, then a checkpoint
 | |
| ** is set if the setStatement parameter is true.  A checkpoint should
 | |
| ** be set for operations that might fail (due to a constraint) part of
 | |
| ** the way through and which will need to undo some writes without having to
 | |
| ** rollback the whole transaction.  For operations where all constraints
 | |
| ** can be checked before any changes are made to the database, it is never
 | |
| ** necessary to undo a write and the checkpoint should not be set.
 | |
| **
 | |
| ** Only database iDb and the temp database are made writable by this call.
 | |
| ** If iDb==0, then the main and temp databases are made writable.   If
 | |
| ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
 | |
| ** specified auxiliary database and the temp database are made writable.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) return;
 | |
|   sqlite3CodeVerifySchema(pParse, iDb);
 | |
|   pParse->writeMask |= 1<<iDb;
 | |
|   if( setStatement && pParse->nested==0 ){
 | |
|     sqlite3VdbeAddOp1(v, OP_Statement, iDb);
 | |
|   }
 | |
|   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
 | |
|     sqlite3BeginWriteOperation(pParse, setStatement, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to see if pIndex uses the collating sequence pColl.  Return
 | |
| ** true if it does and false if it does not.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| static int collationMatch(const char *zColl, Index *pIndex){
 | |
|   int i;
 | |
|   for(i=0; i<pIndex->nColumn; i++){
 | |
|     const char *z = pIndex->azColl[i];
 | |
|     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Recompute all indices of pTab that use the collating sequence pColl.
 | |
| ** If pColl==0 then recompute all indices of pTab.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
 | |
|   Index *pIndex;              /* An index associated with pTab */
 | |
| 
 | |
|   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
 | |
|     if( zColl==0 || collationMatch(zColl, pIndex) ){
 | |
|       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|       sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|       sqlite3RefillIndex(pParse, pIndex, -1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Recompute all indices of all tables in all databases where the
 | |
| ** indices use the collating sequence pColl.  If pColl==0 then recompute
 | |
| ** all indices everywhere.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| static void reindexDatabases(Parse *pParse, char const *zColl){
 | |
|   Db *pDb;                    /* A single database */
 | |
|   int iDb;                    /* The database index number */
 | |
|   sqlite3 *db = pParse->db;   /* The database connection */
 | |
|   HashElem *k;                /* For looping over tables in pDb */
 | |
|   Table *pTab;                /* A table in the database */
 | |
| 
 | |
|   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
 | |
|     assert( pDb!=0 );
 | |
|     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
 | |
|       pTab = (Table*)sqliteHashData(k);
 | |
|       reindexTable(pParse, pTab, zColl);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Generate code for the REINDEX command.
 | |
| **
 | |
| **        REINDEX                            -- 1
 | |
| **        REINDEX  <collation>               -- 2
 | |
| **        REINDEX  ?<database>.?<tablename>  -- 3
 | |
| **        REINDEX  ?<database>.?<indexname>  -- 4
 | |
| **
 | |
| ** Form 1 causes all indices in all attached databases to be rebuilt.
 | |
| ** Form 2 rebuilds all indices in all databases that use the named
 | |
| ** collating function.  Forms 3 and 4 rebuild the named index or all
 | |
| ** indices associated with the named table.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_REINDEX
 | |
| SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
 | |
|   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
 | |
|   char *z;                    /* Name of a table or index */
 | |
|   const char *zDb;            /* Name of the database */
 | |
|   Table *pTab;                /* A table in the database */
 | |
|   Index *pIndex;              /* An index associated with pTab */
 | |
|   int iDb;                    /* The database index number */
 | |
|   sqlite3 *db = pParse->db;   /* The database connection */
 | |
|   Token *pObjName;            /* Name of the table or index to be reindexed */
 | |
| 
 | |
|   /* Read the database schema. If an error occurs, leave an error message
 | |
|   ** and code in pParse and return NULL. */
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if( pName1==0 || pName1->z==0 ){
 | |
|     reindexDatabases(pParse, 0);
 | |
|     return;
 | |
|   }else if( pName2==0 || pName2->z==0 ){
 | |
|     char *zColl;
 | |
|     assert( pName1->z );
 | |
|     zColl = sqlite3NameFromToken(pParse->db, pName1);
 | |
|     if( !zColl ) return;
 | |
|     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
 | |
|     if( pColl ){
 | |
|       if( zColl ){
 | |
|         reindexDatabases(pParse, zColl);
 | |
|         sqlite3_free(zColl);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     sqlite3_free(zColl);
 | |
|   }
 | |
|   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
 | |
|   if( iDb<0 ) return;
 | |
|   z = sqlite3NameFromToken(db, pObjName);
 | |
|   if( z==0 ) return;
 | |
|   zDb = db->aDb[iDb].zName;
 | |
|   pTab = sqlite3FindTable(db, z, zDb);
 | |
|   if( pTab ){
 | |
|     reindexTable(pParse, pTab, 0);
 | |
|     sqlite3_free(z);
 | |
|     return;
 | |
|   }
 | |
|   pIndex = sqlite3FindIndex(db, z, zDb);
 | |
|   sqlite3_free(z);
 | |
|   if( pIndex ){
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|     sqlite3RefillIndex(pParse, pIndex, -1);
 | |
|     return;
 | |
|   }
 | |
|   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Return a dynamicly allocated KeyInfo structure that can be used
 | |
| ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
 | |
| **
 | |
| ** If successful, a pointer to the new structure is returned. In this case
 | |
| ** the caller is responsible for calling sqlite3_free() on the returned 
 | |
| ** pointer. If an error occurs (out of memory or missing collation 
 | |
| ** sequence), NULL is returned and the state of pParse updated to reflect
 | |
| ** the error.
 | |
| */
 | |
| SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
 | |
|   int i;
 | |
|   int nCol = pIdx->nColumn;
 | |
|   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
 | |
|   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes);
 | |
| 
 | |
|   if( pKey ){
 | |
|     pKey->db = pParse->db;
 | |
|     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
 | |
|     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
 | |
|     for(i=0; i<nCol; i++){
 | |
|       char *zColl = pIdx->azColl[i];
 | |
|       assert( zColl );
 | |
|       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
 | |
|       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
 | |
|     }
 | |
|     pKey->nField = nCol;
 | |
|   }
 | |
| 
 | |
|   if( pParse->nErr ){
 | |
|     sqlite3_free(pKey);
 | |
|     pKey = 0;
 | |
|   }
 | |
|   return pKey;
 | |
| }
 | |
| 
 | |
| /************** End of build.c ***********************************************/
 | |
| /************** Begin file callback.c ****************************************/
 | |
| /*
 | |
| ** 2005 May 23 
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| **
 | |
| ** This file contains functions used to access the internal hash tables
 | |
| ** of user defined functions and collation sequences.
 | |
| **
 | |
| ** $Id: callback.c,v 1.23 2007/08/29 12:31:26 danielk1977 Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Invoke the 'collation needed' callback to request a collation sequence
 | |
| ** in the database text encoding of name zName, length nName.
 | |
| ** If the collation sequence
 | |
| */
 | |
| static void callCollNeeded(sqlite3 *db, const char *zName, int nName){
 | |
|   assert( !db->xCollNeeded || !db->xCollNeeded16 );
 | |
|   if( nName<0 ) nName = strlen(zName);
 | |
|   if( db->xCollNeeded ){
 | |
|     char *zExternal = sqlite3DbStrNDup(db, zName, nName);
 | |
|     if( !zExternal ) return;
 | |
|     db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal);
 | |
|     sqlite3_free(zExternal);
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   if( db->xCollNeeded16 ){
 | |
|     char const *zExternal;
 | |
|     sqlite3_value *pTmp = sqlite3ValueNew(db);
 | |
|     sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC);
 | |
|     zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE);
 | |
|     if( zExternal ){
 | |
|       db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal);
 | |
|     }
 | |
|     sqlite3ValueFree(pTmp);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called if the collation factory fails to deliver a
 | |
| ** collation function in the best encoding but there may be other versions
 | |
| ** of this collation function (for other text encodings) available. Use one
 | |
| ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if
 | |
| ** possible.
 | |
| */
 | |
| static int synthCollSeq(sqlite3 *db, CollSeq *pColl){
 | |
|   CollSeq *pColl2;
 | |
|   char *z = pColl->zName;
 | |
|   int n = strlen(z);
 | |
|   int i;
 | |
|   static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 };
 | |
|   for(i=0; i<3; i++){
 | |
|     pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0);
 | |
|     if( pColl2->xCmp!=0 ){
 | |
|       memcpy(pColl, pColl2, sizeof(CollSeq));
 | |
|       pColl->xDel = 0;         /* Do not copy the destructor */
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_ERROR;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is responsible for invoking the collation factory callback
 | |
| ** or substituting a collation sequence of a different encoding when the
 | |
| ** requested collation sequence is not available in the database native
 | |
| ** encoding.
 | |
| ** 
 | |
| ** If it is not NULL, then pColl must point to the database native encoding 
 | |
| ** collation sequence with name zName, length nName.
 | |
| **
 | |
| ** The return value is either the collation sequence to be used in database
 | |
| ** db for collation type name zName, length nName, or NULL, if no collation
 | |
| ** sequence can be found.
 | |
| */
 | |
| SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(
 | |
|   sqlite3* db, 
 | |
|   CollSeq *pColl, 
 | |
|   const char *zName, 
 | |
|   int nName
 | |
| ){
 | |
|   CollSeq *p;
 | |
| 
 | |
|   p = pColl;
 | |
|   if( !p ){
 | |
|     p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
 | |
|   }
 | |
|   if( !p || !p->xCmp ){
 | |
|     /* No collation sequence of this type for this encoding is registered.
 | |
|     ** Call the collation factory to see if it can supply us with one.
 | |
|     */
 | |
|     callCollNeeded(db, zName, nName);
 | |
|     p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0);
 | |
|   }
 | |
|   if( p && !p->xCmp && synthCollSeq(db, p) ){
 | |
|     p = 0;
 | |
|   }
 | |
|   assert( !p || p->xCmp );
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called on a collation sequence before it is used to
 | |
| ** check that it is defined. An undefined collation sequence exists when
 | |
| ** a database is loaded that contains references to collation sequences
 | |
| ** that have not been defined by sqlite3_create_collation() etc.
 | |
| **
 | |
| ** If required, this routine calls the 'collation needed' callback to
 | |
| ** request a definition of the collating sequence. If this doesn't work, 
 | |
| ** an equivalent collating sequence that uses a text encoding different
 | |
| ** from the main database is substituted, if one is available.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){
 | |
|   if( pColl ){
 | |
|     const char *zName = pColl->zName;
 | |
|     CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1);
 | |
|     if( !p ){
 | |
|       if( pParse->nErr==0 ){
 | |
|         sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
 | |
|       }
 | |
|       pParse->nErr++;
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|     assert( p==pColl );
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Locate and return an entry from the db.aCollSeq hash table. If the entry
 | |
| ** specified by zName and nName is not found and parameter 'create' is
 | |
| ** true, then create a new entry. Otherwise return NULL.
 | |
| **
 | |
| ** Each pointer stored in the sqlite3.aCollSeq hash table contains an
 | |
| ** array of three CollSeq structures. The first is the collation sequence
 | |
| ** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be.
 | |
| **
 | |
| ** Stored immediately after the three collation sequences is a copy of
 | |
| ** the collation sequence name. A pointer to this string is stored in
 | |
| ** each collation sequence structure.
 | |
| */
 | |
| static CollSeq *findCollSeqEntry(
 | |
|   sqlite3 *db,
 | |
|   const char *zName,
 | |
|   int nName,
 | |
|   int create
 | |
| ){
 | |
|   CollSeq *pColl;
 | |
|   if( nName<0 ) nName = strlen(zName);
 | |
|   pColl = sqlite3HashFind(&db->aCollSeq, zName, nName);
 | |
| 
 | |
|   if( 0==pColl && create ){
 | |
|     pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 );
 | |
|     if( pColl ){
 | |
|       CollSeq *pDel = 0;
 | |
|       pColl[0].zName = (char*)&pColl[3];
 | |
|       pColl[0].enc = SQLITE_UTF8;
 | |
|       pColl[1].zName = (char*)&pColl[3];
 | |
|       pColl[1].enc = SQLITE_UTF16LE;
 | |
|       pColl[2].zName = (char*)&pColl[3];
 | |
|       pColl[2].enc = SQLITE_UTF16BE;
 | |
|       memcpy(pColl[0].zName, zName, nName);
 | |
|       pColl[0].zName[nName] = 0;
 | |
|       pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl);
 | |
| 
 | |
|       /* If a malloc() failure occured in sqlite3HashInsert(), it will 
 | |
|       ** return the pColl pointer to be deleted (because it wasn't added
 | |
|       ** to the hash table).
 | |
|       */
 | |
|       assert( pDel==0 || pDel==pColl );
 | |
|       if( pDel!=0 ){
 | |
|         db->mallocFailed = 1;
 | |
|         sqlite3_free(pDel);
 | |
|         pColl = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parameter zName points to a UTF-8 encoded string nName bytes long.
 | |
| ** Return the CollSeq* pointer for the collation sequence named zName
 | |
| ** for the encoding 'enc' from the database 'db'.
 | |
| **
 | |
| ** If the entry specified is not found and 'create' is true, then create a
 | |
| ** new entry.  Otherwise return NULL.
 | |
| **
 | |
| ** A separate function sqlite3LocateCollSeq() is a wrapper around
 | |
| ** this routine.  sqlite3LocateCollSeq() invokes the collation factory
 | |
| ** if necessary and generates an error message if the collating sequence
 | |
| ** cannot be found.
 | |
| */
 | |
| SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(
 | |
|   sqlite3 *db,
 | |
|   u8 enc,
 | |
|   const char *zName,
 | |
|   int nName,
 | |
|   int create
 | |
| ){
 | |
|   CollSeq *pColl;
 | |
|   if( zName ){
 | |
|     pColl = findCollSeqEntry(db, zName, nName, create);
 | |
|   }else{
 | |
|     pColl = db->pDfltColl;
 | |
|   }
 | |
|   assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
 | |
|   assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE );
 | |
|   if( pColl ) pColl += enc-1;
 | |
|   return pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Locate a user function given a name, a number of arguments and a flag
 | |
| ** indicating whether the function prefers UTF-16 over UTF-8.  Return a
 | |
| ** pointer to the FuncDef structure that defines that function, or return
 | |
| ** NULL if the function does not exist.
 | |
| **
 | |
| ** If the createFlag argument is true, then a new (blank) FuncDef
 | |
| ** structure is created and liked into the "db" structure if a
 | |
| ** no matching function previously existed.  When createFlag is true
 | |
| ** and the nArg parameter is -1, then only a function that accepts
 | |
| ** any number of arguments will be returned.
 | |
| **
 | |
| ** If createFlag is false and nArg is -1, then the first valid
 | |
| ** function found is returned.  A function is valid if either xFunc
 | |
| ** or xStep is non-zero.
 | |
| **
 | |
| ** If createFlag is false, then a function with the required name and
 | |
| ** number of arguments may be returned even if the eTextRep flag does not
 | |
| ** match that requested.
 | |
| */
 | |
| SQLITE_PRIVATE FuncDef *sqlite3FindFunction(
 | |
|   sqlite3 *db,       /* An open database */
 | |
|   const char *zName, /* Name of the function.  Not null-terminated */
 | |
|   int nName,         /* Number of characters in the name */
 | |
|   int nArg,          /* Number of arguments.  -1 means any number */
 | |
|   u8 enc,            /* Preferred text encoding */
 | |
|   int createFlag     /* Create new entry if true and does not otherwise exist */
 | |
| ){
 | |
|   FuncDef *p;         /* Iterator variable */
 | |
|   FuncDef *pFirst;    /* First function with this name */
 | |
|   FuncDef *pBest = 0; /* Best match found so far */
 | |
|   int bestmatch = 0;  
 | |
| 
 | |
| 
 | |
|   assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
 | |
|   if( nArg<-1 ) nArg = -1;
 | |
| 
 | |
|   pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName);
 | |
|   for(p=pFirst; p; p=p->pNext){
 | |
|     /* During the search for the best function definition, bestmatch is set
 | |
|     ** as follows to indicate the quality of the match with the definition
 | |
|     ** pointed to by pBest:
 | |
|     **
 | |
|     ** 0: pBest is NULL. No match has been found.
 | |
|     ** 1: A variable arguments function that prefers UTF-8 when a UTF-16
 | |
|     **    encoding is requested, or vice versa.
 | |
|     ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
 | |
|     **    requested, or vice versa.
 | |
|     ** 3: A variable arguments function using the same text encoding.
 | |
|     ** 4: A function with the exact number of arguments requested that
 | |
|     **    prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
 | |
|     ** 5: A function with the exact number of arguments requested that
 | |
|     **    prefers UTF-16LE when UTF-16BE is requested, or vice versa.
 | |
|     ** 6: An exact match.
 | |
|     **
 | |
|     ** A larger value of 'matchqual' indicates a more desirable match.
 | |
|     */
 | |
|     if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){
 | |
|       int match = 1;          /* Quality of this match */
 | |
|       if( p->nArg==nArg || nArg==-1 ){
 | |
|         match = 4;
 | |
|       }
 | |
|       if( enc==p->iPrefEnc ){
 | |
|         match += 2;
 | |
|       }
 | |
|       else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
 | |
|                (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
 | |
|         match += 1;
 | |
|       }
 | |
| 
 | |
|       if( match>bestmatch ){
 | |
|         pBest = p;
 | |
|         bestmatch = match;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the createFlag parameter is true, and the seach did not reveal an
 | |
|   ** exact match for the name, number of arguments and encoding, then add a
 | |
|   ** new entry to the hash table and return it.
 | |
|   */
 | |
|   if( createFlag && bestmatch<6 && 
 | |
|       (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName))!=0 ){
 | |
|     pBest->nArg = nArg;
 | |
|     pBest->pNext = pFirst;
 | |
|     pBest->iPrefEnc = enc;
 | |
|     memcpy(pBest->zName, zName, nName);
 | |
|     pBest->zName[nName] = 0;
 | |
|     if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){
 | |
|       db->mallocFailed = 1;
 | |
|       sqlite3_free(pBest);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){
 | |
|     return pBest;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Free all resources held by the schema structure. The void* argument points
 | |
| ** at a Schema struct. This function does not call sqlite3_free() on the 
 | |
| ** pointer itself, it just cleans up subsiduary resources (i.e. the contents
 | |
| ** of the schema hash tables).
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SchemaFree(void *p){
 | |
|   Hash temp1;
 | |
|   Hash temp2;
 | |
|   HashElem *pElem;
 | |
|   Schema *pSchema = (Schema *)p;
 | |
| 
 | |
|   temp1 = pSchema->tblHash;
 | |
|   temp2 = pSchema->trigHash;
 | |
|   sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0);
 | |
|   sqlite3HashClear(&pSchema->aFKey);
 | |
|   sqlite3HashClear(&pSchema->idxHash);
 | |
|   for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
 | |
|     sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
 | |
|   }
 | |
|   sqlite3HashClear(&temp2);
 | |
|   sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0);
 | |
|   for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
 | |
|     Table *pTab = sqliteHashData(pElem);
 | |
|     sqlite3DeleteTable(pTab);
 | |
|   }
 | |
|   sqlite3HashClear(&temp1);
 | |
|   pSchema->pSeqTab = 0;
 | |
|   pSchema->flags &= ~DB_SchemaLoaded;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Find and return the schema associated with a BTree.  Create
 | |
| ** a new one if necessary.
 | |
| */
 | |
| SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){
 | |
|   Schema * p;
 | |
|   if( pBt ){
 | |
|     p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree);
 | |
|   }else{
 | |
|     p = (Schema *)sqlite3MallocZero(sizeof(Schema));
 | |
|   }
 | |
|   if( !p ){
 | |
|     db->mallocFailed = 1;
 | |
|   }else if ( 0==p->file_format ){
 | |
|     sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
 | |
|     sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
 | |
|     sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
 | |
|     sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
 | |
|     p->enc = SQLITE_UTF8;
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| /************** End of callback.c ********************************************/
 | |
| /************** Begin file delete.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the parser
 | |
| ** in order to generate code for DELETE FROM statements.
 | |
| **
 | |
| ** $Id: delete.c,v 1.161 2008/02/12 16:52:14 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Look up every table that is named in pSrc.  If any table is not found,
 | |
| ** add an error message to pParse->zErrMsg and return NULL.  If all tables
 | |
| ** are found, return a pointer to the last table.
 | |
| */
 | |
| SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){
 | |
|   Table *pTab = 0;
 | |
|   int i;
 | |
|   struct SrcList_item *pItem;
 | |
|   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
 | |
|     pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
 | |
|     sqlite3DeleteTable(pItem->pTab);
 | |
|     pItem->pTab = pTab;
 | |
|     if( pTab ){
 | |
|       pTab->nRef++;
 | |
|     }
 | |
|   }
 | |
|   return pTab;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to make sure the given table is writable.  If it is not
 | |
| ** writable, generate an error message and return 1.  If it is
 | |
| ** writable return 0;
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
 | |
|   if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0
 | |
|         && pParse->nested==0) 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       || (pTab->pMod && pTab->pMod->pModule->xUpdate==0)
 | |
| #endif
 | |
|   ){
 | |
|     sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
 | |
|     return 1;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   if( !viewOk && pTab->pSelect ){
 | |
|     sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
 | |
|     return 1;
 | |
|   }
 | |
| #endif
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will open a table for reading.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3OpenTable(
 | |
|   Parse *p,       /* Generate code into this VDBE */
 | |
|   int iCur,       /* The cursor number of the table */
 | |
|   int iDb,        /* The database index in sqlite3.aDb[] */
 | |
|   Table *pTab,    /* The table to be opened */
 | |
|   int opcode      /* OP_OpenRead or OP_OpenWrite */
 | |
| ){
 | |
|   Vdbe *v;
 | |
|   if( IsVirtual(pTab) ) return;
 | |
|   v = sqlite3GetVdbe(p);
 | |
|   assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
 | |
|   sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName);
 | |
|   sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
 | |
|   VdbeComment((v, "%s", pTab->zName));
 | |
|   sqlite3VdbeAddOp2(v, OP_SetNumColumns, iCur, pTab->nCol);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
 | |
| /*
 | |
| ** Evaluate a view and store its result in an ephemeral table.  The
 | |
| ** pWhere argument is an optional WHERE clause that restricts the
 | |
| ** set of rows in the view that are to be added to the ephemeral table.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3MaterializeView(
 | |
|   Parse *pParse,       /* Parsing context */
 | |
|   Select *pView,       /* View definition */
 | |
|   Expr *pWhere,        /* Optional WHERE clause to be added */
 | |
|   u32 col_mask,        /* Render only the columns in this mask. */
 | |
|   int iCur             /* Cursor number for ephemerial table */
 | |
| ){
 | |
|   SelectDest dest;
 | |
|   Select *pDup;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   pDup = sqlite3SelectDup(db, pView);
 | |
|   if( pWhere ){
 | |
|     SrcList *pFrom;
 | |
|     
 | |
|     pWhere = sqlite3ExprDup(db, pWhere);
 | |
|     pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0);
 | |
|     pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);
 | |
|   }
 | |
|   sqlite3SelectMask(pParse, pDup, col_mask);
 | |
|   sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
 | |
|   sqlite3Select(pParse, pDup, &dest, 0, 0, 0, 0);
 | |
|   sqlite3SelectDelete(pDup);
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code for a DELETE FROM statement.
 | |
| **
 | |
| **     DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL;
 | |
| **                 \________/       \________________/
 | |
| **                  pTabList              pWhere
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DeleteFrom(
 | |
|   Parse *pParse,         /* The parser context */
 | |
|   SrcList *pTabList,     /* The table from which we should delete things */
 | |
|   Expr *pWhere           /* The WHERE clause.  May be null */
 | |
| ){
 | |
|   Vdbe *v;               /* The virtual database engine */
 | |
|   Table *pTab;           /* The table from which records will be deleted */
 | |
|   const char *zDb;       /* Name of database holding pTab */
 | |
|   int end, addr = 0;     /* A couple addresses of generated code */
 | |
|   int i;                 /* Loop counter */
 | |
|   WhereInfo *pWInfo;     /* Information about the WHERE clause */
 | |
|   Index *pIdx;           /* For looping over indices of the table */
 | |
|   int iCur;              /* VDBE Cursor number for pTab */
 | |
|   sqlite3 *db;           /* Main database structure */
 | |
|   AuthContext sContext;  /* Authorization context */
 | |
|   int oldIdx = -1;       /* Cursor for the OLD table of AFTER triggers */
 | |
|   NameContext sNC;       /* Name context to resolve expressions in */
 | |
|   int iDb;               /* Database number */
 | |
|   int memCnt = 0;        /* Memory cell used for change counting */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   int isView;                  /* True if attempting to delete from a view */
 | |
|   int triggers_exist = 0;      /* True if any triggers exist */
 | |
| #endif
 | |
|   int iBeginAfterTrigger;      /* Address of after trigger program */
 | |
|   int iEndAfterTrigger;        /* Exit of after trigger program */
 | |
|   int iBeginBeforeTrigger;     /* Address of before trigger program */
 | |
|   int iEndBeforeTrigger;       /* Exit of before trigger program */
 | |
|   u32 old_col_mask = 0;        /* Mask of OLD.* columns in use */
 | |
| 
 | |
|   sContext.pParse = 0;
 | |
|   db = pParse->db;
 | |
|   if( pParse->nErr || db->mallocFailed ){
 | |
|     goto delete_from_cleanup;
 | |
|   }
 | |
|   assert( pTabList->nSrc==1 );
 | |
| 
 | |
|   /* Locate the table which we want to delete.  This table has to be
 | |
|   ** put in an SrcList structure because some of the subroutines we
 | |
|   ** will be calling are designed to work with multiple tables and expect
 | |
|   ** an SrcList* parameter instead of just a Table* parameter.
 | |
|   */
 | |
|   pTab = sqlite3SrcListLookup(pParse, pTabList);
 | |
|   if( pTab==0 )  goto delete_from_cleanup;
 | |
| 
 | |
|   /* Figure out if we have any triggers and if the table being
 | |
|   ** deleted from is a view
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0);
 | |
|   isView = pTab->pSelect!=0;
 | |
| #else
 | |
| # define triggers_exist 0
 | |
| # define isView 0
 | |
| #endif
 | |
| #ifdef SQLITE_OMIT_VIEW
 | |
| # undef isView
 | |
| # define isView 0
 | |
| #endif
 | |
| 
 | |
|   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
 | |
|     goto delete_from_cleanup;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   assert( iDb<db->nDb );
 | |
|   zDb = db->aDb[iDb].zName;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
 | |
|     goto delete_from_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* If pTab is really a view, make sure it has been initialized.
 | |
|   */
 | |
|   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|     goto delete_from_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Allocate a cursor used to store the old.* data for a trigger.
 | |
|   */
 | |
|   if( triggers_exist ){ 
 | |
|     oldIdx = pParse->nTab++;
 | |
|   }
 | |
| 
 | |
|   /* Assign  cursor number to the table and all its indices.
 | |
|   */
 | |
|   assert( pTabList->nSrc==1 );
 | |
|   iCur = pTabList->a[0].iCursor = pParse->nTab++;
 | |
|   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|     pParse->nTab++;
 | |
|   }
 | |
| 
 | |
|   /* Start the view context
 | |
|   */
 | |
|   if( isView ){
 | |
|     sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
 | |
|   }
 | |
| 
 | |
|   /* Begin generating code.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ){
 | |
|     goto delete_from_cleanup;
 | |
|   }
 | |
|   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
 | |
|   sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);
 | |
| 
 | |
|   if( triggers_exist ){
 | |
|     int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default);
 | |
|     int iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
 | |
|     addr = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
 | |
|     (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab,
 | |
|         -1, oldIdx, orconf, addr, &old_col_mask, 0);
 | |
|     iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
 | |
| 
 | |
|     iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
 | |
|     (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1,
 | |
|         oldIdx, orconf, addr, &old_col_mask, 0);
 | |
|     iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto);
 | |
| 
 | |
|     sqlite3VdbeJumpHere(v, iGoto);
 | |
|   }
 | |
| 
 | |
|   /* If we are trying to delete from a view, realize that view into
 | |
|   ** a ephemeral table.
 | |
|   */
 | |
|   if( isView ){
 | |
|     sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, old_col_mask, iCur);
 | |
|   }
 | |
| 
 | |
|   /* Resolve the column names in the WHERE clause.
 | |
|   */
 | |
|   memset(&sNC, 0, sizeof(sNC));
 | |
|   sNC.pParse = pParse;
 | |
|   sNC.pSrcList = pTabList;
 | |
|   if( sqlite3ExprResolveNames(&sNC, pWhere) ){
 | |
|     goto delete_from_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Initialize the counter of the number of rows deleted, if
 | |
|   ** we are counting rows.
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows ){
 | |
|     memCnt = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt);
 | |
|   }
 | |
| 
 | |
|   /* Special case: A DELETE without a WHERE clause deletes everything.
 | |
|   ** It is easier just to erase the whole table.  Note, however, that
 | |
|   ** this means that the row change count will be incorrect.
 | |
|   */
 | |
|   if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){
 | |
|     if( db->flags & SQLITE_CountRows ){
 | |
|       /* If counting rows deleted, just count the total number of
 | |
|       ** entries in the table. */
 | |
|       int addr2;
 | |
|       if( !isView ){
 | |
|         sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
 | |
|       addr2 = sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
 | |
|       sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2);
 | |
|       sqlite3VdbeAddOp1(v, OP_Close, iCur);
 | |
|     }
 | |
|     if( !isView ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb);
 | |
|       if( !pParse->nested ){
 | |
|         sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
 | |
|       }
 | |
|       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|         assert( pIdx->pSchema==pTab->pSchema );
 | |
|         sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
 | |
|       }
 | |
|     }
 | |
|   } 
 | |
|   /* The usual case: There is a WHERE clause so we have to scan through
 | |
|   ** the table and pick which records to delete.
 | |
|   */
 | |
|   else{
 | |
|     int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
 | |
| 
 | |
|     /* Begin the database scan
 | |
|     */
 | |
|     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
 | |
|     if( pWInfo==0 ) goto delete_from_cleanup;
 | |
| 
 | |
|     /* Remember the rowid of every item to be deleted.
 | |
|     */
 | |
|     sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, iRowid);
 | |
|     sqlite3VdbeAddOp1(v, OP_FifoWrite, iRowid);
 | |
|     if( db->flags & SQLITE_CountRows ){
 | |
|       sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
 | |
|     }
 | |
| 
 | |
|     /* End the database scan loop.
 | |
|     */
 | |
|     sqlite3WhereEnd(pWInfo);
 | |
| 
 | |
|     /* Open the pseudo-table used to store OLD if there are triggers.
 | |
|     */
 | |
|     if( triggers_exist ){
 | |
|       sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx);
 | |
|       sqlite3VdbeAddOp2(v, OP_SetNumColumns, oldIdx, pTab->nCol);
 | |
|     }
 | |
| 
 | |
|     /* Delete every item whose key was written to the list during the
 | |
|     ** database scan.  We have to delete items after the scan is complete
 | |
|     ** because deleting an item can change the scan order.
 | |
|     */
 | |
|     end = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     if( !isView ){
 | |
|       /* Open cursors for the table we are deleting from and 
 | |
|       ** all its indices.
 | |
|       */
 | |
|       sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite);
 | |
|     }
 | |
| 
 | |
|     /* This is the beginning of the delete loop. If a trigger encounters
 | |
|     ** an IGNORE constraint, it jumps back to here.
 | |
|     */
 | |
|     if( triggers_exist ){
 | |
|       sqlite3VdbeResolveLabel(v, addr);
 | |
|     }
 | |
|     addr = sqlite3VdbeAddOp2(v, OP_FifoRead, iRowid, end);
 | |
| 
 | |
|     if( triggers_exist ){
 | |
|       int iData = ++pParse->nMem;   /* For storing row data of OLD table */
 | |
| 
 | |
|       /* If the record is no longer present in the table, jump to the
 | |
|       ** next iteration of the loop through the contents of the fifo.
 | |
|       */
 | |
|       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid);
 | |
| 
 | |
|       /* Populate the OLD.* pseudo-table */
 | |
|       if( old_col_mask ){
 | |
|         sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, iData);
 | |
|       }
 | |
|       sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid);
 | |
| 
 | |
|       /* Jump back and run the BEFORE triggers */
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
 | |
|       sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
 | |
|     }
 | |
| 
 | |
|     if( !isView ){
 | |
|       /* Delete the row */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       if( IsVirtual(pTab) ){
 | |
|         const char *pVtab = (const char *)pTab->pVtab;
 | |
|         pParse->pVirtualLock = pTab;
 | |
|         sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB);
 | |
|       }else
 | |
| #endif
 | |
|       {
 | |
|         sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If there are row triggers, close all cursors then invoke
 | |
|     ** the AFTER triggers
 | |
|     */
 | |
|     if( triggers_exist ){
 | |
|       /* Jump back and run the AFTER triggers */
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
 | |
|       sqlite3VdbeJumpHere(v, iEndAfterTrigger);
 | |
|     }
 | |
| 
 | |
|     /* End of the delete loop */
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
 | |
|     sqlite3VdbeResolveLabel(v, end);
 | |
| 
 | |
|     /* Close the cursors after the loop if there are no row triggers */
 | |
|     if( !isView  && !IsVirtual(pTab) ){
 | |
|       for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
 | |
|         sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum);
 | |
|       }
 | |
|       sqlite3VdbeAddOp1(v, OP_Close, iCur);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Return the number of rows that were deleted. If this routine is 
 | |
|   ** generating code because of a call to sqlite3NestedParse(), do not
 | |
|   ** invoke the callback function.
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
 | |
|     sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1);
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC);
 | |
|   }
 | |
| 
 | |
| delete_from_cleanup:
 | |
|   sqlite3AuthContextPop(&sContext);
 | |
|   sqlite3SrcListDelete(pTabList);
 | |
|   sqlite3ExprDelete(pWhere);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine generates VDBE code that causes a single row of a
 | |
| ** single table to be deleted.
 | |
| **
 | |
| ** The VDBE must be in a particular state when this routine is called.
 | |
| ** These are the requirements:
 | |
| **
 | |
| **   1.  A read/write cursor pointing to pTab, the table containing the row
 | |
| **       to be deleted, must be opened as cursor number "base".
 | |
| **
 | |
| **   2.  Read/write cursors for all indices of pTab must be open as
 | |
| **       cursor number base+i for the i-th index.
 | |
| **
 | |
| **   3.  The record number of the row to be deleted must be stored in
 | |
| **       memory cell iRowid.
 | |
| **
 | |
| ** This routine pops the top of the stack to remove the record number
 | |
| ** and then generates code to remove both the table record and all index
 | |
| ** entries that point to that record.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3GenerateRowDelete(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   Table *pTab,       /* Table containing the row to be deleted */
 | |
|   int iCur,          /* Cursor number for the table */
 | |
|   int iRowid,        /* Memory cell that contains the rowid to delete */
 | |
|   int count          /* Increment the row change counter */
 | |
| ){
 | |
|   int addr;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   v = pParse->pVdbe;
 | |
|   addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid);
 | |
|   sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0);
 | |
|   sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0));
 | |
|   if( count ){
 | |
|     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
 | |
|   }
 | |
|   sqlite3VdbeJumpHere(v, addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine generates VDBE code that causes the deletion of all
 | |
| ** index entries associated with a single row of a single table.
 | |
| **
 | |
| ** The VDBE must be in a particular state when this routine is called.
 | |
| ** These are the requirements:
 | |
| **
 | |
| **   1.  A read/write cursor pointing to pTab, the table containing the row
 | |
| **       to be deleted, must be opened as cursor number "iCur".
 | |
| **
 | |
| **   2.  Read/write cursors for all indices of pTab must be open as
 | |
| **       cursor number iCur+i for the i-th index.
 | |
| **
 | |
| **   3.  The "iCur" cursor must be pointing to the row that is to be
 | |
| **       deleted.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(
 | |
|   Parse *pParse,     /* Parsing and code generating context */
 | |
|   Table *pTab,       /* Table containing the row to be deleted */
 | |
|   int iCur,          /* Cursor number for the table */
 | |
|   int *aRegIdx       /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
 | |
| ){
 | |
|   int i;
 | |
|   Index *pIdx;
 | |
|   int r1;
 | |
| 
 | |
|   r1 = sqlite3GetTempReg(pParse);
 | |
|   for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
 | |
|     if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue;
 | |
|     sqlite3GenerateIndexKey(pParse, pIdx, iCur, r1);
 | |
|     sqlite3VdbeAddOp2(pParse->pVdbe, OP_IdxDelete, iCur+i, r1);
 | |
|   }
 | |
|   sqlite3ReleaseTempReg(pParse, r1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will assemble an index key and put it on the top
 | |
| ** of the tack.  The key with be for index pIdx which is an index on pTab.
 | |
| ** iCur is the index of a cursor open on the pTab table and pointing to
 | |
| ** the entry that needs indexing.
 | |
| **
 | |
| ** Return a register number which is the first in a block of
 | |
| ** registers that holds the elements of the index key.  The
 | |
| ** block of registers has already been deallocated by the time
 | |
| ** this routine returns.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3GenerateIndexKey(
 | |
|   Parse *pParse,     /* Parsing context */
 | |
|   Index *pIdx,       /* The index for which to generate a key */
 | |
|   int iCur,          /* Cursor number for the pIdx->pTable table */
 | |
|   int regOut         /* Write the new index key to this register */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int j;
 | |
|   Table *pTab = pIdx->pTable;
 | |
|   int regBase;
 | |
|   int nCol;
 | |
| 
 | |
|   nCol = pIdx->nColumn;
 | |
|   regBase = sqlite3GetTempRange(pParse, nCol+1);
 | |
|   sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol);
 | |
|   for(j=0; j<nCol; j++){
 | |
|     int idx = pIdx->aiColumn[j];
 | |
|     if( idx==pTab->iPKey ){
 | |
|       sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j);
 | |
|       sqlite3ColumnDefault(v, pTab, idx);
 | |
|     }
 | |
|   }
 | |
|   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut);
 | |
|   sqlite3IndexAffinityStr(v, pIdx);
 | |
|   sqlite3ReleaseTempRange(pParse, regBase, nCol+1);
 | |
|   return regBase;
 | |
| }
 | |
| 
 | |
| /************** End of delete.c **********************************************/
 | |
| /************** Begin file func.c ********************************************/
 | |
| /*
 | |
| ** 2002 February 23
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the C functions that implement various SQL
 | |
| ** functions of SQLite.  
 | |
| **
 | |
| ** There is only one exported symbol in this file - the function
 | |
| ** sqliteRegisterBuildinFunctions() found at the bottom of the file.
 | |
| ** All other code has file scope.
 | |
| **
 | |
| ** $Id: func.c,v 1.186 2008/03/06 09:58:50 mlcreech Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return the collating function associated with a function.
 | |
| */
 | |
| static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
 | |
|   return context->pColl;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the non-aggregate min() and max() functions
 | |
| */
 | |
| static void minmaxFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   int mask;    /* 0 for min() or 0xffffffff for max() */
 | |
|   int iBest;
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   if( argc==0 ) return;
 | |
|   mask = sqlite3_user_data(context)==0 ? 0 : -1;
 | |
|   pColl = sqlite3GetFuncCollSeq(context);
 | |
|   assert( pColl );
 | |
|   assert( mask==-1 || mask==0 );
 | |
|   iBest = 0;
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   for(i=1; i<argc; i++){
 | |
|     if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
 | |
|     if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
 | |
|       iBest = i;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_result_value(context, argv[iBest]);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the type of the argument.
 | |
| */
 | |
| static void typeofFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const char *z = 0;
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_NULL:    z = "null";    break;
 | |
|     case SQLITE_INTEGER: z = "integer"; break;
 | |
|     case SQLITE_TEXT:    z = "text";    break;
 | |
|     case SQLITE_FLOAT:   z = "real";    break;
 | |
|     case SQLITE_BLOB:    z = "blob";    break;
 | |
|   }
 | |
|   sqlite3_result_text(context, z, -1, SQLITE_STATIC);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of the length() function
 | |
| */
 | |
| static void lengthFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int len;
 | |
| 
 | |
|   assert( argc==1 );
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_BLOB:
 | |
|     case SQLITE_INTEGER:
 | |
|     case SQLITE_FLOAT: {
 | |
|       sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TEXT: {
 | |
|       const unsigned char *z = sqlite3_value_text(argv[0]);
 | |
|       if( z==0 ) return;
 | |
|       len = 0;
 | |
|       while( *z ){
 | |
|         len++;
 | |
|         SQLITE_SKIP_UTF8(z);
 | |
|       }
 | |
|       sqlite3_result_int(context, len);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       sqlite3_result_null(context);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the abs() function
 | |
| */
 | |
| static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   assert( argc==1 );
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_INTEGER: {
 | |
|       i64 iVal = sqlite3_value_int64(argv[0]);
 | |
|       if( iVal<0 ){
 | |
|         if( (iVal<<1)==0 ){
 | |
|           sqlite3_result_error(context, "integer overflow", -1);
 | |
|           return;
 | |
|         }
 | |
|         iVal = -iVal;
 | |
|       } 
 | |
|       sqlite3_result_int64(context, iVal);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_NULL: {
 | |
|       sqlite3_result_null(context);
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       double rVal = sqlite3_value_double(argv[0]);
 | |
|       if( rVal<0 ) rVal = -rVal;
 | |
|       sqlite3_result_double(context, rVal);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the substr() function.
 | |
| **
 | |
| ** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
 | |
| ** p1 is 1-indexed.  So substr(x,1,1) returns the first character
 | |
| ** of x.  If x is text, then we actually count UTF-8 characters.
 | |
| ** If x is a blob, then we count bytes.
 | |
| **
 | |
| ** If p1 is negative, then we begin abs(p1) from the end of x[].
 | |
| */
 | |
| static void substrFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *z;
 | |
|   const unsigned char *z2;
 | |
|   int len;
 | |
|   int p0type;
 | |
|   i64 p1, p2;
 | |
| 
 | |
|   assert( argc==3 || argc==2 );
 | |
|   p0type = sqlite3_value_type(argv[0]);
 | |
|   if( p0type==SQLITE_BLOB ){
 | |
|     len = sqlite3_value_bytes(argv[0]);
 | |
|     z = sqlite3_value_blob(argv[0]);
 | |
|     if( z==0 ) return;
 | |
|     assert( len==sqlite3_value_bytes(argv[0]) );
 | |
|   }else{
 | |
|     z = sqlite3_value_text(argv[0]);
 | |
|     if( z==0 ) return;
 | |
|     len = 0;
 | |
|     for(z2=z; *z2; len++){
 | |
|       SQLITE_SKIP_UTF8(z2);
 | |
|     }
 | |
|   }
 | |
|   p1 = sqlite3_value_int(argv[1]);
 | |
|   if( argc==3 ){
 | |
|     p2 = sqlite3_value_int(argv[2]);
 | |
|   }else{
 | |
|     p2 = SQLITE_MAX_LENGTH;
 | |
|   }
 | |
|   if( p1<0 ){
 | |
|     p1 += len;
 | |
|     if( p1<0 ){
 | |
|       p2 += p1;
 | |
|       p1 = 0;
 | |
|     }
 | |
|   }else if( p1>0 ){
 | |
|     p1--;
 | |
|   }
 | |
|   if( p1+p2>len ){
 | |
|     p2 = len-p1;
 | |
|   }
 | |
|   if( p0type!=SQLITE_BLOB ){
 | |
|     while( *z && p1 ){
 | |
|       SQLITE_SKIP_UTF8(z);
 | |
|       p1--;
 | |
|     }
 | |
|     for(z2=z; *z2 && p2; p2--){
 | |
|       SQLITE_SKIP_UTF8(z2);
 | |
|     }
 | |
|     sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
 | |
|   }else{
 | |
|     if( p2<0 ) p2 = 0;
 | |
|     sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the round() function
 | |
| */
 | |
| static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   int n = 0;
 | |
|   double r;
 | |
|   char zBuf[500];  /* larger than the %f representation of the largest double */
 | |
|   assert( argc==1 || argc==2 );
 | |
|   if( argc==2 ){
 | |
|     if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
 | |
|     n = sqlite3_value_int(argv[1]);
 | |
|     if( n>30 ) n = 30;
 | |
|     if( n<0 ) n = 0;
 | |
|   }
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   r = sqlite3_value_double(argv[0]);
 | |
|   sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
 | |
|   sqlite3AtoF(zBuf, &r);
 | |
|   sqlite3_result_double(context, r);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate nByte bytes of space using sqlite3_malloc(). If the
 | |
| ** allocation fails, call sqlite3_result_error_nomem() to notify
 | |
| ** the database handle that malloc() has failed.
 | |
| */
 | |
| static void *contextMalloc(sqlite3_context *context, int nByte){
 | |
|   char *z = sqlite3_malloc(nByte);
 | |
|   if( !z && nByte>0 ){
 | |
|     sqlite3_result_error_nomem(context);
 | |
|   }
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the upper() and lower() SQL functions.
 | |
| */
 | |
| static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   char *z1;
 | |
|   const char *z2;
 | |
|   int i, n;
 | |
|   if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
 | |
|   z2 = (char*)sqlite3_value_text(argv[0]);
 | |
|   n = sqlite3_value_bytes(argv[0]);
 | |
|   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
 | |
|   assert( z2==(char*)sqlite3_value_text(argv[0]) );
 | |
|   if( z2 ){
 | |
|     z1 = contextMalloc(context, n+1);
 | |
|     if( z1 ){
 | |
|       memcpy(z1, z2, n+1);
 | |
|       for(i=0; z1[i]; i++){
 | |
|         z1[i] = toupper(z1[i]);
 | |
|       }
 | |
|       sqlite3_result_text(context, z1, -1, sqlite3_free);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   char *z1;
 | |
|   const char *z2;
 | |
|   int i, n;
 | |
|   if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
 | |
|   z2 = (char*)sqlite3_value_text(argv[0]);
 | |
|   n = sqlite3_value_bytes(argv[0]);
 | |
|   /* Verify that the call to _bytes() does not invalidate the _text() pointer */
 | |
|   assert( z2==(char*)sqlite3_value_text(argv[0]) );
 | |
|   if( z2 ){
 | |
|     z1 = contextMalloc(context, n+1);
 | |
|     if( z1 ){
 | |
|       memcpy(z1, z2, n+1);
 | |
|       for(i=0; z1[i]; i++){
 | |
|         z1[i] = tolower(z1[i]);
 | |
|       }
 | |
|       sqlite3_result_text(context, z1, -1, sqlite3_free);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the IFNULL(), NVL(), and COALESCE() functions.  
 | |
| ** All three do the same thing.  They return the first non-NULL
 | |
| ** argument.
 | |
| */
 | |
| static void ifnullFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   for(i=0; i<argc; i++){
 | |
|     if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
 | |
|       sqlite3_result_value(context, argv[i]);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of random().  Return a random integer.  
 | |
| */
 | |
| static void randomFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite_int64 r;
 | |
|   sqlite3Randomness(sizeof(r), &r);
 | |
|   if( (r<<1)==0 ) r = 0;  /* Prevent 0x8000.... as the result so that we */
 | |
|                           /* can always do abs() of the result */
 | |
|   sqlite3_result_int64(context, r);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of randomblob(N).  Return a random blob
 | |
| ** that is N bytes long.
 | |
| */
 | |
| static void randomBlob(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int n;
 | |
|   unsigned char *p;
 | |
|   assert( argc==1 );
 | |
|   n = sqlite3_value_int(argv[0]);
 | |
|   if( n<1 ){
 | |
|     n = 1;
 | |
|   }
 | |
|   if( n>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|     return;
 | |
|   }
 | |
|   p = contextMalloc(context, n);
 | |
|   if( p ){
 | |
|     sqlite3Randomness(n, p);
 | |
|     sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the last_insert_rowid() SQL function.  The return
 | |
| ** value is the same as the sqlite3_last_insert_rowid() API function.
 | |
| */
 | |
| static void last_insert_rowid(
 | |
|   sqlite3_context *context, 
 | |
|   int arg, 
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the changes() SQL function.  The return value is the
 | |
| ** same as the sqlite3_changes() API function.
 | |
| */
 | |
| static void changes(
 | |
|   sqlite3_context *context,
 | |
|   int arg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   sqlite3_result_int(context, sqlite3_changes(db));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the total_changes() SQL function.  The return value is
 | |
| ** the same as the sqlite3_total_changes() API function.
 | |
| */
 | |
| static void total_changes(
 | |
|   sqlite3_context *context,
 | |
|   int arg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   sqlite3_result_int(context, sqlite3_total_changes(db));
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A structure defining how to do GLOB-style comparisons.
 | |
| */
 | |
| struct compareInfo {
 | |
|   u8 matchAll;
 | |
|   u8 matchOne;
 | |
|   u8 matchSet;
 | |
|   u8 noCase;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** For LIKE and GLOB matching on EBCDIC machines, assume that every
 | |
| ** character is exactly one byte in size.  Also, all characters are
 | |
| ** able to participate in upper-case-to-lower-case mappings in EBCDIC
 | |
| ** whereas only characters less than 0x80 do in ASCII.
 | |
| */
 | |
| #if defined(SQLITE_EBCDIC)
 | |
| # define sqlite3Utf8Read(A,B,C)  (*(A++))
 | |
| # define GlogUpperToLower(A)     A = sqlite3UpperToLower[A]
 | |
| #else
 | |
| # define GlogUpperToLower(A)     if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
 | |
| #endif
 | |
| 
 | |
| static const struct compareInfo globInfo = { '*', '?', '[', 0 };
 | |
| /* The correct SQL-92 behavior is for the LIKE operator to ignore
 | |
| ** case.  Thus  'a' LIKE 'A' would be true. */
 | |
| static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
 | |
| /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
 | |
| ** is case sensitive causing 'a' LIKE 'A' to be false */
 | |
| static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
 | |
| 
 | |
| /*
 | |
| ** Compare two UTF-8 strings for equality where the first string can
 | |
| ** potentially be a "glob" expression.  Return true (1) if they
 | |
| ** are the same and false (0) if they are different.
 | |
| **
 | |
| ** Globbing rules:
 | |
| **
 | |
| **      '*'       Matches any sequence of zero or more characters.
 | |
| **
 | |
| **      '?'       Matches exactly one character.
 | |
| **
 | |
| **     [...]      Matches one character from the enclosed list of
 | |
| **                characters.
 | |
| **
 | |
| **     [^...]     Matches one character not in the enclosed list.
 | |
| **
 | |
| ** With the [...] and [^...] matching, a ']' character can be included
 | |
| ** in the list by making it the first character after '[' or '^'.  A
 | |
| ** range of characters can be specified using '-'.  Example:
 | |
| ** "[a-z]" matches any single lower-case letter.  To match a '-', make
 | |
| ** it the last character in the list.
 | |
| **
 | |
| ** This routine is usually quick, but can be N**2 in the worst case.
 | |
| **
 | |
| ** Hints: to match '*' or '?', put them in "[]".  Like this:
 | |
| **
 | |
| **         abc[*]xyz        Matches "abc*xyz" only
 | |
| */
 | |
| static int patternCompare(
 | |
|   const u8 *zPattern,              /* The glob pattern */
 | |
|   const u8 *zString,               /* The string to compare against the glob */
 | |
|   const struct compareInfo *pInfo, /* Information about how to do the compare */
 | |
|   const int esc                    /* The escape character */
 | |
| ){
 | |
|   int c, c2;
 | |
|   int invert;
 | |
|   int seen;
 | |
|   u8 matchOne = pInfo->matchOne;
 | |
|   u8 matchAll = pInfo->matchAll;
 | |
|   u8 matchSet = pInfo->matchSet;
 | |
|   u8 noCase = pInfo->noCase; 
 | |
|   int prevEscape = 0;     /* True if the previous character was 'escape' */
 | |
| 
 | |
|   while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
 | |
|     if( !prevEscape && c==matchAll ){
 | |
|       while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
 | |
|                || c == matchOne ){
 | |
|         if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
 | |
|           return 0;
 | |
|         }
 | |
|       }
 | |
|       if( c==0 ){
 | |
|         return 1;
 | |
|       }else if( c==esc ){
 | |
|         c = sqlite3Utf8Read(zPattern, 0, &zPattern);
 | |
|         if( c==0 ){
 | |
|           return 0;
 | |
|         }
 | |
|       }else if( c==matchSet ){
 | |
|         assert( esc==0 );         /* This is GLOB, not LIKE */
 | |
|         assert( matchSet<0x80 );  /* '[' is a single-byte character */
 | |
|         while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
 | |
|           SQLITE_SKIP_UTF8(zString);
 | |
|         }
 | |
|         return *zString!=0;
 | |
|       }
 | |
|       while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
 | |
|         if( noCase ){
 | |
|           GlogUpperToLower(c2);
 | |
|           GlogUpperToLower(c);
 | |
|           while( c2 != 0 && c2 != c ){
 | |
|             c2 = sqlite3Utf8Read(zString, 0, &zString);
 | |
|             GlogUpperToLower(c2);
 | |
|           }
 | |
|         }else{
 | |
|           while( c2 != 0 && c2 != c ){
 | |
|             c2 = sqlite3Utf8Read(zString, 0, &zString);
 | |
|           }
 | |
|         }
 | |
|         if( c2==0 ) return 0;
 | |
|         if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
 | |
|       }
 | |
|       return 0;
 | |
|     }else if( !prevEscape && c==matchOne ){
 | |
|       if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
 | |
|         return 0;
 | |
|       }
 | |
|     }else if( c==matchSet ){
 | |
|       int prior_c = 0;
 | |
|       assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
 | |
|       seen = 0;
 | |
|       invert = 0;
 | |
|       c = sqlite3Utf8Read(zString, 0, &zString);
 | |
|       if( c==0 ) return 0;
 | |
|       c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
 | |
|       if( c2=='^' ){
 | |
|         invert = 1;
 | |
|         c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
 | |
|       }
 | |
|       if( c2==']' ){
 | |
|         if( c==']' ) seen = 1;
 | |
|         c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
 | |
|       }
 | |
|       while( c2 && c2!=']' ){
 | |
|         if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
 | |
|           c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
 | |
|           if( c>=prior_c && c<=c2 ) seen = 1;
 | |
|           prior_c = 0;
 | |
|         }else{
 | |
|           if( c==c2 ){
 | |
|             seen = 1;
 | |
|           }
 | |
|           prior_c = c2;
 | |
|         }
 | |
|         c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
 | |
|       }
 | |
|       if( c2==0 || (seen ^ invert)==0 ){
 | |
|         return 0;
 | |
|       }
 | |
|     }else if( esc==c && !prevEscape ){
 | |
|       prevEscape = 1;
 | |
|     }else{
 | |
|       c2 = sqlite3Utf8Read(zString, 0, &zString);
 | |
|       if( noCase ){
 | |
|         GlogUpperToLower(c);
 | |
|         GlogUpperToLower(c2);
 | |
|       }
 | |
|       if( c!=c2 ){
 | |
|         return 0;
 | |
|       }
 | |
|       prevEscape = 0;
 | |
|     }
 | |
|   }
 | |
|   return *zString==0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Count the number of times that the LIKE operator (or GLOB which is
 | |
| ** just a variation of LIKE) gets called.  This is used for testing
 | |
| ** only.
 | |
| */
 | |
| #ifdef SQLITE_TEST
 | |
| SQLITE_API int sqlite3_like_count = 0;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of the like() SQL function.  This function implements
 | |
| ** the build-in LIKE operator.  The first argument to the function is the
 | |
| ** pattern and the second argument is the string.  So, the SQL statements:
 | |
| **
 | |
| **       A LIKE B
 | |
| **
 | |
| ** is implemented as like(B,A).
 | |
| **
 | |
| ** This same function (with a different compareInfo structure) computes
 | |
| ** the GLOB operator.
 | |
| */
 | |
| static void likeFunc(
 | |
|   sqlite3_context *context, 
 | |
|   int argc, 
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *zA, *zB;
 | |
|   int escape = 0;
 | |
| 
 | |
|   zB = sqlite3_value_text(argv[0]);
 | |
|   zA = sqlite3_value_text(argv[1]);
 | |
| 
 | |
|   /* Limit the length of the LIKE or GLOB pattern to avoid problems
 | |
|   ** of deep recursion and N*N behavior in patternCompare().
 | |
|   */
 | |
|   if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){
 | |
|     sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
 | |
|     return;
 | |
|   }
 | |
|   assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
 | |
| 
 | |
|   if( argc==3 ){
 | |
|     /* The escape character string must consist of a single UTF-8 character.
 | |
|     ** Otherwise, return an error.
 | |
|     */
 | |
|     const unsigned char *zEsc = sqlite3_value_text(argv[2]);
 | |
|     if( zEsc==0 ) return;
 | |
|     if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
 | |
|       sqlite3_result_error(context, 
 | |
|           "ESCAPE expression must be a single character", -1);
 | |
|       return;
 | |
|     }
 | |
|     escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
 | |
|   }
 | |
|   if( zA && zB ){
 | |
|     struct compareInfo *pInfo = sqlite3_user_data(context);
 | |
| #ifdef SQLITE_TEST
 | |
|     sqlite3_like_count++;
 | |
| #endif
 | |
|     
 | |
|     sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the NULLIF(x,y) function.  The result is the first
 | |
| ** argument if the arguments are different.  The result is NULL if the
 | |
| ** arguments are equal to each other.
 | |
| */
 | |
| static void nullifFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   CollSeq *pColl = sqlite3GetFuncCollSeq(context);
 | |
|   if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
 | |
|     sqlite3_result_value(context, argv[0]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the VERSION(*) function.  The result is the version
 | |
| ** of the SQLite library that is running.
 | |
| */
 | |
| static void versionFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
 | |
| }
 | |
| 
 | |
| /* Array for converting from half-bytes (nybbles) into ASCII hex
 | |
| ** digits. */
 | |
| static const char hexdigits[] = {
 | |
|   '0', '1', '2', '3', '4', '5', '6', '7',
 | |
|   '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** EXPERIMENTAL - This is not an official function.  The interface may
 | |
| ** change.  This function may disappear.  Do not write code that depends
 | |
| ** on this function.
 | |
| **
 | |
| ** Implementation of the QUOTE() function.  This function takes a single
 | |
| ** argument.  If the argument is numeric, the return value is the same as
 | |
| ** the argument.  If the argument is NULL, the return value is the string
 | |
| ** "NULL".  Otherwise, the argument is enclosed in single quotes with
 | |
| ** single-quote escapes.
 | |
| */
 | |
| static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   if( argc<1 ) return;
 | |
|   switch( sqlite3_value_type(argv[0]) ){
 | |
|     case SQLITE_NULL: {
 | |
|       sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_INTEGER:
 | |
|     case SQLITE_FLOAT: {
 | |
|       sqlite3_result_value(context, argv[0]);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_BLOB: {
 | |
|       char *zText = 0;
 | |
|       char const *zBlob = sqlite3_value_blob(argv[0]);
 | |
|       int nBlob = sqlite3_value_bytes(argv[0]);
 | |
|       assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
 | |
| 
 | |
|       if( 2*nBlob+4>SQLITE_MAX_LENGTH ){
 | |
|         sqlite3_result_error_toobig(context);
 | |
|         return;
 | |
|       }
 | |
|       zText = (char *)contextMalloc(context, (2*nBlob)+4); 
 | |
|       if( zText ){
 | |
|         int i;
 | |
|         for(i=0; i<nBlob; i++){
 | |
|           zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
 | |
|           zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
 | |
|         }
 | |
|         zText[(nBlob*2)+2] = '\'';
 | |
|         zText[(nBlob*2)+3] = '\0';
 | |
|         zText[0] = 'X';
 | |
|         zText[1] = '\'';
 | |
|         sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
 | |
|         sqlite3_free(zText);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TEXT: {
 | |
|       int i,j;
 | |
|       u64 n;
 | |
|       const unsigned char *zArg = sqlite3_value_text(argv[0]);
 | |
|       char *z;
 | |
| 
 | |
|       if( zArg==0 ) return;
 | |
|       for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
 | |
|       if( i+n+3>SQLITE_MAX_LENGTH ){
 | |
|         sqlite3_result_error_toobig(context);
 | |
|         return;
 | |
|       }
 | |
|       z = contextMalloc(context, i+n+3);
 | |
|       if( z ){
 | |
|         z[0] = '\'';
 | |
|         for(i=0, j=1; zArg[i]; i++){
 | |
|           z[j++] = zArg[i];
 | |
|           if( zArg[i]=='\'' ){
 | |
|             z[j++] = '\'';
 | |
|           }
 | |
|         }
 | |
|         z[j++] = '\'';
 | |
|         z[j] = 0;
 | |
|         sqlite3_result_text(context, z, j, sqlite3_free);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The hex() function.  Interpret the argument as a blob.  Return
 | |
| ** a hexadecimal rendering as text.
 | |
| */
 | |
| static void hexFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i, n;
 | |
|   const unsigned char *pBlob;
 | |
|   char *zHex, *z;
 | |
|   assert( argc==1 );
 | |
|   pBlob = sqlite3_value_blob(argv[0]);
 | |
|   n = sqlite3_value_bytes(argv[0]);
 | |
|   if( n*2+1>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|     return;
 | |
|   }
 | |
|   assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
 | |
|   z = zHex = contextMalloc(context, n*2 + 1);
 | |
|   if( zHex ){
 | |
|     for(i=0; i<n; i++, pBlob++){
 | |
|       unsigned char c = *pBlob;
 | |
|       *(z++) = hexdigits[(c>>4)&0xf];
 | |
|       *(z++) = hexdigits[c&0xf];
 | |
|     }
 | |
|     *z = 0;
 | |
|     sqlite3_result_text(context, zHex, n*2, sqlite3_free);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
 | |
| */
 | |
| static void zeroblobFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   i64 n;
 | |
|   assert( argc==1 );
 | |
|   n = sqlite3_value_int64(argv[0]);
 | |
|   if( n>SQLITE_MAX_LENGTH ){
 | |
|     sqlite3_result_error_toobig(context);
 | |
|   }else{
 | |
|     sqlite3_result_zeroblob(context, n);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The replace() function.  Three arguments are all strings: call
 | |
| ** them A, B, and C. The result is also a string which is derived
 | |
| ** from A by replacing every occurance of B with C.  The match
 | |
| ** must be exact.  Collating sequences are not used.
 | |
| */
 | |
| static void replaceFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *zStr;        /* The input string A */
 | |
|   const unsigned char *zPattern;    /* The pattern string B */
 | |
|   const unsigned char *zRep;        /* The replacement string C */
 | |
|   unsigned char *zOut;              /* The output */
 | |
|   int nStr;                /* Size of zStr */
 | |
|   int nPattern;            /* Size of zPattern */
 | |
|   int nRep;                /* Size of zRep */
 | |
|   i64 nOut;                /* Maximum size of zOut */
 | |
|   int loopLimit;           /* Last zStr[] that might match zPattern[] */
 | |
|   int i, j;                /* Loop counters */
 | |
| 
 | |
|   assert( argc==3 );
 | |
|   zStr = sqlite3_value_text(argv[0]);
 | |
|   if( zStr==0 ) return;
 | |
|   nStr = sqlite3_value_bytes(argv[0]);
 | |
|   assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
 | |
|   zPattern = sqlite3_value_text(argv[1]);
 | |
|   if( zPattern==0 || zPattern[0]==0 ) return;
 | |
|   nPattern = sqlite3_value_bytes(argv[1]);
 | |
|   assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
 | |
|   zRep = sqlite3_value_text(argv[2]);
 | |
|   if( zRep==0 ) return;
 | |
|   nRep = sqlite3_value_bytes(argv[2]);
 | |
|   assert( zRep==sqlite3_value_text(argv[2]) );
 | |
|   nOut = nStr + 1;
 | |
|   assert( nOut<SQLITE_MAX_LENGTH );
 | |
|   zOut = contextMalloc(context, (int)nOut);
 | |
|   if( zOut==0 ){
 | |
|     return;
 | |
|   }
 | |
|   loopLimit = nStr - nPattern;  
 | |
|   for(i=j=0; i<=loopLimit; i++){
 | |
|     if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
 | |
|       zOut[j++] = zStr[i];
 | |
|     }else{
 | |
|       u8 *zOld;
 | |
|       nOut += nRep - nPattern;
 | |
|       if( nOut>=SQLITE_MAX_LENGTH ){
 | |
|         sqlite3_result_error_toobig(context);
 | |
|         sqlite3_free(zOut);
 | |
|         return;
 | |
|       }
 | |
|       zOld = zOut;
 | |
|       zOut = sqlite3_realloc(zOut, (int)nOut);
 | |
|       if( zOut==0 ){
 | |
|         sqlite3_result_error_nomem(context);
 | |
|         sqlite3_free(zOld);
 | |
|         return;
 | |
|       }
 | |
|       memcpy(&zOut[j], zRep, nRep);
 | |
|       j += nRep;
 | |
|       i += nPattern-1;
 | |
|     }
 | |
|   }
 | |
|   assert( j+nStr-i+1==nOut );
 | |
|   memcpy(&zOut[j], &zStr[i], nStr-i);
 | |
|   j += nStr - i;
 | |
|   assert( j<=nOut );
 | |
|   zOut[j] = 0;
 | |
|   sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
 | |
| ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
 | |
| */
 | |
| static void trimFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const unsigned char *zIn;         /* Input string */
 | |
|   const unsigned char *zCharSet;    /* Set of characters to trim */
 | |
|   int nIn;                          /* Number of bytes in input */
 | |
|   sqlite3_intptr_t flags;           /* 1: trimleft  2: trimright  3: trim */
 | |
|   int i;                            /* Loop counter */
 | |
|   unsigned char *aLen;              /* Length of each character in zCharSet */
 | |
|   unsigned char **azChar;           /* Individual characters in zCharSet */
 | |
|   int nChar;                        /* Number of characters in zCharSet */
 | |
| 
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
 | |
|     return;
 | |
|   }
 | |
|   zIn = sqlite3_value_text(argv[0]);
 | |
|   if( zIn==0 ) return;
 | |
|   nIn = sqlite3_value_bytes(argv[0]);
 | |
|   assert( zIn==sqlite3_value_text(argv[0]) );
 | |
|   if( argc==1 ){
 | |
|     static const unsigned char lenOne[] = { 1 };
 | |
|     static const unsigned char *azOne[] = { (u8*)" " };
 | |
|     nChar = 1;
 | |
|     aLen = (u8*)lenOne;
 | |
|     azChar = (unsigned char **)azOne;
 | |
|     zCharSet = 0;
 | |
|   }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
 | |
|     return;
 | |
|   }else{
 | |
|     const unsigned char *z;
 | |
|     for(z=zCharSet, nChar=0; *z; nChar++){
 | |
|       SQLITE_SKIP_UTF8(z);
 | |
|     }
 | |
|     if( nChar>0 ){
 | |
|       azChar = contextMalloc(context, nChar*(sizeof(char*)+1));
 | |
|       if( azChar==0 ){
 | |
|         return;
 | |
|       }
 | |
|       aLen = (unsigned char*)&azChar[nChar];
 | |
|       for(z=zCharSet, nChar=0; *z; nChar++){
 | |
|         azChar[nChar] = (unsigned char *)z;
 | |
|         SQLITE_SKIP_UTF8(z);
 | |
|         aLen[nChar] = z - azChar[nChar];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if( nChar>0 ){
 | |
|     flags = (sqlite3_intptr_t)sqlite3_user_data(context);
 | |
|     if( flags & 1 ){
 | |
|       while( nIn>0 ){
 | |
|         int len;
 | |
|         for(i=0; i<nChar; i++){
 | |
|           len = aLen[i];
 | |
|           if( memcmp(zIn, azChar[i], len)==0 ) break;
 | |
|         }
 | |
|         if( i>=nChar ) break;
 | |
|         zIn += len;
 | |
|         nIn -= len;
 | |
|       }
 | |
|     }
 | |
|     if( flags & 2 ){
 | |
|       while( nIn>0 ){
 | |
|         int len;
 | |
|         for(i=0; i<nChar; i++){
 | |
|           len = aLen[i];
 | |
|           if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
 | |
|         }
 | |
|         if( i>=nChar ) break;
 | |
|         nIn -= len;
 | |
|       }
 | |
|     }
 | |
|     if( zCharSet ){
 | |
|       sqlite3_free(azChar);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_SOUNDEX
 | |
| /*
 | |
| ** Compute the soundex encoding of a word.
 | |
| */
 | |
| static void soundexFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   char zResult[8];
 | |
|   const u8 *zIn;
 | |
|   int i, j;
 | |
|   static const unsigned char iCode[] = {
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 | |
|     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
 | |
|     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
 | |
|     0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
 | |
|     1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
 | |
|   };
 | |
|   assert( argc==1 );
 | |
|   zIn = (u8*)sqlite3_value_text(argv[0]);
 | |
|   if( zIn==0 ) zIn = (u8*)"";
 | |
|   for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
 | |
|   if( zIn[i] ){
 | |
|     u8 prevcode = iCode[zIn[i]&0x7f];
 | |
|     zResult[0] = toupper(zIn[i]);
 | |
|     for(j=1; j<4 && zIn[i]; i++){
 | |
|       int code = iCode[zIn[i]&0x7f];
 | |
|       if( code>0 ){
 | |
|         if( code!=prevcode ){
 | |
|           prevcode = code;
 | |
|           zResult[j++] = code + '0';
 | |
|         }
 | |
|       }else{
 | |
|         prevcode = 0;
 | |
|       }
 | |
|     }
 | |
|     while( j<4 ){
 | |
|       zResult[j++] = '0';
 | |
|     }
 | |
|     zResult[j] = 0;
 | |
|     sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
 | |
|   }else{
 | |
|     sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| /*
 | |
| ** A function that loads a shared-library extension then returns NULL.
 | |
| */
 | |
| static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   const char *zFile = (const char *)sqlite3_value_text(argv[0]);
 | |
|   const char *zProc;
 | |
|   sqlite3 *db = sqlite3_user_data(context);
 | |
|   char *zErrMsg = 0;
 | |
| 
 | |
|   if( argc==2 ){
 | |
|     zProc = (const char *)sqlite3_value_text(argv[1]);
 | |
|   }else{
 | |
|     zProc = 0;
 | |
|   }
 | |
|   if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
 | |
|     sqlite3_result_error(context, zErrMsg, -1);
 | |
|     sqlite3_free(zErrMsg);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** This function generates a string of random characters.  Used for
 | |
| ** generating test data.
 | |
| */
 | |
| static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   static const unsigned char zSrc[] = 
 | |
|      "abcdefghijklmnopqrstuvwxyz"
 | |
|      "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 | |
|      "0123456789"
 | |
|      ".-!,:*^+=_|?/<> ";
 | |
|   int iMin, iMax, n, r, i;
 | |
|   unsigned char zBuf[1000];
 | |
| 
 | |
|   /* It used to be possible to call randstr() with any number of arguments,
 | |
|   ** but now it is registered with SQLite as requiring exactly 2.
 | |
|   */
 | |
|   assert(argc==2);
 | |
| 
 | |
|   iMin = sqlite3_value_int(argv[0]);
 | |
|   if( iMin<0 ) iMin = 0;
 | |
|   if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
 | |
|   iMax = sqlite3_value_int(argv[1]);
 | |
|   if( iMax<iMin ) iMax = iMin;
 | |
|   if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
 | |
|   n = iMin;
 | |
|   if( iMax>iMin ){
 | |
|     sqlite3Randomness(sizeof(r), &r);
 | |
|     r &= 0x7fffffff;
 | |
|     n += r%(iMax + 1 - iMin);
 | |
|   }
 | |
|   assert( n<sizeof(zBuf) );
 | |
|   sqlite3Randomness(n, zBuf);
 | |
|   for(i=0; i<n; i++){
 | |
|     zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
 | |
|   }
 | |
|   zBuf[n] = 0;
 | |
|   sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** The following two SQL functions are used to test returning a text
 | |
| ** result with a destructor. Function 'test_destructor' takes one argument
 | |
| ** and returns the same argument interpreted as TEXT. A destructor is
 | |
| ** passed with the sqlite3_result_text() call.
 | |
| **
 | |
| ** SQL function 'test_destructor_count' returns the number of outstanding 
 | |
| ** allocations made by 'test_destructor';
 | |
| **
 | |
| ** WARNING: Not threadsafe.
 | |
| */
 | |
| static int test_destructor_count_var = 0;
 | |
| static void destructor(void *p){
 | |
|   char *zVal = (char *)p;
 | |
|   assert(zVal);
 | |
|   zVal--;
 | |
|   sqlite3_free(zVal);
 | |
|   test_destructor_count_var--;
 | |
| }
 | |
| static void test_destructor(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   char *zVal;
 | |
|   int len;
 | |
|   sqlite3 *db = sqlite3_user_data(pCtx);
 | |
|  
 | |
|   test_destructor_count_var++;
 | |
|   assert( nArg==1 );
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   len = sqlite3ValueBytes(argv[0], ENC(db)); 
 | |
|   zVal = contextMalloc(pCtx, len+3);
 | |
|   if( !zVal ){
 | |
|     return;
 | |
|   }
 | |
|   zVal[len+1] = 0;
 | |
|   zVal[len+2] = 0;
 | |
|   zVal++;
 | |
|   memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len);
 | |
|   if( ENC(db)==SQLITE_UTF8 ){
 | |
|     sqlite3_result_text(pCtx, zVal, -1, destructor);
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   }else if( ENC(db)==SQLITE_UTF16LE ){
 | |
|     sqlite3_result_text16le(pCtx, zVal, -1, destructor);
 | |
|   }else{
 | |
|     sqlite3_result_text16be(pCtx, zVal, -1, destructor);
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
|   }
 | |
| }
 | |
| static void test_destructor_count(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_result_int(pCtx, test_destructor_count_var);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
 | |
| ** interface.
 | |
| **
 | |
| ** The test_auxdata() SQL function attempts to register each of its arguments
 | |
| ** as auxiliary data.  If there are no prior registrations of aux data for
 | |
| ** that argument (meaning the argument is not a constant or this is its first
 | |
| ** call) then the result for that argument is 0.  If there is a prior
 | |
| ** registration, the result for that argument is 1.  The overall result
 | |
| ** is the individual argument results separated by spaces.
 | |
| */
 | |
| static void free_test_auxdata(void *p) {sqlite3_free(p);}
 | |
| static void test_auxdata(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int i;
 | |
|   char *zRet = contextMalloc(pCtx, nArg*2);
 | |
|   if( !zRet ) return;
 | |
|   memset(zRet, 0, nArg*2);
 | |
|   for(i=0; i<nArg; i++){
 | |
|     char const *z = (char*)sqlite3_value_text(argv[i]);
 | |
|     if( z ){
 | |
|       int n;
 | |
|       char *zAux = sqlite3_get_auxdata(pCtx, i);
 | |
|       if( zAux ){
 | |
|         zRet[i*2] = '1';
 | |
|         assert( strcmp(zAux,z)==0 );
 | |
|       }else {
 | |
|         zRet[i*2] = '0';
 | |
|       }
 | |
|       n = strlen(z) + 1;
 | |
|       zAux = contextMalloc(pCtx, n);
 | |
|       if( zAux ){
 | |
|         memcpy(zAux, z, n);
 | |
|         sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
 | |
|       }
 | |
|       zRet[i*2+1] = ' ';
 | |
|     }
 | |
|   }
 | |
|   sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** A function to test error reporting from user functions. This function
 | |
| ** returns a copy of its first argument as an error.
 | |
| */
 | |
| static void test_error(
 | |
|   sqlite3_context *pCtx, 
 | |
|   int nArg,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0);
 | |
| }
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure holds the context of a
 | |
| ** sum() or avg() aggregate computation.
 | |
| */
 | |
| typedef struct SumCtx SumCtx;
 | |
| struct SumCtx {
 | |
|   double rSum;      /* Floating point sum */
 | |
|   i64 iSum;         /* Integer sum */   
 | |
|   i64 cnt;          /* Number of elements summed */
 | |
|   u8 overflow;      /* True if integer overflow seen */
 | |
|   u8 approx;        /* True if non-integer value was input to the sum */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Routines used to compute the sum, average, and total.
 | |
| **
 | |
| ** The SUM() function follows the (broken) SQL standard which means
 | |
| ** that it returns NULL if it sums over no inputs.  TOTAL returns
 | |
| ** 0.0 in that case.  In addition, TOTAL always returns a float where
 | |
| ** SUM might return an integer if it never encounters a floating point
 | |
| ** value.  TOTAL never fails, but SUM might through an exception if
 | |
| ** it overflows an integer.
 | |
| */
 | |
| static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   SumCtx *p;
 | |
|   int type;
 | |
|   assert( argc==1 );
 | |
|   p = sqlite3_aggregate_context(context, sizeof(*p));
 | |
|   type = sqlite3_value_numeric_type(argv[0]);
 | |
|   if( p && type!=SQLITE_NULL ){
 | |
|     p->cnt++;
 | |
|     if( type==SQLITE_INTEGER ){
 | |
|       i64 v = sqlite3_value_int64(argv[0]);
 | |
|       p->rSum += v;
 | |
|       if( (p->approx|p->overflow)==0 ){
 | |
|         i64 iNewSum = p->iSum + v;
 | |
|         int s1 = p->iSum >> (sizeof(i64)*8-1);
 | |
|         int s2 = v       >> (sizeof(i64)*8-1);
 | |
|         int s3 = iNewSum >> (sizeof(i64)*8-1);
 | |
|         p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
 | |
|         p->iSum = iNewSum;
 | |
|       }
 | |
|     }else{
 | |
|       p->rSum += sqlite3_value_double(argv[0]);
 | |
|       p->approx = 1;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void sumFinalize(sqlite3_context *context){
 | |
|   SumCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   if( p && p->cnt>0 ){
 | |
|     if( p->overflow ){
 | |
|       sqlite3_result_error(context,"integer overflow",-1);
 | |
|     }else if( p->approx ){
 | |
|       sqlite3_result_double(context, p->rSum);
 | |
|     }else{
 | |
|       sqlite3_result_int64(context, p->iSum);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void avgFinalize(sqlite3_context *context){
 | |
|   SumCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   if( p && p->cnt>0 ){
 | |
|     sqlite3_result_double(context, p->rSum/(double)p->cnt);
 | |
|   }
 | |
| }
 | |
| static void totalFinalize(sqlite3_context *context){
 | |
|   SumCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   sqlite3_result_double(context, p ? p->rSum : 0.0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following structure keeps track of state information for the
 | |
| ** count() aggregate function.
 | |
| */
 | |
| typedef struct CountCtx CountCtx;
 | |
| struct CountCtx {
 | |
|   i64 n;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Routines to implement the count() aggregate function.
 | |
| */
 | |
| static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   CountCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, sizeof(*p));
 | |
|   if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
 | |
|     p->n++;
 | |
|   }
 | |
| }   
 | |
| static void countFinalize(sqlite3_context *context){
 | |
|   CountCtx *p;
 | |
|   p = sqlite3_aggregate_context(context, 0);
 | |
|   sqlite3_result_int64(context, p ? p->n : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Routines to implement min() and max() aggregate functions.
 | |
| */
 | |
| static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
 | |
|   Mem *pArg  = (Mem *)argv[0];
 | |
|   Mem *pBest;
 | |
| 
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
 | |
|   if( !pBest ) return;
 | |
| 
 | |
|   if( pBest->flags ){
 | |
|     int max;
 | |
|     int cmp;
 | |
|     CollSeq *pColl = sqlite3GetFuncCollSeq(context);
 | |
|     /* This step function is used for both the min() and max() aggregates,
 | |
|     ** the only difference between the two being that the sense of the
 | |
|     ** comparison is inverted. For the max() aggregate, the
 | |
|     ** sqlite3_user_data() function returns (void *)-1. For min() it
 | |
|     ** returns (void *)db, where db is the sqlite3* database pointer.
 | |
|     ** Therefore the next statement sets variable 'max' to 1 for the max()
 | |
|     ** aggregate, or 0 for min().
 | |
|     */
 | |
|     max = sqlite3_user_data(context)!=0;
 | |
|     cmp = sqlite3MemCompare(pBest, pArg, pColl);
 | |
|     if( (max && cmp<0) || (!max && cmp>0) ){
 | |
|       sqlite3VdbeMemCopy(pBest, pArg);
 | |
|     }
 | |
|   }else{
 | |
|     sqlite3VdbeMemCopy(pBest, pArg);
 | |
|   }
 | |
| }
 | |
| static void minMaxFinalize(sqlite3_context *context){
 | |
|   sqlite3_value *pRes;
 | |
|   pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
 | |
|   if( pRes ){
 | |
|     if( pRes->flags ){
 | |
|       sqlite3_result_value(context, pRes);
 | |
|     }
 | |
|     sqlite3VdbeMemRelease(pRes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** group_concat(EXPR, ?SEPARATOR?)
 | |
| */
 | |
| static void groupConcatStep(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   const char *zVal;
 | |
|   StrAccum *pAccum;
 | |
|   const char *zSep;
 | |
|   int nVal, nSep;
 | |
|   if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
 | |
|   pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
 | |
| 
 | |
|   if( pAccum ){
 | |
|     pAccum->useMalloc = 1;
 | |
|     if( pAccum->nChar ){
 | |
|       if( argc==2 ){
 | |
|         zSep = (char*)sqlite3_value_text(argv[1]);
 | |
|         nSep = sqlite3_value_bytes(argv[1]);
 | |
|       }else{
 | |
|         zSep = ",";
 | |
|         nSep = 1;
 | |
|       }
 | |
|       sqlite3StrAccumAppend(pAccum, zSep, nSep);
 | |
|     }
 | |
|     zVal = (char*)sqlite3_value_text(argv[0]);
 | |
|     nVal = sqlite3_value_bytes(argv[0]);
 | |
|     sqlite3StrAccumAppend(pAccum, zVal, nVal);
 | |
|   }
 | |
| }
 | |
| static void groupConcatFinalize(sqlite3_context *context){
 | |
|   StrAccum *pAccum;
 | |
|   pAccum = sqlite3_aggregate_context(context, 0);
 | |
|   if( pAccum ){
 | |
|     if( pAccum->tooBig ){
 | |
|       sqlite3_result_error_toobig(context);
 | |
|     }else if( pAccum->mallocFailed ){
 | |
|       sqlite3_result_error_nomem(context);
 | |
|     }else{    
 | |
|       sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
 | |
|                           sqlite3_free);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function registered all of the above C functions as SQL
 | |
| ** functions.  This should be the only routine in this file with
 | |
| ** external linkage.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
 | |
|   static const struct {
 | |
|      char *zName;
 | |
|      signed char nArg;
 | |
|      u8 argType;           /* ff: db   1: 0, 2: 1, 3: 2,...  N:  N-1. */
 | |
|      u8 eTextRep;          /* 1: UTF-16.  0: UTF-8 */
 | |
|      u8 needCollSeq;
 | |
|      void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
 | |
|   } aFuncs[] = {
 | |
|     { "min",               -1, 0, SQLITE_UTF8,    1, minmaxFunc },
 | |
|     { "min",                0, 0, SQLITE_UTF8,    1, 0          },
 | |
|     { "max",               -1, 1, SQLITE_UTF8,    1, minmaxFunc },
 | |
|     { "max",                0, 1, SQLITE_UTF8,    1, 0          },
 | |
|     { "typeof",             1, 0, SQLITE_UTF8,    0, typeofFunc },
 | |
|     { "length",             1, 0, SQLITE_UTF8,    0, lengthFunc },
 | |
|     { "substr",             2, 0, SQLITE_UTF8,    0, substrFunc },
 | |
|     { "substr",             3, 0, SQLITE_UTF8,    0, substrFunc },
 | |
|     { "abs",                1, 0, SQLITE_UTF8,    0, absFunc    },
 | |
|     { "round",              1, 0, SQLITE_UTF8,    0, roundFunc  },
 | |
|     { "round",              2, 0, SQLITE_UTF8,    0, roundFunc  },
 | |
|     { "upper",              1, 0, SQLITE_UTF8,    0, upperFunc  },
 | |
|     { "lower",              1, 0, SQLITE_UTF8,    0, lowerFunc  },
 | |
|     { "coalesce",          -1, 0, SQLITE_UTF8,    0, ifnullFunc },
 | |
|     { "coalesce",           0, 0, SQLITE_UTF8,    0, 0          },
 | |
|     { "coalesce",           1, 0, SQLITE_UTF8,    0, 0          },
 | |
|     { "hex",                1, 0, SQLITE_UTF8,    0, hexFunc    },
 | |
|     { "ifnull",             2, 0, SQLITE_UTF8,    1, ifnullFunc },
 | |
|     { "random",            -1, 0, SQLITE_UTF8,    0, randomFunc },
 | |
|     { "randomblob",         1, 0, SQLITE_UTF8,    0, randomBlob },
 | |
|     { "nullif",             2, 0, SQLITE_UTF8,    1, nullifFunc },
 | |
|     { "sqlite_version",     0, 0, SQLITE_UTF8,    0, versionFunc},
 | |
|     { "quote",              1, 0, SQLITE_UTF8,    0, quoteFunc  },
 | |
|     { "last_insert_rowid",  0, 0xff, SQLITE_UTF8, 0, last_insert_rowid },
 | |
|     { "changes",            0, 0xff, SQLITE_UTF8, 0, changes           },
 | |
|     { "total_changes",      0, 0xff, SQLITE_UTF8, 0, total_changes     },
 | |
|     { "replace",            3, 0, SQLITE_UTF8,    0, replaceFunc       },
 | |
|     { "ltrim",              1, 1, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "ltrim",              2, 1, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "rtrim",              1, 2, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "rtrim",              2, 2, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "trim",               1, 3, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "trim",               2, 3, SQLITE_UTF8,    0, trimFunc          },
 | |
|     { "zeroblob",           1, 0, SQLITE_UTF8,    0, zeroblobFunc      },
 | |
| #ifdef SQLITE_SOUNDEX
 | |
|     { "soundex",            1, 0, SQLITE_UTF8,    0, soundexFunc},
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
|     { "load_extension",     1, 0xff, SQLITE_UTF8, 0, loadExt },
 | |
|     { "load_extension",     2, 0xff, SQLITE_UTF8, 0, loadExt },
 | |
| #endif
 | |
| #ifdef SQLITE_TEST
 | |
|     { "randstr",               2, 0,    SQLITE_UTF8, 0, randStr    },
 | |
|     { "test_destructor",       1, 0xff, SQLITE_UTF8, 0, test_destructor},
 | |
|     { "test_destructor_count", 0, 0,    SQLITE_UTF8, 0, test_destructor_count},
 | |
|     { "test_auxdata",         -1, 0,    SQLITE_UTF8, 0, test_auxdata},
 | |
|     { "test_error",            1, 0,    SQLITE_UTF8, 0, test_error},
 | |
| #endif
 | |
|   };
 | |
|   static const struct {
 | |
|     char *zName;
 | |
|     signed char nArg;
 | |
|     u8 argType;
 | |
|     u8 needCollSeq;
 | |
|     void (*xStep)(sqlite3_context*,int,sqlite3_value**);
 | |
|     void (*xFinalize)(sqlite3_context*);
 | |
|   } aAggs[] = {
 | |
|     { "min",    1, 0, 1, minmaxStep,   minMaxFinalize },
 | |
|     { "max",    1, 1, 1, minmaxStep,   minMaxFinalize },
 | |
|     { "sum",    1, 0, 0, sumStep,      sumFinalize    },
 | |
|     { "total",  1, 0, 0, sumStep,      totalFinalize    },
 | |
|     { "avg",    1, 0, 0, sumStep,      avgFinalize    },
 | |
|     { "count",  0, 0, 0, countStep,    countFinalize  },
 | |
|     { "count",  1, 0, 0, countStep,    countFinalize  },
 | |
|     { "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize },
 | |
|     { "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize },
 | |
|   };
 | |
|   int i;
 | |
| 
 | |
|   for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
 | |
|     void *pArg;
 | |
|     u8 argType = aFuncs[i].argType;
 | |
|     if( argType==0xff ){
 | |
|       pArg = db;
 | |
|     }else{
 | |
|       pArg = (void*)(sqlite3_intptr_t)argType;
 | |
|     }
 | |
|     sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
 | |
|         aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
 | |
|     if( aFuncs[i].needCollSeq ){
 | |
|       FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, 
 | |
|           strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
 | |
|       if( pFunc && aFuncs[i].needCollSeq ){
 | |
|         pFunc->needCollSeq = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_ALTERTABLE
 | |
|   sqlite3AlterFunctions(db);
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_PARSER
 | |
|   sqlite3AttachFunctions(db);
 | |
| #endif
 | |
|   for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
 | |
|     void *pArg = (void*)(sqlite3_intptr_t)aAggs[i].argType;
 | |
|     sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, 
 | |
|         pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
 | |
|     if( aAggs[i].needCollSeq ){
 | |
|       FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
 | |
|           strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
 | |
|       if( pFunc && aAggs[i].needCollSeq ){
 | |
|         pFunc->needCollSeq = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3RegisterDateTimeFunctions(db);
 | |
|   if( !db->mallocFailed ){
 | |
|     int rc = sqlite3_overload_function(db, "MATCH", 2);
 | |
|     assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
 | |
|     if( rc==SQLITE_NOMEM ){
 | |
|       db->mallocFailed = 1;
 | |
|     }
 | |
|   }
 | |
| #ifdef SQLITE_SSE
 | |
|   (void)sqlite3SseFunctions(db);
 | |
| #endif
 | |
| #ifdef SQLITE_CASE_SENSITIVE_LIKE
 | |
|   sqlite3RegisterLikeFunctions(db, 1);
 | |
| #else
 | |
|   sqlite3RegisterLikeFunctions(db, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the LIKEOPT flag on the 2-argument function with the given name.
 | |
| */
 | |
| static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
 | |
|   FuncDef *pDef;
 | |
|   pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
 | |
|   if( pDef ){
 | |
|     pDef->flags = flagVal;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register the built-in LIKE and GLOB functions.  The caseSensitive
 | |
| ** parameter determines whether or not the LIKE operator is case
 | |
| ** sensitive.  GLOB is always case sensitive.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
 | |
|   struct compareInfo *pInfo;
 | |
|   if( caseSensitive ){
 | |
|     pInfo = (struct compareInfo*)&likeInfoAlt;
 | |
|   }else{
 | |
|     pInfo = (struct compareInfo*)&likeInfoNorm;
 | |
|   }
 | |
|   sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
 | |
|   sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
 | |
|   sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, 
 | |
|       (struct compareInfo*)&globInfo, likeFunc, 0,0);
 | |
|   setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
 | |
|   setLikeOptFlag(db, "like", 
 | |
|       caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pExpr points to an expression which implements a function.  If
 | |
| ** it is appropriate to apply the LIKE optimization to that function
 | |
| ** then set aWc[0] through aWc[2] to the wildcard characters and
 | |
| ** return TRUE.  If the function is not a LIKE-style function then
 | |
| ** return FALSE.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
 | |
|   FuncDef *pDef;
 | |
|   if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pExpr->pList->nExpr!=2 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
 | |
|                              SQLITE_UTF8, 0);
 | |
|   if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* The memcpy() statement assumes that the wildcard characters are
 | |
|   ** the first three statements in the compareInfo structure.  The
 | |
|   ** asserts() that follow verify that assumption
 | |
|   */
 | |
|   memcpy(aWc, pDef->pUserData, 3);
 | |
|   assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
 | |
|   assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
 | |
|   assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
 | |
|   *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /************** End of func.c ************************************************/
 | |
| /************** Begin file insert.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the parser
 | |
| ** to handle INSERT statements in SQLite.
 | |
| **
 | |
| ** $Id: insert.c,v 1.231 2008/03/06 09:58:50 mlcreech Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Set P4 of the most recently inserted opcode to a column affinity
 | |
| ** string for index pIdx. A column affinity string has one character
 | |
| ** for each column in the table, according to the affinity of the column:
 | |
| **
 | |
| **  Character      Column affinity
 | |
| **  ------------------------------
 | |
| **  'a'            TEXT
 | |
| **  'b'            NONE
 | |
| **  'c'            NUMERIC
 | |
| **  'd'            INTEGER
 | |
| **  'e'            REAL
 | |
| **
 | |
| ** An extra 'b' is appended to the end of the string to cover the
 | |
| ** rowid that appears as the last column in every index.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
 | |
|   if( !pIdx->zColAff ){
 | |
|     /* The first time a column affinity string for a particular index is
 | |
|     ** required, it is allocated and populated here. It is then stored as
 | |
|     ** a member of the Index structure for subsequent use.
 | |
|     **
 | |
|     ** The column affinity string will eventually be deleted by
 | |
|     ** sqliteDeleteIndex() when the Index structure itself is cleaned
 | |
|     ** up.
 | |
|     */
 | |
|     int n;
 | |
|     Table *pTab = pIdx->pTable;
 | |
|     sqlite3 *db = sqlite3VdbeDb(v);
 | |
|     pIdx->zColAff = (char *)sqlite3DbMallocZero(db, pIdx->nColumn+2);
 | |
|     if( !pIdx->zColAff ){
 | |
|       return;
 | |
|     }
 | |
|     for(n=0; n<pIdx->nColumn; n++){
 | |
|       pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
 | |
|     }
 | |
|     pIdx->zColAff[n++] = SQLITE_AFF_NONE;
 | |
|     pIdx->zColAff[n] = 0;
 | |
|   }
 | |
|  
 | |
|   sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set P4 of the most recently inserted opcode to a column affinity
 | |
| ** string for table pTab. A column affinity string has one character
 | |
| ** for each column indexed by the index, according to the affinity of the
 | |
| ** column:
 | |
| **
 | |
| **  Character      Column affinity
 | |
| **  ------------------------------
 | |
| **  'a'            TEXT
 | |
| **  'b'            NONE
 | |
| **  'c'            NUMERIC
 | |
| **  'd'            INTEGER
 | |
| **  'e'            REAL
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
 | |
|   /* The first time a column affinity string for a particular table
 | |
|   ** is required, it is allocated and populated here. It is then 
 | |
|   ** stored as a member of the Table structure for subsequent use.
 | |
|   **
 | |
|   ** The column affinity string will eventually be deleted by
 | |
|   ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
 | |
|   */
 | |
|   if( !pTab->zColAff ){
 | |
|     char *zColAff;
 | |
|     int i;
 | |
|     sqlite3 *db = sqlite3VdbeDb(v);
 | |
| 
 | |
|     zColAff = (char *)sqlite3DbMallocZero(db, pTab->nCol+1);
 | |
|     if( !zColAff ){
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       zColAff[i] = pTab->aCol[i].affinity;
 | |
|     }
 | |
|     zColAff[pTab->nCol] = '\0';
 | |
| 
 | |
|     pTab->zColAff = zColAff;
 | |
|   }
 | |
| 
 | |
|   sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return non-zero if the table pTab in database iDb or any of its indices
 | |
| ** have been opened at any point in the VDBE program beginning at location
 | |
| ** iStartAddr throught the end of the program.  This is used to see if 
 | |
| ** a statement of the form  "INSERT INTO <iDb, pTab> SELECT ..." can 
 | |
| ** run without using temporary table for the results of the SELECT. 
 | |
| */
 | |
| static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
 | |
|   int i;
 | |
|   int iEnd = sqlite3VdbeCurrentAddr(v);
 | |
|   for(i=iStartAddr; i<iEnd; i++){
 | |
|     VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
 | |
|     assert( pOp!=0 );
 | |
|     if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
 | |
|       Index *pIndex;
 | |
|       int tnum = pOp->p2;
 | |
|       if( tnum==pTab->tnum ){
 | |
|         return 1;
 | |
|       }
 | |
|       for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
 | |
|         if( tnum==pIndex->tnum ){
 | |
|           return 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
 | |
|       assert( pOp->p4.pVtab!=0 );
 | |
|       assert( pOp->p4type==P4_VTAB );
 | |
|       return 1;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOINCREMENT
 | |
| /*
 | |
| ** Write out code to initialize the autoincrement logic.  This code
 | |
| ** looks up the current autoincrement value in the sqlite_sequence
 | |
| ** table and stores that value in a register.  Code generated by
 | |
| ** autoIncStep() will keep that register holding the largest
 | |
| ** rowid value.  Code generated by autoIncEnd() will write the new
 | |
| ** largest value of the counter back into the sqlite_sequence table.
 | |
| **
 | |
| ** This routine returns the index of the mem[] cell that contains
 | |
| ** the maximum rowid counter.
 | |
| **
 | |
| ** Three consecutive registers are allocated by this routine.  The
 | |
| ** first two hold the name of the target table and the maximum rowid 
 | |
| ** inserted into the target table, respectively.
 | |
| ** The third holds the rowid in sqlite_sequence where we will
 | |
| ** write back the revised maximum rowid.  This routine returns the
 | |
| ** index of the second of these three registers.
 | |
| */
 | |
| static int autoIncBegin(
 | |
|   Parse *pParse,      /* Parsing context */
 | |
|   int iDb,            /* Index of the database holding pTab */
 | |
|   Table *pTab         /* The table we are writing to */
 | |
| ){
 | |
|   int memId = 0;      /* Register holding maximum rowid */
 | |
|   if( pTab->autoInc ){
 | |
|     Vdbe *v = pParse->pVdbe;
 | |
|     Db *pDb = &pParse->db->aDb[iDb];
 | |
|     int iCur = pParse->nTab;
 | |
|     int addr;               /* Address of the top of the loop */
 | |
|     assert( v );
 | |
|     pParse->nMem++;         /* Holds name of table */
 | |
|     memId = ++pParse->nMem;
 | |
|     pParse->nMem++;
 | |
|     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
 | |
|     addr = sqlite3VdbeCurrentAddr(v);
 | |
|     sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8);
 | |
|     sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
 | |
|     sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
 | |
|     sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
 | |
|     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
 | |
|     sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8);
 | |
|     sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
 | |
|   }
 | |
|   return memId;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Update the maximum rowid for an autoincrement calculation.
 | |
| **
 | |
| ** This routine should be called when the top of the stack holds a
 | |
| ** new rowid that is about to be inserted.  If that new rowid is
 | |
| ** larger than the maximum rowid in the memId memory cell, then the
 | |
| ** memory cell is updated.  The stack is unchanged.
 | |
| */
 | |
| static void autoIncStep(Parse *pParse, int memId, int regRowid){
 | |
|   if( memId>0 ){
 | |
|     sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** After doing one or more inserts, the maximum rowid is stored
 | |
| ** in reg[memId].  Generate code to write this value back into the
 | |
| ** the sqlite_sequence table.
 | |
| */
 | |
| static void autoIncEnd(
 | |
|   Parse *pParse,     /* The parsing context */
 | |
|   int iDb,           /* Index of the database holding pTab */
 | |
|   Table *pTab,       /* Table we are inserting into */
 | |
|   int memId          /* Memory cell holding the maximum rowid */
 | |
| ){
 | |
|   if( pTab->autoInc ){
 | |
|     int iCur = pParse->nTab;
 | |
|     Vdbe *v = pParse->pVdbe;
 | |
|     Db *pDb = &pParse->db->aDb[iDb];
 | |
|     int j1;
 | |
|     int iRec = ++pParse->nMem;    /* Memory cell used for record */
 | |
| 
 | |
|     assert( v );
 | |
|     sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
 | |
|     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
 | |
|     sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
 | |
|     sqlite3VdbeJumpHere(v, j1);
 | |
|     sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
 | |
|     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
 | |
|     sqlite3VdbeAddOp1(v, OP_Close, iCur);
 | |
|   }
 | |
| }
 | |
| #else
 | |
| /*
 | |
| ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
 | |
| ** above are all no-ops
 | |
| */
 | |
| # define autoIncBegin(A,B,C) (0)
 | |
| # define autoIncStep(A,B,C)
 | |
| # define autoIncEnd(A,B,C,D)
 | |
| #endif /* SQLITE_OMIT_AUTOINCREMENT */
 | |
| 
 | |
| 
 | |
| /* Forward declaration */
 | |
| static int xferOptimization(
 | |
|   Parse *pParse,        /* Parser context */
 | |
|   Table *pDest,         /* The table we are inserting into */
 | |
|   Select *pSelect,      /* A SELECT statement to use as the data source */
 | |
|   int onError,          /* How to handle constraint errors */
 | |
|   int iDbDest           /* The database of pDest */
 | |
| );
 | |
| 
 | |
| /*
 | |
| ** This routine is call to handle SQL of the following forms:
 | |
| **
 | |
| **    insert into TABLE (IDLIST) values(EXPRLIST)
 | |
| **    insert into TABLE (IDLIST) select
 | |
| **
 | |
| ** The IDLIST following the table name is always optional.  If omitted,
 | |
| ** then a list of all columns for the table is substituted.  The IDLIST
 | |
| ** appears in the pColumn parameter.  pColumn is NULL if IDLIST is omitted.
 | |
| **
 | |
| ** The pList parameter holds EXPRLIST in the first form of the INSERT
 | |
| ** statement above, and pSelect is NULL.  For the second form, pList is
 | |
| ** NULL and pSelect is a pointer to the select statement used to generate
 | |
| ** data for the insert.
 | |
| **
 | |
| ** The code generated follows one of four templates.  For a simple
 | |
| ** select with data coming from a VALUES clause, the code executes
 | |
| ** once straight down through.  The template looks like this:
 | |
| **
 | |
| **         open write cursor to <table> and its indices
 | |
| **         puts VALUES clause expressions onto the stack
 | |
| **         write the resulting record into <table>
 | |
| **         cleanup
 | |
| **
 | |
| ** The three remaining templates assume the statement is of the form
 | |
| **
 | |
| **   INSERT INTO <table> SELECT ...
 | |
| **
 | |
| ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
 | |
| ** in other words if the SELECT pulls all columns from a single table
 | |
| ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
 | |
| ** if <table2> and <table1> are distinct tables but have identical
 | |
| ** schemas, including all the same indices, then a special optimization
 | |
| ** is invoked that copies raw records from <table2> over to <table1>.
 | |
| ** See the xferOptimization() function for the implementation of this
 | |
| ** template.  This is the second template.
 | |
| **
 | |
| **         open a write cursor to <table>
 | |
| **         open read cursor on <table2>
 | |
| **         transfer all records in <table2> over to <table>
 | |
| **         close cursors
 | |
| **         foreach index on <table>
 | |
| **           open a write cursor on the <table> index
 | |
| **           open a read cursor on the corresponding <table2> index
 | |
| **           transfer all records from the read to the write cursors
 | |
| **           close cursors
 | |
| **         end foreach
 | |
| **
 | |
| ** The third template is for when the second template does not apply
 | |
| ** and the SELECT clause does not read from <table> at any time.
 | |
| ** The generated code follows this template:
 | |
| **
 | |
| **         goto B
 | |
| **      A: setup for the SELECT
 | |
| **         loop over the rows in the SELECT
 | |
| **           gosub C
 | |
| **         end loop
 | |
| **         cleanup after the SELECT
 | |
| **         goto D
 | |
| **      B: open write cursor to <table> and its indices
 | |
| **         goto A
 | |
| **      C: insert the select result into <table>
 | |
| **         return
 | |
| **      D: cleanup
 | |
| **
 | |
| ** The fourth template is used if the insert statement takes its
 | |
| ** values from a SELECT but the data is being inserted into a table
 | |
| ** that is also read as part of the SELECT.  In the third form,
 | |
| ** we have to use a intermediate table to store the results of
 | |
| ** the select.  The template is like this:
 | |
| **
 | |
| **         goto B
 | |
| **      A: setup for the SELECT
 | |
| **         loop over the tables in the SELECT
 | |
| **           gosub C
 | |
| **         end loop
 | |
| **         cleanup after the SELECT
 | |
| **         goto D
 | |
| **      C: insert the select result into the intermediate table
 | |
| **         return
 | |
| **      B: open a cursor to an intermediate table
 | |
| **         goto A
 | |
| **      D: open write cursor to <table> and its indices
 | |
| **         loop over the intermediate table
 | |
| **           transfer values form intermediate table into <table>
 | |
| **         end the loop
 | |
| **         cleanup
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Insert(
 | |
|   Parse *pParse,        /* Parser context */
 | |
|   SrcList *pTabList,    /* Name of table into which we are inserting */
 | |
|   ExprList *pList,      /* List of values to be inserted */
 | |
|   Select *pSelect,      /* A SELECT statement to use as the data source */
 | |
|   IdList *pColumn,      /* Column names corresponding to IDLIST. */
 | |
|   int onError           /* How to handle constraint errors */
 | |
| ){
 | |
|   sqlite3 *db;          /* The main database structure */
 | |
|   Table *pTab;          /* The table to insert into.  aka TABLE */
 | |
|   char *zTab;           /* Name of the table into which we are inserting */
 | |
|   const char *zDb;      /* Name of the database holding this table */
 | |
|   int i, j, idx;        /* Loop counters */
 | |
|   Vdbe *v;              /* Generate code into this virtual machine */
 | |
|   Index *pIdx;          /* For looping over indices of the table */
 | |
|   int nColumn;          /* Number of columns in the data */
 | |
|   int nHidden = 0;      /* Number of hidden columns if TABLE is virtual */
 | |
|   int baseCur = 0;      /* VDBE Cursor number for pTab */
 | |
|   int keyColumn = -1;   /* Column that is the INTEGER PRIMARY KEY */
 | |
|   int endOfLoop;        /* Label for the end of the insertion loop */
 | |
|   int useTempTable = 0; /* Store SELECT results in intermediate table */
 | |
|   int srcTab = 0;       /* Data comes from this temporary cursor if >=0 */
 | |
|   int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */
 | |
|   int iSelectLoop = 0;  /* Address of code that implements the SELECT */
 | |
|   int iCleanup = 0;     /* Address of the cleanup code */
 | |
|   int iInsertBlock = 0; /* Address of the subroutine used to insert data */
 | |
|   int newIdx = -1;      /* Cursor for the NEW pseudo-table */
 | |
|   int iDb;              /* Index of database holding TABLE */
 | |
|   Db *pDb;              /* The database containing table being inserted into */
 | |
|   int appendFlag = 0;   /* True if the insert is likely to be an append */
 | |
| 
 | |
|   /* Register allocations */
 | |
|   int regFromSelect;    /* Base register for data coming from SELECT */
 | |
|   int regAutoinc = 0;   /* Register holding the AUTOINCREMENT counter */
 | |
|   int regRowCount = 0;  /* Memory cell used for the row counter */
 | |
|   int regIns;           /* Block of regs holding rowid+data being inserted */
 | |
|   int regRowid;         /* registers holding insert rowid */
 | |
|   int regData;          /* register holding first column to insert */
 | |
|   int regRecord;        /* Holds the assemblied row record */
 | |
|   int *aRegIdx = 0;     /* One register allocated to each index */
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   int isView;                 /* True if attempting to insert into a view */
 | |
|   int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
 | |
| #endif
 | |
| 
 | |
|   db = pParse->db;
 | |
|   if( pParse->nErr || db->mallocFailed ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Locate the table into which we will be inserting new information.
 | |
|   */
 | |
|   assert( pTabList->nSrc==1 );
 | |
|   zTab = pTabList->a[0].zName;
 | |
|   if( zTab==0 ) goto insert_cleanup;
 | |
|   pTab = sqlite3SrcListLookup(pParse, pTabList);
 | |
|   if( pTab==0 ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|   assert( iDb<db->nDb );
 | |
|   pDb = &db->aDb[iDb];
 | |
|   zDb = pDb->zName;
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Figure out if we have any triggers and if the table being
 | |
|   ** inserted into is a view
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
 | |
|   isView = pTab->pSelect!=0;
 | |
| #else
 | |
| # define triggers_exist 0
 | |
| # define isView 0
 | |
| #endif
 | |
| #ifdef SQLITE_OMIT_VIEW
 | |
| # undef isView
 | |
| # define isView 0
 | |
| #endif
 | |
| 
 | |
|   /* Ensure that:
 | |
|   *  (a) the table is not read-only, 
 | |
|   *  (b) that if it is a view then ON INSERT triggers exist
 | |
|   */
 | |
|   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   assert( pTab!=0 );
 | |
| 
 | |
|   /* If pTab is really a view, make sure it has been initialized.
 | |
|   ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual 
 | |
|   ** module table).
 | |
|   */
 | |
|   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Allocate a VDBE
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) goto insert_cleanup;
 | |
|   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
 | |
|   sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
 | |
| 
 | |
|   /* if there are row triggers, allocate a temp table for new.* references. */
 | |
|   if( triggers_exist ){
 | |
|     newIdx = pParse->nTab++;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_XFER_OPT
 | |
|   /* If the statement is of the form
 | |
|   **
 | |
|   **       INSERT INTO <table1> SELECT * FROM <table2>;
 | |
|   **
 | |
|   ** Then special optimizations can be applied that make the transfer
 | |
|   ** very fast and which reduce fragmentation of indices.
 | |
|   */
 | |
|   if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
 | |
|     assert( !triggers_exist );
 | |
|     assert( pList==0 );
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_XFER_OPT */
 | |
| 
 | |
|   /* If this is an AUTOINCREMENT table, look up the sequence number in the
 | |
|   ** sqlite_sequence table and store it in memory cell regAutoinc.
 | |
|   */
 | |
|   regAutoinc = autoIncBegin(pParse, iDb, pTab);
 | |
| 
 | |
|   /* Figure out how many columns of data are supplied.  If the data
 | |
|   ** is coming from a SELECT statement, then this step also generates
 | |
|   ** all the code to implement the SELECT statement and invoke a subroutine
 | |
|   ** to process each row of the result. (Template 2.) If the SELECT
 | |
|   ** statement uses the the table that is being inserted into, then the
 | |
|   ** subroutine is also coded here.  That subroutine stores the SELECT
 | |
|   ** results in a temporary table. (Template 3.)
 | |
|   */
 | |
|   if( pSelect ){
 | |
|     /* Data is coming from a SELECT.  Generate code to implement that SELECT
 | |
|     */
 | |
|     SelectDest dest;
 | |
|     int rc, iInitCode;
 | |
| 
 | |
|     iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
 | |
|     iSelectLoop = sqlite3VdbeCurrentAddr(v);
 | |
|     iInsertBlock = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock);
 | |
| 
 | |
|     /* Resolve the expressions in the SELECT statement and execute it. */
 | |
|     rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
 | |
|     if( rc || pParse->nErr || db->mallocFailed ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
| 
 | |
|     regFromSelect = dest.iMem;
 | |
|     iCleanup = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup);
 | |
|     assert( pSelect->pEList );
 | |
|     nColumn = pSelect->pEList->nExpr;
 | |
| 
 | |
|     /* Set useTempTable to TRUE if the result of the SELECT statement
 | |
|     ** should be written into a temporary table.  Set to FALSE if each
 | |
|     ** row of the SELECT can be written directly into the result table.
 | |
|     **
 | |
|     ** A temp table must be used if the table being updated is also one
 | |
|     ** of the tables being read by the SELECT statement.  Also use a 
 | |
|     ** temp table in the case of row triggers.
 | |
|     */
 | |
|     if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){
 | |
|       useTempTable = 1;
 | |
|     }
 | |
| 
 | |
|     if( useTempTable ){
 | |
|       /* Generate the subroutine that SELECT calls to process each row of
 | |
|       ** the result.  Store the result in a temporary table
 | |
|       */
 | |
|       int regRec, regRowid;
 | |
| 
 | |
|       srcTab = pParse->nTab++;
 | |
|       regRec = sqlite3GetTempReg(pParse);
 | |
|       regRowid = sqlite3GetTempReg(pParse);
 | |
|       sqlite3VdbeResolveLabel(v, iInsertBlock);
 | |
|       sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
 | |
|       sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
 | |
|       sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
 | |
|       sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
 | |
|       sqlite3ReleaseTempReg(pParse, regRec);
 | |
|       sqlite3ReleaseTempReg(pParse, regRowid);
 | |
| 
 | |
|       /* The following code runs first because the GOTO at the very top
 | |
|       ** of the program jumps to it.  Create the temporary table, then jump
 | |
|       ** back up and execute the SELECT code above.
 | |
|       */
 | |
|       sqlite3VdbeJumpHere(v, iInitCode);
 | |
|       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, 0);
 | |
|       sqlite3VdbeAddOp2(v, OP_SetNumColumns, srcTab, nColumn);
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
 | |
|       sqlite3VdbeResolveLabel(v, iCleanup);
 | |
|     }else{
 | |
|       sqlite3VdbeJumpHere(v, iInitCode);
 | |
|     }
 | |
|   }else{
 | |
|     /* This is the case if the data for the INSERT is coming from a VALUES
 | |
|     ** clause
 | |
|     */
 | |
|     NameContext sNC;
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     sNC.pParse = pParse;
 | |
|     srcTab = -1;
 | |
|     assert( useTempTable==0 );
 | |
|     nColumn = pList ? pList->nExpr : 0;
 | |
|     for(i=0; i<nColumn; i++){
 | |
|       if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){
 | |
|         goto insert_cleanup;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Make sure the number of columns in the source data matches the number
 | |
|   ** of columns to be inserted into the table.
 | |
|   */
 | |
|   if( IsVirtual(pTab) ){
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
 | |
|     }
 | |
|   }
 | |
|   if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|        "table %S has %d columns but %d values were supplied",
 | |
|        pTabList, 0, pTab->nCol, nColumn);
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
|   if( pColumn!=0 && nColumn!=pColumn->nId ){
 | |
|     sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
 | |
|     goto insert_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* If the INSERT statement included an IDLIST term, then make sure
 | |
|   ** all elements of the IDLIST really are columns of the table and 
 | |
|   ** remember the column indices.
 | |
|   **
 | |
|   ** If the table has an INTEGER PRIMARY KEY column and that column
 | |
|   ** is named in the IDLIST, then record in the keyColumn variable
 | |
|   ** the index into IDLIST of the primary key column.  keyColumn is
 | |
|   ** the index of the primary key as it appears in IDLIST, not as
 | |
|   ** is appears in the original table.  (The index of the primary
 | |
|   ** key in the original table is pTab->iPKey.)
 | |
|   */
 | |
|   if( pColumn ){
 | |
|     for(i=0; i<pColumn->nId; i++){
 | |
|       pColumn->a[i].idx = -1;
 | |
|     }
 | |
|     for(i=0; i<pColumn->nId; i++){
 | |
|       for(j=0; j<pTab->nCol; j++){
 | |
|         if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
 | |
|           pColumn->a[i].idx = j;
 | |
|           if( j==pTab->iPKey ){
 | |
|             keyColumn = i;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( j>=pTab->nCol ){
 | |
|         if( sqlite3IsRowid(pColumn->a[i].zName) ){
 | |
|           keyColumn = i;
 | |
|         }else{
 | |
|           sqlite3ErrorMsg(pParse, "table %S has no column named %s",
 | |
|               pTabList, 0, pColumn->a[i].zName);
 | |
|           pParse->nErr++;
 | |
|           goto insert_cleanup;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If there is no IDLIST term but the table has an integer primary
 | |
|   ** key, the set the keyColumn variable to the primary key column index
 | |
|   ** in the original table definition.
 | |
|   */
 | |
|   if( pColumn==0 && nColumn>0 ){
 | |
|     keyColumn = pTab->iPKey;
 | |
|   }
 | |
| 
 | |
|   /* Open the temp table for FOR EACH ROW triggers
 | |
|   */
 | |
|   if( triggers_exist ){
 | |
|     sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
 | |
|   }
 | |
|     
 | |
|   /* Initialize the count of rows to be inserted
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows ){
 | |
|     regRowCount = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
 | |
|   }
 | |
| 
 | |
|   /* If this is not a view, open the table and and all indices */
 | |
|   if( !isView ){
 | |
|     int nIdx;
 | |
|     int i;
 | |
| 
 | |
|     baseCur = pParse->nTab;
 | |
|     nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
 | |
|     aRegIdx = sqlite3DbMallocZero(db, sizeof(int)*(nIdx+1));
 | |
|     if( aRegIdx==0 ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
|     for(i=0; i<nIdx; i++){
 | |
|       aRegIdx[i] = ++pParse->nMem;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the data source is a temporary table, then we have to create
 | |
|   ** a loop because there might be multiple rows of data.  If the data
 | |
|   ** source is a subroutine call from the SELECT statement, then we need
 | |
|   ** to launch the SELECT statement processing.
 | |
|   */
 | |
|   if( useTempTable ){
 | |
|     iBreak = sqlite3VdbeMakeLabel(v);
 | |
|     sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak);
 | |
|     iCont = sqlite3VdbeCurrentAddr(v);
 | |
|   }else if( pSelect ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop);
 | |
|     sqlite3VdbeResolveLabel(v, iInsertBlock);
 | |
|   }
 | |
| 
 | |
|   /* Allocate registers for holding the rowid of the new row,
 | |
|   ** the content of the new row, and the assemblied row record.
 | |
|   */
 | |
|   regRecord = ++pParse->nMem;
 | |
|   regRowid = regIns = pParse->nMem+1;
 | |
|   pParse->nMem += pTab->nCol + 1;
 | |
|   if( IsVirtual(pTab) ){
 | |
|     regRowid++;
 | |
|     pParse->nMem++;
 | |
|   }
 | |
|   regData = regRowid+1;
 | |
| 
 | |
|   /* Run the BEFORE and INSTEAD OF triggers, if there are any
 | |
|   */
 | |
|   endOfLoop = sqlite3VdbeMakeLabel(v);
 | |
|   if( triggers_exist & TRIGGER_BEFORE ){
 | |
|     int regRowid;
 | |
|     int regCols;
 | |
|     int regRec;
 | |
| 
 | |
|     /* build the NEW.* reference row.  Note that if there is an INTEGER
 | |
|     ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
 | |
|     ** translated into a unique ID for the row.  But on a BEFORE trigger,
 | |
|     ** we do not know what the unique ID will be (because the insert has
 | |
|     ** not happened yet) so we substitute a rowid of -1
 | |
|     */
 | |
|     regRowid = sqlite3GetTempReg(pParse);
 | |
|     if( keyColumn<0 ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
 | |
|     }else if( useTempTable ){
 | |
|       sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
 | |
|     }else{
 | |
|       int j1;
 | |
|       assert( pSelect==0 );  /* Otherwise useTempTable is true */
 | |
|       sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
 | |
|       j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
 | |
|       sqlite3VdbeJumpHere(v, j1);
 | |
|       sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
 | |
|     }
 | |
| 
 | |
|     /* Cannot have triggers on a virtual table. If it were possible,
 | |
|     ** this block would have to account for hidden column.
 | |
|     */
 | |
|     assert(!IsVirtual(pTab));
 | |
| 
 | |
|     /* Create the new column data
 | |
|     */
 | |
|     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       if( pColumn==0 ){
 | |
|         j = i;
 | |
|       }else{
 | |
|         for(j=0; j<pColumn->nId; j++){
 | |
|           if( pColumn->a[j].idx==i ) break;
 | |
|         }
 | |
|       }
 | |
|       if( pColumn && j>=pColumn->nId ){
 | |
|         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
 | |
|       }else if( useTempTable ){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); 
 | |
|       }else{
 | |
|         assert( pSelect==0 ); /* Otherwise useTempTable is true */
 | |
|         sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
 | |
|       }
 | |
|     }
 | |
|     regRec = sqlite3GetTempReg(pParse);
 | |
|     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
 | |
| 
 | |
|     /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
 | |
|     ** do not attempt any conversions before assembling the record.
 | |
|     ** If this is a real table, attempt conversions as required by the
 | |
|     ** table column affinities.
 | |
|     */
 | |
|     if( !isView ){
 | |
|       sqlite3TableAffinityStr(v, pTab);
 | |
|     }
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
 | |
|     sqlite3ReleaseTempReg(pParse, regRec);
 | |
|     sqlite3ReleaseTempReg(pParse, regRowid);
 | |
|     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
 | |
| 
 | |
|     /* Fire BEFORE or INSTEAD OF triggers */
 | |
|     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, 
 | |
|         newIdx, -1, onError, endOfLoop, 0, 0) ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Push the record number for the new entry onto the stack.  The
 | |
|   ** record number is a randomly generate integer created by NewRowid
 | |
|   ** except when the table has an INTEGER PRIMARY KEY column, in which
 | |
|   ** case the record number is the same as that column. 
 | |
|   */
 | |
|   if( !isView ){
 | |
|     if( IsVirtual(pTab) ){
 | |
|       /* The row that the VUpdate opcode will delete: none */
 | |
|       sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
 | |
|     }
 | |
|     if( keyColumn>=0 ){
 | |
|       if( useTempTable ){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
 | |
|       }else if( pSelect ){
 | |
|         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
 | |
|       }else{
 | |
|         VdbeOp *pOp;
 | |
|         sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
 | |
|         pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
 | |
|         if( pOp && pOp->opcode==OP_Null ){
 | |
|           appendFlag = 1;
 | |
|           pOp->opcode = OP_NewRowid;
 | |
|           pOp->p1 = baseCur;
 | |
|           pOp->p2 = regRowid;
 | |
|           pOp->p3 = regAutoinc;
 | |
|         }
 | |
|       }
 | |
|       /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
 | |
|       ** to generate a unique primary key value.
 | |
|       */
 | |
|       if( !appendFlag ){
 | |
|         int j1;
 | |
|         j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
 | |
|         sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
 | |
|         sqlite3VdbeJumpHere(v, j1);
 | |
|         sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
 | |
|       }
 | |
|     }else if( IsVirtual(pTab) ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
 | |
|       appendFlag = 1;
 | |
|     }
 | |
|     autoIncStep(pParse, regAutoinc, regRowid);
 | |
| 
 | |
|     /* Push onto the stack, data for all columns of the new entry, beginning
 | |
|     ** with the first column.
 | |
|     */
 | |
|     nHidden = 0;
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       int iRegStore = regRowid+1+i;
 | |
|       if( i==pTab->iPKey ){
 | |
|         /* The value of the INTEGER PRIMARY KEY column is always a NULL.
 | |
|         ** Whenever this column is read, the record number will be substituted
 | |
|         ** in its place.  So will fill this column with a NULL to avoid
 | |
|         ** taking up data space with information that will never be used. */
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
 | |
|         continue;
 | |
|       }
 | |
|       if( pColumn==0 ){
 | |
|         if( IsHiddenColumn(&pTab->aCol[i]) ){
 | |
|           assert( IsVirtual(pTab) );
 | |
|           j = -1;
 | |
|           nHidden++;
 | |
|         }else{
 | |
|           j = i - nHidden;
 | |
|         }
 | |
|       }else{
 | |
|         for(j=0; j<pColumn->nId; j++){
 | |
|           if( pColumn->a[j].idx==i ) break;
 | |
|         }
 | |
|       }
 | |
|       if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
 | |
|         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
 | |
|       }else if( useTempTable ){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); 
 | |
|       }else if( pSelect ){
 | |
|         sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
 | |
|       }else{
 | |
|         sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Generate code to check constraints and generate index keys and
 | |
|     ** do the insertion.
 | |
|     */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( IsVirtual(pTab) ){
 | |
|       pParse->pVirtualLock = pTab;
 | |
|       sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
 | |
|                      (const char*)pTab->pVtab, P4_VTAB);
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       sqlite3GenerateConstraintChecks(
 | |
|           pParse,
 | |
|           pTab,
 | |
|           baseCur,
 | |
|           regIns,
 | |
|           aRegIdx,
 | |
|           keyColumn>=0,
 | |
|           0,
 | |
|           onError,
 | |
|           endOfLoop
 | |
|       );
 | |
|       sqlite3CompleteInsertion(
 | |
|           pParse,
 | |
|           pTab,
 | |
|           baseCur,
 | |
|           regIns,
 | |
|           aRegIdx,
 | |
|           0,
 | |
|           0,
 | |
|           (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
 | |
|           appendFlag
 | |
|        );
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Update the count of rows that are inserted
 | |
|   */
 | |
|   if( (db->flags & SQLITE_CountRows)!=0 ){
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
 | |
|   }
 | |
| 
 | |
|   if( triggers_exist ){
 | |
|     /* Code AFTER triggers */
 | |
|     if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
 | |
|           newIdx, -1, onError, endOfLoop, 0, 0) ){
 | |
|       goto insert_cleanup;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The bottom of the loop, if the data source is a SELECT statement
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, endOfLoop);
 | |
|   if( useTempTable ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont);
 | |
|     sqlite3VdbeResolveLabel(v, iBreak);
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0);
 | |
|   }else if( pSelect ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
 | |
|     sqlite3VdbeResolveLabel(v, iCleanup);
 | |
|   }
 | |
| 
 | |
|   if( !IsVirtual(pTab) && !isView ){
 | |
|     /* Close all tables opened */
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0);
 | |
|     for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
 | |
|       sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Update the sqlite_sequence table by storing the content of the
 | |
|   ** counter value in memory regAutoinc back into the sqlite_sequence
 | |
|   ** table.
 | |
|   */
 | |
|   autoIncEnd(pParse, iDb, pTab, regAutoinc);
 | |
| 
 | |
|   /*
 | |
|   ** Return the number of rows inserted. If this routine is 
 | |
|   ** generating code because of a call to sqlite3NestedParse(), do not
 | |
|   ** invoke the callback function.
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
 | |
|     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
 | |
|   }
 | |
| 
 | |
| insert_cleanup:
 | |
|   sqlite3SrcListDelete(pTabList);
 | |
|   sqlite3ExprListDelete(pList);
 | |
|   sqlite3SelectDelete(pSelect);
 | |
|   sqlite3IdListDelete(pColumn);
 | |
|   sqlite3_free(aRegIdx);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
 | |
| **
 | |
| ** The input is a range of consecutive registers as follows:
 | |
| **
 | |
| **    1.  The rowid of the row to be updated before the update.  This
 | |
| **        value is omitted unless we are doing an UPDATE that involves a
 | |
| **        change to the record number or writing to a virtual table.
 | |
| **
 | |
| **    2.  The rowid of the row after the update.
 | |
| **
 | |
| **    3.  The data in the first column of the entry after the update.
 | |
| **
 | |
| **    i.  Data from middle columns...
 | |
| **
 | |
| **    N.  The data in the last column of the entry after the update.
 | |
| **
 | |
| ** The regRowid parameter is the index of the register containing (2).
 | |
| **
 | |
| ** The old rowid shown as entry (1) above is omitted unless both isUpdate
 | |
| ** and rowidChng are 1.  isUpdate is true for UPDATEs and false for
 | |
| ** INSERTs.  RowidChng means that the new rowid is explicitly specified by
 | |
| ** the update or insert statement.  If rowidChng is false, it means that
 | |
| ** the rowid is computed automatically in an insert or that the rowid value
 | |
| ** is not modified by the update.
 | |
| **
 | |
| ** The code generated by this routine store new index entries into
 | |
| ** registers identified by aRegIdx[].  No index entry is created for
 | |
| ** indices where aRegIdx[i]==0.  The order of indices in aRegIdx[] is
 | |
| ** the same as the order of indices on the linked list of indices
 | |
| ** attached to the table.
 | |
| **
 | |
| ** This routine also generates code to check constraints.  NOT NULL,
 | |
| ** CHECK, and UNIQUE constraints are all checked.  If a constraint fails,
 | |
| ** then the appropriate action is performed.  There are five possible
 | |
| ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
 | |
| **
 | |
| **  Constraint type  Action       What Happens
 | |
| **  ---------------  ----------   ----------------------------------------
 | |
| **  any              ROLLBACK     The current transaction is rolled back and
 | |
| **                                sqlite3_exec() returns immediately with a
 | |
| **                                return code of SQLITE_CONSTRAINT.
 | |
| **
 | |
| **  any              ABORT        Back out changes from the current command
 | |
| **                                only (do not do a complete rollback) then
 | |
| **                                cause sqlite3_exec() to return immediately
 | |
| **                                with SQLITE_CONSTRAINT.
 | |
| **
 | |
| **  any              FAIL         Sqlite_exec() returns immediately with a
 | |
| **                                return code of SQLITE_CONSTRAINT.  The
 | |
| **                                transaction is not rolled back and any
 | |
| **                                prior changes are retained.
 | |
| **
 | |
| **  any              IGNORE       The record number and data is popped from
 | |
| **                                the stack and there is an immediate jump
 | |
| **                                to label ignoreDest.
 | |
| **
 | |
| **  NOT NULL         REPLACE      The NULL value is replace by the default
 | |
| **                                value for that column.  If the default value
 | |
| **                                is NULL, the action is the same as ABORT.
 | |
| **
 | |
| **  UNIQUE           REPLACE      The other row that conflicts with the row
 | |
| **                                being inserted is removed.
 | |
| **
 | |
| **  CHECK            REPLACE      Illegal.  The results in an exception.
 | |
| **
 | |
| ** Which action to take is determined by the overrideError parameter.
 | |
| ** Or if overrideError==OE_Default, then the pParse->onError parameter
 | |
| ** is used.  Or if pParse->onError==OE_Default then the onError value
 | |
| ** for the constraint is used.
 | |
| **
 | |
| ** The calling routine must open a read/write cursor for pTab with
 | |
| ** cursor number "baseCur".  All indices of pTab must also have open
 | |
| ** read/write cursors with cursor number baseCur+i for the i-th cursor.
 | |
| ** Except, if there is no possibility of a REPLACE action then
 | |
| ** cursors do not need to be open for indices where aRegIdx[i]==0.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(
 | |
|   Parse *pParse,      /* The parser context */
 | |
|   Table *pTab,        /* the table into which we are inserting */
 | |
|   int baseCur,        /* Index of a read/write cursor pointing at pTab */
 | |
|   int regRowid,       /* Index of the range of input registers */
 | |
|   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
 | |
|   int rowidChng,      /* True if the rowid might collide with existing entry */
 | |
|   int isUpdate,       /* True for UPDATE, False for INSERT */
 | |
|   int overrideError,  /* Override onError to this if not OE_Default */
 | |
|   int ignoreDest      /* Jump to this label on an OE_Ignore resolution */
 | |
| ){
 | |
|   int i;
 | |
|   Vdbe *v;
 | |
|   int nCol;
 | |
|   int onError;
 | |
|   int j1, j2, j3;     /* Addresses of jump instructions */
 | |
|   int regData;        /* Register containing first data column */
 | |
|   int iCur;
 | |
|   Index *pIdx;
 | |
|   int seenReplace = 0;
 | |
|   int hasTwoRowids = (isUpdate && rowidChng);
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   assert( v!=0 );
 | |
|   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
 | |
|   nCol = pTab->nCol;
 | |
|   regData = regRowid + 1;
 | |
| 
 | |
| 
 | |
|   /* Test all NOT NULL constraints.
 | |
|   */
 | |
|   for(i=0; i<nCol; i++){
 | |
|     if( i==pTab->iPKey ){
 | |
|       continue;
 | |
|     }
 | |
|     onError = pTab->aCol[i].notNull;
 | |
|     if( onError==OE_None ) continue;
 | |
|     if( overrideError!=OE_Default ){
 | |
|       onError = overrideError;
 | |
|     }else if( onError==OE_Default ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
 | |
|     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
 | |
|         || onError==OE_Ignore || onError==OE_Replace );
 | |
|     switch( onError ){
 | |
|       case OE_Rollback:
 | |
|       case OE_Abort:
 | |
|       case OE_Fail: {
 | |
|         char *zMsg = 0;
 | |
|         sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
 | |
|         sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
 | |
|                         " may not be NULL", (char*)0);
 | |
|         sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Ignore: {
 | |
|         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Replace: {
 | |
|         sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeJumpHere(v, j1);
 | |
|   }
 | |
| 
 | |
|   /* Test all CHECK constraints
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
 | |
|     int allOk = sqlite3VdbeMakeLabel(v);
 | |
|     pParse->ckBase = regData;
 | |
|     sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
 | |
|     onError = overrideError!=OE_Default ? overrideError : OE_Abort;
 | |
|     if( onError==OE_Ignore ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, allOk);
 | |
|   }
 | |
| #endif /* !defined(SQLITE_OMIT_CHECK) */
 | |
| 
 | |
|   /* If we have an INTEGER PRIMARY KEY, make sure the primary key
 | |
|   ** of the new record does not previously exist.  Except, if this
 | |
|   ** is an UPDATE and the primary key is not changing, that is OK.
 | |
|   */
 | |
|   if( rowidChng ){
 | |
|     onError = pTab->keyConf;
 | |
|     if( overrideError!=OE_Default ){
 | |
|       onError = overrideError;
 | |
|     }else if( onError==OE_Default ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     
 | |
|     if( onError!=OE_Replace || pTab->pIndex ){
 | |
|       if( isUpdate ){
 | |
|         j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
 | |
|       }
 | |
|       j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
 | |
|       switch( onError ){
 | |
|         default: {
 | |
|           onError = OE_Abort;
 | |
|           /* Fall thru into the next case */
 | |
|         }
 | |
|         case OE_Rollback:
 | |
|         case OE_Abort:
 | |
|         case OE_Fail: {
 | |
|           sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
 | |
|                            "PRIMARY KEY must be unique", P4_STATIC);
 | |
|           break;
 | |
|         }
 | |
|         case OE_Replace: {
 | |
|           sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
 | |
|           seenReplace = 1;
 | |
|           break;
 | |
|         }
 | |
|         case OE_Ignore: {
 | |
|           assert( seenReplace==0 );
 | |
|           sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       sqlite3VdbeJumpHere(v, j3);
 | |
|       if( isUpdate ){
 | |
|         sqlite3VdbeJumpHere(v, j2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Test all UNIQUE constraints by creating entries for each UNIQUE
 | |
|   ** index and making sure that duplicate entries do not already exist.
 | |
|   ** Add the new records to the indices as we go.
 | |
|   */
 | |
|   for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
 | |
|     int regIdx;
 | |
|     int regR;
 | |
| 
 | |
|     if( aRegIdx[iCur]==0 ) continue;  /* Skip unused indices */
 | |
| 
 | |
|     /* Create a key for accessing the index entry */
 | |
|     regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
 | |
|     for(i=0; i<pIdx->nColumn; i++){
 | |
|       int idx = pIdx->aiColumn[i];
 | |
|       if( idx==pTab->iPKey ){
 | |
|         sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
 | |
|     sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
 | |
|     sqlite3IndexAffinityStr(v, pIdx);
 | |
|     sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
 | |
| 
 | |
|     /* Find out what action to take in case there is an indexing conflict */
 | |
|     onError = pIdx->onError;
 | |
|     if( onError==OE_None ) continue;  /* pIdx is not a UNIQUE index */
 | |
|     if( overrideError!=OE_Default ){
 | |
|       onError = overrideError;
 | |
|     }else if( onError==OE_Default ){
 | |
|       onError = OE_Abort;
 | |
|     }
 | |
|     if( seenReplace ){
 | |
|       if( onError==OE_Ignore ) onError = OE_Replace;
 | |
|       else if( onError==OE_Fail ) onError = OE_Abort;
 | |
|     }
 | |
|     
 | |
| 
 | |
|     /* Check to see if the new index entry will be unique */
 | |
|     j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
 | |
|     regR = sqlite3GetTempReg(pParse);
 | |
|     sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
 | |
|     j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
 | |
|                            regR, (char*)(sqlite3_intptr_t)aRegIdx[iCur],
 | |
|                            P4_INT32);
 | |
| 
 | |
|     /* Generate code that executes if the new index entry is not unique */
 | |
|     assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
 | |
|         || onError==OE_Ignore || onError==OE_Replace );
 | |
|     switch( onError ){
 | |
|       case OE_Rollback:
 | |
|       case OE_Abort:
 | |
|       case OE_Fail: {
 | |
|         int j, n1, n2;
 | |
|         char zErrMsg[200];
 | |
|         sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
 | |
|                          pIdx->nColumn>1 ? "columns " : "column ");
 | |
|         n1 = strlen(zErrMsg);
 | |
|         for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
 | |
|           char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
 | |
|           n2 = strlen(zCol);
 | |
|           if( j>0 ){
 | |
|             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
 | |
|             n1 += 2;
 | |
|           }
 | |
|           if( n1+n2>sizeof(zErrMsg)-30 ){
 | |
|             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
 | |
|             n1 += 3;
 | |
|             break;
 | |
|           }else{
 | |
|             sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
 | |
|             n1 += n2;
 | |
|           }
 | |
|         }
 | |
|         sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], 
 | |
|             pIdx->nColumn>1 ? " are not unique" : " is not unique");
 | |
|         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Ignore: {
 | |
|         assert( seenReplace==0 );
 | |
|         sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
 | |
|         break;
 | |
|       }
 | |
|       case OE_Replace: {
 | |
|         sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
 | |
|         seenReplace = 1;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeJumpHere(v, j2);
 | |
|     sqlite3VdbeJumpHere(v, j3);
 | |
|     sqlite3ReleaseTempReg(pParse, regR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine generates code to finish the INSERT or UPDATE operation
 | |
| ** that was started by a prior call to sqlite3GenerateConstraintChecks.
 | |
| ** A consecutive range of registers starting at regRowid contains the
 | |
| ** rowid and the content to be inserted.
 | |
| **
 | |
| ** The arguments to this routine should be the same as the first six
 | |
| ** arguments to sqlite3GenerateConstraintChecks.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CompleteInsertion(
 | |
|   Parse *pParse,      /* The parser context */
 | |
|   Table *pTab,        /* the table into which we are inserting */
 | |
|   int baseCur,        /* Index of a read/write cursor pointing at pTab */
 | |
|   int regRowid,       /* Range of content */
 | |
|   int *aRegIdx,       /* Register used by each index.  0 for unused indices */
 | |
|   int rowidChng,      /* True if the record number will change */
 | |
|   int isUpdate,       /* True for UPDATE, False for INSERT */
 | |
|   int newIdx,         /* Index of NEW table for triggers.  -1 if none */
 | |
|   int appendBias      /* True if this is likely to be an append */
 | |
| ){
 | |
|   int i;
 | |
|   Vdbe *v;
 | |
|   int nIdx;
 | |
|   Index *pIdx;
 | |
|   int pik_flags;
 | |
|   int regData;
 | |
|   int regRec;
 | |
| 
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   assert( v!=0 );
 | |
|   assert( pTab->pSelect==0 );  /* This table is not a VIEW */
 | |
|   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
 | |
|   for(i=nIdx-1; i>=0; i--){
 | |
|     if( aRegIdx[i]==0 ) continue;
 | |
|     sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
 | |
|   }
 | |
|   regData = regRowid + 1;
 | |
|   regRec = sqlite3GetTempReg(pParse);
 | |
|   sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
 | |
|   sqlite3TableAffinityStr(v, pTab);
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   if( newIdx>=0 ){
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
 | |
|   }
 | |
| #endif
 | |
|   if( pParse->nested ){
 | |
|     pik_flags = 0;
 | |
|   }else{
 | |
|     pik_flags = OPFLAG_NCHANGE;
 | |
|     pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
 | |
|   }
 | |
|   if( appendBias ){
 | |
|     pik_flags |= OPFLAG_APPEND;
 | |
|   }
 | |
|   sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
 | |
|   if( !pParse->nested ){
 | |
|     sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
 | |
|   }
 | |
|   sqlite3VdbeChangeP5(v, pik_flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will open cursors for a table and for all
 | |
| ** indices of that table.  The "baseCur" parameter is the cursor number used
 | |
| ** for the table.  Indices are opened on subsequent cursors.
 | |
| **
 | |
| ** Return the number of indices on the table.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
 | |
|   Parse *pParse,   /* Parsing context */
 | |
|   Table *pTab,     /* Table to be opened */
 | |
|   int baseCur,        /* Cursor number assigned to the table */
 | |
|   int op           /* OP_OpenRead or OP_OpenWrite */
 | |
| ){
 | |
|   int i;
 | |
|   int iDb;
 | |
|   Index *pIdx;
 | |
|   Vdbe *v;
 | |
| 
 | |
|   if( IsVirtual(pTab) ) return 0;
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   assert( v!=0 );
 | |
|   sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
 | |
|   for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
 | |
|     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | |
|     assert( pIdx->pSchema==pTab->pSchema );
 | |
|     sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
 | |
|                       (char*)pKey, P4_KEYINFO_HANDOFF);
 | |
|     VdbeComment((v, "%s", pIdx->zName));
 | |
|   }
 | |
|   if( pParse->nTab<=baseCur+i ){
 | |
|     pParse->nTab = baseCur+i;
 | |
|   }
 | |
|   return i-1;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| /*
 | |
| ** The following global variable is incremented whenever the
 | |
| ** transfer optimization is used.  This is used for testing
 | |
| ** purposes only - to make sure the transfer optimization really
 | |
| ** is happening when it is suppose to.
 | |
| */
 | |
| SQLITE_API int sqlite3_xferopt_count;
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_XFER_OPT
 | |
| /*
 | |
| ** Check to collation names to see if they are compatible.
 | |
| */
 | |
| static int xferCompatibleCollation(const char *z1, const char *z2){
 | |
|   if( z1==0 ){
 | |
|     return z2==0;
 | |
|   }
 | |
|   if( z2==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   return sqlite3StrICmp(z1, z2)==0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check to see if index pSrc is compatible as a source of data
 | |
| ** for index pDest in an insert transfer optimization.  The rules
 | |
| ** for a compatible index:
 | |
| **
 | |
| **    *   The index is over the same set of columns
 | |
| **    *   The same DESC and ASC markings occurs on all columns
 | |
| **    *   The same onError processing (OE_Abort, OE_Ignore, etc)
 | |
| **    *   The same collating sequence on each column
 | |
| */
 | |
| static int xferCompatibleIndex(Index *pDest, Index *pSrc){
 | |
|   int i;
 | |
|   assert( pDest && pSrc );
 | |
|   assert( pDest->pTable!=pSrc->pTable );
 | |
|   if( pDest->nColumn!=pSrc->nColumn ){
 | |
|     return 0;   /* Different number of columns */
 | |
|   }
 | |
|   if( pDest->onError!=pSrc->onError ){
 | |
|     return 0;   /* Different conflict resolution strategies */
 | |
|   }
 | |
|   for(i=0; i<pSrc->nColumn; i++){
 | |
|     if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
 | |
|       return 0;   /* Different columns indexed */
 | |
|     }
 | |
|     if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
 | |
|       return 0;   /* Different sort orders */
 | |
|     }
 | |
|     if( pSrc->azColl[i]!=pDest->azColl[i] ){
 | |
|       return 0;   /* Different collating sequences */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If no test above fails then the indices must be compatible */
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt the transfer optimization on INSERTs of the form
 | |
| **
 | |
| **     INSERT INTO tab1 SELECT * FROM tab2;
 | |
| **
 | |
| ** This optimization is only attempted if
 | |
| **
 | |
| **    (1)  tab1 and tab2 have identical schemas including all the
 | |
| **         same indices and constraints
 | |
| **
 | |
| **    (2)  tab1 and tab2 are different tables
 | |
| **
 | |
| **    (3)  There must be no triggers on tab1
 | |
| **
 | |
| **    (4)  The result set of the SELECT statement is "*"
 | |
| **
 | |
| **    (5)  The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
 | |
| **         or LIMIT clause.
 | |
| **
 | |
| **    (6)  The SELECT statement is a simple (not a compound) select that
 | |
| **         contains only tab2 in its FROM clause
 | |
| **
 | |
| ** This method for implementing the INSERT transfers raw records from
 | |
| ** tab2 over to tab1.  The columns are not decoded.  Raw records from
 | |
| ** the indices of tab2 are transfered to tab1 as well.  In so doing,
 | |
| ** the resulting tab1 has much less fragmentation.
 | |
| **
 | |
| ** This routine returns TRUE if the optimization is attempted.  If any
 | |
| ** of the conditions above fail so that the optimization should not
 | |
| ** be attempted, then this routine returns FALSE.
 | |
| */
 | |
| static int xferOptimization(
 | |
|   Parse *pParse,        /* Parser context */
 | |
|   Table *pDest,         /* The table we are inserting into */
 | |
|   Select *pSelect,      /* A SELECT statement to use as the data source */
 | |
|   int onError,          /* How to handle constraint errors */
 | |
|   int iDbDest           /* The database of pDest */
 | |
| ){
 | |
|   ExprList *pEList;                /* The result set of the SELECT */
 | |
|   Table *pSrc;                     /* The table in the FROM clause of SELECT */
 | |
|   Index *pSrcIdx, *pDestIdx;       /* Source and destination indices */
 | |
|   struct SrcList_item *pItem;      /* An element of pSelect->pSrc */
 | |
|   int i;                           /* Loop counter */
 | |
|   int iDbSrc;                      /* The database of pSrc */
 | |
|   int iSrc, iDest;                 /* Cursors from source and destination */
 | |
|   int addr1, addr2;                /* Loop addresses */
 | |
|   int emptyDestTest;               /* Address of test for empty pDest */
 | |
|   int emptySrcTest;                /* Address of test for empty pSrc */
 | |
|   Vdbe *v;                         /* The VDBE we are building */
 | |
|   KeyInfo *pKey;                   /* Key information for an index */
 | |
|   int regAutoinc;                  /* Memory register used by AUTOINC */
 | |
|   int destHasUniqueIdx = 0;        /* True if pDest has a UNIQUE index */
 | |
|   int regData, regRowid;           /* Registers holding data and rowid */
 | |
| 
 | |
|   if( pSelect==0 ){
 | |
|     return 0;   /* Must be of the form  INSERT INTO ... SELECT ... */
 | |
|   }
 | |
|   if( pDest->pTrigger ){
 | |
|     return 0;   /* tab1 must not have triggers */
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( pDest->isVirtual ){
 | |
|     return 0;   /* tab1 must not be a virtual table */
 | |
|   }
 | |
| #endif
 | |
|   if( onError==OE_Default ){
 | |
|     onError = OE_Abort;
 | |
|   }
 | |
|   if( onError!=OE_Abort && onError!=OE_Rollback ){
 | |
|     return 0;   /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
 | |
|   }
 | |
|   assert(pSelect->pSrc);   /* allocated even if there is no FROM clause */
 | |
|   if( pSelect->pSrc->nSrc!=1 ){
 | |
|     return 0;   /* FROM clause must have exactly one term */
 | |
|   }
 | |
|   if( pSelect->pSrc->a[0].pSelect ){
 | |
|     return 0;   /* FROM clause cannot contain a subquery */
 | |
|   }
 | |
|   if( pSelect->pWhere ){
 | |
|     return 0;   /* SELECT may not have a WHERE clause */
 | |
|   }
 | |
|   if( pSelect->pOrderBy ){
 | |
|     return 0;   /* SELECT may not have an ORDER BY clause */
 | |
|   }
 | |
|   /* Do not need to test for a HAVING clause.  If HAVING is present but
 | |
|   ** there is no ORDER BY, we will get an error. */
 | |
|   if( pSelect->pGroupBy ){
 | |
|     return 0;   /* SELECT may not have a GROUP BY clause */
 | |
|   }
 | |
|   if( pSelect->pLimit ){
 | |
|     return 0;   /* SELECT may not have a LIMIT clause */
 | |
|   }
 | |
|   assert( pSelect->pOffset==0 );  /* Must be so if pLimit==0 */
 | |
|   if( pSelect->pPrior ){
 | |
|     return 0;   /* SELECT may not be a compound query */
 | |
|   }
 | |
|   if( pSelect->isDistinct ){
 | |
|     return 0;   /* SELECT may not be DISTINCT */
 | |
|   }
 | |
|   pEList = pSelect->pEList;
 | |
|   assert( pEList!=0 );
 | |
|   if( pEList->nExpr!=1 ){
 | |
|     return 0;   /* The result set must have exactly one column */
 | |
|   }
 | |
|   assert( pEList->a[0].pExpr );
 | |
|   if( pEList->a[0].pExpr->op!=TK_ALL ){
 | |
|     return 0;   /* The result set must be the special operator "*" */
 | |
|   }
 | |
| 
 | |
|   /* At this point we have established that the statement is of the
 | |
|   ** correct syntactic form to participate in this optimization.  Now
 | |
|   ** we have to check the semantics.
 | |
|   */
 | |
|   pItem = pSelect->pSrc->a;
 | |
|   pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
 | |
|   if( pSrc==0 ){
 | |
|     return 0;   /* FROM clause does not contain a real table */
 | |
|   }
 | |
|   if( pSrc==pDest ){
 | |
|     return 0;   /* tab1 and tab2 may not be the same table */
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   if( pSrc->isVirtual ){
 | |
|     return 0;   /* tab2 must not be a virtual table */
 | |
|   }
 | |
| #endif
 | |
|   if( pSrc->pSelect ){
 | |
|     return 0;   /* tab2 may not be a view */
 | |
|   }
 | |
|   if( pDest->nCol!=pSrc->nCol ){
 | |
|     return 0;   /* Number of columns must be the same in tab1 and tab2 */
 | |
|   }
 | |
|   if( pDest->iPKey!=pSrc->iPKey ){
 | |
|     return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
 | |
|   }
 | |
|   for(i=0; i<pDest->nCol; i++){
 | |
|     if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
 | |
|       return 0;    /* Affinity must be the same on all columns */
 | |
|     }
 | |
|     if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
 | |
|       return 0;    /* Collating sequence must be the same on all columns */
 | |
|     }
 | |
|     if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
 | |
|       return 0;    /* tab2 must be NOT NULL if tab1 is */
 | |
|     }
 | |
|   }
 | |
|   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
 | |
|     if( pDestIdx->onError!=OE_None ){
 | |
|       destHasUniqueIdx = 1;
 | |
|     }
 | |
|     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
 | |
|       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
 | |
|     }
 | |
|     if( pSrcIdx==0 ){
 | |
|       return 0;    /* pDestIdx has no corresponding index in pSrc */
 | |
|     }
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|   if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
 | |
|     return 0;   /* Tables have different CHECK constraints.  Ticket #2252 */
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If we get this far, it means either:
 | |
|   **
 | |
|   **    *   We can always do the transfer if the table contains an
 | |
|   **        an integer primary key
 | |
|   **
 | |
|   **    *   We can conditionally do the transfer if the destination
 | |
|   **        table is empty.
 | |
|   */
 | |
| #ifdef SQLITE_TEST
 | |
|   sqlite3_xferopt_count++;
 | |
| #endif
 | |
|   iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   sqlite3CodeVerifySchema(pParse, iDbSrc);
 | |
|   iSrc = pParse->nTab++;
 | |
|   iDest = pParse->nTab++;
 | |
|   regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
 | |
|   sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
 | |
|   if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
 | |
|     /* If tables do not have an INTEGER PRIMARY KEY and there
 | |
|     ** are indices to be copied and the destination is not empty,
 | |
|     ** we have to disallow the transfer optimization because the
 | |
|     ** the rowids might change which will mess up indexing.
 | |
|     **
 | |
|     ** Or if the destination has a UNIQUE index and is not empty,
 | |
|     ** we also disallow the transfer optimization because we cannot
 | |
|     ** insure that all entries in the union of DEST and SRC will be
 | |
|     ** unique.
 | |
|     */
 | |
|     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
 | |
|     emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|   }else{
 | |
|     emptyDestTest = 0;
 | |
|   }
 | |
|   sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
 | |
|   emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
 | |
|   regData = sqlite3GetTempReg(pParse);
 | |
|   regRowid = sqlite3GetTempReg(pParse);
 | |
|   if( pDest->iPKey>=0 ){
 | |
|     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
 | |
|     addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
 | |
|     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
 | |
|                       "PRIMARY KEY must be unique", P4_STATIC);
 | |
|     sqlite3VdbeJumpHere(v, addr2);
 | |
|     autoIncStep(pParse, regAutoinc, regRowid);
 | |
|   }else if( pDest->pIndex==0 ){
 | |
|     addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
 | |
|   }else{
 | |
|     addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
 | |
|     assert( pDest->autoInc==0 );
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
 | |
|   sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
 | |
|   sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
 | |
|   sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
 | |
|   sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
 | |
|   autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
 | |
|   for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
 | |
|     for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
 | |
|       if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
 | |
|     }
 | |
|     assert( pSrcIdx );
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
 | |
|     pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
 | |
|     sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
 | |
|                       (char*)pKey, P4_KEYINFO_HANDOFF);
 | |
|     VdbeComment((v, "%s", pSrcIdx->zName));
 | |
|     pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
 | |
|     sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
 | |
|                       (char*)pKey, P4_KEYINFO_HANDOFF);
 | |
|     VdbeComment((v, "%s", pDestIdx->zName));
 | |
|     addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
 | |
|     sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
 | |
|     sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|   }
 | |
|   sqlite3VdbeJumpHere(v, emptySrcTest);
 | |
|   sqlite3ReleaseTempReg(pParse, regRowid);
 | |
|   sqlite3ReleaseTempReg(pParse, regData);
 | |
|   sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
 | |
|   sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
 | |
|   if( emptyDestTest ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
 | |
|     sqlite3VdbeJumpHere(v, emptyDestTest);
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
 | |
|     return 0;
 | |
|   }else{
 | |
|     return 1;
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_OMIT_XFER_OPT */
 | |
| 
 | |
| /************** End of insert.c **********************************************/
 | |
| /************** Begin file legacy.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Main file for the SQLite library.  The routines in this file
 | |
| ** implement the programmer interface to the library.  Routines in
 | |
| ** other files are for internal use by SQLite and should not be
 | |
| ** accessed by users of the library.
 | |
| **
 | |
| ** $Id: legacy.c,v 1.23 2008/02/13 18:25:27 danielk1977 Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Execute SQL code.  Return one of the SQLITE_ success/failure
 | |
| ** codes.  Also write an error message into memory obtained from
 | |
| ** malloc() and make *pzErrMsg point to that message.
 | |
| **
 | |
| ** If the SQL is a query, then for each row in the query result
 | |
| ** the xCallback() function is called.  pArg becomes the first
 | |
| ** argument to xCallback().  If xCallback=NULL then no callback
 | |
| ** is invoked, even for queries.
 | |
| */
 | |
| SQLITE_API int sqlite3_exec(
 | |
|   sqlite3 *db,                /* The database on which the SQL executes */
 | |
|   const char *zSql,           /* The SQL to be executed */
 | |
|   sqlite3_callback xCallback, /* Invoke this callback routine */
 | |
|   void *pArg,                 /* First argument to xCallback() */
 | |
|   char **pzErrMsg             /* Write error messages here */
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   const char *zLeftover;
 | |
|   sqlite3_stmt *pStmt = 0;
 | |
|   char **azCols = 0;
 | |
| 
 | |
|   int nRetry = 0;
 | |
|   int nCallback;
 | |
| 
 | |
|   if( zSql==0 ) return SQLITE_OK;
 | |
| 
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){
 | |
|     int nCol;
 | |
|     char **azVals = 0;
 | |
| 
 | |
|     pStmt = 0;
 | |
|     rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover);
 | |
|     assert( rc==SQLITE_OK || pStmt==0 );
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       continue;
 | |
|     }
 | |
|     if( !pStmt ){
 | |
|       /* this happens for a comment or white-space */
 | |
|       zSql = zLeftover;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     nCallback = 0;
 | |
| 
 | |
|     nCol = sqlite3_column_count(pStmt);
 | |
|     azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char *) + 1);
 | |
|     if( azCols==0 ){
 | |
|       goto exec_out;
 | |
|     }
 | |
| 
 | |
|     while( 1 ){
 | |
|       int i;
 | |
|       rc = sqlite3_step(pStmt);
 | |
| 
 | |
|       /* Invoke the callback function if required */
 | |
|       if( xCallback && (SQLITE_ROW==rc || 
 | |
|           (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){
 | |
|         if( 0==nCallback ){
 | |
|           for(i=0; i<nCol; i++){
 | |
|             azCols[i] = (char *)sqlite3_column_name(pStmt, i);
 | |
|             if( !azCols[i] ){
 | |
|               db->mallocFailed = 1;
 | |
|               goto exec_out;
 | |
|             }
 | |
|           }
 | |
|           nCallback++;
 | |
|         }
 | |
|         if( rc==SQLITE_ROW ){
 | |
|           azVals = &azCols[nCol];
 | |
|           for(i=0; i<nCol; i++){
 | |
|             azVals[i] = (char *)sqlite3_column_text(pStmt, i);
 | |
|             if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
 | |
|               db->mallocFailed = 1;
 | |
|               goto exec_out;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( xCallback(pArg, nCol, azVals, azCols) ){
 | |
|           rc = SQLITE_ABORT;
 | |
|           goto exec_out;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if( rc!=SQLITE_ROW ){
 | |
|         rc = sqlite3_finalize(pStmt);
 | |
|         pStmt = 0;
 | |
|         if( rc!=SQLITE_SCHEMA ){
 | |
|           nRetry = 0;
 | |
|           zSql = zLeftover;
 | |
|           while( isspace((unsigned char)zSql[0]) ) zSql++;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     sqlite3_free(azCols);
 | |
|     azCols = 0;
 | |
|   }
 | |
| 
 | |
| exec_out:
 | |
|   if( pStmt ) sqlite3_finalize(pStmt);
 | |
|   if( azCols ) sqlite3_free(azCols);
 | |
| 
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){
 | |
|     int nErrMsg = 1 + strlen(sqlite3_errmsg(db));
 | |
|     *pzErrMsg = sqlite3_malloc(nErrMsg);
 | |
|     if( *pzErrMsg ){
 | |
|       memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg);
 | |
|     }
 | |
|   }else if( pzErrMsg ){
 | |
|     *pzErrMsg = 0;
 | |
|   }
 | |
| 
 | |
|   assert( (rc&db->errMask)==rc );
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /************** End of legacy.c **********************************************/
 | |
| /************** Begin file loadext.c *****************************************/
 | |
| /*
 | |
| ** 2006 June 7
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to dynamically load extensions into
 | |
| ** the SQLite library.
 | |
| */
 | |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION
 | |
| 
 | |
| #ifndef SQLITE_CORE
 | |
|   #define SQLITE_CORE 1  /* Disable the API redefinition in sqlite3ext.h */
 | |
| #endif
 | |
| /************** Include sqlite3ext.h in the middle of loadext.c **************/
 | |
| /************** Begin file sqlite3ext.h **************************************/
 | |
| /*
 | |
| ** 2006 June 7
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This header file defines the SQLite interface for use by
 | |
| ** shared libraries that want to be imported as extensions into
 | |
| ** an SQLite instance.  Shared libraries that intend to be loaded
 | |
| ** as extensions by SQLite should #include this file instead of 
 | |
| ** sqlite3.h.
 | |
| **
 | |
| ** @(#) $Id: sqlite3ext.h,v 1.18 2008/03/02 03:32:05 mlcreech Exp $
 | |
| */
 | |
| #ifndef _SQLITE3EXT_H_
 | |
| #define _SQLITE3EXT_H_
 | |
| 
 | |
| typedef struct sqlite3_api_routines sqlite3_api_routines;
 | |
| 
 | |
| /*
 | |
| ** The following structure holds pointers to all of the SQLite API
 | |
| ** routines.
 | |
| **
 | |
| ** WARNING:  In order to maintain backwards compatibility, add new
 | |
| ** interfaces to the end of this structure only.  If you insert new
 | |
| ** interfaces in the middle of this structure, then older different
 | |
| ** versions of SQLite will not be able to load each others' shared
 | |
| ** libraries!
 | |
| */
 | |
| struct sqlite3_api_routines {
 | |
|   void * (*aggregate_context)(sqlite3_context*,int nBytes);
 | |
|   int  (*aggregate_count)(sqlite3_context*);
 | |
|   int  (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*));
 | |
|   int  (*bind_double)(sqlite3_stmt*,int,double);
 | |
|   int  (*bind_int)(sqlite3_stmt*,int,int);
 | |
|   int  (*bind_int64)(sqlite3_stmt*,int,sqlite_int64);
 | |
|   int  (*bind_null)(sqlite3_stmt*,int);
 | |
|   int  (*bind_parameter_count)(sqlite3_stmt*);
 | |
|   int  (*bind_parameter_index)(sqlite3_stmt*,const char*zName);
 | |
|   const char * (*bind_parameter_name)(sqlite3_stmt*,int);
 | |
|   int  (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*));
 | |
|   int  (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*));
 | |
|   int  (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*);
 | |
|   int  (*busy_handler)(sqlite3*,int(*)(void*,int),void*);
 | |
|   int  (*busy_timeout)(sqlite3*,int ms);
 | |
|   int  (*changes)(sqlite3*);
 | |
|   int  (*close)(sqlite3*);
 | |
|   int  (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*));
 | |
|   int  (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*));
 | |
|   const void * (*column_blob)(sqlite3_stmt*,int iCol);
 | |
|   int  (*column_bytes)(sqlite3_stmt*,int iCol);
 | |
|   int  (*column_bytes16)(sqlite3_stmt*,int iCol);
 | |
|   int  (*column_count)(sqlite3_stmt*pStmt);
 | |
|   const char * (*column_database_name)(sqlite3_stmt*,int);
 | |
|   const void * (*column_database_name16)(sqlite3_stmt*,int);
 | |
|   const char * (*column_decltype)(sqlite3_stmt*,int i);
 | |
|   const void * (*column_decltype16)(sqlite3_stmt*,int);
 | |
|   double  (*column_double)(sqlite3_stmt*,int iCol);
 | |
|   int  (*column_int)(sqlite3_stmt*,int iCol);
 | |
|   sqlite_int64  (*column_int64)(sqlite3_stmt*,int iCol);
 | |
|   const char * (*column_name)(sqlite3_stmt*,int);
 | |
|   const void * (*column_name16)(sqlite3_stmt*,int);
 | |
|   const char * (*column_origin_name)(sqlite3_stmt*,int);
 | |
|   const void * (*column_origin_name16)(sqlite3_stmt*,int);
 | |
|   const char * (*column_table_name)(sqlite3_stmt*,int);
 | |
|   const void * (*column_table_name16)(sqlite3_stmt*,int);
 | |
|   const unsigned char * (*column_text)(sqlite3_stmt*,int iCol);
 | |
|   const void * (*column_text16)(sqlite3_stmt*,int iCol);
 | |
|   int  (*column_type)(sqlite3_stmt*,int iCol);
 | |
|   sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol);
 | |
|   void * (*commit_hook)(sqlite3*,int(*)(void*),void*);
 | |
|   int  (*complete)(const char*sql);
 | |
|   int  (*complete16)(const void*sql);
 | |
|   int  (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
 | |
|   int  (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*));
 | |
|   int  (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
 | |
|   int  (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*));
 | |
|   int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*);
 | |
|   int  (*data_count)(sqlite3_stmt*pStmt);
 | |
|   sqlite3 * (*db_handle)(sqlite3_stmt*);
 | |
|   int (*declare_vtab)(sqlite3*,const char*);
 | |
|   int  (*enable_shared_cache)(int);
 | |
|   int  (*errcode)(sqlite3*db);
 | |
|   const char * (*errmsg)(sqlite3*);
 | |
|   const void * (*errmsg16)(sqlite3*);
 | |
|   int  (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**);
 | |
|   int  (*expired)(sqlite3_stmt*);
 | |
|   int  (*finalize)(sqlite3_stmt*pStmt);
 | |
|   void  (*free)(void*);
 | |
|   void  (*free_table)(char**result);
 | |
|   int  (*get_autocommit)(sqlite3*);
 | |
|   void * (*get_auxdata)(sqlite3_context*,int);
 | |
|   int  (*get_table)(sqlite3*,const char*,char***,int*,int*,char**);
 | |
|   int  (*global_recover)(void);
 | |
|   void  (*interruptx)(sqlite3*);
 | |
|   sqlite_int64  (*last_insert_rowid)(sqlite3*);
 | |
|   const char * (*libversion)(void);
 | |
|   int  (*libversion_number)(void);
 | |
|   void *(*malloc)(int);
 | |
|   char * (*mprintf)(const char*,...);
 | |
|   int  (*open)(const char*,sqlite3**);
 | |
|   int  (*open16)(const void*,sqlite3**);
 | |
|   int  (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
 | |
|   int  (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
 | |
|   void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*);
 | |
|   void  (*progress_handler)(sqlite3*,int,int(*)(void*),void*);
 | |
|   void *(*realloc)(void*,int);
 | |
|   int  (*reset)(sqlite3_stmt*pStmt);
 | |
|   void  (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*));
 | |
|   void  (*result_double)(sqlite3_context*,double);
 | |
|   void  (*result_error)(sqlite3_context*,const char*,int);
 | |
|   void  (*result_error16)(sqlite3_context*,const void*,int);
 | |
|   void  (*result_int)(sqlite3_context*,int);
 | |
|   void  (*result_int64)(sqlite3_context*,sqlite_int64);
 | |
|   void  (*result_null)(sqlite3_context*);
 | |
|   void  (*result_text)(sqlite3_context*,const char*,int,void(*)(void*));
 | |
|   void  (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*));
 | |
|   void  (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*));
 | |
|   void  (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*));
 | |
|   void  (*result_value)(sqlite3_context*,sqlite3_value*);
 | |
|   void * (*rollback_hook)(sqlite3*,void(*)(void*),void*);
 | |
|   int  (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*);
 | |
|   void  (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*));
 | |
|   char * (*snprintf)(int,char*,const char*,...);
 | |
|   int  (*step)(sqlite3_stmt*);
 | |
|   int  (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*);
 | |
|   void  (*thread_cleanup)(void);
 | |
|   int  (*total_changes)(sqlite3*);
 | |
|   void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*);
 | |
|   int  (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*);
 | |
|   void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*);
 | |
|   void * (*user_data)(sqlite3_context*);
 | |
|   const void * (*value_blob)(sqlite3_value*);
 | |
|   int  (*value_bytes)(sqlite3_value*);
 | |
|   int  (*value_bytes16)(sqlite3_value*);
 | |
|   double  (*value_double)(sqlite3_value*);
 | |
|   int  (*value_int)(sqlite3_value*);
 | |
|   sqlite_int64  (*value_int64)(sqlite3_value*);
 | |
|   int  (*value_numeric_type)(sqlite3_value*);
 | |
|   const unsigned char * (*value_text)(sqlite3_value*);
 | |
|   const void * (*value_text16)(sqlite3_value*);
 | |
|   const void * (*value_text16be)(sqlite3_value*);
 | |
|   const void * (*value_text16le)(sqlite3_value*);
 | |
|   int  (*value_type)(sqlite3_value*);
 | |
|   char *(*vmprintf)(const char*,va_list);
 | |
|   /* Added ??? */
 | |
|   int (*overload_function)(sqlite3*, const char *zFuncName, int nArg);
 | |
|   /* Added by 3.3.13 */
 | |
|   int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**);
 | |
|   int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**);
 | |
|   int (*clear_bindings)(sqlite3_stmt*);
 | |
|   /* Added by 3.4.1 */
 | |
|   int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *));
 | |
|   /* Added by 3.5.0 */
 | |
|   int (*bind_zeroblob)(sqlite3_stmt*,int,int);
 | |
|   int (*blob_bytes)(sqlite3_blob*);
 | |
|   int (*blob_close)(sqlite3_blob*);
 | |
|   int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**);
 | |
|   int (*blob_read)(sqlite3_blob*,void*,int,int);
 | |
|   int (*blob_write)(sqlite3_blob*,const void*,int,int);
 | |
|   int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*));
 | |
|   int (*file_control)(sqlite3*,const char*,int,void*);
 | |
|   sqlite3_int64 (*memory_highwater)(int);
 | |
|   sqlite3_int64 (*memory_used)(void);
 | |
|   sqlite3_mutex *(*mutex_alloc)(int);
 | |
|   void (*mutex_enter)(sqlite3_mutex*);
 | |
|   void (*mutex_free)(sqlite3_mutex*);
 | |
|   void (*mutex_leave)(sqlite3_mutex*);
 | |
|   int (*mutex_try)(sqlite3_mutex*);
 | |
|   int (*open_v2)(const char*,sqlite3**,int,const char*);
 | |
|   int (*release_memory)(int);
 | |
|   void (*result_error_nomem)(sqlite3_context*);
 | |
|   void (*result_error_toobig)(sqlite3_context*);
 | |
|   int (*sleep)(int);
 | |
|   void (*soft_heap_limit)(int);
 | |
|   sqlite3_vfs *(*vfs_find)(const char*);
 | |
|   int (*vfs_register)(sqlite3_vfs*,int);
 | |
|   int (*vfs_unregister)(sqlite3_vfs*);
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** The following macros redefine the API routines so that they are
 | |
| ** redirected throught the global sqlite3_api structure.
 | |
| **
 | |
| ** This header file is also used by the loadext.c source file
 | |
| ** (part of the main SQLite library - not an extension) so that
 | |
| ** it can get access to the sqlite3_api_routines structure
 | |
| ** definition.  But the main library does not want to redefine
 | |
| ** the API.  So the redefinition macros are only valid if the
 | |
| ** SQLITE_CORE macros is undefined.
 | |
| */
 | |
| #ifndef SQLITE_CORE
 | |
| #define sqlite3_aggregate_context      sqlite3_api->aggregate_context
 | |
| #define sqlite3_aggregate_count        sqlite3_api->aggregate_count
 | |
| #define sqlite3_bind_blob              sqlite3_api->bind_blob
 | |
| #define sqlite3_bind_double            sqlite3_api->bind_double
 | |
| #define sqlite3_bind_int               sqlite3_api->bind_int
 | |
| #define sqlite3_bind_int64             sqlite3_api->bind_int64
 | |
| #define sqlite3_bind_null              sqlite3_api->bind_null
 | |
| #define sqlite3_bind_parameter_count   sqlite3_api->bind_parameter_count
 | |
| #define sqlite3_bind_parameter_index   sqlite3_api->bind_parameter_index
 | |
| #define sqlite3_bind_parameter_name    sqlite3_api->bind_parameter_name
 | |
| #define sqlite3_bind_text              sqlite3_api->bind_text
 | |
| #define sqlite3_bind_text16            sqlite3_api->bind_text16
 | |
| #define sqlite3_bind_value             sqlite3_api->bind_value
 | |
| #define sqlite3_busy_handler           sqlite3_api->busy_handler
 | |
| #define sqlite3_busy_timeout           sqlite3_api->busy_timeout
 | |
| #define sqlite3_changes                sqlite3_api->changes
 | |
| #define sqlite3_close                  sqlite3_api->close
 | |
| #define sqlite3_collation_needed       sqlite3_api->collation_needed
 | |
| #define sqlite3_collation_needed16     sqlite3_api->collation_needed16
 | |
| #define sqlite3_column_blob            sqlite3_api->column_blob
 | |
| #define sqlite3_column_bytes           sqlite3_api->column_bytes
 | |
| #define sqlite3_column_bytes16         sqlite3_api->column_bytes16
 | |
| #define sqlite3_column_count           sqlite3_api->column_count
 | |
| #define sqlite3_column_database_name   sqlite3_api->column_database_name
 | |
| #define sqlite3_column_database_name16 sqlite3_api->column_database_name16
 | |
| #define sqlite3_column_decltype        sqlite3_api->column_decltype
 | |
| #define sqlite3_column_decltype16      sqlite3_api->column_decltype16
 | |
| #define sqlite3_column_double          sqlite3_api->column_double
 | |
| #define sqlite3_column_int             sqlite3_api->column_int
 | |
| #define sqlite3_column_int64           sqlite3_api->column_int64
 | |
| #define sqlite3_column_name            sqlite3_api->column_name
 | |
| #define sqlite3_column_name16          sqlite3_api->column_name16
 | |
| #define sqlite3_column_origin_name     sqlite3_api->column_origin_name
 | |
| #define sqlite3_column_origin_name16   sqlite3_api->column_origin_name16
 | |
| #define sqlite3_column_table_name      sqlite3_api->column_table_name
 | |
| #define sqlite3_column_table_name16    sqlite3_api->column_table_name16
 | |
| #define sqlite3_column_text            sqlite3_api->column_text
 | |
| #define sqlite3_column_text16          sqlite3_api->column_text16
 | |
| #define sqlite3_column_type            sqlite3_api->column_type
 | |
| #define sqlite3_column_value           sqlite3_api->column_value
 | |
| #define sqlite3_commit_hook            sqlite3_api->commit_hook
 | |
| #define sqlite3_complete               sqlite3_api->complete
 | |
| #define sqlite3_complete16             sqlite3_api->complete16
 | |
| #define sqlite3_create_collation       sqlite3_api->create_collation
 | |
| #define sqlite3_create_collation16     sqlite3_api->create_collation16
 | |
| #define sqlite3_create_function        sqlite3_api->create_function
 | |
| #define sqlite3_create_function16      sqlite3_api->create_function16
 | |
| #define sqlite3_create_module          sqlite3_api->create_module
 | |
| #define sqlite3_create_module_v2       sqlite3_api->create_module_v2
 | |
| #define sqlite3_data_count             sqlite3_api->data_count
 | |
| #define sqlite3_db_handle              sqlite3_api->db_handle
 | |
| #define sqlite3_declare_vtab           sqlite3_api->declare_vtab
 | |
| #define sqlite3_enable_shared_cache    sqlite3_api->enable_shared_cache
 | |
| #define sqlite3_errcode                sqlite3_api->errcode
 | |
| #define sqlite3_errmsg                 sqlite3_api->errmsg
 | |
| #define sqlite3_errmsg16               sqlite3_api->errmsg16
 | |
| #define sqlite3_exec                   sqlite3_api->exec
 | |
| #define sqlite3_expired                sqlite3_api->expired
 | |
| #define sqlite3_finalize               sqlite3_api->finalize
 | |
| #define sqlite3_free                   sqlite3_api->free
 | |
| #define sqlite3_free_table             sqlite3_api->free_table
 | |
| #define sqlite3_get_autocommit         sqlite3_api->get_autocommit
 | |
| #define sqlite3_get_auxdata            sqlite3_api->get_auxdata
 | |
| #define sqlite3_get_table              sqlite3_api->get_table
 | |
| #define sqlite3_global_recover         sqlite3_api->global_recover
 | |
| #define sqlite3_interrupt              sqlite3_api->interruptx
 | |
| #define sqlite3_last_insert_rowid      sqlite3_api->last_insert_rowid
 | |
| #define sqlite3_libversion             sqlite3_api->libversion
 | |
| #define sqlite3_libversion_number      sqlite3_api->libversion_number
 | |
| #define sqlite3_malloc                 sqlite3_api->malloc
 | |
| #define sqlite3_mprintf                sqlite3_api->mprintf
 | |
| #define sqlite3_open                   sqlite3_api->open
 | |
| #define sqlite3_open16                 sqlite3_api->open16
 | |
| #define sqlite3_prepare                sqlite3_api->prepare
 | |
| #define sqlite3_prepare16              sqlite3_api->prepare16
 | |
| #define sqlite3_prepare_v2             sqlite3_api->prepare_v2
 | |
| #define sqlite3_prepare16_v2           sqlite3_api->prepare16_v2
 | |
| #define sqlite3_profile                sqlite3_api->profile
 | |
| #define sqlite3_progress_handler       sqlite3_api->progress_handler
 | |
| #define sqlite3_realloc                sqlite3_api->realloc
 | |
| #define sqlite3_reset                  sqlite3_api->reset
 | |
| #define sqlite3_result_blob            sqlite3_api->result_blob
 | |
| #define sqlite3_result_double          sqlite3_api->result_double
 | |
| #define sqlite3_result_error           sqlite3_api->result_error
 | |
| #define sqlite3_result_error16         sqlite3_api->result_error16
 | |
| #define sqlite3_result_int             sqlite3_api->result_int
 | |
| #define sqlite3_result_int64           sqlite3_api->result_int64
 | |
| #define sqlite3_result_null            sqlite3_api->result_null
 | |
| #define sqlite3_result_text            sqlite3_api->result_text
 | |
| #define sqlite3_result_text16          sqlite3_api->result_text16
 | |
| #define sqlite3_result_text16be        sqlite3_api->result_text16be
 | |
| #define sqlite3_result_text16le        sqlite3_api->result_text16le
 | |
| #define sqlite3_result_value           sqlite3_api->result_value
 | |
| #define sqlite3_rollback_hook          sqlite3_api->rollback_hook
 | |
| #define sqlite3_set_authorizer         sqlite3_api->set_authorizer
 | |
| #define sqlite3_set_auxdata            sqlite3_api->set_auxdata
 | |
| #define sqlite3_snprintf               sqlite3_api->snprintf
 | |
| #define sqlite3_step                   sqlite3_api->step
 | |
| #define sqlite3_table_column_metadata  sqlite3_api->table_column_metadata
 | |
| #define sqlite3_thread_cleanup         sqlite3_api->thread_cleanup
 | |
| #define sqlite3_total_changes          sqlite3_api->total_changes
 | |
| #define sqlite3_trace                  sqlite3_api->trace
 | |
| #define sqlite3_transfer_bindings      sqlite3_api->transfer_bindings
 | |
| #define sqlite3_update_hook            sqlite3_api->update_hook
 | |
| #define sqlite3_user_data              sqlite3_api->user_data
 | |
| #define sqlite3_value_blob             sqlite3_api->value_blob
 | |
| #define sqlite3_value_bytes            sqlite3_api->value_bytes
 | |
| #define sqlite3_value_bytes16          sqlite3_api->value_bytes16
 | |
| #define sqlite3_value_double           sqlite3_api->value_double
 | |
| #define sqlite3_value_int              sqlite3_api->value_int
 | |
| #define sqlite3_value_int64            sqlite3_api->value_int64
 | |
| #define sqlite3_value_numeric_type     sqlite3_api->value_numeric_type
 | |
| #define sqlite3_value_text             sqlite3_api->value_text
 | |
| #define sqlite3_value_text16           sqlite3_api->value_text16
 | |
| #define sqlite3_value_text16be         sqlite3_api->value_text16be
 | |
| #define sqlite3_value_text16le         sqlite3_api->value_text16le
 | |
| #define sqlite3_value_type             sqlite3_api->value_type
 | |
| #define sqlite3_vmprintf               sqlite3_api->vmprintf
 | |
| #define sqlite3_overload_function      sqlite3_api->overload_function
 | |
| #define sqlite3_prepare_v2             sqlite3_api->prepare_v2
 | |
| #define sqlite3_prepare16_v2           sqlite3_api->prepare16_v2
 | |
| #define sqlite3_clear_bindings         sqlite3_api->clear_bindings
 | |
| #define sqlite3_bind_zeroblob          sqlite3_api->bind_zeroblob
 | |
| #define sqlite3_blob_bytes             sqlite3_api->blob_bytes
 | |
| #define sqlite3_blob_close             sqlite3_api->blob_close
 | |
| #define sqlite3_blob_open              sqlite3_api->blob_open
 | |
| #define sqlite3_blob_read              sqlite3_api->blob_read
 | |
| #define sqlite3_blob_write             sqlite3_api->blob_write
 | |
| #define sqlite3_create_collation_v2    sqlite3_api->create_collation_v2
 | |
| #define sqlite3_file_control           sqlite3_api->file_control
 | |
| #define sqlite3_memory_highwater       sqlite3_api->memory_highwater
 | |
| #define sqlite3_memory_used            sqlite3_api->memory_used
 | |
| #define sqlite3_mutex_alloc            sqlite3_api->mutex_alloc
 | |
| #define sqlite3_mutex_enter            sqlite3_api->mutex_enter
 | |
| #define sqlite3_mutex_free             sqlite3_api->mutex_free
 | |
| #define sqlite3_mutex_leave            sqlite3_api->mutex_leave
 | |
| #define sqlite3_mutex_try              sqlite3_api->mutex_try
 | |
| #define sqlite3_open_v2                sqlite3_api->open_v2
 | |
| #define sqlite3_release_memory         sqlite3_api->release_memory
 | |
| #define sqlite3_result_error_nomem     sqlite3_api->result_error_nomem
 | |
| #define sqlite3_result_error_toobig    sqlite3_api->result_error_toobig
 | |
| #define sqlite3_sleep                  sqlite3_api->sleep
 | |
| #define sqlite3_soft_heap_limit        sqlite3_api->soft_heap_limit
 | |
| #define sqlite3_vfs_find               sqlite3_api->vfs_find
 | |
| #define sqlite3_vfs_register           sqlite3_api->vfs_register
 | |
| #define sqlite3_vfs_unregister         sqlite3_api->vfs_unregister
 | |
| #endif /* SQLITE_CORE */
 | |
| 
 | |
| #define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api;
 | |
| #define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;
 | |
| 
 | |
| #endif /* _SQLITE3EXT_H_ */
 | |
| 
 | |
| /************** End of sqlite3ext.h ******************************************/
 | |
| /************** Continuing where we left off in loadext.c ********************/
 | |
| 
 | |
| /*
 | |
| ** Some API routines are omitted when various features are
 | |
| ** excluded from a build of SQLite.  Substitute a NULL pointer
 | |
| ** for any missing APIs.
 | |
| */
 | |
| #ifndef SQLITE_ENABLE_COLUMN_METADATA
 | |
| # define sqlite3_column_database_name   0
 | |
| # define sqlite3_column_database_name16 0
 | |
| # define sqlite3_column_table_name      0
 | |
| # define sqlite3_column_table_name16    0
 | |
| # define sqlite3_column_origin_name     0
 | |
| # define sqlite3_column_origin_name16   0
 | |
| # define sqlite3_table_column_metadata  0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_AUTHORIZATION
 | |
| # define sqlite3_set_authorizer         0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_UTF16
 | |
| # define sqlite3_bind_text16            0
 | |
| # define sqlite3_collation_needed16     0
 | |
| # define sqlite3_column_decltype16      0
 | |
| # define sqlite3_column_name16          0
 | |
| # define sqlite3_column_text16          0
 | |
| # define sqlite3_complete16             0
 | |
| # define sqlite3_create_collation16     0
 | |
| # define sqlite3_create_function16      0
 | |
| # define sqlite3_errmsg16               0
 | |
| # define sqlite3_open16                 0
 | |
| # define sqlite3_prepare16              0
 | |
| # define sqlite3_prepare16_v2           0
 | |
| # define sqlite3_result_error16         0
 | |
| # define sqlite3_result_text16          0
 | |
| # define sqlite3_result_text16be        0
 | |
| # define sqlite3_result_text16le        0
 | |
| # define sqlite3_value_text16           0
 | |
| # define sqlite3_value_text16be         0
 | |
| # define sqlite3_value_text16le         0
 | |
| # define sqlite3_column_database_name16 0
 | |
| # define sqlite3_column_table_name16    0
 | |
| # define sqlite3_column_origin_name16   0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_COMPLETE
 | |
| # define sqlite3_complete 0
 | |
| # define sqlite3_complete16 0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
| # define sqlite3_progress_handler 0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_VIRTUALTABLE
 | |
| # define sqlite3_create_module 0
 | |
| # define sqlite3_create_module_v2 0
 | |
| # define sqlite3_declare_vtab 0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_SHARED_CACHE
 | |
| # define sqlite3_enable_shared_cache 0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_TRACE
 | |
| # define sqlite3_profile       0
 | |
| # define sqlite3_trace         0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_GET_TABLE
 | |
| # define sqlite3_free_table    0
 | |
| # define sqlite3_get_table     0
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_OMIT_INCRBLOB
 | |
| #define sqlite3_bind_zeroblob  0
 | |
| #define sqlite3_blob_bytes     0
 | |
| #define sqlite3_blob_close     0
 | |
| #define sqlite3_blob_open      0
 | |
| #define sqlite3_blob_read      0
 | |
| #define sqlite3_blob_write     0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The following structure contains pointers to all SQLite API routines.
 | |
| ** A pointer to this structure is passed into extensions when they are
 | |
| ** loaded so that the extension can make calls back into the SQLite
 | |
| ** library.
 | |
| **
 | |
| ** When adding new APIs, add them to the bottom of this structure
 | |
| ** in order to preserve backwards compatibility.
 | |
| **
 | |
| ** Extensions that use newer APIs should first call the
 | |
| ** sqlite3_libversion_number() to make sure that the API they
 | |
| ** intend to use is supported by the library.  Extensions should
 | |
| ** also check to make sure that the pointer to the function is
 | |
| ** not NULL before calling it.
 | |
| */
 | |
| SQLITE_PRIVATE const sqlite3_api_routines sqlite3Apis = {
 | |
|   sqlite3_aggregate_context,
 | |
|   sqlite3_aggregate_count,
 | |
|   sqlite3_bind_blob,
 | |
|   sqlite3_bind_double,
 | |
|   sqlite3_bind_int,
 | |
|   sqlite3_bind_int64,
 | |
|   sqlite3_bind_null,
 | |
|   sqlite3_bind_parameter_count,
 | |
|   sqlite3_bind_parameter_index,
 | |
|   sqlite3_bind_parameter_name,
 | |
|   sqlite3_bind_text,
 | |
|   sqlite3_bind_text16,
 | |
|   sqlite3_bind_value,
 | |
|   sqlite3_busy_handler,
 | |
|   sqlite3_busy_timeout,
 | |
|   sqlite3_changes,
 | |
|   sqlite3_close,
 | |
|   sqlite3_collation_needed,
 | |
|   sqlite3_collation_needed16,
 | |
|   sqlite3_column_blob,
 | |
|   sqlite3_column_bytes,
 | |
|   sqlite3_column_bytes16,
 | |
|   sqlite3_column_count,
 | |
|   sqlite3_column_database_name,
 | |
|   sqlite3_column_database_name16,
 | |
|   sqlite3_column_decltype,
 | |
|   sqlite3_column_decltype16,
 | |
|   sqlite3_column_double,
 | |
|   sqlite3_column_int,
 | |
|   sqlite3_column_int64,
 | |
|   sqlite3_column_name,
 | |
|   sqlite3_column_name16,
 | |
|   sqlite3_column_origin_name,
 | |
|   sqlite3_column_origin_name16,
 | |
|   sqlite3_column_table_name,
 | |
|   sqlite3_column_table_name16,
 | |
|   sqlite3_column_text,
 | |
|   sqlite3_column_text16,
 | |
|   sqlite3_column_type,
 | |
|   sqlite3_column_value,
 | |
|   sqlite3_commit_hook,
 | |
|   sqlite3_complete,
 | |
|   sqlite3_complete16,
 | |
|   sqlite3_create_collation,
 | |
|   sqlite3_create_collation16,
 | |
|   sqlite3_create_function,
 | |
|   sqlite3_create_function16,
 | |
|   sqlite3_create_module,
 | |
|   sqlite3_data_count,
 | |
|   sqlite3_db_handle,
 | |
|   sqlite3_declare_vtab,
 | |
|   sqlite3_enable_shared_cache,
 | |
|   sqlite3_errcode,
 | |
|   sqlite3_errmsg,
 | |
|   sqlite3_errmsg16,
 | |
|   sqlite3_exec,
 | |
|   sqlite3_expired,
 | |
|   sqlite3_finalize,
 | |
|   sqlite3_free,
 | |
|   sqlite3_free_table,
 | |
|   sqlite3_get_autocommit,
 | |
|   sqlite3_get_auxdata,
 | |
|   sqlite3_get_table,
 | |
|   0,     /* Was sqlite3_global_recover(), but that function is deprecated */
 | |
|   sqlite3_interrupt,
 | |
|   sqlite3_last_insert_rowid,
 | |
|   sqlite3_libversion,
 | |
|   sqlite3_libversion_number,
 | |
|   sqlite3_malloc,
 | |
|   sqlite3_mprintf,
 | |
|   sqlite3_open,
 | |
|   sqlite3_open16,
 | |
|   sqlite3_prepare,
 | |
|   sqlite3_prepare16,
 | |
|   sqlite3_profile,
 | |
|   sqlite3_progress_handler,
 | |
|   sqlite3_realloc,
 | |
|   sqlite3_reset,
 | |
|   sqlite3_result_blob,
 | |
|   sqlite3_result_double,
 | |
|   sqlite3_result_error,
 | |
|   sqlite3_result_error16,
 | |
|   sqlite3_result_int,
 | |
|   sqlite3_result_int64,
 | |
|   sqlite3_result_null,
 | |
|   sqlite3_result_text,
 | |
|   sqlite3_result_text16,
 | |
|   sqlite3_result_text16be,
 | |
|   sqlite3_result_text16le,
 | |
|   sqlite3_result_value,
 | |
|   sqlite3_rollback_hook,
 | |
|   sqlite3_set_authorizer,
 | |
|   sqlite3_set_auxdata,
 | |
|   sqlite3_snprintf,
 | |
|   sqlite3_step,
 | |
|   sqlite3_table_column_metadata,
 | |
|   sqlite3_thread_cleanup,
 | |
|   sqlite3_total_changes,
 | |
|   sqlite3_trace,
 | |
|   sqlite3_transfer_bindings,
 | |
|   sqlite3_update_hook,
 | |
|   sqlite3_user_data,
 | |
|   sqlite3_value_blob,
 | |
|   sqlite3_value_bytes,
 | |
|   sqlite3_value_bytes16,
 | |
|   sqlite3_value_double,
 | |
|   sqlite3_value_int,
 | |
|   sqlite3_value_int64,
 | |
|   sqlite3_value_numeric_type,
 | |
|   sqlite3_value_text,
 | |
|   sqlite3_value_text16,
 | |
|   sqlite3_value_text16be,
 | |
|   sqlite3_value_text16le,
 | |
|   sqlite3_value_type,
 | |
|   sqlite3_vmprintf,
 | |
|   /*
 | |
|   ** The original API set ends here.  All extensions can call any
 | |
|   ** of the APIs above provided that the pointer is not NULL.  But
 | |
|   ** before calling APIs that follow, extension should check the
 | |
|   ** sqlite3_libversion_number() to make sure they are dealing with
 | |
|   ** a library that is new enough to support that API.
 | |
|   *************************************************************************
 | |
|   */
 | |
|   sqlite3_overload_function,
 | |
| 
 | |
|   /*
 | |
|   ** Added after 3.3.13
 | |
|   */
 | |
|   sqlite3_prepare_v2,
 | |
|   sqlite3_prepare16_v2,
 | |
|   sqlite3_clear_bindings,
 | |
| 
 | |
|   /*
 | |
|   ** Added for 3.4.1
 | |
|   */
 | |
|   sqlite3_create_module_v2,
 | |
| 
 | |
|   /*
 | |
|   ** Added for 3.5.0
 | |
|   */
 | |
|   sqlite3_bind_zeroblob,
 | |
|   sqlite3_blob_bytes,
 | |
|   sqlite3_blob_close,
 | |
|   sqlite3_blob_open,
 | |
|   sqlite3_blob_read,
 | |
|   sqlite3_blob_write,
 | |
|   sqlite3_create_collation_v2,
 | |
|   sqlite3_file_control,
 | |
|   sqlite3_memory_highwater,
 | |
|   sqlite3_memory_used,
 | |
| #ifdef SQLITE_MUTEX_NOOP
 | |
|   0, 
 | |
|   0, 
 | |
|   0,
 | |
|   0,
 | |
|   0,
 | |
| #else
 | |
|   sqlite3_mutex_alloc,
 | |
|   sqlite3_mutex_enter,
 | |
|   sqlite3_mutex_free,
 | |
|   sqlite3_mutex_leave,
 | |
|   sqlite3_mutex_try,
 | |
| #endif
 | |
|   sqlite3_open_v2,
 | |
|   sqlite3_release_memory,
 | |
|   sqlite3_result_error_nomem,
 | |
|   sqlite3_result_error_toobig,
 | |
|   sqlite3_sleep,
 | |
|   sqlite3_soft_heap_limit,
 | |
|   sqlite3_vfs_find,
 | |
|   sqlite3_vfs_register,
 | |
|   sqlite3_vfs_unregister,
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Attempt to load an SQLite extension library contained in the file
 | |
| ** zFile.  The entry point is zProc.  zProc may be 0 in which case a
 | |
| ** default entry point name (sqlite3_extension_init) is used.  Use
 | |
| ** of the default name is recommended.
 | |
| **
 | |
| ** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
 | |
| **
 | |
| ** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with 
 | |
| ** error message text.  The calling function should free this memory
 | |
| ** by calling sqlite3_free().
 | |
| */
 | |
| static int sqlite3LoadExtension(
 | |
|   sqlite3 *db,          /* Load the extension into this database connection */
 | |
|   const char *zFile,    /* Name of the shared library containing extension */
 | |
|   const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
 | |
|   char **pzErrMsg       /* Put error message here if not 0 */
 | |
| ){
 | |
|   sqlite3_vfs *pVfs = db->pVfs;
 | |
|   void *handle;
 | |
|   int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
 | |
|   char *zErrmsg = 0;
 | |
|   void **aHandle;
 | |
| 
 | |
|   /* Ticket #1863.  To avoid a creating security problems for older
 | |
|   ** applications that relink against newer versions of SQLite, the
 | |
|   ** ability to run load_extension is turned off by default.  One
 | |
|   ** must call sqlite3_enable_load_extension() to turn on extension
 | |
|   ** loading.  Otherwise you get the following error.
 | |
|   */
 | |
|   if( (db->flags & SQLITE_LoadExtension)==0 ){
 | |
|     if( pzErrMsg ){
 | |
|       *pzErrMsg = sqlite3_mprintf("not authorized");
 | |
|     }
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   if( zProc==0 ){
 | |
|     zProc = "sqlite3_extension_init";
 | |
|   }
 | |
| 
 | |
|   handle = sqlite3OsDlOpen(pVfs, zFile);
 | |
|   if( handle==0 ){
 | |
|     if( pzErrMsg ){
 | |
|       char zErr[256];
 | |
|       zErr[sizeof(zErr)-1] = '\0';
 | |
|       sqlite3_snprintf(sizeof(zErr)-1, zErr, 
 | |
|           "unable to open shared library [%s]", zFile);
 | |
|       sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
 | |
|       *pzErrMsg = sqlite3DbStrDup(db, zErr);
 | |
|     }
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
 | |
|                    sqlite3OsDlSym(pVfs, handle, zProc);
 | |
|   if( xInit==0 ){
 | |
|     if( pzErrMsg ){
 | |
|       char zErr[256];
 | |
|       zErr[sizeof(zErr)-1] = '\0';
 | |
|       sqlite3_snprintf(sizeof(zErr)-1, zErr,
 | |
|           "no entry point [%s] in shared library [%s]", zProc,zFile);
 | |
|       sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr);
 | |
|       *pzErrMsg = sqlite3DbStrDup(db, zErr);
 | |
|       sqlite3OsDlClose(pVfs, handle);
 | |
|     }
 | |
|     return SQLITE_ERROR;
 | |
|   }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){
 | |
|     if( pzErrMsg ){
 | |
|       *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg);
 | |
|     }
 | |
|     sqlite3_free(zErrmsg);
 | |
|     sqlite3OsDlClose(pVfs, handle);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Append the new shared library handle to the db->aExtension array. */
 | |
|   db->nExtension++;
 | |
|   aHandle = sqlite3DbMallocZero(db, sizeof(handle)*db->nExtension);
 | |
|   if( aHandle==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   if( db->nExtension>0 ){
 | |
|     memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1));
 | |
|   }
 | |
|   sqlite3_free(db->aExtension);
 | |
|   db->aExtension = aHandle;
 | |
| 
 | |
|   db->aExtension[db->nExtension-1] = handle;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| SQLITE_API int sqlite3_load_extension(
 | |
|   sqlite3 *db,          /* Load the extension into this database connection */
 | |
|   const char *zFile,    /* Name of the shared library containing extension */
 | |
|   const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
 | |
|   char **pzErrMsg       /* Put error message here if not 0 */
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Call this routine when the database connection is closing in order
 | |
| ** to clean up loaded extensions
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){
 | |
|   int i;
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   for(i=0; i<db->nExtension; i++){
 | |
|     sqlite3OsDlClose(db->pVfs, db->aExtension[i]);
 | |
|   }
 | |
|   sqlite3_free(db->aExtension);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Enable or disable extension loading.  Extension loading is disabled by
 | |
| ** default so as not to open security holes in older applications.
 | |
| */
 | |
| SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   if( onoff ){
 | |
|     db->flags |= SQLITE_LoadExtension;
 | |
|   }else{
 | |
|     db->flags &= ~SQLITE_LoadExtension;
 | |
|   }
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following object holds the list of automatically loaded
 | |
| ** extensions.
 | |
| **
 | |
| ** This list is shared across threads.  The SQLITE_MUTEX_STATIC_MASTER
 | |
| ** mutex must be held while accessing this list.
 | |
| */
 | |
| static struct {
 | |
|   int nExt;        /* Number of entries in aExt[] */          
 | |
|   void **aExt;     /* Pointers to the extension init functions */
 | |
| } autoext = { 0, 0 };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Register a statically linked extension that is automatically
 | |
| ** loaded by every new database connection.
 | |
| */
 | |
| SQLITE_API int sqlite3_auto_extension(void *xInit){
 | |
|   int i;
 | |
|   int rc = SQLITE_OK;
 | |
|   sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   for(i=0; i<autoext.nExt; i++){
 | |
|     if( autoext.aExt[i]==xInit ) break;
 | |
|   }
 | |
|   if( i==autoext.nExt ){
 | |
|     int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]);
 | |
|     void **aNew;
 | |
|     aNew = sqlite3_realloc(autoext.aExt, nByte);
 | |
|     if( aNew==0 ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }else{
 | |
|       autoext.aExt = aNew;
 | |
|       autoext.aExt[autoext.nExt] = xInit;
 | |
|       autoext.nExt++;
 | |
|     }
 | |
|   }
 | |
|   sqlite3_mutex_leave(mutex);
 | |
|   assert( (rc&0xff)==rc );
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Reset the automatic extension loading mechanism.
 | |
| */
 | |
| SQLITE_API void sqlite3_reset_auto_extension(void){
 | |
|   sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
|   sqlite3_mutex_enter(mutex);
 | |
|   sqlite3_free(autoext.aExt);
 | |
|   autoext.aExt = 0;
 | |
|   autoext.nExt = 0;
 | |
|   sqlite3_mutex_leave(mutex);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Load all automatic extensions.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *db){
 | |
|   int i;
 | |
|   int go = 1;
 | |
|   int rc = SQLITE_OK;
 | |
|   int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*);
 | |
| 
 | |
|   if( autoext.nExt==0 ){
 | |
|     /* Common case: early out without every having to acquire a mutex */
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   for(i=0; go; i++){
 | |
|     char *zErrmsg = 0;
 | |
|     sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER);
 | |
|     sqlite3_mutex_enter(mutex);
 | |
|     if( i>=autoext.nExt ){
 | |
|       xInit = 0;
 | |
|       go = 0;
 | |
|     }else{
 | |
|       xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*))
 | |
|               autoext.aExt[i];
 | |
|     }
 | |
|     sqlite3_mutex_leave(mutex);
 | |
|     if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){
 | |
|       sqlite3Error(db, SQLITE_ERROR,
 | |
|             "automatic extension loading failed: %s", zErrmsg);
 | |
|       go = 0;
 | |
|       rc = SQLITE_ERROR;
 | |
|       sqlite3_free(zErrmsg);
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_LOAD_EXTENSION */
 | |
| 
 | |
| /************** End of loadext.c *********************************************/
 | |
| /************** Begin file pragma.c ******************************************/
 | |
| /*
 | |
| ** 2003 April 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to implement the PRAGMA command.
 | |
| **
 | |
| ** $Id: pragma.c,v 1.170 2008/02/13 18:25:27 danielk1977 Exp $
 | |
| */
 | |
| 
 | |
| /* Ignore this whole file if pragmas are disabled
 | |
| */
 | |
| #if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER)
 | |
| 
 | |
| /*
 | |
| ** Interpret the given string as a safety level.  Return 0 for OFF,
 | |
| ** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
 | |
| ** unrecognized string argument.
 | |
| **
 | |
| ** Note that the values returned are one less that the values that
 | |
| ** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
 | |
| ** to support legacy SQL code.  The safety level used to be boolean
 | |
| ** and older scripts may have used numbers 0 for OFF and 1 for ON.
 | |
| */
 | |
| static int getSafetyLevel(const char *z){
 | |
|                              /* 123456789 123456789 */
 | |
|   static const char zText[] = "onoffalseyestruefull";
 | |
|   static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
 | |
|   static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
 | |
|   static const u8 iValue[] =  {1, 0, 0, 0, 1, 1, 2};
 | |
|   int i, n;
 | |
|   if( isdigit(*z) ){
 | |
|     return atoi(z);
 | |
|   }
 | |
|   n = strlen(z);
 | |
|   for(i=0; i<sizeof(iLength); i++){
 | |
|     if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){
 | |
|       return iValue[i];
 | |
|     }
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Interpret the given string as a boolean value.
 | |
| */
 | |
| static int getBoolean(const char *z){
 | |
|   return getSafetyLevel(z)&1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Interpret the given string as a locking mode value.
 | |
| */
 | |
| static int getLockingMode(const char *z){
 | |
|   if( z ){
 | |
|     if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
 | |
|     if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
 | |
|   }
 | |
|   return PAGER_LOCKINGMODE_QUERY;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
| /*
 | |
| ** Interpret the given string as an auto-vacuum mode value.
 | |
| **
 | |
| ** The following strings, "none", "full" and "incremental" are 
 | |
| ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
 | |
| */
 | |
| static int getAutoVacuum(const char *z){
 | |
|   int i;
 | |
|   if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
 | |
|   if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
 | |
|   if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
 | |
|   i = atoi(z);
 | |
|   return ((i>=0&&i<=2)?i:0);
 | |
| }
 | |
| #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
| /*
 | |
| ** Interpret the given string as a temp db location. Return 1 for file
 | |
| ** backed temporary databases, 2 for the Red-Black tree in memory database
 | |
| ** and 0 to use the compile-time default.
 | |
| */
 | |
| static int getTempStore(const char *z){
 | |
|   if( z[0]>='0' && z[0]<='2' ){
 | |
|     return z[0] - '0';
 | |
|   }else if( sqlite3StrICmp(z, "file")==0 ){
 | |
|     return 1;
 | |
|   }else if( sqlite3StrICmp(z, "memory")==0 ){
 | |
|     return 2;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| #endif /* SQLITE_PAGER_PRAGMAS */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
| /*
 | |
| ** Invalidate temp storage, either when the temp storage is changed
 | |
| ** from default, or when 'file' and the temp_store_directory has changed
 | |
| */
 | |
| static int invalidateTempStorage(Parse *pParse){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( db->aDb[1].pBt!=0 ){
 | |
|     if( !db->autoCommit ){
 | |
|       sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
 | |
|         "from within a transaction");
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|     sqlite3BtreeClose(db->aDb[1].pBt);
 | |
|     db->aDb[1].pBt = 0;
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif /* SQLITE_PAGER_PRAGMAS */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
| /*
 | |
| ** If the TEMP database is open, close it and mark the database schema
 | |
| ** as needing reloading.  This must be done when using the TEMP_STORE
 | |
| ** or DEFAULT_TEMP_STORE pragmas.
 | |
| */
 | |
| static int changeTempStorage(Parse *pParse, const char *zStorageType){
 | |
|   int ts = getTempStore(zStorageType);
 | |
|   sqlite3 *db = pParse->db;
 | |
|   if( db->temp_store==ts ) return SQLITE_OK;
 | |
|   if( invalidateTempStorage( pParse ) != SQLITE_OK ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   db->temp_store = ts;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif /* SQLITE_PAGER_PRAGMAS */
 | |
| 
 | |
| /*
 | |
| ** Generate code to return a single integer value.
 | |
| */
 | |
| static void returnSingleInt(Parse *pParse, const char *zLabel, int value){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   int mem = ++pParse->nMem;
 | |
|   sqlite3VdbeAddOp2(v, OP_Integer, value, mem);
 | |
|   if( pParse->explain==0 ){
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC);
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_FLAG_PRAGMAS
 | |
| /*
 | |
| ** Check to see if zRight and zLeft refer to a pragma that queries
 | |
| ** or changes one of the flags in db->flags.  Return 1 if so and 0 if not.
 | |
| ** Also, implement the pragma.
 | |
| */
 | |
| static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
 | |
|   static const struct sPragmaType {
 | |
|     const char *zName;  /* Name of the pragma */
 | |
|     int mask;           /* Mask for the db->flags value */
 | |
|   } aPragma[] = {
 | |
|     { "full_column_names",        SQLITE_FullColNames  },
 | |
|     { "short_column_names",       SQLITE_ShortColNames },
 | |
|     { "count_changes",            SQLITE_CountRows     },
 | |
|     { "empty_result_callbacks",   SQLITE_NullCallback  },
 | |
|     { "legacy_file_format",       SQLITE_LegacyFileFmt },
 | |
|     { "fullfsync",                SQLITE_FullFSync     },
 | |
| #ifdef SQLITE_DEBUG
 | |
|     { "sql_trace",                SQLITE_SqlTrace      },
 | |
|     { "vdbe_listing",             SQLITE_VdbeListing   },
 | |
|     { "vdbe_trace",               SQLITE_VdbeTrace     },
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_CHECK
 | |
|     { "ignore_check_constraints", SQLITE_IgnoreChecks  },
 | |
| #endif
 | |
|     /* The following is VERY experimental */
 | |
|     { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },
 | |
|     { "omit_readlock",            SQLITE_NoReadlock    },
 | |
| 
 | |
|     /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
 | |
|     ** flag if there are any active statements. */
 | |
|     { "read_uncommitted",         SQLITE_ReadUncommitted },
 | |
|   };
 | |
|   int i;
 | |
|   const struct sPragmaType *p;
 | |
|   for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
 | |
|     if( sqlite3StrICmp(zLeft, p->zName)==0 ){
 | |
|       sqlite3 *db = pParse->db;
 | |
|       Vdbe *v;
 | |
|       v = sqlite3GetVdbe(pParse);
 | |
|       if( v ){
 | |
|         if( zRight==0 ){
 | |
|           returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 );
 | |
|         }else{
 | |
|           if( getBoolean(zRight) ){
 | |
|             db->flags |= p->mask;
 | |
|           }else{
 | |
|             db->flags &= ~p->mask;
 | |
|           }
 | |
| 
 | |
|           /* Many of the flag-pragmas modify the code generated by the SQL 
 | |
|           ** compiler (eg. count_changes). So add an opcode to expire all
 | |
|           ** compiled SQL statements after modifying a pragma value.
 | |
|           */
 | |
|           sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
 | |
| 
 | |
| /*
 | |
| ** Process a pragma statement.  
 | |
| **
 | |
| ** Pragmas are of this form:
 | |
| **
 | |
| **      PRAGMA [database.]id [= value]
 | |
| **
 | |
| ** The identifier might also be a string.  The value is a string, and
 | |
| ** identifier, or a number.  If minusFlag is true, then the value is
 | |
| ** a number that was preceded by a minus sign.
 | |
| **
 | |
| ** If the left side is "database.id" then pId1 is the database name
 | |
| ** and pId2 is the id.  If the left side is just "id" then pId1 is the
 | |
| ** id and pId2 is any empty string.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Pragma(
 | |
|   Parse *pParse, 
 | |
|   Token *pId1,        /* First part of [database.]id field */
 | |
|   Token *pId2,        /* Second part of [database.]id field, or NULL */
 | |
|   Token *pValue,      /* Token for <value>, or NULL */
 | |
|   int minusFlag       /* True if a '-' sign preceded <value> */
 | |
| ){
 | |
|   char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
 | |
|   char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
 | |
|   const char *zDb = 0;   /* The database name */
 | |
|   Token *pId;            /* Pointer to <id> token */
 | |
|   int iDb;               /* Database index for <database> */
 | |
|   sqlite3 *db = pParse->db;
 | |
|   Db *pDb;
 | |
|   Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db);
 | |
|   if( v==0 ) return;
 | |
|   pParse->nMem = 2;
 | |
| 
 | |
|   /* Interpret the [database.] part of the pragma statement. iDb is the
 | |
|   ** index of the database this pragma is being applied to in db.aDb[]. */
 | |
|   iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
 | |
|   if( iDb<0 ) return;
 | |
|   pDb = &db->aDb[iDb];
 | |
| 
 | |
|   /* If the temp database has been explicitly named as part of the 
 | |
|   ** pragma, make sure it is open. 
 | |
|   */
 | |
|   if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   zLeft = sqlite3NameFromToken(db, pId);
 | |
|   if( !zLeft ) return;
 | |
|   if( minusFlag ){
 | |
|     zRight = sqlite3MPrintf(db, "-%T", pValue);
 | |
|   }else{
 | |
|     zRight = sqlite3NameFromToken(db, pValue);
 | |
|   }
 | |
| 
 | |
|   zDb = ((iDb>0)?pDb->zName:0);
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
 | |
|     goto pragma_out;
 | |
|   }
 | |
|  
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
|   /*
 | |
|   **  PRAGMA [database.]default_cache_size
 | |
|   **  PRAGMA [database.]default_cache_size=N
 | |
|   **
 | |
|   ** The first form reports the current persistent setting for the
 | |
|   ** page cache size.  The value returned is the maximum number of
 | |
|   ** pages in the page cache.  The second form sets both the current
 | |
|   ** page cache size value and the persistent page cache size value
 | |
|   ** stored in the database file.
 | |
|   **
 | |
|   ** The default cache size is stored in meta-value 2 of page 1 of the
 | |
|   ** database file.  The cache size is actually the absolute value of
 | |
|   ** this memory location.  The sign of meta-value 2 determines the
 | |
|   ** synchronous setting.  A negative value means synchronous is off
 | |
|   ** and a positive value means synchronous is on.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){
 | |
|     static const VdbeOpList getCacheSize[] = {
 | |
|       { OP_ReadCookie,  0, 1,        2},  /* 0 */
 | |
|       { OP_IfPos,       1, 6,        0},
 | |
|       { OP_Integer,     0, 2,        0},
 | |
|       { OP_Subtract,    1, 2,        1},
 | |
|       { OP_IfPos,       1, 6,        0},
 | |
|       { OP_Integer,     0, 1,        0},  /* 5 */
 | |
|       { OP_ResultRow,   1, 1,        0},
 | |
|     };
 | |
|     int addr;
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     sqlite3VdbeUsesBtree(v, iDb);
 | |
|     if( !zRight ){
 | |
|       sqlite3VdbeSetNumCols(v, 1);
 | |
|       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC);
 | |
|       pParse->nMem += 2;
 | |
|       addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
 | |
|       sqlite3VdbeChangeP1(v, addr, iDb);
 | |
|       sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE);
 | |
|     }else{
 | |
|       int size = atoi(zRight);
 | |
|       if( size<0 ) size = -size;
 | |
|       sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, size, 1);
 | |
|       sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2);
 | |
|       addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, -size, 1);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
|       sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1);
 | |
|       pDb->pSchema->cache_size = size;
 | |
|       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   /*
 | |
|   **  PRAGMA [database.]page_size
 | |
|   **  PRAGMA [database.]page_size=N
 | |
|   **
 | |
|   ** The first form reports the current setting for the
 | |
|   ** database page size in bytes.  The second form sets the
 | |
|   ** database page size value.  The value can only be set if
 | |
|   ** the database has not yet been created.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft,"page_size")==0 ){
 | |
|     Btree *pBt = pDb->pBt;
 | |
|     if( !zRight ){
 | |
|       int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0;
 | |
|       returnSingleInt(pParse, "page_size", size);
 | |
|     }else{
 | |
|       /* Malloc may fail when setting the page-size, as there is an internal
 | |
|       ** buffer that the pager module resizes using sqlite3_realloc().
 | |
|       */
 | |
|       if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, atoi(zRight), -1) ){
 | |
|         db->mallocFailed = 1;
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   /*
 | |
|   **  PRAGMA [database.]max_page_count
 | |
|   **  PRAGMA [database.]max_page_count=N
 | |
|   **
 | |
|   ** The first form reports the current setting for the
 | |
|   ** maximum number of pages in the database file.  The 
 | |
|   ** second form attempts to change this setting.  Both
 | |
|   ** forms return the current setting.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){
 | |
|     Btree *pBt = pDb->pBt;
 | |
|     int newMax = 0;
 | |
|     if( zRight ){
 | |
|       newMax = atoi(zRight);
 | |
|     }
 | |
|     if( pBt ){
 | |
|       newMax = sqlite3BtreeMaxPageCount(pBt, newMax);
 | |
|     }
 | |
|     returnSingleInt(pParse, "max_page_count", newMax);
 | |
|   }else
 | |
| 
 | |
|   /*
 | |
|   **  PRAGMA [database.]locking_mode
 | |
|   **  PRAGMA [database.]locking_mode = (normal|exclusive)
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){
 | |
|     const char *zRet = "normal";
 | |
|     int eMode = getLockingMode(zRight);
 | |
| 
 | |
|     if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
 | |
|       /* Simple "PRAGMA locking_mode;" statement. This is a query for
 | |
|       ** the current default locking mode (which may be different to
 | |
|       ** the locking-mode of the main database).
 | |
|       */
 | |
|       eMode = db->dfltLockMode;
 | |
|     }else{
 | |
|       Pager *pPager;
 | |
|       if( pId2->n==0 ){
 | |
|         /* This indicates that no database name was specified as part
 | |
|         ** of the PRAGMA command. In this case the locking-mode must be
 | |
|         ** set on all attached databases, as well as the main db file.
 | |
|         **
 | |
|         ** Also, the sqlite3.dfltLockMode variable is set so that
 | |
|         ** any subsequently attached databases also use the specified
 | |
|         ** locking mode.
 | |
|         */
 | |
|         int ii;
 | |
|         assert(pDb==&db->aDb[0]);
 | |
|         for(ii=2; ii<db->nDb; ii++){
 | |
|           pPager = sqlite3BtreePager(db->aDb[ii].pBt);
 | |
|           sqlite3PagerLockingMode(pPager, eMode);
 | |
|         }
 | |
|         db->dfltLockMode = eMode;
 | |
|       }
 | |
|       pPager = sqlite3BtreePager(pDb->pBt);
 | |
|       eMode = sqlite3PagerLockingMode(pPager, eMode);
 | |
|     }
 | |
| 
 | |
|     assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
 | |
|     if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
 | |
|       zRet = "exclusive";
 | |
|     }
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC);
 | |
|     sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
 | |
| 
 | |
|   /*
 | |
|   **  PRAGMA [database.]auto_vacuum
 | |
|   **  PRAGMA [database.]auto_vacuum=N
 | |
|   **
 | |
|   ** Get or set the (boolean) value of the database 'auto-vacuum' parameter.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){
 | |
|     Btree *pBt = pDb->pBt;
 | |
|     if( sqlite3ReadSchema(pParse) ){
 | |
|       goto pragma_out;
 | |
|     }
 | |
|     if( !zRight ){
 | |
|       int auto_vacuum = 
 | |
|           pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM;
 | |
|       returnSingleInt(pParse, "auto_vacuum", auto_vacuum);
 | |
|     }else{
 | |
|       int eAuto = getAutoVacuum(zRight);
 | |
|       db->nextAutovac = eAuto;
 | |
|       if( eAuto>=0 ){
 | |
|         /* Call SetAutoVacuum() to set initialize the internal auto and
 | |
|         ** incr-vacuum flags. This is required in case this connection
 | |
|         ** creates the database file. It is important that it is created
 | |
|         ** as an auto-vacuum capable db.
 | |
|         */
 | |
|         int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
 | |
|         if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
 | |
|           /* When setting the auto_vacuum mode to either "full" or 
 | |
|           ** "incremental", write the value of meta[6] in the database
 | |
|           ** file. Before writing to meta[6], check that meta[3] indicates
 | |
|           ** that this really is an auto-vacuum capable database.
 | |
|           */
 | |
|           static const VdbeOpList setMeta6[] = {
 | |
|             { OP_Transaction,    0,               1,        0},    /* 0 */
 | |
|             { OP_ReadCookie,     0,               1,        3},    /* 1 */
 | |
|             { OP_If,             1,               0,        0},    /* 2 */
 | |
|             { OP_Halt,           SQLITE_OK,       OE_Abort, 0},    /* 3 */
 | |
|             { OP_Integer,        0,               1,        0},    /* 4 */
 | |
|             { OP_SetCookie,      0,               6,        1},    /* 5 */
 | |
|           };
 | |
|           int iAddr;
 | |
|           iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6);
 | |
|           sqlite3VdbeChangeP1(v, iAddr, iDb);
 | |
|           sqlite3VdbeChangeP1(v, iAddr+1, iDb);
 | |
|           sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4);
 | |
|           sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1);
 | |
|           sqlite3VdbeChangeP1(v, iAddr+5, iDb);
 | |
|           sqlite3VdbeUsesBtree(v, iDb);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| #endif
 | |
| 
 | |
|   /*
 | |
|   **  PRAGMA [database.]incremental_vacuum(N)
 | |
|   **
 | |
|   ** Do N steps of incremental vacuuming on a database.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){
 | |
|     int iLimit, addr;
 | |
|     if( sqlite3ReadSchema(pParse) ){
 | |
|       goto pragma_out;
 | |
|     }
 | |
|     if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
 | |
|       iLimit = 0x7fffffff;
 | |
|     }
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
 | |
|     addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb);
 | |
|     sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
 | |
|     sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr);
 | |
|     sqlite3VdbeJumpHere(v, addr);
 | |
|   }else
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
|   /*
 | |
|   **  PRAGMA [database.]cache_size
 | |
|   **  PRAGMA [database.]cache_size=N
 | |
|   **
 | |
|   ** The first form reports the current local setting for the
 | |
|   ** page cache size.  The local setting can be different from
 | |
|   ** the persistent cache size value that is stored in the database
 | |
|   ** file itself.  The value returned is the maximum number of
 | |
|   ** pages in the page cache.  The second form sets the local
 | |
|   ** page cache size value.  It does not change the persistent
 | |
|   ** cache size stored on the disk so the cache size will revert
 | |
|   ** to its default value when the database is closed and reopened.
 | |
|   ** N should be a positive integer.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft,"cache_size")==0 ){
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     if( !zRight ){
 | |
|       returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
 | |
|     }else{
 | |
|       int size = atoi(zRight);
 | |
|       if( size<0 ) size = -size;
 | |
|       pDb->pSchema->cache_size = size;
 | |
|       sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   /*
 | |
|   **   PRAGMA temp_store
 | |
|   **   PRAGMA temp_store = "default"|"memory"|"file"
 | |
|   **
 | |
|   ** Return or set the local value of the temp_store flag.  Changing
 | |
|   ** the local value does not make changes to the disk file and the default
 | |
|   ** value will be restored the next time the database is opened.
 | |
|   **
 | |
|   ** Note that it is possible for the library compile-time options to
 | |
|   ** override this setting
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "temp_store")==0 ){
 | |
|     if( !zRight ){
 | |
|       returnSingleInt(pParse, "temp_store", db->temp_store);
 | |
|     }else{
 | |
|       changeTempStorage(pParse, zRight);
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   /*
 | |
|   **   PRAGMA temp_store_directory
 | |
|   **   PRAGMA temp_store_directory = ""|"directory_name"
 | |
|   **
 | |
|   ** Return or set the local value of the temp_store_directory flag.  Changing
 | |
|   ** the value sets a specific directory to be used for temporary files.
 | |
|   ** Setting to a null string reverts to the default temporary directory search.
 | |
|   ** If temporary directory is changed, then invalidateTempStorage.
 | |
|   **
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){
 | |
|     if( !zRight ){
 | |
|       if( sqlite3_temp_directory ){
 | |
|         sqlite3VdbeSetNumCols(v, 1);
 | |
|         sqlite3VdbeSetColName(v, 0, COLNAME_NAME, 
 | |
|             "temp_store_directory", P4_STATIC);
 | |
|         sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
 | |
|       }
 | |
|     }else{
 | |
|       if( zRight[0] 
 | |
|        && !sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE) 
 | |
|       ){
 | |
|         sqlite3ErrorMsg(pParse, "not a writable directory");
 | |
|         goto pragma_out;
 | |
|       }
 | |
|       if( TEMP_STORE==0
 | |
|        || (TEMP_STORE==1 && db->temp_store<=1)
 | |
|        || (TEMP_STORE==2 && db->temp_store==1)
 | |
|       ){
 | |
|         invalidateTempStorage(pParse);
 | |
|       }
 | |
|       sqlite3_free(sqlite3_temp_directory);
 | |
|       if( zRight[0] ){
 | |
|         sqlite3_temp_directory = zRight;
 | |
|         zRight = 0;
 | |
|       }else{
 | |
|         sqlite3_temp_directory = 0;
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   /*
 | |
|   **   PRAGMA [database.]synchronous
 | |
|   **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
 | |
|   **
 | |
|   ** Return or set the local value of the synchronous flag.  Changing
 | |
|   ** the local value does not make changes to the disk file and the
 | |
|   ** default value will be restored the next time the database is
 | |
|   ** opened.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft,"synchronous")==0 ){
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     if( !zRight ){
 | |
|       returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
 | |
|     }else{
 | |
|       if( !db->autoCommit ){
 | |
|         sqlite3ErrorMsg(pParse, 
 | |
|             "Safety level may not be changed inside a transaction");
 | |
|       }else{
 | |
|         pDb->safety_level = getSafetyLevel(zRight)+1;
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_FLAG_PRAGMAS
 | |
|   if( flagPragma(pParse, zLeft, zRight) ){
 | |
|     /* The flagPragma() subroutine also generates any necessary code
 | |
|     ** there is nothing more to do here */
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
 | |
|   /*
 | |
|   **   PRAGMA table_info(<table>)
 | |
|   **
 | |
|   ** Return a single row for each column of the named table. The columns of
 | |
|   ** the returned data set are:
 | |
|   **
 | |
|   ** cid:        Column id (numbered from left to right, starting at 0)
 | |
|   ** name:       Column name
 | |
|   ** type:       Column declaration type.
 | |
|   ** notnull:    True if 'NOT NULL' is part of column declaration
 | |
|   ** dflt_value: The default value for the column, if any.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){
 | |
|     Table *pTab;
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     pTab = sqlite3FindTable(db, zRight, zDb);
 | |
|     if( pTab ){
 | |
|       int i;
 | |
|       int nHidden = 0;
 | |
|       Column *pCol;
 | |
|       sqlite3VdbeSetNumCols(v, 6);
 | |
|       pParse->nMem = 6;
 | |
|       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC);
 | |
|       sqlite3ViewGetColumnNames(pParse, pTab);
 | |
|       for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
 | |
|         const Token *pDflt;
 | |
|         if( IsHiddenColumn(pCol) ){
 | |
|           nHidden++;
 | |
|           continue;
 | |
|         }
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1);
 | |
|         sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0);
 | |
|         sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
 | |
|            pCol->zType ? pCol->zType : "", 0);
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4);
 | |
|         if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){
 | |
|           sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n);
 | |
|         }else{
 | |
|           sqlite3VdbeAddOp2(v, OP_Null, 0, 5);
 | |
|         }
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){
 | |
|     Index *pIdx;
 | |
|     Table *pTab;
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     pIdx = sqlite3FindIndex(db, zRight, zDb);
 | |
|     if( pIdx ){
 | |
|       int i;
 | |
|       pTab = pIdx->pTable;
 | |
|       sqlite3VdbeSetNumCols(v, 3);
 | |
|       pParse->nMem = 3;
 | |
|       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC);
 | |
|       for(i=0; i<pIdx->nColumn; i++){
 | |
|         int cnum = pIdx->aiColumn[i];
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
 | |
|         assert( pTab->nCol>cnum );
 | |
|         sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){
 | |
|     Index *pIdx;
 | |
|     Table *pTab;
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     pTab = sqlite3FindTable(db, zRight, zDb);
 | |
|     if( pTab ){
 | |
|       v = sqlite3GetVdbe(pParse);
 | |
|       pIdx = pTab->pIndex;
 | |
|       if( pIdx ){
 | |
|         int i = 0; 
 | |
|         sqlite3VdbeSetNumCols(v, 3);
 | |
|         pParse->nMem = 3;
 | |
|         sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
 | |
|         sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
 | |
|         sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC);
 | |
|         while(pIdx){
 | |
|           sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
 | |
|           sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
 | |
|           sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3);
 | |
|           sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
 | |
|           ++i;
 | |
|           pIdx = pIdx->pNext;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   if( sqlite3StrICmp(zLeft, "database_list")==0 ){
 | |
|     int i;
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     sqlite3VdbeSetNumCols(v, 3);
 | |
|     pParse->nMem = 3;
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
 | |
|     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
 | |
|     sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC);
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       if( db->aDb[i].pBt==0 ) continue;
 | |
|       assert( db->aDb[i].zName!=0 );
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
 | |
|            sqlite3BtreeGetFilename(db->aDb[i].pBt), 0);
 | |
|       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
 | |
|     }
 | |
|   }else
 | |
| 
 | |
|   if( sqlite3StrICmp(zLeft, "collation_list")==0 ){
 | |
|     int i = 0;
 | |
|     HashElem *p;
 | |
|     sqlite3VdbeSetNumCols(v, 2);
 | |
|     pParse->nMem = 2;
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC);
 | |
|     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC);
 | |
|     for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
 | |
|       CollSeq *pColl = (CollSeq *)sqliteHashData(p);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, i++, 1);
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0);
 | |
|       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
 | |
|     }
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_FOREIGN_KEY
 | |
|   if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){
 | |
|     FKey *pFK;
 | |
|     Table *pTab;
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     pTab = sqlite3FindTable(db, zRight, zDb);
 | |
|     if( pTab ){
 | |
|       v = sqlite3GetVdbe(pParse);
 | |
|       pFK = pTab->pFKey;
 | |
|       if( pFK ){
 | |
|         int i = 0; 
 | |
|         sqlite3VdbeSetNumCols(v, 5);
 | |
|         pParse->nMem = 5;
 | |
|         sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC);
 | |
|         sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC);
 | |
|         sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC);
 | |
|         sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC);
 | |
|         sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC);
 | |
|         while(pFK){
 | |
|           int j;
 | |
|           for(j=0; j<pFK->nCol; j++){
 | |
|             char *zCol = pFK->aCol[j].zCol;
 | |
|             sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
 | |
|             sqlite3VdbeAddOp2(v, OP_Integer, j, 2);
 | |
|             sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0);
 | |
|             sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0,
 | |
|                               pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
 | |
|             sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0);
 | |
|             sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
 | |
|           }
 | |
|           ++i;
 | |
|           pFK = pFK->pNextFrom;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){
 | |
|     if( zRight ){
 | |
|       if( getBoolean(zRight) ){
 | |
|         sqlite3ParserTrace(stderr, "parser: ");
 | |
|       }else{
 | |
|         sqlite3ParserTrace(0, 0);
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| #endif
 | |
| 
 | |
|   /* Reinstall the LIKE and GLOB functions.  The variant of LIKE
 | |
|   ** used will be case sensitive or not depending on the RHS.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){
 | |
|     if( zRight ){
 | |
|       sqlite3RegisterLikeFunctions(db, getBoolean(zRight));
 | |
|     }
 | |
|   }else
 | |
| 
 | |
| #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
 | |
| # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_INTEGRITY_CHECK
 | |
|   /* Pragma "quick_check" is an experimental reduced version of 
 | |
|   ** integrity_check designed to detect most database corruption
 | |
|   ** without most of the overhead of a full integrity-check.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "integrity_check")==0
 | |
|    || sqlite3StrICmp(zLeft, "quick_check")==0 
 | |
|   ){
 | |
|     int i, j, addr, mxErr;
 | |
| 
 | |
|     /* Code that appears at the end of the integrity check.  If no error
 | |
|     ** messages have been generated, output OK.  Otherwise output the
 | |
|     ** error message
 | |
|     */
 | |
|     static const VdbeOpList endCode[] = {
 | |
|       { OP_AddImm,      1, 0,        0},    /* 0 */
 | |
|       { OP_IfNeg,       1, 0,        0},    /* 1 */
 | |
|       { OP_String8,     0, 3,        0},    /* 2 */
 | |
|       { OP_ResultRow,   3, 1,        0},
 | |
|     };
 | |
| 
 | |
|     int isQuick = (zLeft[0]=='q');
 | |
| 
 | |
|     /* Initialize the VDBE program */
 | |
|     if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|     pParse->nMem = 6;
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC);
 | |
| 
 | |
|     /* Set the maximum error count */
 | |
|     mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
 | |
|     if( zRight ){
 | |
|       mxErr = atoi(zRight);
 | |
|       if( mxErr<=0 ){
 | |
|         mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1);  /* reg[1] holds errors left */
 | |
| 
 | |
|     /* Do an integrity check on each database file */
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       HashElem *x;
 | |
|       Hash *pTbls;
 | |
|       int cnt = 0;
 | |
| 
 | |
|       if( OMIT_TEMPDB && i==1 ) continue;
 | |
| 
 | |
|       sqlite3CodeVerifySchema(pParse, i);
 | |
|       addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
 | |
|       sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
| 
 | |
|       /* Do an integrity check of the B-Tree
 | |
|       **
 | |
|       ** Begin by filling registers 2, 3, ... with the root pages numbers
 | |
|       ** for all tables and indices in the database.
 | |
|       */
 | |
|       pTbls = &db->aDb[i].pSchema->tblHash;
 | |
|       for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
 | |
|         Table *pTab = sqliteHashData(x);
 | |
|         Index *pIdx;
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
 | |
|         cnt++;
 | |
|         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|           sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
 | |
|           cnt++;
 | |
|         }
 | |
|       }
 | |
|       if( cnt==0 ) continue;
 | |
| 
 | |
|       /* Make sure sufficient number of registers have been allocated */
 | |
|       if( pParse->nMem < cnt+4 ){
 | |
|         pParse->nMem = cnt+4;
 | |
|       }
 | |
| 
 | |
|       /* Do the b-tree integrity checks */
 | |
|       sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
 | |
|       sqlite3VdbeChangeP5(v, i);
 | |
|       addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2);
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
 | |
|          sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
 | |
|          P4_DYNAMIC);
 | |
|       sqlite3VdbeAddOp2(v, OP_Move, 2, 4);
 | |
|       sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
 | |
|       sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
| 
 | |
|       /* Make sure all the indices are constructed correctly.
 | |
|       */
 | |
|       for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
 | |
|         Table *pTab = sqliteHashData(x);
 | |
|         Index *pIdx;
 | |
|         int loopTop;
 | |
| 
 | |
|         if( pTab->pIndex==0 ) continue;
 | |
|         addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
 | |
|         sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
 | |
|         sqlite3VdbeJumpHere(v, addr);
 | |
|         sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
 | |
|         sqlite3VdbeAddOp2(v, OP_Integer, 0, 2);  /* reg(2) will count entries */
 | |
|         loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0);
 | |
|         sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1);   /* increment entry count */
 | |
|         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
 | |
|           int jmp2;
 | |
|           static const VdbeOpList idxErr[] = {
 | |
|             { OP_AddImm,      1, -1,  0},
 | |
|             { OP_String8,     0,  3,  0},    /* 1 */
 | |
|             { OP_Rowid,       1,  4,  0},
 | |
|             { OP_String8,     0,  5,  0},    /* 3 */
 | |
|             { OP_String8,     0,  6,  0},    /* 4 */
 | |
|             { OP_Concat,      4,  3,  3},
 | |
|             { OP_Concat,      5,  3,  3},
 | |
|             { OP_Concat,      6,  3,  3},
 | |
|             { OP_ResultRow,   3,  1,  0},
 | |
|           };
 | |
|           sqlite3GenerateIndexKey(pParse, pIdx, 1, 3);
 | |
|           jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3);
 | |
|           addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr);
 | |
|           sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
 | |
|           sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
 | |
|           sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC);
 | |
|           sqlite3VdbeJumpHere(v, jmp2);
 | |
|         }
 | |
|         sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1);
 | |
|         sqlite3VdbeJumpHere(v, loopTop);
 | |
|         for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
 | |
|           static const VdbeOpList cntIdx[] = {
 | |
|              { OP_Integer,      0,  3,  0},
 | |
|              { OP_Rewind,       0,  0,  0},  /* 1 */
 | |
|              { OP_AddImm,       3,  1,  0},
 | |
|              { OP_Next,         0,  0,  0},  /* 3 */
 | |
|              { OP_Eq,           2,  0,  3},  /* 4 */
 | |
|              { OP_AddImm,       1, -1,  0},
 | |
|              { OP_String8,      0,  2,  0},  /* 6 */
 | |
|              { OP_String8,      0,  3,  0},  /* 7 */
 | |
|              { OP_Concat,       3,  2,  2},
 | |
|              { OP_ResultRow,    2,  1,  0},
 | |
|           };
 | |
|           if( pIdx->tnum==0 ) continue;
 | |
|           addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);
 | |
|           sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
 | |
|           sqlite3VdbeJumpHere(v, addr);
 | |
|           addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
 | |
|           sqlite3VdbeChangeP1(v, addr+1, j+2);
 | |
|           sqlite3VdbeChangeP2(v, addr+1, addr+4);
 | |
|           sqlite3VdbeChangeP1(v, addr+3, j+2);
 | |
|           sqlite3VdbeChangeP2(v, addr+3, addr+2);
 | |
|           sqlite3VdbeJumpHere(v, addr+4);
 | |
|           sqlite3VdbeChangeP4(v, addr+6, 
 | |
|                      "wrong # of entries in index ", P4_STATIC);
 | |
|           sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC);
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
|     addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode);
 | |
|     sqlite3VdbeChangeP2(v, addr, -mxErr);
 | |
|     sqlite3VdbeJumpHere(v, addr+1);
 | |
|     sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   /*
 | |
|   **   PRAGMA encoding
 | |
|   **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
 | |
|   **
 | |
|   ** In its first form, this pragma returns the encoding of the main
 | |
|   ** database. If the database is not initialized, it is initialized now.
 | |
|   **
 | |
|   ** The second form of this pragma is a no-op if the main database file
 | |
|   ** has not already been initialized. In this case it sets the default
 | |
|   ** encoding that will be used for the main database file if a new file
 | |
|   ** is created. If an existing main database file is opened, then the
 | |
|   ** default text encoding for the existing database is used.
 | |
|   ** 
 | |
|   ** In all cases new databases created using the ATTACH command are
 | |
|   ** created to use the same default text encoding as the main database. If
 | |
|   ** the main database has not been initialized and/or created when ATTACH
 | |
|   ** is executed, this is done before the ATTACH operation.
 | |
|   **
 | |
|   ** In the second form this pragma sets the text encoding to be used in
 | |
|   ** new database files created using this database handle. It is only
 | |
|   ** useful if invoked immediately after the main database i
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "encoding")==0 ){
 | |
|     static const struct EncName {
 | |
|       char *zName;
 | |
|       u8 enc;
 | |
|     } encnames[] = {
 | |
|       { "UTF-8",    SQLITE_UTF8        },
 | |
|       { "UTF8",     SQLITE_UTF8        },
 | |
|       { "UTF-16le", SQLITE_UTF16LE     },
 | |
|       { "UTF16le",  SQLITE_UTF16LE     },
 | |
|       { "UTF-16be", SQLITE_UTF16BE     },
 | |
|       { "UTF16be",  SQLITE_UTF16BE     },
 | |
|       { "UTF-16",   0                  }, /* SQLITE_UTF16NATIVE */
 | |
|       { "UTF16",    0                  }, /* SQLITE_UTF16NATIVE */
 | |
|       { 0, 0 }
 | |
|     };
 | |
|     const struct EncName *pEnc;
 | |
|     if( !zRight ){    /* "PRAGMA encoding" */
 | |
|       if( sqlite3ReadSchema(pParse) ) goto pragma_out;
 | |
|       sqlite3VdbeSetNumCols(v, 1);
 | |
|       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC);
 | |
|       sqlite3VdbeAddOp2(v, OP_String8, 0, 1);
 | |
|       for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
 | |
|         if( pEnc->enc==ENC(pParse->db) ){
 | |
|           sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
 | |
|     }else{                        /* "PRAGMA encoding = XXX" */
 | |
|       /* Only change the value of sqlite.enc if the database handle is not
 | |
|       ** initialized. If the main database exists, the new sqlite.enc value
 | |
|       ** will be overwritten when the schema is next loaded. If it does not
 | |
|       ** already exists, it will be created to use the new encoding value.
 | |
|       */
 | |
|       if( 
 | |
|         !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 
 | |
|         DbHasProperty(db, 0, DB_Empty) 
 | |
|       ){
 | |
|         for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
 | |
|           if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
 | |
|             ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if( !pEnc->zName ){
 | |
|           sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
 | |
|   /*
 | |
|   **   PRAGMA [database.]schema_version
 | |
|   **   PRAGMA [database.]schema_version = <integer>
 | |
|   **
 | |
|   **   PRAGMA [database.]user_version
 | |
|   **   PRAGMA [database.]user_version = <integer>
 | |
|   **
 | |
|   ** The pragma's schema_version and user_version are used to set or get
 | |
|   ** the value of the schema-version and user-version, respectively. Both
 | |
|   ** the schema-version and the user-version are 32-bit signed integers
 | |
|   ** stored in the database header.
 | |
|   **
 | |
|   ** The schema-cookie is usually only manipulated internally by SQLite. It
 | |
|   ** is incremented by SQLite whenever the database schema is modified (by
 | |
|   ** creating or dropping a table or index). The schema version is used by
 | |
|   ** SQLite each time a query is executed to ensure that the internal cache
 | |
|   ** of the schema used when compiling the SQL query matches the schema of
 | |
|   ** the database against which the compiled query is actually executed.
 | |
|   ** Subverting this mechanism by using "PRAGMA schema_version" to modify
 | |
|   ** the schema-version is potentially dangerous and may lead to program
 | |
|   ** crashes or database corruption. Use with caution!
 | |
|   **
 | |
|   ** The user-version is not used internally by SQLite. It may be used by
 | |
|   ** applications for any purpose.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "schema_version")==0 
 | |
|    || sqlite3StrICmp(zLeft, "user_version")==0 
 | |
|    || sqlite3StrICmp(zLeft, "freelist_count")==0 
 | |
|   ){
 | |
| 
 | |
|     int iCookie;   /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */
 | |
|     sqlite3VdbeUsesBtree(v, iDb);
 | |
|     switch( zLeft[0] ){
 | |
|       case 's': case 'S':
 | |
|         iCookie = 0;
 | |
|         break;
 | |
|       case 'f': case 'F':
 | |
|         iCookie = 1;
 | |
|         iDb = (-1*(iDb+1));
 | |
|         assert(iDb<=0);
 | |
|         break;
 | |
|       default:
 | |
|         iCookie = 5;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if( zRight && iDb>=0 ){
 | |
|       /* Write the specified cookie value */
 | |
|       static const VdbeOpList setCookie[] = {
 | |
|         { OP_Transaction,    0,  1,  0},    /* 0 */
 | |
|         { OP_Integer,        0,  1,  0},    /* 1 */
 | |
|         { OP_SetCookie,      0,  0,  1},    /* 2 */
 | |
|       };
 | |
|       int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie);
 | |
|       sqlite3VdbeChangeP1(v, addr, iDb);
 | |
|       sqlite3VdbeChangeP1(v, addr+1, atoi(zRight));
 | |
|       sqlite3VdbeChangeP1(v, addr+2, iDb);
 | |
|       sqlite3VdbeChangeP2(v, addr+2, iCookie);
 | |
|     }else{
 | |
|       /* Read the specified cookie value */
 | |
|       static const VdbeOpList readCookie[] = {
 | |
|         { OP_ReadCookie,      0,  1,  0},    /* 0 */
 | |
|         { OP_ResultRow,       1,  1,  0}
 | |
|       };
 | |
|       int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie);
 | |
|       sqlite3VdbeChangeP1(v, addr, iDb);
 | |
|       sqlite3VdbeChangeP3(v, addr, iCookie);
 | |
|       sqlite3VdbeSetNumCols(v, 1);
 | |
|       sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT);
 | |
|     }
 | |
|   }else
 | |
| #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
 | |
| 
 | |
| #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
 | |
|   /*
 | |
|   ** Report the current state of file logs for all databases
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "lock_status")==0 ){
 | |
|     static const char *const azLockName[] = {
 | |
|       "unlocked", "shared", "reserved", "pending", "exclusive"
 | |
|     };
 | |
|     int i;
 | |
|     Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|     sqlite3VdbeSetNumCols(v, 2);
 | |
|     pParse->nMem = 2;
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC);
 | |
|     sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC);
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       Btree *pBt;
 | |
|       Pager *pPager;
 | |
|       const char *zState = "unknown";
 | |
|       int j;
 | |
|       if( db->aDb[i].zName==0 ) continue;
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
 | |
|       pBt = db->aDb[i].pBt;
 | |
|       if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){
 | |
|         zState = "closed";
 | |
|       }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0, 
 | |
|                                      SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
 | |
|          zState = azLockName[j];
 | |
|       }
 | |
|       sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
 | |
|       sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
 | |
|     }
 | |
|   }else
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_SSE
 | |
|   /*
 | |
|   ** Check to see if the sqlite_statements table exists.  Create it
 | |
|   ** if it does not.
 | |
|   */
 | |
|   if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){
 | |
|     extern int sqlite3CreateStatementsTable(Parse*);
 | |
|     sqlite3CreateStatementsTable(pParse);
 | |
|   }else
 | |
| #endif
 | |
| 
 | |
| #if SQLITE_HAS_CODEC
 | |
|   if( sqlite3StrICmp(zLeft, "key")==0 ){
 | |
|     sqlite3_key(db, zRight, strlen(zRight));
 | |
|   }else
 | |
| #endif
 | |
| #if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD)
 | |
|   if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){
 | |
| #if SQLITE_HAS_CODEC
 | |
|     if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
 | |
|       extern void sqlite3_activate_see(const char*);
 | |
|       sqlite3_activate_see(&zRight[4]);
 | |
|     }
 | |
| #endif
 | |
| #ifdef SQLITE_ENABLE_CEROD
 | |
|     if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
 | |
|       extern void sqlite3_activate_cerod(const char*);
 | |
|       sqlite3_activate_cerod(&zRight[6]);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   {}
 | |
| 
 | |
|   if( v ){
 | |
|     /* Code an OP_Expire at the end of each PRAGMA program to cause
 | |
|     ** the VDBE implementing the pragma to expire. Most (all?) pragmas
 | |
|     ** are only valid for a single execution.
 | |
|     */
 | |
|     sqlite3VdbeAddOp2(v, OP_Expire, 1, 0);
 | |
| 
 | |
|     /*
 | |
|     ** Reset the safety level, in case the fullfsync flag or synchronous
 | |
|     ** setting changed.
 | |
|     */
 | |
| #ifndef SQLITE_OMIT_PAGER_PRAGMAS
 | |
|     if( db->autoCommit ){
 | |
|       sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
 | |
|                  (db->flags&SQLITE_FullFSync)!=0);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| pragma_out:
 | |
|   sqlite3_free(zLeft);
 | |
|   sqlite3_free(zRight);
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */
 | |
| 
 | |
| /************** End of pragma.c **********************************************/
 | |
| /************** Begin file prepare.c *****************************************/
 | |
| /*
 | |
| ** 2005 May 25
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the implementation of the sqlite3_prepare()
 | |
| ** interface, and routines that contribute to loading the database schema
 | |
| ** from disk.
 | |
| **
 | |
| ** $Id: prepare.c,v 1.78 2008/03/08 12:23:31 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Fill the InitData structure with an error message that indicates
 | |
| ** that the database is corrupt.
 | |
| */
 | |
| static void corruptSchema(InitData *pData, const char *zExtra){
 | |
|   if( !pData->db->mallocFailed ){
 | |
|     sqlite3SetString(pData->pzErrMsg, "malformed database schema",
 | |
|        zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
 | |
|   }
 | |
|   pData->rc = SQLITE_CORRUPT;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is the callback routine for the code that initializes the
 | |
| ** database.  See sqlite3Init() below for additional information.
 | |
| ** This routine is also called from the OP_ParseSchema opcode of the VDBE.
 | |
| **
 | |
| ** Each callback contains the following information:
 | |
| **
 | |
| **     argv[0] = name of thing being created
 | |
| **     argv[1] = root page number for table or index. 0 for trigger or view.
 | |
| **     argv[2] = SQL text for the CREATE statement.
 | |
| **
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
 | |
|   InitData *pData = (InitData*)pInit;
 | |
|   sqlite3 *db = pData->db;
 | |
|   int iDb = pData->iDb;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   pData->rc = SQLITE_OK;
 | |
|   DbClearProperty(db, iDb, DB_Empty);
 | |
|   if( db->mallocFailed ){
 | |
|     corruptSchema(pData, 0);
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   assert( argc==3 );
 | |
|   if( argv==0 ) return 0;   /* Might happen if EMPTY_RESULT_CALLBACKS are on */
 | |
|   if( argv[1]==0 ){
 | |
|     corruptSchema(pData, 0);
 | |
|     return 1;
 | |
|   }
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   if( argv[2] && argv[2][0] ){
 | |
|     /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
 | |
|     ** But because db->init.busy is set to 1, no VDBE code is generated
 | |
|     ** or executed.  All the parser does is build the internal data
 | |
|     ** structures that describe the table, index, or view.
 | |
|     */
 | |
|     char *zErr;
 | |
|     int rc;
 | |
|     assert( db->init.busy );
 | |
|     db->init.iDb = iDb;
 | |
|     db->init.newTnum = atoi(argv[1]);
 | |
|     rc = sqlite3_exec(db, argv[2], 0, 0, &zErr);
 | |
|     db->init.iDb = 0;
 | |
|     assert( rc!=SQLITE_OK || zErr==0 );
 | |
|     if( SQLITE_OK!=rc ){
 | |
|       pData->rc = rc;
 | |
|       if( rc==SQLITE_NOMEM ){
 | |
|         db->mallocFailed = 1;
 | |
|       }else if( rc!=SQLITE_INTERRUPT ){
 | |
|         corruptSchema(pData, zErr);
 | |
|       }
 | |
|       sqlite3_free(zErr);
 | |
|       return 1;
 | |
|     }
 | |
|   }else if( argv[0]==0 ){
 | |
|     corruptSchema(pData, 0);
 | |
|   }else{
 | |
|     /* If the SQL column is blank it means this is an index that
 | |
|     ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
 | |
|     ** constraint for a CREATE TABLE.  The index should have already
 | |
|     ** been created when we processed the CREATE TABLE.  All we have
 | |
|     ** to do here is record the root page number for that index.
 | |
|     */
 | |
|     Index *pIndex;
 | |
|     pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName);
 | |
|     if( pIndex==0 || pIndex->tnum!=0 ){
 | |
|       /* This can occur if there exists an index on a TEMP table which
 | |
|       ** has the same name as another index on a permanent index.  Since
 | |
|       ** the permanent table is hidden by the TEMP table, we can also
 | |
|       ** safely ignore the index on the permanent table.
 | |
|       */
 | |
|       /* Do Nothing */;
 | |
|     }else{
 | |
|       pIndex->tnum = atoi(argv[1]);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Attempt to read the database schema and initialize internal
 | |
| ** data structures for a single database file.  The index of the
 | |
| ** database file is given by iDb.  iDb==0 is used for the main
 | |
| ** database.  iDb==1 should never be used.  iDb>=2 is used for
 | |
| ** auxiliary databases.  Return one of the SQLITE_ error codes to
 | |
| ** indicate success or failure.
 | |
| */
 | |
| static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){
 | |
|   int rc;
 | |
|   BtCursor *curMain;
 | |
|   int size;
 | |
|   Table *pTab;
 | |
|   Db *pDb;
 | |
|   char const *azArg[4];
 | |
|   int meta[10];
 | |
|   InitData initData;
 | |
|   char const *zMasterSchema;
 | |
|   char const *zMasterName = SCHEMA_TABLE(iDb);
 | |
| 
 | |
|   /*
 | |
|   ** The master database table has a structure like this
 | |
|   */
 | |
|   static const char master_schema[] = 
 | |
|      "CREATE TABLE sqlite_master(\n"
 | |
|      "  type text,\n"
 | |
|      "  name text,\n"
 | |
|      "  tbl_name text,\n"
 | |
|      "  rootpage integer,\n"
 | |
|      "  sql text\n"
 | |
|      ")"
 | |
|   ;
 | |
| #ifndef SQLITE_OMIT_TEMPDB
 | |
|   static const char temp_master_schema[] = 
 | |
|      "CREATE TEMP TABLE sqlite_temp_master(\n"
 | |
|      "  type text,\n"
 | |
|      "  name text,\n"
 | |
|      "  tbl_name text,\n"
 | |
|      "  rootpage integer,\n"
 | |
|      "  sql text\n"
 | |
|      ")"
 | |
|   ;
 | |
| #else
 | |
|   #define temp_master_schema 0
 | |
| #endif
 | |
| 
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   assert( db->aDb[iDb].pSchema );
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
 | |
| 
 | |
|   /* zMasterSchema and zInitScript are set to point at the master schema
 | |
|   ** and initialisation script appropriate for the database being
 | |
|   ** initialised. zMasterName is the name of the master table.
 | |
|   */
 | |
|   if( !OMIT_TEMPDB && iDb==1 ){
 | |
|     zMasterSchema = temp_master_schema;
 | |
|   }else{
 | |
|     zMasterSchema = master_schema;
 | |
|   }
 | |
|   zMasterName = SCHEMA_TABLE(iDb);
 | |
| 
 | |
|   /* Construct the schema tables.  */
 | |
|   azArg[0] = zMasterName;
 | |
|   azArg[1] = "1";
 | |
|   azArg[2] = zMasterSchema;
 | |
|   azArg[3] = 0;
 | |
|   initData.db = db;
 | |
|   initData.iDb = iDb;
 | |
|   initData.pzErrMsg = pzErrMsg;
 | |
|   (void)sqlite3SafetyOff(db);
 | |
|   rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0);
 | |
|   (void)sqlite3SafetyOn(db);
 | |
|   if( rc ){
 | |
|     rc = initData.rc;
 | |
|     goto error_out;
 | |
|   }
 | |
|   pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName);
 | |
|   if( pTab ){
 | |
|     pTab->readOnly = 1;
 | |
|   }
 | |
| 
 | |
|   /* Create a cursor to hold the database open
 | |
|   */
 | |
|   pDb = &db->aDb[iDb];
 | |
|   if( pDb->pBt==0 ){
 | |
|     if( !OMIT_TEMPDB && iDb==1 ){
 | |
|       DbSetProperty(db, 1, DB_SchemaLoaded);
 | |
|     }
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   sqlite3BtreeEnter(pDb->pBt);
 | |
|   rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, 0, &curMain);
 | |
|   if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){
 | |
|     sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
 | |
|     sqlite3BtreeLeave(pDb->pBt);
 | |
|     goto error_out;
 | |
|   }
 | |
| 
 | |
|   /* Get the database meta information.
 | |
|   **
 | |
|   ** Meta values are as follows:
 | |
|   **    meta[0]   Schema cookie.  Changes with each schema change.
 | |
|   **    meta[1]   File format of schema layer.
 | |
|   **    meta[2]   Size of the page cache.
 | |
|   **    meta[3]   Use freelist if 0.  Autovacuum if greater than zero.
 | |
|   **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
 | |
|   **    meta[5]   The user cookie. Used by the application.
 | |
|   **    meta[6]   Incremental-vacuum flag.
 | |
|   **    meta[7]
 | |
|   **    meta[8]
 | |
|   **    meta[9]
 | |
|   **
 | |
|   ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
 | |
|   ** the possible values of meta[4].
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     int i;
 | |
|     for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){
 | |
|       rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
 | |
|     }
 | |
|     if( rc ){
 | |
|       sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
 | |
|       sqlite3BtreeCloseCursor(curMain);
 | |
|       sqlite3BtreeLeave(pDb->pBt);
 | |
|       goto error_out;
 | |
|     }
 | |
|   }else{
 | |
|     memset(meta, 0, sizeof(meta));
 | |
|   }
 | |
|   pDb->pSchema->schema_cookie = meta[0];
 | |
| 
 | |
|   /* If opening a non-empty database, check the text encoding. For the
 | |
|   ** main database, set sqlite3.enc to the encoding of the main database.
 | |
|   ** For an attached db, it is an error if the encoding is not the same
 | |
|   ** as sqlite3.enc.
 | |
|   */
 | |
|   if( meta[4] ){  /* text encoding */
 | |
|     if( iDb==0 ){
 | |
|       /* If opening the main database, set ENC(db). */
 | |
|       ENC(db) = (u8)meta[4];
 | |
|       db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0);
 | |
|     }else{
 | |
|       /* If opening an attached database, the encoding much match ENC(db) */
 | |
|       if( meta[4]!=ENC(db) ){
 | |
|         sqlite3BtreeCloseCursor(curMain);
 | |
|         sqlite3SetString(pzErrMsg, "attached databases must use the same"
 | |
|             " text encoding as main database", (char*)0);
 | |
|         sqlite3BtreeLeave(pDb->pBt);
 | |
|         return SQLITE_ERROR;
 | |
|       }
 | |
|     }
 | |
|   }else{
 | |
|     DbSetProperty(db, iDb, DB_Empty);
 | |
|   }
 | |
|   pDb->pSchema->enc = ENC(db);
 | |
| 
 | |
|   size = meta[2];
 | |
|   if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
 | |
|   if( size<0 ) size = -size;
 | |
|   pDb->pSchema->cache_size = size;
 | |
|   sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
 | |
| 
 | |
|   /*
 | |
|   ** file_format==1    Version 3.0.0.
 | |
|   ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
 | |
|   ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
 | |
|   ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
 | |
|   */
 | |
|   pDb->pSchema->file_format = meta[1];
 | |
|   if( pDb->pSchema->file_format==0 ){
 | |
|     pDb->pSchema->file_format = 1;
 | |
|   }
 | |
|   if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
 | |
|     sqlite3BtreeCloseCursor(curMain);
 | |
|     sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
 | |
|     sqlite3BtreeLeave(pDb->pBt);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Ticket #2804:  When we open a database in the newer file format,
 | |
|   ** clear the legacy_file_format pragma flag so that a VACUUM will
 | |
|   ** not downgrade the database and thus invalidate any descending
 | |
|   ** indices that the user might have created.
 | |
|   */
 | |
|   if( iDb==0 && meta[1]>=4 ){
 | |
|     db->flags &= ~SQLITE_LegacyFileFmt;
 | |
|   }
 | |
| 
 | |
|   /* Read the schema information out of the schema tables
 | |
|   */
 | |
|   assert( db->init.busy );
 | |
|   if( rc==SQLITE_EMPTY ){
 | |
|     /* For an empty database, there is nothing to read */
 | |
|     rc = SQLITE_OK;
 | |
|   }else{
 | |
|     char *zSql;
 | |
|     zSql = sqlite3MPrintf(db, 
 | |
|         "SELECT name, rootpage, sql FROM '%q'.%s",
 | |
|         db->aDb[iDb].zName, zMasterName);
 | |
|     (void)sqlite3SafetyOff(db);
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|     {
 | |
|       int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
 | |
|       xAuth = db->xAuth;
 | |
|       db->xAuth = 0;
 | |
| #endif
 | |
|       rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|       db->xAuth = xAuth;
 | |
|     }
 | |
| #endif
 | |
|     if( rc==SQLITE_ABORT ) rc = initData.rc;
 | |
|     (void)sqlite3SafetyOn(db);
 | |
|     sqlite3_free(zSql);
 | |
| #ifndef SQLITE_OMIT_ANALYZE
 | |
|     if( rc==SQLITE_OK ){
 | |
|       sqlite3AnalysisLoad(db, iDb);
 | |
|     }
 | |
| #endif
 | |
|     sqlite3BtreeCloseCursor(curMain);
 | |
|   }
 | |
|   if( db->mallocFailed ){
 | |
|     /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */
 | |
|     rc = SQLITE_NOMEM;
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|   }
 | |
|   if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){
 | |
|     /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider
 | |
|     ** the schema loaded, even if errors occured. In this situation the 
 | |
|     ** current sqlite3_prepare() operation will fail, but the following one
 | |
|     ** will attempt to compile the supplied statement against whatever subset
 | |
|     ** of the schema was loaded before the error occured. The primary
 | |
|     ** purpose of this is to allow access to the sqlite_master table
 | |
|     ** even when its contents have been corrupted.
 | |
|     */
 | |
|     DbSetProperty(db, iDb, DB_SchemaLoaded);
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
|   sqlite3BtreeLeave(pDb->pBt);
 | |
| 
 | |
| error_out:
 | |
|   if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
 | |
|     db->mallocFailed = 1;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize all database files - the main database file, the file
 | |
| ** used to store temporary tables, and any additional database files
 | |
| ** created using ATTACH statements.  Return a success code.  If an
 | |
| ** error occurs, write an error message into *pzErrMsg.
 | |
| **
 | |
| ** After a database is initialized, the DB_SchemaLoaded bit is set
 | |
| ** bit is set in the flags field of the Db structure. If the database
 | |
| ** file was of zero-length, then the DB_Empty flag is also set.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
 | |
|   int i, rc;
 | |
|   int commit_internal = !(db->flags&SQLITE_InternChanges);
 | |
|   
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   if( db->init.busy ) return SQLITE_OK;
 | |
|   rc = SQLITE_OK;
 | |
|   db->init.busy = 1;
 | |
|   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
 | |
|     if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
 | |
|     rc = sqlite3InitOne(db, i, pzErrMsg);
 | |
|     if( rc ){
 | |
|       sqlite3ResetInternalSchema(db, i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Once all the other databases have been initialised, load the schema
 | |
|   ** for the TEMP database. This is loaded last, as the TEMP database
 | |
|   ** schema may contain references to objects in other databases.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_TEMPDB
 | |
|   if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
 | |
|     rc = sqlite3InitOne(db, 1, pzErrMsg);
 | |
|     if( rc ){
 | |
|       sqlite3ResetInternalSchema(db, 1);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   db->init.busy = 0;
 | |
|   if( rc==SQLITE_OK && commit_internal ){
 | |
|     sqlite3CommitInternalChanges(db);
 | |
|   }
 | |
| 
 | |
|   return rc; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is a no-op if the database schema is already initialised.
 | |
| ** Otherwise, the schema is loaded. An error code is returned.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){
 | |
|   int rc = SQLITE_OK;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   if( !db->init.busy ){
 | |
|     rc = sqlite3Init(db, &pParse->zErrMsg);
 | |
|   }
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     pParse->rc = rc;
 | |
|     pParse->nErr++;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Check schema cookies in all databases.  If any cookie is out
 | |
| ** of date, return 0.  If all schema cookies are current, return 1.
 | |
| */
 | |
| static int schemaIsValid(sqlite3 *db){
 | |
|   int iDb;
 | |
|   int rc;
 | |
|   BtCursor *curTemp;
 | |
|   int cookie;
 | |
|   int allOk = 1;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   for(iDb=0; allOk && iDb<db->nDb; iDb++){
 | |
|     Btree *pBt;
 | |
|     pBt = db->aDb[iDb].pBt;
 | |
|     if( pBt==0 ) continue;
 | |
|     rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
 | |
|       if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
 | |
|         allOk = 0;
 | |
|       }
 | |
|       sqlite3BtreeCloseCursor(curTemp);
 | |
|     }
 | |
|     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
 | |
|       db->mallocFailed = 1;
 | |
|     }
 | |
|   }
 | |
|   return allOk;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert a schema pointer into the iDb index that indicates
 | |
| ** which database file in db->aDb[] the schema refers to.
 | |
| **
 | |
| ** If the same database is attached more than once, the first
 | |
| ** attached database is returned.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){
 | |
|   int i = -1000000;
 | |
| 
 | |
|   /* If pSchema is NULL, then return -1000000. This happens when code in 
 | |
|   ** expr.c is trying to resolve a reference to a transient table (i.e. one
 | |
|   ** created by a sub-select). In this case the return value of this 
 | |
|   ** function should never be used.
 | |
|   **
 | |
|   ** We return -1000000 instead of the more usual -1 simply because using
 | |
|   ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much 
 | |
|   ** more likely to cause a segfault than -1 (of course there are assert()
 | |
|   ** statements too, but it never hurts to play the odds).
 | |
|   */
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   if( pSchema ){
 | |
|     for(i=0; i<db->nDb; i++){
 | |
|       if( db->aDb[i].pSchema==pSchema ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     assert( i>=0 &&i>=0 &&  i<db->nDb );
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compile the UTF-8 encoded SQL statement zSql into a statement handle.
 | |
| */
 | |
| static int sqlite3Prepare(
 | |
|   sqlite3 *db,              /* Database handle. */
 | |
|   const char *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const char **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   Parse sParse;
 | |
|   char *zErrMsg = 0;
 | |
|   int rc = SQLITE_OK;
 | |
|   int i;
 | |
| 
 | |
|   assert( ppStmt );
 | |
|   *ppStmt = 0;
 | |
|   if( sqlite3SafetyOn(db) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   assert( !db->mallocFailed );
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
| 
 | |
|   /* If any attached database schemas are locked, do not proceed with
 | |
|   ** compilation. Instead return SQLITE_LOCKED immediately.
 | |
|   */
 | |
|   for(i=0; i<db->nDb; i++) {
 | |
|     Btree *pBt = db->aDb[i].pBt;
 | |
|     if( pBt ){
 | |
|       int rc;
 | |
|       rc = sqlite3BtreeSchemaLocked(pBt);
 | |
|       if( rc ){
 | |
|         const char *zDb = db->aDb[i].zName;
 | |
|         sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb);
 | |
|         (void)sqlite3SafetyOff(db);
 | |
|         return SQLITE_LOCKED;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   memset(&sParse, 0, sizeof(sParse));
 | |
|   sParse.db = db;
 | |
|   if( nBytes>=0 && zSql[nBytes]!=0 ){
 | |
|     char *zSqlCopy;
 | |
|     if( SQLITE_MAX_SQL_LENGTH>0 && nBytes>SQLITE_MAX_SQL_LENGTH ){
 | |
|       sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
 | |
|       (void)sqlite3SafetyOff(db);
 | |
|       return SQLITE_TOOBIG;
 | |
|     }
 | |
|     zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes);
 | |
|     if( zSqlCopy ){
 | |
|       sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg);
 | |
|       sqlite3_free(zSqlCopy);
 | |
|     }
 | |
|     sParse.zTail = &zSql[nBytes];
 | |
|   }else{
 | |
|     sqlite3RunParser(&sParse, zSql, &zErrMsg);
 | |
|   }
 | |
| 
 | |
|   if( db->mallocFailed ){
 | |
|     sParse.rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
 | |
|   if( sParse.checkSchema && !schemaIsValid(db) ){
 | |
|     sParse.rc = SQLITE_SCHEMA;
 | |
|   }
 | |
|   if( sParse.rc==SQLITE_SCHEMA ){
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|   }
 | |
|   if( db->mallocFailed ){
 | |
|     sParse.rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   if( pzTail ){
 | |
|     *pzTail = sParse.zTail;
 | |
|   }
 | |
|   rc = sParse.rc;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|   if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){
 | |
|     if( sParse.explain==2 ){
 | |
|       sqlite3VdbeSetNumCols(sParse.pVdbe, 3);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC);
 | |
|     }else{
 | |
|       sqlite3VdbeSetNumCols(sParse.pVdbe, 8);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", P4_STATIC);
 | |
|       sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment",P4_STATIC);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if( sqlite3SafetyOff(db) ){
 | |
|     rc = SQLITE_MISUSE;
 | |
|   }
 | |
| 
 | |
|   if( saveSqlFlag ){
 | |
|     sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql);
 | |
|   }
 | |
|   if( rc!=SQLITE_OK || db->mallocFailed ){
 | |
|     sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
 | |
|     assert(!(*ppStmt));
 | |
|   }else{
 | |
|     *ppStmt = (sqlite3_stmt*)sParse.pVdbe;
 | |
|   }
 | |
| 
 | |
|   if( zErrMsg ){
 | |
|     sqlite3Error(db, rc, "%s", zErrMsg);
 | |
|     sqlite3_free(zErrMsg);
 | |
|   }else{
 | |
|     sqlite3Error(db, rc, 0);
 | |
|   }
 | |
| 
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   assert( (rc&db->errMask)==rc );
 | |
|   return rc;
 | |
| }
 | |
| static int sqlite3LockAndPrepare(
 | |
|   sqlite3 *db,              /* Database handle. */
 | |
|   const char *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const char **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   int rc;
 | |
|   if( !sqlite3SafetyCheckOk(db) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   sqlite3BtreeEnterAll(db);
 | |
|   rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail);
 | |
|   sqlite3BtreeLeaveAll(db);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rerun the compilation of a statement after a schema change.
 | |
| ** Return true if the statement was recompiled successfully.
 | |
| ** Return false if there is an error of some kind.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){
 | |
|   int rc;
 | |
|   sqlite3_stmt *pNew;
 | |
|   const char *zSql;
 | |
|   sqlite3 *db;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) );
 | |
|   zSql = sqlite3_sql((sqlite3_stmt *)p);
 | |
|   assert( zSql!=0 );  /* Reprepare only called for prepare_v2() statements */
 | |
|   db = sqlite3VdbeDb(p);
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0);
 | |
|   if( rc ){
 | |
|     if( rc==SQLITE_NOMEM ){
 | |
|       db->mallocFailed = 1;
 | |
|     }
 | |
|     assert( pNew==0 );
 | |
|     return 0;
 | |
|   }else{
 | |
|     assert( pNew!=0 );
 | |
|   }
 | |
|   sqlite3VdbeSwap((Vdbe*)pNew, p);
 | |
|   sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p);
 | |
|   sqlite3VdbeResetStepResult((Vdbe*)pNew);
 | |
|   sqlite3VdbeFinalize((Vdbe*)pNew);
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Two versions of the official API.  Legacy and new use.  In the legacy
 | |
| ** version, the original SQL text is not saved in the prepared statement
 | |
| ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
 | |
| ** sqlite3_step().  In the new version, the original SQL text is retained
 | |
| ** and the statement is automatically recompiled if an schema change
 | |
| ** occurs.
 | |
| */
 | |
| SQLITE_API int sqlite3_prepare(
 | |
|   sqlite3 *db,              /* Database handle. */
 | |
|   const char *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const char **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   int rc;
 | |
|   rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail);
 | |
|   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_API int sqlite3_prepare_v2(
 | |
|   sqlite3 *db,              /* Database handle. */
 | |
|   const char *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const char **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   int rc;
 | |
|   rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail);
 | |
|   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Compile the UTF-16 encoded SQL statement zSql into a statement handle.
 | |
| */
 | |
| static int sqlite3Prepare16(
 | |
|   sqlite3 *db,              /* Database handle. */ 
 | |
|   const void *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   int saveSqlFlag,          /* True to save SQL text into the sqlite3_stmt */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const void **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   /* This function currently works by first transforming the UTF-16
 | |
|   ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
 | |
|   ** tricky bit is figuring out the pointer to return in *pzTail.
 | |
|   */
 | |
|   char *zSql8;
 | |
|   const char *zTail8 = 0;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   if( !sqlite3SafetyCheckOk(db) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   zSql8 = sqlite3Utf16to8(db, zSql, nBytes);
 | |
|   if( zSql8 ){
 | |
|     rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8);
 | |
|   }
 | |
| 
 | |
|   if( zTail8 && pzTail ){
 | |
|     /* If sqlite3_prepare returns a tail pointer, we calculate the
 | |
|     ** equivalent pointer into the UTF-16 string by counting the unicode
 | |
|     ** characters between zSql8 and zTail8, and then returning a pointer
 | |
|     ** the same number of characters into the UTF-16 string.
 | |
|     */
 | |
|     int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8);
 | |
|     *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed);
 | |
|   }
 | |
|   sqlite3_free(zSql8); 
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Two versions of the official API.  Legacy and new use.  In the legacy
 | |
| ** version, the original SQL text is not saved in the prepared statement
 | |
| ** and so if a schema change occurs, SQLITE_SCHEMA is returned by
 | |
| ** sqlite3_step().  In the new version, the original SQL text is retained
 | |
| ** and the statement is automatically recompiled if an schema change
 | |
| ** occurs.
 | |
| */
 | |
| SQLITE_API int sqlite3_prepare16(
 | |
|   sqlite3 *db,              /* Database handle. */ 
 | |
|   const void *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const void **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   int rc;
 | |
|   rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
 | |
|   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
 | |
|   return rc;
 | |
| }
 | |
| SQLITE_API int sqlite3_prepare16_v2(
 | |
|   sqlite3 *db,              /* Database handle. */ 
 | |
|   const void *zSql,         /* UTF-8 encoded SQL statement. */
 | |
|   int nBytes,               /* Length of zSql in bytes. */
 | |
|   sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
 | |
|   const void **pzTail       /* OUT: End of parsed string */
 | |
| ){
 | |
|   int rc;
 | |
|   rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail);
 | |
|   assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /************** End of prepare.c *********************************************/
 | |
| /************** Begin file select.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the parser
 | |
| ** to handle SELECT statements in SQLite.
 | |
| **
 | |
| ** $Id: select.c,v 1.415 2008/03/04 17:45:01 mlcreech Exp $
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Delete all the content of a Select structure but do not deallocate
 | |
| ** the select structure itself.
 | |
| */
 | |
| static void clearSelect(Select *p){
 | |
|   sqlite3ExprListDelete(p->pEList);
 | |
|   sqlite3SrcListDelete(p->pSrc);
 | |
|   sqlite3ExprDelete(p->pWhere);
 | |
|   sqlite3ExprListDelete(p->pGroupBy);
 | |
|   sqlite3ExprDelete(p->pHaving);
 | |
|   sqlite3ExprListDelete(p->pOrderBy);
 | |
|   sqlite3SelectDelete(p->pPrior);
 | |
|   sqlite3ExprDelete(p->pLimit);
 | |
|   sqlite3ExprDelete(p->pOffset);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize a SelectDest structure.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
 | |
|   pDest->eDest = eDest;
 | |
|   pDest->iParm = iParm;
 | |
|   pDest->affinity = 0;
 | |
|   pDest->iMem = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Allocate a new Select structure and return a pointer to that
 | |
| ** structure.
 | |
| */
 | |
| SQLITE_PRIVATE Select *sqlite3SelectNew(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   ExprList *pEList,     /* which columns to include in the result */
 | |
|   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
 | |
|   Expr *pWhere,         /* the WHERE clause */
 | |
|   ExprList *pGroupBy,   /* the GROUP BY clause */
 | |
|   Expr *pHaving,        /* the HAVING clause */
 | |
|   ExprList *pOrderBy,   /* the ORDER BY clause */
 | |
|   int isDistinct,       /* true if the DISTINCT keyword is present */
 | |
|   Expr *pLimit,         /* LIMIT value.  NULL means not used */
 | |
|   Expr *pOffset         /* OFFSET value.  NULL means no offset */
 | |
| ){
 | |
|   Select *pNew;
 | |
|   Select standin;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
 | |
|   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
 | |
|   if( pNew==0 ){
 | |
|     pNew = &standin;
 | |
|     memset(pNew, 0, sizeof(*pNew));
 | |
|   }
 | |
|   if( pEList==0 ){
 | |
|     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
 | |
|   }
 | |
|   pNew->pEList = pEList;
 | |
|   pNew->pSrc = pSrc;
 | |
|   pNew->pWhere = pWhere;
 | |
|   pNew->pGroupBy = pGroupBy;
 | |
|   pNew->pHaving = pHaving;
 | |
|   pNew->pOrderBy = pOrderBy;
 | |
|   pNew->isDistinct = isDistinct;
 | |
|   pNew->op = TK_SELECT;
 | |
|   assert( pOffset==0 || pLimit!=0 );
 | |
|   pNew->pLimit = pLimit;
 | |
|   pNew->pOffset = pOffset;
 | |
|   pNew->iLimit = -1;
 | |
|   pNew->iOffset = -1;
 | |
|   pNew->addrOpenEphm[0] = -1;
 | |
|   pNew->addrOpenEphm[1] = -1;
 | |
|   pNew->addrOpenEphm[2] = -1;
 | |
|   if( pNew==&standin) {
 | |
|     clearSelect(pNew);
 | |
|     pNew = 0;
 | |
|   }
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Delete the given Select structure and all of its substructures.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SelectDelete(Select *p){
 | |
|   if( p ){
 | |
|     clearSelect(p);
 | |
|     sqlite3_free(p);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
 | |
| ** type of join.  Return an integer constant that expresses that type
 | |
| ** in terms of the following bit values:
 | |
| **
 | |
| **     JT_INNER
 | |
| **     JT_CROSS
 | |
| **     JT_OUTER
 | |
| **     JT_NATURAL
 | |
| **     JT_LEFT
 | |
| **     JT_RIGHT
 | |
| **
 | |
| ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
 | |
| **
 | |
| ** If an illegal or unsupported join type is seen, then still return
 | |
| ** a join type, but put an error in the pParse structure.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
 | |
|   int jointype = 0;
 | |
|   Token *apAll[3];
 | |
|   Token *p;
 | |
|   static const struct {
 | |
|     const char zKeyword[8];
 | |
|     u8 nChar;
 | |
|     u8 code;
 | |
|   } keywords[] = {
 | |
|     { "natural", 7, JT_NATURAL },
 | |
|     { "left",    4, JT_LEFT|JT_OUTER },
 | |
|     { "right",   5, JT_RIGHT|JT_OUTER },
 | |
|     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
 | |
|     { "outer",   5, JT_OUTER },
 | |
|     { "inner",   5, JT_INNER },
 | |
|     { "cross",   5, JT_INNER|JT_CROSS },
 | |
|   };
 | |
|   int i, j;
 | |
|   apAll[0] = pA;
 | |
|   apAll[1] = pB;
 | |
|   apAll[2] = pC;
 | |
|   for(i=0; i<3 && apAll[i]; i++){
 | |
|     p = apAll[i];
 | |
|     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
 | |
|       if( p->n==keywords[j].nChar 
 | |
|           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
 | |
|         jointype |= keywords[j].code;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
 | |
|       jointype |= JT_ERROR;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if(
 | |
|      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
 | |
|      (jointype & JT_ERROR)!=0
 | |
|   ){
 | |
|     const char *zSp1 = " ";
 | |
|     const char *zSp2 = " ";
 | |
|     if( pB==0 ){ zSp1++; }
 | |
|     if( pC==0 ){ zSp2++; }
 | |
|     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
 | |
|        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
 | |
|     jointype = JT_INNER;
 | |
|   }else if( jointype & JT_RIGHT ){
 | |
|     sqlite3ErrorMsg(pParse, 
 | |
|       "RIGHT and FULL OUTER JOINs are not currently supported");
 | |
|     jointype = JT_INNER;
 | |
|   }
 | |
|   return jointype;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the index of a column in a table.  Return -1 if the column
 | |
| ** is not contained in the table.
 | |
| */
 | |
| static int columnIndex(Table *pTab, const char *zCol){
 | |
|   int i;
 | |
|   for(i=0; i<pTab->nCol; i++){
 | |
|     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the value of a token to a '\000'-terminated string.
 | |
| */
 | |
| static void setToken(Token *p, const char *z){
 | |
|   p->z = (u8*)z;
 | |
|   p->n = z ? strlen(z) : 0;
 | |
|   p->dyn = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the token to the double-quoted and escaped version of the string pointed
 | |
| ** to by z. For example;
 | |
| **
 | |
| **    {a"bc}  ->  {"a""bc"}
 | |
| */
 | |
| static void setQuotedToken(Parse *pParse, Token *p, const char *z){
 | |
|   p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
 | |
|   p->dyn = 1;
 | |
|   if( p->z ){
 | |
|     p->n = strlen((char *)p->z);
 | |
|   }else{
 | |
|     pParse->db->mallocFailed = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create an expression node for an identifier with the name of zName
 | |
| */
 | |
| SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
 | |
|   Token dummy;
 | |
|   setToken(&dummy, zName);
 | |
|   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Add a term to the WHERE expression in *ppExpr that requires the
 | |
| ** zCol column to be equal in the two tables pTab1 and pTab2.
 | |
| */
 | |
| static void addWhereTerm(
 | |
|   Parse *pParse,           /* Parsing context */
 | |
|   const char *zCol,        /* Name of the column */
 | |
|   const Table *pTab1,      /* First table */
 | |
|   const char *zAlias1,     /* Alias for first table.  May be NULL */
 | |
|   const Table *pTab2,      /* Second table */
 | |
|   const char *zAlias2,     /* Alias for second table.  May be NULL */
 | |
|   int iRightJoinTable,     /* VDBE cursor for the right table */
 | |
|   Expr **ppExpr            /* Add the equality term to this expression */
 | |
| ){
 | |
|   Expr *pE1a, *pE1b, *pE1c;
 | |
|   Expr *pE2a, *pE2b, *pE2c;
 | |
|   Expr *pE;
 | |
| 
 | |
|   pE1a = sqlite3CreateIdExpr(pParse, zCol);
 | |
|   pE2a = sqlite3CreateIdExpr(pParse, zCol);
 | |
|   if( zAlias1==0 ){
 | |
|     zAlias1 = pTab1->zName;
 | |
|   }
 | |
|   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
 | |
|   if( zAlias2==0 ){
 | |
|     zAlias2 = pTab2->zName;
 | |
|   }
 | |
|   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
 | |
|   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
 | |
|   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
 | |
|   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
 | |
|   if( pE ){
 | |
|     ExprSetProperty(pE, EP_FromJoin);
 | |
|     pE->iRightJoinTable = iRightJoinTable;
 | |
|   }
 | |
|   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Set the EP_FromJoin property on all terms of the given expression.
 | |
| ** And set the Expr.iRightJoinTable to iTable for every term in the
 | |
| ** expression.
 | |
| **
 | |
| ** The EP_FromJoin property is used on terms of an expression to tell
 | |
| ** the LEFT OUTER JOIN processing logic that this term is part of the
 | |
| ** join restriction specified in the ON or USING clause and not a part
 | |
| ** of the more general WHERE clause.  These terms are moved over to the
 | |
| ** WHERE clause during join processing but we need to remember that they
 | |
| ** originated in the ON or USING clause.
 | |
| **
 | |
| ** The Expr.iRightJoinTable tells the WHERE clause processing that the
 | |
| ** expression depends on table iRightJoinTable even if that table is not
 | |
| ** explicitly mentioned in the expression.  That information is needed
 | |
| ** for cases like this:
 | |
| **
 | |
| **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
 | |
| **
 | |
| ** The where clause needs to defer the handling of the t1.x=5
 | |
| ** term until after the t2 loop of the join.  In that way, a
 | |
| ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
 | |
| ** defer the handling of t1.x=5, it will be processed immediately
 | |
| ** after the t1 loop and rows with t1.x!=5 will never appear in
 | |
| ** the output, which is incorrect.
 | |
| */
 | |
| static void setJoinExpr(Expr *p, int iTable){
 | |
|   while( p ){
 | |
|     ExprSetProperty(p, EP_FromJoin);
 | |
|     p->iRightJoinTable = iTable;
 | |
|     setJoinExpr(p->pLeft, iTable);
 | |
|     p = p->pRight;
 | |
|   } 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine processes the join information for a SELECT statement.
 | |
| ** ON and USING clauses are converted into extra terms of the WHERE clause.
 | |
| ** NATURAL joins also create extra WHERE clause terms.
 | |
| **
 | |
| ** The terms of a FROM clause are contained in the Select.pSrc structure.
 | |
| ** The left most table is the first entry in Select.pSrc.  The right-most
 | |
| ** table is the last entry.  The join operator is held in the entry to
 | |
| ** the left.  Thus entry 0 contains the join operator for the join between
 | |
| ** entries 0 and 1.  Any ON or USING clauses associated with the join are
 | |
| ** also attached to the left entry.
 | |
| **
 | |
| ** This routine returns the number of errors encountered.
 | |
| */
 | |
| static int sqliteProcessJoin(Parse *pParse, Select *p){
 | |
|   SrcList *pSrc;                  /* All tables in the FROM clause */
 | |
|   int i, j;                       /* Loop counters */
 | |
|   struct SrcList_item *pLeft;     /* Left table being joined */
 | |
|   struct SrcList_item *pRight;    /* Right table being joined */
 | |
| 
 | |
|   pSrc = p->pSrc;
 | |
|   pLeft = &pSrc->a[0];
 | |
|   pRight = &pLeft[1];
 | |
|   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
 | |
|     Table *pLeftTab = pLeft->pTab;
 | |
|     Table *pRightTab = pRight->pTab;
 | |
| 
 | |
|     if( pLeftTab==0 || pRightTab==0 ) continue;
 | |
| 
 | |
|     /* When the NATURAL keyword is present, add WHERE clause terms for
 | |
|     ** every column that the two tables have in common.
 | |
|     */
 | |
|     if( pRight->jointype & JT_NATURAL ){
 | |
|       if( pRight->pOn || pRight->pUsing ){
 | |
|         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
 | |
|            "an ON or USING clause", 0);
 | |
|         return 1;
 | |
|       }
 | |
|       for(j=0; j<pLeftTab->nCol; j++){
 | |
|         char *zName = pLeftTab->aCol[j].zName;
 | |
|         if( columnIndex(pRightTab, zName)>=0 ){
 | |
|           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
 | |
|                               pRightTab, pRight->zAlias,
 | |
|                               pRight->iCursor, &p->pWhere);
 | |
|           
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Disallow both ON and USING clauses in the same join
 | |
|     */
 | |
|     if( pRight->pOn && pRight->pUsing ){
 | |
|       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
 | |
|         "clauses in the same join");
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     /* Add the ON clause to the end of the WHERE clause, connected by
 | |
|     ** an AND operator.
 | |
|     */
 | |
|     if( pRight->pOn ){
 | |
|       setJoinExpr(pRight->pOn, pRight->iCursor);
 | |
|       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
 | |
|       pRight->pOn = 0;
 | |
|     }
 | |
| 
 | |
|     /* Create extra terms on the WHERE clause for each column named
 | |
|     ** in the USING clause.  Example: If the two tables to be joined are 
 | |
|     ** A and B and the USING clause names X, Y, and Z, then add this
 | |
|     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
 | |
|     ** Report an error if any column mentioned in the USING clause is
 | |
|     ** not contained in both tables to be joined.
 | |
|     */
 | |
|     if( pRight->pUsing ){
 | |
|       IdList *pList = pRight->pUsing;
 | |
|       for(j=0; j<pList->nId; j++){
 | |
|         char *zName = pList->a[j].zName;
 | |
|         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
 | |
|           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
 | |
|             "not present in both tables", zName);
 | |
|           return 1;
 | |
|         }
 | |
|         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
 | |
|                             pRightTab, pRight->zAlias,
 | |
|                             pRight->iCursor, &p->pWhere);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Insert code into "v" that will push the record on the top of the
 | |
| ** stack into the sorter.
 | |
| */
 | |
| static void pushOntoSorter(
 | |
|   Parse *pParse,         /* Parser context */
 | |
|   ExprList *pOrderBy,    /* The ORDER BY clause */
 | |
|   Select *pSelect,       /* The whole SELECT statement */
 | |
|   int regData            /* Register holding data to be sorted */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int nExpr = pOrderBy->nExpr;
 | |
|   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
 | |
|   int regRecord = sqlite3GetTempReg(pParse);
 | |
|   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase);
 | |
|   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
 | |
|   sqlite3VdbeAddOp2(v, OP_Move, regData, regBase+nExpr+1);
 | |
|   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
 | |
|   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
 | |
|   sqlite3ReleaseTempReg(pParse, regRecord);
 | |
|   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
 | |
|   if( pSelect->iLimit>=0 ){
 | |
|     int addr1, addr2;
 | |
|     int iLimit;
 | |
|     if( pSelect->pOffset ){
 | |
|       iLimit = pSelect->iOffset+1;
 | |
|     }else{
 | |
|       iLimit = pSelect->iLimit;
 | |
|     }
 | |
|     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
 | |
|     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
 | |
|     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
 | |
|     sqlite3VdbeJumpHere(v, addr2);
 | |
|     pSelect->iLimit = -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add code to implement the OFFSET
 | |
| */
 | |
| static void codeOffset(
 | |
|   Vdbe *v,          /* Generate code into this VM */
 | |
|   Select *p,        /* The SELECT statement being coded */
 | |
|   int iContinue     /* Jump here to skip the current record */
 | |
| ){
 | |
|   if( p->iOffset>=0 && iContinue!=0 ){
 | |
|     int addr;
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
 | |
|     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
 | |
|     VdbeComment((v, "skip OFFSET records"));
 | |
|     sqlite3VdbeJumpHere(v, addr);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add code that will check to make sure the N registers starting at iMem
 | |
| ** form a distinct entry.  iTab is a sorting index that holds previously
 | |
| ** seen combinations of the N values.  A new entry is made in iTab
 | |
| ** if the current N values are new.
 | |
| **
 | |
| ** A jump to addrRepeat is made and the N+1 values are popped from the
 | |
| ** stack if the top N elements are not distinct.
 | |
| */
 | |
| static void codeDistinct(
 | |
|   Parse *pParse,     /* Parsing and code generating context */
 | |
|   int iTab,          /* A sorting index used to test for distinctness */
 | |
|   int addrRepeat,    /* Jump to here if not distinct */
 | |
|   int N,             /* Number of elements */
 | |
|   int iMem           /* First element */
 | |
| ){
 | |
|   Vdbe *v;
 | |
|   int r1;
 | |
| 
 | |
|   v = pParse->pVdbe;
 | |
|   r1 = sqlite3GetTempReg(pParse);
 | |
|   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
 | |
|   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
 | |
|   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
 | |
|   sqlite3ReleaseTempReg(pParse, r1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate an error message when a SELECT is used within a subexpression
 | |
| ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
 | |
| ** column.  We do this in a subroutine because the error occurs in multiple
 | |
| ** places.
 | |
| */
 | |
| static int checkForMultiColumnSelectError(
 | |
|   Parse *pParse,       /* Parse context. */
 | |
|   SelectDest *pDest,   /* Destination of SELECT results */
 | |
|   int nExpr            /* Number of result columns returned by SELECT */
 | |
| ){
 | |
|   int eDest = pDest->eDest;
 | |
|   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
 | |
|     sqlite3ErrorMsg(pParse, "only a single result allowed for "
 | |
|        "a SELECT that is part of an expression");
 | |
|     return 1;
 | |
|   }else{
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine generates the code for the inside of the inner loop
 | |
| ** of a SELECT.
 | |
| **
 | |
| ** If srcTab and nColumn are both zero, then the pEList expressions
 | |
| ** are evaluated in order to get the data for this row.  If nColumn>0
 | |
| ** then data is pulled from srcTab and pEList is used only to get the
 | |
| ** datatypes for each column.
 | |
| */
 | |
| static void selectInnerLoop(
 | |
|   Parse *pParse,          /* The parser context */
 | |
|   Select *p,              /* The complete select statement being coded */
 | |
|   ExprList *pEList,       /* List of values being extracted */
 | |
|   int srcTab,             /* Pull data from this table */
 | |
|   int nColumn,            /* Number of columns in the source table */
 | |
|   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
 | |
|   int distinct,           /* If >=0, make sure results are distinct */
 | |
|   SelectDest *pDest,      /* How to dispose of the results */
 | |
|   int iContinue,          /* Jump here to continue with next row */
 | |
|   int iBreak,             /* Jump here to break out of the inner loop */
 | |
|   char *aff               /* affinity string if eDest is SRT_Union */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   int hasDistinct;        /* True if the DISTINCT keyword is present */
 | |
|   int regResult;              /* Start of memory holding result set */
 | |
|   int eDest = pDest->eDest;   /* How to dispose of results */
 | |
|   int iParm = pDest->iParm;   /* First argument to disposal method */
 | |
|   int nResultCol;             /* Number of result columns */
 | |
| 
 | |
|   if( v==0 ) return;
 | |
|   assert( pEList!=0 );
 | |
| 
 | |
|   /* If there was a LIMIT clause on the SELECT statement, then do the check
 | |
|   ** to see if this row should be output.
 | |
|   */
 | |
|   hasDistinct = distinct>=0 && pEList->nExpr>0;
 | |
|   if( pOrderBy==0 && !hasDistinct ){
 | |
|     codeOffset(v, p, iContinue);
 | |
|   }
 | |
| 
 | |
|   /* Pull the requested columns.
 | |
|   */
 | |
|   if( nColumn>0 ){
 | |
|     nResultCol = nColumn;
 | |
|   }else{
 | |
|     nResultCol = pEList->nExpr;
 | |
|   }
 | |
|   if( pDest->iMem==0 ){
 | |
|     pDest->iMem = sqlite3GetTempRange(pParse, nResultCol);
 | |
|   }
 | |
|   regResult = pDest->iMem;
 | |
|   if( nColumn>0 ){
 | |
|     for(i=0; i<nColumn; i++){
 | |
|       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
 | |
|     }
 | |
|   }else if( eDest!=SRT_Exists ){
 | |
|     /* If the destination is an EXISTS(...) expression, the actual
 | |
|     ** values returned by the SELECT are not required.
 | |
|     */
 | |
|     for(i=0; i<nResultCol; i++){
 | |
|       sqlite3ExprCode(pParse, pEList->a[i].pExpr, regResult+i);
 | |
|     }
 | |
|   }
 | |
|   nColumn = nResultCol;
 | |
| 
 | |
|   /* If the DISTINCT keyword was present on the SELECT statement
 | |
|   ** and this row has been seen before, then do not make this row
 | |
|   ** part of the result.
 | |
|   */
 | |
|   if( hasDistinct ){
 | |
|     assert( pEList!=0 );
 | |
|     assert( pEList->nExpr==nColumn );
 | |
|     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
 | |
|     if( pOrderBy==0 ){
 | |
|       codeOffset(v, p, iContinue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   switch( eDest ){
 | |
|     /* In this mode, write each query result to the key of the temporary
 | |
|     ** table iParm.
 | |
|     */
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
|     case SRT_Union: {
 | |
|       int r1;
 | |
|       r1 = sqlite3GetTempReg(pParse);
 | |
|       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
 | |
|       if( aff ){
 | |
|         sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
 | |
|       sqlite3ReleaseTempReg(pParse, r1);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* Construct a record from the query result, but instead of
 | |
|     ** saving that record, use it as a key to delete elements from
 | |
|     ** the temporary table iParm.
 | |
|     */
 | |
|     case SRT_Except: {
 | |
|       int r1;
 | |
|       r1 = sqlite3GetTempReg(pParse);
 | |
|       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
 | |
|       sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC);
 | |
|       sqlite3VdbeAddOp2(v, OP_IdxDelete, iParm, r1);
 | |
|       sqlite3ReleaseTempReg(pParse, r1);
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Store the result as data using a unique key.
 | |
|     */
 | |
|     case SRT_Table:
 | |
|     case SRT_EphemTab: {
 | |
|       int r1 = sqlite3GetTempReg(pParse);
 | |
|       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
 | |
|       if( pOrderBy ){
 | |
|         pushOntoSorter(pParse, pOrderBy, p, r1);
 | |
|       }else{
 | |
|         int r2 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
 | |
|         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
 | |
|         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
 | |
|         sqlite3ReleaseTempReg(pParse, r2);
 | |
|       }
 | |
|       sqlite3ReleaseTempReg(pParse, r1);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
 | |
|     ** then there should be a single item on the stack.  Write this
 | |
|     ** item into the set table with bogus data.
 | |
|     */
 | |
|     case SRT_Set: {
 | |
|       int addr2;
 | |
| 
 | |
|       assert( nColumn==1 );
 | |
|       addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult);
 | |
|       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
 | |
|       if( pOrderBy ){
 | |
|         /* At first glance you would think we could optimize out the
 | |
|         ** ORDER BY in this case since the order of entries in the set
 | |
|         ** does not matter.  But there might be a LIMIT clause, in which
 | |
|         ** case the order does matter */
 | |
|         pushOntoSorter(pParse, pOrderBy, p, regResult);
 | |
|       }else{
 | |
|         int r1 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
 | |
|         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
 | |
|         sqlite3ReleaseTempReg(pParse, r1);
 | |
|       }
 | |
|       sqlite3VdbeJumpHere(v, addr2);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* If any row exist in the result set, record that fact and abort.
 | |
|     */
 | |
|     case SRT_Exists: {
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
 | |
|       /* The LIMIT clause will terminate the loop for us */
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     /* If this is a scalar select that is part of an expression, then
 | |
|     ** store the results in the appropriate memory cell and break out
 | |
|     ** of the scan loop.
 | |
|     */
 | |
|     case SRT_Mem: {
 | |
|       assert( nColumn==1 );
 | |
|       if( pOrderBy ){
 | |
|         pushOntoSorter(pParse, pOrderBy, p, regResult);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_Move, regResult, iParm);
 | |
|         /* The LIMIT clause will jump out of the loop for us */
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
 | |
| 
 | |
|     /* Send the data to the callback function or to a subroutine.  In the
 | |
|     ** case of a subroutine, the subroutine itself is responsible for
 | |
|     ** popping the data from the stack.
 | |
|     */
 | |
|     case SRT_Subroutine:
 | |
|     case SRT_Callback: {
 | |
|       if( pOrderBy ){
 | |
|         int r1 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
 | |
|         pushOntoSorter(pParse, pOrderBy, p, r1);
 | |
|         sqlite3ReleaseTempReg(pParse, r1);
 | |
|       }else if( eDest==SRT_Subroutine ){
 | |
|         sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_TRIGGER)
 | |
|     /* Discard the results.  This is used for SELECT statements inside
 | |
|     ** the body of a TRIGGER.  The purpose of such selects is to call
 | |
|     ** user-defined functions that have side effects.  We do not care
 | |
|     ** about the actual results of the select.
 | |
|     */
 | |
|     default: {
 | |
|       assert( eDest==SRT_Discard );
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* Jump to the end of the loop if the LIMIT is reached.
 | |
|   */
 | |
|   if( p->iLimit>=0 && pOrderBy==0 ){
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
 | |
|     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Given an expression list, generate a KeyInfo structure that records
 | |
| ** the collating sequence for each expression in that expression list.
 | |
| **
 | |
| ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
 | |
| ** KeyInfo structure is appropriate for initializing a virtual index to
 | |
| ** implement that clause.  If the ExprList is the result set of a SELECT
 | |
| ** then the KeyInfo structure is appropriate for initializing a virtual
 | |
| ** index to implement a DISTINCT test.
 | |
| **
 | |
| ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
 | |
| ** function is responsible for seeing that this structure is eventually
 | |
| ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
 | |
| ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
 | |
| */
 | |
| static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int nExpr;
 | |
|   KeyInfo *pInfo;
 | |
|   struct ExprList_item *pItem;
 | |
|   int i;
 | |
| 
 | |
|   nExpr = pList->nExpr;
 | |
|   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
 | |
|   if( pInfo ){
 | |
|     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
 | |
|     pInfo->nField = nExpr;
 | |
|     pInfo->enc = ENC(db);
 | |
|     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
 | |
|       CollSeq *pColl;
 | |
|       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 | |
|       if( !pColl ){
 | |
|         pColl = db->pDfltColl;
 | |
|       }
 | |
|       pInfo->aColl[i] = pColl;
 | |
|       pInfo->aSortOrder[i] = pItem->sortOrder;
 | |
|     }
 | |
|   }
 | |
|   return pInfo;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If the inner loop was generated using a non-null pOrderBy argument,
 | |
| ** then the results were placed in a sorter.  After the loop is terminated
 | |
| ** we need to run the sorter and output the results.  The following
 | |
| ** routine generates the code needed to do that.
 | |
| */
 | |
| static void generateSortTail(
 | |
|   Parse *pParse,    /* Parsing context */
 | |
|   Select *p,        /* The SELECT statement */
 | |
|   Vdbe *v,          /* Generate code into this VDBE */
 | |
|   int nColumn,      /* Number of columns of data */
 | |
|   SelectDest *pDest /* Write the sorted results here */
 | |
| ){
 | |
|   int brk = sqlite3VdbeMakeLabel(v);
 | |
|   int cont = sqlite3VdbeMakeLabel(v);
 | |
|   int addr;
 | |
|   int iTab;
 | |
|   int pseudoTab = 0;
 | |
|   ExprList *pOrderBy = p->pOrderBy;
 | |
| 
 | |
|   int eDest = pDest->eDest;
 | |
|   int iParm = pDest->iParm;
 | |
| 
 | |
|   int regRow;
 | |
|   int regRowid;
 | |
| 
 | |
|   iTab = pOrderBy->iECursor;
 | |
|   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | |
|     pseudoTab = pParse->nTab++;
 | |
|     sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_SetNumColumns, pseudoTab, nColumn);
 | |
|   }
 | |
|   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
 | |
|   codeOffset(v, p, cont);
 | |
|   regRow = sqlite3GetTempReg(pParse);
 | |
|   regRowid = sqlite3GetTempReg(pParse);
 | |
|   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
 | |
|   switch( eDest ){
 | |
|     case SRT_Table:
 | |
|     case SRT_EphemTab: {
 | |
|       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
 | |
|       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
 | |
|       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case SRT_Set: {
 | |
|       int j1;
 | |
|       assert( nColumn==1 );
 | |
|       j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow);
 | |
|       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
 | |
|       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
 | |
|       sqlite3VdbeJumpHere(v, j1);
 | |
|       break;
 | |
|     }
 | |
|     case SRT_Mem: {
 | |
|       assert( nColumn==1 );
 | |
|       sqlite3VdbeAddOp2(v, OP_Move, regRow, iParm);
 | |
|       /* The LIMIT clause will terminate the loop for us */
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|     case SRT_Callback:
 | |
|     case SRT_Subroutine: {
 | |
|       int i;
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
 | |
|       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
 | |
|       for(i=0; i<nColumn; i++){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
 | |
|       }
 | |
|       if( eDest==SRT_Callback ){
 | |
|         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     default: {
 | |
|       /* Do nothing */
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   sqlite3ReleaseTempReg(pParse, regRow);
 | |
|   sqlite3ReleaseTempReg(pParse, regRowid);
 | |
| 
 | |
|   /* Jump to the end of the loop when the LIMIT is reached
 | |
|   */
 | |
|   if( p->iLimit>=0 ){
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
 | |
|     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk);
 | |
|   }
 | |
| 
 | |
|   /* The bottom of the loop
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, cont);
 | |
|   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
 | |
|   sqlite3VdbeResolveLabel(v, brk);
 | |
|   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to a string containing the 'declaration type' of the
 | |
| ** expression pExpr. The string may be treated as static by the caller.
 | |
| **
 | |
| ** The declaration type is the exact datatype definition extracted from the
 | |
| ** original CREATE TABLE statement if the expression is a column. The
 | |
| ** declaration type for a ROWID field is INTEGER. Exactly when an expression
 | |
| ** is considered a column can be complex in the presence of subqueries. The
 | |
| ** result-set expression in all of the following SELECT statements is 
 | |
| ** considered a column by this function.
 | |
| **
 | |
| **   SELECT col FROM tbl;
 | |
| **   SELECT (SELECT col FROM tbl;
 | |
| **   SELECT (SELECT col FROM tbl);
 | |
| **   SELECT abc FROM (SELECT col AS abc FROM tbl);
 | |
| ** 
 | |
| ** The declaration type for any expression other than a column is NULL.
 | |
| */
 | |
| static const char *columnType(
 | |
|   NameContext *pNC, 
 | |
|   Expr *pExpr,
 | |
|   const char **pzOriginDb,
 | |
|   const char **pzOriginTab,
 | |
|   const char **pzOriginCol
 | |
| ){
 | |
|   char const *zType = 0;
 | |
|   char const *zOriginDb = 0;
 | |
|   char const *zOriginTab = 0;
 | |
|   char const *zOriginCol = 0;
 | |
|   int j;
 | |
|   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
 | |
| 
 | |
|   switch( pExpr->op ){
 | |
|     case TK_AGG_COLUMN:
 | |
|     case TK_COLUMN: {
 | |
|       /* The expression is a column. Locate the table the column is being
 | |
|       ** extracted from in NameContext.pSrcList. This table may be real
 | |
|       ** database table or a subquery.
 | |
|       */
 | |
|       Table *pTab = 0;            /* Table structure column is extracted from */
 | |
|       Select *pS = 0;             /* Select the column is extracted from */
 | |
|       int iCol = pExpr->iColumn;  /* Index of column in pTab */
 | |
|       while( pNC && !pTab ){
 | |
|         SrcList *pTabList = pNC->pSrcList;
 | |
|         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
 | |
|         if( j<pTabList->nSrc ){
 | |
|           pTab = pTabList->a[j].pTab;
 | |
|           pS = pTabList->a[j].pSelect;
 | |
|         }else{
 | |
|           pNC = pNC->pNext;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if( pTab==0 ){
 | |
|         /* FIX ME:
 | |
|         ** This can occurs if you have something like "SELECT new.x;" inside
 | |
|         ** a trigger.  In other words, if you reference the special "new"
 | |
|         ** table in the result set of a select.  We do not have a good way
 | |
|         ** to find the actual table type, so call it "TEXT".  This is really
 | |
|         ** something of a bug, but I do not know how to fix it.
 | |
|         **
 | |
|         ** This code does not produce the correct answer - it just prevents
 | |
|         ** a segfault.  See ticket #1229.
 | |
|         */
 | |
|         zType = "TEXT";
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert( pTab );
 | |
|       if( pS ){
 | |
|         /* The "table" is actually a sub-select or a view in the FROM clause
 | |
|         ** of the SELECT statement. Return the declaration type and origin
 | |
|         ** data for the result-set column of the sub-select.
 | |
|         */
 | |
|         if( iCol>=0 && iCol<pS->pEList->nExpr ){
 | |
|           /* If iCol is less than zero, then the expression requests the
 | |
|           ** rowid of the sub-select or view. This expression is legal (see 
 | |
|           ** test case misc2.2.2) - it always evaluates to NULL.
 | |
|           */
 | |
|           NameContext sNC;
 | |
|           Expr *p = pS->pEList->a[iCol].pExpr;
 | |
|           sNC.pSrcList = pS->pSrc;
 | |
|           sNC.pNext = 0;
 | |
|           sNC.pParse = pNC->pParse;
 | |
|           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 | |
|         }
 | |
|       }else if( pTab->pSchema ){
 | |
|         /* A real table */
 | |
|         assert( !pS );
 | |
|         if( iCol<0 ) iCol = pTab->iPKey;
 | |
|         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | |
|         if( iCol<0 ){
 | |
|           zType = "INTEGER";
 | |
|           zOriginCol = "rowid";
 | |
|         }else{
 | |
|           zType = pTab->aCol[iCol].zType;
 | |
|           zOriginCol = pTab->aCol[iCol].zName;
 | |
|         }
 | |
|         zOriginTab = pTab->zName;
 | |
|         if( pNC->pParse ){
 | |
|           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
 | |
|           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|     case TK_SELECT: {
 | |
|       /* The expression is a sub-select. Return the declaration type and
 | |
|       ** origin info for the single column in the result set of the SELECT
 | |
|       ** statement.
 | |
|       */
 | |
|       NameContext sNC;
 | |
|       Select *pS = pExpr->pSelect;
 | |
|       Expr *p = pS->pEList->a[0].pExpr;
 | |
|       sNC.pSrcList = pS->pSrc;
 | |
|       sNC.pNext = pNC;
 | |
|       sNC.pParse = pNC->pParse;
 | |
|       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
 | |
|       break;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   
 | |
|   if( pzOriginDb ){
 | |
|     assert( pzOriginTab && pzOriginCol );
 | |
|     *pzOriginDb = zOriginDb;
 | |
|     *pzOriginTab = zOriginTab;
 | |
|     *pzOriginCol = zOriginCol;
 | |
|   }
 | |
|   return zType;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will tell the VDBE the declaration types of columns
 | |
| ** in the result set.
 | |
| */
 | |
| static void generateColumnTypes(
 | |
|   Parse *pParse,      /* Parser context */
 | |
|   SrcList *pTabList,  /* List of tables */
 | |
|   ExprList *pEList    /* Expressions defining the result set */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   NameContext sNC;
 | |
|   sNC.pSrcList = pTabList;
 | |
|   sNC.pParse = pParse;
 | |
|   for(i=0; i<pEList->nExpr; i++){
 | |
|     Expr *p = pEList->a[i].pExpr;
 | |
|     const char *zOrigDb = 0;
 | |
|     const char *zOrigTab = 0;
 | |
|     const char *zOrigCol = 0;
 | |
|     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
 | |
| 
 | |
|     /* The vdbe must make its own copy of the column-type and other 
 | |
|     ** column specific strings, in case the schema is reset before this
 | |
|     ** virtual machine is deleted.
 | |
|     */
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
 | |
|     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will tell the VDBE the names of columns
 | |
| ** in the result set.  This information is used to provide the
 | |
| ** azCol[] values in the callback.
 | |
| */
 | |
| static void generateColumnNames(
 | |
|   Parse *pParse,      /* Parser context */
 | |
|   SrcList *pTabList,  /* List of tables */
 | |
|   ExprList *pEList    /* Expressions defining the result set */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i, j;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int fullNames, shortNames;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|   /* If this is an EXPLAIN, skip this step */
 | |
|   if( pParse->explain ){
 | |
|     return;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   assert( v!=0 );
 | |
|   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
 | |
|   pParse->colNamesSet = 1;
 | |
|   fullNames = (db->flags & SQLITE_FullColNames)!=0;
 | |
|   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
 | |
|   sqlite3VdbeSetNumCols(v, pEList->nExpr);
 | |
|   for(i=0; i<pEList->nExpr; i++){
 | |
|     Expr *p;
 | |
|     p = pEList->a[i].pExpr;
 | |
|     if( p==0 ) continue;
 | |
|     if( pEList->a[i].zName ){
 | |
|       char *zName = pEList->a[i].zName;
 | |
|       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
 | |
|       continue;
 | |
|     }
 | |
|     if( p->op==TK_COLUMN && pTabList ){
 | |
|       Table *pTab;
 | |
|       char *zCol;
 | |
|       int iCol = p->iColumn;
 | |
|       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
 | |
|       assert( j<pTabList->nSrc );
 | |
|       pTab = pTabList->a[j].pTab;
 | |
|       if( iCol<0 ) iCol = pTab->iPKey;
 | |
|       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
 | |
|       if( iCol<0 ){
 | |
|         zCol = "rowid";
 | |
|       }else{
 | |
|         zCol = pTab->aCol[iCol].zName;
 | |
|       }
 | |
|       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
 | |
|         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
 | |
|       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
 | |
|         char *zName = 0;
 | |
|         char *zTab;
 | |
|  
 | |
|         zTab = pTabList->a[j].zAlias;
 | |
|         if( fullNames || zTab==0 ) zTab = pTab->zName;
 | |
|         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
 | |
|         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
 | |
|       }else{
 | |
|         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
 | |
|       }
 | |
|     }else if( p->span.z && p->span.z[0] ){
 | |
|       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
 | |
|       /* sqlite3VdbeCompressSpace(v, addr); */
 | |
|     }else{
 | |
|       char zName[30];
 | |
|       assert( p->op!=TK_COLUMN || pTabList==0 );
 | |
|       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
 | |
|       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
 | |
|     }
 | |
|   }
 | |
|   generateColumnTypes(pParse, pTabList, pEList);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** Name of the connection operator, used for error messages.
 | |
| */
 | |
| static const char *selectOpName(int id){
 | |
|   char *z;
 | |
|   switch( id ){
 | |
|     case TK_ALL:       z = "UNION ALL";   break;
 | |
|     case TK_INTERSECT: z = "INTERSECT";   break;
 | |
|     case TK_EXCEPT:    z = "EXCEPT";      break;
 | |
|     default:           z = "UNION";       break;
 | |
|   }
 | |
|   return z;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| /*
 | |
| ** Forward declaration
 | |
| */
 | |
| static int prepSelectStmt(Parse*, Select*);
 | |
| 
 | |
| /*
 | |
| ** Given a SELECT statement, generate a Table structure that describes
 | |
| ** the result set of that SELECT.
 | |
| */
 | |
| SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
 | |
|   Table *pTab;
 | |
|   int i, j;
 | |
|   ExprList *pEList;
 | |
|   Column *aCol, *pCol;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
 | |
|   if( prepSelectStmt(pParse, pSelect) ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
 | |
|     return 0;
 | |
|   }
 | |
|   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
 | |
|   if( pTab==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pTab->nRef = 1;
 | |
|   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
 | |
|   pEList = pSelect->pEList;
 | |
|   pTab->nCol = pEList->nExpr;
 | |
|   assert( pTab->nCol>0 );
 | |
|   pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
 | |
|   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
 | |
|     Expr *p, *pR;
 | |
|     char *zType;
 | |
|     char *zName;
 | |
|     int nName;
 | |
|     CollSeq *pColl;
 | |
|     int cnt;
 | |
|     NameContext sNC;
 | |
|     
 | |
|     /* Get an appropriate name for the column
 | |
|     */
 | |
|     p = pEList->a[i].pExpr;
 | |
|     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
 | |
|     if( (zName = pEList->a[i].zName)!=0 ){
 | |
|       /* If the column contains an "AS <name>" phrase, use <name> as the name */
 | |
|       zName = sqlite3DbStrDup(db, zName);
 | |
|     }else if( p->op==TK_DOT 
 | |
|               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
 | |
|       /* For columns of the from A.B use B as the name */
 | |
|       zName = sqlite3MPrintf(db, "%T", &pR->token);
 | |
|     }else if( p->span.z && p->span.z[0] ){
 | |
|       /* Use the original text of the column expression as its name */
 | |
|       zName = sqlite3MPrintf(db, "%T", &p->span);
 | |
|     }else{
 | |
|       /* If all else fails, make up a name */
 | |
|       zName = sqlite3MPrintf(db, "column%d", i+1);
 | |
|     }
 | |
|     if( !zName || db->mallocFailed ){
 | |
|       db->mallocFailed = 1;
 | |
|       sqlite3_free(zName);
 | |
|       sqlite3DeleteTable(pTab);
 | |
|       return 0;
 | |
|     }
 | |
|     sqlite3Dequote(zName);
 | |
| 
 | |
|     /* Make sure the column name is unique.  If the name is not unique,
 | |
|     ** append a integer to the name so that it becomes unique.
 | |
|     */
 | |
|     nName = strlen(zName);
 | |
|     for(j=cnt=0; j<i; j++){
 | |
|       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
 | |
|         zName[nName] = 0;
 | |
|         zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
 | |
|         j = -1;
 | |
|         if( zName==0 ) break;
 | |
|       }
 | |
|     }
 | |
|     pCol->zName = zName;
 | |
| 
 | |
|     /* Get the typename, type affinity, and collating sequence for the
 | |
|     ** column.
 | |
|     */
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     sNC.pSrcList = pSelect->pSrc;
 | |
|     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
 | |
|     pCol->zType = zType;
 | |
|     pCol->affinity = sqlite3ExprAffinity(p);
 | |
|     pColl = sqlite3ExprCollSeq(pParse, p);
 | |
|     if( pColl ){
 | |
|       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
 | |
|     }
 | |
|   }
 | |
|   pTab->iPKey = -1;
 | |
|   return pTab;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare a SELECT statement for processing by doing the following
 | |
| ** things:
 | |
| **
 | |
| **    (1)  Make sure VDBE cursor numbers have been assigned to every
 | |
| **         element of the FROM clause.
 | |
| **
 | |
| **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
 | |
| **         defines FROM clause.  When views appear in the FROM clause,
 | |
| **         fill pTabList->a[].pSelect with a copy of the SELECT statement
 | |
| **         that implements the view.  A copy is made of the view's SELECT
 | |
| **         statement so that we can freely modify or delete that statement
 | |
| **         without worrying about messing up the presistent representation
 | |
| **         of the view.
 | |
| **
 | |
| **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
 | |
| **         on joins and the ON and USING clause of joins.
 | |
| **
 | |
| **    (4)  Scan the list of columns in the result set (pEList) looking
 | |
| **         for instances of the "*" operator or the TABLE.* operator.
 | |
| **         If found, expand each "*" to be every column in every table
 | |
| **         and TABLE.* to be every column in TABLE.
 | |
| **
 | |
| ** Return 0 on success.  If there are problems, leave an error message
 | |
| ** in pParse and return non-zero.
 | |
| */
 | |
| static int prepSelectStmt(Parse *pParse, Select *p){
 | |
|   int i, j, k, rc;
 | |
|   SrcList *pTabList;
 | |
|   ExprList *pEList;
 | |
|   struct SrcList_item *pFrom;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( p==0 || p->pSrc==0 || db->mallocFailed ){
 | |
|     return 1;
 | |
|   }
 | |
|   pTabList = p->pSrc;
 | |
|   pEList = p->pEList;
 | |
| 
 | |
|   /* Make sure cursor numbers have been assigned to all entries in
 | |
|   ** the FROM clause of the SELECT statement.
 | |
|   */
 | |
|   sqlite3SrcListAssignCursors(pParse, p->pSrc);
 | |
| 
 | |
|   /* Look up every table named in the FROM clause of the select.  If
 | |
|   ** an entry of the FROM clause is a subquery instead of a table or view,
 | |
|   ** then create a transient table structure to describe the subquery.
 | |
|   */
 | |
|   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 | |
|     Table *pTab;
 | |
|     if( pFrom->pTab!=0 ){
 | |
|       /* This statement has already been prepared.  There is no need
 | |
|       ** to go further. */
 | |
|       assert( i==0 );
 | |
|       return 0;
 | |
|     }
 | |
|     if( pFrom->zName==0 ){
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|       /* A sub-query in the FROM clause of a SELECT */
 | |
|       assert( pFrom->pSelect!=0 );
 | |
|       if( pFrom->zAlias==0 ){
 | |
|         pFrom->zAlias =
 | |
|           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
 | |
|       }
 | |
|       assert( pFrom->pTab==0 );
 | |
|       pFrom->pTab = pTab = 
 | |
|         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
 | |
|       if( pTab==0 ){
 | |
|         return 1;
 | |
|       }
 | |
|       /* The isEphem flag indicates that the Table structure has been
 | |
|       ** dynamically allocated and may be freed at any time.  In other words,
 | |
|       ** pTab is not pointing to a persistent table structure that defines
 | |
|       ** part of the schema. */
 | |
|       pTab->isEphem = 1;
 | |
| #endif
 | |
|     }else{
 | |
|       /* An ordinary table or view name in the FROM clause */
 | |
|       assert( pFrom->pTab==0 );
 | |
|       pFrom->pTab = pTab = 
 | |
|         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
 | |
|       if( pTab==0 ){
 | |
|         return 1;
 | |
|       }
 | |
|       pTab->nRef++;
 | |
| #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
 | |
|       if( pTab->pSelect || IsVirtual(pTab) ){
 | |
|         /* We reach here if the named table is a really a view */
 | |
|         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|           return 1;
 | |
|         }
 | |
|         /* If pFrom->pSelect!=0 it means we are dealing with a
 | |
|         ** view within a view.  The SELECT structure has already been
 | |
|         ** copied by the outer view so we can skip the copy step here
 | |
|         ** in the inner view.
 | |
|         */
 | |
|         if( pFrom->pSelect==0 ){
 | |
|           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
 | |
|         }
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Process NATURAL keywords, and ON and USING clauses of joins.
 | |
|   */
 | |
|   if( sqliteProcessJoin(pParse, p) ) return 1;
 | |
| 
 | |
|   /* For every "*" that occurs in the column list, insert the names of
 | |
|   ** all columns in all tables.  And for every TABLE.* insert the names
 | |
|   ** of all columns in TABLE.  The parser inserted a special expression
 | |
|   ** with the TK_ALL operator for each "*" that it found in the column list.
 | |
|   ** The following code just has to locate the TK_ALL expressions and expand
 | |
|   ** each one to the list of all columns in all tables.
 | |
|   **
 | |
|   ** The first loop just checks to see if there are any "*" operators
 | |
|   ** that need expanding.
 | |
|   */
 | |
|   for(k=0; k<pEList->nExpr; k++){
 | |
|     Expr *pE = pEList->a[k].pExpr;
 | |
|     if( pE->op==TK_ALL ) break;
 | |
|     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
 | |
|          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
 | |
|   }
 | |
|   rc = 0;
 | |
|   if( k<pEList->nExpr ){
 | |
|     /*
 | |
|     ** If we get here it means the result set contains one or more "*"
 | |
|     ** operators that need to be expanded.  Loop through each expression
 | |
|     ** in the result set and expand them one by one.
 | |
|     */
 | |
|     struct ExprList_item *a = pEList->a;
 | |
|     ExprList *pNew = 0;
 | |
|     int flags = pParse->db->flags;
 | |
|     int longNames = (flags & SQLITE_FullColNames)!=0 &&
 | |
|                       (flags & SQLITE_ShortColNames)==0;
 | |
| 
 | |
|     for(k=0; k<pEList->nExpr; k++){
 | |
|       Expr *pE = a[k].pExpr;
 | |
|       if( pE->op!=TK_ALL &&
 | |
|            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
 | |
|         /* This particular expression does not need to be expanded.
 | |
|         */
 | |
|         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
 | |
|         if( pNew ){
 | |
|           pNew->a[pNew->nExpr-1].zName = a[k].zName;
 | |
|         }else{
 | |
|           rc = 1;
 | |
|         }
 | |
|         a[k].pExpr = 0;
 | |
|         a[k].zName = 0;
 | |
|       }else{
 | |
|         /* This expression is a "*" or a "TABLE.*" and needs to be
 | |
|         ** expanded. */
 | |
|         int tableSeen = 0;      /* Set to 1 when TABLE matches */
 | |
|         char *zTName;            /* text of name of TABLE */
 | |
|         if( pE->op==TK_DOT && pE->pLeft ){
 | |
|           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
 | |
|         }else{
 | |
|           zTName = 0;
 | |
|         }
 | |
|         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
 | |
|           Table *pTab = pFrom->pTab;
 | |
|           char *zTabName = pFrom->zAlias;
 | |
|           if( zTabName==0 || zTabName[0]==0 ){ 
 | |
|             zTabName = pTab->zName;
 | |
|           }
 | |
|           if( zTName && (zTabName==0 || zTabName[0]==0 || 
 | |
|                  sqlite3StrICmp(zTName, zTabName)!=0) ){
 | |
|             continue;
 | |
|           }
 | |
|           tableSeen = 1;
 | |
|           for(j=0; j<pTab->nCol; j++){
 | |
|             Expr *pExpr, *pRight;
 | |
|             char *zName = pTab->aCol[j].zName;
 | |
| 
 | |
|             /* If a column is marked as 'hidden' (currently only possible
 | |
|             ** for virtual tables), do not include it in the expanded
 | |
|             ** result-set list.
 | |
|             */
 | |
|             if( IsHiddenColumn(&pTab->aCol[j]) ){
 | |
|               assert(IsVirtual(pTab));
 | |
|               continue;
 | |
|             }
 | |
| 
 | |
|             if( i>0 ){
 | |
|               struct SrcList_item *pLeft = &pTabList->a[i-1];
 | |
|               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
 | |
|                         columnIndex(pLeft->pTab, zName)>=0 ){
 | |
|                 /* In a NATURAL join, omit the join columns from the 
 | |
|                 ** table on the right */
 | |
|                 continue;
 | |
|               }
 | |
|               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
 | |
|                 /* In a join with a USING clause, omit columns in the
 | |
|                 ** using clause from the table on the right. */
 | |
|                 continue;
 | |
|               }
 | |
|             }
 | |
|             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
 | |
|             if( pRight==0 ) break;
 | |
|             setQuotedToken(pParse, &pRight->token, zName);
 | |
|             if( zTabName && (longNames || pTabList->nSrc>1) ){
 | |
|               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
 | |
|               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
 | |
|               if( pExpr==0 ) break;
 | |
|               setQuotedToken(pParse, &pLeft->token, zTabName);
 | |
|               setToken(&pExpr->span, 
 | |
|                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
 | |
|               pExpr->span.dyn = 1;
 | |
|               pExpr->token.z = 0;
 | |
|               pExpr->token.n = 0;
 | |
|               pExpr->token.dyn = 0;
 | |
|             }else{
 | |
|               pExpr = pRight;
 | |
|               pExpr->span = pExpr->token;
 | |
|               pExpr->span.dyn = 0;
 | |
|             }
 | |
|             if( longNames ){
 | |
|               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
 | |
|             }else{
 | |
|               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         if( !tableSeen ){
 | |
|           if( zTName ){
 | |
|             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
 | |
|           }else{
 | |
|             sqlite3ErrorMsg(pParse, "no tables specified");
 | |
|           }
 | |
|           rc = 1;
 | |
|         }
 | |
|         sqlite3_free(zTName);
 | |
|       }
 | |
|     }
 | |
|     sqlite3ExprListDelete(pEList);
 | |
|     p->pEList = pNew;
 | |
|   }
 | |
|   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
 | |
|     sqlite3ErrorMsg(pParse, "too many columns in result set");
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   if( db->mallocFailed ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pE is a pointer to an expression which is a single term in
 | |
| ** ORDER BY or GROUP BY clause.
 | |
| **
 | |
| ** If pE evaluates to an integer constant i, then return i.
 | |
| ** This is an indication to the caller that it should sort
 | |
| ** by the i-th column of the result set.
 | |
| **
 | |
| ** If pE is a well-formed expression and the SELECT statement
 | |
| ** is not compound, then return 0.  This indicates to the
 | |
| ** caller that it should sort by the value of the ORDER BY
 | |
| ** expression.
 | |
| **
 | |
| ** If the SELECT is compound, then attempt to match pE against
 | |
| ** result set columns in the left-most SELECT statement.  Return
 | |
| ** the index i of the matching column, as an indication to the 
 | |
| ** caller that it should sort by the i-th column.  If there is
 | |
| ** no match, return -1 and leave an error message in pParse.
 | |
| */
 | |
| static int matchOrderByTermToExprList(
 | |
|   Parse *pParse,     /* Parsing context for error messages */
 | |
|   Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
 | |
|   Expr *pE,          /* The specific ORDER BY term */
 | |
|   int idx,           /* When ORDER BY term is this */
 | |
|   int isCompound,    /* True if this is a compound SELECT */
 | |
|   u8 *pHasAgg        /* True if expression contains aggregate functions */
 | |
| ){
 | |
|   int i;             /* Loop counter */
 | |
|   ExprList *pEList;  /* The columns of the result set */
 | |
|   NameContext nc;    /* Name context for resolving pE */
 | |
| 
 | |
| 
 | |
|   /* If the term is an integer constant, return the value of that
 | |
|   ** constant */
 | |
|   pEList = pSelect->pEList;
 | |
|   if( sqlite3ExprIsInteger(pE, &i) ){
 | |
|     if( i<=0 ){
 | |
|       /* If i is too small, make it too big.  That way the calling
 | |
|       ** function still sees a value that is out of range, but does
 | |
|       ** not confuse the column number with 0 or -1 result code.
 | |
|       */
 | |
|       i = pEList->nExpr+1;
 | |
|     }
 | |
|     return i;
 | |
|   }
 | |
| 
 | |
|   /* If the term is a simple identifier that try to match that identifier
 | |
|   ** against a column name in the result set.
 | |
|   */
 | |
|   if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
 | |
|     sqlite3 *db = pParse->db;
 | |
|     char *zCol = sqlite3NameFromToken(db, &pE->token);
 | |
|     if( zCol==0 ){
 | |
|       return -1;
 | |
|     }
 | |
|     for(i=0; i<pEList->nExpr; i++){
 | |
|       char *zAs = pEList->a[i].zName;
 | |
|       if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
 | |
|         sqlite3_free(zCol);
 | |
|         return i+1;
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(zCol);
 | |
|   }
 | |
| 
 | |
|   /* Resolve all names in the ORDER BY term expression
 | |
|   */
 | |
|   memset(&nc, 0, sizeof(nc));
 | |
|   nc.pParse = pParse;
 | |
|   nc.pSrcList = pSelect->pSrc;
 | |
|   nc.pEList = pEList;
 | |
|   nc.allowAgg = 1;
 | |
|   nc.nErr = 0;
 | |
|   if( sqlite3ExprResolveNames(&nc, pE) ){
 | |
|     if( isCompound ){
 | |
|       sqlite3ErrorClear(pParse);
 | |
|       return 0;
 | |
|     }else{
 | |
|       return -1;
 | |
|     }
 | |
|   }
 | |
|   if( nc.hasAgg && pHasAgg ){
 | |
|     *pHasAgg = 1;
 | |
|   }
 | |
| 
 | |
|   /* For a compound SELECT, we need to try to match the ORDER BY
 | |
|   ** expression against an expression in the result set
 | |
|   */
 | |
|   if( isCompound ){
 | |
|     for(i=0; i<pEList->nExpr; i++){
 | |
|       if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
 | |
|         return i+1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
 | |
| ** Return the number of errors seen.
 | |
| **
 | |
| ** Every term of the ORDER BY or GROUP BY clause needs to be an
 | |
| ** expression.  If any expression is an integer constant, then
 | |
| ** that expression is replaced by the corresponding 
 | |
| ** expression from the result set.
 | |
| */
 | |
| static int processOrderGroupBy(
 | |
|   Parse *pParse,        /* Parsing context.  Leave error messages here */
 | |
|   Select *pSelect,      /* The SELECT statement containing the clause */
 | |
|   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
 | |
|   int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
 | |
|   u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
 | |
| ){
 | |
|   int i;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   ExprList *pEList;
 | |
| 
 | |
|   if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
 | |
|   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
 | |
|     const char *zType = isOrder ? "ORDER" : "GROUP";
 | |
|     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
 | |
|     return 1;
 | |
|   }
 | |
|   pEList = pSelect->pEList;
 | |
|   if( pEList==0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   for(i=0; i<pOrderBy->nExpr; i++){
 | |
|     int iCol;
 | |
|     Expr *pE = pOrderBy->a[i].pExpr;
 | |
|     iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
 | |
|     if( iCol<0 ){
 | |
|       return 1;
 | |
|     }
 | |
|     if( iCol>pEList->nExpr ){
 | |
|       const char *zType = isOrder ? "ORDER" : "GROUP";
 | |
|       sqlite3ErrorMsg(pParse, 
 | |
|          "%r %s BY term out of range - should be "
 | |
|          "between 1 and %d", i+1, zType, pEList->nExpr);
 | |
|       return 1;
 | |
|     }
 | |
|     if( iCol>0 ){
 | |
|       CollSeq *pColl = pE->pColl;
 | |
|       int flags = pE->flags & EP_ExpCollate;
 | |
|       sqlite3ExprDelete(pE);
 | |
|       pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
 | |
|       pOrderBy->a[i].pExpr = pE;
 | |
|       if( pE && pColl && flags ){
 | |
|         pE->pColl = pColl;
 | |
|         pE->flags |= flags;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
 | |
| ** the number of errors seen.
 | |
| **
 | |
| ** The processing depends on whether the SELECT is simple or compound.
 | |
| ** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
 | |
| ** clause needs to be an expression.  If any expression is an integer
 | |
| ** constant, then that expression is replaced by the corresponding 
 | |
| ** expression from the result set.
 | |
| **
 | |
| ** For compound SELECT statements, every expression needs to be of
 | |
| ** type TK_COLUMN with a iTable value as given in the 4th parameter.
 | |
| ** If any expression is an integer, that becomes the column number.
 | |
| ** Otherwise, match the expression against result set columns from
 | |
| ** the left-most SELECT.
 | |
| */
 | |
| static int processCompoundOrderBy(
 | |
|   Parse *pParse,        /* Parsing context.  Leave error messages here */
 | |
|   Select *pSelect,      /* The SELECT statement containing the ORDER BY */
 | |
|   int iTable            /* Output table for compound SELECT statements */
 | |
| ){
 | |
|   int i;
 | |
|   ExprList *pOrderBy;
 | |
|   ExprList *pEList;
 | |
|   sqlite3 *db;
 | |
|   int moreToDo = 1;
 | |
| 
 | |
|   pOrderBy = pSelect->pOrderBy;
 | |
|   if( pOrderBy==0 ) return 0;
 | |
|   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
 | |
|     sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
 | |
|     return 1;
 | |
|   }
 | |
|   db = pParse->db;
 | |
|   for(i=0; i<pOrderBy->nExpr; i++){
 | |
|     pOrderBy->a[i].done = 0;
 | |
|   }
 | |
|   while( pSelect->pPrior ){
 | |
|     pSelect = pSelect->pPrior;
 | |
|   }
 | |
|   while( pSelect && moreToDo ){
 | |
|     moreToDo = 0;
 | |
|     for(i=0; i<pOrderBy->nExpr; i++){
 | |
|       int iCol = -1;
 | |
|       Expr *pE, *pDup;
 | |
|       if( pOrderBy->a[i].done ) continue;
 | |
|       pE = pOrderBy->a[i].pExpr;
 | |
|       pDup = sqlite3ExprDup(db, pE);
 | |
|       if( !db->mallocFailed ){
 | |
|         assert(pDup);
 | |
|         iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
 | |
|       }
 | |
|       sqlite3ExprDelete(pDup);
 | |
|       if( iCol<0 ){
 | |
|         return 1;
 | |
|       }
 | |
|       pEList = pSelect->pEList;
 | |
|       if( pEList==0 ){
 | |
|         return 1;
 | |
|       }
 | |
|       if( iCol>pEList->nExpr ){
 | |
|         sqlite3ErrorMsg(pParse, 
 | |
|            "%r ORDER BY term out of range - should be "
 | |
|            "between 1 and %d", i+1, pEList->nExpr);
 | |
|         return 1;
 | |
|       }
 | |
|       if( iCol>0 ){
 | |
|         pE->op = TK_COLUMN;
 | |
|         pE->iTable = iTable;
 | |
|         pE->iAgg = -1;
 | |
|         pE->iColumn = iCol-1;
 | |
|         pE->pTab = 0;
 | |
|         pOrderBy->a[i].done = 1;
 | |
|       }else{
 | |
|         moreToDo = 1;
 | |
|       }
 | |
|     }
 | |
|     pSelect = pSelect->pNext;
 | |
|   }
 | |
|   for(i=0; i<pOrderBy->nExpr; i++){
 | |
|     if( pOrderBy->a[i].done==0 ){
 | |
|       sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
 | |
|             "column in the result set", i+1);
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Get a VDBE for the given parser context.  Create a new one if necessary.
 | |
| ** If an error occurs, return NULL and leave a message in pParse.
 | |
| */
 | |
| SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   if( v==0 ){
 | |
|     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
|     if( v ){
 | |
|       sqlite3VdbeAddOp0(v, OP_Trace);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Compute the iLimit and iOffset fields of the SELECT based on the
 | |
| ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
 | |
| ** that appear in the original SQL statement after the LIMIT and OFFSET
 | |
| ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
 | |
| ** are the integer memory register numbers for counters used to compute 
 | |
| ** the limit and offset.  If there is no limit and/or offset, then 
 | |
| ** iLimit and iOffset are negative.
 | |
| **
 | |
| ** This routine changes the values of iLimit and iOffset only if
 | |
| ** a limit or offset is defined by pLimit and pOffset.  iLimit and
 | |
| ** iOffset should have been preset to appropriate default values
 | |
| ** (usually but not always -1) prior to calling this routine.
 | |
| ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
 | |
| ** redefined.  The UNION ALL operator uses this property to force
 | |
| ** the reuse of the same limit and offset registers across multiple
 | |
| ** SELECT statements.
 | |
| */
 | |
| static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
 | |
|   Vdbe *v = 0;
 | |
|   int iLimit = 0;
 | |
|   int iOffset;
 | |
|   int addr1;
 | |
| 
 | |
|   /* 
 | |
|   ** "LIMIT -1" always shows all rows.  There is some
 | |
|   ** contraversy about what the correct behavior should be.
 | |
|   ** The current implementation interprets "LIMIT 0" to mean
 | |
|   ** no rows.
 | |
|   */
 | |
|   if( p->pLimit ){
 | |
|     p->iLimit = iLimit = ++pParse->nMem;
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) return;
 | |
|     sqlite3ExprCode(pParse, p->pLimit, iLimit);
 | |
|     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
 | |
|     VdbeComment((v, "LIMIT counter"));
 | |
|     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
 | |
|   }
 | |
|   if( p->pOffset ){
 | |
|     p->iOffset = iOffset = ++pParse->nMem;
 | |
|     if( p->pLimit ){
 | |
|       pParse->nMem++;   /* Allocate an extra register for limit+offset */
 | |
|     }
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) return;
 | |
|     sqlite3ExprCode(pParse, p->pOffset, iOffset);
 | |
|     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
 | |
|     VdbeComment((v, "OFFSET counter"));
 | |
|     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
 | |
|     sqlite3VdbeJumpHere(v, addr1);
 | |
|     if( p->pLimit ){
 | |
|       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
 | |
|       VdbeComment((v, "LIMIT+OFFSET"));
 | |
|       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
 | |
|       sqlite3VdbeJumpHere(v, addr1);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Allocate a virtual index to use for sorting.
 | |
| */
 | |
| static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
 | |
|   if( pOrderBy ){
 | |
|     int addr;
 | |
|     assert( pOrderBy->iECursor==0 );
 | |
|     pOrderBy->iECursor = pParse->nTab++;
 | |
|     addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral,
 | |
|                             pOrderBy->iECursor, pOrderBy->nExpr+1);
 | |
|     assert( p->addrOpenEphm[2] == -1 );
 | |
|     p->addrOpenEphm[2] = addr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** Return the appropriate collating sequence for the iCol-th column of
 | |
| ** the result set for the compound-select statement "p".  Return NULL if
 | |
| ** the column has no default collating sequence.
 | |
| **
 | |
| ** The collating sequence for the compound select is taken from the
 | |
| ** left-most term of the select that has a collating sequence.
 | |
| */
 | |
| static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
 | |
|   CollSeq *pRet;
 | |
|   if( p->pPrior ){
 | |
|     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
 | |
|   }else{
 | |
|     pRet = 0;
 | |
|   }
 | |
|   if( pRet==0 ){
 | |
|     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
 | |
|   }
 | |
|   return pRet;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
| /*
 | |
| ** This routine is called to process a query that is really the union
 | |
| ** or intersection of two or more separate queries.
 | |
| **
 | |
| ** "p" points to the right-most of the two queries.  the query on the
 | |
| ** left is p->pPrior.  The left query could also be a compound query
 | |
| ** in which case this routine will be called recursively. 
 | |
| **
 | |
| ** The results of the total query are to be written into a destination
 | |
| ** of type eDest with parameter iParm.
 | |
| **
 | |
| ** Example 1:  Consider a three-way compound SQL statement.
 | |
| **
 | |
| **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
 | |
| **
 | |
| ** This statement is parsed up as follows:
 | |
| **
 | |
| **     SELECT c FROM t3
 | |
| **      |
 | |
| **      `----->  SELECT b FROM t2
 | |
| **                |
 | |
| **                `------>  SELECT a FROM t1
 | |
| **
 | |
| ** The arrows in the diagram above represent the Select.pPrior pointer.
 | |
| ** So if this routine is called with p equal to the t3 query, then
 | |
| ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
 | |
| **
 | |
| ** Notice that because of the way SQLite parses compound SELECTs, the
 | |
| ** individual selects always group from left to right.
 | |
| */
 | |
| static int multiSelect(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   Select *p,            /* The right-most of SELECTs to be coded */
 | |
|   SelectDest *pDest,    /* What to do with query results */
 | |
|   char *aff             /* If eDest is SRT_Union, the affinity string */
 | |
| ){
 | |
|   int rc = SQLITE_OK;   /* Success code from a subroutine */
 | |
|   Select *pPrior;       /* Another SELECT immediately to our left */
 | |
|   Vdbe *v;              /* Generate code to this VDBE */
 | |
|   int nCol;             /* Number of columns in the result set */
 | |
|   ExprList *pOrderBy;   /* The ORDER BY clause on p */
 | |
|   int aSetP2[2];        /* Set P2 value of these op to number of columns */
 | |
|   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
 | |
|   SelectDest dest;      /* Alternative data destination */
 | |
| 
 | |
|   dest = *pDest;
 | |
| 
 | |
|   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
 | |
|   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
 | |
|   */
 | |
|   if( p==0 || p->pPrior==0 ){
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
|   pPrior = p->pPrior;
 | |
|   assert( pPrior->pRightmost!=pPrior );
 | |
|   assert( pPrior->pRightmost==p->pRightmost );
 | |
|   if( pPrior->pOrderBy ){
 | |
|     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
 | |
|       selectOpName(p->op));
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
|   if( pPrior->pLimit ){
 | |
|     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
 | |
|       selectOpName(p->op));
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
| 
 | |
|   /* Make sure we have a valid query engine.  If not, create a new one.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ){
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
| 
 | |
|   /* Create the destination temporary table if necessary
 | |
|   */
 | |
|   if( dest.eDest==SRT_EphemTab ){
 | |
|     assert( p->pEList );
 | |
|     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
 | |
|     aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0);
 | |
|     dest.eDest = SRT_Table;
 | |
|   }
 | |
| 
 | |
|   /* Generate code for the left and right SELECT statements.
 | |
|   */
 | |
|   pOrderBy = p->pOrderBy;
 | |
|   switch( p->op ){
 | |
|     case TK_ALL: {
 | |
|       if( pOrderBy==0 ){
 | |
|         int addr = 0;
 | |
|         assert( !pPrior->pLimit );
 | |
|         pPrior->pLimit = p->pLimit;
 | |
|         pPrior->pOffset = p->pOffset;
 | |
|         rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff);
 | |
|         p->pLimit = 0;
 | |
|         p->pOffset = 0;
 | |
|         if( rc ){
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         p->pPrior = 0;
 | |
|         p->iLimit = pPrior->iLimit;
 | |
|         p->iOffset = pPrior->iOffset;
 | |
|         if( p->iLimit>=0 ){
 | |
|           addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
 | |
|           VdbeComment((v, "Jump ahead if LIMIT reached"));
 | |
|         }
 | |
|         rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff);
 | |
|         p->pPrior = pPrior;
 | |
|         if( rc ){
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         if( addr ){
 | |
|           sqlite3VdbeJumpHere(v, addr);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       /* For UNION ALL ... ORDER BY fall through to the next case */
 | |
|     }
 | |
|     case TK_EXCEPT:
 | |
|     case TK_UNION: {
 | |
|       int unionTab;    /* Cursor number of the temporary table holding result */
 | |
|       int op = 0;      /* One of the SRT_ operations to apply to self */
 | |
|       int priorOp;     /* The SRT_ operation to apply to prior selects */
 | |
|       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
 | |
|       int addr;
 | |
|       SelectDest uniondest;
 | |
| 
 | |
|       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
 | |
|       if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
 | |
|         /* We can reuse a temporary table generated by a SELECT to our
 | |
|         ** right.
 | |
|         */
 | |
|         unionTab = dest.iParm;
 | |
|       }else{
 | |
|         /* We will need to create our own temporary table to hold the
 | |
|         ** intermediate results.
 | |
|         */
 | |
|         unionTab = pParse->nTab++;
 | |
|         if( processCompoundOrderBy(pParse, p, unionTab) ){
 | |
|           rc = 1;
 | |
|           goto multi_select_end;
 | |
|         }
 | |
|         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
 | |
|         if( priorOp==SRT_Table ){
 | |
|           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
 | |
|           aSetP2[nSetP2++] = addr;
 | |
|         }else{
 | |
|           assert( p->addrOpenEphm[0] == -1 );
 | |
|           p->addrOpenEphm[0] = addr;
 | |
|           p->pRightmost->usesEphm = 1;
 | |
|         }
 | |
|         createSortingIndex(pParse, p, pOrderBy);
 | |
|         assert( p->pEList );
 | |
|       }
 | |
| 
 | |
|       /* Code the SELECT statements to our left
 | |
|       */
 | |
|       assert( !pPrior->pOrderBy );
 | |
|       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
 | |
|       rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff);
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
|       /* Code the current SELECT statement
 | |
|       */
 | |
|       switch( p->op ){
 | |
|          case TK_EXCEPT:  op = SRT_Except;   break;
 | |
|          case TK_UNION:   op = SRT_Union;    break;
 | |
|          case TK_ALL:     op = SRT_Table;    break;
 | |
|       }
 | |
|       p->pPrior = 0;
 | |
|       p->pOrderBy = 0;
 | |
|       p->disallowOrderBy = pOrderBy!=0;
 | |
|       pLimit = p->pLimit;
 | |
|       p->pLimit = 0;
 | |
|       pOffset = p->pOffset;
 | |
|       p->pOffset = 0;
 | |
|       uniondest.eDest = op;
 | |
|       rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff);
 | |
|       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
 | |
|       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
 | |
|       sqlite3ExprListDelete(p->pOrderBy);
 | |
|       p->pPrior = pPrior;
 | |
|       p->pOrderBy = pOrderBy;
 | |
|       sqlite3ExprDelete(p->pLimit);
 | |
|       p->pLimit = pLimit;
 | |
|       p->pOffset = pOffset;
 | |
|       p->iLimit = -1;
 | |
|       p->iOffset = -1;
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
| 
 | |
|       /* Convert the data in the temporary table into whatever form
 | |
|       ** it is that we currently need.
 | |
|       */      
 | |
|       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
 | |
|         int iCont, iBreak, iStart;
 | |
|         assert( p->pEList );
 | |
|         if( dest.eDest==SRT_Callback ){
 | |
|           Select *pFirst = p;
 | |
|           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 | |
|           generateColumnNames(pParse, 0, pFirst->pEList);
 | |
|         }
 | |
|         iBreak = sqlite3VdbeMakeLabel(v);
 | |
|         iCont = sqlite3VdbeMakeLabel(v);
 | |
|         computeLimitRegisters(pParse, p, iBreak);
 | |
|         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
 | |
|         iStart = sqlite3VdbeCurrentAddr(v);
 | |
|         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
 | |
|                         pOrderBy, -1, &dest, iCont, iBreak, 0);
 | |
|         sqlite3VdbeResolveLabel(v, iCont);
 | |
|         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
 | |
|         sqlite3VdbeResolveLabel(v, iBreak);
 | |
|         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case TK_INTERSECT: {
 | |
|       int tab1, tab2;
 | |
|       int iCont, iBreak, iStart;
 | |
|       Expr *pLimit, *pOffset;
 | |
|       int addr;
 | |
|       SelectDest intersectdest;
 | |
|       int r1;
 | |
| 
 | |
|       /* INTERSECT is different from the others since it requires
 | |
|       ** two temporary tables.  Hence it has its own case.  Begin
 | |
|       ** by allocating the tables we will need.
 | |
|       */
 | |
|       tab1 = pParse->nTab++;
 | |
|       tab2 = pParse->nTab++;
 | |
|       if( processCompoundOrderBy(pParse, p, tab1) ){
 | |
|         rc = 1;
 | |
|         goto multi_select_end;
 | |
|       }
 | |
|       createSortingIndex(pParse, p, pOrderBy);
 | |
| 
 | |
|       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
 | |
|       assert( p->addrOpenEphm[0] == -1 );
 | |
|       p->addrOpenEphm[0] = addr;
 | |
|       p->pRightmost->usesEphm = 1;
 | |
|       assert( p->pEList );
 | |
| 
 | |
|       /* Code the SELECTs to our left into temporary table "tab1".
 | |
|       */
 | |
|       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
 | |
|       rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff);
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
|       /* Code the current SELECT into temporary table "tab2"
 | |
|       */
 | |
|       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
 | |
|       assert( p->addrOpenEphm[1] == -1 );
 | |
|       p->addrOpenEphm[1] = addr;
 | |
|       p->pPrior = 0;
 | |
|       pLimit = p->pLimit;
 | |
|       p->pLimit = 0;
 | |
|       pOffset = p->pOffset;
 | |
|       p->pOffset = 0;
 | |
|       intersectdest.iParm = tab2;
 | |
|       rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff);
 | |
|       p->pPrior = pPrior;
 | |
|       sqlite3ExprDelete(p->pLimit);
 | |
|       p->pLimit = pLimit;
 | |
|       p->pOffset = pOffset;
 | |
|       if( rc ){
 | |
|         goto multi_select_end;
 | |
|       }
 | |
| 
 | |
|       /* Generate code to take the intersection of the two temporary
 | |
|       ** tables.
 | |
|       */
 | |
|       assert( p->pEList );
 | |
|       if( dest.eDest==SRT_Callback ){
 | |
|         Select *pFirst = p;
 | |
|         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
 | |
|         generateColumnNames(pParse, 0, pFirst->pEList);
 | |
|       }
 | |
|       iBreak = sqlite3VdbeMakeLabel(v);
 | |
|       iCont = sqlite3VdbeMakeLabel(v);
 | |
|       computeLimitRegisters(pParse, p, iBreak);
 | |
|       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
 | |
|       r1 = sqlite3GetTempReg(pParse);
 | |
|       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
 | |
|       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
 | |
|       sqlite3ReleaseTempReg(pParse, r1);
 | |
|       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
 | |
|                       pOrderBy, -1, &dest, iCont, iBreak, 0);
 | |
|       sqlite3VdbeResolveLabel(v, iCont);
 | |
|       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
 | |
|       sqlite3VdbeResolveLabel(v, iBreak);
 | |
|       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
 | |
|       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Make sure all SELECTs in the statement have the same number of elements
 | |
|   ** in their result sets.
 | |
|   */
 | |
|   assert( p->pEList && pPrior->pEList );
 | |
|   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
 | |
|     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
 | |
|       " do not have the same number of result columns", selectOpName(p->op));
 | |
|     rc = 1;
 | |
|     goto multi_select_end;
 | |
|   }
 | |
| 
 | |
|   /* Set the number of columns in temporary tables
 | |
|   */
 | |
|   nCol = p->pEList->nExpr;
 | |
|   while( nSetP2 ){
 | |
|     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
 | |
|   }
 | |
| 
 | |
|   /* Compute collating sequences used by either the ORDER BY clause or
 | |
|   ** by any temporary tables needed to implement the compound select.
 | |
|   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
 | |
|   ** ORDER BY processing if there is an ORDER BY clause.
 | |
|   **
 | |
|   ** This section is run by the right-most SELECT statement only.
 | |
|   ** SELECT statements to the left always skip this part.  The right-most
 | |
|   ** SELECT might also skip this part if it has no ORDER BY clause and
 | |
|   ** no temp tables are required.
 | |
|   */
 | |
|   if( pOrderBy || p->usesEphm ){
 | |
|     int i;                        /* Loop counter */
 | |
|     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
 | |
|     Select *pLoop;                /* For looping through SELECT statements */
 | |
|     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
 | |
|     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
 | |
|     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
 | |
| 
 | |
|     assert( p->pRightmost==p );
 | |
|     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
 | |
|     pKeyInfo = sqlite3DbMallocZero(pParse->db,
 | |
|                        sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
 | |
|     if( !pKeyInfo ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|       goto multi_select_end;
 | |
|     }
 | |
| 
 | |
|     pKeyInfo->enc = ENC(pParse->db);
 | |
|     pKeyInfo->nField = nCol;
 | |
| 
 | |
|     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
 | |
|       *apColl = multiSelectCollSeq(pParse, p, i);
 | |
|       if( 0==*apColl ){
 | |
|         *apColl = pParse->db->pDfltColl;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
 | |
|       for(i=0; i<2; i++){
 | |
|         int addr = pLoop->addrOpenEphm[i];
 | |
|         if( addr<0 ){
 | |
|           /* If [0] is unused then [1] is also unused.  So we can
 | |
|           ** always safely abort as soon as the first unused slot is found */
 | |
|           assert( pLoop->addrOpenEphm[1]<0 );
 | |
|           break;
 | |
|         }
 | |
|         sqlite3VdbeChangeP2(v, addr, nCol);
 | |
|         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
 | |
|         pLoop->addrOpenEphm[i] = -1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if( pOrderBy ){
 | |
|       struct ExprList_item *pOTerm = pOrderBy->a;
 | |
|       int nOrderByExpr = pOrderBy->nExpr;
 | |
|       int addr;
 | |
|       u8 *pSortOrder;
 | |
| 
 | |
|       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
 | |
|       ** the compound select statements.  Except we have to change out the
 | |
|       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
 | |
|       ** reused when constructing the pKeyInfo for the ORDER BY, so make
 | |
|       ** a copy.  Sufficient space to hold both the nCol entries for
 | |
|       ** the compound select and the nOrderbyExpr entries for the ORDER BY
 | |
|       ** was allocated above.  But we need to move the compound select
 | |
|       ** entries out of the way before constructing the ORDER BY entries.
 | |
|       ** Move the compound select entries into aCopy[] where they can be
 | |
|       ** accessed and reused when constructing the ORDER BY entries.
 | |
|       ** Because nCol might be greater than or less than nOrderByExpr
 | |
|       ** we have to use memmove() when doing the copy.
 | |
|       */
 | |
|       aCopy = &pKeyInfo->aColl[nOrderByExpr];
 | |
|       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
 | |
|       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
 | |
| 
 | |
|       apColl = pKeyInfo->aColl;
 | |
|       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
 | |
|         Expr *pExpr = pOTerm->pExpr;
 | |
|         if( (pExpr->flags & EP_ExpCollate) ){
 | |
|           assert( pExpr->pColl!=0 );
 | |
|           *apColl = pExpr->pColl;
 | |
|         }else{
 | |
|           *apColl = aCopy[pExpr->iColumn];
 | |
|         }
 | |
|         *pSortOrder = pOTerm->sortOrder;
 | |
|       }
 | |
|       assert( p->pRightmost==p );
 | |
|       assert( p->addrOpenEphm[2]>=0 );
 | |
|       addr = p->addrOpenEphm[2];
 | |
|       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
 | |
|       pKeyInfo->nField = nOrderByExpr;
 | |
|       sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 | |
|       pKeyInfo = 0;
 | |
|       generateSortTail(pParse, p, v, p->pEList->nExpr, &dest);
 | |
|     }
 | |
| 
 | |
|     sqlite3_free(pKeyInfo);
 | |
|   }
 | |
| 
 | |
| multi_select_end:
 | |
|   pDest->iMem = dest.iMem;
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_COMPOUND_SELECT */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /* Forward Declarations */
 | |
| static void substExprList(sqlite3*, ExprList*, int, ExprList*);
 | |
| static void substSelect(sqlite3*, Select *, int, ExprList *);
 | |
| 
 | |
| /*
 | |
| ** Scan through the expression pExpr.  Replace every reference to
 | |
| ** a column in table number iTable with a copy of the iColumn-th
 | |
| ** entry in pEList.  (But leave references to the ROWID column 
 | |
| ** unchanged.)
 | |
| **
 | |
| ** This routine is part of the flattening procedure.  A subquery
 | |
| ** whose result set is defined by pEList appears as entry in the
 | |
| ** FROM clause of a SELECT such that the VDBE cursor assigned to that
 | |
| ** FORM clause entry is iTable.  This routine make the necessary 
 | |
| ** changes to pExpr so that it refers directly to the source table
 | |
| ** of the subquery rather the result set of the subquery.
 | |
| */
 | |
| static void substExpr(
 | |
|   sqlite3 *db,        /* Report malloc errors to this connection */
 | |
|   Expr *pExpr,        /* Expr in which substitution occurs */
 | |
|   int iTable,         /* Table to be substituted */
 | |
|   ExprList *pEList    /* Substitute expressions */
 | |
| ){
 | |
|   if( pExpr==0 ) return;
 | |
|   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
 | |
|     if( pExpr->iColumn<0 ){
 | |
|       pExpr->op = TK_NULL;
 | |
|     }else{
 | |
|       Expr *pNew;
 | |
|       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
 | |
|       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
 | |
|       pNew = pEList->a[pExpr->iColumn].pExpr;
 | |
|       assert( pNew!=0 );
 | |
|       pExpr->op = pNew->op;
 | |
|       assert( pExpr->pLeft==0 );
 | |
|       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
 | |
|       assert( pExpr->pRight==0 );
 | |
|       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
 | |
|       assert( pExpr->pList==0 );
 | |
|       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
 | |
|       pExpr->iTable = pNew->iTable;
 | |
|       pExpr->pTab = pNew->pTab;
 | |
|       pExpr->iColumn = pNew->iColumn;
 | |
|       pExpr->iAgg = pNew->iAgg;
 | |
|       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
 | |
|       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
 | |
|       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
 | |
|       pExpr->flags = pNew->flags;
 | |
|     }
 | |
|   }else{
 | |
|     substExpr(db, pExpr->pLeft, iTable, pEList);
 | |
|     substExpr(db, pExpr->pRight, iTable, pEList);
 | |
|     substSelect(db, pExpr->pSelect, iTable, pEList);
 | |
|     substExprList(db, pExpr->pList, iTable, pEList);
 | |
|   }
 | |
| }
 | |
| static void substExprList(
 | |
|   sqlite3 *db,         /* Report malloc errors here */
 | |
|   ExprList *pList,     /* List to scan and in which to make substitutes */
 | |
|   int iTable,          /* Table to be substituted */
 | |
|   ExprList *pEList     /* Substitute values */
 | |
| ){
 | |
|   int i;
 | |
|   if( pList==0 ) return;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     substExpr(db, pList->a[i].pExpr, iTable, pEList);
 | |
|   }
 | |
| }
 | |
| static void substSelect(
 | |
|   sqlite3 *db,         /* Report malloc errors here */
 | |
|   Select *p,           /* SELECT statement in which to make substitutions */
 | |
|   int iTable,          /* Table to be replaced */
 | |
|   ExprList *pEList     /* Substitute values */
 | |
| ){
 | |
|   if( !p ) return;
 | |
|   substExprList(db, p->pEList, iTable, pEList);
 | |
|   substExprList(db, p->pGroupBy, iTable, pEList);
 | |
|   substExprList(db, p->pOrderBy, iTable, pEList);
 | |
|   substExpr(db, p->pHaving, iTable, pEList);
 | |
|   substExpr(db, p->pWhere, iTable, pEList);
 | |
|   substSelect(db, p->pPrior, iTable, pEList);
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_VIEW) */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
| /*
 | |
| ** This routine attempts to flatten subqueries in order to speed
 | |
| ** execution.  It returns 1 if it makes changes and 0 if no flattening
 | |
| ** occurs.
 | |
| **
 | |
| ** To understand the concept of flattening, consider the following
 | |
| ** query:
 | |
| **
 | |
| **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
 | |
| **
 | |
| ** The default way of implementing this query is to execute the
 | |
| ** subquery first and store the results in a temporary table, then
 | |
| ** run the outer query on that temporary table.  This requires two
 | |
| ** passes over the data.  Furthermore, because the temporary table
 | |
| ** has no indices, the WHERE clause on the outer query cannot be
 | |
| ** optimized.
 | |
| **
 | |
| ** This routine attempts to rewrite queries such as the above into
 | |
| ** a single flat select, like this:
 | |
| **
 | |
| **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
 | |
| **
 | |
| ** The code generated for this simpification gives the same result
 | |
| ** but only has to scan the data once.  And because indices might 
 | |
| ** exist on the table t1, a complete scan of the data might be
 | |
| ** avoided.
 | |
| **
 | |
| ** Flattening is only attempted if all of the following are true:
 | |
| **
 | |
| **   (1)  The subquery and the outer query do not both use aggregates.
 | |
| **
 | |
| **   (2)  The subquery is not an aggregate or the outer query is not a join.
 | |
| **
 | |
| **   (3)  The subquery is not the right operand of a left outer join, or
 | |
| **        the subquery is not itself a join.  (Ticket #306)
 | |
| **
 | |
| **   (4)  The subquery is not DISTINCT or the outer query is not a join.
 | |
| **
 | |
| **   (5)  The subquery is not DISTINCT or the outer query does not use
 | |
| **        aggregates.
 | |
| **
 | |
| **   (6)  The subquery does not use aggregates or the outer query is not
 | |
| **        DISTINCT.
 | |
| **
 | |
| **   (7)  The subquery has a FROM clause.
 | |
| **
 | |
| **   (8)  The subquery does not use LIMIT or the outer query is not a join.
 | |
| **
 | |
| **   (9)  The subquery does not use LIMIT or the outer query does not use
 | |
| **        aggregates.
 | |
| **
 | |
| **  (10)  The subquery does not use aggregates or the outer query does not
 | |
| **        use LIMIT.
 | |
| **
 | |
| **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
 | |
| **
 | |
| **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
 | |
| **        subquery has no WHERE clause.  (added by ticket #350)
 | |
| **
 | |
| **  (13)  The subquery and outer query do not both use LIMIT
 | |
| **
 | |
| **  (14)  The subquery does not use OFFSET
 | |
| **
 | |
| **  (15)  The outer query is not part of a compound select or the
 | |
| **        subquery does not have both an ORDER BY and a LIMIT clause.
 | |
| **        (See ticket #2339)
 | |
| **
 | |
| **  (16)  The outer query is not an aggregate or the subquery does
 | |
| **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
 | |
| **        until we introduced the group_concat() function.  
 | |
| **
 | |
| ** In this routine, the "p" parameter is a pointer to the outer query.
 | |
| ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
 | |
| ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
 | |
| **
 | |
| ** If flattening is not attempted, this routine is a no-op and returns 0.
 | |
| ** If flattening is attempted this routine returns 1.
 | |
| **
 | |
| ** All of the expression analysis must occur on both the outer query and
 | |
| ** the subquery before this routine runs.
 | |
| */
 | |
| static int flattenSubquery(
 | |
|   sqlite3 *db,         /* Database connection */
 | |
|   Select *p,           /* The parent or outer SELECT statement */
 | |
|   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
 | |
|   int isAgg,           /* True if outer SELECT uses aggregate functions */
 | |
|   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
 | |
| ){
 | |
|   Select *pSub;       /* The inner query or "subquery" */
 | |
|   SrcList *pSrc;      /* The FROM clause of the outer query */
 | |
|   SrcList *pSubSrc;   /* The FROM clause of the subquery */
 | |
|   ExprList *pList;    /* The result set of the outer query */
 | |
|   int iParent;        /* VDBE cursor number of the pSub result set temp table */
 | |
|   int i;              /* Loop counter */
 | |
|   Expr *pWhere;                    /* The WHERE clause */
 | |
|   struct SrcList_item *pSubitem;   /* The subquery */
 | |
| 
 | |
|   /* Check to see if flattening is permitted.  Return 0 if not.
 | |
|   */
 | |
|   if( p==0 ) return 0;
 | |
|   pSrc = p->pSrc;
 | |
|   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
 | |
|   pSubitem = &pSrc->a[iFrom];
 | |
|   pSub = pSubitem->pSelect;
 | |
|   assert( pSub!=0 );
 | |
|   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
 | |
|   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
 | |
|   pSubSrc = pSub->pSrc;
 | |
|   assert( pSubSrc );
 | |
|   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
 | |
|   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
 | |
|   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
 | |
|   ** became arbitrary expressions, we were forced to add restrictions (13)
 | |
|   ** and (14). */
 | |
|   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
 | |
|   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
 | |
|   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
 | |
|     return 0;                                            /* Restriction (15) */
 | |
|   }
 | |
|   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
 | |
|   if( (pSub->isDistinct || pSub->pLimit) 
 | |
|          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
 | |
|      return 0;       
 | |
|   }
 | |
|   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
 | |
|   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
 | |
|      return 0;                                           /* Restriction (11) */
 | |
|   }
 | |
|   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
 | |
| 
 | |
|   /* Restriction 3:  If the subquery is a join, make sure the subquery is 
 | |
|   ** not used as the right operand of an outer join.  Examples of why this
 | |
|   ** is not allowed:
 | |
|   **
 | |
|   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
 | |
|   **
 | |
|   ** If we flatten the above, we would get
 | |
|   **
 | |
|   **         (t1 LEFT OUTER JOIN t2) JOIN t3
 | |
|   **
 | |
|   ** which is not at all the same thing.
 | |
|   */
 | |
|   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* Restriction 12:  If the subquery is the right operand of a left outer
 | |
|   ** join, make sure the subquery has no WHERE clause.
 | |
|   ** An examples of why this is not allowed:
 | |
|   **
 | |
|   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
 | |
|   **
 | |
|   ** If we flatten the above, we would get
 | |
|   **
 | |
|   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
 | |
|   **
 | |
|   ** But the t2.x>0 test will always fail on a NULL row of t2, which
 | |
|   ** effectively converts the OUTER JOIN into an INNER JOIN.
 | |
|   */
 | |
|   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* If we reach this point, it means flattening is permitted for the
 | |
|   ** iFrom-th entry of the FROM clause in the outer query.
 | |
|   */
 | |
| 
 | |
|   /* Move all of the FROM elements of the subquery into the
 | |
|   ** the FROM clause of the outer query.  Before doing this, remember
 | |
|   ** the cursor number for the original outer query FROM element in
 | |
|   ** iParent.  The iParent cursor will never be used.  Subsequent code
 | |
|   ** will scan expressions looking for iParent references and replace
 | |
|   ** those references with expressions that resolve to the subquery FROM
 | |
|   ** elements we are now copying in.
 | |
|   */
 | |
|   iParent = pSubitem->iCursor;
 | |
|   {
 | |
|     int nSubSrc = pSubSrc->nSrc;
 | |
|     int jointype = pSubitem->jointype;
 | |
| 
 | |
|     sqlite3DeleteTable(pSubitem->pTab);
 | |
|     sqlite3_free(pSubitem->zDatabase);
 | |
|     sqlite3_free(pSubitem->zName);
 | |
|     sqlite3_free(pSubitem->zAlias);
 | |
|     pSubitem->pTab = 0;
 | |
|     pSubitem->zDatabase = 0;
 | |
|     pSubitem->zName = 0;
 | |
|     pSubitem->zAlias = 0;
 | |
|     if( nSubSrc>1 ){
 | |
|       int extra = nSubSrc - 1;
 | |
|       for(i=1; i<nSubSrc; i++){
 | |
|         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
 | |
|         if( pSrc==0 ){
 | |
|           p->pSrc = 0;
 | |
|           return 1;
 | |
|         }
 | |
|       }
 | |
|       p->pSrc = pSrc;
 | |
|       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
 | |
|         pSrc->a[i] = pSrc->a[i-extra];
 | |
|       }
 | |
|     }
 | |
|     for(i=0; i<nSubSrc; i++){
 | |
|       pSrc->a[i+iFrom] = pSubSrc->a[i];
 | |
|       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
 | |
|     }
 | |
|     pSrc->a[iFrom].jointype = jointype;
 | |
|   }
 | |
| 
 | |
|   /* Now begin substituting subquery result set expressions for 
 | |
|   ** references to the iParent in the outer query.
 | |
|   ** 
 | |
|   ** Example:
 | |
|   **
 | |
|   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
 | |
|   **   \                     \_____________ subquery __________/          /
 | |
|   **    \_____________________ outer query ______________________________/
 | |
|   **
 | |
|   ** We look at every expression in the outer query and every place we see
 | |
|   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
 | |
|   */
 | |
|   pList = p->pEList;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     Expr *pExpr;
 | |
|     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
 | |
|       pList->a[i].zName = 
 | |
|              sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
 | |
|     }
 | |
|   }
 | |
|   substExprList(db, p->pEList, iParent, pSub->pEList);
 | |
|   if( isAgg ){
 | |
|     substExprList(db, p->pGroupBy, iParent, pSub->pEList);
 | |
|     substExpr(db, p->pHaving, iParent, pSub->pEList);
 | |
|   }
 | |
|   if( pSub->pOrderBy ){
 | |
|     assert( p->pOrderBy==0 );
 | |
|     p->pOrderBy = pSub->pOrderBy;
 | |
|     pSub->pOrderBy = 0;
 | |
|   }else if( p->pOrderBy ){
 | |
|     substExprList(db, p->pOrderBy, iParent, pSub->pEList);
 | |
|   }
 | |
|   if( pSub->pWhere ){
 | |
|     pWhere = sqlite3ExprDup(db, pSub->pWhere);
 | |
|   }else{
 | |
|     pWhere = 0;
 | |
|   }
 | |
|   if( subqueryIsAgg ){
 | |
|     assert( p->pHaving==0 );
 | |
|     p->pHaving = p->pWhere;
 | |
|     p->pWhere = pWhere;
 | |
|     substExpr(db, p->pHaving, iParent, pSub->pEList);
 | |
|     p->pHaving = sqlite3ExprAnd(db, p->pHaving, 
 | |
|                                 sqlite3ExprDup(db, pSub->pHaving));
 | |
|     assert( p->pGroupBy==0 );
 | |
|     p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
 | |
|   }else{
 | |
|     substExpr(db, p->pWhere, iParent, pSub->pEList);
 | |
|     p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
 | |
|   }
 | |
| 
 | |
|   /* The flattened query is distinct if either the inner or the
 | |
|   ** outer query is distinct. 
 | |
|   */
 | |
|   p->isDistinct = p->isDistinct || pSub->isDistinct;
 | |
| 
 | |
|   /*
 | |
|   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
 | |
|   **
 | |
|   ** One is tempted to try to add a and b to combine the limits.  But this
 | |
|   ** does not work if either limit is negative.
 | |
|   */
 | |
|   if( pSub->pLimit ){
 | |
|     p->pLimit = pSub->pLimit;
 | |
|     pSub->pLimit = 0;
 | |
|   }
 | |
| 
 | |
|   /* Finially, delete what is left of the subquery and return
 | |
|   ** success.
 | |
|   */
 | |
|   sqlite3SelectDelete(pSub);
 | |
|   return 1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIEW */
 | |
| 
 | |
| /*
 | |
| ** Analyze the SELECT statement passed as an argument to see if it
 | |
| ** is a min() or max() query. Return ORDERBY_MIN or ORDERBY_MAX if 
 | |
| ** it is, or 0 otherwise. At present, a query is considered to be
 | |
| ** a min()/max() query if:
 | |
| **
 | |
| **   1. There is a single object in the FROM clause.
 | |
| **
 | |
| **   2. There is a single expression in the result set, and it is
 | |
| **      either min(x) or max(x), where x is a column reference.
 | |
| */
 | |
| static int minMaxQuery(Parse *pParse, Select *p){
 | |
|   Expr *pExpr;
 | |
|   ExprList *pEList = p->pEList;
 | |
| 
 | |
|   if( pEList->nExpr!=1 ) return ORDERBY_NORMAL;
 | |
|   pExpr = pEList->a[0].pExpr;
 | |
|   pEList = pExpr->pList;
 | |
|   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
 | |
|   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return ORDERBY_NORMAL;
 | |
|   if( pExpr->token.n!=3 ) return ORDERBY_NORMAL;
 | |
|   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
 | |
|     return ORDERBY_MIN;
 | |
|   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
 | |
|     return ORDERBY_MAX;
 | |
|   }
 | |
|   return ORDERBY_NORMAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine resolves any names used in the result set of the
 | |
| ** supplied SELECT statement. If the SELECT statement being resolved
 | |
| ** is a sub-select, then pOuterNC is a pointer to the NameContext 
 | |
| ** of the parent SELECT.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3SelectResolve(
 | |
|   Parse *pParse,         /* The parser context */
 | |
|   Select *p,             /* The SELECT statement being coded. */
 | |
|   NameContext *pOuterNC  /* The outer name context. May be NULL. */
 | |
| ){
 | |
|   ExprList *pEList;          /* Result set. */
 | |
|   int i;                     /* For-loop variable used in multiple places */
 | |
|   NameContext sNC;           /* Local name-context */
 | |
|   ExprList *pGroupBy;        /* The group by clause */
 | |
| 
 | |
|   /* If this routine has run before, return immediately. */
 | |
|   if( p->isResolved ){
 | |
|     assert( !pOuterNC );
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   p->isResolved = 1;
 | |
| 
 | |
|   /* If there have already been errors, do nothing. */
 | |
|   if( pParse->nErr>0 ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Prepare the select statement. This call will allocate all cursors
 | |
|   ** required to handle the tables and subqueries in the FROM clause.
 | |
|   */
 | |
|   if( prepSelectStmt(pParse, p) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
 | |
|   ** are not allowed to refer to any names, so pass an empty NameContext.
 | |
|   */
 | |
|   memset(&sNC, 0, sizeof(sNC));
 | |
|   sNC.pParse = pParse;
 | |
|   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
 | |
|       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Set up the local name-context to pass to ExprResolveNames() to
 | |
|   ** resolve the expression-list.
 | |
|   */
 | |
|   sNC.allowAgg = 1;
 | |
|   sNC.pSrcList = p->pSrc;
 | |
|   sNC.pNext = pOuterNC;
 | |
| 
 | |
|   /* Resolve names in the result set. */
 | |
|   pEList = p->pEList;
 | |
|   if( !pEList ) return SQLITE_ERROR;
 | |
|   for(i=0; i<pEList->nExpr; i++){
 | |
|     Expr *pX = pEList->a[i].pExpr;
 | |
|     if( sqlite3ExprResolveNames(&sNC, pX) ){
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If there are no aggregate functions in the result-set, and no GROUP BY 
 | |
|   ** expression, do not allow aggregates in any of the other expressions.
 | |
|   */
 | |
|   assert( !p->isAgg );
 | |
|   pGroupBy = p->pGroupBy;
 | |
|   if( pGroupBy || sNC.hasAgg ){
 | |
|     p->isAgg = 1;
 | |
|   }else{
 | |
|     sNC.allowAgg = 0;
 | |
|   }
 | |
| 
 | |
|   /* If a HAVING clause is present, then there must be a GROUP BY clause.
 | |
|   */
 | |
|   if( p->pHaving && !pGroupBy ){
 | |
|     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Add the expression list to the name-context before parsing the
 | |
|   ** other expressions in the SELECT statement. This is so that
 | |
|   ** expressions in the WHERE clause (etc.) can refer to expressions by
 | |
|   ** aliases in the result set.
 | |
|   **
 | |
|   ** Minor point: If this is the case, then the expression will be
 | |
|   ** re-evaluated for each reference to it.
 | |
|   */
 | |
|   sNC.pEList = p->pEList;
 | |
|   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
 | |
|      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   if( p->pPrior==0 ){
 | |
|     if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
 | |
|       return SQLITE_ERROR;
 | |
|     }
 | |
|   }
 | |
|   if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   if( pParse->db->mallocFailed ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   /* Make sure the GROUP BY clause does not contain aggregate functions.
 | |
|   */
 | |
|   if( pGroupBy ){
 | |
|     struct ExprList_item *pItem;
 | |
|   
 | |
|     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
 | |
|       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
 | |
|         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
 | |
|             "the GROUP BY clause");
 | |
|         return SQLITE_ERROR;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If this is one SELECT of a compound, be sure to resolve names
 | |
|   ** in the other SELECTs.
 | |
|   */
 | |
|   if( p->pPrior ){
 | |
|     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
 | |
|   }else{
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Reset the aggregate accumulator.
 | |
| **
 | |
| ** The aggregate accumulator is a set of memory cells that hold
 | |
| ** intermediate results while calculating an aggregate.  This
 | |
| ** routine simply stores NULLs in all of those memory cells.
 | |
| */
 | |
| static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   struct AggInfo_func *pFunc;
 | |
|   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
 | |
|     return;
 | |
|   }
 | |
|   for(i=0; i<pAggInfo->nColumn; i++){
 | |
|     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
 | |
|   }
 | |
|   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
 | |
|     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
 | |
|     if( pFunc->iDistinct>=0 ){
 | |
|       Expr *pE = pFunc->pExpr;
 | |
|       if( pE->pList==0 || pE->pList->nExpr!=1 ){
 | |
|         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
 | |
|            "by an expression");
 | |
|         pFunc->iDistinct = -1;
 | |
|       }else{
 | |
|         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
 | |
|         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
 | |
|                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the OP_AggFinalize opcode for every aggregate function
 | |
| ** in the AggInfo structure.
 | |
| */
 | |
| static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   struct AggInfo_func *pF;
 | |
|   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 | |
|     ExprList *pList = pF->pExpr->pList;
 | |
|     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
 | |
|                       (void*)pF->pFunc, P4_FUNCDEF);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Update the accumulator memory cells for an aggregate based on
 | |
| ** the current cursor position.
 | |
| */
 | |
| static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   int i;
 | |
|   struct AggInfo_func *pF;
 | |
|   struct AggInfo_col *pC;
 | |
| 
 | |
|   pAggInfo->directMode = 1;
 | |
|   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
 | |
|     int nArg;
 | |
|     int addrNext = 0;
 | |
|     int regAgg;
 | |
|     ExprList *pList = pF->pExpr->pList;
 | |
|     if( pList ){
 | |
|       nArg = pList->nExpr;
 | |
|       regAgg = sqlite3GetTempRange(pParse, nArg);
 | |
|       sqlite3ExprCodeExprList(pParse, pList, regAgg);
 | |
|     }else{
 | |
|       nArg = 0;
 | |
|       regAgg = 0;
 | |
|     }
 | |
|     if( pF->iDistinct>=0 ){
 | |
|       addrNext = sqlite3VdbeMakeLabel(v);
 | |
|       assert( nArg==1 );
 | |
|       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
 | |
|     }
 | |
|     if( pF->pFunc->needCollSeq ){
 | |
|       CollSeq *pColl = 0;
 | |
|       struct ExprList_item *pItem;
 | |
|       int j;
 | |
|       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
 | |
|       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
 | |
|         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
 | |
|       }
 | |
|       if( !pColl ){
 | |
|         pColl = pParse->db->pDfltColl;
 | |
|       }
 | |
|       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
 | |
|     }
 | |
|     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
 | |
|                       (void*)pF->pFunc, P4_FUNCDEF);
 | |
|     sqlite3VdbeChangeP5(v, nArg);
 | |
|     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
 | |
|     if( addrNext ){
 | |
|       sqlite3VdbeResolveLabel(v, addrNext);
 | |
|     }
 | |
|   }
 | |
|   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
 | |
|     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
 | |
|   }
 | |
|   pAggInfo->directMode = 0;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| /*
 | |
| ** This function is used when a SELECT statement is used to create a
 | |
| ** temporary table for iterating through when running an INSTEAD OF
 | |
| ** UPDATE or INSTEAD OF DELETE trigger. 
 | |
| **
 | |
| ** If possible, the SELECT statement is modified so that NULL values
 | |
| ** are stored in the temporary table for all columns for which the 
 | |
| ** corresponding bit in argument mask is not set. If mask takes the
 | |
| ** special value 0xffffffff, then all columns are populated.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){
 | |
|   if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){
 | |
|     ExprList *pEList;
 | |
|     int i;
 | |
|     sqlite3SelectResolve(pParse, p, 0);
 | |
|     pEList = p->pEList;
 | |
|     for(i=0; pEList && i<pEList->nExpr && i<32; i++){
 | |
|       if( !(mask&((u32)1<<i)) ){
 | |
|         sqlite3ExprDelete(pEList->a[i].pExpr);
 | |
|         pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Generate code for the given SELECT statement.
 | |
| **
 | |
| ** The results are distributed in various ways depending on the
 | |
| ** contents of the SelectDest structure pointed to by argument pDest
 | |
| ** as follows:
 | |
| **
 | |
| **     pDest->eDest    Result
 | |
| **     ------------    -------------------------------------------
 | |
| **     SRT_Callback    Invoke the callback for each row of the result.
 | |
| **
 | |
| **     SRT_Mem         Store first result in memory cell pDest->iParm
 | |
| **
 | |
| **     SRT_Set         Store non-null results as keys of table pDest->iParm. 
 | |
| **                     Apply the affinity pDest->affinity before storing them.
 | |
| **
 | |
| **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
 | |
| **
 | |
| **     SRT_Except      Remove results from the temporary table pDest->iParm.
 | |
| **
 | |
| **     SRT_Table       Store results in temporary table pDest->iParm
 | |
| **
 | |
| **     SRT_EphemTab    Create an temporary table pDest->iParm and store
 | |
| **                     the result there. The cursor is left open after
 | |
| **                     returning.
 | |
| **
 | |
| **     SRT_Subroutine  For each row returned, push the results onto the
 | |
| **                     vdbe stack and call the subroutine (via OP_Gosub)
 | |
| **                     at address pDest->iParm.
 | |
| **
 | |
| **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
 | |
| **                     set is not empty.
 | |
| **
 | |
| **     SRT_Discard     Throw the results away.
 | |
| **
 | |
| ** See the selectInnerLoop() function for a canonical listing of the 
 | |
| ** allowed values of eDest and their meanings.
 | |
| **
 | |
| ** This routine returns the number of errors.  If any errors are
 | |
| ** encountered, then an appropriate error message is left in
 | |
| ** pParse->zErrMsg.
 | |
| **
 | |
| ** This routine does NOT free the Select structure passed in.  The
 | |
| ** calling function needs to do that.
 | |
| **
 | |
| ** The pParent, parentTab, and *pParentAgg fields are filled in if this
 | |
| ** SELECT is a subquery.  This routine may try to combine this SELECT
 | |
| ** with its parent to form a single flat query.  In so doing, it might
 | |
| ** change the parent query from a non-aggregate to an aggregate query.
 | |
| ** For that reason, the pParentAgg flag is passed as a pointer, so it
 | |
| ** can be changed.
 | |
| **
 | |
| ** Example 1:   The meaning of the pParent parameter.
 | |
| **
 | |
| **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
 | |
| **    \                      \_______ subquery _______/        /
 | |
| **     \                                                      /
 | |
| **      \____________________ outer query ___________________/
 | |
| **
 | |
| ** This routine is called for the outer query first.   For that call,
 | |
| ** pParent will be NULL.  During the processing of the outer query, this 
 | |
| ** routine is called recursively to handle the subquery.  For the recursive
 | |
| ** call, pParent will point to the outer query.  Because the subquery is
 | |
| ** the second element in a three-way join, the parentTab parameter will
 | |
| ** be 1 (the 2nd value of a 0-indexed array.)
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Select(
 | |
|   Parse *pParse,         /* The parser context */
 | |
|   Select *p,             /* The SELECT statement being coded. */
 | |
|   SelectDest *pDest,     /* What to do with the query results */
 | |
|   Select *pParent,       /* Another SELECT for which this is a sub-query */
 | |
|   int parentTab,         /* Index in pParent->pSrc of this query */
 | |
|   int *pParentAgg,       /* True if pParent uses aggregate functions */
 | |
|   char *aff              /* If eDest is SRT_Union, the affinity string */
 | |
| ){
 | |
|   int i, j;              /* Loop counters */
 | |
|   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
 | |
|   Vdbe *v;               /* The virtual machine under construction */
 | |
|   int isAgg;             /* True for select lists like "count(*)" */
 | |
|   ExprList *pEList;      /* List of columns to extract. */
 | |
|   SrcList *pTabList;     /* List of tables to select from */
 | |
|   Expr *pWhere;          /* The WHERE clause.  May be NULL */
 | |
|   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
 | |
|   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
 | |
|   Expr *pHaving;         /* The HAVING clause.  May be NULL */
 | |
|   int isDistinct;        /* True if the DISTINCT keyword is present */
 | |
|   int distinct;          /* Table to use for the distinct set */
 | |
|   int rc = 1;            /* Value to return from this function */
 | |
|   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
 | |
|   AggInfo sAggInfo;      /* Information used by aggregate queries */
 | |
|   int iEnd;              /* Address of the end of the query */
 | |
|   sqlite3 *db;           /* The database connection */
 | |
| 
 | |
|   db = pParse->db;
 | |
|   if( p==0 || db->mallocFailed || pParse->nErr ){
 | |
|     return 1;
 | |
|   }
 | |
|   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
 | |
|   memset(&sAggInfo, 0, sizeof(sAggInfo));
 | |
| 
 | |
|   pOrderBy = p->pOrderBy;
 | |
|   if( IgnorableOrderby(pDest) ){
 | |
|     p->pOrderBy = 0;
 | |
| 
 | |
|     /* In these cases the DISTINCT operator makes no difference to the
 | |
|     ** results, so remove it if it were specified.
 | |
|     */
 | |
|     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
 | |
|            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
 | |
|     p->isDistinct = 0;
 | |
|   }
 | |
|   if( sqlite3SelectResolve(pParse, p, 0) ){
 | |
|     goto select_end;
 | |
|   }
 | |
|   p->pOrderBy = pOrderBy;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_COMPOUND_SELECT
 | |
|   /* If there is are a sequence of queries, do the earlier ones first.
 | |
|   */
 | |
|   if( p->pPrior ){
 | |
|     if( p->pRightmost==0 ){
 | |
|       Select *pLoop, *pRight = 0;
 | |
|       int cnt = 0;
 | |
|       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
 | |
|         pLoop->pRightmost = p;
 | |
|         pLoop->pNext = pRight;
 | |
|         pRight = pLoop;
 | |
|       }
 | |
|       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
 | |
|         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     return multiSelect(pParse, p, pDest, aff);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Make local copies of the parameters for this query.
 | |
|   */
 | |
|   pTabList = p->pSrc;
 | |
|   pWhere = p->pWhere;
 | |
|   pGroupBy = p->pGroupBy;
 | |
|   pHaving = p->pHaving;
 | |
|   isAgg = p->isAgg;
 | |
|   isDistinct = p->isDistinct;
 | |
|   pEList = p->pEList;
 | |
|   if( pEList==0 ) goto select_end;
 | |
| 
 | |
|   /* 
 | |
|   ** Do not even attempt to generate any code if we have already seen
 | |
|   ** errors before this routine starts.
 | |
|   */
 | |
|   if( pParse->nErr>0 ) goto select_end;
 | |
| 
 | |
|   /* If writing to memory or generating a set
 | |
|   ** only a single column may be output.
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
 | |
|     goto select_end;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* ORDER BY is ignored for some destinations.
 | |
|   */
 | |
|   if( IgnorableOrderby(pDest) ){
 | |
|     pOrderBy = 0;
 | |
|   }
 | |
| 
 | |
|   /* Begin generating code.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) goto select_end;
 | |
| 
 | |
|   /* Generate code for all sub-queries in the FROM clause
 | |
|   */
 | |
| #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
 | |
|   for(i=0; i<pTabList->nSrc; i++){
 | |
|     const char *zSavedAuthContext = 0;
 | |
|     int needRestoreContext;
 | |
|     struct SrcList_item *pItem = &pTabList->a[i];
 | |
|     SelectDest dest;
 | |
| 
 | |
|     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
 | |
|     if( pItem->zName!=0 ){
 | |
|       zSavedAuthContext = pParse->zAuthContext;
 | |
|       pParse->zAuthContext = pItem->zName;
 | |
|       needRestoreContext = 1;
 | |
|     }else{
 | |
|       needRestoreContext = 0;
 | |
|     }
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
|     /* Increment Parse.nHeight by the height of the largest expression
 | |
|     ** tree refered to by this, the parent select. The child select
 | |
|     ** may contain expression trees of at most
 | |
|     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
 | |
|     ** more conservative than necessary, but much easier than enforcing
 | |
|     ** an exact limit.
 | |
|     */
 | |
|     pParse->nHeight += sqlite3SelectExprHeight(p);
 | |
| #endif
 | |
|     sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
 | |
|     sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0);
 | |
|     if( db->mallocFailed ){
 | |
|       goto select_end;
 | |
|     }
 | |
| #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
 | |
|     pParse->nHeight -= sqlite3SelectExprHeight(p);
 | |
| #endif
 | |
|     if( needRestoreContext ){
 | |
|       pParse->zAuthContext = zSavedAuthContext;
 | |
|     }
 | |
|     pTabList = p->pSrc;
 | |
|     pWhere = p->pWhere;
 | |
|     if( !IgnorableOrderby(pDest) ){
 | |
|       pOrderBy = p->pOrderBy;
 | |
|     }
 | |
|     pGroupBy = p->pGroupBy;
 | |
|     pHaving = p->pHaving;
 | |
|     isDistinct = p->isDistinct;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Check to see if this is a subquery that can be "flattened" into its parent.
 | |
|   ** If flattening is a possiblity, do so and return immediately.  
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_VIEW
 | |
|   if( pParent && pParentAgg &&
 | |
|       flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
 | |
|     if( isAgg ) *pParentAgg = 1;
 | |
|     goto select_end;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
 | |
|   ** GROUP BY may use an index, DISTINCT never does.
 | |
|   */
 | |
|   if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
 | |
|     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
 | |
|     pGroupBy = p->pGroupBy;
 | |
|     p->isDistinct = 0;
 | |
|     isDistinct = 0;
 | |
|   }
 | |
| 
 | |
|   /* If there is an ORDER BY clause, then this sorting
 | |
|   ** index might end up being unused if the data can be 
 | |
|   ** extracted in pre-sorted order.  If that is the case, then the
 | |
|   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
 | |
|   ** we figure out that the sorting index is not needed.  The addrSortIndex
 | |
|   ** variable is used to facilitate that change.
 | |
|   */
 | |
|   if( pOrderBy ){
 | |
|     KeyInfo *pKeyInfo;
 | |
|     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
 | |
|     pOrderBy->iECursor = pParse->nTab++;
 | |
|     p->addrOpenEphm[2] = addrSortIndex =
 | |
|       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
 | |
|                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
 | |
|                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 | |
|   }else{
 | |
|     addrSortIndex = -1;
 | |
|   }
 | |
| 
 | |
|   /* If the output is destined for a temporary table, open that table.
 | |
|   */
 | |
|   if( pDest->eDest==SRT_EphemTab ){
 | |
|     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
 | |
|   }
 | |
| 
 | |
|   /* Set the limiter.
 | |
|   */
 | |
|   iEnd = sqlite3VdbeMakeLabel(v);
 | |
|   computeLimitRegisters(pParse, p, iEnd);
 | |
| 
 | |
|   /* Open a virtual index to use for the distinct set.
 | |
|   */
 | |
|   if( isDistinct ){
 | |
|     KeyInfo *pKeyInfo;
 | |
|     assert( isAgg || pGroupBy );
 | |
|     distinct = pParse->nTab++;
 | |
|     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
 | |
|     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
 | |
|                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 | |
|   }else{
 | |
|     distinct = -1;
 | |
|   }
 | |
| 
 | |
|   /* Aggregate and non-aggregate queries are handled differently */
 | |
|   if( !isAgg && pGroupBy==0 ){
 | |
|     /* This case is for non-aggregate queries
 | |
|     ** Begin the database scan
 | |
|     */
 | |
|     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
 | |
|     if( pWInfo==0 ) goto select_end;
 | |
| 
 | |
|     /* If sorting index that was created by a prior OP_OpenEphemeral 
 | |
|     ** instruction ended up not being needed, then change the OP_OpenEphemeral
 | |
|     ** into an OP_Noop.
 | |
|     */
 | |
|     if( addrSortIndex>=0 && pOrderBy==0 ){
 | |
|       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
 | |
|       p->addrOpenEphm[2] = -1;
 | |
|     }
 | |
| 
 | |
|     /* Use the standard inner loop
 | |
|     */
 | |
|     assert(!isDistinct);
 | |
|     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
 | |
|                     pWInfo->iContinue, pWInfo->iBreak, aff);
 | |
| 
 | |
|     /* End the database scan loop.
 | |
|     */
 | |
|     sqlite3WhereEnd(pWInfo);
 | |
|   }else{
 | |
|     /* This is the processing for aggregate queries */
 | |
|     NameContext sNC;    /* Name context for processing aggregate information */
 | |
|     int iAMem;          /* First Mem address for storing current GROUP BY */
 | |
|     int iBMem;          /* First Mem address for previous GROUP BY */
 | |
|     int iUseFlag;       /* Mem address holding flag indicating that at least
 | |
|                         ** one row of the input to the aggregator has been
 | |
|                         ** processed */
 | |
|     int iAbortFlag;     /* Mem address which causes query abort if positive */
 | |
|     int groupBySort;    /* Rows come from source in GROUP BY order */
 | |
| 
 | |
| 
 | |
|     /* The following variables hold addresses or labels for parts of the
 | |
|     ** virtual machine program we are putting together */
 | |
|     int addrOutputRow;      /* Start of subroutine that outputs a result row */
 | |
|     int addrSetAbort;       /* Set the abort flag and return */
 | |
|     int addrInitializeLoop; /* Start of code that initializes the input loop */
 | |
|     int addrTopOfLoop;      /* Top of the input loop */
 | |
|     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
 | |
|     int addrProcessRow;     /* Code to process a single input row */
 | |
|     int addrEnd;            /* End of all processing */
 | |
|     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
 | |
|     int addrReset;          /* Subroutine for resetting the accumulator */
 | |
| 
 | |
|     addrEnd = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
 | |
|     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
 | |
|     ** SELECT statement.
 | |
|     */
 | |
|     memset(&sNC, 0, sizeof(sNC));
 | |
|     sNC.pParse = pParse;
 | |
|     sNC.pSrcList = pTabList;
 | |
|     sNC.pAggInfo = &sAggInfo;
 | |
|     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
 | |
|     sAggInfo.pGroupBy = pGroupBy;
 | |
|     sqlite3ExprAnalyzeAggList(&sNC, pEList);
 | |
|     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
 | |
|     if( pHaving ){
 | |
|       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
 | |
|     }
 | |
|     sAggInfo.nAccumulator = sAggInfo.nColumn;
 | |
|     for(i=0; i<sAggInfo.nFunc; i++){
 | |
|       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
 | |
|     }
 | |
|     if( db->mallocFailed ) goto select_end;
 | |
| 
 | |
|     /* Processing for aggregates with GROUP BY is very different and
 | |
|     ** much more complex than aggregates without a GROUP BY.
 | |
|     */
 | |
|     if( pGroupBy ){
 | |
|       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
 | |
| 
 | |
|       /* Create labels that we will be needing
 | |
|       */
 | |
|      
 | |
|       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
 | |
|       addrGroupByChange = sqlite3VdbeMakeLabel(v);
 | |
|       addrProcessRow = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|       /* If there is a GROUP BY clause we might need a sorting index to
 | |
|       ** implement it.  Allocate that sorting index now.  If it turns out
 | |
|       ** that we do not need it after all, the OpenEphemeral instruction
 | |
|       ** will be converted into a Noop.  
 | |
|       */
 | |
|       sAggInfo.sortingIdx = pParse->nTab++;
 | |
|       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
 | |
|       addrSortingIdx =
 | |
|           sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
 | |
|                          sAggInfo.nSortingColumn, 0,
 | |
|                          (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
 | |
| 
 | |
|       /* Initialize memory locations used by GROUP BY aggregate processing
 | |
|       */
 | |
|       iUseFlag = ++pParse->nMem;
 | |
|       iAbortFlag = ++pParse->nMem;
 | |
|       iAMem = pParse->nMem + 1;
 | |
|       pParse->nMem += pGroupBy->nExpr;
 | |
|       iBMem = pParse->nMem + 1;
 | |
|       pParse->nMem += pGroupBy->nExpr;
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
 | |
|       VdbeComment((v, "clear abort flag"));
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
 | |
|       VdbeComment((v, "indicate accumulator empty"));
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
 | |
| 
 | |
|       /* Generate a subroutine that outputs a single row of the result
 | |
|       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
 | |
|       ** is less than or equal to zero, the subroutine is a no-op.  If
 | |
|       ** the processing calls for the query to abort, this subroutine
 | |
|       ** increments the iAbortFlag memory location before returning in
 | |
|       ** order to signal the caller to abort.
 | |
|       */
 | |
|       addrSetAbort = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
 | |
|       VdbeComment((v, "set abort flag"));
 | |
|       sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
 | |
|       addrOutputRow = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
 | |
|       VdbeComment((v, "Groupby result generator entry point"));
 | |
|       sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
 | |
|       finalizeAggFunctions(pParse, &sAggInfo);
 | |
|       if( pHaving ){
 | |
|         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
 | |
|       }
 | |
|       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
 | |
|                       distinct, pDest,
 | |
|                       addrOutputRow+1, addrSetAbort, aff);
 | |
|       sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
 | |
|       VdbeComment((v, "end groupby result generator"));
 | |
| 
 | |
|       /* Generate a subroutine that will reset the group-by accumulator
 | |
|       */
 | |
|       addrReset = sqlite3VdbeCurrentAddr(v);
 | |
|       resetAccumulator(pParse, &sAggInfo);
 | |
|       sqlite3VdbeAddOp2(v, OP_Return, 0, 0);
 | |
| 
 | |
|       /* Begin a loop that will extract all source rows in GROUP BY order.
 | |
|       ** This might involve two separate loops with an OP_Sort in between, or
 | |
|       ** it might be a single loop that uses an index to extract information
 | |
|       ** in the right order to begin with.
 | |
|       */
 | |
|       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
 | |
|       sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
 | |
|       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
 | |
|       if( pWInfo==0 ) goto select_end;
 | |
|       if( pGroupBy==0 ){
 | |
|         /* The optimizer is able to deliver rows in group by order so
 | |
|         ** we do not have to sort.  The OP_OpenEphemeral table will be
 | |
|         ** cancelled later because we still need to use the pKeyInfo
 | |
|         */
 | |
|         pGroupBy = p->pGroupBy;
 | |
|         groupBySort = 0;
 | |
|       }else{
 | |
|         /* Rows are coming out in undetermined order.  We have to push
 | |
|         ** each row into a sorting index, terminate the first loop,
 | |
|         ** then loop over the sorting index in order to get the output
 | |
|         ** in sorted order
 | |
|         */
 | |
|         int regBase;
 | |
|         int regRecord;
 | |
|         int nCol;
 | |
|         int nGroupBy;
 | |
| 
 | |
|         groupBySort = 1;
 | |
|         nGroupBy = pGroupBy->nExpr;
 | |
|         nCol = nGroupBy + 1;
 | |
|         j = nGroupBy+1;
 | |
|         for(i=0; i<sAggInfo.nColumn; i++){
 | |
|           if( sAggInfo.aCol[i].iSorterColumn>=j ){
 | |
|             nCol++;
 | |
|             j++;
 | |
|           }
 | |
|         }
 | |
|         regBase = sqlite3GetTempRange(pParse, nCol);
 | |
|         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase);
 | |
|         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
 | |
|         j = nGroupBy+1;
 | |
|         for(i=0; i<sAggInfo.nColumn; i++){
 | |
|           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
 | |
|           if( pCol->iSorterColumn>=j ){
 | |
|             sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable,
 | |
|                                      j + regBase);
 | |
|             j++;
 | |
|           }
 | |
|         }
 | |
|         regRecord = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
 | |
|         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
 | |
|         sqlite3ReleaseTempReg(pParse, regRecord);
 | |
|         sqlite3ReleaseTempRange(pParse, regBase, nCol);
 | |
|         sqlite3WhereEnd(pWInfo);
 | |
|         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
 | |
|         VdbeComment((v, "GROUP BY sort"));
 | |
|         sAggInfo.useSortingIdx = 1;
 | |
|       }
 | |
| 
 | |
|       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
 | |
|       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
 | |
|       ** Then compare the current GROUP BY terms against the GROUP BY terms
 | |
|       ** from the previous row currently stored in a0, a1, a2...
 | |
|       */
 | |
|       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
 | |
|       for(j=0; j<pGroupBy->nExpr; j++){
 | |
|         if( groupBySort ){
 | |
|           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
 | |
|         }else{
 | |
|           sAggInfo.directMode = 1;
 | |
|           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
 | |
|         }
 | |
|       }
 | |
|       for(j=pGroupBy->nExpr-1; j>=0; j--){
 | |
|         if( j==0 ){
 | |
|           sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j);
 | |
|         }else{
 | |
|           sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j);
 | |
|         }
 | |
|         sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ);
 | |
|         sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL);
 | |
|       }
 | |
| 
 | |
|       /* Generate code that runs whenever the GROUP BY changes.
 | |
|       ** Change in the GROUP BY are detected by the previous code
 | |
|       ** block.  If there were no changes, this block is skipped.
 | |
|       **
 | |
|       ** This code copies current group by terms in b0,b1,b2,...
 | |
|       ** over to a0,a1,a2.  It then calls the output subroutine
 | |
|       ** and resets the aggregate accumulator registers in preparation
 | |
|       ** for the next GROUP BY batch.
 | |
|       */
 | |
|       sqlite3VdbeResolveLabel(v, addrGroupByChange);
 | |
|       for(j=0; j<pGroupBy->nExpr; j++){
 | |
|         sqlite3VdbeAddOp2(v, OP_Move, iBMem+j, iAMem+j);
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
 | |
|       VdbeComment((v, "output one row"));
 | |
|       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
 | |
|       VdbeComment((v, "check abort flag"));
 | |
|       sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset);
 | |
|       VdbeComment((v, "reset accumulator"));
 | |
| 
 | |
|       /* Update the aggregate accumulators based on the content of
 | |
|       ** the current row
 | |
|       */
 | |
|       sqlite3VdbeResolveLabel(v, addrProcessRow);
 | |
|       updateAccumulator(pParse, &sAggInfo);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
 | |
|       VdbeComment((v, "indicate data in accumulator"));
 | |
| 
 | |
|       /* End of the loop
 | |
|       */
 | |
|       if( groupBySort ){
 | |
|         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
 | |
|       }else{
 | |
|         sqlite3WhereEnd(pWInfo);
 | |
|         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
 | |
|       }
 | |
| 
 | |
|       /* Output the final row of result
 | |
|       */
 | |
|       sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow);
 | |
|       VdbeComment((v, "output final row"));
 | |
|       
 | |
|     } /* endif pGroupBy */
 | |
|     else {
 | |
|       ExprList *pMinMax = 0;
 | |
|       ExprList *pDel = 0;
 | |
|       u8 flag;
 | |
| 
 | |
|       /* Check if the query is of one of the following forms:
 | |
|       **
 | |
|       **   SELECT min(x) FROM ...
 | |
|       **   SELECT max(x) FROM ...
 | |
|       **
 | |
|       ** If it is, then ask the code in where.c to attempt to sort results
 | |
|       ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 
 | |
|       ** If where.c is able to produce results sorted in this order, then
 | |
|       ** add vdbe code to break out of the processing loop after the 
 | |
|       ** first iteration (since the first iteration of the loop is 
 | |
|       ** guaranteed to operate on the row with the minimum or maximum 
 | |
|       ** value of x, the only row required).
 | |
|       **
 | |
|       ** A special flag must be passed to sqlite3WhereBegin() to slightly
 | |
|       ** modify behaviour as follows:
 | |
|       **
 | |
|       **   + If the query is a "SELECT min(x)", then the loop coded by
 | |
|       **     where.c should not iterate over any values with a NULL value
 | |
|       **     for x.
 | |
|       **
 | |
|       **   + The optimizer code in where.c (the thing that decides which
 | |
|       **     index or indices to use) should place a different priority on 
 | |
|       **     satisfying the 'ORDER BY' clause than it does in other cases.
 | |
|       **     Refer to code and comments in where.c for details.
 | |
|       */
 | |
|       flag = minMaxQuery(pParse, p);
 | |
|       if( flag ){
 | |
|         pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
 | |
|         if( pMinMax && !db->mallocFailed ){
 | |
|           pMinMax->a[0].sortOrder = ((flag==ORDERBY_MIN)?0:1);
 | |
|           pMinMax->a[0].pExpr->op = TK_COLUMN;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* This case runs if the aggregate has no GROUP BY clause.  The
 | |
|       ** processing is much simpler since there is only a single row
 | |
|       ** of output.
 | |
|       */
 | |
|       resetAccumulator(pParse, &sAggInfo);
 | |
|       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
 | |
|       if( pWInfo==0 ){
 | |
|         sqlite3ExprListDelete(pDel);
 | |
|         goto select_end;
 | |
|       }
 | |
|       updateAccumulator(pParse, &sAggInfo);
 | |
|       if( !pMinMax && flag ){
 | |
|         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
 | |
|         VdbeComment((v, "%s() by index", (flag==ORDERBY_MIN?"min":"max")));
 | |
|       }
 | |
|       sqlite3WhereEnd(pWInfo);
 | |
|       finalizeAggFunctions(pParse, &sAggInfo);
 | |
|       pOrderBy = 0;
 | |
|       if( pHaving ){
 | |
|         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
 | |
|       }
 | |
|       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
 | |
|                       pDest, addrEnd, addrEnd, aff);
 | |
| 
 | |
|       sqlite3ExprListDelete(pDel);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, addrEnd);
 | |
|     
 | |
|   } /* endif aggregate query */
 | |
| 
 | |
|   /* If there is an ORDER BY clause, then we need to sort the results
 | |
|   ** and send them to the callback one by one.
 | |
|   */
 | |
|   if( pOrderBy ){
 | |
|     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|   /* If this was a subquery, we have now converted the subquery into a
 | |
|   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
 | |
|   ** this subquery from being evaluated again and to force the use of
 | |
|   ** the temporary table.
 | |
|   */
 | |
|   if( pParent ){
 | |
|     assert( pParent->pSrc->nSrc>parentTab );
 | |
|     assert( pParent->pSrc->a[parentTab].pSelect==p );
 | |
|     pParent->pSrc->a[parentTab].isPopulated = 1;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Jump here to skip this query
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, iEnd);
 | |
| 
 | |
|   /* The SELECT was successfully coded.   Set the return code to 0
 | |
|   ** to indicate no errors.
 | |
|   */
 | |
|   rc = 0;
 | |
| 
 | |
|   /* Control jumps to here if an error is encountered above, or upon
 | |
|   ** successful coding of the SELECT.
 | |
|   */
 | |
| select_end:
 | |
| 
 | |
|   /* Identify column names if we will be using them in a callback.  This
 | |
|   ** step is skipped if the output is going to some other destination.
 | |
|   */
 | |
|   if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
 | |
|     generateColumnNames(pParse, pTabList, pEList);
 | |
|   }
 | |
| 
 | |
|   sqlite3_free(sAggInfo.aCol);
 | |
|   sqlite3_free(sAggInfo.aFunc);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_DEBUG)
 | |
| /*
 | |
| *******************************************************************************
 | |
| ** The following code is used for testing and debugging only.  The code
 | |
| ** that follows does not appear in normal builds.
 | |
| **
 | |
| ** These routines are used to print out the content of all or part of a 
 | |
| ** parse structures such as Select or Expr.  Such printouts are useful
 | |
| ** for helping to understand what is happening inside the code generator
 | |
| ** during the execution of complex SELECT statements.
 | |
| **
 | |
| ** These routine are not called anywhere from within the normal
 | |
| ** code base.  Then are intended to be called from within the debugger
 | |
| ** or from temporary "printf" statements inserted for debugging.
 | |
| */
 | |
| static void sqlite3PrintExpr(Expr *p){
 | |
|   if( p->token.z && p->token.n>0 ){
 | |
|     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
 | |
|   }else{
 | |
|     sqlite3DebugPrintf("(%d", p->op);
 | |
|   }
 | |
|   if( p->pLeft ){
 | |
|     sqlite3DebugPrintf(" ");
 | |
|     sqlite3PrintExpr(p->pLeft);
 | |
|   }
 | |
|   if( p->pRight ){
 | |
|     sqlite3DebugPrintf(" ");
 | |
|     sqlite3PrintExpr(p->pRight);
 | |
|   }
 | |
|   sqlite3DebugPrintf(")");
 | |
| }
 | |
| static void sqlite3PrintExprList(ExprList *pList){
 | |
|   int i;
 | |
|   for(i=0; i<pList->nExpr; i++){
 | |
|     sqlite3PrintExpr(pList->a[i].pExpr);
 | |
|     if( i<pList->nExpr-1 ){
 | |
|       sqlite3DebugPrintf(", ");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void sqlite3PrintSelect(Select *p, int indent){
 | |
|   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
 | |
|   sqlite3PrintExprList(p->pEList);
 | |
|   sqlite3DebugPrintf("\n");
 | |
|   if( p->pSrc ){
 | |
|     char *zPrefix;
 | |
|     int i;
 | |
|     zPrefix = "FROM";
 | |
|     for(i=0; i<p->pSrc->nSrc; i++){
 | |
|       struct SrcList_item *pItem = &p->pSrc->a[i];
 | |
|       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
 | |
|       zPrefix = "";
 | |
|       if( pItem->pSelect ){
 | |
|         sqlite3DebugPrintf("(\n");
 | |
|         sqlite3PrintSelect(pItem->pSelect, indent+10);
 | |
|         sqlite3DebugPrintf("%*s)", indent+8, "");
 | |
|       }else if( pItem->zName ){
 | |
|         sqlite3DebugPrintf("%s", pItem->zName);
 | |
|       }
 | |
|       if( pItem->pTab ){
 | |
|         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
 | |
|       }
 | |
|       if( pItem->zAlias ){
 | |
|         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
 | |
|       }
 | |
|       if( i<p->pSrc->nSrc-1 ){
 | |
|         sqlite3DebugPrintf(",");
 | |
|       }
 | |
|       sqlite3DebugPrintf("\n");
 | |
|     }
 | |
|   }
 | |
|   if( p->pWhere ){
 | |
|     sqlite3DebugPrintf("%*s WHERE ", indent, "");
 | |
|     sqlite3PrintExpr(p->pWhere);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
|   if( p->pGroupBy ){
 | |
|     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
 | |
|     sqlite3PrintExprList(p->pGroupBy);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
|   if( p->pHaving ){
 | |
|     sqlite3DebugPrintf("%*s HAVING ", indent, "");
 | |
|     sqlite3PrintExpr(p->pHaving);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
|   if( p->pOrderBy ){
 | |
|     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
 | |
|     sqlite3PrintExprList(p->pOrderBy);
 | |
|     sqlite3DebugPrintf("\n");
 | |
|   }
 | |
| }
 | |
| /* End of the structure debug printing code
 | |
| *****************************************************************************/
 | |
| #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
 | |
| 
 | |
| /************** End of select.c **********************************************/
 | |
| /************** Begin file table.c *******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains the sqlite3_get_table() and sqlite3_free_table()
 | |
| ** interface routines.  These are just wrappers around the main
 | |
| ** interface routine of sqlite3_exec().
 | |
| **
 | |
| ** These routines are in a separate files so that they will not be linked
 | |
| ** if they are not used.
 | |
| */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_GET_TABLE
 | |
| 
 | |
| /*
 | |
| ** This structure is used to pass data from sqlite3_get_table() through
 | |
| ** to the callback function is uses to build the result.
 | |
| */
 | |
| typedef struct TabResult {
 | |
|   char **azResult;
 | |
|   char *zErrMsg;
 | |
|   int nResult;
 | |
|   int nAlloc;
 | |
|   int nRow;
 | |
|   int nColumn;
 | |
|   int nData;
 | |
|   int rc;
 | |
| } TabResult;
 | |
| 
 | |
| /*
 | |
| ** This routine is called once for each row in the result table.  Its job
 | |
| ** is to fill in the TabResult structure appropriately, allocating new
 | |
| ** memory as necessary.
 | |
| */
 | |
| static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
 | |
|   TabResult *p = (TabResult*)pArg;
 | |
|   int need;
 | |
|   int i;
 | |
|   char *z;
 | |
| 
 | |
|   /* Make sure there is enough space in p->azResult to hold everything
 | |
|   ** we need to remember from this invocation of the callback.
 | |
|   */
 | |
|   if( p->nRow==0 && argv!=0 ){
 | |
|     need = nCol*2;
 | |
|   }else{
 | |
|     need = nCol;
 | |
|   }
 | |
|   if( p->nData + need >= p->nAlloc ){
 | |
|     char **azNew;
 | |
|     p->nAlloc = p->nAlloc*2 + need + 1;
 | |
|     azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc );
 | |
|     if( azNew==0 ) goto malloc_failed;
 | |
|     p->azResult = azNew;
 | |
|   }
 | |
| 
 | |
|   /* If this is the first row, then generate an extra row containing
 | |
|   ** the names of all columns.
 | |
|   */
 | |
|   if( p->nRow==0 ){
 | |
|     p->nColumn = nCol;
 | |
|     for(i=0; i<nCol; i++){
 | |
|       z = sqlite3_mprintf("%s", colv[i]);
 | |
|       if( z==0 ) goto malloc_failed;
 | |
|       p->azResult[p->nData++] = z;
 | |
|     }
 | |
|   }else if( p->nColumn!=nCol ){
 | |
|     sqlite3_free(p->zErrMsg);
 | |
|     p->zErrMsg = sqlite3_mprintf(
 | |
|        "sqlite3_get_table() called with two or more incompatible queries"
 | |
|     );
 | |
|     p->rc = SQLITE_ERROR;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   /* Copy over the row data
 | |
|   */
 | |
|   if( argv!=0 ){
 | |
|     for(i=0; i<nCol; i++){
 | |
|       if( argv[i]==0 ){
 | |
|         z = 0;
 | |
|       }else{
 | |
|         int n = strlen(argv[i])+1;
 | |
|         z = sqlite3_malloc( n );
 | |
|         if( z==0 ) goto malloc_failed;
 | |
|         memcpy(z, argv[i], n);
 | |
|       }
 | |
|       p->azResult[p->nData++] = z;
 | |
|     }
 | |
|     p->nRow++;
 | |
|   }
 | |
|   return 0;
 | |
| 
 | |
| malloc_failed:
 | |
|   p->rc = SQLITE_NOMEM;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Query the database.  But instead of invoking a callback for each row,
 | |
| ** malloc() for space to hold the result and return the entire results
 | |
| ** at the conclusion of the call.
 | |
| **
 | |
| ** The result that is written to ***pazResult is held in memory obtained
 | |
| ** from malloc().  But the caller cannot free this memory directly.  
 | |
| ** Instead, the entire table should be passed to sqlite3_free_table() when
 | |
| ** the calling procedure is finished using it.
 | |
| */
 | |
| SQLITE_API int sqlite3_get_table(
 | |
|   sqlite3 *db,                /* The database on which the SQL executes */
 | |
|   const char *zSql,           /* The SQL to be executed */
 | |
|   char ***pazResult,          /* Write the result table here */
 | |
|   int *pnRow,                 /* Write the number of rows in the result here */
 | |
|   int *pnColumn,              /* Write the number of columns of result here */
 | |
|   char **pzErrMsg             /* Write error messages here */
 | |
| ){
 | |
|   int rc;
 | |
|   TabResult res;
 | |
| 
 | |
|   *pazResult = 0;
 | |
|   if( pnColumn ) *pnColumn = 0;
 | |
|   if( pnRow ) *pnRow = 0;
 | |
|   res.zErrMsg = 0;
 | |
|   res.nResult = 0;
 | |
|   res.nRow = 0;
 | |
|   res.nColumn = 0;
 | |
|   res.nData = 1;
 | |
|   res.nAlloc = 20;
 | |
|   res.rc = SQLITE_OK;
 | |
|   res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc );
 | |
|   if( res.azResult==0 ){
 | |
|      db->errCode = SQLITE_NOMEM;
 | |
|      return SQLITE_NOMEM;
 | |
|   }
 | |
|   res.azResult[0] = 0;
 | |
|   rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg);
 | |
|   assert( sizeof(res.azResult[0])>= sizeof(res.nData) );
 | |
|   res.azResult[0] = (char*)(sqlite3_intptr_t)res.nData;
 | |
|   if( (rc&0xff)==SQLITE_ABORT ){
 | |
|     sqlite3_free_table(&res.azResult[1]);
 | |
|     if( res.zErrMsg ){
 | |
|       if( pzErrMsg ){
 | |
|         sqlite3_free(*pzErrMsg);
 | |
|         *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg);
 | |
|       }
 | |
|       sqlite3_free(res.zErrMsg);
 | |
|     }
 | |
|     db->errCode = res.rc;  /* Assume 32-bit assignment is atomic */
 | |
|     return res.rc;
 | |
|   }
 | |
|   sqlite3_free(res.zErrMsg);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     sqlite3_free_table(&res.azResult[1]);
 | |
|     return rc;
 | |
|   }
 | |
|   if( res.nAlloc>res.nData ){
 | |
|     char **azNew;
 | |
|     azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) );
 | |
|     if( azNew==0 ){
 | |
|       sqlite3_free_table(&res.azResult[1]);
 | |
|       db->errCode = SQLITE_NOMEM;
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     res.nAlloc = res.nData+1;
 | |
|     res.azResult = azNew;
 | |
|   }
 | |
|   *pazResult = &res.azResult[1];
 | |
|   if( pnColumn ) *pnColumn = res.nColumn;
 | |
|   if( pnRow ) *pnRow = res.nRow;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine frees the space the sqlite3_get_table() malloced.
 | |
| */
 | |
| SQLITE_API void sqlite3_free_table(
 | |
|   char **azResult            /* Result returned from from sqlite3_get_table() */
 | |
| ){
 | |
|   if( azResult ){
 | |
|     sqlite3_intptr_t i, n;
 | |
|     azResult--;
 | |
|     assert( azResult!=0 );
 | |
|     n = (sqlite3_intptr_t)azResult[0];
 | |
|     for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); }
 | |
|     sqlite3_free(azResult);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_GET_TABLE */
 | |
| 
 | |
| /************** End of table.c ***********************************************/
 | |
| /************** Begin file trigger.c *****************************************/
 | |
| /*
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| *
 | |
| */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
| /*
 | |
| ** Delete a linked list of TriggerStep structures.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){
 | |
|   while( pTriggerStep ){
 | |
|     TriggerStep * pTmp = pTriggerStep;
 | |
|     pTriggerStep = pTriggerStep->pNext;
 | |
| 
 | |
|     if( pTmp->target.dyn ) sqlite3_free((char*)pTmp->target.z);
 | |
|     sqlite3ExprDelete(pTmp->pWhere);
 | |
|     sqlite3ExprListDelete(pTmp->pExprList);
 | |
|     sqlite3SelectDelete(pTmp->pSelect);
 | |
|     sqlite3IdListDelete(pTmp->pIdList);
 | |
| 
 | |
|     sqlite3_free(pTmp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is called by the parser when it sees a CREATE TRIGGER statement
 | |
| ** up to the point of the BEGIN before the trigger actions.  A Trigger
 | |
| ** structure is generated based on the information available and stored
 | |
| ** in pParse->pNewTrigger.  After the trigger actions have been parsed, the
 | |
| ** sqlite3FinishTrigger() function is called to complete the trigger
 | |
| ** construction process.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3BeginTrigger(
 | |
|   Parse *pParse,      /* The parse context of the CREATE TRIGGER statement */
 | |
|   Token *pName1,      /* The name of the trigger */
 | |
|   Token *pName2,      /* The name of the trigger */
 | |
|   int tr_tm,          /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
 | |
|   int op,             /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
 | |
|   IdList *pColumns,   /* column list if this is an UPDATE OF trigger */
 | |
|   SrcList *pTableName,/* The name of the table/view the trigger applies to */
 | |
|   Expr *pWhen,        /* WHEN clause */
 | |
|   int isTemp,         /* True if the TEMPORARY keyword is present */
 | |
|   int noErr           /* Suppress errors if the trigger already exists */
 | |
| ){
 | |
|   Trigger *pTrigger = 0;
 | |
|   Table *pTab;
 | |
|   char *zName = 0;        /* Name of the trigger */
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;                /* The database to store the trigger in */
 | |
|   Token *pName;           /* The unqualified db name */
 | |
|   DbFixer sFix;
 | |
|   int iTabDb;
 | |
| 
 | |
|   assert( pName1!=0 );   /* pName1->z might be NULL, but not pName1 itself */
 | |
|   assert( pName2!=0 );
 | |
|   if( isTemp ){
 | |
|     /* If TEMP was specified, then the trigger name may not be qualified. */
 | |
|     if( pName2->n>0 ){
 | |
|       sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
 | |
|       goto trigger_cleanup;
 | |
|     }
 | |
|     iDb = 1;
 | |
|     pName = pName1;
 | |
|   }else{
 | |
|     /* Figure out the db that the the trigger will be created in */
 | |
|     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
 | |
|     if( iDb<0 ){
 | |
|       goto trigger_cleanup;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If the trigger name was unqualified, and the table is a temp table,
 | |
|   ** then set iDb to 1 to create the trigger in the temporary database.
 | |
|   ** If sqlite3SrcListLookup() returns 0, indicating the table does not
 | |
|   ** exist, the error is caught by the block below.
 | |
|   */
 | |
|   if( !pTableName || db->mallocFailed ){
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
|   pTab = sqlite3SrcListLookup(pParse, pTableName);
 | |
|   if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
 | |
|     iDb = 1;
 | |
|   }
 | |
| 
 | |
|   /* Ensure the table name matches database name and that the table exists */
 | |
|   if( db->mallocFailed ) goto trigger_cleanup;
 | |
|   assert( pTableName->nSrc==1 );
 | |
|   if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && 
 | |
|       sqlite3FixSrcList(&sFix, pTableName) ){
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
|   pTab = sqlite3SrcListLookup(pParse, pTableName);
 | |
|   if( !pTab ){
 | |
|     /* The table does not exist. */
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
|   if( IsVirtual(pTab) ){
 | |
|     sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables");
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Check that the trigger name is not reserved and that no trigger of the
 | |
|   ** specified name exists */
 | |
|   zName = sqlite3NameFromToken(db, pName);
 | |
|   if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
|   if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){
 | |
|     if( !noErr ){
 | |
|       sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
 | |
|     }
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Do not create a trigger on a system table */
 | |
|   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
 | |
|     pParse->nErr++;
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* INSTEAD of triggers are only for views and views only support INSTEAD
 | |
|   ** of triggers.
 | |
|   */
 | |
|   if( pTab->pSelect && tr_tm!=TK_INSTEAD ){
 | |
|     sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S", 
 | |
|         (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
|   if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
 | |
|     sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
 | |
|         " trigger on table: %S", pTableName, 0);
 | |
|     goto trigger_cleanup;
 | |
|   }
 | |
|   iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     int code = SQLITE_CREATE_TRIGGER;
 | |
|     const char *zDb = db->aDb[iTabDb].zName;
 | |
|     const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
 | |
|     if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
 | |
|     if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
 | |
|       goto trigger_cleanup;
 | |
|     }
 | |
|     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
 | |
|       goto trigger_cleanup;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* INSTEAD OF triggers can only appear on views and BEFORE triggers
 | |
|   ** cannot appear on views.  So we might as well translate every
 | |
|   ** INSTEAD OF trigger into a BEFORE trigger.  It simplifies code
 | |
|   ** elsewhere.
 | |
|   */
 | |
|   if (tr_tm == TK_INSTEAD){
 | |
|     tr_tm = TK_BEFORE;
 | |
|   }
 | |
| 
 | |
|   /* Build the Trigger object */
 | |
|   pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger));
 | |
|   if( pTrigger==0 ) goto trigger_cleanup;
 | |
|   pTrigger->name = zName;
 | |
|   zName = 0;
 | |
|   pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName);
 | |
|   pTrigger->pSchema = db->aDb[iDb].pSchema;
 | |
|   pTrigger->pTabSchema = pTab->pSchema;
 | |
|   pTrigger->op = op;
 | |
|   pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
 | |
|   pTrigger->pWhen = sqlite3ExprDup(db, pWhen);
 | |
|   pTrigger->pColumns = sqlite3IdListDup(db, pColumns);
 | |
|   sqlite3TokenCopy(db, &pTrigger->nameToken,pName);
 | |
|   assert( pParse->pNewTrigger==0 );
 | |
|   pParse->pNewTrigger = pTrigger;
 | |
| 
 | |
| trigger_cleanup:
 | |
|   sqlite3_free(zName);
 | |
|   sqlite3SrcListDelete(pTableName);
 | |
|   sqlite3IdListDelete(pColumns);
 | |
|   sqlite3ExprDelete(pWhen);
 | |
|   if( !pParse->pNewTrigger ){
 | |
|     sqlite3DeleteTrigger(pTrigger);
 | |
|   }else{
 | |
|     assert( pParse->pNewTrigger==pTrigger );
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called after all of the trigger actions have been parsed
 | |
| ** in order to complete the process of building the trigger.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3FinishTrigger(
 | |
|   Parse *pParse,          /* Parser context */
 | |
|   TriggerStep *pStepList, /* The triggered program */
 | |
|   Token *pAll             /* Token that describes the complete CREATE TRIGGER */
 | |
| ){
 | |
|   Trigger *pTrig = 0;     /* The trigger whose construction is finishing up */
 | |
|   sqlite3 *db = pParse->db;  /* The database */
 | |
|   DbFixer sFix;
 | |
|   int iDb;                   /* Database containing the trigger */
 | |
| 
 | |
|   pTrig = pParse->pNewTrigger;
 | |
|   pParse->pNewTrigger = 0;
 | |
|   if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
 | |
|   pTrig->step_list = pStepList;
 | |
|   while( pStepList ){
 | |
|     pStepList->pTrig = pTrig;
 | |
|     pStepList = pStepList->pNext;
 | |
|   }
 | |
|   if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken) 
 | |
|           && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
 | |
|     goto triggerfinish_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* if we are not initializing, and this trigger is not on a TEMP table, 
 | |
|   ** build the sqlite_master entry
 | |
|   */
 | |
|   if( !db->init.busy ){
 | |
|     Vdbe *v;
 | |
|     char *z;
 | |
| 
 | |
|     /* Make an entry in the sqlite_master table */
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     if( v==0 ) goto triggerfinish_cleanup;
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|     z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
 | |
|     sqlite3NestedParse(pParse,
 | |
|        "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
 | |
|        db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name,
 | |
|        pTrig->table, z);
 | |
|     sqlite3_free(z);
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
|     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
 | |
|         db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   if( db->init.busy ){
 | |
|     int n;
 | |
|     Table *pTab;
 | |
|     Trigger *pDel;
 | |
|     pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash, 
 | |
|                      pTrig->name, strlen(pTrig->name), pTrig);
 | |
|     if( pDel ){
 | |
|       assert( pDel==pTrig );
 | |
|       db->mallocFailed = 1;
 | |
|       goto triggerfinish_cleanup;
 | |
|     }
 | |
|     n = strlen(pTrig->table) + 1;
 | |
|     pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n);
 | |
|     assert( pTab!=0 );
 | |
|     pTrig->pNext = pTab->pTrigger;
 | |
|     pTab->pTrigger = pTrig;
 | |
|     pTrig = 0;
 | |
|   }
 | |
| 
 | |
| triggerfinish_cleanup:
 | |
|   sqlite3DeleteTrigger(pTrig);
 | |
|   assert( !pParse->pNewTrigger );
 | |
|   sqlite3DeleteTriggerStep(pStepList);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Make a copy of all components of the given trigger step.  This has
 | |
| ** the effect of copying all Expr.token.z values into memory obtained
 | |
| ** from sqlite3_malloc().  As initially created, the Expr.token.z values
 | |
| ** all point to the input string that was fed to the parser.  But that
 | |
| ** string is ephemeral - it will go away as soon as the sqlite3_exec()
 | |
| ** call that started the parser exits.  This routine makes a persistent
 | |
| ** copy of all the Expr.token.z strings so that the TriggerStep structure
 | |
| ** will be valid even after the sqlite3_exec() call returns.
 | |
| */
 | |
| static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){
 | |
|   if( p->target.z ){
 | |
|     p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n);
 | |
|     p->target.dyn = 1;
 | |
|   }
 | |
|   if( p->pSelect ){
 | |
|     Select *pNew = sqlite3SelectDup(db, p->pSelect);
 | |
|     sqlite3SelectDelete(p->pSelect);
 | |
|     p->pSelect = pNew;
 | |
|   }
 | |
|   if( p->pWhere ){
 | |
|     Expr *pNew = sqlite3ExprDup(db, p->pWhere);
 | |
|     sqlite3ExprDelete(p->pWhere);
 | |
|     p->pWhere = pNew;
 | |
|   }
 | |
|   if( p->pExprList ){
 | |
|     ExprList *pNew = sqlite3ExprListDup(db, p->pExprList);
 | |
|     sqlite3ExprListDelete(p->pExprList);
 | |
|     p->pExprList = pNew;
 | |
|   }
 | |
|   if( p->pIdList ){
 | |
|     IdList *pNew = sqlite3IdListDup(db, p->pIdList);
 | |
|     sqlite3IdListDelete(p->pIdList);
 | |
|     p->pIdList = pNew;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Turn a SELECT statement (that the pSelect parameter points to) into
 | |
| ** a trigger step.  Return a pointer to a TriggerStep structure.
 | |
| **
 | |
| ** The parser calls this routine when it finds a SELECT statement in
 | |
| ** body of a TRIGGER.  
 | |
| */
 | |
| SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){
 | |
|   TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
 | |
|   if( pTriggerStep==0 ) {
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   pTriggerStep->op = TK_SELECT;
 | |
|   pTriggerStep->pSelect = pSelect;
 | |
|   pTriggerStep->orconf = OE_Default;
 | |
|   sqlitePersistTriggerStep(db, pTriggerStep);
 | |
| 
 | |
|   return pTriggerStep;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Build a trigger step out of an INSERT statement.  Return a pointer
 | |
| ** to the new trigger step.
 | |
| **
 | |
| ** The parser calls this routine when it sees an INSERT inside the
 | |
| ** body of a trigger.
 | |
| */
 | |
| SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(
 | |
|   sqlite3 *db,        /* The database connection */
 | |
|   Token *pTableName,  /* Name of the table into which we insert */
 | |
|   IdList *pColumn,    /* List of columns in pTableName to insert into */
 | |
|   ExprList *pEList,   /* The VALUE clause: a list of values to be inserted */
 | |
|   Select *pSelect,    /* A SELECT statement that supplies values */
 | |
|   int orconf          /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
 | |
| ){
 | |
|   TriggerStep *pTriggerStep;
 | |
| 
 | |
|   assert(pEList == 0 || pSelect == 0);
 | |
|   assert(pEList != 0 || pSelect != 0 || db->mallocFailed);
 | |
| 
 | |
|   pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
 | |
|   if( pTriggerStep ){
 | |
|     pTriggerStep->op = TK_INSERT;
 | |
|     pTriggerStep->pSelect = pSelect;
 | |
|     pTriggerStep->target  = *pTableName;
 | |
|     pTriggerStep->pIdList = pColumn;
 | |
|     pTriggerStep->pExprList = pEList;
 | |
|     pTriggerStep->orconf = orconf;
 | |
|     sqlitePersistTriggerStep(db, pTriggerStep);
 | |
|   }else{
 | |
|     sqlite3IdListDelete(pColumn);
 | |
|     sqlite3ExprListDelete(pEList);
 | |
|     sqlite3SelectDelete(pSelect);
 | |
|   }
 | |
| 
 | |
|   return pTriggerStep;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a trigger step that implements an UPDATE statement and return
 | |
| ** a pointer to that trigger step.  The parser calls this routine when it
 | |
| ** sees an UPDATE statement inside the body of a CREATE TRIGGER.
 | |
| */
 | |
| SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(
 | |
|   sqlite3 *db,         /* The database connection */
 | |
|   Token *pTableName,   /* Name of the table to be updated */
 | |
|   ExprList *pEList,    /* The SET clause: list of column and new values */
 | |
|   Expr *pWhere,        /* The WHERE clause */
 | |
|   int orconf           /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
 | |
| ){
 | |
|   TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
 | |
|   if( pTriggerStep==0 ){
 | |
|      sqlite3ExprListDelete(pEList);
 | |
|      sqlite3ExprDelete(pWhere);
 | |
|      return 0;
 | |
|   }
 | |
| 
 | |
|   pTriggerStep->op = TK_UPDATE;
 | |
|   pTriggerStep->target  = *pTableName;
 | |
|   pTriggerStep->pExprList = pEList;
 | |
|   pTriggerStep->pWhere = pWhere;
 | |
|   pTriggerStep->orconf = orconf;
 | |
|   sqlitePersistTriggerStep(db, pTriggerStep);
 | |
| 
 | |
|   return pTriggerStep;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Construct a trigger step that implements a DELETE statement and return
 | |
| ** a pointer to that trigger step.  The parser calls this routine when it
 | |
| ** sees a DELETE statement inside the body of a CREATE TRIGGER.
 | |
| */
 | |
| SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(
 | |
|   sqlite3 *db,            /* Database connection */
 | |
|   Token *pTableName,      /* The table from which rows are deleted */
 | |
|   Expr *pWhere            /* The WHERE clause */
 | |
| ){
 | |
|   TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep));
 | |
|   if( pTriggerStep==0 ){
 | |
|     sqlite3ExprDelete(pWhere);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   pTriggerStep->op = TK_DELETE;
 | |
|   pTriggerStep->target  = *pTableName;
 | |
|   pTriggerStep->pWhere = pWhere;
 | |
|   pTriggerStep->orconf = OE_Default;
 | |
|   sqlitePersistTriggerStep(db, pTriggerStep);
 | |
| 
 | |
|   return pTriggerStep;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Recursively delete a Trigger structure
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *pTrigger){
 | |
|   if( pTrigger==0 ) return;
 | |
|   sqlite3DeleteTriggerStep(pTrigger->step_list);
 | |
|   sqlite3_free(pTrigger->name);
 | |
|   sqlite3_free(pTrigger->table);
 | |
|   sqlite3ExprDelete(pTrigger->pWhen);
 | |
|   sqlite3IdListDelete(pTrigger->pColumns);
 | |
|   if( pTrigger->nameToken.dyn ) sqlite3_free((char*)pTrigger->nameToken.z);
 | |
|   sqlite3_free(pTrigger);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is called to drop a trigger from the database schema. 
 | |
| **
 | |
| ** This may be called directly from the parser and therefore identifies
 | |
| ** the trigger by name.  The sqlite3DropTriggerPtr() routine does the
 | |
| ** same job as this routine except it takes a pointer to the trigger
 | |
| ** instead of the trigger name.
 | |
| **/
 | |
| SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){
 | |
|   Trigger *pTrigger = 0;
 | |
|   int i;
 | |
|   const char *zDb;
 | |
|   const char *zName;
 | |
|   int nName;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( db->mallocFailed ) goto drop_trigger_cleanup;
 | |
|   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
 | |
|     goto drop_trigger_cleanup;
 | |
|   }
 | |
| 
 | |
|   assert( pName->nSrc==1 );
 | |
|   zDb = pName->a[0].zDatabase;
 | |
|   zName = pName->a[0].zName;
 | |
|   nName = strlen(zName);
 | |
|   for(i=OMIT_TEMPDB; i<db->nDb; i++){
 | |
|     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
 | |
|     if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
 | |
|     pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
 | |
|     if( pTrigger ) break;
 | |
|   }
 | |
|   if( !pTrigger ){
 | |
|     if( !noErr ){
 | |
|       sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
 | |
|     }
 | |
|     goto drop_trigger_cleanup;
 | |
|   }
 | |
|   sqlite3DropTriggerPtr(pParse, pTrigger);
 | |
| 
 | |
| drop_trigger_cleanup:
 | |
|   sqlite3SrcListDelete(pName);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the Table structure for the table that a trigger
 | |
| ** is set on.
 | |
| */
 | |
| static Table *tableOfTrigger(Trigger *pTrigger){
 | |
|   int n = strlen(pTrigger->table) + 1;
 | |
|   return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Drop a trigger given a pointer to that trigger. 
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){
 | |
|   Table   *pTable;
 | |
|   Vdbe *v;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   int iDb;
 | |
| 
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
 | |
|   assert( iDb>=0 && iDb<db->nDb );
 | |
|   pTable = tableOfTrigger(pTrigger);
 | |
|   assert( pTable );
 | |
|   assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   {
 | |
|     int code = SQLITE_DROP_TRIGGER;
 | |
|     const char *zDb = db->aDb[iDb].zName;
 | |
|     const char *zTab = SCHEMA_TABLE(iDb);
 | |
|     if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
 | |
|     if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
 | |
|       sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Generate code to destroy the database record of the trigger.
 | |
|   */
 | |
|   assert( pTable!=0 );
 | |
|   if( (v = sqlite3GetVdbe(pParse))!=0 ){
 | |
|     int base;
 | |
|     static const VdbeOpList dropTrigger[] = {
 | |
|       { OP_Rewind,     0, ADDR(9),  0},
 | |
|       { OP_String8,    0, 1,        0}, /* 1 */
 | |
|       { OP_Column,     0, 1,        2},
 | |
|       { OP_Ne,         2, ADDR(8),  1},
 | |
|       { OP_String8,    0, 1,        0}, /* 4: "trigger" */
 | |
|       { OP_Column,     0, 0,        2},
 | |
|       { OP_Ne,         2, ADDR(8),  1},
 | |
|       { OP_Delete,     0, 0,        0},
 | |
|       { OP_Next,       0, ADDR(1),  0}, /* 8 */
 | |
|     };
 | |
| 
 | |
|     sqlite3BeginWriteOperation(pParse, 0, iDb);
 | |
|     sqlite3OpenMasterTable(pParse, iDb);
 | |
|     base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger);
 | |
|     sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0);
 | |
|     sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
 | |
|     sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove a trigger from the hash tables of the sqlite* pointer.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
 | |
|   Trigger *pTrigger;
 | |
|   int nName = strlen(zName);
 | |
|   pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash),
 | |
|                                zName, nName, 0);
 | |
|   if( pTrigger ){
 | |
|     Table *pTable = tableOfTrigger(pTrigger);
 | |
|     assert( pTable!=0 );
 | |
|     if( pTable->pTrigger == pTrigger ){
 | |
|       pTable->pTrigger = pTrigger->pNext;
 | |
|     }else{
 | |
|       Trigger *cc = pTable->pTrigger;
 | |
|       while( cc ){ 
 | |
|         if( cc->pNext == pTrigger ){
 | |
|           cc->pNext = cc->pNext->pNext;
 | |
|           break;
 | |
|         }
 | |
|         cc = cc->pNext;
 | |
|       }
 | |
|       assert(cc);
 | |
|     }
 | |
|     sqlite3DeleteTrigger(pTrigger);
 | |
|     db->flags |= SQLITE_InternChanges;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** pEList is the SET clause of an UPDATE statement.  Each entry
 | |
| ** in pEList is of the format <id>=<expr>.  If any of the entries
 | |
| ** in pEList have an <id> which matches an identifier in pIdList,
 | |
| ** then return TRUE.  If pIdList==NULL, then it is considered a
 | |
| ** wildcard that matches anything.  Likewise if pEList==NULL then
 | |
| ** it matches anything so always return true.  Return false only
 | |
| ** if there is no match.
 | |
| */
 | |
| static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
 | |
|   int e;
 | |
|   if( !pIdList || !pEList ) return 1;
 | |
|   for(e=0; e<pEList->nExpr; e++){
 | |
|     if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
 | |
|   }
 | |
|   return 0; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a bit vector to indicate what kind of triggers exist for operation
 | |
| ** "op" on table pTab.  If pChanges is not NULL then it is a list of columns
 | |
| ** that are being updated.  Triggers only match if the ON clause of the
 | |
| ** trigger definition overlaps the set of columns being updated.
 | |
| **
 | |
| ** The returned bit vector is some combination of TRIGGER_BEFORE and
 | |
| ** TRIGGER_AFTER.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3TriggersExist(
 | |
|   Parse *pParse,          /* Used to check for recursive triggers */
 | |
|   Table *pTab,            /* The table the contains the triggers */
 | |
|   int op,                 /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
 | |
|   ExprList *pChanges      /* Columns that change in an UPDATE statement */
 | |
| ){
 | |
|   Trigger *pTrigger;
 | |
|   int mask = 0;
 | |
| 
 | |
|   pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger;
 | |
|   while( pTrigger ){
 | |
|     if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){
 | |
|       mask |= pTrigger->tr_tm;
 | |
|     }
 | |
|     pTrigger = pTrigger->pNext;
 | |
|   }
 | |
|   return mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert the pStep->target token into a SrcList and return a pointer
 | |
| ** to that SrcList.
 | |
| **
 | |
| ** This routine adds a specific database name, if needed, to the target when
 | |
| ** forming the SrcList.  This prevents a trigger in one database from
 | |
| ** referring to a target in another database.  An exception is when the
 | |
| ** trigger is in TEMP in which case it can refer to any other database it
 | |
| ** wants.
 | |
| */
 | |
| static SrcList *targetSrcList(
 | |
|   Parse *pParse,       /* The parsing context */
 | |
|   TriggerStep *pStep   /* The trigger containing the target token */
 | |
| ){
 | |
|   Token sDb;           /* Dummy database name token */
 | |
|   int iDb;             /* Index of the database to use */
 | |
|   SrcList *pSrc;       /* SrcList to be returned */
 | |
| 
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
 | |
|   if( iDb==0 || iDb>=2 ){
 | |
|     assert( iDb<pParse->db->nDb );
 | |
|     sDb.z = (u8*)pParse->db->aDb[iDb].zName;
 | |
|     sDb.n = strlen((char*)sDb.z);
 | |
|     pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target);
 | |
|   } else {
 | |
|     pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0);
 | |
|   }
 | |
|   return pSrc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate VDBE code for zero or more statements inside the body of a
 | |
| ** trigger.  
 | |
| */
 | |
| static int codeTriggerProgram(
 | |
|   Parse *pParse,            /* The parser context */
 | |
|   TriggerStep *pStepList,   /* List of statements inside the trigger body */
 | |
|   int orconfin              /* Conflict algorithm. (OE_Abort, etc) */  
 | |
| ){
 | |
|   TriggerStep * pTriggerStep = pStepList;
 | |
|   int orconf;
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   assert( pTriggerStep!=0 );
 | |
|   assert( v!=0 );
 | |
|   sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0);
 | |
|   VdbeComment((v, "begin trigger %s", pStepList->pTrig->name));
 | |
|   while( pTriggerStep ){
 | |
|     orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
 | |
|     pParse->trigStack->orconf = orconf;
 | |
|     switch( pTriggerStep->op ){
 | |
|       case TK_SELECT: {
 | |
|         Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect);
 | |
|         if( ss ){
 | |
|           SelectDest dest;
 | |
| 
 | |
|           sqlite3SelectDestInit(&dest, SRT_Discard, 0);
 | |
|           sqlite3SelectResolve(pParse, ss, 0);
 | |
|           sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0);
 | |
|           sqlite3SelectDelete(ss);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case TK_UPDATE: {
 | |
|         SrcList *pSrc;
 | |
|         pSrc = targetSrcList(pParse, pTriggerStep);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
 | |
|         sqlite3Update(pParse, pSrc,
 | |
|                 sqlite3ExprListDup(db, pTriggerStep->pExprList), 
 | |
|                 sqlite3ExprDup(db, pTriggerStep->pWhere), orconf);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
 | |
|         break;
 | |
|       }
 | |
|       case TK_INSERT: {
 | |
|         SrcList *pSrc;
 | |
|         pSrc = targetSrcList(pParse, pTriggerStep);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
 | |
|         sqlite3Insert(pParse, pSrc,
 | |
|           sqlite3ExprListDup(db, pTriggerStep->pExprList), 
 | |
|           sqlite3SelectDup(db, pTriggerStep->pSelect), 
 | |
|           sqlite3IdListDup(db, pTriggerStep->pIdList), orconf);
 | |
|         sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
 | |
|         break;
 | |
|       }
 | |
|       case TK_DELETE: {
 | |
|         SrcList *pSrc;
 | |
|         sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0);
 | |
|         pSrc = targetSrcList(pParse, pTriggerStep);
 | |
|         sqlite3DeleteFrom(pParse, pSrc, 
 | |
|                           sqlite3ExprDup(db, pTriggerStep->pWhere));
 | |
|         sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0);
 | |
|         break;
 | |
|       }
 | |
|       default:
 | |
|         assert(0);
 | |
|     } 
 | |
|     pTriggerStep = pTriggerStep->pNext;
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
 | |
|   VdbeComment((v, "end trigger %s", pStepList->pTrig->name));
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is called to code FOR EACH ROW triggers.
 | |
| **
 | |
| ** When the code that this function generates is executed, the following 
 | |
| ** must be true:
 | |
| **
 | |
| ** 1. No cursors may be open in the main database.  (But newIdx and oldIdx
 | |
| **    can be indices of cursors in temporary tables.  See below.)
 | |
| **
 | |
| ** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
 | |
| **    a temporary vdbe cursor (index newIdx) must be open and pointing at
 | |
| **    a row containing values to be substituted for new.* expressions in the
 | |
| **    trigger program(s).
 | |
| **
 | |
| ** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
 | |
| **    a temporary vdbe cursor (index oldIdx) must be open and pointing at
 | |
| **    a row containing values to be substituted for old.* expressions in the
 | |
| **    trigger program(s).
 | |
| **
 | |
| ** If they are not NULL, the piOldColMask and piNewColMask output variables
 | |
| ** are set to values that describe the columns used by the trigger program
 | |
| ** in the OLD.* and NEW.* tables respectively. If column N of the 
 | |
| ** pseudo-table is read at least once, the corresponding bit of the output
 | |
| ** mask is set. If a column with an index greater than 32 is read, the
 | |
| ** output mask is set to the special value 0xffffffff.
 | |
| **
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3CodeRowTrigger(
 | |
|   Parse *pParse,       /* Parse context */
 | |
|   int op,              /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
 | |
|   ExprList *pChanges,  /* Changes list for any UPDATE OF triggers */
 | |
|   int tr_tm,           /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
 | |
|   Table *pTab,         /* The table to code triggers from */
 | |
|   int newIdx,          /* The indice of the "new" row to access */
 | |
|   int oldIdx,          /* The indice of the "old" row to access */
 | |
|   int orconf,          /* ON CONFLICT policy */
 | |
|   int ignoreJump,      /* Instruction to jump to for RAISE(IGNORE) */
 | |
|   u32 *piOldColMask,   /* OUT: Mask of columns used from the OLD.* table */
 | |
|   u32 *piNewColMask    /* OUT: Mask of columns used from the NEW.* table */
 | |
| ){
 | |
|   Trigger *p;
 | |
|   sqlite3 *db = pParse->db;
 | |
|   TriggerStack trigStackEntry;
 | |
| 
 | |
|   trigStackEntry.oldColMask = 0;
 | |
|   trigStackEntry.newColMask = 0;
 | |
| 
 | |
|   assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
 | |
|   assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER );
 | |
| 
 | |
|   assert(newIdx != -1 || oldIdx != -1);
 | |
| 
 | |
|   for(p=pTab->pTrigger; p; p=p->pNext){
 | |
|     int fire_this = 0;
 | |
| 
 | |
|     /* Determine whether we should code this trigger */
 | |
|     if( 
 | |
|       p->op==op && 
 | |
|       p->tr_tm==tr_tm && 
 | |
|       (p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) &&
 | |
|       (op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges))
 | |
|     ){
 | |
|       TriggerStack *pS;      /* Pointer to trigger-stack entry */
 | |
|       for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){}
 | |
|       if( !pS ){
 | |
|         fire_this = 1;
 | |
|       }
 | |
| #if 0    /* Give no warning for recursive triggers.  Just do not do them */
 | |
|       else{
 | |
|         sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)",
 | |
|             p->name);
 | |
|         return SQLITE_ERROR;
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
|  
 | |
|     if( fire_this ){
 | |
|       int endTrigger;
 | |
|       Expr * whenExpr;
 | |
|       AuthContext sContext;
 | |
|       NameContext sNC;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
|       sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0,
 | |
|                         sqlite3MPrintf(db, "-- TRIGGER %s", p->name),
 | |
|                         P4_DYNAMIC);
 | |
| #endif
 | |
|       memset(&sNC, 0, sizeof(sNC));
 | |
|       sNC.pParse = pParse;
 | |
| 
 | |
|       /* Push an entry on to the trigger stack */
 | |
|       trigStackEntry.pTrigger = p;
 | |
|       trigStackEntry.newIdx = newIdx;
 | |
|       trigStackEntry.oldIdx = oldIdx;
 | |
|       trigStackEntry.pTab = pTab;
 | |
|       trigStackEntry.pNext = pParse->trigStack;
 | |
|       trigStackEntry.ignoreJump = ignoreJump;
 | |
|       pParse->trigStack = &trigStackEntry;
 | |
|       sqlite3AuthContextPush(pParse, &sContext, p->name);
 | |
| 
 | |
|       /* code the WHEN clause */
 | |
|       endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe);
 | |
|       whenExpr = sqlite3ExprDup(db, p->pWhen);
 | |
|       if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){
 | |
|         pParse->trigStack = trigStackEntry.pNext;
 | |
|         sqlite3ExprDelete(whenExpr);
 | |
|         return 1;
 | |
|       }
 | |
|       sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL);
 | |
|       sqlite3ExprDelete(whenExpr);
 | |
| 
 | |
|       codeTriggerProgram(pParse, p->step_list, orconf); 
 | |
| 
 | |
|       /* Pop the entry off the trigger stack */
 | |
|       pParse->trigStack = trigStackEntry.pNext;
 | |
|       sqlite3AuthContextPop(&sContext);
 | |
| 
 | |
|       sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger);
 | |
|     }
 | |
|   }
 | |
|   if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask;
 | |
|   if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask;
 | |
|   return 0;
 | |
| }
 | |
| #endif /* !defined(SQLITE_OMIT_TRIGGER) */
 | |
| 
 | |
| /************** End of trigger.c *********************************************/
 | |
| /************** Begin file update.c ******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains C code routines that are called by the parser
 | |
| ** to handle UPDATE statements.
 | |
| **
 | |
| ** $Id: update.c,v 1.171 2008/02/12 16:52:14 drh Exp $
 | |
| */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /* Forward declaration */
 | |
| static void updateVirtualTable(
 | |
|   Parse *pParse,       /* The parsing context */
 | |
|   SrcList *pSrc,       /* The virtual table to be modified */
 | |
|   Table *pTab,         /* The virtual table */
 | |
|   ExprList *pChanges,  /* The columns to change in the UPDATE statement */
 | |
|   Expr *pRowidExpr,    /* Expression used to recompute the rowid */
 | |
|   int *aXRef,          /* Mapping from columns of pTab to entries in pChanges */
 | |
|   Expr *pWhere         /* WHERE clause of the UPDATE statement */
 | |
| );
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /*
 | |
| ** The most recently coded instruction was an OP_Column to retrieve the
 | |
| ** i-th column of table pTab. This routine sets the P4 parameter of the 
 | |
| ** OP_Column to the default value, if any.
 | |
| **
 | |
| ** The default value of a column is specified by a DEFAULT clause in the 
 | |
| ** column definition. This was either supplied by the user when the table
 | |
| ** was created, or added later to the table definition by an ALTER TABLE
 | |
| ** command. If the latter, then the row-records in the table btree on disk
 | |
| ** may not contain a value for the column and the default value, taken
 | |
| ** from the P4 parameter of the OP_Column instruction, is returned instead.
 | |
| ** If the former, then all row-records are guaranteed to include a value
 | |
| ** for the column and the P4 value is not required.
 | |
| **
 | |
| ** Column definitions created by an ALTER TABLE command may only have 
 | |
| ** literal default values specified: a number, null or a string. (If a more
 | |
| ** complicated default expression value was provided, it is evaluated 
 | |
| ** when the ALTER TABLE is executed and one of the literal values written
 | |
| ** into the sqlite_master table.)
 | |
| **
 | |
| ** Therefore, the P4 parameter is only required if the default value for
 | |
| ** the column is a literal number, string or null. The sqlite3ValueFromExpr()
 | |
| ** function is capable of transforming these types of expressions into
 | |
| ** sqlite3_value objects.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){
 | |
|   if( pTab && !pTab->pSelect ){
 | |
|     sqlite3_value *pValue;
 | |
|     u8 enc = ENC(sqlite3VdbeDb(v));
 | |
|     Column *pCol = &pTab->aCol[i];
 | |
|     VdbeComment((v, "%s.%s", pTab->zName, pCol->zName));
 | |
|     assert( i<pTab->nCol );
 | |
|     sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, 
 | |
|                          pCol->affinity, &pValue);
 | |
|     if( pValue ){
 | |
|       sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Process an UPDATE statement.
 | |
| **
 | |
| **   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
 | |
| **          \_______/ \________/     \______/       \________________/
 | |
| *            onError   pTabList      pChanges             pWhere
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Update(
 | |
|   Parse *pParse,         /* The parser context */
 | |
|   SrcList *pTabList,     /* The table in which we should change things */
 | |
|   ExprList *pChanges,    /* Things to be changed */
 | |
|   Expr *pWhere,          /* The WHERE clause.  May be null */
 | |
|   int onError            /* How to handle constraint errors */
 | |
| ){
 | |
|   int i, j;              /* Loop counters */
 | |
|   Table *pTab;           /* The table to be updated */
 | |
|   int addr = 0;          /* VDBE instruction address of the start of the loop */
 | |
|   WhereInfo *pWInfo;     /* Information about the WHERE clause */
 | |
|   Vdbe *v;               /* The virtual database engine */
 | |
|   Index *pIdx;           /* For looping over indices */
 | |
|   int nIdx;              /* Number of indices that need updating */
 | |
|   int iCur;              /* VDBE Cursor number of pTab */
 | |
|   sqlite3 *db;           /* The database structure */
 | |
|   int *aRegIdx = 0;      /* One register assigned to each index to be updated */
 | |
|   int *aXRef = 0;        /* aXRef[i] is the index in pChanges->a[] of the
 | |
|                          ** an expression for the i-th column of the table.
 | |
|                          ** aXRef[i]==-1 if the i-th column is not changed. */
 | |
|   int chngRowid;         /* True if the record number is being changed */
 | |
|   Expr *pRowidExpr = 0;  /* Expression defining the new record number */
 | |
|   int openAll = 0;       /* True if all indices need to be opened */
 | |
|   AuthContext sContext;  /* The authorization context */
 | |
|   NameContext sNC;       /* The name-context to resolve expressions in */
 | |
|   int iDb;               /* Database containing the table being updated */
 | |
|   int j1;                /* Addresses of jump instructions */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   int isView;                  /* Trying to update a view */
 | |
|   int triggers_exist = 0;      /* True if any row triggers exist */
 | |
| #endif
 | |
|   int iBeginAfterTrigger;      /* Address of after trigger program */
 | |
|   int iEndAfterTrigger;        /* Exit of after trigger program */
 | |
|   int iBeginBeforeTrigger;     /* Address of before trigger program */
 | |
|   int iEndBeforeTrigger;       /* Exit of before trigger program */
 | |
|   u32 old_col_mask = 0;        /* Mask of OLD.* columns in use */
 | |
|   u32 new_col_mask = 0;        /* Mask of NEW.* columns in use */
 | |
| 
 | |
|   int newIdx      = -1;  /* index of trigger "new" temp table       */
 | |
|   int oldIdx      = -1;  /* index of trigger "old" temp table       */
 | |
| 
 | |
|   /* Register Allocations */
 | |
|   int regRowCount = 0;   /* A count of rows changed */
 | |
|   int regOldRowid;       /* The old rowid */
 | |
|   int regNewRowid;       /* The new rowid */
 | |
|   int regData;           /* New data for the row */
 | |
| 
 | |
|   sContext.pParse = 0;
 | |
|   db = pParse->db;
 | |
|   if( pParse->nErr || db->mallocFailed ){
 | |
|     goto update_cleanup;
 | |
|   }
 | |
|   assert( pTabList->nSrc==1 );
 | |
| 
 | |
|   /* Locate the table which we want to update. 
 | |
|   */
 | |
|   pTab = sqlite3SrcListLookup(pParse, pTabList);
 | |
|   if( pTab==0 ) goto update_cleanup;
 | |
|   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
| 
 | |
|   /* Figure out if we have any triggers and if the table being
 | |
|   ** updated is a view
 | |
|   */
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
 | |
|   isView = pTab->pSelect!=0;
 | |
| #else
 | |
| # define triggers_exist 0
 | |
| # define isView 0
 | |
| #endif
 | |
| #ifdef SQLITE_OMIT_VIEW
 | |
| # undef isView
 | |
| # define isView 0
 | |
| #endif
 | |
| 
 | |
|   if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
 | |
|     goto update_cleanup;
 | |
|   }
 | |
|   if( sqlite3ViewGetColumnNames(pParse, pTab) ){
 | |
|     goto update_cleanup;
 | |
|   }
 | |
|   aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol );
 | |
|   if( aXRef==0 ) goto update_cleanup;
 | |
|   for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
 | |
| 
 | |
|   /* If there are FOR EACH ROW triggers, allocate cursors for the
 | |
|   ** special OLD and NEW tables
 | |
|   */
 | |
|   if( triggers_exist ){
 | |
|     newIdx = pParse->nTab++;
 | |
|     oldIdx = pParse->nTab++;
 | |
|   }
 | |
| 
 | |
|   /* Allocate a cursors for the main database table and for all indices.
 | |
|   ** The index cursors might not be used, but if they are used they
 | |
|   ** need to occur right after the database cursor.  So go ahead and
 | |
|   ** allocate enough space, just in case.
 | |
|   */
 | |
|   pTabList->a[0].iCursor = iCur = pParse->nTab++;
 | |
|   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|     pParse->nTab++;
 | |
|   }
 | |
| 
 | |
|   /* Initialize the name-context */
 | |
|   memset(&sNC, 0, sizeof(sNC));
 | |
|   sNC.pParse = pParse;
 | |
|   sNC.pSrcList = pTabList;
 | |
| 
 | |
|   /* Resolve the column names in all the expressions of the
 | |
|   ** of the UPDATE statement.  Also find the column index
 | |
|   ** for each column to be updated in the pChanges array.  For each
 | |
|   ** column to be updated, make sure we have authorization to change
 | |
|   ** that column.
 | |
|   */
 | |
|   chngRowid = 0;
 | |
|   for(i=0; i<pChanges->nExpr; i++){
 | |
|     if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){
 | |
|       goto update_cleanup;
 | |
|     }
 | |
|     for(j=0; j<pTab->nCol; j++){
 | |
|       if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
 | |
|         if( j==pTab->iPKey ){
 | |
|           chngRowid = 1;
 | |
|           pRowidExpr = pChanges->a[i].pExpr;
 | |
|         }
 | |
|         aXRef[j] = i;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( j>=pTab->nCol ){
 | |
|       if( sqlite3IsRowid(pChanges->a[i].zName) ){
 | |
|         chngRowid = 1;
 | |
|         pRowidExpr = pChanges->a[i].pExpr;
 | |
|       }else{
 | |
|         sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
 | |
|         goto update_cleanup;
 | |
|       }
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|     {
 | |
|       int rc;
 | |
|       rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
 | |
|                            pTab->aCol[j].zName, db->aDb[iDb].zName);
 | |
|       if( rc==SQLITE_DENY ){
 | |
|         goto update_cleanup;
 | |
|       }else if( rc==SQLITE_IGNORE ){
 | |
|         aXRef[j] = -1;
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* Allocate memory for the array aRegIdx[].  There is one entry in the
 | |
|   ** array for each index associated with table being updated.  Fill in
 | |
|   ** the value with a register number for indices that are to be used
 | |
|   ** and with zero for unused indices.
 | |
|   */
 | |
|   for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
 | |
|   if( nIdx>0 ){
 | |
|     aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
 | |
|     if( aRegIdx==0 ) goto update_cleanup;
 | |
|   }
 | |
|   for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
 | |
|     int reg;
 | |
|     if( chngRowid ){
 | |
|       reg = ++pParse->nMem;
 | |
|     }else{
 | |
|       reg = 0;
 | |
|       for(i=0; i<pIdx->nColumn; i++){
 | |
|         if( aXRef[pIdx->aiColumn[i]]>=0 ){
 | |
|           reg = ++pParse->nMem;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     aRegIdx[j] = reg;
 | |
|   }
 | |
| 
 | |
|   /* Allocate a block of register used to store the change record
 | |
|   ** sent to sqlite3GenerateConstraintChecks().  There are either
 | |
|   ** one or two registers for holding the rowid.  One rowid register
 | |
|   ** is used if chngRowid is false and two are used if chngRowid is
 | |
|   ** true.  Following these are pTab->nCol register holding column
 | |
|   ** data.
 | |
|   */
 | |
|   regOldRowid = regNewRowid = pParse->nMem + 1;
 | |
|   pParse->nMem += pTab->nCol + 1;
 | |
|   if( chngRowid ){
 | |
|     regNewRowid++;
 | |
|     pParse->nMem++;
 | |
|   }
 | |
|   regData = regNewRowid+1;
 | |
|  
 | |
| 
 | |
|   /* Begin generating code.
 | |
|   */
 | |
|   v = sqlite3GetVdbe(pParse);
 | |
|   if( v==0 ) goto update_cleanup;
 | |
|   if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
 | |
|   sqlite3BeginWriteOperation(pParse, 1, iDb);
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   /* Virtual tables must be handled separately */
 | |
|   if( IsVirtual(pTab) ){
 | |
|     updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef,
 | |
|                        pWhere);
 | |
|     pWhere = 0;
 | |
|     pTabList = 0;
 | |
|     goto update_cleanup;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Start the view context
 | |
|   */
 | |
|   if( isView ){
 | |
|     sqlite3AuthContextPush(pParse, &sContext, pTab->zName);
 | |
|   }
 | |
| 
 | |
|   /* Generate the code for triggers.
 | |
|   */
 | |
|   if( triggers_exist ){
 | |
|     int iGoto;
 | |
| 
 | |
|     /* Create pseudo-tables for NEW and OLD
 | |
|     */
 | |
|     sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_SetNumColumns, oldIdx, pTab->nCol);
 | |
|     sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_SetNumColumns, newIdx, pTab->nCol);
 | |
| 
 | |
|     iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
 | |
|     addr = sqlite3VdbeMakeLabel(v);
 | |
|     iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v);
 | |
|     if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab,
 | |
|           newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
 | |
|       goto update_cleanup;
 | |
|     }
 | |
|     iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
 | |
|     iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v);
 | |
|     if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, 
 | |
|           newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){
 | |
|       goto update_cleanup;
 | |
|     }
 | |
|     iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
 | |
|     sqlite3VdbeJumpHere(v, iGoto);
 | |
|   }
 | |
| 
 | |
|   /* If we are trying to update a view, realize that view into
 | |
|   ** a ephemeral table.
 | |
|   */
 | |
|   if( isView ){
 | |
|     sqlite3MaterializeView(pParse, pTab->pSelect, pWhere,
 | |
|                            old_col_mask|new_col_mask, iCur);
 | |
|   }
 | |
| 
 | |
|   /* Resolve the column names in all the expressions in the
 | |
|   ** WHERE clause.
 | |
|   */
 | |
|   if( sqlite3ExprResolveNames(&sNC, pWhere) ){
 | |
|     goto update_cleanup;
 | |
|   }
 | |
| 
 | |
|   /* Begin the database scan
 | |
|   */
 | |
|   pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0);
 | |
|   if( pWInfo==0 ) goto update_cleanup;
 | |
| 
 | |
|   /* Remember the rowid of every item to be updated.
 | |
|   */
 | |
|   sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid,iCur,regOldRowid);
 | |
|   sqlite3VdbeAddOp2(v, OP_FifoWrite, regOldRowid, 0);
 | |
| 
 | |
|   /* End the database scan loop.
 | |
|   */
 | |
|   sqlite3WhereEnd(pWInfo);
 | |
| 
 | |
|   /* Initialize the count of updated rows
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
 | |
|     regRowCount = ++pParse->nMem;
 | |
|     sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
 | |
|   }
 | |
| 
 | |
|   if( !isView && !IsVirtual(pTab) ){
 | |
|     /* 
 | |
|     ** Open every index that needs updating.  Note that if any
 | |
|     ** index could potentially invoke a REPLACE conflict resolution 
 | |
|     ** action, then we need to open all indices because we might need
 | |
|     ** to be deleting some records.
 | |
|     */
 | |
|     sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite); 
 | |
|     if( onError==OE_Replace ){
 | |
|       openAll = 1;
 | |
|     }else{
 | |
|       openAll = 0;
 | |
|       for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
 | |
|         if( pIdx->onError==OE_Replace ){
 | |
|           openAll = 1;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
 | |
|       if( openAll || aRegIdx[i]>0 ){
 | |
|         KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
 | |
|         sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb,
 | |
|                        (char*)pKey, P4_KEYINFO_HANDOFF);
 | |
|         assert( pParse->nTab>iCur+i+1 );
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /* Jump back to this point if a trigger encounters an IGNORE constraint. */
 | |
|   if( triggers_exist ){
 | |
|     sqlite3VdbeResolveLabel(v, addr);
 | |
|   }
 | |
| 
 | |
|   /* Top of the update loop */
 | |
|   addr = sqlite3VdbeAddOp2(v, OP_FifoRead, regOldRowid, 0);
 | |
| 
 | |
|   if( triggers_exist ){
 | |
|     int regRowid;
 | |
|     int regRow;
 | |
|     int regCols;
 | |
| 
 | |
|     /* Make cursor iCur point to the record that is being updated.
 | |
|     */
 | |
|     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
 | |
| 
 | |
|     /* Generate the OLD table
 | |
|     */
 | |
|     regRowid = sqlite3GetTempReg(pParse);
 | |
|     regRow = sqlite3GetTempReg(pParse);
 | |
|     sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
 | |
|     if( !old_col_mask ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Null, 0, regRow);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow);
 | |
|     }
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid);
 | |
| 
 | |
|     /* Generate the NEW table
 | |
|     */
 | |
|     if( chngRowid ){
 | |
|       sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid);
 | |
|     }else{
 | |
|       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid);
 | |
|     }
 | |
|     regCols = sqlite3GetTempRange(pParse, pTab->nCol);
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       if( i==pTab->iPKey ){
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
 | |
|         continue;
 | |
|       }
 | |
|       j = aXRef[i];
 | |
|       if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){
 | |
|         if( j<0 ){
 | |
|           sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i);
 | |
|           sqlite3ColumnDefault(v, pTab, i);
 | |
|         }else{
 | |
|           sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i);
 | |
|         }
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i);
 | |
|       }
 | |
|     }
 | |
|     sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow);
 | |
|     if( !isView ){
 | |
|       sqlite3TableAffinityStr(v, pTab);
 | |
|     }
 | |
|     sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
 | |
|     if( pParse->nErr ) goto update_cleanup;
 | |
|     sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid);
 | |
|     sqlite3ReleaseTempReg(pParse, regRowid);
 | |
|     sqlite3ReleaseTempReg(pParse, regRow);
 | |
| 
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger);
 | |
|     sqlite3VdbeJumpHere(v, iEndBeforeTrigger);
 | |
|   }
 | |
| 
 | |
|   if( !isView && !IsVirtual(pTab) ){
 | |
|     /* Loop over every record that needs updating.  We have to load
 | |
|     ** the old data for each record to be updated because some columns
 | |
|     ** might not change and we will need to copy the old value.
 | |
|     ** Also, the old data is needed to delete the old index entries.
 | |
|     ** So make the cursor point at the old record.
 | |
|     */
 | |
|     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid);
 | |
| 
 | |
|     /* If the record number will change, push the record number as it
 | |
|     ** will be after the update. (The old record number is currently
 | |
|     ** on top of the stack.)
 | |
|     */
 | |
|     if( chngRowid ){
 | |
|       sqlite3ExprCode(pParse, pRowidExpr, regNewRowid);
 | |
|       sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid);
 | |
|     }
 | |
| 
 | |
|     /* Compute new data for this record.  
 | |
|     */
 | |
|     for(i=0; i<pTab->nCol; i++){
 | |
|       if( i==pTab->iPKey ){
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i);
 | |
|         continue;
 | |
|       }
 | |
|       j = aXRef[i];
 | |
|       if( j<0 ){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i);
 | |
|         sqlite3ColumnDefault(v, pTab, i);
 | |
|       }else{
 | |
|         sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Do constraint checks
 | |
|     */
 | |
|     sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid,
 | |
|                                     aRegIdx, chngRowid, 1,
 | |
|                                     onError, addr);
 | |
| 
 | |
|     /* Delete the old indices for the current record.
 | |
|     */
 | |
|     j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid);
 | |
|     sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx);
 | |
| 
 | |
|     /* If changing the record number, delete the old record.
 | |
|     */
 | |
|     if( chngRowid ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0);
 | |
|     }
 | |
|     sqlite3VdbeJumpHere(v, j1);
 | |
| 
 | |
|     /* Create the new index entries and the new record.
 | |
|     */
 | |
|     sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, 
 | |
|                              aRegIdx, chngRowid, 1, -1, 0);
 | |
|   }
 | |
| 
 | |
|   /* Increment the row counter 
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows && !pParse->trigStack){
 | |
|     sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
 | |
|   }
 | |
| 
 | |
|   /* If there are triggers, close all the cursors after each iteration
 | |
|   ** through the loop.  The fire the after triggers.
 | |
|   */
 | |
|   if( triggers_exist ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger);
 | |
|     sqlite3VdbeJumpHere(v, iEndAfterTrigger);
 | |
|   }
 | |
| 
 | |
|   /* Repeat the above with the next record to be updated, until
 | |
|   ** all record selected by the WHERE clause have been updated.
 | |
|   */
 | |
|   sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
 | |
|   sqlite3VdbeJumpHere(v, addr);
 | |
| 
 | |
|   /* Close all tables */
 | |
|   for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
 | |
|     if( openAll || aRegIdx[i]>0 ){
 | |
|       sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0);
 | |
|     }
 | |
|   }
 | |
|   sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
 | |
|   if( triggers_exist ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0);
 | |
|     sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0);
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Return the number of rows that were changed. If this routine is 
 | |
|   ** generating code because of a call to sqlite3NestedParse(), do not
 | |
|   ** invoke the callback function.
 | |
|   */
 | |
|   if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){
 | |
|     sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
 | |
|     sqlite3VdbeSetNumCols(v, 1);
 | |
|     sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC);
 | |
|   }
 | |
| 
 | |
| update_cleanup:
 | |
|   sqlite3AuthContextPop(&sContext);
 | |
|   sqlite3_free(aRegIdx);
 | |
|   sqlite3_free(aXRef);
 | |
|   sqlite3SrcListDelete(pTabList);
 | |
|   sqlite3ExprListDelete(pChanges);
 | |
|   sqlite3ExprDelete(pWhere);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /*
 | |
| ** Generate code for an UPDATE of a virtual table.
 | |
| **
 | |
| ** The strategy is that we create an ephemerial table that contains
 | |
| ** for each row to be changed:
 | |
| **
 | |
| **   (A)  The original rowid of that row.
 | |
| **   (B)  The revised rowid for the row. (note1)
 | |
| **   (C)  The content of every column in the row.
 | |
| **
 | |
| ** Then we loop over this ephemeral table and for each row in
 | |
| ** the ephermeral table call VUpdate.
 | |
| **
 | |
| ** When finished, drop the ephemeral table.
 | |
| **
 | |
| ** (note1) Actually, if we know in advance that (A) is always the same
 | |
| ** as (B) we only store (A), then duplicate (A) when pulling
 | |
| ** it out of the ephemeral table before calling VUpdate.
 | |
| */
 | |
| static void updateVirtualTable(
 | |
|   Parse *pParse,       /* The parsing context */
 | |
|   SrcList *pSrc,       /* The virtual table to be modified */
 | |
|   Table *pTab,         /* The virtual table */
 | |
|   ExprList *pChanges,  /* The columns to change in the UPDATE statement */
 | |
|   Expr *pRowid,        /* Expression used to recompute the rowid */
 | |
|   int *aXRef,          /* Mapping from columns of pTab to entries in pChanges */
 | |
|   Expr *pWhere         /* WHERE clause of the UPDATE statement */
 | |
| ){
 | |
|   Vdbe *v = pParse->pVdbe;  /* Virtual machine under construction */
 | |
|   ExprList *pEList = 0;     /* The result set of the SELECT statement */
 | |
|   Select *pSelect = 0;      /* The SELECT statement */
 | |
|   Expr *pExpr;              /* Temporary expression */
 | |
|   int ephemTab;             /* Table holding the result of the SELECT */
 | |
|   int i;                    /* Loop counter */
 | |
|   int addr;                 /* Address of top of loop */
 | |
|   int iReg;                 /* First register in set passed to OP_VUpdate */
 | |
|   sqlite3 *db = pParse->db; /* Database connection */
 | |
|   const char *pVtab = (const char*)pTab->pVtab;
 | |
|   SelectDest dest;
 | |
| 
 | |
|   /* Construct the SELECT statement that will find the new values for
 | |
|   ** all updated rows. 
 | |
|   */
 | |
|   pEList = sqlite3ExprListAppend(pParse, 0, 
 | |
|                                  sqlite3CreateIdExpr(pParse, "_rowid_"), 0);
 | |
|   if( pRowid ){
 | |
|     pEList = sqlite3ExprListAppend(pParse, pEList,
 | |
|                                    sqlite3ExprDup(db, pRowid), 0);
 | |
|   }
 | |
|   assert( pTab->iPKey<0 );
 | |
|   for(i=0; i<pTab->nCol; i++){
 | |
|     if( aXRef[i]>=0 ){
 | |
|       pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr);
 | |
|     }else{
 | |
|       pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName);
 | |
|     }
 | |
|     pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0);
 | |
|   }
 | |
|   pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0);
 | |
|   
 | |
|   /* Create the ephemeral table into which the update results will
 | |
|   ** be stored.
 | |
|   */
 | |
|   assert( v );
 | |
|   ephemTab = pParse->nTab++;
 | |
|   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
 | |
| 
 | |
|   /* fill the ephemeral table 
 | |
|   */
 | |
|   sqlite3SelectDestInit(&dest, SRT_Table, ephemTab);
 | |
|   sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0);
 | |
| 
 | |
|   /* Generate code to scan the ephemeral table and call VUpdate. */
 | |
|   iReg = ++pParse->nMem;
 | |
|   pParse->nMem += pTab->nCol+1;
 | |
|   sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0);
 | |
|   addr = sqlite3VdbeCurrentAddr(v);
 | |
|   sqlite3VdbeAddOp3(v, OP_Column,  ephemTab, 0, iReg);
 | |
|   sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1);
 | |
|   for(i=0; i<pTab->nCol; i++){
 | |
|     sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i);
 | |
|   }
 | |
|   pParse->pVirtualLock = pTab;
 | |
|   sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB);
 | |
|   sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr);
 | |
|   sqlite3VdbeJumpHere(v, addr-1);
 | |
|   sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0);
 | |
| 
 | |
|   /* Cleanup */
 | |
|   sqlite3SelectDelete(pSelect);  
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /************** End of update.c **********************************************/
 | |
| /************** Begin file vacuum.c ******************************************/
 | |
| /*
 | |
| ** 2003 April 6
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to implement the VACUUM command.
 | |
| **
 | |
| ** Most of the code in this file may be omitted by defining the
 | |
| ** SQLITE_OMIT_VACUUM macro.
 | |
| **
 | |
| ** $Id: vacuum.c,v 1.76 2008/01/03 00:01:25 drh Exp $
 | |
| */
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
 | |
| /*
 | |
| ** Execute zSql on database db. Return an error code.
 | |
| */
 | |
| static int execSql(sqlite3 *db, const char *zSql){
 | |
|   sqlite3_stmt *pStmt;
 | |
|   if( !zSql ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){
 | |
|     return sqlite3_errcode(db);
 | |
|   }
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){}
 | |
|   return sqlite3_finalize(pStmt);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Execute zSql on database db. The statement returns exactly
 | |
| ** one column. Execute this as SQL on the same database.
 | |
| */
 | |
| static int execExecSql(sqlite3 *db, const char *zSql){
 | |
|   sqlite3_stmt *pStmt;
 | |
|   int rc;
 | |
| 
 | |
|   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   while( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0));
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3_finalize(pStmt);
 | |
|       return rc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return sqlite3_finalize(pStmt);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The non-standard VACUUM command is used to clean up the database,
 | |
| ** collapse free space, etc.  It is modelled after the VACUUM command
 | |
| ** in PostgreSQL.
 | |
| **
 | |
| ** In version 1.0.x of SQLite, the VACUUM command would call
 | |
| ** gdbm_reorganize() on all the database tables.  But beginning
 | |
| ** with 2.0.0, SQLite no longer uses GDBM so this command has
 | |
| ** become a no-op.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
 | |
|   Vdbe *v = sqlite3GetVdbe(pParse);
 | |
|   if( v ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0);
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine implements the OP_Vacuum opcode of the VDBE.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){
 | |
|   int rc = SQLITE_OK;     /* Return code from service routines */
 | |
|   Btree *pMain;           /* The database being vacuumed */
 | |
|   Btree *pTemp;           /* The temporary database we vacuum into */
 | |
|   char *zSql = 0;         /* SQL statements */
 | |
|   int saved_flags;        /* Saved value of the db->flags */
 | |
|   Db *pDb = 0;            /* Database to detach at end of vacuum */
 | |
| 
 | |
|   /* Save the current value of the write-schema flag before setting it. */
 | |
|   saved_flags = db->flags;
 | |
|   db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
 | |
| 
 | |
|   if( !db->autoCommit ){
 | |
|     sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", 
 | |
|        (char*)0);
 | |
|     rc = SQLITE_ERROR;
 | |
|     goto end_of_vacuum;
 | |
|   }
 | |
|   pMain = db->aDb[0].pBt;
 | |
| 
 | |
|   /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
 | |
|   ** can be set to 'off' for this file, as it is not recovered if a crash
 | |
|   ** occurs anyway. The integrity of the database is maintained by a
 | |
|   ** (possibly synchronous) transaction opened on the main database before
 | |
|   ** sqlite3BtreeCopyFile() is called.
 | |
|   **
 | |
|   ** An optimisation would be to use a non-journaled pager.
 | |
|   */
 | |
|   zSql = "ATTACH '' AS vacuum_db;";
 | |
|   rc = execSql(db, zSql);
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|   pDb = &db->aDb[db->nDb-1];
 | |
|   assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 );
 | |
|   pTemp = db->aDb[db->nDb-1].pBt;
 | |
|   sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain),
 | |
|      sqlite3BtreeGetReserve(pMain));
 | |
|   if( db->mallocFailed ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|     goto end_of_vacuum;
 | |
|   }
 | |
|   assert( sqlite3BtreeGetPageSize(pTemp)==sqlite3BtreeGetPageSize(pMain) );
 | |
|   rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF");
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     goto end_of_vacuum;
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTOVACUUM
 | |
|   sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac :
 | |
|                                            sqlite3BtreeGetAutoVacuum(pMain));
 | |
| #endif
 | |
| 
 | |
|   /* Begin a transaction */
 | |
|   rc = execSql(db, "BEGIN EXCLUSIVE;");
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
| 
 | |
|   /* Query the schema of the main database. Create a mirror schema
 | |
|   ** in the temporary database.
 | |
|   */
 | |
|   rc = execExecSql(db, 
 | |
|       "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) "
 | |
|       "  FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'"
 | |
|       "   AND rootpage>0"
 | |
|   );
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|   rc = execExecSql(db, 
 | |
|       "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)"
 | |
|       "  FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' ");
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|   rc = execExecSql(db, 
 | |
|       "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) "
 | |
|       "  FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'");
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
| 
 | |
|   /* Loop through the tables in the main database. For each, do
 | |
|   ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy
 | |
|   ** the contents to the temporary database.
 | |
|   */
 | |
|   rc = execExecSql(db, 
 | |
|       "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
 | |
|       "|| ' SELECT * FROM ' || quote(name) || ';'"
 | |
|       "FROM sqlite_master "
 | |
|       "WHERE type = 'table' AND name!='sqlite_sequence' "
 | |
|       "  AND rootpage>0"
 | |
| 
 | |
|   );
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
| 
 | |
|   /* Copy over the sequence table
 | |
|   */
 | |
|   rc = execExecSql(db, 
 | |
|       "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' "
 | |
|       "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' "
 | |
|   );
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|   rc = execExecSql(db, 
 | |
|       "SELECT 'INSERT INTO vacuum_db.' || quote(name) "
 | |
|       "|| ' SELECT * FROM ' || quote(name) || ';' "
 | |
|       "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';"
 | |
|   );
 | |
|   if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
| 
 | |
| 
 | |
|   /* Copy the triggers, views, and virtual tables from the main database
 | |
|   ** over to the temporary database.  None of these objects has any
 | |
|   ** associated storage, so all we have to do is copy their entries
 | |
|   ** from the SQLITE_MASTER table.
 | |
|   */
 | |
|   rc = execSql(db,
 | |
|       "INSERT INTO vacuum_db.sqlite_master "
 | |
|       "  SELECT type, name, tbl_name, rootpage, sql"
 | |
|       "    FROM sqlite_master"
 | |
|       "   WHERE type='view' OR type='trigger'"
 | |
|       "      OR (type='table' AND rootpage=0)"
 | |
|   );
 | |
|   if( rc ) goto end_of_vacuum;
 | |
| 
 | |
|   /* At this point, unless the main db was completely empty, there is now a
 | |
|   ** transaction open on the vacuum database, but not on the main database.
 | |
|   ** Open a btree level transaction on the main database. This allows a
 | |
|   ** call to sqlite3BtreeCopyFile(). The main database btree level
 | |
|   ** transaction is then committed, so the SQL level never knows it was
 | |
|   ** opened for writing. This way, the SQL transaction used to create the
 | |
|   ** temporary database never needs to be committed.
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     u32 meta;
 | |
|     int i;
 | |
| 
 | |
|     /* This array determines which meta meta values are preserved in the
 | |
|     ** vacuum.  Even entries are the meta value number and odd entries
 | |
|     ** are an increment to apply to the meta value after the vacuum.
 | |
|     ** The increment is used to increase the schema cookie so that other
 | |
|     ** connections to the same database will know to reread the schema.
 | |
|     */
 | |
|     static const unsigned char aCopy[] = {
 | |
|        1, 1,    /* Add one to the old schema cookie */
 | |
|        3, 0,    /* Preserve the default page cache size */
 | |
|        5, 0,    /* Preserve the default text encoding */
 | |
|        6, 0,    /* Preserve the user version */
 | |
|     };
 | |
| 
 | |
|     assert( 1==sqlite3BtreeIsInTrans(pTemp) );
 | |
|     assert( 1==sqlite3BtreeIsInTrans(pMain) );
 | |
| 
 | |
|     /* Copy Btree meta values */
 | |
|     for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){
 | |
|       rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta);
 | |
|       if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|       rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]);
 | |
|       if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|     }
 | |
| 
 | |
|     rc = sqlite3BtreeCopyFile(pMain, pTemp);
 | |
|     if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|     rc = sqlite3BtreeCommit(pTemp);
 | |
|     if( rc!=SQLITE_OK ) goto end_of_vacuum;
 | |
|     rc = sqlite3BtreeCommit(pMain);
 | |
|   }
 | |
| 
 | |
| end_of_vacuum:
 | |
|   /* Restore the original value of db->flags */
 | |
|   db->flags = saved_flags;
 | |
| 
 | |
|   /* Currently there is an SQL level transaction open on the vacuum
 | |
|   ** database. No locks are held on any other files (since the main file
 | |
|   ** was committed at the btree level). So it safe to end the transaction
 | |
|   ** by manually setting the autoCommit flag to true and detaching the
 | |
|   ** vacuum database. The vacuum_db journal file is deleted when the pager
 | |
|   ** is closed by the DETACH.
 | |
|   */
 | |
|   db->autoCommit = 1;
 | |
| 
 | |
|   if( pDb ){
 | |
|     sqlite3BtreeClose(pDb->pBt);
 | |
|     pDb->pBt = 0;
 | |
|     pDb->pSchema = 0;
 | |
|   }
 | |
| 
 | |
|   sqlite3ResetInternalSchema(db, 0);
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| #endif  /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */
 | |
| 
 | |
| /************** End of vacuum.c **********************************************/
 | |
| /************** Begin file vtab.c ********************************************/
 | |
| /*
 | |
| ** 2006 June 10
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This file contains code used to help implement virtual tables.
 | |
| **
 | |
| ** $Id: vtab.c,v 1.65 2008/03/06 09:58:50 mlcreech Exp $
 | |
| */
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| 
 | |
| static int createModule(
 | |
|   sqlite3 *db,                    /* Database in which module is registered */
 | |
|   const char *zName,              /* Name assigned to this module */
 | |
|   const sqlite3_module *pModule,  /* The definition of the module */
 | |
|   void *pAux,                     /* Context pointer for xCreate/xConnect */
 | |
|   void (*xDestroy)(void *)        /* Module destructor function */
 | |
| ) {
 | |
|   int rc, nName;
 | |
|   Module *pMod;
 | |
| 
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   nName = strlen(zName);
 | |
|   pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
 | |
|   if( pMod ){
 | |
|     char *zCopy = (char *)(&pMod[1]);
 | |
|     memcpy(zCopy, zName, nName+1);
 | |
|     pMod->zName = zCopy;
 | |
|     pMod->pModule = pModule;
 | |
|     pMod->pAux = pAux;
 | |
|     pMod->xDestroy = xDestroy;
 | |
|     pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod);
 | |
|     if( pMod && pMod->xDestroy ){
 | |
|       pMod->xDestroy(pMod->pAux);
 | |
|     }
 | |
|     sqlite3_free(pMod);
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|   }
 | |
|   rc = sqlite3ApiExit(db, SQLITE_OK);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** External API function used to create a new virtual-table module.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_module(
 | |
|   sqlite3 *db,                    /* Database in which module is registered */
 | |
|   const char *zName,              /* Name assigned to this module */
 | |
|   const sqlite3_module *pModule,  /* The definition of the module */
 | |
|   void *pAux                      /* Context pointer for xCreate/xConnect */
 | |
| ){
 | |
|   return createModule(db, zName, pModule, pAux, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** External API function used to create a new virtual-table module.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_module_v2(
 | |
|   sqlite3 *db,                    /* Database in which module is registered */
 | |
|   const char *zName,              /* Name assigned to this module */
 | |
|   const sqlite3_module *pModule,  /* The definition of the module */
 | |
|   void *pAux,                     /* Context pointer for xCreate/xConnect */
 | |
|   void (*xDestroy)(void *)        /* Module destructor function */
 | |
| ){
 | |
|   return createModule(db, zName, pModule, pAux, xDestroy);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Lock the virtual table so that it cannot be disconnected.
 | |
| ** Locks nest.  Every lock should have a corresponding unlock.
 | |
| ** If an unlock is omitted, resources leaks will occur.  
 | |
| **
 | |
| ** If a disconnect is attempted while a virtual table is locked,
 | |
| ** the disconnect is deferred until all locks have been removed.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab *pVtab){
 | |
|   pVtab->nRef++;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Unlock a virtual table.  When the last lock is removed,
 | |
| ** disconnect the virtual table.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){
 | |
|   pVtab->nRef--;
 | |
|   assert(db);
 | |
|   assert( sqlite3SafetyCheckOk(db) );
 | |
|   if( pVtab->nRef==0 ){
 | |
|     if( db->magic==SQLITE_MAGIC_BUSY ){
 | |
|       (void)sqlite3SafetyOff(db);
 | |
|       pVtab->pModule->xDisconnect(pVtab);
 | |
|       (void)sqlite3SafetyOn(db);
 | |
|     } else {
 | |
|       pVtab->pModule->xDisconnect(pVtab);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Clear any and all virtual-table information from the Table record.
 | |
| ** This routine is called, for example, just before deleting the Table
 | |
| ** record.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabClear(Table *p){
 | |
|   sqlite3_vtab *pVtab = p->pVtab;
 | |
|   if( pVtab ){
 | |
|     assert( p->pMod && p->pMod->pModule );
 | |
|     sqlite3VtabUnlock(p->pSchema->db, pVtab);
 | |
|     p->pVtab = 0;
 | |
|   }
 | |
|   if( p->azModuleArg ){
 | |
|     int i;
 | |
|     for(i=0; i<p->nModuleArg; i++){
 | |
|       sqlite3_free(p->azModuleArg[i]);
 | |
|     }
 | |
|     sqlite3_free(p->azModuleArg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new module argument to pTable->azModuleArg[].
 | |
| ** The string is not copied - the pointer is stored.  The
 | |
| ** string will be freed automatically when the table is
 | |
| ** deleted.
 | |
| */
 | |
| static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
 | |
|   int i = pTable->nModuleArg++;
 | |
|   int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
 | |
|   char **azModuleArg;
 | |
|   azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
 | |
|   if( azModuleArg==0 ){
 | |
|     int j;
 | |
|     for(j=0; j<i; j++){
 | |
|       sqlite3_free(pTable->azModuleArg[j]);
 | |
|     }
 | |
|     sqlite3_free(zArg);
 | |
|     sqlite3_free(pTable->azModuleArg);
 | |
|     pTable->nModuleArg = 0;
 | |
|   }else{
 | |
|     azModuleArg[i] = zArg;
 | |
|     azModuleArg[i+1] = 0;
 | |
|   }
 | |
|   pTable->azModuleArg = azModuleArg;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
 | |
| ** statement.  The module name has been parsed, but the optional list
 | |
| ** of parameters that follow the module name are still pending.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabBeginParse(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   Token *pName1,        /* Name of new table, or database name */
 | |
|   Token *pName2,        /* Name of new table or NULL */
 | |
|   Token *pModuleName    /* Name of the module for the virtual table */
 | |
| ){
 | |
|   int iDb;              /* The database the table is being created in */
 | |
|   Table *pTable;        /* The new virtual table */
 | |
|   sqlite3 *db;          /* Database connection */
 | |
| 
 | |
|   if( pParse->db->flags & SQLITE_SharedCache ){
 | |
|     sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0);
 | |
|   pTable = pParse->pNewTable;
 | |
|   if( pTable==0 || pParse->nErr ) return;
 | |
|   assert( 0==pTable->pIndex );
 | |
| 
 | |
|   db = pParse->db;
 | |
|   iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
 | |
|   assert( iDb>=0 );
 | |
| 
 | |
|   pTable->isVirtual = 1;
 | |
|   pTable->nModuleArg = 0;
 | |
|   addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
 | |
|   addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
 | |
|   addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
 | |
|   pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_AUTHORIZATION
 | |
|   /* Creating a virtual table invokes the authorization callback twice.
 | |
|   ** The first invocation, to obtain permission to INSERT a row into the
 | |
|   ** sqlite_master table, has already been made by sqlite3StartTable().
 | |
|   ** The second call, to obtain permission to create the table, is made now.
 | |
|   */
 | |
|   if( pTable->azModuleArg ){
 | |
|     sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 
 | |
|             pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine takes the module argument that has been accumulating
 | |
| ** in pParse->zArg[] and appends it to the list of arguments on the
 | |
| ** virtual table currently under construction in pParse->pTable.
 | |
| */
 | |
| static void addArgumentToVtab(Parse *pParse){
 | |
|   if( pParse->sArg.z && pParse->pNewTable ){
 | |
|     const char *z = (const char*)pParse->sArg.z;
 | |
|     int n = pParse->sArg.n;
 | |
|     sqlite3 *db = pParse->db;
 | |
|     addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
 | |
| ** has been completely parsed.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
 | |
|   Table *pTab;        /* The table being constructed */
 | |
|   sqlite3 *db;        /* The database connection */
 | |
|   char *zModule;      /* The module name of the table: USING modulename */
 | |
|   Module *pMod = 0;
 | |
| 
 | |
|   addArgumentToVtab(pParse);
 | |
|   pParse->sArg.z = 0;
 | |
| 
 | |
|   /* Lookup the module name. */
 | |
|   pTab = pParse->pNewTable;
 | |
|   if( pTab==0 ) return;
 | |
|   db = pParse->db;
 | |
|   if( pTab->nModuleArg<1 ) return;
 | |
|   zModule = pTab->azModuleArg[0];
 | |
|   pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule));
 | |
|   pTab->pMod = pMod;
 | |
|   
 | |
|   /* If the CREATE VIRTUAL TABLE statement is being entered for the
 | |
|   ** first time (in other words if the virtual table is actually being
 | |
|   ** created now instead of just being read out of sqlite_master) then
 | |
|   ** do additional initialization work and store the statement text
 | |
|   ** in the sqlite_master table.
 | |
|   */
 | |
|   if( !db->init.busy ){
 | |
|     char *zStmt;
 | |
|     char *zWhere;
 | |
|     int iDb;
 | |
|     Vdbe *v;
 | |
| 
 | |
|     /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
 | |
|     if( pEnd ){
 | |
|       pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n;
 | |
|     }
 | |
|     zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
 | |
| 
 | |
|     /* A slot for the record has already been allocated in the 
 | |
|     ** SQLITE_MASTER table.  We just need to update that slot with all
 | |
|     ** the information we've collected.  
 | |
|     **
 | |
|     ** The VM register number pParse->regRowid holds the rowid of an
 | |
|     ** entry in the sqlite_master table tht was created for this vtab
 | |
|     ** by sqlite3StartTable().
 | |
|     */
 | |
|     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
 | |
|     sqlite3NestedParse(pParse,
 | |
|       "UPDATE %Q.%s "
 | |
|          "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
 | |
|        "WHERE rowid=#%d",
 | |
|       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
 | |
|       pTab->zName,
 | |
|       pTab->zName,
 | |
|       zStmt,
 | |
|       pParse->regRowid
 | |
|     );
 | |
|     sqlite3_free(zStmt);
 | |
|     v = sqlite3GetVdbe(pParse);
 | |
|     sqlite3ChangeCookie(pParse, iDb);
 | |
| 
 | |
|     sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
 | |
|     zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName);
 | |
|     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC);
 | |
|     sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
 | |
|                          pTab->zName, strlen(pTab->zName) + 1);
 | |
|   }
 | |
| 
 | |
|   /* If we are rereading the sqlite_master table create the in-memory
 | |
|   ** record of the table. If the module has already been registered,
 | |
|   ** also call the xConnect method here.
 | |
|   */
 | |
|   else {
 | |
|     Table *pOld;
 | |
|     Schema *pSchema = pTab->pSchema;
 | |
|     const char *zName = pTab->zName;
 | |
|     int nName = strlen(zName) + 1;
 | |
|     pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
 | |
|     if( pOld ){
 | |
|       db->mallocFailed = 1;
 | |
|       assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
 | |
|       return;
 | |
|     }
 | |
|     pSchema->db = pParse->db;
 | |
|     pParse->pNewTable = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine when it sees the first token
 | |
| ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){
 | |
|   addArgumentToVtab(pParse);
 | |
|   pParse->sArg.z = 0;
 | |
|   pParse->sArg.n = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The parser calls this routine for each token after the first token
 | |
| ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){
 | |
|   Token *pArg = &pParse->sArg;
 | |
|   if( pArg->z==0 ){
 | |
|     pArg->z = p->z;
 | |
|     pArg->n = p->n;
 | |
|   }else{
 | |
|     assert(pArg->z < p->z);
 | |
|     pArg->n = (p->z + p->n - pArg->z);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke a virtual table constructor (either xCreate or xConnect). The
 | |
| ** pointer to the function to invoke is passed as the fourth parameter
 | |
| ** to this procedure.
 | |
| */
 | |
| static int vtabCallConstructor(
 | |
|   sqlite3 *db, 
 | |
|   Table *pTab,
 | |
|   Module *pMod,
 | |
|   int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
 | |
|   char **pzErr
 | |
| ){
 | |
|   int rc;
 | |
|   int rc2;
 | |
|   sqlite3_vtab *pVtab = 0;
 | |
|   const char *const*azArg = (const char *const*)pTab->azModuleArg;
 | |
|   int nArg = pTab->nModuleArg;
 | |
|   char *zErr = 0;
 | |
|   char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
 | |
| 
 | |
|   if( !zModuleName ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   assert( !db->pVTab );
 | |
|   assert( xConstruct );
 | |
| 
 | |
|   db->pVTab = pTab;
 | |
|   rc = sqlite3SafetyOff(db);
 | |
|   assert( rc==SQLITE_OK );
 | |
|   rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr);
 | |
|   rc2 = sqlite3SafetyOn(db);
 | |
|   if( rc==SQLITE_OK && pVtab ){
 | |
|     pVtab->pModule = pMod->pModule;
 | |
|     pVtab->nRef = 1;
 | |
|     pTab->pVtab = pVtab;
 | |
|   }
 | |
| 
 | |
|   if( SQLITE_OK!=rc ){
 | |
|     if( zErr==0 ){
 | |
|       *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
 | |
|     }else {
 | |
|       *pzErr = sqlite3MPrintf(db, "%s", zErr);
 | |
|       sqlite3_free(zErr);
 | |
|     }
 | |
|   }else if( db->pVTab ){
 | |
|     const char *zFormat = "vtable constructor did not declare schema: %s";
 | |
|     *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
 | |
|     rc = SQLITE_ERROR;
 | |
|   } 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = rc2;
 | |
|   }
 | |
|   db->pVTab = 0;
 | |
|   sqlite3_free(zModuleName);
 | |
| 
 | |
|   /* If everything went according to plan, loop through the columns
 | |
|   ** of the table to see if any of them contain the token "hidden".
 | |
|   ** If so, set the Column.isHidden flag and remove the token from
 | |
|   ** the type string.
 | |
|   */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     int iCol;
 | |
|     for(iCol=0; iCol<pTab->nCol; iCol++){
 | |
|       char *zType = pTab->aCol[iCol].zType;
 | |
|       int nType;
 | |
|       int i = 0;
 | |
|       if( !zType ) continue;
 | |
|       nType = strlen(zType);
 | |
|       if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){
 | |
|         for(i=0; i<nType; i++){
 | |
|           if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
 | |
|            && (zType[i+7]=='\0' || zType[i+7]==' ')
 | |
|           ){
 | |
|             i++;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if( i<nType ){
 | |
|         int j;
 | |
|         int nDel = 6 + (zType[i+6] ? 1 : 0);
 | |
|         for(j=i; (j+nDel)<=nType; j++){
 | |
|           zType[j] = zType[j+nDel];
 | |
|         }
 | |
|         if( zType[i]=='\0' && i>0 ){
 | |
|           assert(zType[i-1]==' ');
 | |
|           zType[i-1] = '\0';
 | |
|         }
 | |
|         pTab->aCol[iCol].isHidden = 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is invoked by the parser to call the xConnect() method
 | |
| ** of the virtual table pTab. If an error occurs, an error code is returned 
 | |
| ** and an error left in pParse.
 | |
| **
 | |
| ** This call is a no-op if table pTab is not a virtual table.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
 | |
|   Module *pMod;
 | |
|   int rc = SQLITE_OK;
 | |
| 
 | |
|   if( !pTab || !pTab->isVirtual || pTab->pVtab ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   pMod = pTab->pMod;
 | |
|   if( !pMod ){
 | |
|     const char *zModule = pTab->azModuleArg[0];
 | |
|     sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
 | |
|     rc = SQLITE_ERROR;
 | |
|   } else {
 | |
|     char *zErr = 0;
 | |
|     sqlite3 *db = pParse->db;
 | |
|     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       sqlite3ErrorMsg(pParse, "%s", zErr);
 | |
|     }
 | |
|     sqlite3_free(zErr);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add the virtual table pVtab to the array sqlite3.aVTrans[].
 | |
| */
 | |
| static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){
 | |
|   const int ARRAY_INCR = 5;
 | |
| 
 | |
|   /* Grow the sqlite3.aVTrans array if required */
 | |
|   if( (db->nVTrans%ARRAY_INCR)==0 ){
 | |
|     sqlite3_vtab **aVTrans;
 | |
|     int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
 | |
|     aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
 | |
|     if( !aVTrans ){
 | |
|       return SQLITE_NOMEM;
 | |
|     }
 | |
|     memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
 | |
|     db->aVTrans = aVTrans;
 | |
|   }
 | |
| 
 | |
|   /* Add pVtab to the end of sqlite3.aVTrans */
 | |
|   db->aVTrans[db->nVTrans++] = pVtab;
 | |
|   sqlite3VtabLock(pVtab);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is invoked by the vdbe to call the xCreate method
 | |
| ** of the virtual table named zTab in database iDb. 
 | |
| **
 | |
| ** If an error occurs, *pzErr is set to point an an English language
 | |
| ** description of the error and an SQLITE_XXX error code is returned.
 | |
| ** In this case the caller must call sqlite3_free() on *pzErr.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
 | |
|   int rc = SQLITE_OK;
 | |
|   Table *pTab;
 | |
|   Module *pMod;
 | |
|   const char *zModule;
 | |
| 
 | |
|   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
 | |
|   assert(pTab && pTab->isVirtual && !pTab->pVtab);
 | |
|   pMod = pTab->pMod;
 | |
|   zModule = pTab->azModuleArg[0];
 | |
| 
 | |
|   /* If the module has been registered and includes a Create method, 
 | |
|   ** invoke it now. If the module has not been registered, return an 
 | |
|   ** error. Otherwise, do nothing.
 | |
|   */
 | |
|   if( !pMod ){
 | |
|     *pzErr = sqlite3MPrintf(db, "no such module: %s", zModule);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }else{
 | |
|     rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
 | |
|   }
 | |
| 
 | |
|   if( rc==SQLITE_OK && pTab->pVtab ){
 | |
|       rc = addToVTrans(db, pTab->pVtab);
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is used to set the schema of a virtual table.  It is only
 | |
| ** valid to call this function from within the xCreate() or xConnect() of a
 | |
| ** virtual table module.
 | |
| */
 | |
| SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
 | |
|   Parse sParse;
 | |
| 
 | |
|   int rc = SQLITE_OK;
 | |
|   Table *pTab;
 | |
|   char *zErr = 0;
 | |
| 
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pTab = db->pVTab;
 | |
|   if( !pTab ){
 | |
|     sqlite3Error(db, SQLITE_MISUSE, 0);
 | |
|     sqlite3_mutex_leave(db->mutex);
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0);
 | |
| 
 | |
|   memset(&sParse, 0, sizeof(Parse));
 | |
|   sParse.declareVtab = 1;
 | |
|   sParse.db = db;
 | |
| 
 | |
|   if( 
 | |
|       SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) && 
 | |
|       sParse.pNewTable && 
 | |
|       !sParse.pNewTable->pSelect && 
 | |
|       !sParse.pNewTable->isVirtual 
 | |
|   ){
 | |
|     pTab->aCol = sParse.pNewTable->aCol;
 | |
|     pTab->nCol = sParse.pNewTable->nCol;
 | |
|     sParse.pNewTable->nCol = 0;
 | |
|     sParse.pNewTable->aCol = 0;
 | |
|     db->pVTab = 0;
 | |
|   } else {
 | |
|     sqlite3Error(db, SQLITE_ERROR, zErr);
 | |
|     sqlite3_free(zErr);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   sParse.declareVtab = 0;
 | |
| 
 | |
|   sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe);
 | |
|   sqlite3DeleteTable(sParse.pNewTable);
 | |
|   sParse.pNewTable = 0;
 | |
| 
 | |
|   assert( (rc&0xff)==rc );
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function is invoked by the vdbe to call the xDestroy method
 | |
| ** of the virtual table named zTab in database iDb. This occurs
 | |
| ** when a DROP TABLE is mentioned.
 | |
| **
 | |
| ** This call is a no-op if zTab is not a virtual table.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab)
 | |
| {
 | |
|   int rc = SQLITE_OK;
 | |
|   Table *pTab;
 | |
| 
 | |
|   pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
 | |
|   assert(pTab);
 | |
|   if( pTab->pVtab ){
 | |
|     int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy;
 | |
|     rc = sqlite3SafetyOff(db);
 | |
|     assert( rc==SQLITE_OK );
 | |
|     if( xDestroy ){
 | |
|       rc = xDestroy(pTab->pVtab);
 | |
|     }
 | |
|     (void)sqlite3SafetyOn(db);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       pTab->pVtab = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This function invokes either the xRollback or xCommit method
 | |
| ** of each of the virtual tables in the sqlite3.aVTrans array. The method
 | |
| ** called is identified by the second argument, "offset", which is
 | |
| ** the offset of the method to call in the sqlite3_module structure.
 | |
| **
 | |
| ** The array is cleared after invoking the callbacks. 
 | |
| */
 | |
| static void callFinaliser(sqlite3 *db, sqlite3_intptr_t offset){
 | |
|   int i;
 | |
|   if( db->aVTrans ){
 | |
|     for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){
 | |
|       sqlite3_vtab *pVtab = db->aVTrans[i];
 | |
|       int (*x)(sqlite3_vtab *);
 | |
|       x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset);
 | |
|       if( x ) x(pVtab);
 | |
|       sqlite3VtabUnlock(db, pVtab);
 | |
|     }
 | |
|     sqlite3_free(db->aVTrans);
 | |
|     db->nVTrans = 0;
 | |
|     db->aVTrans = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If argument rc2 is not SQLITE_OK, then return it and do nothing. 
 | |
| ** Otherwise, invoke the xSync method of all virtual tables in the 
 | |
| ** sqlite3.aVTrans array. Return the error code for the first error 
 | |
| ** that occurs, or SQLITE_OK if all xSync operations are successful.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc2){
 | |
|   int i;
 | |
|   int rc = SQLITE_OK;
 | |
|   int rcsafety;
 | |
|   sqlite3_vtab **aVTrans = db->aVTrans;
 | |
|   if( rc2!=SQLITE_OK ) return rc2;
 | |
| 
 | |
|   rc = sqlite3SafetyOff(db);
 | |
|   db->aVTrans = 0;
 | |
|   for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){
 | |
|     sqlite3_vtab *pVtab = aVTrans[i];
 | |
|     int (*x)(sqlite3_vtab *);
 | |
|     x = pVtab->pModule->xSync;
 | |
|     if( x ){
 | |
|       rc = x(pVtab);
 | |
|     }
 | |
|   }
 | |
|   db->aVTrans = aVTrans;
 | |
|   rcsafety = sqlite3SafetyOn(db);
 | |
| 
 | |
|   if( rc==SQLITE_OK ){
 | |
|     rc = rcsafety;
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the xRollback method of all virtual tables in the 
 | |
| ** sqlite3.aVTrans array. Then clear the array itself.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){
 | |
|   callFinaliser(db, (sqlite3_intptr_t)(&((sqlite3_module *)0)->xRollback));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the xCommit method of all virtual tables in the 
 | |
| ** sqlite3.aVTrans array. Then clear the array itself.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){
 | |
|   callFinaliser(db, (sqlite3_intptr_t)(&((sqlite3_module *)0)->xCommit));
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the virtual table pVtab supports the transaction interface
 | |
| ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
 | |
| ** not currently open, invoke the xBegin method now.
 | |
| **
 | |
| ** If the xBegin call is successful, place the sqlite3_vtab pointer
 | |
| ** in the sqlite3.aVTrans array.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){
 | |
|   int rc = SQLITE_OK;
 | |
|   const sqlite3_module *pModule;
 | |
| 
 | |
|   /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
 | |
|   ** than zero, then this function is being called from within a
 | |
|   ** virtual module xSync() callback. It is illegal to write to 
 | |
|   ** virtual module tables in this case, so return SQLITE_LOCKED.
 | |
|   */
 | |
|   if( 0==db->aVTrans && db->nVTrans>0 ){
 | |
|     return SQLITE_LOCKED;
 | |
|   }
 | |
|   if( !pVtab ){
 | |
|     return SQLITE_OK;
 | |
|   } 
 | |
|   pModule = pVtab->pModule;
 | |
| 
 | |
|   if( pModule->xBegin ){
 | |
|     int i;
 | |
| 
 | |
| 
 | |
|     /* If pVtab is already in the aVTrans array, return early */
 | |
|     for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){
 | |
|       if( db->aVTrans[i]==pVtab ){
 | |
|         return SQLITE_OK;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Invoke the xBegin method */
 | |
|     rc = pModule->xBegin(pVtab);
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
| 
 | |
|     rc = addToVTrans(db, pVtab);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The first parameter (pDef) is a function implementation.  The
 | |
| ** second parameter (pExpr) is the first argument to this function.
 | |
| ** If pExpr is a column in a virtual table, then let the virtual
 | |
| ** table implementation have an opportunity to overload the function.
 | |
| **
 | |
| ** This routine is used to allow virtual table implementations to
 | |
| ** overload MATCH, LIKE, GLOB, and REGEXP operators.
 | |
| **
 | |
| ** Return either the pDef argument (indicating no change) or a 
 | |
| ** new FuncDef structure that is marked as ephemeral using the
 | |
| ** SQLITE_FUNC_EPHEM flag.
 | |
| */
 | |
| SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(
 | |
|   sqlite3 *db,    /* Database connection for reporting malloc problems */
 | |
|   FuncDef *pDef,  /* Function to possibly overload */
 | |
|   int nArg,       /* Number of arguments to the function */
 | |
|   Expr *pExpr     /* First argument to the function */
 | |
| ){
 | |
|   Table *pTab;
 | |
|   sqlite3_vtab *pVtab;
 | |
|   sqlite3_module *pMod;
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
 | |
|   void *pArg;
 | |
|   FuncDef *pNew;
 | |
|   int rc = 0;
 | |
|   char *zLowerName;
 | |
|   unsigned char *z;
 | |
| 
 | |
| 
 | |
|   /* Check to see the left operand is a column in a virtual table */
 | |
|   if( pExpr==0 ) return pDef;
 | |
|   if( pExpr->op!=TK_COLUMN ) return pDef;
 | |
|   pTab = pExpr->pTab;
 | |
|   if( pTab==0 ) return pDef;
 | |
|   if( !pTab->isVirtual ) return pDef;
 | |
|   pVtab = pTab->pVtab;
 | |
|   assert( pVtab!=0 );
 | |
|   assert( pVtab->pModule!=0 );
 | |
|   pMod = (sqlite3_module *)pVtab->pModule;
 | |
|   if( pMod->xFindFunction==0 ) return pDef;
 | |
|  
 | |
|   /* Call the xFindFunction method on the virtual table implementation
 | |
|   ** to see if the implementation wants to overload this function 
 | |
|   */
 | |
|   zLowerName = sqlite3DbStrDup(db, pDef->zName);
 | |
|   if( zLowerName ){
 | |
|     for(z=(unsigned char*)zLowerName; *z; z++){
 | |
|       *z = sqlite3UpperToLower[*z];
 | |
|     }
 | |
|     rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
 | |
|     sqlite3_free(zLowerName);
 | |
|   }
 | |
|   if( rc==0 ){
 | |
|     return pDef;
 | |
|   }
 | |
| 
 | |
|   /* Create a new ephemeral function definition for the overloaded
 | |
|   ** function */
 | |
|   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + strlen(pDef->zName) );
 | |
|   if( pNew==0 ){
 | |
|     return pDef;
 | |
|   }
 | |
|   *pNew = *pDef;
 | |
|   memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1);
 | |
|   pNew->xFunc = xFunc;
 | |
|   pNew->pUserData = pArg;
 | |
|   pNew->flags |= SQLITE_FUNC_EPHEM;
 | |
|   return pNew;
 | |
| }
 | |
| 
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /************** End of vtab.c ************************************************/
 | |
| /************** Begin file where.c *******************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This module contains C code that generates VDBE code used to process
 | |
| ** the WHERE clause of SQL statements.  This module is reponsible for
 | |
| ** generating the code that loops through a table looking for applicable
 | |
| ** rows.  Indices are selected and used to speed the search when doing
 | |
| ** so is applicable.  Because this module is responsible for selecting
 | |
| ** indices, you might also think of this module as the "query optimizer".
 | |
| **
 | |
| ** $Id: where.c,v 1.290 2008/03/17 17:08:33 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
 | |
| */
 | |
| #define BMS  (sizeof(Bitmask)*8)
 | |
| 
 | |
| /*
 | |
| ** Trace output macros
 | |
| */
 | |
| #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
 | |
| SQLITE_PRIVATE int sqlite3WhereTrace = 0;
 | |
| # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
 | |
| #else
 | |
| # define WHERETRACE(X)
 | |
| #endif
 | |
| 
 | |
| /* Forward reference
 | |
| */
 | |
| typedef struct WhereClause WhereClause;
 | |
| typedef struct ExprMaskSet ExprMaskSet;
 | |
| 
 | |
| /*
 | |
| ** The query generator uses an array of instances of this structure to
 | |
| ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
 | |
| ** clause subexpression is separated from the others by an AND operator.
 | |
| **
 | |
| ** All WhereTerms are collected into a single WhereClause structure.  
 | |
| ** The following identity holds:
 | |
| **
 | |
| **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
 | |
| **
 | |
| ** When a term is of the form:
 | |
| **
 | |
| **              X <op> <expr>
 | |
| **
 | |
| ** where X is a column name and <op> is one of certain operators,
 | |
| ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
 | |
| ** cursor number and column number for X.  WhereTerm.operator records
 | |
| ** the <op> using a bitmask encoding defined by WO_xxx below.  The
 | |
| ** use of a bitmask encoding for the operator allows us to search
 | |
| ** quickly for terms that match any of several different operators.
 | |
| **
 | |
| ** prereqRight and prereqAll record sets of cursor numbers,
 | |
| ** but they do so indirectly.  A single ExprMaskSet structure translates
 | |
| ** cursor number into bits and the translated bit is stored in the prereq
 | |
| ** fields.  The translation is used in order to maximize the number of
 | |
| ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
 | |
| ** spread out over the non-negative integers.  For example, the cursor
 | |
| ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
 | |
| ** translates these sparse cursor numbers into consecutive integers
 | |
| ** beginning with 0 in order to make the best possible use of the available
 | |
| ** bits in the Bitmask.  So, in the example above, the cursor numbers
 | |
| ** would be mapped into integers 0 through 7.
 | |
| */
 | |
| typedef struct WhereTerm WhereTerm;
 | |
| struct WhereTerm {
 | |
|   Expr *pExpr;            /* Pointer to the subexpression */
 | |
|   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
 | |
|   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
 | |
|   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
 | |
|   u16 eOperator;          /* A WO_xx value describing <op> */
 | |
|   u8 flags;               /* Bit flags.  See below */
 | |
|   u8 nChild;              /* Number of children that must disable us */
 | |
|   WhereClause *pWC;       /* The clause this term is part of */
 | |
|   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
 | |
|   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Allowed values of WhereTerm.flags
 | |
| */
 | |
| #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
 | |
| #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
 | |
| #define TERM_CODED      0x04   /* This term is already coded */
 | |
| #define TERM_COPIED     0x08   /* Has a child */
 | |
| #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure holds all information about a
 | |
| ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
 | |
| */
 | |
| struct WhereClause {
 | |
|   Parse *pParse;           /* The parser context */
 | |
|   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
 | |
|   int nTerm;               /* Number of terms */
 | |
|   int nSlot;               /* Number of entries in a[] */
 | |
|   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
 | |
|   WhereTerm aStatic[10];   /* Initial static space for a[] */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure keeps track of a mapping
 | |
| ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
 | |
| **
 | |
| ** The VDBE cursor numbers are small integers contained in 
 | |
| ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
 | |
| ** clause, the cursor numbers might not begin with 0 and they might
 | |
| ** contain gaps in the numbering sequence.  But we want to make maximum
 | |
| ** use of the bits in our bitmasks.  This structure provides a mapping
 | |
| ** from the sparse cursor numbers into consecutive integers beginning
 | |
| ** with 0.
 | |
| **
 | |
| ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
 | |
| ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
 | |
| **
 | |
| ** For example, if the WHERE clause expression used these VDBE
 | |
| ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
 | |
| ** would map those cursor numbers into bits 0 through 5.
 | |
| **
 | |
| ** Note that the mapping is not necessarily ordered.  In the example
 | |
| ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
 | |
| ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
 | |
| ** does not really matter.  What is important is that sparse cursor
 | |
| ** numbers all get mapped into bit numbers that begin with 0 and contain
 | |
| ** no gaps.
 | |
| */
 | |
| struct ExprMaskSet {
 | |
|   int n;                        /* Number of assigned cursor values */
 | |
|   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Bitmasks for the operators that indices are able to exploit.  An
 | |
| ** OR-ed combination of these values can be used when searching for
 | |
| ** terms in the where clause.
 | |
| */
 | |
| #define WO_IN     1
 | |
| #define WO_EQ     2
 | |
| #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
 | |
| #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
 | |
| #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
 | |
| #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
 | |
| #define WO_MATCH  64
 | |
| #define WO_ISNULL 128
 | |
| 
 | |
| /*
 | |
| ** Value for flags returned by bestIndex().  
 | |
| **
 | |
| ** The least significant byte is reserved as a mask for WO_ values above.
 | |
| ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
 | |
| ** But if the table is the right table of a left join, WhereLevel.flags
 | |
| ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
 | |
| ** the "op" parameter to findTerm when we are resolving equality constraints.
 | |
| ** ISNULL constraints will then not be used on the right table of a left
 | |
| ** join.  Tickets #2177 and #2189.
 | |
| */
 | |
| #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
 | |
| #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
 | |
| #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
 | |
| #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
 | |
| #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
 | |
| #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
 | |
| #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
 | |
| #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
 | |
| #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
 | |
| #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
 | |
| #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
 | |
| #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
 | |
| 
 | |
| /*
 | |
| ** Initialize a preallocated WhereClause structure.
 | |
| */
 | |
| static void whereClauseInit(
 | |
|   WhereClause *pWC,        /* The WhereClause to be initialized */
 | |
|   Parse *pParse,           /* The parsing context */
 | |
|   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
 | |
| ){
 | |
|   pWC->pParse = pParse;
 | |
|   pWC->pMaskSet = pMaskSet;
 | |
|   pWC->nTerm = 0;
 | |
|   pWC->nSlot = ArraySize(pWC->aStatic);
 | |
|   pWC->a = pWC->aStatic;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Deallocate a WhereClause structure.  The WhereClause structure
 | |
| ** itself is not freed.  This routine is the inverse of whereClauseInit().
 | |
| */
 | |
| static void whereClauseClear(WhereClause *pWC){
 | |
|   int i;
 | |
|   WhereTerm *a;
 | |
|   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
 | |
|     if( a->flags & TERM_DYNAMIC ){
 | |
|       sqlite3ExprDelete(a->pExpr);
 | |
|     }
 | |
|   }
 | |
|   if( pWC->a!=pWC->aStatic ){
 | |
|     sqlite3_free(pWC->a);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Add a new entries to the WhereClause structure.  Increase the allocated
 | |
| ** space as necessary.
 | |
| **
 | |
| ** If the flags argument includes TERM_DYNAMIC, then responsibility
 | |
| ** for freeing the expression p is assumed by the WhereClause object.
 | |
| **
 | |
| ** WARNING:  This routine might reallocate the space used to store
 | |
| ** WhereTerms.  All pointers to WhereTerms should be invalided after
 | |
| ** calling this routine.  Such pointers may be reinitialized by referencing
 | |
| ** the pWC->a[] array.
 | |
| */
 | |
| static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
 | |
|   WhereTerm *pTerm;
 | |
|   int idx;
 | |
|   if( pWC->nTerm>=pWC->nSlot ){
 | |
|     WhereTerm *pOld = pWC->a;
 | |
|     pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
 | |
|     if( pWC->a==0 ){
 | |
|       pWC->pParse->db->mallocFailed = 1;
 | |
|       if( flags & TERM_DYNAMIC ){
 | |
|         sqlite3ExprDelete(p);
 | |
|       }
 | |
|       pWC->a = pOld;
 | |
|       return 0;
 | |
|     }
 | |
|     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
 | |
|     if( pOld!=pWC->aStatic ){
 | |
|       sqlite3_free(pOld);
 | |
|     }
 | |
|     pWC->nSlot *= 2;
 | |
|   }
 | |
|   pTerm = &pWC->a[idx = pWC->nTerm];
 | |
|   pWC->nTerm++;
 | |
|   pTerm->pExpr = p;
 | |
|   pTerm->flags = flags;
 | |
|   pTerm->pWC = pWC;
 | |
|   pTerm->iParent = -1;
 | |
|   return idx;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine identifies subexpressions in the WHERE clause where
 | |
| ** each subexpression is separated by the AND operator or some other
 | |
| ** operator specified in the op parameter.  The WhereClause structure
 | |
| ** is filled with pointers to subexpressions.  For example:
 | |
| **
 | |
| **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
 | |
| **           \________/     \_______________/     \________________/
 | |
| **            slot[0]            slot[1]               slot[2]
 | |
| **
 | |
| ** The original WHERE clause in pExpr is unaltered.  All this routine
 | |
| ** does is make slot[] entries point to substructure within pExpr.
 | |
| **
 | |
| ** In the previous sentence and in the diagram, "slot[]" refers to
 | |
| ** the WhereClause.a[] array.  This array grows as needed to contain
 | |
| ** all terms of the WHERE clause.
 | |
| */
 | |
| static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
 | |
|   if( pExpr==0 ) return;
 | |
|   if( pExpr->op!=op ){
 | |
|     whereClauseInsert(pWC, pExpr, 0);
 | |
|   }else{
 | |
|     whereSplit(pWC, pExpr->pLeft, op);
 | |
|     whereSplit(pWC, pExpr->pRight, op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Initialize an expression mask set
 | |
| */
 | |
| #define initMaskSet(P)  memset(P, 0, sizeof(*P))
 | |
| 
 | |
| /*
 | |
| ** Return the bitmask for the given cursor number.  Return 0 if
 | |
| ** iCursor is not in the set.
 | |
| */
 | |
| static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
 | |
|   int i;
 | |
|   for(i=0; i<pMaskSet->n; i++){
 | |
|     if( pMaskSet->ix[i]==iCursor ){
 | |
|       return ((Bitmask)1)<<i;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new mask for cursor iCursor.
 | |
| **
 | |
| ** There is one cursor per table in the FROM clause.  The number of
 | |
| ** tables in the FROM clause is limited by a test early in the
 | |
| ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
 | |
| ** array will never overflow.
 | |
| */
 | |
| static void createMask(ExprMaskSet *pMaskSet, int iCursor){
 | |
|   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
 | |
|   pMaskSet->ix[pMaskSet->n++] = iCursor;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine walks (recursively) an expression tree and generates
 | |
| ** a bitmask indicating which tables are used in that expression
 | |
| ** tree.
 | |
| **
 | |
| ** In order for this routine to work, the calling function must have
 | |
| ** previously invoked sqlite3ExprResolveNames() on the expression.  See
 | |
| ** the header comment on that routine for additional information.
 | |
| ** The sqlite3ExprResolveNames() routines looks for column names and
 | |
| ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
 | |
| ** the VDBE cursor number of the table.  This routine just has to
 | |
| ** translate the cursor numbers into bitmask values and OR all
 | |
| ** the bitmasks together.
 | |
| */
 | |
| static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
 | |
| static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
 | |
| static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
 | |
|   Bitmask mask = 0;
 | |
|   if( p==0 ) return 0;
 | |
|   if( p->op==TK_COLUMN ){
 | |
|     mask = getMask(pMaskSet, p->iTable);
 | |
|     return mask;
 | |
|   }
 | |
|   mask = exprTableUsage(pMaskSet, p->pRight);
 | |
|   mask |= exprTableUsage(pMaskSet, p->pLeft);
 | |
|   mask |= exprListTableUsage(pMaskSet, p->pList);
 | |
|   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
 | |
|   return mask;
 | |
| }
 | |
| static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
 | |
|   int i;
 | |
|   Bitmask mask = 0;
 | |
|   if( pList ){
 | |
|     for(i=0; i<pList->nExpr; i++){
 | |
|       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
 | |
|     }
 | |
|   }
 | |
|   return mask;
 | |
| }
 | |
| static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
 | |
|   Bitmask mask = 0;
 | |
|   while( pS ){
 | |
|     mask |= exprListTableUsage(pMaskSet, pS->pEList);
 | |
|     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
 | |
|     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
 | |
|     mask |= exprTableUsage(pMaskSet, pS->pWhere);
 | |
|     mask |= exprTableUsage(pMaskSet, pS->pHaving);
 | |
|     pS = pS->pPrior;
 | |
|   }
 | |
|   return mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given operator is one of the operators that is
 | |
| ** allowed for an indexable WHERE clause term.  The allowed operators are
 | |
| ** "=", "<", ">", "<=", ">=", and "IN".
 | |
| */
 | |
| static int allowedOp(int op){
 | |
|   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
 | |
|   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
 | |
|   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
 | |
|   assert( TK_GE==TK_EQ+4 );
 | |
|   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Swap two objects of type T.
 | |
| */
 | |
| #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
 | |
| 
 | |
| /*
 | |
| ** Commute a comparision operator.  Expressions of the form "X op Y"
 | |
| ** are converted into "Y op X".
 | |
| **
 | |
| ** If a collation sequence is associated with either the left or right
 | |
| ** side of the comparison, it remains associated with the same side after
 | |
| ** the commutation. So "Y collate NOCASE op X" becomes 
 | |
| ** "X collate NOCASE op Y". This is because any collation sequence on
 | |
| ** the left hand side of a comparison overrides any collation sequence 
 | |
| ** attached to the right. For the same reason the EP_ExpCollate flag
 | |
| ** is not commuted.
 | |
| */
 | |
| static void exprCommute(Expr *pExpr){
 | |
|   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
 | |
|   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
 | |
|   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
 | |
|   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
 | |
|   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
 | |
|   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
 | |
|   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
 | |
|   if( pExpr->op>=TK_GT ){
 | |
|     assert( TK_LT==TK_GT+2 );
 | |
|     assert( TK_GE==TK_LE+2 );
 | |
|     assert( TK_GT>TK_EQ );
 | |
|     assert( TK_GT<TK_LE );
 | |
|     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
 | |
|     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Translate from TK_xx operator to WO_xx bitmask.
 | |
| */
 | |
| static int operatorMask(int op){
 | |
|   int c;
 | |
|   assert( allowedOp(op) );
 | |
|   if( op==TK_IN ){
 | |
|     c = WO_IN;
 | |
|   }else if( op==TK_ISNULL ){
 | |
|     c = WO_ISNULL;
 | |
|   }else{
 | |
|     c = WO_EQ<<(op-TK_EQ);
 | |
|   }
 | |
|   assert( op!=TK_ISNULL || c==WO_ISNULL );
 | |
|   assert( op!=TK_IN || c==WO_IN );
 | |
|   assert( op!=TK_EQ || c==WO_EQ );
 | |
|   assert( op!=TK_LT || c==WO_LT );
 | |
|   assert( op!=TK_LE || c==WO_LE );
 | |
|   assert( op!=TK_GT || c==WO_GT );
 | |
|   assert( op!=TK_GE || c==WO_GE );
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
 | |
| ** where X is a reference to the iColumn of table iCur and <op> is one of
 | |
| ** the WO_xx operator codes specified by the op parameter.
 | |
| ** Return a pointer to the term.  Return 0 if not found.
 | |
| */
 | |
| static WhereTerm *findTerm(
 | |
|   WhereClause *pWC,     /* The WHERE clause to be searched */
 | |
|   int iCur,             /* Cursor number of LHS */
 | |
|   int iColumn,          /* Column number of LHS */
 | |
|   Bitmask notReady,     /* RHS must not overlap with this mask */
 | |
|   u16 op,               /* Mask of WO_xx values describing operator */
 | |
|   Index *pIdx           /* Must be compatible with this index, if not NULL */
 | |
| ){
 | |
|   WhereTerm *pTerm;
 | |
|   int k;
 | |
|   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
 | |
|     if( pTerm->leftCursor==iCur
 | |
|        && (pTerm->prereqRight & notReady)==0
 | |
|        && pTerm->leftColumn==iColumn
 | |
|        && (pTerm->eOperator & op)!=0
 | |
|     ){
 | |
|       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
 | |
|         Expr *pX = pTerm->pExpr;
 | |
|         CollSeq *pColl;
 | |
|         char idxaff;
 | |
|         int j;
 | |
|         Parse *pParse = pWC->pParse;
 | |
| 
 | |
|         idxaff = pIdx->pTable->aCol[iColumn].affinity;
 | |
|         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
 | |
| 
 | |
|         /* Figure out the collation sequence required from an index for
 | |
|         ** it to be useful for optimising expression pX. Store this
 | |
|         ** value in variable pColl.
 | |
|         */
 | |
|         assert(pX->pLeft);
 | |
|         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
 | |
|         if( !pColl ){
 | |
|           pColl = pParse->db->pDfltColl;
 | |
|         }
 | |
| 
 | |
|         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
 | |
|         assert( j<pIdx->nColumn );
 | |
|         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
 | |
|       }
 | |
|       return pTerm;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Forward reference */
 | |
| static void exprAnalyze(SrcList*, WhereClause*, int);
 | |
| 
 | |
| /*
 | |
| ** Call exprAnalyze on all terms in a WHERE clause.  
 | |
| **
 | |
| **
 | |
| */
 | |
| static void exprAnalyzeAll(
 | |
|   SrcList *pTabList,       /* the FROM clause */
 | |
|   WhereClause *pWC         /* the WHERE clause to be analyzed */
 | |
| ){
 | |
|   int i;
 | |
|   for(i=pWC->nTerm-1; i>=0; i--){
 | |
|     exprAnalyze(pTabList, pWC, i);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | |
| /*
 | |
| ** Check to see if the given expression is a LIKE or GLOB operator that
 | |
| ** can be optimized using inequality constraints.  Return TRUE if it is
 | |
| ** so and false if not.
 | |
| **
 | |
| ** In order for the operator to be optimizible, the RHS must be a string
 | |
| ** literal that does not begin with a wildcard.  
 | |
| */
 | |
| static int isLikeOrGlob(
 | |
|   sqlite3 *db,      /* The database */
 | |
|   Expr *pExpr,      /* Test this expression */
 | |
|   int *pnPattern,   /* Number of non-wildcard prefix characters */
 | |
|   int *pisComplete, /* True if the only wildcard is % in the last character */
 | |
|   int *pnoCase      /* True if uppercase is equivalent to lowercase */
 | |
| ){
 | |
|   const char *z;
 | |
|   Expr *pRight, *pLeft;
 | |
|   ExprList *pList;
 | |
|   int c, cnt;
 | |
|   char wc[3];
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
 | |
|     return 0;
 | |
|   }
 | |
| #ifdef SQLITE_EBCDIC
 | |
|   if( *pnoCase ) return 0;
 | |
| #endif
 | |
|   pList = pExpr->pList;
 | |
|   pRight = pList->a[0].pExpr;
 | |
|   if( pRight->op!=TK_STRING ){
 | |
|     return 0;
 | |
|   }
 | |
|   pLeft = pList->a[1].pExpr;
 | |
|   if( pLeft->op!=TK_COLUMN ){
 | |
|     return 0;
 | |
|   }
 | |
|   pColl = pLeft->pColl;
 | |
|   assert( pColl!=0 || pLeft->iColumn==-1 );
 | |
|   if( pColl==0 ){
 | |
|     /* No collation is defined for the ROWID.  Use the default. */
 | |
|     pColl = db->pDfltColl;
 | |
|   }
 | |
|   if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
 | |
|       (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
 | |
|     return 0;
 | |
|   }
 | |
|   sqlite3DequoteExpr(db, pRight);
 | |
|   z = (char *)pRight->token.z;
 | |
|   cnt = 0;
 | |
|   if( z ){
 | |
|     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
 | |
|   }
 | |
|   if( cnt==0 || 255==(u8)z[cnt] ){
 | |
|     return 0;
 | |
|   }
 | |
|   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
 | |
|   *pnPattern = cnt;
 | |
|   return 1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | |
| 
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /*
 | |
| ** Check to see if the given expression is of the form
 | |
| **
 | |
| **         column MATCH expr
 | |
| **
 | |
| ** If it is then return TRUE.  If not, return FALSE.
 | |
| */
 | |
| static int isMatchOfColumn(
 | |
|   Expr *pExpr      /* Test this expression */
 | |
| ){
 | |
|   ExprList *pList;
 | |
| 
 | |
|   if( pExpr->op!=TK_FUNCTION ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pExpr->token.n!=5 ||
 | |
|        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
 | |
|     return 0;
 | |
|   }
 | |
|   pList = pExpr->pList;
 | |
|   if( pList->nExpr!=2 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pList->a[1].pExpr->op != TK_COLUMN ){
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /*
 | |
| ** If the pBase expression originated in the ON or USING clause of
 | |
| ** a join, then transfer the appropriate markings over to derived.
 | |
| */
 | |
| static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
 | |
|   pDerived->flags |= pBase->flags & EP_FromJoin;
 | |
|   pDerived->iRightJoinTable = pBase->iRightJoinTable;
 | |
| }
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | |
| /*
 | |
| ** Return TRUE if the given term of an OR clause can be converted
 | |
| ** into an IN clause.  The iCursor and iColumn define the left-hand
 | |
| ** side of the IN clause.
 | |
| **
 | |
| ** The context is that we have multiple OR-connected equality terms
 | |
| ** like this:
 | |
| **
 | |
| **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
 | |
| **
 | |
| ** The pOrTerm input to this routine corresponds to a single term of
 | |
| ** this OR clause.  In order for the term to be a condidate for
 | |
| ** conversion to an IN operator, the following must be true:
 | |
| **
 | |
| **     *  The left-hand side of the term must be the column which
 | |
| **        is identified by iCursor and iColumn.
 | |
| **
 | |
| **     *  If the right-hand side is also a column, then the affinities
 | |
| **        of both right and left sides must be such that no type
 | |
| **        conversions are required on the right.  (Ticket #2249)
 | |
| **
 | |
| ** If both of these conditions are true, then return true.  Otherwise
 | |
| ** return false.
 | |
| */
 | |
| static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
 | |
|   int affLeft, affRight;
 | |
|   assert( pOrTerm->eOperator==WO_EQ );
 | |
|   if( pOrTerm->leftCursor!=iCursor ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( pOrTerm->leftColumn!=iColumn ){
 | |
|     return 0;
 | |
|   }
 | |
|   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
 | |
|   if( affRight==0 ){
 | |
|     return 1;
 | |
|   }
 | |
|   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
 | |
|   if( affRight!=affLeft ){
 | |
|     return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return true if the given term of an OR clause can be ignored during
 | |
| ** a check to make sure all OR terms are candidates for optimization.
 | |
| ** In other words, return true if a call to the orTermIsOptCandidate()
 | |
| ** above returned false but it is not necessary to disqualify the
 | |
| ** optimization.
 | |
| **
 | |
| ** Suppose the original OR phrase was this:
 | |
| **
 | |
| **           a=4  OR  a=11  OR  a=b
 | |
| **
 | |
| ** During analysis, the third term gets flipped around and duplicate
 | |
| ** so that we are left with this:
 | |
| **
 | |
| **           a=4  OR  a=11  OR  a=b  OR  b=a
 | |
| **
 | |
| ** Since the last two terms are duplicates, only one of them
 | |
| ** has to qualify in order for the whole phrase to qualify.  When
 | |
| ** this routine is called, we know that pOrTerm did not qualify.
 | |
| ** This routine merely checks to see if pOrTerm has a duplicate that
 | |
| ** might qualify.  If there is a duplicate that has not yet been
 | |
| ** disqualified, then return true.  If there are no duplicates, or
 | |
| ** the duplicate has also been disqualifed, return false.
 | |
| */
 | |
| static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
 | |
|   if( pOrTerm->flags & TERM_COPIED ){
 | |
|     /* This is the original term.  The duplicate is to the left had
 | |
|     ** has not yet been analyzed and thus has not yet been disqualified. */
 | |
|     return 1;
 | |
|   }
 | |
|   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
 | |
|      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
 | |
|     /* This is a duplicate term.  The original qualified so this one
 | |
|     ** does not have to. */
 | |
|     return 1;
 | |
|   }
 | |
|   /* This is either a singleton term or else it is a duplicate for
 | |
|   ** which the original did not qualify.  Either way we are done for. */
 | |
|   return 0;
 | |
| }
 | |
| #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
 | |
| 
 | |
| /*
 | |
| ** The input to this routine is an WhereTerm structure with only the
 | |
| ** "pExpr" field filled in.  The job of this routine is to analyze the
 | |
| ** subexpression and populate all the other fields of the WhereTerm
 | |
| ** structure.
 | |
| **
 | |
| ** If the expression is of the form "<expr> <op> X" it gets commuted
 | |
| ** to the standard form of "X <op> <expr>".  If the expression is of
 | |
| ** the form "X <op> Y" where both X and Y are columns, then the original
 | |
| ** expression is unchanged and a new virtual expression of the form
 | |
| ** "Y <op> X" is added to the WHERE clause and analyzed separately.
 | |
| */
 | |
| static void exprAnalyze(
 | |
|   SrcList *pSrc,            /* the FROM clause */
 | |
|   WhereClause *pWC,         /* the WHERE clause */
 | |
|   int idxTerm               /* Index of the term to be analyzed */
 | |
| ){
 | |
|   WhereTerm *pTerm;
 | |
|   ExprMaskSet *pMaskSet;
 | |
|   Expr *pExpr;
 | |
|   Bitmask prereqLeft;
 | |
|   Bitmask prereqAll;
 | |
|   int nPattern;
 | |
|   int isComplete;
 | |
|   int noCase;
 | |
|   int op;
 | |
|   Parse *pParse = pWC->pParse;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( db->mallocFailed ){
 | |
|     return;
 | |
|   }
 | |
|   pTerm = &pWC->a[idxTerm];
 | |
|   pMaskSet = pWC->pMaskSet;
 | |
|   pExpr = pTerm->pExpr;
 | |
|   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
 | |
|   op = pExpr->op;
 | |
|   if( op==TK_IN ){
 | |
|     assert( pExpr->pRight==0 );
 | |
|     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
 | |
|                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
 | |
|   }else if( op==TK_ISNULL ){
 | |
|     pTerm->prereqRight = 0;
 | |
|   }else{
 | |
|     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
 | |
|   }
 | |
|   prereqAll = exprTableUsage(pMaskSet, pExpr);
 | |
|   if( ExprHasProperty(pExpr, EP_FromJoin) ){
 | |
|     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
 | |
|   }
 | |
|   pTerm->prereqAll = prereqAll;
 | |
|   pTerm->leftCursor = -1;
 | |
|   pTerm->iParent = -1;
 | |
|   pTerm->eOperator = 0;
 | |
|   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
 | |
|     Expr *pLeft = pExpr->pLeft;
 | |
|     Expr *pRight = pExpr->pRight;
 | |
|     if( pLeft->op==TK_COLUMN ){
 | |
|       pTerm->leftCursor = pLeft->iTable;
 | |
|       pTerm->leftColumn = pLeft->iColumn;
 | |
|       pTerm->eOperator = operatorMask(op);
 | |
|     }
 | |
|     if( pRight && pRight->op==TK_COLUMN ){
 | |
|       WhereTerm *pNew;
 | |
|       Expr *pDup;
 | |
|       if( pTerm->leftCursor>=0 ){
 | |
|         int idxNew;
 | |
|         pDup = sqlite3ExprDup(db, pExpr);
 | |
|         if( db->mallocFailed ){
 | |
|           sqlite3ExprDelete(pDup);
 | |
|           return;
 | |
|         }
 | |
|         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|         if( idxNew==0 ) return;
 | |
|         pNew = &pWC->a[idxNew];
 | |
|         pNew->iParent = idxTerm;
 | |
|         pTerm = &pWC->a[idxTerm];
 | |
|         pTerm->nChild = 1;
 | |
|         pTerm->flags |= TERM_COPIED;
 | |
|       }else{
 | |
|         pDup = pExpr;
 | |
|         pNew = pTerm;
 | |
|       }
 | |
|       exprCommute(pDup);
 | |
|       pLeft = pDup->pLeft;
 | |
|       pNew->leftCursor = pLeft->iTable;
 | |
|       pNew->leftColumn = pLeft->iColumn;
 | |
|       pNew->prereqRight = prereqLeft;
 | |
|       pNew->prereqAll = prereqAll;
 | |
|       pNew->eOperator = operatorMask(pDup->op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
 | |
|   /* If a term is the BETWEEN operator, create two new virtual terms
 | |
|   ** that define the range that the BETWEEN implements.
 | |
|   */
 | |
|   else if( pExpr->op==TK_BETWEEN ){
 | |
|     ExprList *pList = pExpr->pList;
 | |
|     int i;
 | |
|     static const u8 ops[] = {TK_GE, TK_LE};
 | |
|     assert( pList!=0 );
 | |
|     assert( pList->nExpr==2 );
 | |
|     for(i=0; i<2; i++){
 | |
|       Expr *pNewExpr;
 | |
|       int idxNew;
 | |
|       pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
 | |
|                              sqlite3ExprDup(db, pList->a[i].pExpr), 0);
 | |
|       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|       exprAnalyze(pSrc, pWC, idxNew);
 | |
|       pTerm = &pWC->a[idxTerm];
 | |
|       pWC->a[idxNew].iParent = idxTerm;
 | |
|     }
 | |
|     pTerm->nChild = 2;
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
 | |
| 
 | |
| #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
 | |
|   /* Attempt to convert OR-connected terms into an IN operator so that
 | |
|   ** they can make use of indices.  Example:
 | |
|   **
 | |
|   **      x = expr1  OR  expr2 = x  OR  x = expr3
 | |
|   **
 | |
|   ** is converted into
 | |
|   **
 | |
|   **      x IN (expr1,expr2,expr3)
 | |
|   **
 | |
|   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
 | |
|   ** the compiler for the the IN operator is part of sub-queries.
 | |
|   */
 | |
|   else if( pExpr->op==TK_OR ){
 | |
|     int ok;
 | |
|     int i, j;
 | |
|     int iColumn, iCursor;
 | |
|     WhereClause sOr;
 | |
|     WhereTerm *pOrTerm;
 | |
| 
 | |
|     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
 | |
|     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
 | |
|     whereSplit(&sOr, pExpr, TK_OR);
 | |
|     exprAnalyzeAll(pSrc, &sOr);
 | |
|     assert( sOr.nTerm>=2 );
 | |
|     j = 0;
 | |
|     if( db->mallocFailed ) goto or_not_possible;
 | |
|     do{
 | |
|       assert( j<sOr.nTerm );
 | |
|       iColumn = sOr.a[j].leftColumn;
 | |
|       iCursor = sOr.a[j].leftCursor;
 | |
|       ok = iCursor>=0;
 | |
|       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | |
|         if( pOrTerm->eOperator!=WO_EQ ){
 | |
|           goto or_not_possible;
 | |
|         }
 | |
|         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
 | |
|           pOrTerm->flags |= TERM_OR_OK;
 | |
|         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
 | |
|           pOrTerm->flags &= ~TERM_OR_OK;
 | |
|         }else{
 | |
|           ok = 0;
 | |
|         }
 | |
|       }
 | |
|     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
 | |
|     if( ok ){
 | |
|       ExprList *pList = 0;
 | |
|       Expr *pNew, *pDup;
 | |
|       Expr *pLeft = 0;
 | |
|       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
 | |
|         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
 | |
|         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
 | |
|         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
 | |
|         pLeft = pOrTerm->pExpr->pLeft;
 | |
|       }
 | |
|       assert( pLeft!=0 );
 | |
|       pDup = sqlite3ExprDup(db, pLeft);
 | |
|       pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
 | |
|       if( pNew ){
 | |
|         int idxNew;
 | |
|         transferJoinMarkings(pNew, pExpr);
 | |
|         pNew->pList = pList;
 | |
|         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|         exprAnalyze(pSrc, pWC, idxNew);
 | |
|         pTerm = &pWC->a[idxTerm];
 | |
|         pWC->a[idxNew].iParent = idxTerm;
 | |
|         pTerm->nChild = 1;
 | |
|       }else{
 | |
|         sqlite3ExprListDelete(pList);
 | |
|       }
 | |
|     }
 | |
| or_not_possible:
 | |
|     whereClauseClear(&sOr);
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
 | |
|   /* Add constraints to reduce the search space on a LIKE or GLOB
 | |
|   ** operator.
 | |
|   **
 | |
|   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
 | |
|   **
 | |
|   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
 | |
|   **
 | |
|   ** The last character of the prefix "abc" is incremented to form the
 | |
|   ** termination condidtion "abd".  This trick of incrementing the last
 | |
|   ** is not 255 and if the character set is not EBCDIC.  
 | |
|   */
 | |
|   if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){
 | |
|     Expr *pLeft, *pRight;
 | |
|     Expr *pStr1, *pStr2;
 | |
|     Expr *pNewExpr1, *pNewExpr2;
 | |
|     int idxNew1, idxNew2;
 | |
| 
 | |
|     pLeft = pExpr->pList->a[1].pExpr;
 | |
|     pRight = pExpr->pList->a[0].pExpr;
 | |
|     pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
 | |
|     if( pStr1 ){
 | |
|       sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
 | |
|       pStr1->token.n = nPattern;
 | |
|       pStr1->flags = EP_Dequoted;
 | |
|     }
 | |
|     pStr2 = sqlite3ExprDup(db, pStr1);
 | |
|     if( !db->mallocFailed ){
 | |
|       u8 c, *pC;
 | |
|       assert( pStr2->token.dyn );
 | |
|       pC = (u8*)&pStr2->token.z[nPattern-1];
 | |
|       c = *pC;
 | |
|       if( noCase ) c = sqlite3UpperToLower[c];
 | |
|       *pC = c + 1;
 | |
|     }
 | |
|     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
 | |
|     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|     exprAnalyze(pSrc, pWC, idxNew1);
 | |
|     pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
 | |
|     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|     exprAnalyze(pSrc, pWC, idxNew2);
 | |
|     pTerm = &pWC->a[idxTerm];
 | |
|     if( isComplete ){
 | |
|       pWC->a[idxNew1].iParent = idxTerm;
 | |
|       pWC->a[idxNew2].iParent = idxTerm;
 | |
|       pTerm->nChild = 2;
 | |
|     }
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   /* Add a WO_MATCH auxiliary term to the constraint set if the
 | |
|   ** current expression is of the form:  column MATCH expr.
 | |
|   ** This information is used by the xBestIndex methods of
 | |
|   ** virtual tables.  The native query optimizer does not attempt
 | |
|   ** to do anything with MATCH functions.
 | |
|   */
 | |
|   if( isMatchOfColumn(pExpr) ){
 | |
|     int idxNew;
 | |
|     Expr *pRight, *pLeft;
 | |
|     WhereTerm *pNewTerm;
 | |
|     Bitmask prereqColumn, prereqExpr;
 | |
| 
 | |
|     pRight = pExpr->pList->a[0].pExpr;
 | |
|     pLeft = pExpr->pList->a[1].pExpr;
 | |
|     prereqExpr = exprTableUsage(pMaskSet, pRight);
 | |
|     prereqColumn = exprTableUsage(pMaskSet, pLeft);
 | |
|     if( (prereqExpr & prereqColumn)==0 ){
 | |
|       Expr *pNewExpr;
 | |
|       pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
 | |
|       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
 | |
|       pNewTerm = &pWC->a[idxNew];
 | |
|       pNewTerm->prereqRight = prereqExpr;
 | |
|       pNewTerm->leftCursor = pLeft->iTable;
 | |
|       pNewTerm->leftColumn = pLeft->iColumn;
 | |
|       pNewTerm->eOperator = WO_MATCH;
 | |
|       pNewTerm->iParent = idxTerm;
 | |
|       pTerm = &pWC->a[idxTerm];
 | |
|       pTerm->nChild = 1;
 | |
|       pTerm->flags |= TERM_COPIED;
 | |
|       pNewTerm->prereqAll = pTerm->prereqAll;
 | |
|     }
 | |
|   }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
 | |
| ** a reference to any table other than the iBase table.
 | |
| */
 | |
| static int referencesOtherTables(
 | |
|   ExprList *pList,          /* Search expressions in ths list */
 | |
|   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
 | |
|   int iFirst,               /* Be searching with the iFirst-th expression */
 | |
|   int iBase                 /* Ignore references to this table */
 | |
| ){
 | |
|   Bitmask allowed = ~getMask(pMaskSet, iBase);
 | |
|   while( iFirst<pList->nExpr ){
 | |
|     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
 | |
|       return 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine decides if pIdx can be used to satisfy the ORDER BY
 | |
| ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
 | |
| ** ORDER BY clause, this routine returns 0.
 | |
| **
 | |
| ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
 | |
| ** left-most table in the FROM clause of that same SELECT statement and
 | |
| ** the table has a cursor number of "base".  pIdx is an index on pTab.
 | |
| **
 | |
| ** nEqCol is the number of columns of pIdx that are used as equality
 | |
| ** constraints.  Any of these columns may be missing from the ORDER BY
 | |
| ** clause and the match can still be a success.
 | |
| **
 | |
| ** All terms of the ORDER BY that match against the index must be either
 | |
| ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
 | |
| ** index do not need to satisfy this constraint.)  The *pbRev value is
 | |
| ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
 | |
| ** the ORDER BY clause is all ASC.
 | |
| */
 | |
| static int isSortingIndex(
 | |
|   Parse *pParse,          /* Parsing context */
 | |
|   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
 | |
|   Index *pIdx,            /* The index we are testing */
 | |
|   int base,               /* Cursor number for the table to be sorted */
 | |
|   ExprList *pOrderBy,     /* The ORDER BY clause */
 | |
|   int nEqCol,             /* Number of index columns with == constraints */
 | |
|   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | |
| ){
 | |
|   int i, j;                       /* Loop counters */
 | |
|   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
 | |
|   int nTerm;                      /* Number of ORDER BY terms */
 | |
|   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   assert( pOrderBy!=0 );
 | |
|   nTerm = pOrderBy->nExpr;
 | |
|   assert( nTerm>0 );
 | |
| 
 | |
|   /* Match terms of the ORDER BY clause against columns of
 | |
|   ** the index.
 | |
|   **
 | |
|   ** Note that indices have pIdx->nColumn regular columns plus
 | |
|   ** one additional column containing the rowid.  The rowid column
 | |
|   ** of the index is also allowed to match against the ORDER BY
 | |
|   ** clause.
 | |
|   */
 | |
|   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
 | |
|     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
 | |
|     CollSeq *pColl;    /* The collating sequence of pExpr */
 | |
|     int termSortOrder; /* Sort order for this term */
 | |
|     int iColumn;       /* The i-th column of the index.  -1 for rowid */
 | |
|     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
 | |
|     const char *zColl; /* Name of the collating sequence for i-th index term */
 | |
| 
 | |
|     pExpr = pTerm->pExpr;
 | |
|     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
 | |
|       /* Can not use an index sort on anything that is not a column in the
 | |
|       ** left-most table of the FROM clause */
 | |
|       break;
 | |
|     }
 | |
|     pColl = sqlite3ExprCollSeq(pParse, pExpr);
 | |
|     if( !pColl ){
 | |
|       pColl = db->pDfltColl;
 | |
|     }
 | |
|     if( i<pIdx->nColumn ){
 | |
|       iColumn = pIdx->aiColumn[i];
 | |
|       if( iColumn==pIdx->pTable->iPKey ){
 | |
|         iColumn = -1;
 | |
|       }
 | |
|       iSortOrder = pIdx->aSortOrder[i];
 | |
|       zColl = pIdx->azColl[i];
 | |
|     }else{
 | |
|       iColumn = -1;
 | |
|       iSortOrder = 0;
 | |
|       zColl = pColl->zName;
 | |
|     }
 | |
|     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
 | |
|       /* Term j of the ORDER BY clause does not match column i of the index */
 | |
|       if( i<nEqCol ){
 | |
|         /* If an index column that is constrained by == fails to match an
 | |
|         ** ORDER BY term, that is OK.  Just ignore that column of the index
 | |
|         */
 | |
|         continue;
 | |
|       }else{
 | |
|         /* If an index column fails to match and is not constrained by ==
 | |
|         ** then the index cannot satisfy the ORDER BY constraint.
 | |
|         */
 | |
|         return 0;
 | |
|       }
 | |
|     }
 | |
|     assert( pIdx->aSortOrder!=0 );
 | |
|     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
 | |
|     assert( iSortOrder==0 || iSortOrder==1 );
 | |
|     termSortOrder = iSortOrder ^ pTerm->sortOrder;
 | |
|     if( i>nEqCol ){
 | |
|       if( termSortOrder!=sortOrder ){
 | |
|         /* Indices can only be used if all ORDER BY terms past the
 | |
|         ** equality constraints are all either DESC or ASC. */
 | |
|         return 0;
 | |
|       }
 | |
|     }else{
 | |
|       sortOrder = termSortOrder;
 | |
|     }
 | |
|     j++;
 | |
|     pTerm++;
 | |
|     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 | |
|       /* If the indexed column is the primary key and everything matches
 | |
|       ** so far and none of the ORDER BY terms to the right reference other
 | |
|       ** tables in the join, then we are assured that the index can be used 
 | |
|       ** to sort because the primary key is unique and so none of the other
 | |
|       ** columns will make any difference
 | |
|       */
 | |
|       j = nTerm;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   *pbRev = sortOrder!=0;
 | |
|   if( j>=nTerm ){
 | |
|     /* All terms of the ORDER BY clause are covered by this index so
 | |
|     ** this index can be used for sorting. */
 | |
|     return 1;
 | |
|   }
 | |
|   if( pIdx->onError!=OE_None && i==pIdx->nColumn
 | |
|       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
 | |
|     /* All terms of this index match some prefix of the ORDER BY clause
 | |
|     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
 | |
|     ** clause reference other tables in a join.  If this is all true then
 | |
|     ** the order by clause is superfluous. */
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
 | |
| ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
 | |
| ** true for reverse ROWID and false for forward ROWID order.
 | |
| */
 | |
| static int sortableByRowid(
 | |
|   int base,               /* Cursor number for table to be sorted */
 | |
|   ExprList *pOrderBy,     /* The ORDER BY clause */
 | |
|   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
 | |
|   int *pbRev              /* Set to 1 if ORDER BY is DESC */
 | |
| ){
 | |
|   Expr *p;
 | |
| 
 | |
|   assert( pOrderBy!=0 );
 | |
|   assert( pOrderBy->nExpr>0 );
 | |
|   p = pOrderBy->a[0].pExpr;
 | |
|   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
 | |
|     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
 | |
|     *pbRev = pOrderBy->a[0].sortOrder;
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare a crude estimate of the logarithm of the input value.
 | |
| ** The results need not be exact.  This is only used for estimating
 | |
| ** the total cost of performing operatings with O(logN) or O(NlogN)
 | |
| ** complexity.  Because N is just a guess, it is no great tragedy if
 | |
| ** logN is a little off.
 | |
| */
 | |
| static double estLog(double N){
 | |
|   double logN = 1;
 | |
|   double x = 10;
 | |
|   while( N>x ){
 | |
|     logN += 1;
 | |
|     x *= 10;
 | |
|   }
 | |
|   return logN;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Two routines for printing the content of an sqlite3_index_info
 | |
| ** structure.  Used for testing and debugging only.  If neither
 | |
| ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
 | |
| ** are no-ops.
 | |
| */
 | |
| #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
 | |
| static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
 | |
|   int i;
 | |
|   if( !sqlite3WhereTrace ) return;
 | |
|   for(i=0; i<p->nConstraint; i++){
 | |
|     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
 | |
|        i,
 | |
|        p->aConstraint[i].iColumn,
 | |
|        p->aConstraint[i].iTermOffset,
 | |
|        p->aConstraint[i].op,
 | |
|        p->aConstraint[i].usable);
 | |
|   }
 | |
|   for(i=0; i<p->nOrderBy; i++){
 | |
|     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
 | |
|        i,
 | |
|        p->aOrderBy[i].iColumn,
 | |
|        p->aOrderBy[i].desc);
 | |
|   }
 | |
| }
 | |
| static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
 | |
|   int i;
 | |
|   if( !sqlite3WhereTrace ) return;
 | |
|   for(i=0; i<p->nConstraint; i++){
 | |
|     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
 | |
|        i,
 | |
|        p->aConstraintUsage[i].argvIndex,
 | |
|        p->aConstraintUsage[i].omit);
 | |
|   }
 | |
|   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
 | |
|   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
 | |
|   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
 | |
|   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
 | |
| }
 | |
| #else
 | |
| #define TRACE_IDX_INPUTS(A)
 | |
| #define TRACE_IDX_OUTPUTS(A)
 | |
| #endif
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
| /*
 | |
| ** Compute the best index for a virtual table.
 | |
| **
 | |
| ** The best index is computed by the xBestIndex method of the virtual
 | |
| ** table module.  This routine is really just a wrapper that sets up
 | |
| ** the sqlite3_index_info structure that is used to communicate with
 | |
| ** xBestIndex.
 | |
| **
 | |
| ** In a join, this routine might be called multiple times for the
 | |
| ** same virtual table.  The sqlite3_index_info structure is created
 | |
| ** and initialized on the first invocation and reused on all subsequent
 | |
| ** invocations.  The sqlite3_index_info structure is also used when
 | |
| ** code is generated to access the virtual table.  The whereInfoDelete() 
 | |
| ** routine takes care of freeing the sqlite3_index_info structure after
 | |
| ** everybody has finished with it.
 | |
| */
 | |
| static double bestVirtualIndex(
 | |
|   Parse *pParse,                 /* The parsing context */
 | |
|   WhereClause *pWC,              /* The WHERE clause */
 | |
|   struct SrcList_item *pSrc,     /* The FROM clause term to search */
 | |
|   Bitmask notReady,              /* Mask of cursors that are not available */
 | |
|   ExprList *pOrderBy,            /* The order by clause */
 | |
|   int orderByUsable,             /* True if we can potential sort */
 | |
|   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
 | |
| ){
 | |
|   Table *pTab = pSrc->pTab;
 | |
|   sqlite3_index_info *pIdxInfo;
 | |
|   struct sqlite3_index_constraint *pIdxCons;
 | |
|   struct sqlite3_index_orderby *pIdxOrderBy;
 | |
|   struct sqlite3_index_constraint_usage *pUsage;
 | |
|   WhereTerm *pTerm;
 | |
|   int i, j;
 | |
|   int nOrderBy;
 | |
|   int rc;
 | |
| 
 | |
|   /* If the sqlite3_index_info structure has not been previously
 | |
|   ** allocated and initialized for this virtual table, then allocate
 | |
|   ** and initialize it now
 | |
|   */
 | |
|   pIdxInfo = *ppIdxInfo;
 | |
|   if( pIdxInfo==0 ){
 | |
|     WhereTerm *pTerm;
 | |
|     int nTerm;
 | |
|     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
 | |
| 
 | |
|     /* Count the number of possible WHERE clause constraints referring
 | |
|     ** to this virtual table */
 | |
|     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 | |
|       if( pTerm->leftCursor != pSrc->iCursor ) continue;
 | |
|       if( pTerm->eOperator==WO_IN ) continue;
 | |
|       if( pTerm->eOperator==WO_ISNULL ) continue;
 | |
|       nTerm++;
 | |
|     }
 | |
| 
 | |
|     /* If the ORDER BY clause contains only columns in the current 
 | |
|     ** virtual table then allocate space for the aOrderBy part of
 | |
|     ** the sqlite3_index_info structure.
 | |
|     */
 | |
|     nOrderBy = 0;
 | |
|     if( pOrderBy ){
 | |
|       for(i=0; i<pOrderBy->nExpr; i++){
 | |
|         Expr *pExpr = pOrderBy->a[i].pExpr;
 | |
|         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
 | |
|       }
 | |
|       if( i==pOrderBy->nExpr ){
 | |
|         nOrderBy = pOrderBy->nExpr;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Allocate the sqlite3_index_info structure
 | |
|     */
 | |
|     pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
 | |
|                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
 | |
|                              + sizeof(*pIdxOrderBy)*nOrderBy );
 | |
|     if( pIdxInfo==0 ){
 | |
|       sqlite3ErrorMsg(pParse, "out of memory");
 | |
|       return 0.0;
 | |
|     }
 | |
|     *ppIdxInfo = pIdxInfo;
 | |
| 
 | |
|     /* Initialize the structure.  The sqlite3_index_info structure contains
 | |
|     ** many fields that are declared "const" to prevent xBestIndex from
 | |
|     ** changing them.  We have to do some funky casting in order to
 | |
|     ** initialize those fields.
 | |
|     */
 | |
|     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
 | |
|     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
 | |
|     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
 | |
|     *(int*)&pIdxInfo->nConstraint = nTerm;
 | |
|     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 | |
|     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
 | |
|     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
 | |
|     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
 | |
|                                                                      pUsage;
 | |
| 
 | |
|     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
 | |
|       if( pTerm->leftCursor != pSrc->iCursor ) continue;
 | |
|       if( pTerm->eOperator==WO_IN ) continue;
 | |
|       if( pTerm->eOperator==WO_ISNULL ) continue;
 | |
|       pIdxCons[j].iColumn = pTerm->leftColumn;
 | |
|       pIdxCons[j].iTermOffset = i;
 | |
|       pIdxCons[j].op = pTerm->eOperator;
 | |
|       /* The direct assignment in the previous line is possible only because
 | |
|       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
 | |
|       ** following asserts verify this fact. */
 | |
|       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
 | |
|       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
 | |
|       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
 | |
|       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
 | |
|       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
 | |
|       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
 | |
|       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
 | |
|       j++;
 | |
|     }
 | |
|     for(i=0; i<nOrderBy; i++){
 | |
|       Expr *pExpr = pOrderBy->a[i].pExpr;
 | |
|       pIdxOrderBy[i].iColumn = pExpr->iColumn;
 | |
|       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* At this point, the sqlite3_index_info structure that pIdxInfo points
 | |
|   ** to will have been initialized, either during the current invocation or
 | |
|   ** during some prior invocation.  Now we just have to customize the
 | |
|   ** details of pIdxInfo for the current invocation and pass it to
 | |
|   ** xBestIndex.
 | |
|   */
 | |
| 
 | |
|   /* The module name must be defined. Also, by this point there must
 | |
|   ** be a pointer to an sqlite3_vtab structure. Otherwise
 | |
|   ** sqlite3ViewGetColumnNames() would have picked up the error. 
 | |
|   */
 | |
|   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
 | |
|   assert( pTab->pVtab );
 | |
| #if 0
 | |
|   if( pTab->pVtab==0 ){
 | |
|     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
 | |
|         pTab->azModuleArg[0], pTab->zName);
 | |
|     return 0.0;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* Set the aConstraint[].usable fields and initialize all 
 | |
|   ** output variables to zero.
 | |
|   **
 | |
|   ** aConstraint[].usable is true for constraints where the right-hand
 | |
|   ** side contains only references to tables to the left of the current
 | |
|   ** table.  In other words, if the constraint is of the form:
 | |
|   **
 | |
|   **           column = expr
 | |
|   **
 | |
|   ** and we are evaluating a join, then the constraint on column is 
 | |
|   ** only valid if all tables referenced in expr occur to the left
 | |
|   ** of the table containing column.
 | |
|   **
 | |
|   ** The aConstraints[] array contains entries for all constraints
 | |
|   ** on the current table.  That way we only have to compute it once
 | |
|   ** even though we might try to pick the best index multiple times.
 | |
|   ** For each attempt at picking an index, the order of tables in the
 | |
|   ** join might be different so we have to recompute the usable flag
 | |
|   ** each time.
 | |
|   */
 | |
|   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
 | |
|   pUsage = pIdxInfo->aConstraintUsage;
 | |
|   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
 | |
|     j = pIdxCons->iTermOffset;
 | |
|     pTerm = &pWC->a[j];
 | |
|     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
 | |
|   }
 | |
|   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
 | |
|   if( pIdxInfo->needToFreeIdxStr ){
 | |
|     sqlite3_free(pIdxInfo->idxStr);
 | |
|   }
 | |
|   pIdxInfo->idxStr = 0;
 | |
|   pIdxInfo->idxNum = 0;
 | |
|   pIdxInfo->needToFreeIdxStr = 0;
 | |
|   pIdxInfo->orderByConsumed = 0;
 | |
|   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
 | |
|   nOrderBy = pIdxInfo->nOrderBy;
 | |
|   if( pIdxInfo->nOrderBy && !orderByUsable ){
 | |
|     *(int*)&pIdxInfo->nOrderBy = 0;
 | |
|   }
 | |
| 
 | |
|   (void)sqlite3SafetyOff(pParse->db);
 | |
|   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
 | |
|   TRACE_IDX_INPUTS(pIdxInfo);
 | |
|   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
 | |
|   TRACE_IDX_OUTPUTS(pIdxInfo);
 | |
|   (void)sqlite3SafetyOn(pParse->db);
 | |
| 
 | |
|   for(i=0; i<pIdxInfo->nConstraint; i++){
 | |
|     if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
 | |
|       sqlite3ErrorMsg(pParse, 
 | |
|           "table %s: xBestIndex returned an invalid plan", pTab->zName);
 | |
|       return 0.0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     if( rc==SQLITE_NOMEM ){
 | |
|       pParse->db->mallocFailed = 1;
 | |
|     }else {
 | |
|       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
 | |
|     }
 | |
|   }
 | |
|   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
 | |
| 
 | |
|   return pIdxInfo->estimatedCost;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
| /*
 | |
| ** Find the best index for accessing a particular table.  Return a pointer
 | |
| ** to the index, flags that describe how the index should be used, the
 | |
| ** number of equality constraints, and the "cost" for this index.
 | |
| **
 | |
| ** The lowest cost index wins.  The cost is an estimate of the amount of
 | |
| ** CPU and disk I/O need to process the request using the selected index.
 | |
| ** Factors that influence cost include:
 | |
| **
 | |
| **    *  The estimated number of rows that will be retrieved.  (The
 | |
| **       fewer the better.)
 | |
| **
 | |
| **    *  Whether or not sorting must occur.
 | |
| **
 | |
| **    *  Whether or not there must be separate lookups in the
 | |
| **       index and in the main table.
 | |
| **
 | |
| */
 | |
| static double bestIndex(
 | |
|   Parse *pParse,              /* The parsing context */
 | |
|   WhereClause *pWC,           /* The WHERE clause */
 | |
|   struct SrcList_item *pSrc,  /* The FROM clause term to search */
 | |
|   Bitmask notReady,           /* Mask of cursors that are not available */
 | |
|   ExprList *pOrderBy,         /* The order by clause */
 | |
|   Index **ppIndex,            /* Make *ppIndex point to the best index */
 | |
|   int *pFlags,                /* Put flags describing this choice in *pFlags */
 | |
|   int *pnEq                   /* Put the number of == or IN constraints here */
 | |
| ){
 | |
|   WhereTerm *pTerm;
 | |
|   Index *bestIdx = 0;         /* Index that gives the lowest cost */
 | |
|   double lowestCost;          /* The cost of using bestIdx */
 | |
|   int bestFlags = 0;          /* Flags associated with bestIdx */
 | |
|   int bestNEq = 0;            /* Best value for nEq */
 | |
|   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
 | |
|   Index *pProbe;              /* An index we are evaluating */
 | |
|   int rev;                    /* True to scan in reverse order */
 | |
|   int flags;                  /* Flags associated with pProbe */
 | |
|   int nEq;                    /* Number of == or IN constraints */
 | |
|   int eqTermMask;             /* Mask of valid equality operators */
 | |
|   double cost;                /* Cost of using pProbe */
 | |
| 
 | |
|   WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
 | |
|   lowestCost = SQLITE_BIG_DBL;
 | |
|   pProbe = pSrc->pTab->pIndex;
 | |
| 
 | |
|   /* If the table has no indices and there are no terms in the where
 | |
|   ** clause that refer to the ROWID, then we will never be able to do
 | |
|   ** anything other than a full table scan on this table.  We might as
 | |
|   ** well put it first in the join order.  That way, perhaps it can be
 | |
|   ** referenced by other tables in the join.
 | |
|   */
 | |
|   if( pProbe==0 &&
 | |
|      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
 | |
|      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
 | |
|     *pFlags = 0;
 | |
|     *ppIndex = 0;
 | |
|     *pnEq = 0;
 | |
|     return 0.0;
 | |
|   }
 | |
| 
 | |
|   /* Check for a rowid=EXPR or rowid IN (...) constraints
 | |
|   */
 | |
|   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | |
|   if( pTerm ){
 | |
|     Expr *pExpr;
 | |
|     *ppIndex = 0;
 | |
|     bestFlags = WHERE_ROWID_EQ;
 | |
|     if( pTerm->eOperator & WO_EQ ){
 | |
|       /* Rowid== is always the best pick.  Look no further.  Because only
 | |
|       ** a single row is generated, output is always in sorted order */
 | |
|       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
 | |
|       *pnEq = 1;
 | |
|       WHERETRACE(("... best is rowid\n"));
 | |
|       return 0.0;
 | |
|     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
 | |
|       /* Rowid IN (LIST): cost is NlogN where N is the number of list
 | |
|       ** elements.  */
 | |
|       lowestCost = pExpr->pList->nExpr;
 | |
|       lowestCost *= estLog(lowestCost);
 | |
|     }else{
 | |
|       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
 | |
|       ** in the result of the inner select.  We have no way to estimate
 | |
|       ** that value so make a wild guess. */
 | |
|       lowestCost = 200;
 | |
|     }
 | |
|     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
 | |
|   }
 | |
| 
 | |
|   /* Estimate the cost of a table scan.  If we do not know how many
 | |
|   ** entries are in the table, use 1 million as a guess.
 | |
|   */
 | |
|   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
 | |
|   WHERETRACE(("... table scan base cost: %.9g\n", cost));
 | |
|   flags = WHERE_ROWID_RANGE;
 | |
| 
 | |
|   /* Check for constraints on a range of rowids in a table scan.
 | |
|   */
 | |
|   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
 | |
|   if( pTerm ){
 | |
|     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
 | |
|       flags |= WHERE_TOP_LIMIT;
 | |
|       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
 | |
|     }
 | |
|     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
 | |
|       flags |= WHERE_BTM_LIMIT;
 | |
|       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
 | |
|     }
 | |
|     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
 | |
|   }else{
 | |
|     flags = 0;
 | |
|   }
 | |
| 
 | |
|   /* If the table scan does not satisfy the ORDER BY clause, increase
 | |
|   ** the cost by NlogN to cover the expense of sorting. */
 | |
|   if( pOrderBy ){
 | |
|     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
 | |
|       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
 | |
|       if( rev ){
 | |
|         flags |= WHERE_REVERSE;
 | |
|       }
 | |
|     }else{
 | |
|       cost += cost*estLog(cost);
 | |
|       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
 | |
|     }
 | |
|   }
 | |
|   if( cost<lowestCost ){
 | |
|     lowestCost = cost;
 | |
|     bestFlags = flags;
 | |
|   }
 | |
| 
 | |
|   /* If the pSrc table is the right table of a LEFT JOIN then we may not
 | |
|   ** use an index to satisfy IS NULL constraints on that table.  This is
 | |
|   ** because columns might end up being NULL if the table does not match -
 | |
|   ** a circumstance which the index cannot help us discover.  Ticket #2177.
 | |
|   */
 | |
|   if( (pSrc->jointype & JT_LEFT)!=0 ){
 | |
|     eqTermMask = WO_EQ|WO_IN;
 | |
|   }else{
 | |
|     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
 | |
|   }
 | |
| 
 | |
|   /* Look at each index.
 | |
|   */
 | |
|   for(; pProbe; pProbe=pProbe->pNext){
 | |
|     int i;                       /* Loop counter */
 | |
|     double inMultiplier = 1;
 | |
| 
 | |
|     WHERETRACE(("... index %s:\n", pProbe->zName));
 | |
| 
 | |
|     /* Count the number of columns in the index that are satisfied
 | |
|     ** by x=EXPR constraints or x IN (...) constraints.
 | |
|     */
 | |
|     flags = 0;
 | |
|     for(i=0; i<pProbe->nColumn; i++){
 | |
|       int j = pProbe->aiColumn[i];
 | |
|       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
 | |
|       if( pTerm==0 ) break;
 | |
|       flags |= WHERE_COLUMN_EQ;
 | |
|       if( pTerm->eOperator & WO_IN ){
 | |
|         Expr *pExpr = pTerm->pExpr;
 | |
|         flags |= WHERE_COLUMN_IN;
 | |
|         if( pExpr->pSelect!=0 ){
 | |
|           inMultiplier *= 25;
 | |
|         }else if( pExpr->pList!=0 ){
 | |
|           inMultiplier *= pExpr->pList->nExpr + 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
 | |
|     nEq = i;
 | |
|     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
 | |
|          && nEq==pProbe->nColumn ){
 | |
|       flags |= WHERE_UNIQUE;
 | |
|     }
 | |
|     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
 | |
| 
 | |
|     /* Look for range constraints
 | |
|     */
 | |
|     if( nEq<pProbe->nColumn ){
 | |
|       int j = pProbe->aiColumn[nEq];
 | |
|       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
 | |
|       if( pTerm ){
 | |
|         flags |= WHERE_COLUMN_RANGE;
 | |
|         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
 | |
|           flags |= WHERE_TOP_LIMIT;
 | |
|           cost /= 3;
 | |
|         }
 | |
|         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
 | |
|           flags |= WHERE_BTM_LIMIT;
 | |
|           cost /= 3;
 | |
|         }
 | |
|         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Add the additional cost of sorting if that is a factor.
 | |
|     */
 | |
|     if( pOrderBy ){
 | |
|       if( (flags & WHERE_COLUMN_IN)==0 &&
 | |
|            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
 | |
|         if( flags==0 ){
 | |
|           flags = WHERE_COLUMN_RANGE;
 | |
|         }
 | |
|         flags |= WHERE_ORDERBY;
 | |
|         if( rev ){
 | |
|           flags |= WHERE_REVERSE;
 | |
|         }
 | |
|       }else{
 | |
|         cost += cost*estLog(cost);
 | |
|         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Check to see if we can get away with using just the index without
 | |
|     ** ever reading the table.  If that is the case, then halve the
 | |
|     ** cost of this index.
 | |
|     */
 | |
|     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
 | |
|       Bitmask m = pSrc->colUsed;
 | |
|       int j;
 | |
|       for(j=0; j<pProbe->nColumn; j++){
 | |
|         int x = pProbe->aiColumn[j];
 | |
|         if( x<BMS-1 ){
 | |
|           m &= ~(((Bitmask)1)<<x);
 | |
|         }
 | |
|       }
 | |
|       if( m==0 ){
 | |
|         flags |= WHERE_IDX_ONLY;
 | |
|         cost /= 2;
 | |
|         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* If this index has achieved the lowest cost so far, then use it.
 | |
|     */
 | |
|     if( flags && cost < lowestCost ){
 | |
|       bestIdx = pProbe;
 | |
|       lowestCost = cost;
 | |
|       bestFlags = flags;
 | |
|       bestNEq = nEq;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Report the best result
 | |
|   */
 | |
|   *ppIndex = bestIdx;
 | |
|   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
 | |
|         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
 | |
|   *pFlags = bestFlags | eqTermMask;
 | |
|   *pnEq = bestNEq;
 | |
|   return lowestCost;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Disable a term in the WHERE clause.  Except, do not disable the term
 | |
| ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
 | |
| ** or USING clause of that join.
 | |
| **
 | |
| ** Consider the term t2.z='ok' in the following queries:
 | |
| **
 | |
| **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
 | |
| **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
 | |
| **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
 | |
| **
 | |
| ** The t2.z='ok' is disabled in the in (2) because it originates
 | |
| ** in the ON clause.  The term is disabled in (3) because it is not part
 | |
| ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
 | |
| **
 | |
| ** Disabling a term causes that term to not be tested in the inner loop
 | |
| ** of the join.  Disabling is an optimization.  When terms are satisfied
 | |
| ** by indices, we disable them to prevent redundant tests in the inner
 | |
| ** loop.  We would get the correct results if nothing were ever disabled,
 | |
| ** but joins might run a little slower.  The trick is to disable as much
 | |
| ** as we can without disabling too much.  If we disabled in (1), we'd get
 | |
| ** the wrong answer.  See ticket #813.
 | |
| */
 | |
| static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
 | |
|   if( pTerm
 | |
|       && (pTerm->flags & TERM_CODED)==0
 | |
|       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
 | |
|   ){
 | |
|     pTerm->flags |= TERM_CODED;
 | |
|     if( pTerm->iParent>=0 ){
 | |
|       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
 | |
|       if( (--pOther->nChild)==0 ){
 | |
|         disableTerm(pLevel, pOther);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that builds a probe for an index.
 | |
| **
 | |
| ** There should be nColumn values on the stack.  The index
 | |
| ** to be probed is pIdx.  Pop the values from the stack and
 | |
| ** replace them all with a single record that is the index
 | |
| ** problem.
 | |
| */
 | |
| static void buildIndexProbe(
 | |
|   Vdbe *v,        /* Generate code into this VM */
 | |
|   int nColumn,    /* The number of columns to check for NULL */
 | |
|   Index *pIdx,    /* Index that we will be searching */
 | |
|   int regSrc,     /* Take values from this register */
 | |
|   int regDest     /* Write the result into this register */
 | |
| ){
 | |
|   assert( regSrc>0 );
 | |
|   assert( regDest>0 );
 | |
|   sqlite3VdbeAddOp3(v, OP_MakeRecord, regSrc, nColumn, regDest);
 | |
|   sqlite3IndexAffinityStr(v, pIdx);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate code for a single equality term of the WHERE clause.  An equality
 | |
| ** term can be either X=expr or X IN (...).   pTerm is the term to be 
 | |
| ** coded.
 | |
| **
 | |
| ** The current value for the constraint is left in register iReg.
 | |
| **
 | |
| ** For a constraint of the form X=expr, the expression is evaluated and its
 | |
| ** result is left on the stack.  For constraints of the form X IN (...)
 | |
| ** this routine sets up a loop that will iterate over all values of X.
 | |
| */
 | |
| static void codeEqualityTerm(
 | |
|   Parse *pParse,      /* The parsing context */
 | |
|   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
 | |
|   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
 | |
|   int iReg            /* Leave results in this register */
 | |
| ){
 | |
|   Expr *pX = pTerm->pExpr;
 | |
|   Vdbe *v = pParse->pVdbe;
 | |
| 
 | |
|   assert( iReg>0 && iReg<=pParse->nMem );
 | |
|   if( pX->op==TK_EQ ){
 | |
|     sqlite3ExprCode(pParse, pX->pRight, iReg);
 | |
|   }else if( pX->op==TK_ISNULL ){
 | |
|     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
 | |
| #ifndef SQLITE_OMIT_SUBQUERY
 | |
|   }else{
 | |
|     int eType;
 | |
|     int iTab;
 | |
|     struct InLoop *pIn;
 | |
| 
 | |
|     assert( pX->op==TK_IN );
 | |
|     eType = sqlite3FindInIndex(pParse, pX, 1);
 | |
|     iTab = pX->iTable;
 | |
|     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
 | |
|     VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
 | |
|     if( pLevel->nIn==0 ){
 | |
|       pLevel->nxt = sqlite3VdbeMakeLabel(v);
 | |
|     }
 | |
|     pLevel->nIn++;
 | |
|     pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
 | |
|                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
 | |
|     pIn = pLevel->aInLoop;
 | |
|     if( pIn ){
 | |
|       pIn += pLevel->nIn - 1;
 | |
|       pIn->iCur = iTab;
 | |
|       if( eType==IN_INDEX_ROWID ){
 | |
|         pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
 | |
|       }else{
 | |
|         pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
 | |
|       }
 | |
|       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
 | |
|     }else{
 | |
|       pLevel->nIn = 0;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   disableTerm(pLevel, pTerm);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate code that will evaluate all == and IN constraints for an
 | |
| ** index.  The values for all constraints are left on the stack.
 | |
| **
 | |
| ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
 | |
| ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
 | |
| ** The index has as many as three equality constraints, but in this
 | |
| ** example, the third "c" value is an inequality.  So only two 
 | |
| ** constraints are coded.  This routine will generate code to evaluate
 | |
| ** a==5 and b IN (1,2,3).  The current values for a and b will be left
 | |
| ** on the stack - a is the deepest and b the shallowest.
 | |
| **
 | |
| ** In the example above nEq==2.  But this subroutine works for any value
 | |
| ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
 | |
| ** The only thing it does is allocate the pLevel->iMem memory cell.
 | |
| **
 | |
| ** This routine always allocates at least one memory cell and puts
 | |
| ** the address of that memory cell in pLevel->iMem.  The code that
 | |
| ** calls this routine will use pLevel->iMem to store the termination
 | |
| ** key value of the loop.  If one or more IN operators appear, then
 | |
| ** this routine allocates an additional nEq memory cells for internal
 | |
| ** use.
 | |
| */
 | |
| static int codeAllEqualityTerms(
 | |
|   Parse *pParse,        /* Parsing context */
 | |
|   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
 | |
|   WhereClause *pWC,     /* The WHERE clause */
 | |
|   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
 | |
|   int nExtraReg         /* Number of extra registers to allocate */
 | |
| ){
 | |
|   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
 | |
|   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
 | |
|   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
 | |
|   int iCur = pLevel->iTabCur;   /* The cursor of the table */
 | |
|   WhereTerm *pTerm;             /* A single constraint term */
 | |
|   int j;                        /* Loop counter */
 | |
|   int regBase;                  /* Base register */
 | |
| 
 | |
|   /* Figure out how many memory cells we will need then allocate them.
 | |
|   ** We always need at least one used to store the loop terminator
 | |
|   ** value.  If there are IN operators we'll need one for each == or
 | |
|   ** IN constraint.
 | |
|   */
 | |
|   pLevel->iMem = pParse->nMem + 1;
 | |
|   regBase = pParse->nMem + 2;
 | |
|   pParse->nMem += pLevel->nEq + 2 + nExtraReg;
 | |
| 
 | |
|   /* Evaluate the equality constraints
 | |
|   */
 | |
|   assert( pIdx->nColumn>=nEq );
 | |
|   for(j=0; j<nEq; j++){
 | |
|     int k = pIdx->aiColumn[j];
 | |
|     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
 | |
|     if( pTerm==0 ) break;
 | |
|     assert( (pTerm->flags & TERM_CODED)==0 );
 | |
|     codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
 | |
|     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
 | |
|       sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
 | |
|     }
 | |
|   }
 | |
|   return regBase;
 | |
| }
 | |
| 
 | |
| #if defined(SQLITE_TEST)
 | |
| /*
 | |
| ** The following variable holds a text description of query plan generated
 | |
| ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
 | |
| ** overwrites the previous.  This information is used for testing and
 | |
| ** analysis only.
 | |
| */
 | |
| SQLITE_API char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
 | |
| static int nQPlan = 0;              /* Next free slow in _query_plan[] */
 | |
| 
 | |
| #endif /* SQLITE_TEST */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Free a WhereInfo structure
 | |
| */
 | |
| static void whereInfoFree(WhereInfo *pWInfo){
 | |
|   if( pWInfo ){
 | |
|     int i;
 | |
|     for(i=0; i<pWInfo->nLevel; i++){
 | |
|       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
 | |
|       if( pInfo ){
 | |
|         assert( pInfo->needToFreeIdxStr==0 );
 | |
|         sqlite3_free(pInfo);
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(pWInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Generate the beginning of the loop used for WHERE clause processing.
 | |
| ** The return value is a pointer to an opaque structure that contains
 | |
| ** information needed to terminate the loop.  Later, the calling routine
 | |
| ** should invoke sqlite3WhereEnd() with the return value of this function
 | |
| ** in order to complete the WHERE clause processing.
 | |
| **
 | |
| ** If an error occurs, this routine returns NULL.
 | |
| **
 | |
| ** The basic idea is to do a nested loop, one loop for each table in
 | |
| ** the FROM clause of a select.  (INSERT and UPDATE statements are the
 | |
| ** same as a SELECT with only a single table in the FROM clause.)  For
 | |
| ** example, if the SQL is this:
 | |
| **
 | |
| **       SELECT * FROM t1, t2, t3 WHERE ...;
 | |
| **
 | |
| ** Then the code generated is conceptually like the following:
 | |
| **
 | |
| **      foreach row1 in t1 do       \    Code generated
 | |
| **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
 | |
| **          foreach row3 in t3 do   /
 | |
| **            ...
 | |
| **          end                     \    Code generated
 | |
| **        end                        |-- by sqlite3WhereEnd()
 | |
| **      end                         /
 | |
| **
 | |
| ** Note that the loops might not be nested in the order in which they
 | |
| ** appear in the FROM clause if a different order is better able to make
 | |
| ** use of indices.  Note also that when the IN operator appears in
 | |
| ** the WHERE clause, it might result in additional nested loops for
 | |
| ** scanning through all values on the right-hand side of the IN.
 | |
| **
 | |
| ** There are Btree cursors associated with each table.  t1 uses cursor
 | |
| ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
 | |
| ** And so forth.  This routine generates code to open those VDBE cursors
 | |
| ** and sqlite3WhereEnd() generates the code to close them.
 | |
| **
 | |
| ** The code that sqlite3WhereBegin() generates leaves the cursors named
 | |
| ** in pTabList pointing at their appropriate entries.  The [...] code
 | |
| ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
 | |
| ** data from the various tables of the loop.
 | |
| **
 | |
| ** If the WHERE clause is empty, the foreach loops must each scan their
 | |
| ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
 | |
| ** the tables have indices and there are terms in the WHERE clause that
 | |
| ** refer to those indices, a complete table scan can be avoided and the
 | |
| ** code will run much faster.  Most of the work of this routine is checking
 | |
| ** to see if there are indices that can be used to speed up the loop.
 | |
| **
 | |
| ** Terms of the WHERE clause are also used to limit which rows actually
 | |
| ** make it to the "..." in the middle of the loop.  After each "foreach",
 | |
| ** terms of the WHERE clause that use only terms in that loop and outer
 | |
| ** loops are evaluated and if false a jump is made around all subsequent
 | |
| ** inner loops (or around the "..." if the test occurs within the inner-
 | |
| ** most loop)
 | |
| **
 | |
| ** OUTER JOINS
 | |
| **
 | |
| ** An outer join of tables t1 and t2 is conceptally coded as follows:
 | |
| **
 | |
| **    foreach row1 in t1 do
 | |
| **      flag = 0
 | |
| **      foreach row2 in t2 do
 | |
| **        start:
 | |
| **          ...
 | |
| **          flag = 1
 | |
| **      end
 | |
| **      if flag==0 then
 | |
| **        move the row2 cursor to a null row
 | |
| **        goto start
 | |
| **      fi
 | |
| **    end
 | |
| **
 | |
| ** ORDER BY CLAUSE PROCESSING
 | |
| **
 | |
| ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
 | |
| ** if there is one.  If there is no ORDER BY clause or if this routine
 | |
| ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
 | |
| **
 | |
| ** If an index can be used so that the natural output order of the table
 | |
| ** scan is correct for the ORDER BY clause, then that index is used and
 | |
| ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
 | |
| ** unnecessary sort of the result set if an index appropriate for the
 | |
| ** ORDER BY clause already exists.
 | |
| **
 | |
| ** If the where clause loops cannot be arranged to provide the correct
 | |
| ** output order, then the *ppOrderBy is unchanged.
 | |
| */
 | |
| SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
 | |
|   Parse *pParse,        /* The parser context */
 | |
|   SrcList *pTabList,    /* A list of all tables to be scanned */
 | |
|   Expr *pWhere,         /* The WHERE clause */
 | |
|   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
 | |
|   u8 obflag             /* One of ORDERBY_MIN, ORDERBY_MAX or ORDERBY_NORMAL */
 | |
| ){
 | |
|   int i;                     /* Loop counter */
 | |
|   WhereInfo *pWInfo;         /* Will become the return value of this function */
 | |
|   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
 | |
|   int brk, cont = 0;         /* Addresses used during code generation */
 | |
|   Bitmask notReady;          /* Cursors that are not yet positioned */
 | |
|   WhereTerm *pTerm;          /* A single term in the WHERE clause */
 | |
|   ExprMaskSet maskSet;       /* The expression mask set */
 | |
|   WhereClause wc;            /* The WHERE clause is divided into these terms */
 | |
|   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
 | |
|   WhereLevel *pLevel;             /* A single level in the pWInfo list */
 | |
|   int iFrom;                      /* First unused FROM clause element */
 | |
|   int andFlags;              /* AND-ed combination of all wc.a[].flags */
 | |
|   sqlite3 *db;               /* Database connection */
 | |
|   ExprList *pOrderBy = 0;
 | |
| 
 | |
|   /* The number of tables in the FROM clause is limited by the number of
 | |
|   ** bits in a Bitmask 
 | |
|   */
 | |
|   if( pTabList->nSrc>BMS ){
 | |
|     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if( ppOrderBy ){
 | |
|     pOrderBy = *ppOrderBy;
 | |
|   }
 | |
| 
 | |
|   /* Split the WHERE clause into separate subexpressions where each
 | |
|   ** subexpression is separated by an AND operator.
 | |
|   */
 | |
|   initMaskSet(&maskSet);
 | |
|   whereClauseInit(&wc, pParse, &maskSet);
 | |
|   whereSplit(&wc, pWhere, TK_AND);
 | |
|     
 | |
|   /* Allocate and initialize the WhereInfo structure that will become the
 | |
|   ** return value.
 | |
|   */
 | |
|   db = pParse->db;
 | |
|   pWInfo = sqlite3DbMallocZero(db,  
 | |
|                       sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
 | |
|   if( db->mallocFailed ){
 | |
|     goto whereBeginNoMem;
 | |
|   }
 | |
|   pWInfo->nLevel = pTabList->nSrc;
 | |
|   pWInfo->pParse = pParse;
 | |
|   pWInfo->pTabList = pTabList;
 | |
|   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|   /* Special case: a WHERE clause that is constant.  Evaluate the
 | |
|   ** expression and either jump over all of the code or fall thru.
 | |
|   */
 | |
|   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
 | |
|     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
 | |
|     pWhere = 0;
 | |
|   }
 | |
| 
 | |
|   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
 | |
|   ** add new virtual terms onto the end of the WHERE clause.  We do not
 | |
|   ** want to analyze these virtual terms, so start analyzing at the end
 | |
|   ** and work forward so that the added virtual terms are never processed.
 | |
|   */
 | |
|   for(i=0; i<pTabList->nSrc; i++){
 | |
|     createMask(&maskSet, pTabList->a[i].iCursor);
 | |
|   }
 | |
|   exprAnalyzeAll(pTabList, &wc);
 | |
|   if( db->mallocFailed ){
 | |
|     goto whereBeginNoMem;
 | |
|   }
 | |
| 
 | |
|   /* Chose the best index to use for each table in the FROM clause.
 | |
|   **
 | |
|   ** This loop fills in the following fields:
 | |
|   **
 | |
|   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
 | |
|   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
 | |
|   **   pWInfo->a[].nEq       The number of == and IN constraints
 | |
|   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
 | |
|   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
 | |
|   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
 | |
|   **
 | |
|   ** This loop also figures out the nesting order of tables in the FROM
 | |
|   ** clause.
 | |
|   */
 | |
|   notReady = ~(Bitmask)0;
 | |
|   pTabItem = pTabList->a;
 | |
|   pLevel = pWInfo->a;
 | |
|   andFlags = ~0;
 | |
|   WHERETRACE(("*** Optimizer Start ***\n"));
 | |
|   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     Index *pIdx;                /* Index for FROM table at pTabItem */
 | |
|     int flags;                  /* Flags asssociated with pIdx */
 | |
|     int nEq;                    /* Number of == or IN constraints */
 | |
|     double cost;                /* The cost for pIdx */
 | |
|     int j;                      /* For looping over FROM tables */
 | |
|     Index *pBest = 0;           /* The best index seen so far */
 | |
|     int bestFlags = 0;          /* Flags associated with pBest */
 | |
|     int bestNEq = 0;            /* nEq associated with pBest */
 | |
|     double lowestCost;          /* Cost of the pBest */
 | |
|     int bestJ = 0;              /* The value of j */
 | |
|     Bitmask m;                  /* Bitmask value for j or bestJ */
 | |
|     int once = 0;               /* True when first table is seen */
 | |
|     sqlite3_index_info *pIndex; /* Current virtual index */
 | |
| 
 | |
|     lowestCost = SQLITE_BIG_DBL;
 | |
|     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
 | |
|       int doNotReorder;  /* True if this table should not be reordered */
 | |
| 
 | |
|       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
 | |
|       if( once && doNotReorder ) break;
 | |
|       m = getMask(&maskSet, pTabItem->iCursor);
 | |
|       if( (m & notReady)==0 ){
 | |
|         if( j==iFrom ) iFrom++;
 | |
|         continue;
 | |
|       }
 | |
|       assert( pTabItem->pTab );
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       if( IsVirtual(pTabItem->pTab) ){
 | |
|         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
 | |
|         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
 | |
|                                 ppOrderBy ? *ppOrderBy : 0, i==0,
 | |
|                                 ppIdxInfo);
 | |
|         flags = WHERE_VIRTUALTABLE;
 | |
|         pIndex = *ppIdxInfo;
 | |
|         if( pIndex && pIndex->orderByConsumed ){
 | |
|           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
 | |
|         }
 | |
|         pIdx = 0;
 | |
|         nEq = 0;
 | |
|         if( (SQLITE_BIG_DBL/2.0)<cost ){
 | |
|           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
 | |
|           ** inital value of lowestCost in this loop. If it is, then
 | |
|           ** the (cost<lowestCost) test below will never be true and
 | |
|           ** pLevel->pBestIdx never set.
 | |
|           */ 
 | |
|           cost = (SQLITE_BIG_DBL/2.0);
 | |
|         }
 | |
|       }else 
 | |
| #endif
 | |
|       {
 | |
|         cost = bestIndex(pParse, &wc, pTabItem, notReady,
 | |
|                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
 | |
|                          &pIdx, &flags, &nEq);
 | |
|         pIndex = 0;
 | |
|       }
 | |
|       if( cost<lowestCost ){
 | |
|         once = 1;
 | |
|         lowestCost = cost;
 | |
|         pBest = pIdx;
 | |
|         bestFlags = flags;
 | |
|         bestNEq = nEq;
 | |
|         bestJ = j;
 | |
|         pLevel->pBestIdx = pIndex;
 | |
|       }
 | |
|       if( doNotReorder ) break;
 | |
|     }
 | |
|     WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
 | |
|            pLevel-pWInfo->a));
 | |
|     if( (bestFlags & WHERE_ORDERBY)!=0 ){
 | |
|       *ppOrderBy = 0;
 | |
|     }
 | |
|     andFlags &= bestFlags;
 | |
|     pLevel->flags = bestFlags;
 | |
|     pLevel->pIdx = pBest;
 | |
|     pLevel->nEq = bestNEq;
 | |
|     pLevel->aInLoop = 0;
 | |
|     pLevel->nIn = 0;
 | |
|     if( pBest ){
 | |
|       pLevel->iIdxCur = pParse->nTab++;
 | |
|     }else{
 | |
|       pLevel->iIdxCur = -1;
 | |
|     }
 | |
|     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
 | |
|     pLevel->iFrom = bestJ;
 | |
|   }
 | |
|   WHERETRACE(("*** Optimizer Finished ***\n"));
 | |
| 
 | |
|   /* If the total query only selects a single row, then the ORDER BY
 | |
|   ** clause is irrelevant.
 | |
|   */
 | |
|   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
 | |
|     *ppOrderBy = 0;
 | |
|   }
 | |
| 
 | |
|   /* Open all tables in the pTabList and any indices selected for
 | |
|   ** searching those tables.
 | |
|   */
 | |
|   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
 | |
|   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     Table *pTab;     /* Table to open */
 | |
|     Index *pIx;      /* Index used to access pTab (if any) */
 | |
|     int iDb;         /* Index of database containing table/index */
 | |
|     int iIdxCur = pLevel->iIdxCur;
 | |
| 
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|     if( pParse->explain==2 ){
 | |
|       char *zMsg;
 | |
|       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
 | |
|       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
 | |
|       if( pItem->zAlias ){
 | |
|         zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
 | |
|       }
 | |
|       if( (pIx = pLevel->pIdx)!=0 ){
 | |
|         zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
 | |
|       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | |
|         zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
 | |
|       }
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|       else if( pLevel->pBestIdx ){
 | |
|         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
 | |
|         zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
 | |
|                     pBestIdx->idxNum, pBestIdx->idxStr);
 | |
|       }
 | |
| #endif
 | |
|       if( pLevel->flags & WHERE_ORDERBY ){
 | |
|         zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
 | |
|       }
 | |
|       sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
 | |
|     }
 | |
| #endif /* SQLITE_OMIT_EXPLAIN */
 | |
|     pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     pTab = pTabItem->pTab;
 | |
|     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
 | |
|     if( pTab->isEphem || pTab->pSelect ) continue;
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( pLevel->pBestIdx ){
 | |
|       int iCur = pTabItem->iCursor;
 | |
|       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
 | |
|                         (const char*)pTab->pVtab, P4_VTAB);
 | |
|     }else
 | |
| #endif
 | |
|     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | |
|       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
 | |
|       if( pTab->nCol<(sizeof(Bitmask)*8) ){
 | |
|         Bitmask b = pTabItem->colUsed;
 | |
|         int n = 0;
 | |
|         for(; b; b=b>>1, n++){}
 | |
|         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
 | |
|         assert( n<=pTab->nCol );
 | |
|       }
 | |
|     }else{
 | |
|       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
 | |
|     }
 | |
|     pLevel->iTabCur = pTabItem->iCursor;
 | |
|     if( (pIx = pLevel->pIdx)!=0 ){
 | |
|       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
 | |
|       assert( pIx->pSchema==pTab->pSchema );
 | |
|       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
 | |
|                         (char*)pKey, P4_KEYINFO_HANDOFF);
 | |
|       VdbeComment((v, "%s", pIx->zName));
 | |
|       sqlite3VdbeAddOp2(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
 | |
|     }
 | |
|     sqlite3CodeVerifySchema(pParse, iDb);
 | |
|   }
 | |
|   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
 | |
| 
 | |
|   /* Generate the code to do the search.  Each iteration of the for
 | |
|   ** loop below generates code for a single nested loop of the VM
 | |
|   ** program.
 | |
|   */
 | |
|   notReady = ~(Bitmask)0;
 | |
|   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     int j;
 | |
|     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
 | |
|     Index *pIdx;       /* The index we will be using */
 | |
|     int nxt;           /* Where to jump to continue with the next IN case */
 | |
|     int iIdxCur;       /* The VDBE cursor for the index */
 | |
|     int omitTable;     /* True if we use the index only */
 | |
|     int bRev;          /* True if we need to scan in reverse order */
 | |
| 
 | |
|     pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     iCur = pTabItem->iCursor;
 | |
|     pIdx = pLevel->pIdx;
 | |
|     iIdxCur = pLevel->iIdxCur;
 | |
|     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
 | |
|     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
 | |
| 
 | |
|     /* Create labels for the "break" and "continue" instructions
 | |
|     ** for the current loop.  Jump to brk to break out of a loop.
 | |
|     ** Jump to cont to go immediately to the next iteration of the
 | |
|     ** loop.
 | |
|     **
 | |
|     ** When there is an IN operator, we also have a "nxt" label that
 | |
|     ** means to continue with the next IN value combination.  When
 | |
|     ** there are no IN operators in the constraints, the "nxt" label
 | |
|     ** is the same as "brk".
 | |
|     */
 | |
|     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
 | |
|     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
 | |
| 
 | |
|     /* If this is the right table of a LEFT OUTER JOIN, allocate and
 | |
|     ** initialize a memory cell that records if this table matches any
 | |
|     ** row of the left table of the join.
 | |
|     */
 | |
|     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
 | |
|       pLevel->iLeftJoin = ++pParse->nMem;
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
 | |
|       VdbeComment((v, "init LEFT JOIN no-match flag"));
 | |
|     }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|     if( pLevel->pBestIdx ){
 | |
|       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
 | |
|       **          to access the data.
 | |
|       */
 | |
|       int j;
 | |
|       int iReg;   /* P3 Value for OP_VFilter */
 | |
|       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
 | |
|       int nConstraint = pBestIdx->nConstraint;
 | |
|       struct sqlite3_index_constraint_usage *aUsage =
 | |
|                                                   pBestIdx->aConstraintUsage;
 | |
|       const struct sqlite3_index_constraint *aConstraint =
 | |
|                                                   pBestIdx->aConstraint;
 | |
| 
 | |
|       iReg = sqlite3GetTempRange(pParse, nConstraint+2);
 | |
|       for(j=1; j<=nConstraint; j++){
 | |
|         int k;
 | |
|         for(k=0; k<nConstraint; k++){
 | |
|           if( aUsage[k].argvIndex==j ){
 | |
|             int iTerm = aConstraint[k].iTermOffset;
 | |
|             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if( k==nConstraint ) break;
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
 | |
|       sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
 | |
|                         pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
 | |
|       sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
 | |
|       pBestIdx->needToFreeIdxStr = 0;
 | |
|       for(j=0; j<pBestIdx->nConstraint; j++){
 | |
|         if( aUsage[j].omit ){
 | |
|           int iTerm = aConstraint[j].iTermOffset;
 | |
|           disableTerm(pLevel, &wc.a[iTerm]);
 | |
|         }
 | |
|       }
 | |
|       pLevel->op = OP_VNext;
 | |
|       pLevel->p1 = iCur;
 | |
|       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
 | |
|     }else
 | |
| #endif /* SQLITE_OMIT_VIRTUALTABLE */
 | |
| 
 | |
|     if( pLevel->flags & WHERE_ROWID_EQ ){
 | |
|       /* Case 1:  We can directly reference a single row using an
 | |
|       **          equality comparison against the ROWID field.  Or
 | |
|       **          we reference multiple rows using a "rowid IN (...)"
 | |
|       **          construct.
 | |
|       */
 | |
|       int r1;
 | |
|       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
 | |
|       assert( pTerm!=0 );
 | |
|       assert( pTerm->pExpr!=0 );
 | |
|       assert( pTerm->leftCursor==iCur );
 | |
|       assert( omitTable==0 );
 | |
|       r1 = sqlite3GetTempReg(pParse);
 | |
|       codeEqualityTerm(pParse, pTerm, pLevel, r1);
 | |
|       nxt = pLevel->nxt;
 | |
|       sqlite3VdbeAddOp3(v, OP_MustBeInt, r1, nxt, 1);
 | |
|       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
 | |
|       VdbeComment((v, "pk"));
 | |
|       sqlite3ReleaseTempReg(pParse, r1);
 | |
|       pLevel->op = OP_Noop;
 | |
|     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
 | |
|       /* Case 2:  We have an inequality comparison against the ROWID field.
 | |
|       */
 | |
|       int testOp = OP_Noop;
 | |
|       int start;
 | |
|       WhereTerm *pStart, *pEnd;
 | |
| 
 | |
|       assert( omitTable==0 );
 | |
|       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
 | |
|       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
 | |
|       if( bRev ){
 | |
|         pTerm = pStart;
 | |
|         pStart = pEnd;
 | |
|         pEnd = pTerm;
 | |
|       }
 | |
|       if( pStart ){
 | |
|         Expr *pX;
 | |
|         int r1, regFree1;
 | |
|         pX = pStart->pExpr;
 | |
|         assert( pX!=0 );
 | |
|         assert( pStart->leftCursor==iCur );
 | |
|         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1);
 | |
|         sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, 
 | |
|                              pX->op==TK_LE || pX->op==TK_GT);
 | |
|         sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
 | |
|         VdbeComment((v, "pk"));
 | |
|         sqlite3ReleaseTempReg(pParse, regFree1);
 | |
|         disableTerm(pLevel, pStart);
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
 | |
|       }
 | |
|       if( pEnd ){
 | |
|         Expr *pX;
 | |
|         pX = pEnd->pExpr;
 | |
|         assert( pX!=0 );
 | |
|         assert( pEnd->leftCursor==iCur );
 | |
|         pLevel->iMem = ++pParse->nMem;
 | |
|         sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
 | |
|         if( pX->op==TK_LT || pX->op==TK_GT ){
 | |
|           testOp = bRev ? OP_Le : OP_Ge;
 | |
|         }else{
 | |
|           testOp = bRev ? OP_Lt : OP_Gt;
 | |
|         }
 | |
|         disableTerm(pLevel, pEnd);
 | |
|       }
 | |
|       start = sqlite3VdbeCurrentAddr(v);
 | |
|       pLevel->op = bRev ? OP_Prev : OP_Next;
 | |
|       pLevel->p1 = iCur;
 | |
|       pLevel->p2 = start;
 | |
|       if( testOp!=OP_Noop ){
 | |
|         int r1 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
 | |
|         /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
 | |
|         sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
 | |
|         sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
 | |
|         sqlite3ReleaseTempReg(pParse, r1);
 | |
|       }
 | |
|     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
 | |
|       /* Case 3: The WHERE clause term that refers to the right-most
 | |
|       **         column of the index is an inequality.  For example, if
 | |
|       **         the index is on (x,y,z) and the WHERE clause is of the
 | |
|       **         form "x=5 AND y<10" then this case is used.  Only the
 | |
|       **         right-most column can be an inequality - the rest must
 | |
|       **         use the "==" and "IN" operators.
 | |
|       **
 | |
|       **         This case is also used when there are no WHERE clause
 | |
|       **         constraints but an index is selected anyway, in order
 | |
|       **         to force the output order to conform to an ORDER BY.
 | |
|       */
 | |
|       int start;
 | |
|       int nEq = pLevel->nEq;
 | |
|       int topEq=0;        /* True if top limit uses ==. False is strictly < */
 | |
|       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
 | |
|       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
 | |
|       int testOp;
 | |
|       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
 | |
|       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
 | |
|       int isMinQuery = 0;      /* If this is an optimized SELECT min(x) ... */
 | |
|       int regBase;        /* Base register holding constraint values */
 | |
|       int r1;             /* Temp register */
 | |
| 
 | |
|       /* Generate code to evaluate all constraint terms using == or IN
 | |
|       ** and level the values of those terms on the stack.
 | |
|       */
 | |
|       regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
 | |
| 
 | |
|       /* Figure out what comparison operators to use for top and bottom 
 | |
|       ** search bounds. For an ascending index, the bottom bound is a > or >=
 | |
|       ** operator and the top bound is a < or <= operator.  For a descending
 | |
|       ** index the operators are reversed.
 | |
|       */
 | |
|       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
 | |
|         topOp = WO_LT|WO_LE;
 | |
|         btmOp = WO_GT|WO_GE;
 | |
|       }else{
 | |
|         topOp = WO_GT|WO_GE;
 | |
|         btmOp = WO_LT|WO_LE;
 | |
|         SWAP(int, topLimit, btmLimit);
 | |
|       }
 | |
| 
 | |
|       /* If this loop satisfies a sort order (pOrderBy) request that 
 | |
|       ** was passed to this function to implement a "SELECT min(x) ..." 
 | |
|       ** query, then the caller will only allow the loop to run for
 | |
|       ** a single iteration. This means that the first row returned
 | |
|       ** should not have a NULL value stored in 'x'. If column 'x' is
 | |
|       ** the first one after the nEq equality constraints in the index,
 | |
|       ** this requires some special handling.
 | |
|       */
 | |
|       if( (obflag==ORDERBY_MIN)
 | |
|        && (pLevel->flags&WHERE_ORDERBY)
 | |
|        && (pIdx->nColumn>nEq)
 | |
|        && (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
 | |
|       ){
 | |
|         isMinQuery = 1;
 | |
|       }
 | |
| 
 | |
|       /* Generate the termination key.  This is the key value that
 | |
|       ** will end the search.  There is no termination key if there
 | |
|       ** are no equality terms and no "X<..." term.
 | |
|       **
 | |
|       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
 | |
|       ** key computed here really ends up being the start key.
 | |
|       */
 | |
|       nxt = pLevel->nxt;
 | |
|       if( topLimit ){
 | |
|         Expr *pX;
 | |
|         int k = pIdx->aiColumn[nEq];
 | |
|         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
 | |
|         assert( pTerm!=0 );
 | |
|         pX = pTerm->pExpr;
 | |
|         assert( (pTerm->flags & TERM_CODED)==0 );
 | |
|         sqlite3ExprCode(pParse, pX->pRight, regBase+nEq);
 | |
|         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
 | |
|         topEq = pTerm->eOperator & (WO_LE|WO_GE);
 | |
|         disableTerm(pLevel, pTerm);
 | |
|         testOp = OP_IdxGE;
 | |
|       }else{
 | |
|         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
 | |
|         topEq = 1;
 | |
|       }
 | |
|       if( testOp!=OP_Noop || (isMinQuery&&bRev) ){
 | |
|         int nCol = nEq + topLimit;
 | |
|         if( isMinQuery && !topLimit ){
 | |
|           sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nCol);
 | |
|           nCol++;
 | |
|           topEq = 0;
 | |
|         }
 | |
|         buildIndexProbe(v, nCol, pIdx, regBase, pLevel->iMem);
 | |
|         if( bRev ){
 | |
|           int op = topEq ? OP_MoveLe : OP_MoveLt;
 | |
|           sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, pLevel->iMem);
 | |
|         }
 | |
|       }else if( bRev ){
 | |
|         sqlite3VdbeAddOp2(v, OP_Last, iIdxCur, brk);
 | |
|       }
 | |
|    
 | |
|       /* Generate the start key.  This is the key that defines the lower
 | |
|       ** bound on the search.  There is no start key if there are no
 | |
|       ** equality terms and if there is no "X>..." term.  In
 | |
|       ** that case, generate a "Rewind" instruction in place of the
 | |
|       ** start key search.
 | |
|       **
 | |
|       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
 | |
|       ** "start" key really ends up being used as the termination key.
 | |
|       */
 | |
|       if( btmLimit ){
 | |
|         Expr *pX;
 | |
|         int k = pIdx->aiColumn[nEq];
 | |
|         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
 | |
|         assert( pTerm!=0 );
 | |
|         pX = pTerm->pExpr;
 | |
|         assert( (pTerm->flags & TERM_CODED)==0 );
 | |
|         sqlite3ExprCode(pParse, pX->pRight, regBase+nEq);
 | |
|         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
 | |
|         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
 | |
|         disableTerm(pLevel, pTerm);
 | |
|       }else{
 | |
|         btmEq = 1;
 | |
|       }
 | |
|       if( nEq>0 || btmLimit || (isMinQuery&&!bRev) ){
 | |
|         int nCol = nEq + btmLimit;
 | |
|         if( isMinQuery && !btmLimit ){
 | |
|           sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nCol);
 | |
|           nCol++;
 | |
|           btmEq = 0;
 | |
|         }
 | |
|         if( bRev ){
 | |
|           r1 = pLevel->iMem;
 | |
|           testOp = OP_IdxLT;
 | |
|         }else{
 | |
|           r1 = sqlite3GetTempReg(pParse);
 | |
|         }
 | |
|         buildIndexProbe(v, nCol, pIdx, regBase, r1);
 | |
|         if( !bRev ){
 | |
|           int op = btmEq ? OP_MoveGe : OP_MoveGt;
 | |
|           sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
 | |
|           sqlite3ReleaseTempReg(pParse, r1);
 | |
|         }
 | |
|       }else if( bRev ){
 | |
|         testOp = OP_Noop;
 | |
|       }else{
 | |
|         sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, brk);
 | |
|       }
 | |
| 
 | |
|       /* Generate the the top of the loop.  If there is a termination
 | |
|       ** key we have to test for that key and abort at the top of the
 | |
|       ** loop.
 | |
|       */
 | |
|       start = sqlite3VdbeCurrentAddr(v);
 | |
|       if( testOp!=OP_Noop ){
 | |
|         sqlite3VdbeAddOp3(v, testOp, iIdxCur, nxt, pLevel->iMem);
 | |
|         if( (topEq && !bRev) || (!btmEq && bRev) ){
 | |
|           sqlite3VdbeChangeP5(v, 1);
 | |
|         }
 | |
|       }
 | |
|       r1 = sqlite3GetTempReg(pParse);
 | |
|       if( topLimit | btmLimit ){
 | |
|         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
 | |
|         sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
 | |
|       }
 | |
|       if( !omitTable ){
 | |
|         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
 | |
|         sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1);  /* Deferred seek */
 | |
|       }
 | |
|       sqlite3ReleaseTempReg(pParse, r1);
 | |
| 
 | |
|       /* Record the instruction used to terminate the loop.
 | |
|       */
 | |
|       pLevel->op = bRev ? OP_Prev : OP_Next;
 | |
|       pLevel->p1 = iIdxCur;
 | |
|       pLevel->p2 = start;
 | |
|     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
 | |
|       /* Case 4:  There is an index and all terms of the WHERE clause that
 | |
|       **          refer to the index using the "==" or "IN" operators.
 | |
|       */
 | |
|       int start;
 | |
|       int nEq = pLevel->nEq;
 | |
|       int isMinQuery = 0;      /* If this is an optimized SELECT min(x) ... */
 | |
|       int regBase;             /* Base register of array holding constraints */
 | |
|       int r1;
 | |
| 
 | |
|       /* Generate code to evaluate all constraint terms using == or IN
 | |
|       ** and leave the values of those terms on the stack.
 | |
|       */
 | |
|       regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 1);
 | |
|       nxt = pLevel->nxt;
 | |
| 
 | |
|       if( (obflag==ORDERBY_MIN)
 | |
|        && (pLevel->flags&WHERE_ORDERBY) 
 | |
|        && (pIdx->nColumn>nEq)
 | |
|        && (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq])
 | |
|       ){
 | |
|         isMinQuery = 1;
 | |
|         buildIndexProbe(v, nEq, pIdx, regBase, pLevel->iMem);
 | |
|         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
 | |
|         r1 = ++pParse->nMem;
 | |
|         buildIndexProbe(v, nEq+1, pIdx, regBase, r1);
 | |
|       }else{
 | |
|         /* Generate a single key that will be used to both start and 
 | |
|         ** terminate the search
 | |
|         */
 | |
|         r1 = pLevel->iMem;
 | |
|         buildIndexProbe(v, nEq, pIdx, regBase, r1);
 | |
|       }
 | |
| 
 | |
|       /* Generate code (1) to move to the first matching element of the table.
 | |
|       ** Then generate code (2) that jumps to "nxt" after the cursor is past
 | |
|       ** the last matching element of the table.  The code (1) is executed
 | |
|       ** once to initialize the search, the code (2) is executed before each
 | |
|       ** iteration of the scan to see if the scan has finished. */
 | |
|       if( bRev ){
 | |
|         /* Scan in reverse order */
 | |
|         int op;
 | |
|         if( isMinQuery ){
 | |
|           op = OP_MoveLt;
 | |
|         }else{
 | |
|           op = OP_MoveLe;
 | |
|         }
 | |
|         sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
 | |
|         start = sqlite3VdbeAddOp3(v, OP_IdxLT, iIdxCur, nxt, pLevel->iMem);
 | |
|         pLevel->op = OP_Prev;
 | |
|       }else{
 | |
|         /* Scan in the forward order */
 | |
|         int op;
 | |
|         if( isMinQuery ){
 | |
|           op = OP_MoveGt;
 | |
|         }else{
 | |
|           op = OP_MoveGe;
 | |
|         }
 | |
|         sqlite3VdbeAddOp3(v, op, iIdxCur, nxt, r1);
 | |
|         start = sqlite3VdbeAddOp3(v, OP_IdxGE, iIdxCur, nxt, pLevel->iMem);
 | |
|         sqlite3VdbeChangeP5(v, 1);
 | |
|         pLevel->op = OP_Next;
 | |
|       }
 | |
|       if( !omitTable ){
 | |
|         r1 = sqlite3GetTempReg(pParse);
 | |
|         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
 | |
|         sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1);  /* Deferred seek */
 | |
|         sqlite3ReleaseTempReg(pParse, r1);
 | |
|       }
 | |
|       pLevel->p1 = iIdxCur;
 | |
|       pLevel->p2 = start;
 | |
|     }else{
 | |
|       /* Case 5:  There is no usable index.  We must do a complete
 | |
|       **          scan of the entire table.
 | |
|       */
 | |
|       assert( omitTable==0 );
 | |
|       assert( bRev==0 );
 | |
|       pLevel->op = OP_Next;
 | |
|       pLevel->p1 = iCur;
 | |
|       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
 | |
|     }
 | |
|     notReady &= ~getMask(&maskSet, iCur);
 | |
| 
 | |
|     /* Insert code to test every subexpression that can be completely
 | |
|     ** computed using the current set of tables.
 | |
|     */
 | |
|     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
 | |
|       Expr *pE;
 | |
|       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | |
|       if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | |
|       pE = pTerm->pExpr;
 | |
|       assert( pE!=0 );
 | |
|       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
 | |
|         continue;
 | |
|       }
 | |
|       sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
 | |
|       pTerm->flags |= TERM_CODED;
 | |
|     }
 | |
| 
 | |
|     /* For a LEFT OUTER JOIN, generate code that will record the fact that
 | |
|     ** at least one row of the right table has matched the left table.  
 | |
|     */
 | |
|     if( pLevel->iLeftJoin ){
 | |
|       pLevel->top = sqlite3VdbeCurrentAddr(v);
 | |
|       sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
 | |
|       VdbeComment((v, "record LEFT JOIN hit"));
 | |
|       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
 | |
|         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
 | |
|         if( (pTerm->prereqAll & notReady)!=0 ) continue;
 | |
|         assert( pTerm->pExpr );
 | |
|         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
 | |
|         pTerm->flags |= TERM_CODED;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifdef SQLITE_TEST  /* For testing and debugging use only */
 | |
|   /* Record in the query plan information about the current table
 | |
|   ** and the index used to access it (if any).  If the table itself
 | |
|   ** is not used, its name is just '{}'.  If no index is used
 | |
|   ** the index is listed as "{}".  If the primary key is used the
 | |
|   ** index name is '*'.
 | |
|   */
 | |
|   for(i=0; i<pTabList->nSrc; i++){
 | |
|     char *z;
 | |
|     int n;
 | |
|     pLevel = &pWInfo->a[i];
 | |
|     pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     z = pTabItem->zAlias;
 | |
|     if( z==0 ) z = pTabItem->pTab->zName;
 | |
|     n = strlen(z);
 | |
|     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
 | |
|       if( pLevel->flags & WHERE_IDX_ONLY ){
 | |
|         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
 | |
|         nQPlan += 2;
 | |
|       }else{
 | |
|         memcpy(&sqlite3_query_plan[nQPlan], z, n);
 | |
|         nQPlan += n;
 | |
|       }
 | |
|       sqlite3_query_plan[nQPlan++] = ' ';
 | |
|     }
 | |
|     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
 | |
|       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
 | |
|       nQPlan += 2;
 | |
|     }else if( pLevel->pIdx==0 ){
 | |
|       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
 | |
|       nQPlan += 3;
 | |
|     }else{
 | |
|       n = strlen(pLevel->pIdx->zName);
 | |
|       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
 | |
|         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
 | |
|         nQPlan += n;
 | |
|         sqlite3_query_plan[nQPlan++] = ' ';
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
 | |
|     sqlite3_query_plan[--nQPlan] = 0;
 | |
|   }
 | |
|   sqlite3_query_plan[nQPlan] = 0;
 | |
|   nQPlan = 0;
 | |
| #endif /* SQLITE_TEST // Testing and debugging use only */
 | |
| 
 | |
|   /* Record the continuation address in the WhereInfo structure.  Then
 | |
|   ** clean up and return.
 | |
|   */
 | |
|   pWInfo->iContinue = cont;
 | |
|   whereClauseClear(&wc);
 | |
|   return pWInfo;
 | |
| 
 | |
|   /* Jump here if malloc fails */
 | |
| whereBeginNoMem:
 | |
|   whereClauseClear(&wc);
 | |
|   whereInfoFree(pWInfo);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate the end of the WHERE loop.  See comments on 
 | |
| ** sqlite3WhereBegin() for additional information.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){
 | |
|   Vdbe *v = pWInfo->pParse->pVdbe;
 | |
|   int i;
 | |
|   WhereLevel *pLevel;
 | |
|   SrcList *pTabList = pWInfo->pTabList;
 | |
| 
 | |
|   /* Generate loop termination code.
 | |
|   */
 | |
|   for(i=pTabList->nSrc-1; i>=0; i--){
 | |
|     pLevel = &pWInfo->a[i];
 | |
|     sqlite3VdbeResolveLabel(v, pLevel->cont);
 | |
|     if( pLevel->op!=OP_Noop ){
 | |
|       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
 | |
|     }
 | |
|     if( pLevel->nIn ){
 | |
|       struct InLoop *pIn;
 | |
|       int j;
 | |
|       sqlite3VdbeResolveLabel(v, pLevel->nxt);
 | |
|       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
 | |
|         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
 | |
|         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
 | |
|         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
 | |
|       }
 | |
|       sqlite3_free(pLevel->aInLoop);
 | |
|     }
 | |
|     sqlite3VdbeResolveLabel(v, pLevel->brk);
 | |
|     if( pLevel->iLeftJoin ){
 | |
|       int addr;
 | |
|       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
 | |
|       sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
 | |
|       if( pLevel->iIdxCur>=0 ){
 | |
|         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
 | |
|       }
 | |
|       sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
 | |
|       sqlite3VdbeJumpHere(v, addr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The "break" point is here, just past the end of the outer loop.
 | |
|   ** Set it.
 | |
|   */
 | |
|   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
 | |
| 
 | |
|   /* Close all of the cursors that were opened by sqlite3WhereBegin.
 | |
|   */
 | |
|   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
 | |
|     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
 | |
|     Table *pTab = pTabItem->pTab;
 | |
|     assert( pTab!=0 );
 | |
|     if( pTab->isEphem || pTab->pSelect ) continue;
 | |
|     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
 | |
|       sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
 | |
|     }
 | |
|     if( pLevel->pIdx!=0 ){
 | |
|       sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
 | |
|     }
 | |
| 
 | |
|     /* If this scan uses an index, make code substitutions to read data
 | |
|     ** from the index in preference to the table. Sometimes, this means
 | |
|     ** the table need never be read from. This is a performance boost,
 | |
|     ** as the vdbe level waits until the table is read before actually
 | |
|     ** seeking the table cursor to the record corresponding to the current
 | |
|     ** position in the index.
 | |
|     ** 
 | |
|     ** Calls to the code generator in between sqlite3WhereBegin and
 | |
|     ** sqlite3WhereEnd will have created code that references the table
 | |
|     ** directly.  This loop scans all that code looking for opcodes
 | |
|     ** that reference the table and converts them into opcodes that
 | |
|     ** reference the index.
 | |
|     */
 | |
|     if( pLevel->pIdx ){
 | |
|       int k, j, last;
 | |
|       VdbeOp *pOp;
 | |
|       Index *pIdx = pLevel->pIdx;
 | |
|       int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
 | |
| 
 | |
|       assert( pIdx!=0 );
 | |
|       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
 | |
|       last = sqlite3VdbeCurrentAddr(v);
 | |
|       for(k=pWInfo->iTop; k<last; k++, pOp++){
 | |
|         if( pOp->p1!=pLevel->iTabCur ) continue;
 | |
|         if( pOp->opcode==OP_Column ){
 | |
|           for(j=0; j<pIdx->nColumn; j++){
 | |
|             if( pOp->p2==pIdx->aiColumn[j] ){
 | |
|               pOp->p2 = j;
 | |
|               pOp->p1 = pLevel->iIdxCur;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|           assert(!useIndexOnly || j<pIdx->nColumn);
 | |
|         }else if( pOp->opcode==OP_Rowid ){
 | |
|           pOp->p1 = pLevel->iIdxCur;
 | |
|           pOp->opcode = OP_IdxRowid;
 | |
|         }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
 | |
|           pOp->opcode = OP_Noop;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Final cleanup
 | |
|   */
 | |
|   whereInfoFree(pWInfo);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /************** End of where.c ***********************************************/
 | |
| /************** Begin file parse.c *******************************************/
 | |
| /* Driver template for the LEMON parser generator.
 | |
| ** The author disclaims copyright to this source code.
 | |
| */
 | |
| /* First off, code is include which follows the "include" declaration
 | |
| ** in the input file. */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure holds information about the
 | |
| ** LIMIT clause of a SELECT statement.
 | |
| */
 | |
| struct LimitVal {
 | |
|   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
 | |
|   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure is used to store the LIKE,
 | |
| ** GLOB, NOT LIKE, and NOT GLOB operators.
 | |
| */
 | |
| struct LikeOp {
 | |
|   Token eOperator;  /* "like" or "glob" or "regexp" */
 | |
|   int not;         /* True if the NOT keyword is present */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure describes the event of a
 | |
| ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
 | |
| ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
 | |
| **
 | |
| **      UPDATE ON (a,b,c)
 | |
| **
 | |
| ** Then the "b" IdList records the list "a,b,c".
 | |
| */
 | |
| struct TrigEvent { int a; IdList * b; };
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure holds the ATTACH key and the key type.
 | |
| */
 | |
| struct AttachKey { int type;  Token key; };
 | |
| 
 | |
| /* Next is all token values, in a form suitable for use by makeheaders.
 | |
| ** This section will be null unless lemon is run with the -m switch.
 | |
| */
 | |
| /* 
 | |
| ** These constants (all generated automatically by the parser generator)
 | |
| ** specify the various kinds of tokens (terminals) that the parser
 | |
| ** understands. 
 | |
| **
 | |
| ** Each symbol here is a terminal symbol in the grammar.
 | |
| */
 | |
| /* Make sure the INTERFACE macro is defined.
 | |
| */
 | |
| #ifndef INTERFACE
 | |
| # define INTERFACE 1
 | |
| #endif
 | |
| /* The next thing included is series of defines which control
 | |
| ** various aspects of the generated parser.
 | |
| **    YYCODETYPE         is the data type used for storing terminal
 | |
| **                       and nonterminal numbers.  "unsigned char" is
 | |
| **                       used if there are fewer than 250 terminals
 | |
| **                       and nonterminals.  "int" is used otherwise.
 | |
| **    YYNOCODE           is a number of type YYCODETYPE which corresponds
 | |
| **                       to no legal terminal or nonterminal number.  This
 | |
| **                       number is used to fill in empty slots of the hash 
 | |
| **                       table.
 | |
| **    YYFALLBACK         If defined, this indicates that one or more tokens
 | |
| **                       have fall-back values which should be used if the
 | |
| **                       original value of the token will not parse.
 | |
| **    YYACTIONTYPE       is the data type used for storing terminal
 | |
| **                       and nonterminal numbers.  "unsigned char" is
 | |
| **                       used if there are fewer than 250 rules and
 | |
| **                       states combined.  "int" is used otherwise.
 | |
| **    sqlite3ParserTOKENTYPE     is the data type used for minor tokens given 
 | |
| **                       directly to the parser from the tokenizer.
 | |
| **    YYMINORTYPE        is the data type used for all minor tokens.
 | |
| **                       This is typically a union of many types, one of
 | |
| **                       which is sqlite3ParserTOKENTYPE.  The entry in the union
 | |
| **                       for base tokens is called "yy0".
 | |
| **    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
 | |
| **                       zero the stack is dynamically sized using realloc()
 | |
| **    sqlite3ParserARG_SDECL     A static variable declaration for the %extra_argument
 | |
| **    sqlite3ParserARG_PDECL     A parameter declaration for the %extra_argument
 | |
| **    sqlite3ParserARG_STORE     Code to store %extra_argument into yypParser
 | |
| **    sqlite3ParserARG_FETCH     Code to extract %extra_argument from yypParser
 | |
| **    YYNSTATE           the combined number of states.
 | |
| **    YYNRULE            the number of rules in the grammar
 | |
| **    YYERRORSYMBOL      is the code number of the error symbol.  If not
 | |
| **                       defined, then do no error processing.
 | |
| */
 | |
| #define YYCODETYPE unsigned char
 | |
| #define YYNOCODE 248
 | |
| #define YYACTIONTYPE unsigned short int
 | |
| #define YYWILDCARD 59
 | |
| #define sqlite3ParserTOKENTYPE Token
 | |
| typedef union {
 | |
|   sqlite3ParserTOKENTYPE yy0;
 | |
|   int yy46;
 | |
|   struct LikeOp yy72;
 | |
|   Expr* yy172;
 | |
|   ExprList* yy174;
 | |
|   Select* yy219;
 | |
|   struct LimitVal yy234;
 | |
|   TriggerStep* yy243;
 | |
|   struct TrigEvent yy370;
 | |
|   SrcList* yy373;
 | |
|   struct {int value; int mask;} yy405;
 | |
|   Token yy410;
 | |
|   IdList* yy432;
 | |
| } YYMINORTYPE;
 | |
| #ifndef YYSTACKDEPTH
 | |
| #define YYSTACKDEPTH 100
 | |
| #endif
 | |
| #define sqlite3ParserARG_SDECL Parse *pParse;
 | |
| #define sqlite3ParserARG_PDECL ,Parse *pParse
 | |
| #define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
 | |
| #define sqlite3ParserARG_STORE yypParser->pParse = pParse
 | |
| #define YYNSTATE 588
 | |
| #define YYNRULE 312
 | |
| #define YYFALLBACK 1
 | |
| #define YY_NO_ACTION      (YYNSTATE+YYNRULE+2)
 | |
| #define YY_ACCEPT_ACTION  (YYNSTATE+YYNRULE+1)
 | |
| #define YY_ERROR_ACTION   (YYNSTATE+YYNRULE)
 | |
| 
 | |
| /* Next are that tables used to determine what action to take based on the
 | |
| ** current state and lookahead token.  These tables are used to implement
 | |
| ** functions that take a state number and lookahead value and return an
 | |
| ** action integer.  
 | |
| **
 | |
| ** Suppose the action integer is N.  Then the action is determined as
 | |
| ** follows
 | |
| **
 | |
| **   0 <= N < YYNSTATE                  Shift N.  That is, push the lookahead
 | |
| **                                      token onto the stack and goto state N.
 | |
| **
 | |
| **   YYNSTATE <= N < YYNSTATE+YYNRULE   Reduce by rule N-YYNSTATE.
 | |
| **
 | |
| **   N == YYNSTATE+YYNRULE              A syntax error has occurred.
 | |
| **
 | |
| **   N == YYNSTATE+YYNRULE+1            The parser accepts its input.
 | |
| **
 | |
| **   N == YYNSTATE+YYNRULE+2            No such action.  Denotes unused
 | |
| **                                      slots in the yy_action[] table.
 | |
| **
 | |
| ** The action table is constructed as a single large table named yy_action[].
 | |
| ** Given state S and lookahead X, the action is computed as
 | |
| **
 | |
| **      yy_action[ yy_shift_ofst[S] + X ]
 | |
| **
 | |
| ** If the index value yy_shift_ofst[S]+X is out of range or if the value
 | |
| ** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
 | |
| ** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
 | |
| ** and that yy_default[S] should be used instead.  
 | |
| **
 | |
| ** The formula above is for computing the action when the lookahead is
 | |
| ** a terminal symbol.  If the lookahead is a non-terminal (as occurs after
 | |
| ** a reduce action) then the yy_reduce_ofst[] array is used in place of
 | |
| ** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
 | |
| ** YY_SHIFT_USE_DFLT.
 | |
| **
 | |
| ** The following are the tables generated in this section:
 | |
| **
 | |
| **  yy_action[]        A single table containing all actions.
 | |
| **  yy_lookahead[]     A table containing the lookahead for each entry in
 | |
| **                     yy_action.  Used to detect hash collisions.
 | |
| **  yy_shift_ofst[]    For each state, the offset into yy_action for
 | |
| **                     shifting terminals.
 | |
| **  yy_reduce_ofst[]   For each state, the offset into yy_action for
 | |
| **                     shifting non-terminals after a reduce.
 | |
| **  yy_default[]       Default action for each state.
 | |
| */
 | |
| static const YYACTIONTYPE yy_action[] = {
 | |
|  /*     0 */   292,  901,  124,  587,  409,  172,    2,  418,   61,   61,
 | |
|  /*    10 */    61,   61,  519,   63,   63,   63,   63,   64,   64,   65,
 | |
|  /*    20 */    65,   65,   66,  210,  447,  212,  425,  431,   68,   63,
 | |
|  /*    30 */    63,   63,   63,   64,   64,   65,   65,   65,   66,  210,
 | |
|  /*    40 */   391,  388,  396,  451,   60,   59,  297,  435,  436,  432,
 | |
|  /*    50 */   432,   62,   62,   61,   61,   61,   61,  263,   63,   63,
 | |
|  /*    60 */    63,   63,   64,   64,   65,   65,   65,   66,  210,  292,
 | |
|  /*    70 */   493,  494,  418,  489,  208,   82,   67,  420,   69,  154,
 | |
|  /*    80 */    63,   63,   63,   63,   64,   64,   65,   65,   65,   66,
 | |
|  /*    90 */   210,   67,  462,   69,  154,  425,  431,  573,  264,   58,
 | |
|  /*   100 */    64,   64,   65,   65,   65,   66,  210,  397,  398,  422,
 | |
|  /*   110 */   422,  422,  292,   60,   59,  297,  435,  436,  432,  432,
 | |
|  /*   120 */    62,   62,   61,   61,   61,   61,  317,   63,   63,   63,
 | |
|  /*   130 */    63,   64,   64,   65,   65,   65,   66,  210,  425,  431,
 | |
|  /*   140 */    94,   65,   65,   65,   66,  210,  396,  210,  414,   34,
 | |
|  /*   150 */    56,  298,  442,  443,  410,  488,   60,   59,  297,  435,
 | |
|  /*   160 */   436,  432,  432,   62,   62,   61,   61,   61,   61,  490,
 | |
|  /*   170 */    63,   63,   63,   63,   64,   64,   65,   65,   65,   66,
 | |
|  /*   180 */   210,  292,  257,  524,  295,  571,  113,  408,  522,  451,
 | |
|  /*   190 */   331,  317,  407,   20,  418,  340,  519,  396,  532,  531,
 | |
|  /*   200 */   505,  447,  212,  570,  569,  208,  530,  425,  431,  149,
 | |
|  /*   210 */   150,  397,  398,  414,   41,  211,  151,  533,  372,  489,
 | |
|  /*   220 */   261,  568,  259,  420,  292,   60,   59,  297,  435,  436,
 | |
|  /*   230 */   432,  432,   62,   62,   61,   61,   61,   61,  317,   63,
 | |
|  /*   240 */    63,   63,   63,   64,   64,   65,   65,   65,   66,  210,
 | |
|  /*   250 */   425,  431,  447,  333,  215,  422,  422,  422,  363,  418,
 | |
|  /*   260 */   414,   41,  397,  398,  366,  567,  211,  292,   60,   59,
 | |
|  /*   270 */   297,  435,  436,  432,  432,   62,   62,   61,   61,   61,
 | |
|  /*   280 */    61,  396,   63,   63,   63,   63,   64,   64,   65,   65,
 | |
|  /*   290 */    65,   66,  210,  425,  431,  491,  300,  524,  474,   66,
 | |
|  /*   300 */   210,  214,  474,  229,  411,  286,  534,   20,  449,  523,
 | |
|  /*   310 */   168,   60,   59,  297,  435,  436,  432,  432,   62,   62,
 | |
|  /*   320 */    61,   61,   61,   61,  474,   63,   63,   63,   63,   64,
 | |
|  /*   330 */    64,   65,   65,   65,   66,  210,  209,  480,  317,   77,
 | |
|  /*   340 */   292,  239,  300,   55,  484,  230,  397,  398,  181,  547,
 | |
|  /*   350 */   494,  345,  348,  349,   67,  152,   69,  154,  339,  524,
 | |
|  /*   360 */   414,   35,  350,  241,  221,  370,  425,  431,  578,   20,
 | |
|  /*   370 */   164,  118,  243,  343,  248,  344,  176,  322,  442,  443,
 | |
|  /*   380 */   414,    3,   80,  252,   60,   59,  297,  435,  436,  432,
 | |
|  /*   390 */   432,   62,   62,   61,   61,   61,   61,  174,   63,   63,
 | |
|  /*   400 */    63,   63,   64,   64,   65,   65,   65,   66,  210,  292,
 | |
|  /*   410 */   221,  550,  236,  487,  510,  353,  317,  118,  243,  343,
 | |
|  /*   420 */   248,  344,  176,  181,  317,  525,  345,  348,  349,  252,
 | |
|  /*   430 */   223,  415,  155,  464,  511,  425,  431,  350,  414,   34,
 | |
|  /*   440 */   465,  211,  177,  175,  160,  237,  414,   34,  338,  549,
 | |
|  /*   450 */   449,  323,  168,   60,   59,  297,  435,  436,  432,  432,
 | |
|  /*   460 */    62,   62,   61,   61,   61,   61,  415,   63,   63,   63,
 | |
|  /*   470 */    63,   64,   64,   65,   65,   65,   66,  210,  292,  542,
 | |
|  /*   480 */   335,  517,  504,  541,  456,  571,  302,   19,  331,  144,
 | |
|  /*   490 */   317,  390,  317,  330,    2,  362,  457,  294,  483,  373,
 | |
|  /*   500 */   269,  268,  252,  570,  425,  431,  588,  391,  388,  458,
 | |
|  /*   510 */   208,  495,  414,   49,  414,   49,  303,  585,  892,  159,
 | |
|  /*   520 */   892,  496,   60,   59,  297,  435,  436,  432,  432,   62,
 | |
|  /*   530 */    62,   61,   61,   61,   61,  201,   63,   63,   63,   63,
 | |
|  /*   540 */    64,   64,   65,   65,   65,   66,  210,  292,  317,  181,
 | |
|  /*   550 */   439,  255,  345,  348,  349,  370,  153,  582,  308,  251,
 | |
|  /*   560 */   309,  452,   76,  350,   78,  382,  211,  426,  427,  415,
 | |
|  /*   570 */   414,   27,  319,  425,  431,  440,    1,   22,  585,  891,
 | |
|  /*   580 */   396,  891,  544,  478,  320,  263,  438,  438,  429,  430,
 | |
|  /*   590 */   415,   60,   59,  297,  435,  436,  432,  432,   62,   62,
 | |
|  /*   600 */    61,   61,   61,   61,  328,   63,   63,   63,   63,   64,
 | |
|  /*   610 */    64,   65,   65,   65,   66,  210,  292,  428,  582,  374,
 | |
|  /*   620 */   224,   93,  517,    9,  336,  396,  557,  396,  456,   67,
 | |
|  /*   630 */   396,   69,  154,  399,  400,  401,  320,  238,  438,  438,
 | |
|  /*   640 */   457,  318,  425,  431,  299,  397,  398,  320,  433,  438,
 | |
|  /*   650 */   438,  581,  291,  458,  225,  327,    5,  222,  546,  292,
 | |
|  /*   660 */    60,   59,  297,  435,  436,  432,  432,   62,   62,   61,
 | |
|  /*   670 */    61,   61,   61,  395,   63,   63,   63,   63,   64,   64,
 | |
|  /*   680 */    65,   65,   65,   66,  210,  425,  431,  482,  313,  392,
 | |
|  /*   690 */   397,  398,  397,  398,  207,  397,  398,  824,  273,  517,
 | |
|  /*   700 */   251,  200,  292,   60,   59,  297,  435,  436,  432,  432,
 | |
|  /*   710 */    62,   62,   61,   61,   61,   61,  470,   63,   63,   63,
 | |
|  /*   720 */    63,   64,   64,   65,   65,   65,   66,  210,  425,  431,
 | |
|  /*   730 */   171,  160,  263,  263,  304,  415,  276,  119,  274,  263,
 | |
|  /*   740 */   517,  517,  263,  517,  192,  292,   60,   70,  297,  435,
 | |
|  /*   750 */   436,  432,  432,   62,   62,   61,   61,   61,   61,  379,
 | |
|  /*   760 */    63,   63,   63,   63,   64,   64,   65,   65,   65,   66,
 | |
|  /*   770 */   210,  425,  431,  384,  559,  305,  306,  251,  415,  320,
 | |
|  /*   780 */   560,  438,  438,  561,  540,  360,  540,  387,  292,  196,
 | |
|  /*   790 */    59,  297,  435,  436,  432,  432,   62,   62,   61,   61,
 | |
|  /*   800 */    61,   61,  371,   63,   63,   63,   63,   64,   64,   65,
 | |
|  /*   810 */    65,   65,   66,  210,  425,  431,  396,  275,  251,  251,
 | |
|  /*   820 */   172,  250,  418,  415,  386,  367,  178,  179,  180,  469,
 | |
|  /*   830 */   311,  123,  156,  128,  297,  435,  436,  432,  432,   62,
 | |
|  /*   840 */    62,   61,   61,   61,   61,  317,   63,   63,   63,   63,
 | |
|  /*   850 */    64,   64,   65,   65,   65,   66,  210,   72,  324,  177,
 | |
|  /*   860 */     4,  317,  263,  317,  296,  263,  415,  414,   28,  317,
 | |
|  /*   870 */   263,  317,  321,   72,  324,  317,    4,  421,  445,  445,
 | |
|  /*   880 */   296,  397,  398,  414,   23,  414,   32,  418,  321,  326,
 | |
|  /*   890 */   329,  414,   53,  414,   52,  317,  158,  414,   98,  451,
 | |
|  /*   900 */   317,  194,  317,  277,  317,  326,  378,  471,  502,  317,
 | |
|  /*   910 */   478,  279,  478,  165,  294,  451,  317,  414,   96,   75,
 | |
|  /*   920 */    74,  469,  414,  101,  414,  102,  414,  112,   73,  315,
 | |
|  /*   930 */   316,  414,  114,  420,  448,   75,   74,  481,  414,   16,
 | |
|  /*   940 */   381,  317,  183,  467,   73,  315,  316,   72,  324,  420,
 | |
|  /*   950 */     4,  208,  317,  186,  296,  317,  499,  500,  476,  208,
 | |
|  /*   960 */   173,  341,  321,  414,   99,  422,  422,  422,  423,  424,
 | |
|  /*   970 */    11,  361,  380,  307,  414,   33,  415,  414,   97,  326,
 | |
|  /*   980 */   460,  422,  422,  422,  423,  424,   11,  415,  413,  451,
 | |
|  /*   990 */   413,  162,  412,  317,  412,  468,  226,  227,  228,  104,
 | |
|  /*  1000 */    84,  473,  317,  509,  508,  317,  622,  477,  317,   75,
 | |
|  /*  1010 */    74,  249,  205,   21,  281,  414,   24,  418,   73,  315,
 | |
|  /*  1020 */   316,  282,  317,  420,  414,   54,  507,  414,  115,  317,
 | |
|  /*  1030 */   414,  116,  506,  203,  147,  549,  244,  512,  526,  202,
 | |
|  /*  1040 */   317,  513,  204,  317,  414,  117,  317,  245,  317,   18,
 | |
|  /*  1050 */   317,  414,   25,  317,  256,  422,  422,  422,  423,  424,
 | |
|  /*  1060 */    11,  258,  414,   36,  260,  414,   37,  317,  414,   26,
 | |
|  /*  1070 */   414,   38,  414,   39,  262,  414,   40,  317,  514,  317,
 | |
|  /*  1080 */   128,  317,  418,  317,  189,  377,  278,  268,  267,  414,
 | |
|  /*  1090 */    42,  293,  317,  254,  317,  128,  208,  365,    8,  414,
 | |
|  /*  1100 */    43,  414,   44,  414,   29,  414,   30,  352,  368,  128,
 | |
|  /*  1110 */   317,  545,  317,  128,  414,   45,  414,   46,  317,  583,
 | |
|  /*  1120 */   383,  553,  317,  173,  554,  317,   91,  317,  564,  369,
 | |
|  /*  1130 */    91,  357,  414,   47,  414,   48,  580,  270,  290,  271,
 | |
|  /*  1140 */   414,   31,  272,  556,  414,   10,  566,  414,   50,  414,
 | |
|  /*  1150 */    51,  280,  283,  284,  577,  146,  463,  405,  584,  231,
 | |
|  /*  1160 */   325,  419,  444,  466,  446,  246,  505,  552,  563,  515,
 | |
|  /*  1170 */   516,  520,  163,  518,  394,  347,    7,  402,  403,  404,
 | |
|  /*  1180 */   314,   84,  232,  334,  332,   83,   79,  416,  170,   57,
 | |
|  /*  1190 */   213,  461,  125,   85,  337,  342,  492,  301,  233,  498,
 | |
|  /*  1200 */   497,  105,  502,  219,  354,  247,  521,  234,  501,  235,
 | |
|  /*  1210 */   287,  417,  503,  218,  527,  528,  529,  358,  240,  535,
 | |
|  /*  1220 */   475,  242,  288,  479,  356,  184,  185,  121,  187,  132,
 | |
|  /*  1230 */   188,  548,  537,   88,  190,  193,  364,  142,  375,  376,
 | |
|  /*  1240 */   555,  133,  220,  562,  134,  310,  135,  138,  136,  574,
 | |
|  /*  1250 */   575,  141,  576,  265,  579,  100,  538,  217,  393,   92,
 | |
|  /*  1260 */   103,   95,  406,  623,  624,  166,  434,  167,  437,   71,
 | |
|  /*  1270 */   453,  441,  450,   17,  143,  157,  169,    6,  111,   13,
 | |
|  /*  1280 */   454,  455,  459,  472,  126,   81,   12,  127,  161,  485,
 | |
|  /*  1290 */   486,  216,   86,  122,  106,  182,  253,  346,  312,  107,
 | |
|  /*  1300 */   120,   87,  351,  108,  245,  355,  145,  536,  359,  129,
 | |
|  /*  1310 */   173,  266,  191,  109,  289,  551,  130,  539,  195,  543,
 | |
|  /*  1320 */   131,   14,  197,  199,  198,  558,  137,  139,  140,  110,
 | |
|  /*  1330 */    15,  285,  572,  206,  389,  565,  385,  148,  586,  902,
 | |
|  /*  1340 */   902,  902,  902,  902,  902,   89,   90,
 | |
| };
 | |
| static const YYCODETYPE yy_lookahead[] = {
 | |
|  /*     0 */    16,  139,  140,  141,  168,   21,  144,   23,   69,   70,
 | |
|  /*    10 */    71,   72,  176,   74,   75,   76,   77,   78,   79,   80,
 | |
|  /*    20 */    81,   82,   83,   84,   78,   79,   42,   43,   73,   74,
 | |
|  /*    30 */    75,   76,   77,   78,   79,   80,   81,   82,   83,   84,
 | |
|  /*    40 */     1,    2,   23,   58,   60,   61,   62,   63,   64,   65,
 | |
|  /*    50 */    66,   67,   68,   69,   70,   71,   72,  147,   74,   75,
 | |
|  /*    60 */    76,   77,   78,   79,   80,   81,   82,   83,   84,   16,
 | |
|  /*    70 */   185,  186,   88,   88,  110,   22,  217,   92,  219,  220,
 | |
|  /*    80 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 | |
|  /*    90 */    84,  217,  218,  219,  220,   42,   43,  238,  188,   46,
 | |
|  /*   100 */    78,   79,   80,   81,   82,   83,   84,   88,   89,  124,
 | |
|  /*   110 */   125,  126,   16,   60,   61,   62,   63,   64,   65,   66,
 | |
|  /*   120 */    67,   68,   69,   70,   71,   72,  147,   74,   75,   76,
 | |
|  /*   130 */    77,   78,   79,   80,   81,   82,   83,   84,   42,   43,
 | |
|  /*   140 */    44,   80,   81,   82,   83,   84,   23,   84,  169,  170,
 | |
|  /*   150 */    19,  164,  165,  166,   23,  169,   60,   61,   62,   63,
 | |
|  /*   160 */    64,   65,   66,   67,   68,   69,   70,   71,   72,  169,
 | |
|  /*   170 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 | |
|  /*   180 */    84,   16,   14,  147,  150,  147,   21,  167,  168,   58,
 | |
|  /*   190 */   211,  147,  156,  157,   23,  216,  176,   23,  181,  176,
 | |
|  /*   200 */   177,   78,   79,  165,  166,  110,  183,   42,   43,   78,
 | |
|  /*   210 */    79,   88,   89,  169,  170,  228,  180,  181,  123,   88,
 | |
|  /*   220 */    52,   98,   54,   92,   16,   60,   61,   62,   63,   64,
 | |
|  /*   230 */    65,   66,   67,   68,   69,   70,   71,   72,  147,   74,
 | |
|  /*   240 */    75,   76,   77,   78,   79,   80,   81,   82,   83,   84,
 | |
|  /*   250 */    42,   43,   78,  209,  210,  124,  125,  126,  224,   88,
 | |
|  /*   260 */   169,  170,   88,   89,  230,  227,  228,   16,   60,   61,
 | |
|  /*   270 */    62,   63,   64,   65,   66,   67,   68,   69,   70,   71,
 | |
|  /*   280 */    72,   23,   74,   75,   76,   77,   78,   79,   80,   81,
 | |
|  /*   290 */    82,   83,   84,   42,   43,  160,   16,  147,  161,   83,
 | |
|  /*   300 */    84,  210,  161,  153,  169,  158,  156,  157,  161,  162,
 | |
|  /*   310 */   163,   60,   61,   62,   63,   64,   65,   66,   67,   68,
 | |
|  /*   320 */    69,   70,   71,   72,  161,   74,   75,   76,   77,   78,
 | |
|  /*   330 */    79,   80,   81,   82,   83,   84,  192,  200,  147,  131,
 | |
|  /*   340 */    16,  200,   16,  199,   20,  190,   88,   89,   90,  185,
 | |
|  /*   350 */   186,   93,   94,   95,  217,   22,  219,  220,  147,  147,
 | |
|  /*   360 */   169,  170,  104,  200,   84,  147,   42,   43,  156,  157,
 | |
|  /*   370 */    90,   91,   92,   93,   94,   95,   96,  164,  165,  166,
 | |
|  /*   380 */   169,  170,  131,  103,   60,   61,   62,   63,   64,   65,
 | |
|  /*   390 */    66,   67,   68,   69,   70,   71,   72,  155,   74,   75,
 | |
|  /*   400 */    76,   77,   78,   79,   80,   81,   82,   83,   84,   16,
 | |
|  /*   410 */    84,   11,  221,   20,   30,   16,  147,   91,   92,   93,
 | |
|  /*   420 */    94,   95,   96,   90,  147,  181,   93,   94,   95,  103,
 | |
|  /*   430 */   212,  189,  155,   27,   50,   42,   43,  104,  169,  170,
 | |
|  /*   440 */    34,  228,   43,  201,  202,  147,  169,  170,  206,   49,
 | |
|  /*   450 */   161,  162,  163,   60,   61,   62,   63,   64,   65,   66,
 | |
|  /*   460 */    67,   68,   69,   70,   71,   72,  189,   74,   75,   76,
 | |
|  /*   470 */    77,   78,   79,   80,   81,   82,   83,   84,   16,   25,
 | |
|  /*   480 */   211,  147,   20,   29,   12,  147,  102,   19,  211,   21,
 | |
|  /*   490 */   147,  141,  147,  216,  144,   41,   24,   98,   20,   99,
 | |
|  /*   500 */   100,  101,  103,  165,   42,   43,    0,    1,    2,   37,
 | |
|  /*   510 */   110,   39,  169,  170,  169,  170,  182,   19,   20,  147,
 | |
|  /*   520 */    22,   49,   60,   61,   62,   63,   64,   65,   66,   67,
 | |
|  /*   530 */    68,   69,   70,   71,   72,  155,   74,   75,   76,   77,
 | |
|  /*   540 */    78,   79,   80,   81,   82,   83,   84,   16,  147,   90,
 | |
|  /*   550 */    20,   20,   93,   94,   95,  147,  155,   59,  215,  225,
 | |
|  /*   560 */   215,   20,  130,  104,  132,  227,  228,   42,   43,  189,
 | |
|  /*   570 */   169,  170,   16,   42,   43,   20,   19,   22,   19,   20,
 | |
|  /*   580 */    23,   22,   18,  147,  106,  147,  108,  109,   63,   64,
 | |
|  /*   590 */   189,   60,   61,   62,   63,   64,   65,   66,   67,   68,
 | |
|  /*   600 */    69,   70,   71,   72,  186,   74,   75,   76,   77,   78,
 | |
|  /*   610 */    79,   80,   81,   82,   83,   84,   16,   92,   59,   55,
 | |
|  /*   620 */   212,   21,  147,   19,  147,   23,  188,   23,   12,  217,
 | |
|  /*   630 */    23,  219,  220,    7,    8,    9,  106,  147,  108,  109,
 | |
|  /*   640 */    24,  147,   42,   43,  208,   88,   89,  106,   92,  108,
 | |
|  /*   650 */   109,  244,  245,   37,  145,   39,  191,  182,   94,   16,
 | |
|  /*   660 */    60,   61,   62,   63,   64,   65,   66,   67,   68,   69,
 | |
|  /*   670 */    70,   71,   72,  147,   74,   75,   76,   77,   78,   79,
 | |
|  /*   680 */    80,   81,   82,   83,   84,   42,   43,   80,  142,  143,
 | |
|  /*   690 */    88,   89,   88,   89,  148,   88,   89,  133,   14,  147,
 | |
|  /*   700 */   225,  155,   16,   60,   61,   62,   63,   64,   65,   66,
 | |
|  /*   710 */    67,   68,   69,   70,   71,   72,  114,   74,   75,   76,
 | |
|  /*   720 */    77,   78,   79,   80,   81,   82,   83,   84,   42,   43,
 | |
|  /*   730 */   201,  202,  147,  147,  182,  189,   52,  147,   54,  147,
 | |
|  /*   740 */   147,  147,  147,  147,  155,   16,   60,   61,   62,   63,
 | |
|  /*   750 */    64,   65,   66,   67,   68,   69,   70,   71,   72,  213,
 | |
|  /*   760 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 | |
|  /*   770 */    84,   42,   43,  188,  188,  182,  182,  225,  189,  106,
 | |
|  /*   780 */   188,  108,  109,  188,   99,  100,  101,  241,   16,  155,
 | |
|  /*   790 */    61,   62,   63,   64,   65,   66,   67,   68,   69,   70,
 | |
|  /*   800 */    71,   72,  213,   74,   75,   76,   77,   78,   79,   80,
 | |
|  /*   810 */    81,   82,   83,   84,   42,   43,   23,  133,  225,  225,
 | |
|  /*   820 */    21,  225,   23,  189,  239,  236,   99,  100,  101,   22,
 | |
|  /*   830 */   242,  243,  155,   22,   62,   63,   64,   65,   66,   67,
 | |
|  /*   840 */    68,   69,   70,   71,   72,  147,   74,   75,   76,   77,
 | |
|  /*   850 */    78,   79,   80,   81,   82,   83,   84,   16,   17,   43,
 | |
|  /*   860 */    19,  147,  147,  147,   23,  147,  189,  169,  170,  147,
 | |
|  /*   870 */   147,  147,   31,   16,   17,  147,   19,  147,  124,  125,
 | |
|  /*   880 */    23,   88,   89,  169,  170,  169,  170,   88,   31,   48,
 | |
|  /*   890 */   147,  169,  170,  169,  170,  147,   89,  169,  170,   58,
 | |
|  /*   900 */   147,   22,  147,  188,  147,   48,  188,  114,   97,  147,
 | |
|  /*   910 */   147,  188,  147,   19,   98,   58,  147,  169,  170,   78,
 | |
|  /*   920 */    79,  114,  169,  170,  169,  170,  169,  170,   87,   88,
 | |
|  /*   930 */    89,  169,  170,   92,  161,   78,   79,   80,  169,  170,
 | |
|  /*   940 */    91,  147,  155,   22,   87,   88,   89,   16,   17,   92,
 | |
|  /*   950 */    19,  110,  147,  155,   23,  147,    7,    8,   20,  110,
 | |
|  /*   960 */    22,   80,   31,  169,  170,  124,  125,  126,  127,  128,
 | |
|  /*   970 */   129,  208,  123,  208,  169,  170,  189,  169,  170,   48,
 | |
|  /*   980 */   147,  124,  125,  126,  127,  128,  129,  189,  107,   58,
 | |
|  /*   990 */   107,    5,  111,  147,  111,  203,   10,   11,   12,   13,
 | |
|  /*  1000 */   121,  147,  147,   91,   92,  147,  112,  147,  147,   78,
 | |
|  /*  1010 */    79,  147,   26,   19,   28,  169,  170,   23,   87,   88,
 | |
|  /*  1020 */    89,   35,  147,   92,  169,  170,  178,  169,  170,  147,
 | |
|  /*  1030 */   169,  170,  147,   47,  113,   49,   92,  178,  147,   53,
 | |
|  /*  1040 */   147,  178,   56,  147,  169,  170,  147,  103,  147,   19,
 | |
|  /*  1050 */   147,  169,  170,  147,  147,  124,  125,  126,  127,  128,
 | |
|  /*  1060 */   129,  147,  169,  170,  147,  169,  170,  147,  169,  170,
 | |
|  /*  1070 */   169,  170,  169,  170,  147,  169,  170,  147,   20,  147,
 | |
|  /*  1080 */    22,  147,   88,  147,  232,   99,  100,  101,  147,  169,
 | |
|  /*  1090 */   170,  105,  147,   20,  147,   22,  110,  147,   68,  169,
 | |
|  /*  1100 */   170,  169,  170,  169,  170,  169,  170,   20,  147,   22,
 | |
|  /*  1110 */   147,   20,  147,   22,  169,  170,  169,  170,  147,   20,
 | |
|  /*  1120 */   134,   20,  147,   22,   20,  147,   22,  147,   20,  147,
 | |
|  /*  1130 */    22,  233,  169,  170,  169,  170,   20,  147,   22,  147,
 | |
|  /*  1140 */   169,  170,  147,  147,  169,  170,  147,  169,  170,  169,
 | |
|  /*  1150 */   170,  147,  147,  147,  147,  191,  172,  149,   59,  193,
 | |
|  /*  1160 */   223,  161,  229,  172,  229,  172,  177,  194,  194,  172,
 | |
|  /*  1170 */   161,  161,    6,  172,  146,  173,   22,  146,  146,  146,
 | |
|  /*  1180 */   154,  121,  194,  118,  116,  119,  130,  189,  112,  120,
 | |
|  /*  1190 */   222,  152,  152,   98,  115,   98,  171,   40,  195,  179,
 | |
|  /*  1200 */   171,   19,   97,   84,   15,  171,  179,  196,  173,  197,
 | |
|  /*  1210 */   174,  198,  171,  226,  171,  171,  171,   38,  204,  152,
 | |
|  /*  1220 */   205,  204,  174,  205,  152,  151,  151,   60,  151,   19,
 | |
|  /*  1230 */   152,  184,  152,  130,  151,  184,  152,  214,  152,   15,
 | |
|  /*  1240 */   194,  187,  226,  194,  187,  152,  187,  184,  187,   33,
 | |
|  /*  1250 */   152,  214,  152,  234,  137,  159,  235,  175,    1,  237,
 | |
|  /*  1260 */   175,  237,   20,  112,  112,  112,   92,  112,  107,   19,
 | |
|  /*  1270 */    11,   20,   20,  231,   19,   19,   22,  117,  240,  117,
 | |
|  /*  1280 */    20,   20,   20,  114,   19,   22,   22,   20,  112,   20,
 | |
|  /*  1290 */    20,   44,   19,  243,   19,   96,   20,   44,  246,   19,
 | |
|  /*  1300 */    32,   19,   44,   19,  103,   16,   21,   17,   36,   98,
 | |
|  /*  1310 */    22,  133,   98,   19,    5,    1,   45,   51,  122,   45,
 | |
|  /*  1320 */   102,   19,  113,  115,   14,   17,  113,  102,  122,   14,
 | |
|  /*  1330 */    19,  136,   20,  135,    3,  123,   57,   19,    4,  247,
 | |
|  /*  1340 */   247,  247,  247,  247,  247,   68,   68,
 | |
| };
 | |
| #define YY_SHIFT_USE_DFLT (-62)
 | |
| #define YY_SHIFT_MAX 389
 | |
| static const short yy_shift_ofst[] = {
 | |
|  /*     0 */    39,  841,  986,  -16,  841,  931,  931,  258,  123,  -36,
 | |
|  /*    10 */    96,  931,  931,  931,  931,  931,  -45,  400,  174,   19,
 | |
|  /*    20 */   171,  -54,  -54,   53,  165,  208,  251,  324,  393,  462,
 | |
|  /*    30 */   531,  600,  643,  686,  643,  643,  643,  643,  643,  643,
 | |
|  /*    40 */   643,  643,  643,  643,  643,  643,  643,  643,  643,  643,
 | |
|  /*    50 */   643,  643,  729,  772,  772,  857,  931,  931,  931,  931,
 | |
|  /*    60 */   931,  931,  931,  931,  931,  931,  931,  931,  931,  931,
 | |
|  /*    70 */   931,  931,  931,  931,  931,  931,  931,  931,  931,  931,
 | |
|  /*    80 */   931,  931,  931,  931,  931,  931,  931,  931,  931,  931,
 | |
|  /*    90 */   931,  931,  931,  931,  931,  931,  -61,  -61,    6,    6,
 | |
|  /*   100 */   280,   22,   61,  399,  564,   19,   19,   19,   19,   19,
 | |
|  /*   110 */    19,   19,  216,  171,   63,  -62,  -62,  -62,  131,  326,
 | |
|  /*   120 */   472,  472,  498,  559,  506,  799,   19,  799,   19,   19,
 | |
|  /*   130 */    19,   19,   19,   19,   19,   19,   19,   19,   19,   19,
 | |
|  /*   140 */    19,  849,   95,  -36,  -36,  -36,  -62,  -62,  -62,  -15,
 | |
|  /*   150 */   -15,  333,  459,  478,  557,  530,  541,  616,  602,  793,
 | |
|  /*   160 */   604,  607,  626,   19,   19,  881,   19,   19,  994,   19,
 | |
|  /*   170 */    19,  807,   19,   19,  673,  807,   19,   19,  384,  384,
 | |
|  /*   180 */   384,   19,   19,  673,   19,   19,  673,   19,  454,  685,
 | |
|  /*   190 */    19,   19,  673,   19,   19,   19,  673,   19,   19,   19,
 | |
|  /*   200 */   673,  673,   19,   19,   19,   19,   19,  468,  883,  921,
 | |
|  /*   210 */   171,  754,  754,  432,  406,  406,  406,  816,  406,  171,
 | |
|  /*   220 */   406,  171,  811,  879,  879, 1166, 1166, 1166, 1166, 1154,
 | |
|  /*   230 */   -36, 1060, 1065, 1066, 1068, 1069, 1056, 1076, 1076, 1095,
 | |
|  /*   240 */  1079, 1095, 1079, 1097, 1097, 1157, 1097, 1105, 1097, 1182,
 | |
|  /*   250 */  1119, 1119, 1157, 1097, 1097, 1097, 1182, 1189, 1076, 1189,
 | |
|  /*   260 */  1076, 1189, 1076, 1076, 1179, 1103, 1189, 1076, 1167, 1167,
 | |
|  /*   270 */  1210, 1060, 1076, 1224, 1224, 1224, 1224, 1060, 1167, 1210,
 | |
|  /*   280 */  1076, 1216, 1216, 1076, 1076, 1117,  -62,  -62,  -62,  -62,
 | |
|  /*   290 */   -62,  -62,  525,  684,  727,  168,  894,  556,  555,  938,
 | |
|  /*   300 */   944,  949,  912, 1058, 1073, 1087, 1091, 1101, 1104, 1108,
 | |
|  /*   310 */  1030, 1116, 1099, 1257, 1242, 1151, 1152, 1153, 1155, 1174,
 | |
|  /*   320 */  1161, 1250, 1251, 1252, 1255, 1259, 1256, 1260, 1254, 1261,
 | |
|  /*   330 */  1262, 1263, 1160, 1264, 1162, 1263, 1169, 1265, 1267, 1176,
 | |
|  /*   340 */  1269, 1270, 1268, 1247, 1273, 1253, 1275, 1276, 1280, 1282,
 | |
|  /*   350 */  1258, 1284, 1199, 1201, 1289, 1290, 1285, 1211, 1272, 1266,
 | |
|  /*   360 */  1271, 1288, 1274, 1178, 1214, 1294, 1309, 1314, 1218, 1277,
 | |
|  /*   370 */  1278, 1196, 1302, 1209, 1310, 1208, 1308, 1213, 1225, 1206,
 | |
|  /*   380 */  1311, 1212, 1312, 1315, 1279, 1198, 1195, 1318, 1331, 1334,
 | |
| };
 | |
| #define YY_REDUCE_USE_DFLT (-165)
 | |
| #define YY_REDUCE_MAX 291
 | |
| static const short yy_reduce_ofst[] = {
 | |
|  /*     0 */  -138,  277,  546,  137,  401,  -21,   44,   36,   38,  242,
 | |
|  /*    10 */  -141,  191,   91,  269,  343,  345, -126,  589,  338,  150,
 | |
|  /*    20 */   147,  -13,  213,  412,  412,  412,  412,  412,  412,  412,
 | |
|  /*    30 */   412,  412,  412,  412,  412,  412,  412,  412,  412,  412,
 | |
|  /*    40 */   412,  412,  412,  412,  412,  412,  412,  412,  412,  412,
 | |
|  /*    50 */   412,  412,  412,  412,  412,  211,  698,  714,  716,  722,
 | |
|  /*    60 */   724,  728,  748,  753,  755,  757,  762,  769,  794,  805,
 | |
|  /*    70 */   808,  846,  855,  858,  861,  875,  882,  893,  896,  899,
 | |
|  /*    80 */   901,  903,  906,  920,  930,  932,  934,  936,  945,  947,
 | |
|  /*    90 */   963,  965,  971,  975,  978,  980,  412,  412,  412,  412,
 | |
|  /*   100 */    20,  412,  412,   23,   34,  334,  475,  552,  593,  594,
 | |
|  /*   110 */   585,  212,  412,  289,  412,  412,  412,  412,  135, -164,
 | |
|  /*   120 */  -115,  164,  407,  407,  350,  141,  436,  163,  596,  -90,
 | |
|  /*   130 */   763,  218,  765,  438,  586,  592,  595,  715,  718,  408,
 | |
|  /*   140 */   723,  380,  634,  677,  787,  798,  144,  529,  588,  -14,
 | |
|  /*   150 */     0,   17,  244,  155,  298,  155,  155,  418,  372,  477,
 | |
|  /*   160 */   490,  494,  509,  526,  590,  465,  494,  730,  773,  743,
 | |
|  /*   170 */   833,  792,  854,  860,  155,  792,  864,  885,  848,  859,
 | |
|  /*   180 */   863,  891,  907,  155,  914,  917,  155,  927,  852,  898,
 | |
|  /*   190 */   941,  950,  155,  961,  982,  990,  155,  992,  995,  996,
 | |
|  /*   200 */   155,  155,  999, 1004, 1005, 1006, 1007, 1008,  964,  966,
 | |
|  /*   210 */  1000,  933,  935,  937,  984,  991,  993,  989,  997, 1009,
 | |
|  /*   220 */  1001, 1010, 1002,  973,  974, 1028, 1031, 1032, 1033, 1026,
 | |
|  /*   230 */   998,  988, 1003, 1011, 1012, 1013,  968, 1039, 1040, 1014,
 | |
|  /*   240 */  1015, 1017, 1018, 1025, 1029, 1020, 1034, 1035, 1041, 1036,
 | |
|  /*   250 */   987, 1016, 1027, 1043, 1044, 1045, 1048, 1074, 1067, 1075,
 | |
|  /*   260 */  1072, 1077, 1078, 1080, 1019, 1021, 1083, 1084, 1047, 1051,
 | |
|  /*   270 */  1023, 1046, 1086, 1054, 1057, 1059, 1061, 1049, 1063, 1037,
 | |
|  /*   280 */  1093, 1022, 1024, 1098, 1100, 1038, 1096, 1082, 1085, 1042,
 | |
|  /*   290 */  1050, 1052,
 | |
| };
 | |
| static const YYACTIONTYPE yy_default[] = {
 | |
|  /*     0 */   594,  819,  900,  709,  900,  819,  900,  900,  846,  713,
 | |
|  /*    10 */   875,  817,  900,  900,  900,  900,  791,  900,  846,  900,
 | |
|  /*    20 */   625,  846,  846,  742,  900,  900,  900,  900,  900,  900,
 | |
|  /*    30 */   900,  900,  743,  900,  821,  816,  812,  814,  813,  820,
 | |
|  /*    40 */   744,  733,  740,  747,  725,  859,  749,  750,  756,  757,
 | |
|  /*    50 */   876,  874,  779,  778,  797,  900,  900,  900,  900,  900,
 | |
|  /*    60 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*    70 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*    80 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*    90 */   900,  900,  900,  900,  900,  900,  781,  803,  780,  790,
 | |
|  /*   100 */   618,  782,  783,  678,  613,  900,  900,  900,  900,  900,
 | |
|  /*   110 */   900,  900,  784,  900,  785,  798,  799,  800,  900,  900,
 | |
|  /*   120 */   900,  900,  900,  900,  594,  709,  900,  709,  900,  900,
 | |
|  /*   130 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   140 */   900,  900,  900,  900,  900,  900,  703,  713,  893,  900,
 | |
|  /*   150 */   900,  669,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   160 */   900,  900,  601,  599,  900,  701,  900,  900,  627,  900,
 | |
|  /*   170 */   900,  711,  900,  900,  716,  717,  900,  900,  900,  900,
 | |
|  /*   180 */   900,  900,  900,  615,  900,  900,  690,  900,  852,  900,
 | |
|  /*   190 */   900,  900,  866,  900,  900,  900,  864,  900,  900,  900,
 | |
|  /*   200 */   692,  752,  833,  900,  879,  881,  900,  900,  701,  710,
 | |
|  /*   210 */   900,  900,  900,  815,  736,  736,  736,  648,  736,  900,
 | |
|  /*   220 */   736,  900,  651,  746,  746,  598,  598,  598,  598,  668,
 | |
|  /*   230 */   900,  746,  737,  739,  729,  741,  900,  718,  718,  726,
 | |
|  /*   240 */   728,  726,  728,  680,  680,  665,  680,  651,  680,  825,
 | |
|  /*   250 */   830,  830,  665,  680,  680,  680,  825,  610,  718,  610,
 | |
|  /*   260 */   718,  610,  718,  718,  856,  858,  610,  718,  682,  682,
 | |
|  /*   270 */   758,  746,  718,  689,  689,  689,  689,  746,  682,  758,
 | |
|  /*   280 */   718,  878,  878,  718,  718,  886,  635,  653,  653,  861,
 | |
|  /*   290 */   893,  898,  900,  900,  900,  900,  765,  900,  900,  900,
 | |
|  /*   300 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   310 */   839,  900,  900,  900,  900,  770,  766,  900,  767,  900,
 | |
|  /*   320 */   695,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   330 */   900,  818,  900,  730,  900,  738,  900,  900,  900,  900,
 | |
|  /*   340 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   350 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   360 */   854,  855,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   370 */   900,  900,  900,  900,  900,  900,  900,  900,  900,  900,
 | |
|  /*   380 */   900,  900,  900,  900,  885,  900,  900,  888,  595,  900,
 | |
|  /*   390 */   589,  592,  591,  593,  597,  600,  622,  623,  624,  602,
 | |
|  /*   400 */   603,  604,  605,  606,  607,  608,  614,  616,  634,  636,
 | |
|  /*   410 */   620,  638,  699,  700,  762,  693,  694,  698,  621,  773,
 | |
|  /*   420 */   764,  768,  769,  771,  772,  786,  787,  789,  795,  802,
 | |
|  /*   430 */   805,  788,  793,  794,  796,  801,  804,  696,  697,  808,
 | |
|  /*   440 */   628,  629,  632,  633,  842,  844,  843,  845,  631,  630,
 | |
|  /*   450 */   774,  777,  810,  811,  867,  868,  869,  870,  871,  806,
 | |
|  /*   460 */   719,  809,  792,  731,  734,  735,  732,  702,  712,  721,
 | |
|  /*   470 */   722,  723,  724,  707,  708,  714,  727,  760,  761,  715,
 | |
|  /*   480 */   704,  705,  706,  807,  763,  775,  776,  639,  640,  770,
 | |
|  /*   490 */   641,  642,  643,  681,  684,  685,  686,  644,  663,  666,
 | |
|  /*   500 */   667,  645,  652,  646,  647,  654,  655,  656,  659,  660,
 | |
|  /*   510 */   661,  662,  657,  658,  826,  827,  831,  829,  828,  649,
 | |
|  /*   520 */   650,  664,  637,  626,  619,  670,  673,  674,  675,  676,
 | |
|  /*   530 */   677,  679,  671,  672,  617,  609,  611,  720,  848,  857,
 | |
|  /*   540 */   853,  849,  850,  851,  612,  822,  823,  683,  754,  755,
 | |
|  /*   550 */   847,  860,  862,  759,  863,  865,  890,  687,  688,  691,
 | |
|  /*   560 */   832,  872,  745,  748,  751,  753,  834,  835,  836,  837,
 | |
|  /*   570 */   840,  841,  838,  873,  877,  880,  882,  883,  884,  887,
 | |
|  /*   580 */   889,  894,  895,  896,  899,  897,  596,  590,
 | |
| };
 | |
| #define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0]))
 | |
| 
 | |
| /* The next table maps tokens into fallback tokens.  If a construct
 | |
| ** like the following:
 | |
| ** 
 | |
| **      %fallback ID X Y Z.
 | |
| **
 | |
| ** appears in the grammer, then ID becomes a fallback token for X, Y,
 | |
| ** and Z.  Whenever one of the tokens X, Y, or Z is input to the parser
 | |
| ** but it does not parse, the type of the token is changed to ID and
 | |
| ** the parse is retried before an error is thrown.
 | |
| */
 | |
| #ifdef YYFALLBACK
 | |
| static const YYCODETYPE yyFallback[] = {
 | |
|     0,  /*          $ => nothing */
 | |
|     0,  /*       SEMI => nothing */
 | |
|    23,  /*    EXPLAIN => ID */
 | |
|    23,  /*      QUERY => ID */
 | |
|    23,  /*       PLAN => ID */
 | |
|    23,  /*      BEGIN => ID */
 | |
|     0,  /* TRANSACTION => nothing */
 | |
|    23,  /*   DEFERRED => ID */
 | |
|    23,  /*  IMMEDIATE => ID */
 | |
|    23,  /*  EXCLUSIVE => ID */
 | |
|     0,  /*     COMMIT => nothing */
 | |
|    23,  /*        END => ID */
 | |
|     0,  /*   ROLLBACK => nothing */
 | |
|     0,  /*     CREATE => nothing */
 | |
|     0,  /*      TABLE => nothing */
 | |
|    23,  /*         IF => ID */
 | |
|     0,  /*        NOT => nothing */
 | |
|     0,  /*     EXISTS => nothing */
 | |
|    23,  /*       TEMP => ID */
 | |
|     0,  /*         LP => nothing */
 | |
|     0,  /*         RP => nothing */
 | |
|     0,  /*         AS => nothing */
 | |
|     0,  /*      COMMA => nothing */
 | |
|     0,  /*         ID => nothing */
 | |
|    23,  /*      ABORT => ID */
 | |
|    23,  /*      AFTER => ID */
 | |
|    23,  /*    ANALYZE => ID */
 | |
|    23,  /*        ASC => ID */
 | |
|    23,  /*     ATTACH => ID */
 | |
|    23,  /*     BEFORE => ID */
 | |
|    23,  /*    CASCADE => ID */
 | |
|    23,  /*       CAST => ID */
 | |
|    23,  /*   CONFLICT => ID */
 | |
|    23,  /*   DATABASE => ID */
 | |
|    23,  /*       DESC => ID */
 | |
|    23,  /*     DETACH => ID */
 | |
|    23,  /*       EACH => ID */
 | |
|    23,  /*       FAIL => ID */
 | |
|    23,  /*        FOR => ID */
 | |
|    23,  /*     IGNORE => ID */
 | |
|    23,  /*  INITIALLY => ID */
 | |
|    23,  /*    INSTEAD => ID */
 | |
|    23,  /*    LIKE_KW => ID */
 | |
|    23,  /*      MATCH => ID */
 | |
|    23,  /*        KEY => ID */
 | |
|    23,  /*         OF => ID */
 | |
|    23,  /*     OFFSET => ID */
 | |
|    23,  /*     PRAGMA => ID */
 | |
|    23,  /*      RAISE => ID */
 | |
|    23,  /*    REPLACE => ID */
 | |
|    23,  /*   RESTRICT => ID */
 | |
|    23,  /*        ROW => ID */
 | |
|    23,  /*    TRIGGER => ID */
 | |
|    23,  /*     VACUUM => ID */
 | |
|    23,  /*       VIEW => ID */
 | |
|    23,  /*    VIRTUAL => ID */
 | |
|    23,  /*    REINDEX => ID */
 | |
|    23,  /*     RENAME => ID */
 | |
|    23,  /*   CTIME_KW => ID */
 | |
|     0,  /*        ANY => nothing */
 | |
|     0,  /*         OR => nothing */
 | |
|     0,  /*        AND => nothing */
 | |
|     0,  /*         IS => nothing */
 | |
|     0,  /*    BETWEEN => nothing */
 | |
|     0,  /*         IN => nothing */
 | |
|     0,  /*     ISNULL => nothing */
 | |
|     0,  /*    NOTNULL => nothing */
 | |
|     0,  /*         NE => nothing */
 | |
|     0,  /*         EQ => nothing */
 | |
|     0,  /*         GT => nothing */
 | |
|     0,  /*         LE => nothing */
 | |
|     0,  /*         LT => nothing */
 | |
|     0,  /*         GE => nothing */
 | |
|     0,  /*     ESCAPE => nothing */
 | |
|     0,  /*     BITAND => nothing */
 | |
|     0,  /*      BITOR => nothing */
 | |
|     0,  /*     LSHIFT => nothing */
 | |
|     0,  /*     RSHIFT => nothing */
 | |
|     0,  /*       PLUS => nothing */
 | |
|     0,  /*      MINUS => nothing */
 | |
|     0,  /*       STAR => nothing */
 | |
|     0,  /*      SLASH => nothing */
 | |
|     0,  /*        REM => nothing */
 | |
|     0,  /*     CONCAT => nothing */
 | |
|     0,  /*    COLLATE => nothing */
 | |
|     0,  /*     UMINUS => nothing */
 | |
|     0,  /*      UPLUS => nothing */
 | |
|     0,  /*     BITNOT => nothing */
 | |
|     0,  /*     STRING => nothing */
 | |
|     0,  /*    JOIN_KW => nothing */
 | |
|     0,  /* CONSTRAINT => nothing */
 | |
|     0,  /*    DEFAULT => nothing */
 | |
|     0,  /*       NULL => nothing */
 | |
|     0,  /*    PRIMARY => nothing */
 | |
|     0,  /*     UNIQUE => nothing */
 | |
|     0,  /*      CHECK => nothing */
 | |
|     0,  /* REFERENCES => nothing */
 | |
|     0,  /*   AUTOINCR => nothing */
 | |
|     0,  /*         ON => nothing */
 | |
|     0,  /*     DELETE => nothing */
 | |
|     0,  /*     UPDATE => nothing */
 | |
|     0,  /*     INSERT => nothing */
 | |
|     0,  /*        SET => nothing */
 | |
|     0,  /* DEFERRABLE => nothing */
 | |
|     0,  /*    FOREIGN => nothing */
 | |
|     0,  /*       DROP => nothing */
 | |
|     0,  /*      UNION => nothing */
 | |
|     0,  /*        ALL => nothing */
 | |
|     0,  /*     EXCEPT => nothing */
 | |
|     0,  /*  INTERSECT => nothing */
 | |
|     0,  /*     SELECT => nothing */
 | |
|     0,  /*   DISTINCT => nothing */
 | |
|     0,  /*        DOT => nothing */
 | |
|     0,  /*       FROM => nothing */
 | |
|     0,  /*       JOIN => nothing */
 | |
|     0,  /*      USING => nothing */
 | |
|     0,  /*      ORDER => nothing */
 | |
|     0,  /*         BY => nothing */
 | |
|     0,  /*      GROUP => nothing */
 | |
|     0,  /*     HAVING => nothing */
 | |
|     0,  /*      LIMIT => nothing */
 | |
|     0,  /*      WHERE => nothing */
 | |
|     0,  /*       INTO => nothing */
 | |
|     0,  /*     VALUES => nothing */
 | |
|     0,  /*    INTEGER => nothing */
 | |
|     0,  /*      FLOAT => nothing */
 | |
|     0,  /*       BLOB => nothing */
 | |
|     0,  /*   REGISTER => nothing */
 | |
|     0,  /*   VARIABLE => nothing */
 | |
|     0,  /*       CASE => nothing */
 | |
|     0,  /*       WHEN => nothing */
 | |
|     0,  /*       THEN => nothing */
 | |
|     0,  /*       ELSE => nothing */
 | |
|     0,  /*      INDEX => nothing */
 | |
|     0,  /*      ALTER => nothing */
 | |
|     0,  /*         TO => nothing */
 | |
|     0,  /*        ADD => nothing */
 | |
|     0,  /*   COLUMNKW => nothing */
 | |
| };
 | |
| #endif /* YYFALLBACK */
 | |
| 
 | |
| /* The following structure represents a single element of the
 | |
| ** parser's stack.  Information stored includes:
 | |
| **
 | |
| **   +  The state number for the parser at this level of the stack.
 | |
| **
 | |
| **   +  The value of the token stored at this level of the stack.
 | |
| **      (In other words, the "major" token.)
 | |
| **
 | |
| **   +  The semantic value stored at this level of the stack.  This is
 | |
| **      the information used by the action routines in the grammar.
 | |
| **      It is sometimes called the "minor" token.
 | |
| */
 | |
| struct yyStackEntry {
 | |
|   int stateno;       /* The state-number */
 | |
|   int major;         /* The major token value.  This is the code
 | |
|                      ** number for the token at this stack level */
 | |
|   YYMINORTYPE minor; /* The user-supplied minor token value.  This
 | |
|                      ** is the value of the token  */
 | |
| };
 | |
| typedef struct yyStackEntry yyStackEntry;
 | |
| 
 | |
| /* The state of the parser is completely contained in an instance of
 | |
| ** the following structure */
 | |
| struct yyParser {
 | |
|   int yyidx;                    /* Index of top element in stack */
 | |
|   int yyerrcnt;                 /* Shifts left before out of the error */
 | |
|   sqlite3ParserARG_SDECL                /* A place to hold %extra_argument */
 | |
| #if YYSTACKDEPTH<=0
 | |
|   int yystksz;                  /* Current side of the stack */
 | |
|   yyStackEntry *yystack;        /* The parser's stack */
 | |
| #else
 | |
|   yyStackEntry yystack[YYSTACKDEPTH];  /* The parser's stack */
 | |
| #endif
 | |
| };
 | |
| typedef struct yyParser yyParser;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static FILE *yyTraceFILE = 0;
 | |
| static char *yyTracePrompt = 0;
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* 
 | |
| ** Turn parser tracing on by giving a stream to which to write the trace
 | |
| ** and a prompt to preface each trace message.  Tracing is turned off
 | |
| ** by making either argument NULL 
 | |
| **
 | |
| ** Inputs:
 | |
| ** <ul>
 | |
| ** <li> A FILE* to which trace output should be written.
 | |
| **      If NULL, then tracing is turned off.
 | |
| ** <li> A prefix string written at the beginning of every
 | |
| **      line of trace output.  If NULL, then tracing is
 | |
| **      turned off.
 | |
| ** </ul>
 | |
| **
 | |
| ** Outputs:
 | |
| ** None.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){
 | |
|   yyTraceFILE = TraceFILE;
 | |
|   yyTracePrompt = zTracePrompt;
 | |
|   if( yyTraceFILE==0 ) yyTracePrompt = 0;
 | |
|   else if( yyTracePrompt==0 ) yyTraceFILE = 0;
 | |
| }
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* For tracing shifts, the names of all terminals and nonterminals
 | |
| ** are required.  The following table supplies these names */
 | |
| static const char *const yyTokenName[] = { 
 | |
|   "$",             "SEMI",          "EXPLAIN",       "QUERY",       
 | |
|   "PLAN",          "BEGIN",         "TRANSACTION",   "DEFERRED",    
 | |
|   "IMMEDIATE",     "EXCLUSIVE",     "COMMIT",        "END",         
 | |
|   "ROLLBACK",      "CREATE",        "TABLE",         "IF",          
 | |
|   "NOT",           "EXISTS",        "TEMP",          "LP",          
 | |
|   "RP",            "AS",            "COMMA",         "ID",          
 | |
|   "ABORT",         "AFTER",         "ANALYZE",       "ASC",         
 | |
|   "ATTACH",        "BEFORE",        "CASCADE",       "CAST",        
 | |
|   "CONFLICT",      "DATABASE",      "DESC",          "DETACH",      
 | |
|   "EACH",          "FAIL",          "FOR",           "IGNORE",      
 | |
|   "INITIALLY",     "INSTEAD",       "LIKE_KW",       "MATCH",       
 | |
|   "KEY",           "OF",            "OFFSET",        "PRAGMA",      
 | |
|   "RAISE",         "REPLACE",       "RESTRICT",      "ROW",         
 | |
|   "TRIGGER",       "VACUUM",        "VIEW",          "VIRTUAL",     
 | |
|   "REINDEX",       "RENAME",        "CTIME_KW",      "ANY",         
 | |
|   "OR",            "AND",           "IS",            "BETWEEN",     
 | |
|   "IN",            "ISNULL",        "NOTNULL",       "NE",          
 | |
|   "EQ",            "GT",            "LE",            "LT",          
 | |
|   "GE",            "ESCAPE",        "BITAND",        "BITOR",       
 | |
|   "LSHIFT",        "RSHIFT",        "PLUS",          "MINUS",       
 | |
|   "STAR",          "SLASH",         "REM",           "CONCAT",      
 | |
|   "COLLATE",       "UMINUS",        "UPLUS",         "BITNOT",      
 | |
|   "STRING",        "JOIN_KW",       "CONSTRAINT",    "DEFAULT",     
 | |
|   "NULL",          "PRIMARY",       "UNIQUE",        "CHECK",       
 | |
|   "REFERENCES",    "AUTOINCR",      "ON",            "DELETE",      
 | |
|   "UPDATE",        "INSERT",        "SET",           "DEFERRABLE",  
 | |
|   "FOREIGN",       "DROP",          "UNION",         "ALL",         
 | |
|   "EXCEPT",        "INTERSECT",     "SELECT",        "DISTINCT",    
 | |
|   "DOT",           "FROM",          "JOIN",          "USING",       
 | |
|   "ORDER",         "BY",            "GROUP",         "HAVING",      
 | |
|   "LIMIT",         "WHERE",         "INTO",          "VALUES",      
 | |
|   "INTEGER",       "FLOAT",         "BLOB",          "REGISTER",    
 | |
|   "VARIABLE",      "CASE",          "WHEN",          "THEN",        
 | |
|   "ELSE",          "INDEX",         "ALTER",         "TO",          
 | |
|   "ADD",           "COLUMNKW",      "error",         "input",       
 | |
|   "cmdlist",       "ecmd",          "cmdx",          "cmd",         
 | |
|   "explain",       "transtype",     "trans_opt",     "nm",          
 | |
|   "create_table",  "create_table_args",  "temp",          "ifnotexists", 
 | |
|   "dbnm",          "columnlist",    "conslist_opt",  "select",      
 | |
|   "column",        "columnid",      "type",          "carglist",    
 | |
|   "id",            "ids",           "typetoken",     "typename",    
 | |
|   "signed",        "plus_num",      "minus_num",     "carg",        
 | |
|   "ccons",         "term",          "expr",          "onconf",      
 | |
|   "sortorder",     "autoinc",       "idxlist_opt",   "refargs",     
 | |
|   "defer_subclause",  "refarg",        "refact",        "init_deferred_pred_opt",
 | |
|   "conslist",      "tcons",         "idxlist",       "defer_subclause_opt",
 | |
|   "orconf",        "resolvetype",   "raisetype",     "ifexists",    
 | |
|   "fullname",      "oneselect",     "multiselect_op",  "distinct",    
 | |
|   "selcollist",    "from",          "where_opt",     "groupby_opt", 
 | |
|   "having_opt",    "orderby_opt",   "limit_opt",     "sclp",        
 | |
|   "as",            "seltablist",    "stl_prefix",    "joinop",      
 | |
|   "on_opt",        "using_opt",     "seltablist_paren",  "joinop2",     
 | |
|   "inscollist",    "sortlist",      "sortitem",      "nexprlist",   
 | |
|   "setlist",       "insert_cmd",    "inscollist_opt",  "itemlist",    
 | |
|   "exprlist",      "likeop",        "escape",        "between_op",  
 | |
|   "in_op",         "case_operand",  "case_exprlist",  "case_else",   
 | |
|   "uniqueflag",    "idxitem",       "collate",       "nmnum",       
 | |
|   "plus_opt",      "number",        "trigger_decl",  "trigger_cmd_list",
 | |
|   "trigger_time",  "trigger_event",  "foreach_clause",  "when_clause", 
 | |
|   "trigger_cmd",   "database_kw_opt",  "key_opt",       "add_column_fullname",
 | |
|   "kwcolumn_opt",  "create_vtab",   "vtabarglist",   "vtabarg",     
 | |
|   "vtabargtoken",  "lp",            "anylist",     
 | |
| };
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* For tracing reduce actions, the names of all rules are required.
 | |
| */
 | |
| static const char *const yyRuleName[] = {
 | |
|  /*   0 */ "input ::= cmdlist",
 | |
|  /*   1 */ "cmdlist ::= cmdlist ecmd",
 | |
|  /*   2 */ "cmdlist ::= ecmd",
 | |
|  /*   3 */ "cmdx ::= cmd",
 | |
|  /*   4 */ "ecmd ::= SEMI",
 | |
|  /*   5 */ "ecmd ::= explain cmdx SEMI",
 | |
|  /*   6 */ "explain ::=",
 | |
|  /*   7 */ "explain ::= EXPLAIN",
 | |
|  /*   8 */ "explain ::= EXPLAIN QUERY PLAN",
 | |
|  /*   9 */ "cmd ::= BEGIN transtype trans_opt",
 | |
|  /*  10 */ "trans_opt ::=",
 | |
|  /*  11 */ "trans_opt ::= TRANSACTION",
 | |
|  /*  12 */ "trans_opt ::= TRANSACTION nm",
 | |
|  /*  13 */ "transtype ::=",
 | |
|  /*  14 */ "transtype ::= DEFERRED",
 | |
|  /*  15 */ "transtype ::= IMMEDIATE",
 | |
|  /*  16 */ "transtype ::= EXCLUSIVE",
 | |
|  /*  17 */ "cmd ::= COMMIT trans_opt",
 | |
|  /*  18 */ "cmd ::= END trans_opt",
 | |
|  /*  19 */ "cmd ::= ROLLBACK trans_opt",
 | |
|  /*  20 */ "cmd ::= create_table create_table_args",
 | |
|  /*  21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm",
 | |
|  /*  22 */ "ifnotexists ::=",
 | |
|  /*  23 */ "ifnotexists ::= IF NOT EXISTS",
 | |
|  /*  24 */ "temp ::= TEMP",
 | |
|  /*  25 */ "temp ::=",
 | |
|  /*  26 */ "create_table_args ::= LP columnlist conslist_opt RP",
 | |
|  /*  27 */ "create_table_args ::= AS select",
 | |
|  /*  28 */ "columnlist ::= columnlist COMMA column",
 | |
|  /*  29 */ "columnlist ::= column",
 | |
|  /*  30 */ "column ::= columnid type carglist",
 | |
|  /*  31 */ "columnid ::= nm",
 | |
|  /*  32 */ "id ::= ID",
 | |
|  /*  33 */ "ids ::= ID|STRING",
 | |
|  /*  34 */ "nm ::= ID",
 | |
|  /*  35 */ "nm ::= STRING",
 | |
|  /*  36 */ "nm ::= JOIN_KW",
 | |
|  /*  37 */ "type ::=",
 | |
|  /*  38 */ "type ::= typetoken",
 | |
|  /*  39 */ "typetoken ::= typename",
 | |
|  /*  40 */ "typetoken ::= typename LP signed RP",
 | |
|  /*  41 */ "typetoken ::= typename LP signed COMMA signed RP",
 | |
|  /*  42 */ "typename ::= ids",
 | |
|  /*  43 */ "typename ::= typename ids",
 | |
|  /*  44 */ "signed ::= plus_num",
 | |
|  /*  45 */ "signed ::= minus_num",
 | |
|  /*  46 */ "carglist ::= carglist carg",
 | |
|  /*  47 */ "carglist ::=",
 | |
|  /*  48 */ "carg ::= CONSTRAINT nm ccons",
 | |
|  /*  49 */ "carg ::= ccons",
 | |
|  /*  50 */ "ccons ::= DEFAULT term",
 | |
|  /*  51 */ "ccons ::= DEFAULT LP expr RP",
 | |
|  /*  52 */ "ccons ::= DEFAULT PLUS term",
 | |
|  /*  53 */ "ccons ::= DEFAULT MINUS term",
 | |
|  /*  54 */ "ccons ::= DEFAULT id",
 | |
|  /*  55 */ "ccons ::= NULL onconf",
 | |
|  /*  56 */ "ccons ::= NOT NULL onconf",
 | |
|  /*  57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc",
 | |
|  /*  58 */ "ccons ::= UNIQUE onconf",
 | |
|  /*  59 */ "ccons ::= CHECK LP expr RP",
 | |
|  /*  60 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
 | |
|  /*  61 */ "ccons ::= defer_subclause",
 | |
|  /*  62 */ "ccons ::= COLLATE ids",
 | |
|  /*  63 */ "autoinc ::=",
 | |
|  /*  64 */ "autoinc ::= AUTOINCR",
 | |
|  /*  65 */ "refargs ::=",
 | |
|  /*  66 */ "refargs ::= refargs refarg",
 | |
|  /*  67 */ "refarg ::= MATCH nm",
 | |
|  /*  68 */ "refarg ::= ON DELETE refact",
 | |
|  /*  69 */ "refarg ::= ON UPDATE refact",
 | |
|  /*  70 */ "refarg ::= ON INSERT refact",
 | |
|  /*  71 */ "refact ::= SET NULL",
 | |
|  /*  72 */ "refact ::= SET DEFAULT",
 | |
|  /*  73 */ "refact ::= CASCADE",
 | |
|  /*  74 */ "refact ::= RESTRICT",
 | |
|  /*  75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
 | |
|  /*  76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
 | |
|  /*  77 */ "init_deferred_pred_opt ::=",
 | |
|  /*  78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
 | |
|  /*  79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
 | |
|  /*  80 */ "conslist_opt ::=",
 | |
|  /*  81 */ "conslist_opt ::= COMMA conslist",
 | |
|  /*  82 */ "conslist ::= conslist COMMA tcons",
 | |
|  /*  83 */ "conslist ::= conslist tcons",
 | |
|  /*  84 */ "conslist ::= tcons",
 | |
|  /*  85 */ "tcons ::= CONSTRAINT nm",
 | |
|  /*  86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf",
 | |
|  /*  87 */ "tcons ::= UNIQUE LP idxlist RP onconf",
 | |
|  /*  88 */ "tcons ::= CHECK LP expr RP onconf",
 | |
|  /*  89 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
 | |
|  /*  90 */ "defer_subclause_opt ::=",
 | |
|  /*  91 */ "defer_subclause_opt ::= defer_subclause",
 | |
|  /*  92 */ "onconf ::=",
 | |
|  /*  93 */ "onconf ::= ON CONFLICT resolvetype",
 | |
|  /*  94 */ "orconf ::=",
 | |
|  /*  95 */ "orconf ::= OR resolvetype",
 | |
|  /*  96 */ "resolvetype ::= raisetype",
 | |
|  /*  97 */ "resolvetype ::= IGNORE",
 | |
|  /*  98 */ "resolvetype ::= REPLACE",
 | |
|  /*  99 */ "cmd ::= DROP TABLE ifexists fullname",
 | |
|  /* 100 */ "ifexists ::= IF EXISTS",
 | |
|  /* 101 */ "ifexists ::=",
 | |
|  /* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select",
 | |
|  /* 103 */ "cmd ::= DROP VIEW ifexists fullname",
 | |
|  /* 104 */ "cmd ::= select",
 | |
|  /* 105 */ "select ::= oneselect",
 | |
|  /* 106 */ "select ::= select multiselect_op oneselect",
 | |
|  /* 107 */ "multiselect_op ::= UNION",
 | |
|  /* 108 */ "multiselect_op ::= UNION ALL",
 | |
|  /* 109 */ "multiselect_op ::= EXCEPT|INTERSECT",
 | |
|  /* 110 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
 | |
|  /* 111 */ "distinct ::= DISTINCT",
 | |
|  /* 112 */ "distinct ::= ALL",
 | |
|  /* 113 */ "distinct ::=",
 | |
|  /* 114 */ "sclp ::= selcollist COMMA",
 | |
|  /* 115 */ "sclp ::=",
 | |
|  /* 116 */ "selcollist ::= sclp expr as",
 | |
|  /* 117 */ "selcollist ::= sclp STAR",
 | |
|  /* 118 */ "selcollist ::= sclp nm DOT STAR",
 | |
|  /* 119 */ "as ::= AS nm",
 | |
|  /* 120 */ "as ::= ids",
 | |
|  /* 121 */ "as ::=",
 | |
|  /* 122 */ "from ::=",
 | |
|  /* 123 */ "from ::= FROM seltablist",
 | |
|  /* 124 */ "stl_prefix ::= seltablist joinop",
 | |
|  /* 125 */ "stl_prefix ::=",
 | |
|  /* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
 | |
|  /* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
 | |
|  /* 128 */ "seltablist_paren ::= select",
 | |
|  /* 129 */ "seltablist_paren ::= seltablist",
 | |
|  /* 130 */ "dbnm ::=",
 | |
|  /* 131 */ "dbnm ::= DOT nm",
 | |
|  /* 132 */ "fullname ::= nm dbnm",
 | |
|  /* 133 */ "joinop ::= COMMA|JOIN",
 | |
|  /* 134 */ "joinop ::= JOIN_KW JOIN",
 | |
|  /* 135 */ "joinop ::= JOIN_KW nm JOIN",
 | |
|  /* 136 */ "joinop ::= JOIN_KW nm nm JOIN",
 | |
|  /* 137 */ "on_opt ::= ON expr",
 | |
|  /* 138 */ "on_opt ::=",
 | |
|  /* 139 */ "using_opt ::= USING LP inscollist RP",
 | |
|  /* 140 */ "using_opt ::=",
 | |
|  /* 141 */ "orderby_opt ::=",
 | |
|  /* 142 */ "orderby_opt ::= ORDER BY sortlist",
 | |
|  /* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder",
 | |
|  /* 144 */ "sortlist ::= sortitem sortorder",
 | |
|  /* 145 */ "sortitem ::= expr",
 | |
|  /* 146 */ "sortorder ::= ASC",
 | |
|  /* 147 */ "sortorder ::= DESC",
 | |
|  /* 148 */ "sortorder ::=",
 | |
|  /* 149 */ "groupby_opt ::=",
 | |
|  /* 150 */ "groupby_opt ::= GROUP BY nexprlist",
 | |
|  /* 151 */ "having_opt ::=",
 | |
|  /* 152 */ "having_opt ::= HAVING expr",
 | |
|  /* 153 */ "limit_opt ::=",
 | |
|  /* 154 */ "limit_opt ::= LIMIT expr",
 | |
|  /* 155 */ "limit_opt ::= LIMIT expr OFFSET expr",
 | |
|  /* 156 */ "limit_opt ::= LIMIT expr COMMA expr",
 | |
|  /* 157 */ "cmd ::= DELETE FROM fullname where_opt",
 | |
|  /* 158 */ "where_opt ::=",
 | |
|  /* 159 */ "where_opt ::= WHERE expr",
 | |
|  /* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt",
 | |
|  /* 161 */ "setlist ::= setlist COMMA nm EQ expr",
 | |
|  /* 162 */ "setlist ::= nm EQ expr",
 | |
|  /* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP",
 | |
|  /* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select",
 | |
|  /* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES",
 | |
|  /* 166 */ "insert_cmd ::= INSERT orconf",
 | |
|  /* 167 */ "insert_cmd ::= REPLACE",
 | |
|  /* 168 */ "itemlist ::= itemlist COMMA expr",
 | |
|  /* 169 */ "itemlist ::= expr",
 | |
|  /* 170 */ "inscollist_opt ::=",
 | |
|  /* 171 */ "inscollist_opt ::= LP inscollist RP",
 | |
|  /* 172 */ "inscollist ::= inscollist COMMA nm",
 | |
|  /* 173 */ "inscollist ::= nm",
 | |
|  /* 174 */ "expr ::= term",
 | |
|  /* 175 */ "expr ::= LP expr RP",
 | |
|  /* 176 */ "term ::= NULL",
 | |
|  /* 177 */ "expr ::= ID",
 | |
|  /* 178 */ "expr ::= JOIN_KW",
 | |
|  /* 179 */ "expr ::= nm DOT nm",
 | |
|  /* 180 */ "expr ::= nm DOT nm DOT nm",
 | |
|  /* 181 */ "term ::= INTEGER|FLOAT|BLOB",
 | |
|  /* 182 */ "term ::= STRING",
 | |
|  /* 183 */ "expr ::= REGISTER",
 | |
|  /* 184 */ "expr ::= VARIABLE",
 | |
|  /* 185 */ "expr ::= expr COLLATE ids",
 | |
|  /* 186 */ "expr ::= CAST LP expr AS typetoken RP",
 | |
|  /* 187 */ "expr ::= ID LP distinct exprlist RP",
 | |
|  /* 188 */ "expr ::= ID LP STAR RP",
 | |
|  /* 189 */ "term ::= CTIME_KW",
 | |
|  /* 190 */ "expr ::= expr AND expr",
 | |
|  /* 191 */ "expr ::= expr OR expr",
 | |
|  /* 192 */ "expr ::= expr LT|GT|GE|LE expr",
 | |
|  /* 193 */ "expr ::= expr EQ|NE expr",
 | |
|  /* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr",
 | |
|  /* 195 */ "expr ::= expr PLUS|MINUS expr",
 | |
|  /* 196 */ "expr ::= expr STAR|SLASH|REM expr",
 | |
|  /* 197 */ "expr ::= expr CONCAT expr",
 | |
|  /* 198 */ "likeop ::= LIKE_KW",
 | |
|  /* 199 */ "likeop ::= NOT LIKE_KW",
 | |
|  /* 200 */ "likeop ::= MATCH",
 | |
|  /* 201 */ "likeop ::= NOT MATCH",
 | |
|  /* 202 */ "escape ::= ESCAPE expr",
 | |
|  /* 203 */ "escape ::=",
 | |
|  /* 204 */ "expr ::= expr likeop expr escape",
 | |
|  /* 205 */ "expr ::= expr ISNULL|NOTNULL",
 | |
|  /* 206 */ "expr ::= expr IS NULL",
 | |
|  /* 207 */ "expr ::= expr NOT NULL",
 | |
|  /* 208 */ "expr ::= expr IS NOT NULL",
 | |
|  /* 209 */ "expr ::= NOT expr",
 | |
|  /* 210 */ "expr ::= BITNOT expr",
 | |
|  /* 211 */ "expr ::= MINUS expr",
 | |
|  /* 212 */ "expr ::= PLUS expr",
 | |
|  /* 213 */ "between_op ::= BETWEEN",
 | |
|  /* 214 */ "between_op ::= NOT BETWEEN",
 | |
|  /* 215 */ "expr ::= expr between_op expr AND expr",
 | |
|  /* 216 */ "in_op ::= IN",
 | |
|  /* 217 */ "in_op ::= NOT IN",
 | |
|  /* 218 */ "expr ::= expr in_op LP exprlist RP",
 | |
|  /* 219 */ "expr ::= LP select RP",
 | |
|  /* 220 */ "expr ::= expr in_op LP select RP",
 | |
|  /* 221 */ "expr ::= expr in_op nm dbnm",
 | |
|  /* 222 */ "expr ::= EXISTS LP select RP",
 | |
|  /* 223 */ "expr ::= CASE case_operand case_exprlist case_else END",
 | |
|  /* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
 | |
|  /* 225 */ "case_exprlist ::= WHEN expr THEN expr",
 | |
|  /* 226 */ "case_else ::= ELSE expr",
 | |
|  /* 227 */ "case_else ::=",
 | |
|  /* 228 */ "case_operand ::= expr",
 | |
|  /* 229 */ "case_operand ::=",
 | |
|  /* 230 */ "exprlist ::= nexprlist",
 | |
|  /* 231 */ "exprlist ::=",
 | |
|  /* 232 */ "nexprlist ::= nexprlist COMMA expr",
 | |
|  /* 233 */ "nexprlist ::= expr",
 | |
|  /* 234 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP",
 | |
|  /* 235 */ "uniqueflag ::= UNIQUE",
 | |
|  /* 236 */ "uniqueflag ::=",
 | |
|  /* 237 */ "idxlist_opt ::=",
 | |
|  /* 238 */ "idxlist_opt ::= LP idxlist RP",
 | |
|  /* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder",
 | |
|  /* 240 */ "idxlist ::= idxitem collate sortorder",
 | |
|  /* 241 */ "idxitem ::= nm",
 | |
|  /* 242 */ "collate ::=",
 | |
|  /* 243 */ "collate ::= COLLATE ids",
 | |
|  /* 244 */ "cmd ::= DROP INDEX ifexists fullname",
 | |
|  /* 245 */ "cmd ::= VACUUM",
 | |
|  /* 246 */ "cmd ::= VACUUM nm",
 | |
|  /* 247 */ "cmd ::= PRAGMA nm dbnm EQ nmnum",
 | |
|  /* 248 */ "cmd ::= PRAGMA nm dbnm EQ ON",
 | |
|  /* 249 */ "cmd ::= PRAGMA nm dbnm EQ minus_num",
 | |
|  /* 250 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP",
 | |
|  /* 251 */ "cmd ::= PRAGMA nm dbnm",
 | |
|  /* 252 */ "nmnum ::= plus_num",
 | |
|  /* 253 */ "nmnum ::= nm",
 | |
|  /* 254 */ "plus_num ::= plus_opt number",
 | |
|  /* 255 */ "minus_num ::= MINUS number",
 | |
|  /* 256 */ "number ::= INTEGER|FLOAT",
 | |
|  /* 257 */ "plus_opt ::= PLUS",
 | |
|  /* 258 */ "plus_opt ::=",
 | |
|  /* 259 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
 | |
|  /* 260 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause",
 | |
|  /* 261 */ "trigger_time ::= BEFORE",
 | |
|  /* 262 */ "trigger_time ::= AFTER",
 | |
|  /* 263 */ "trigger_time ::= INSTEAD OF",
 | |
|  /* 264 */ "trigger_time ::=",
 | |
|  /* 265 */ "trigger_event ::= DELETE|INSERT",
 | |
|  /* 266 */ "trigger_event ::= UPDATE",
 | |
|  /* 267 */ "trigger_event ::= UPDATE OF inscollist",
 | |
|  /* 268 */ "foreach_clause ::=",
 | |
|  /* 269 */ "foreach_clause ::= FOR EACH ROW",
 | |
|  /* 270 */ "when_clause ::=",
 | |
|  /* 271 */ "when_clause ::= WHEN expr",
 | |
|  /* 272 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI",
 | |
|  /* 273 */ "trigger_cmd_list ::=",
 | |
|  /* 274 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
 | |
|  /* 275 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
 | |
|  /* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
 | |
|  /* 277 */ "trigger_cmd ::= DELETE FROM nm where_opt",
 | |
|  /* 278 */ "trigger_cmd ::= select",
 | |
|  /* 279 */ "expr ::= RAISE LP IGNORE RP",
 | |
|  /* 280 */ "expr ::= RAISE LP raisetype COMMA nm RP",
 | |
|  /* 281 */ "raisetype ::= ROLLBACK",
 | |
|  /* 282 */ "raisetype ::= ABORT",
 | |
|  /* 283 */ "raisetype ::= FAIL",
 | |
|  /* 284 */ "cmd ::= DROP TRIGGER ifexists fullname",
 | |
|  /* 285 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt",
 | |
|  /* 286 */ "cmd ::= DETACH database_kw_opt expr",
 | |
|  /* 287 */ "key_opt ::=",
 | |
|  /* 288 */ "key_opt ::= KEY expr",
 | |
|  /* 289 */ "database_kw_opt ::= DATABASE",
 | |
|  /* 290 */ "database_kw_opt ::=",
 | |
|  /* 291 */ "cmd ::= REINDEX",
 | |
|  /* 292 */ "cmd ::= REINDEX nm dbnm",
 | |
|  /* 293 */ "cmd ::= ANALYZE",
 | |
|  /* 294 */ "cmd ::= ANALYZE nm dbnm",
 | |
|  /* 295 */ "cmd ::= ALTER TABLE fullname RENAME TO nm",
 | |
|  /* 296 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column",
 | |
|  /* 297 */ "add_column_fullname ::= fullname",
 | |
|  /* 298 */ "kwcolumn_opt ::=",
 | |
|  /* 299 */ "kwcolumn_opt ::= COLUMNKW",
 | |
|  /* 300 */ "cmd ::= create_vtab",
 | |
|  /* 301 */ "cmd ::= create_vtab LP vtabarglist RP",
 | |
|  /* 302 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm",
 | |
|  /* 303 */ "vtabarglist ::= vtabarg",
 | |
|  /* 304 */ "vtabarglist ::= vtabarglist COMMA vtabarg",
 | |
|  /* 305 */ "vtabarg ::=",
 | |
|  /* 306 */ "vtabarg ::= vtabarg vtabargtoken",
 | |
|  /* 307 */ "vtabargtoken ::= ANY",
 | |
|  /* 308 */ "vtabargtoken ::= lp anylist RP",
 | |
|  /* 309 */ "lp ::= LP",
 | |
|  /* 310 */ "anylist ::=",
 | |
|  /* 311 */ "anylist ::= anylist ANY",
 | |
| };
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
| 
 | |
| #if YYSTACKDEPTH<=0
 | |
| /*
 | |
| ** Try to increase the size of the parser stack.
 | |
| */
 | |
| static void yyGrowStack(yyParser *p){
 | |
|   int newSize;
 | |
|   yyStackEntry *pNew;
 | |
| 
 | |
|   newSize = p->yystksz*2 + 100;
 | |
|   pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
 | |
|   if( pNew ){
 | |
|     p->yystack = pNew;
 | |
|     p->yystksz = newSize;
 | |
| #ifndef NDEBUG
 | |
|     if( yyTraceFILE ){
 | |
|       fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
 | |
|               yyTracePrompt, p->yystksz);
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* 
 | |
| ** This function allocates a new parser.
 | |
| ** The only argument is a pointer to a function which works like
 | |
| ** malloc.
 | |
| **
 | |
| ** Inputs:
 | |
| ** A pointer to the function used to allocate memory.
 | |
| **
 | |
| ** Outputs:
 | |
| ** A pointer to a parser.  This pointer is used in subsequent calls
 | |
| ** to sqlite3Parser and sqlite3ParserFree.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){
 | |
|   yyParser *pParser;
 | |
|   pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
 | |
|   if( pParser ){
 | |
|     pParser->yyidx = -1;
 | |
| #if YYSTACKDEPTH<=0
 | |
|     yyGrowStack(pParser);
 | |
| #endif
 | |
|   }
 | |
|   return pParser;
 | |
| }
 | |
| 
 | |
| /* The following function deletes the value associated with a
 | |
| ** symbol.  The symbol can be either a terminal or nonterminal.
 | |
| ** "yymajor" is the symbol code, and "yypminor" is a pointer to
 | |
| ** the value.
 | |
| */
 | |
| static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){
 | |
|   switch( yymajor ){
 | |
|     /* Here is inserted the actions which take place when a
 | |
|     ** terminal or non-terminal is destroyed.  This can happen
 | |
|     ** when the symbol is popped from the stack during a
 | |
|     ** reduce or during error processing or when a parser is 
 | |
|     ** being destroyed before it is finished parsing.
 | |
|     **
 | |
|     ** Note: during a reduce, the only symbols destroyed are those
 | |
|     ** which appear on the RHS of the rule, but which are not used
 | |
|     ** inside the C code.
 | |
|     */
 | |
|     case 155: /* select */
 | |
|     case 189: /* oneselect */
 | |
|     case 206: /* seltablist_paren */
 | |
| {sqlite3SelectDelete((yypminor->yy219));}
 | |
|       break;
 | |
|     case 169: /* term */
 | |
|     case 170: /* expr */
 | |
|     case 194: /* where_opt */
 | |
|     case 196: /* having_opt */
 | |
|     case 204: /* on_opt */
 | |
|     case 210: /* sortitem */
 | |
|     case 218: /* escape */
 | |
|     case 221: /* case_operand */
 | |
|     case 223: /* case_else */
 | |
|     case 235: /* when_clause */
 | |
|     case 238: /* key_opt */
 | |
| {sqlite3ExprDelete((yypminor->yy172));}
 | |
|       break;
 | |
|     case 174: /* idxlist_opt */
 | |
|     case 182: /* idxlist */
 | |
|     case 192: /* selcollist */
 | |
|     case 195: /* groupby_opt */
 | |
|     case 197: /* orderby_opt */
 | |
|     case 199: /* sclp */
 | |
|     case 209: /* sortlist */
 | |
|     case 211: /* nexprlist */
 | |
|     case 212: /* setlist */
 | |
|     case 215: /* itemlist */
 | |
|     case 216: /* exprlist */
 | |
|     case 222: /* case_exprlist */
 | |
| {sqlite3ExprListDelete((yypminor->yy174));}
 | |
|       break;
 | |
|     case 188: /* fullname */
 | |
|     case 193: /* from */
 | |
|     case 201: /* seltablist */
 | |
|     case 202: /* stl_prefix */
 | |
| {sqlite3SrcListDelete((yypminor->yy373));}
 | |
|       break;
 | |
|     case 205: /* using_opt */
 | |
|     case 208: /* inscollist */
 | |
|     case 214: /* inscollist_opt */
 | |
| {sqlite3IdListDelete((yypminor->yy432));}
 | |
|       break;
 | |
|     case 231: /* trigger_cmd_list */
 | |
|     case 236: /* trigger_cmd */
 | |
| {sqlite3DeleteTriggerStep((yypminor->yy243));}
 | |
|       break;
 | |
|     case 233: /* trigger_event */
 | |
| {sqlite3IdListDelete((yypminor->yy370).b);}
 | |
|       break;
 | |
|     default:  break;   /* If no destructor action specified: do nothing */
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Pop the parser's stack once.
 | |
| **
 | |
| ** If there is a destructor routine associated with the token which
 | |
| ** is popped from the stack, then call it.
 | |
| **
 | |
| ** Return the major token number for the symbol popped.
 | |
| */
 | |
| static int yy_pop_parser_stack(yyParser *pParser){
 | |
|   YYCODETYPE yymajor;
 | |
|   yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
 | |
| 
 | |
|   if( pParser->yyidx<0 ) return 0;
 | |
| #ifndef NDEBUG
 | |
|   if( yyTraceFILE && pParser->yyidx>=0 ){
 | |
|     fprintf(yyTraceFILE,"%sPopping %s\n",
 | |
|       yyTracePrompt,
 | |
|       yyTokenName[yytos->major]);
 | |
|   }
 | |
| #endif
 | |
|   yymajor = yytos->major;
 | |
|   yy_destructor( yymajor, &yytos->minor);
 | |
|   pParser->yyidx--;
 | |
|   return yymajor;
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** Deallocate and destroy a parser.  Destructors are all called for
 | |
| ** all stack elements before shutting the parser down.
 | |
| **
 | |
| ** Inputs:
 | |
| ** <ul>
 | |
| ** <li>  A pointer to the parser.  This should be a pointer
 | |
| **       obtained from sqlite3ParserAlloc.
 | |
| ** <li>  A pointer to a function used to reclaim memory obtained
 | |
| **       from malloc.
 | |
| ** </ul>
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3ParserFree(
 | |
|   void *p,                    /* The parser to be deleted */
 | |
|   void (*freeProc)(void*)     /* Function used to reclaim memory */
 | |
| ){
 | |
|   yyParser *pParser = (yyParser*)p;
 | |
|   if( pParser==0 ) return;
 | |
|   while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
 | |
| #if YYSTACKDEPTH<=0
 | |
|   free(pParser->yystack);
 | |
| #endif
 | |
|   (*freeProc)((void*)pParser);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Find the appropriate action for a parser given the terminal
 | |
| ** look-ahead token iLookAhead.
 | |
| **
 | |
| ** If the look-ahead token is YYNOCODE, then check to see if the action is
 | |
| ** independent of the look-ahead.  If it is, return the action, otherwise
 | |
| ** return YY_NO_ACTION.
 | |
| */
 | |
| static int yy_find_shift_action(
 | |
|   yyParser *pParser,        /* The parser */
 | |
|   YYCODETYPE iLookAhead     /* The look-ahead token */
 | |
| ){
 | |
|   int i;
 | |
|   int stateno = pParser->yystack[pParser->yyidx].stateno;
 | |
|  
 | |
|   if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
 | |
|     return yy_default[stateno];
 | |
|   }
 | |
|   assert( iLookAhead!=YYNOCODE );
 | |
|   i += iLookAhead;
 | |
|   if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){
 | |
|     if( iLookAhead>0 ){
 | |
| #ifdef YYFALLBACK
 | |
|       int iFallback;            /* Fallback token */
 | |
|       if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
 | |
|              && (iFallback = yyFallback[iLookAhead])!=0 ){
 | |
| #ifndef NDEBUG
 | |
|         if( yyTraceFILE ){
 | |
|           fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
 | |
|              yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
 | |
|         }
 | |
| #endif
 | |
|         return yy_find_shift_action(pParser, iFallback);
 | |
|       }
 | |
| #endif
 | |
| #ifdef YYWILDCARD
 | |
|       {
 | |
|         int j = i - iLookAhead + YYWILDCARD;
 | |
|         if( j>=0 && j<YY_SZ_ACTTAB && yy_lookahead[j]==YYWILDCARD ){
 | |
| #ifndef NDEBUG
 | |
|           if( yyTraceFILE ){
 | |
|             fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
 | |
|                yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
 | |
|           }
 | |
| #endif /* NDEBUG */
 | |
|           return yy_action[j];
 | |
|         }
 | |
|       }
 | |
| #endif /* YYWILDCARD */
 | |
|     }
 | |
|     return yy_default[stateno];
 | |
|   }else{
 | |
|     return yy_action[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Find the appropriate action for a parser given the non-terminal
 | |
| ** look-ahead token iLookAhead.
 | |
| **
 | |
| ** If the look-ahead token is YYNOCODE, then check to see if the action is
 | |
| ** independent of the look-ahead.  If it is, return the action, otherwise
 | |
| ** return YY_NO_ACTION.
 | |
| */
 | |
| static int yy_find_reduce_action(
 | |
|   int stateno,              /* Current state number */
 | |
|   YYCODETYPE iLookAhead     /* The look-ahead token */
 | |
| ){
 | |
|   int i;
 | |
|   assert( stateno<=YY_REDUCE_MAX );
 | |
|   i = yy_reduce_ofst[stateno];
 | |
|   assert( i!=YY_REDUCE_USE_DFLT );
 | |
|   assert( iLookAhead!=YYNOCODE );
 | |
|   i += iLookAhead;
 | |
|   assert( i>=0 && i<YY_SZ_ACTTAB );
 | |
|   assert( yy_lookahead[i]==iLookAhead );
 | |
|   return yy_action[i];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following routine is called if the stack overflows.
 | |
| */
 | |
| static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
 | |
|    sqlite3ParserARG_FETCH;
 | |
|    yypParser->yyidx--;
 | |
| #ifndef NDEBUG
 | |
|    if( yyTraceFILE ){
 | |
|      fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
 | |
|    }
 | |
| #endif
 | |
|    while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
 | |
|    /* Here code is inserted which will execute if the parser
 | |
|    ** stack every overflows */
 | |
| 
 | |
|   sqlite3ErrorMsg(pParse, "parser stack overflow");
 | |
|   pParse->parseError = 1;
 | |
|    sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Perform a shift action.
 | |
| */
 | |
| static void yy_shift(
 | |
|   yyParser *yypParser,          /* The parser to be shifted */
 | |
|   int yyNewState,               /* The new state to shift in */
 | |
|   int yyMajor,                  /* The major token to shift in */
 | |
|   YYMINORTYPE *yypMinor         /* Pointer ot the minor token to shift in */
 | |
| ){
 | |
|   yyStackEntry *yytos;
 | |
|   yypParser->yyidx++;
 | |
| #if YYSTACKDEPTH>0 
 | |
|   if( yypParser->yyidx>=YYSTACKDEPTH ){
 | |
|     yyStackOverflow(yypParser, yypMinor);
 | |
|     return;
 | |
|   }
 | |
| #else
 | |
|   if( yypParser->yyidx>=yypParser->yystksz ){
 | |
|     yyGrowStack(yypParser);
 | |
|     if( yypParser->yyidx>=yypParser->yystksz ){
 | |
|       yyStackOverflow(yypParser, yypMinor);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   yytos = &yypParser->yystack[yypParser->yyidx];
 | |
|   yytos->stateno = yyNewState;
 | |
|   yytos->major = yyMajor;
 | |
|   yytos->minor = *yypMinor;
 | |
| #ifndef NDEBUG
 | |
|   if( yyTraceFILE && yypParser->yyidx>0 ){
 | |
|     int i;
 | |
|     fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
 | |
|     fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
 | |
|     for(i=1; i<=yypParser->yyidx; i++)
 | |
|       fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
 | |
|     fprintf(yyTraceFILE,"\n");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* The following table contains information about every rule that
 | |
| ** is used during the reduce.
 | |
| */
 | |
| static const struct {
 | |
|   YYCODETYPE lhs;         /* Symbol on the left-hand side of the rule */
 | |
|   unsigned char nrhs;     /* Number of right-hand side symbols in the rule */
 | |
| } yyRuleInfo[] = {
 | |
|   { 139, 1 },
 | |
|   { 140, 2 },
 | |
|   { 140, 1 },
 | |
|   { 142, 1 },
 | |
|   { 141, 1 },
 | |
|   { 141, 3 },
 | |
|   { 144, 0 },
 | |
|   { 144, 1 },
 | |
|   { 144, 3 },
 | |
|   { 143, 3 },
 | |
|   { 146, 0 },
 | |
|   { 146, 1 },
 | |
|   { 146, 2 },
 | |
|   { 145, 0 },
 | |
|   { 145, 1 },
 | |
|   { 145, 1 },
 | |
|   { 145, 1 },
 | |
|   { 143, 2 },
 | |
|   { 143, 2 },
 | |
|   { 143, 2 },
 | |
|   { 143, 2 },
 | |
|   { 148, 6 },
 | |
|   { 151, 0 },
 | |
|   { 151, 3 },
 | |
|   { 150, 1 },
 | |
|   { 150, 0 },
 | |
|   { 149, 4 },
 | |
|   { 149, 2 },
 | |
|   { 153, 3 },
 | |
|   { 153, 1 },
 | |
|   { 156, 3 },
 | |
|   { 157, 1 },
 | |
|   { 160, 1 },
 | |
|   { 161, 1 },
 | |
|   { 147, 1 },
 | |
|   { 147, 1 },
 | |
|   { 147, 1 },
 | |
|   { 158, 0 },
 | |
|   { 158, 1 },
 | |
|   { 162, 1 },
 | |
|   { 162, 4 },
 | |
|   { 162, 6 },
 | |
|   { 163, 1 },
 | |
|   { 163, 2 },
 | |
|   { 164, 1 },
 | |
|   { 164, 1 },
 | |
|   { 159, 2 },
 | |
|   { 159, 0 },
 | |
|   { 167, 3 },
 | |
|   { 167, 1 },
 | |
|   { 168, 2 },
 | |
|   { 168, 4 },
 | |
|   { 168, 3 },
 | |
|   { 168, 3 },
 | |
|   { 168, 2 },
 | |
|   { 168, 2 },
 | |
|   { 168, 3 },
 | |
|   { 168, 5 },
 | |
|   { 168, 2 },
 | |
|   { 168, 4 },
 | |
|   { 168, 4 },
 | |
|   { 168, 1 },
 | |
|   { 168, 2 },
 | |
|   { 173, 0 },
 | |
|   { 173, 1 },
 | |
|   { 175, 0 },
 | |
|   { 175, 2 },
 | |
|   { 177, 2 },
 | |
|   { 177, 3 },
 | |
|   { 177, 3 },
 | |
|   { 177, 3 },
 | |
|   { 178, 2 },
 | |
|   { 178, 2 },
 | |
|   { 178, 1 },
 | |
|   { 178, 1 },
 | |
|   { 176, 3 },
 | |
|   { 176, 2 },
 | |
|   { 179, 0 },
 | |
|   { 179, 2 },
 | |
|   { 179, 2 },
 | |
|   { 154, 0 },
 | |
|   { 154, 2 },
 | |
|   { 180, 3 },
 | |
|   { 180, 2 },
 | |
|   { 180, 1 },
 | |
|   { 181, 2 },
 | |
|   { 181, 7 },
 | |
|   { 181, 5 },
 | |
|   { 181, 5 },
 | |
|   { 181, 10 },
 | |
|   { 183, 0 },
 | |
|   { 183, 1 },
 | |
|   { 171, 0 },
 | |
|   { 171, 3 },
 | |
|   { 184, 0 },
 | |
|   { 184, 2 },
 | |
|   { 185, 1 },
 | |
|   { 185, 1 },
 | |
|   { 185, 1 },
 | |
|   { 143, 4 },
 | |
|   { 187, 2 },
 | |
|   { 187, 0 },
 | |
|   { 143, 8 },
 | |
|   { 143, 4 },
 | |
|   { 143, 1 },
 | |
|   { 155, 1 },
 | |
|   { 155, 3 },
 | |
|   { 190, 1 },
 | |
|   { 190, 2 },
 | |
|   { 190, 1 },
 | |
|   { 189, 9 },
 | |
|   { 191, 1 },
 | |
|   { 191, 1 },
 | |
|   { 191, 0 },
 | |
|   { 199, 2 },
 | |
|   { 199, 0 },
 | |
|   { 192, 3 },
 | |
|   { 192, 2 },
 | |
|   { 192, 4 },
 | |
|   { 200, 2 },
 | |
|   { 200, 1 },
 | |
|   { 200, 0 },
 | |
|   { 193, 0 },
 | |
|   { 193, 2 },
 | |
|   { 202, 2 },
 | |
|   { 202, 0 },
 | |
|   { 201, 6 },
 | |
|   { 201, 7 },
 | |
|   { 206, 1 },
 | |
|   { 206, 1 },
 | |
|   { 152, 0 },
 | |
|   { 152, 2 },
 | |
|   { 188, 2 },
 | |
|   { 203, 1 },
 | |
|   { 203, 2 },
 | |
|   { 203, 3 },
 | |
|   { 203, 4 },
 | |
|   { 204, 2 },
 | |
|   { 204, 0 },
 | |
|   { 205, 4 },
 | |
|   { 205, 0 },
 | |
|   { 197, 0 },
 | |
|   { 197, 3 },
 | |
|   { 209, 4 },
 | |
|   { 209, 2 },
 | |
|   { 210, 1 },
 | |
|   { 172, 1 },
 | |
|   { 172, 1 },
 | |
|   { 172, 0 },
 | |
|   { 195, 0 },
 | |
|   { 195, 3 },
 | |
|   { 196, 0 },
 | |
|   { 196, 2 },
 | |
|   { 198, 0 },
 | |
|   { 198, 2 },
 | |
|   { 198, 4 },
 | |
|   { 198, 4 },
 | |
|   { 143, 4 },
 | |
|   { 194, 0 },
 | |
|   { 194, 2 },
 | |
|   { 143, 6 },
 | |
|   { 212, 5 },
 | |
|   { 212, 3 },
 | |
|   { 143, 8 },
 | |
|   { 143, 5 },
 | |
|   { 143, 6 },
 | |
|   { 213, 2 },
 | |
|   { 213, 1 },
 | |
|   { 215, 3 },
 | |
|   { 215, 1 },
 | |
|   { 214, 0 },
 | |
|   { 214, 3 },
 | |
|   { 208, 3 },
 | |
|   { 208, 1 },
 | |
|   { 170, 1 },
 | |
|   { 170, 3 },
 | |
|   { 169, 1 },
 | |
|   { 170, 1 },
 | |
|   { 170, 1 },
 | |
|   { 170, 3 },
 | |
|   { 170, 5 },
 | |
|   { 169, 1 },
 | |
|   { 169, 1 },
 | |
|   { 170, 1 },
 | |
|   { 170, 1 },
 | |
|   { 170, 3 },
 | |
|   { 170, 6 },
 | |
|   { 170, 5 },
 | |
|   { 170, 4 },
 | |
|   { 169, 1 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 217, 1 },
 | |
|   { 217, 2 },
 | |
|   { 217, 1 },
 | |
|   { 217, 2 },
 | |
|   { 218, 2 },
 | |
|   { 218, 0 },
 | |
|   { 170, 4 },
 | |
|   { 170, 2 },
 | |
|   { 170, 3 },
 | |
|   { 170, 3 },
 | |
|   { 170, 4 },
 | |
|   { 170, 2 },
 | |
|   { 170, 2 },
 | |
|   { 170, 2 },
 | |
|   { 170, 2 },
 | |
|   { 219, 1 },
 | |
|   { 219, 2 },
 | |
|   { 170, 5 },
 | |
|   { 220, 1 },
 | |
|   { 220, 2 },
 | |
|   { 170, 5 },
 | |
|   { 170, 3 },
 | |
|   { 170, 5 },
 | |
|   { 170, 4 },
 | |
|   { 170, 4 },
 | |
|   { 170, 5 },
 | |
|   { 222, 5 },
 | |
|   { 222, 4 },
 | |
|   { 223, 2 },
 | |
|   { 223, 0 },
 | |
|   { 221, 1 },
 | |
|   { 221, 0 },
 | |
|   { 216, 1 },
 | |
|   { 216, 0 },
 | |
|   { 211, 3 },
 | |
|   { 211, 1 },
 | |
|   { 143, 11 },
 | |
|   { 224, 1 },
 | |
|   { 224, 0 },
 | |
|   { 174, 0 },
 | |
|   { 174, 3 },
 | |
|   { 182, 5 },
 | |
|   { 182, 3 },
 | |
|   { 225, 1 },
 | |
|   { 226, 0 },
 | |
|   { 226, 2 },
 | |
|   { 143, 4 },
 | |
|   { 143, 1 },
 | |
|   { 143, 2 },
 | |
|   { 143, 5 },
 | |
|   { 143, 5 },
 | |
|   { 143, 5 },
 | |
|   { 143, 6 },
 | |
|   { 143, 3 },
 | |
|   { 227, 1 },
 | |
|   { 227, 1 },
 | |
|   { 165, 2 },
 | |
|   { 166, 2 },
 | |
|   { 229, 1 },
 | |
|   { 228, 1 },
 | |
|   { 228, 0 },
 | |
|   { 143, 5 },
 | |
|   { 230, 11 },
 | |
|   { 232, 1 },
 | |
|   { 232, 1 },
 | |
|   { 232, 2 },
 | |
|   { 232, 0 },
 | |
|   { 233, 1 },
 | |
|   { 233, 1 },
 | |
|   { 233, 3 },
 | |
|   { 234, 0 },
 | |
|   { 234, 3 },
 | |
|   { 235, 0 },
 | |
|   { 235, 2 },
 | |
|   { 231, 3 },
 | |
|   { 231, 0 },
 | |
|   { 236, 6 },
 | |
|   { 236, 8 },
 | |
|   { 236, 5 },
 | |
|   { 236, 4 },
 | |
|   { 236, 1 },
 | |
|   { 170, 4 },
 | |
|   { 170, 6 },
 | |
|   { 186, 1 },
 | |
|   { 186, 1 },
 | |
|   { 186, 1 },
 | |
|   { 143, 4 },
 | |
|   { 143, 6 },
 | |
|   { 143, 3 },
 | |
|   { 238, 0 },
 | |
|   { 238, 2 },
 | |
|   { 237, 1 },
 | |
|   { 237, 0 },
 | |
|   { 143, 1 },
 | |
|   { 143, 3 },
 | |
|   { 143, 1 },
 | |
|   { 143, 3 },
 | |
|   { 143, 6 },
 | |
|   { 143, 6 },
 | |
|   { 239, 1 },
 | |
|   { 240, 0 },
 | |
|   { 240, 1 },
 | |
|   { 143, 1 },
 | |
|   { 143, 4 },
 | |
|   { 241, 7 },
 | |
|   { 242, 1 },
 | |
|   { 242, 3 },
 | |
|   { 243, 0 },
 | |
|   { 243, 2 },
 | |
|   { 244, 1 },
 | |
|   { 244, 3 },
 | |
|   { 245, 1 },
 | |
|   { 246, 0 },
 | |
|   { 246, 2 },
 | |
| };
 | |
| 
 | |
| static void yy_accept(yyParser*);  /* Forward Declaration */
 | |
| 
 | |
| /*
 | |
| ** Perform a reduce action and the shift that must immediately
 | |
| ** follow the reduce.
 | |
| */
 | |
| static void yy_reduce(
 | |
|   yyParser *yypParser,         /* The parser */
 | |
|   int yyruleno                 /* Number of the rule by which to reduce */
 | |
| ){
 | |
|   int yygoto;                     /* The next state */
 | |
|   int yyact;                      /* The next action */
 | |
|   YYMINORTYPE yygotominor;        /* The LHS of the rule reduced */
 | |
|   yyStackEntry *yymsp;            /* The top of the parser's stack */
 | |
|   int yysize;                     /* Amount to pop the stack */
 | |
|   sqlite3ParserARG_FETCH;
 | |
|   yymsp = &yypParser->yystack[yypParser->yyidx];
 | |
| #ifndef NDEBUG
 | |
|   if( yyTraceFILE && yyruleno>=0 
 | |
|         && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
 | |
|     fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
 | |
|       yyRuleName[yyruleno]);
 | |
|   }
 | |
| #endif /* NDEBUG */
 | |
| 
 | |
|   /* Silence complaints from purify about yygotominor being uninitialized
 | |
|   ** in some cases when it is copied into the stack after the following
 | |
|   ** switch.  yygotominor is uninitialized when a rule reduces that does
 | |
|   ** not set the value of its left-hand side nonterminal.  Leaving the
 | |
|   ** value of the nonterminal uninitialized is utterly harmless as long
 | |
|   ** as the value is never used.  So really the only thing this code
 | |
|   ** accomplishes is to quieten purify.  
 | |
|   **
 | |
|   ** 2007-01-16:  The wireshark project (www.wireshark.org) reports that
 | |
|   ** without this code, their parser segfaults.  I'm not sure what there
 | |
|   ** parser is doing to make this happen.  This is the second bug report
 | |
|   ** from wireshark this week.  Clearly they are stressing Lemon in ways
 | |
|   ** that it has not been previously stressed...  (SQLite ticket #2172)
 | |
|   */
 | |
|   memset(&yygotominor, 0, sizeof(yygotominor));
 | |
| 
 | |
| 
 | |
|   switch( yyruleno ){
 | |
|   /* Beginning here are the reduction cases.  A typical example
 | |
|   ** follows:
 | |
|   **   case 0:
 | |
|   **  #line <lineno> <grammarfile>
 | |
|   **     { ... }           // User supplied code
 | |
|   **  #line <lineno> <thisfile>
 | |
|   **     break;
 | |
|   */
 | |
|       case 0: /* input ::= cmdlist */
 | |
|       case 1: /* cmdlist ::= cmdlist ecmd */
 | |
|       case 2: /* cmdlist ::= ecmd */
 | |
|       case 4: /* ecmd ::= SEMI */
 | |
|       case 5: /* ecmd ::= explain cmdx SEMI */
 | |
|       case 10: /* trans_opt ::= */
 | |
|       case 11: /* trans_opt ::= TRANSACTION */
 | |
|       case 12: /* trans_opt ::= TRANSACTION nm */
 | |
|       case 20: /* cmd ::= create_table create_table_args */
 | |
|       case 28: /* columnlist ::= columnlist COMMA column */
 | |
|       case 29: /* columnlist ::= column */
 | |
|       case 37: /* type ::= */
 | |
|       case 44: /* signed ::= plus_num */
 | |
|       case 45: /* signed ::= minus_num */
 | |
|       case 46: /* carglist ::= carglist carg */
 | |
|       case 47: /* carglist ::= */
 | |
|       case 48: /* carg ::= CONSTRAINT nm ccons */
 | |
|       case 49: /* carg ::= ccons */
 | |
|       case 55: /* ccons ::= NULL onconf */
 | |
|       case 82: /* conslist ::= conslist COMMA tcons */
 | |
|       case 83: /* conslist ::= conslist tcons */
 | |
|       case 84: /* conslist ::= tcons */
 | |
|       case 85: /* tcons ::= CONSTRAINT nm */
 | |
|       case 257: /* plus_opt ::= PLUS */
 | |
|       case 258: /* plus_opt ::= */
 | |
|       case 268: /* foreach_clause ::= */
 | |
|       case 269: /* foreach_clause ::= FOR EACH ROW */
 | |
|       case 289: /* database_kw_opt ::= DATABASE */
 | |
|       case 290: /* database_kw_opt ::= */
 | |
|       case 298: /* kwcolumn_opt ::= */
 | |
|       case 299: /* kwcolumn_opt ::= COLUMNKW */
 | |
|       case 303: /* vtabarglist ::= vtabarg */
 | |
|       case 304: /* vtabarglist ::= vtabarglist COMMA vtabarg */
 | |
|       case 306: /* vtabarg ::= vtabarg vtabargtoken */
 | |
|       case 310: /* anylist ::= */
 | |
| {
 | |
| }
 | |
|         break;
 | |
|       case 3: /* cmdx ::= cmd */
 | |
| { sqlite3FinishCoding(pParse); }
 | |
|         break;
 | |
|       case 6: /* explain ::= */
 | |
| { sqlite3BeginParse(pParse, 0); }
 | |
|         break;
 | |
|       case 7: /* explain ::= EXPLAIN */
 | |
| { sqlite3BeginParse(pParse, 1); }
 | |
|         break;
 | |
|       case 8: /* explain ::= EXPLAIN QUERY PLAN */
 | |
| { sqlite3BeginParse(pParse, 2); }
 | |
|         break;
 | |
|       case 9: /* cmd ::= BEGIN transtype trans_opt */
 | |
| {sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);}
 | |
|         break;
 | |
|       case 13: /* transtype ::= */
 | |
| {yygotominor.yy46 = TK_DEFERRED;}
 | |
|         break;
 | |
|       case 14: /* transtype ::= DEFERRED */
 | |
|       case 15: /* transtype ::= IMMEDIATE */
 | |
|       case 16: /* transtype ::= EXCLUSIVE */
 | |
|       case 107: /* multiselect_op ::= UNION */
 | |
|       case 109: /* multiselect_op ::= EXCEPT|INTERSECT */
 | |
| {yygotominor.yy46 = yymsp[0].major;}
 | |
|         break;
 | |
|       case 17: /* cmd ::= COMMIT trans_opt */
 | |
|       case 18: /* cmd ::= END trans_opt */
 | |
| {sqlite3CommitTransaction(pParse);}
 | |
|         break;
 | |
|       case 19: /* cmd ::= ROLLBACK trans_opt */
 | |
| {sqlite3RollbackTransaction(pParse);}
 | |
|         break;
 | |
|       case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */
 | |
| {
 | |
|    sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 22: /* ifnotexists ::= */
 | |
|       case 25: /* temp ::= */
 | |
|       case 63: /* autoinc ::= */
 | |
|       case 77: /* init_deferred_pred_opt ::= */
 | |
|       case 79: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */
 | |
|       case 90: /* defer_subclause_opt ::= */
 | |
|       case 101: /* ifexists ::= */
 | |
|       case 112: /* distinct ::= ALL */
 | |
|       case 113: /* distinct ::= */
 | |
|       case 213: /* between_op ::= BETWEEN */
 | |
|       case 216: /* in_op ::= IN */
 | |
| {yygotominor.yy46 = 0;}
 | |
|         break;
 | |
|       case 23: /* ifnotexists ::= IF NOT EXISTS */
 | |
|       case 24: /* temp ::= TEMP */
 | |
|       case 64: /* autoinc ::= AUTOINCR */
 | |
|       case 78: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */
 | |
|       case 100: /* ifexists ::= IF EXISTS */
 | |
|       case 111: /* distinct ::= DISTINCT */
 | |
|       case 214: /* between_op ::= NOT BETWEEN */
 | |
|       case 217: /* in_op ::= NOT IN */
 | |
| {yygotominor.yy46 = 1;}
 | |
|         break;
 | |
|       case 26: /* create_table_args ::= LP columnlist conslist_opt RP */
 | |
| {
 | |
|   sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0);
 | |
| }
 | |
|         break;
 | |
|       case 27: /* create_table_args ::= AS select */
 | |
| {
 | |
|   sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219);
 | |
|   sqlite3SelectDelete(yymsp[0].minor.yy219);
 | |
| }
 | |
|         break;
 | |
|       case 30: /* column ::= columnid type carglist */
 | |
| {
 | |
|   yygotominor.yy410.z = yymsp[-2].minor.yy410.z;
 | |
|   yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n;
 | |
| }
 | |
|         break;
 | |
|       case 31: /* columnid ::= nm */
 | |
| {
 | |
|   sqlite3AddColumn(pParse,&yymsp[0].minor.yy410);
 | |
|   yygotominor.yy410 = yymsp[0].minor.yy410;
 | |
| }
 | |
|         break;
 | |
|       case 32: /* id ::= ID */
 | |
|       case 33: /* ids ::= ID|STRING */
 | |
|       case 34: /* nm ::= ID */
 | |
|       case 35: /* nm ::= STRING */
 | |
|       case 36: /* nm ::= JOIN_KW */
 | |
|       case 256: /* number ::= INTEGER|FLOAT */
 | |
| {yygotominor.yy410 = yymsp[0].minor.yy0;}
 | |
|         break;
 | |
|       case 38: /* type ::= typetoken */
 | |
| {sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 39: /* typetoken ::= typename */
 | |
|       case 42: /* typename ::= ids */
 | |
|       case 119: /* as ::= AS nm */
 | |
|       case 120: /* as ::= ids */
 | |
|       case 131: /* dbnm ::= DOT nm */
 | |
|       case 241: /* idxitem ::= nm */
 | |
|       case 243: /* collate ::= COLLATE ids */
 | |
|       case 252: /* nmnum ::= plus_num */
 | |
|       case 253: /* nmnum ::= nm */
 | |
|       case 254: /* plus_num ::= plus_opt number */
 | |
|       case 255: /* minus_num ::= MINUS number */
 | |
| {yygotominor.yy410 = yymsp[0].minor.yy410;}
 | |
|         break;
 | |
|       case 40: /* typetoken ::= typename LP signed RP */
 | |
| {
 | |
|   yygotominor.yy410.z = yymsp[-3].minor.yy410.z;
 | |
|   yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z;
 | |
| }
 | |
|         break;
 | |
|       case 41: /* typetoken ::= typename LP signed COMMA signed RP */
 | |
| {
 | |
|   yygotominor.yy410.z = yymsp[-5].minor.yy410.z;
 | |
|   yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z;
 | |
| }
 | |
|         break;
 | |
|       case 43: /* typename ::= typename ids */
 | |
| {yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);}
 | |
|         break;
 | |
|       case 50: /* ccons ::= DEFAULT term */
 | |
|       case 52: /* ccons ::= DEFAULT PLUS term */
 | |
| {sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy172);}
 | |
|         break;
 | |
|       case 51: /* ccons ::= DEFAULT LP expr RP */
 | |
| {sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy172);}
 | |
|         break;
 | |
|       case 53: /* ccons ::= DEFAULT MINUS term */
 | |
| {
 | |
|   Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
 | |
|   sqlite3AddDefaultValue(pParse,p);
 | |
| }
 | |
|         break;
 | |
|       case 54: /* ccons ::= DEFAULT id */
 | |
| {
 | |
|   Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410);
 | |
|   sqlite3AddDefaultValue(pParse,p);
 | |
| }
 | |
|         break;
 | |
|       case 56: /* ccons ::= NOT NULL onconf */
 | |
| {sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);}
 | |
|         break;
 | |
|       case 57: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
 | |
| {sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy46,yymsp[0].minor.yy46,yymsp[-2].minor.yy46);}
 | |
|         break;
 | |
|       case 58: /* ccons ::= UNIQUE onconf */
 | |
| {sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy46,0,0,0,0);}
 | |
|         break;
 | |
|       case 59: /* ccons ::= CHECK LP expr RP */
 | |
| {sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);}
 | |
|         break;
 | |
|       case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */
 | |
| {sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);}
 | |
|         break;
 | |
|       case 61: /* ccons ::= defer_subclause */
 | |
| {sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);}
 | |
|         break;
 | |
|       case 62: /* ccons ::= COLLATE ids */
 | |
| {sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 65: /* refargs ::= */
 | |
| { yygotominor.yy46 = OE_Restrict * 0x010101; }
 | |
|         break;
 | |
|       case 66: /* refargs ::= refargs refarg */
 | |
| { yygotominor.yy46 = (yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.yy405.value; }
 | |
|         break;
 | |
|       case 67: /* refarg ::= MATCH nm */
 | |
| { yygotominor.yy405.value = 0;     yygotominor.yy405.mask = 0x000000; }
 | |
|         break;
 | |
|       case 68: /* refarg ::= ON DELETE refact */
 | |
| { yygotominor.yy405.value = yymsp[0].minor.yy46;     yygotominor.yy405.mask = 0x0000ff; }
 | |
|         break;
 | |
|       case 69: /* refarg ::= ON UPDATE refact */
 | |
| { yygotominor.yy405.value = yymsp[0].minor.yy46<<8;  yygotominor.yy405.mask = 0x00ff00; }
 | |
|         break;
 | |
|       case 70: /* refarg ::= ON INSERT refact */
 | |
| { yygotominor.yy405.value = yymsp[0].minor.yy46<<16; yygotominor.yy405.mask = 0xff0000; }
 | |
|         break;
 | |
|       case 71: /* refact ::= SET NULL */
 | |
| { yygotominor.yy46 = OE_SetNull; }
 | |
|         break;
 | |
|       case 72: /* refact ::= SET DEFAULT */
 | |
| { yygotominor.yy46 = OE_SetDflt; }
 | |
|         break;
 | |
|       case 73: /* refact ::= CASCADE */
 | |
| { yygotominor.yy46 = OE_Cascade; }
 | |
|         break;
 | |
|       case 74: /* refact ::= RESTRICT */
 | |
| { yygotominor.yy46 = OE_Restrict; }
 | |
|         break;
 | |
|       case 75: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
 | |
|       case 76: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
 | |
|       case 91: /* defer_subclause_opt ::= defer_subclause */
 | |
|       case 93: /* onconf ::= ON CONFLICT resolvetype */
 | |
|       case 95: /* orconf ::= OR resolvetype */
 | |
|       case 96: /* resolvetype ::= raisetype */
 | |
|       case 166: /* insert_cmd ::= INSERT orconf */
 | |
| {yygotominor.yy46 = yymsp[0].minor.yy46;}
 | |
|         break;
 | |
|       case 80: /* conslist_opt ::= */
 | |
| {yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;}
 | |
|         break;
 | |
|       case 81: /* conslist_opt ::= COMMA conslist */
 | |
| {yygotominor.yy410 = yymsp[-1].minor.yy0;}
 | |
|         break;
 | |
|       case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */
 | |
| {sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);}
 | |
|         break;
 | |
|       case 87: /* tcons ::= UNIQUE LP idxlist RP onconf */
 | |
| {sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy174,yymsp[0].minor.yy46,0,0,0,0);}
 | |
|         break;
 | |
|       case 88: /* tcons ::= CHECK LP expr RP onconf */
 | |
| {sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy172);}
 | |
|         break;
 | |
|       case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
 | |
| {
 | |
|     sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46);
 | |
|     sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 92: /* onconf ::= */
 | |
|       case 94: /* orconf ::= */
 | |
| {yygotominor.yy46 = OE_Default;}
 | |
|         break;
 | |
|       case 97: /* resolvetype ::= IGNORE */
 | |
| {yygotominor.yy46 = OE_Ignore;}
 | |
|         break;
 | |
|       case 98: /* resolvetype ::= REPLACE */
 | |
|       case 167: /* insert_cmd ::= REPLACE */
 | |
| {yygotominor.yy46 = OE_Replace;}
 | |
|         break;
 | |
|       case 99: /* cmd ::= DROP TABLE ifexists fullname */
 | |
| {
 | |
|   sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */
 | |
| {
 | |
|   sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 103: /* cmd ::= DROP VIEW ifexists fullname */
 | |
| {
 | |
|   sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 104: /* cmd ::= select */
 | |
| {
 | |
|   SelectDest dest = {SRT_Callback, 0, 0};
 | |
|   sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0);
 | |
|   sqlite3SelectDelete(yymsp[0].minor.yy219);
 | |
| }
 | |
|         break;
 | |
|       case 105: /* select ::= oneselect */
 | |
|       case 128: /* seltablist_paren ::= select */
 | |
| {yygotominor.yy219 = yymsp[0].minor.yy219;}
 | |
|         break;
 | |
|       case 106: /* select ::= select multiselect_op oneselect */
 | |
| {
 | |
|   if( yymsp[0].minor.yy219 ){
 | |
|     yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46;
 | |
|     yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219;
 | |
|   }else{
 | |
|     sqlite3SelectDelete(yymsp[-2].minor.yy219);
 | |
|   }
 | |
|   yygotominor.yy219 = yymsp[0].minor.yy219;
 | |
| }
 | |
|         break;
 | |
|       case 108: /* multiselect_op ::= UNION ALL */
 | |
| {yygotominor.yy46 = TK_ALL;}
 | |
|         break;
 | |
|       case 110: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
 | |
| {
 | |
|   yygotominor.yy219 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy174,yymsp[-5].minor.yy373,yymsp[-4].minor.yy172,yymsp[-3].minor.yy174,yymsp[-2].minor.yy172,yymsp[-1].minor.yy174,yymsp[-7].minor.yy46,yymsp[0].minor.yy234.pLimit,yymsp[0].minor.yy234.pOffset);
 | |
| }
 | |
|         break;
 | |
|       case 114: /* sclp ::= selcollist COMMA */
 | |
|       case 238: /* idxlist_opt ::= LP idxlist RP */
 | |
| {yygotominor.yy174 = yymsp[-1].minor.yy174;}
 | |
|         break;
 | |
|       case 115: /* sclp ::= */
 | |
|       case 141: /* orderby_opt ::= */
 | |
|       case 149: /* groupby_opt ::= */
 | |
|       case 231: /* exprlist ::= */
 | |
|       case 237: /* idxlist_opt ::= */
 | |
| {yygotominor.yy174 = 0;}
 | |
|         break;
 | |
|       case 116: /* selcollist ::= sclp expr as */
 | |
| {
 | |
|    yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0);
 | |
| }
 | |
|         break;
 | |
|       case 117: /* selcollist ::= sclp STAR */
 | |
| {
 | |
|   Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy174, p, 0);
 | |
| }
 | |
|         break;
 | |
|       case 118: /* selcollist ::= sclp nm DOT STAR */
 | |
| {
 | |
|   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0);
 | |
|   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
 | |
|   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174, pDot, 0);
 | |
| }
 | |
|         break;
 | |
|       case 121: /* as ::= */
 | |
| {yygotominor.yy410.n = 0;}
 | |
|         break;
 | |
|       case 122: /* from ::= */
 | |
| {yygotominor.yy373 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));}
 | |
|         break;
 | |
|       case 123: /* from ::= FROM seltablist */
 | |
| {
 | |
|   yygotominor.yy373 = yymsp[0].minor.yy373;
 | |
|   sqlite3SrcListShiftJoinType(yygotominor.yy373);
 | |
| }
 | |
|         break;
 | |
|       case 124: /* stl_prefix ::= seltablist joinop */
 | |
| {
 | |
|    yygotominor.yy373 = yymsp[-1].minor.yy373;
 | |
|    if( yygotominor.yy373 && yygotominor.yy373->nSrc>0 ) yygotominor.yy373->a[yygotominor.yy373->nSrc-1].jointype = yymsp[0].minor.yy46;
 | |
| }
 | |
|         break;
 | |
|       case 125: /* stl_prefix ::= */
 | |
| {yygotominor.yy373 = 0;}
 | |
|         break;
 | |
|       case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
 | |
| {
 | |
|   yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
 | |
| }
 | |
|         break;
 | |
|       case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
 | |
| {
 | |
|     yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432);
 | |
|   }
 | |
|         break;
 | |
|       case 129: /* seltablist_paren ::= seltablist */
 | |
| {
 | |
|      sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373);
 | |
|      yygotominor.yy219 = sqlite3SelectNew(pParse,0,yymsp[0].minor.yy373,0,0,0,0,0,0,0);
 | |
|   }
 | |
|         break;
 | |
|       case 130: /* dbnm ::= */
 | |
| {yygotominor.yy410.z=0; yygotominor.yy410.n=0;}
 | |
|         break;
 | |
|       case 132: /* fullname ::= nm dbnm */
 | |
| {yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 133: /* joinop ::= COMMA|JOIN */
 | |
| { yygotominor.yy46 = JT_INNER; }
 | |
|         break;
 | |
|       case 134: /* joinop ::= JOIN_KW JOIN */
 | |
| { yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
 | |
|         break;
 | |
|       case 135: /* joinop ::= JOIN_KW nm JOIN */
 | |
| { yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); }
 | |
|         break;
 | |
|       case 136: /* joinop ::= JOIN_KW nm nm JOIN */
 | |
| { yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); }
 | |
|         break;
 | |
|       case 137: /* on_opt ::= ON expr */
 | |
|       case 145: /* sortitem ::= expr */
 | |
|       case 152: /* having_opt ::= HAVING expr */
 | |
|       case 159: /* where_opt ::= WHERE expr */
 | |
|       case 174: /* expr ::= term */
 | |
|       case 202: /* escape ::= ESCAPE expr */
 | |
|       case 226: /* case_else ::= ELSE expr */
 | |
|       case 228: /* case_operand ::= expr */
 | |
| {yygotominor.yy172 = yymsp[0].minor.yy172;}
 | |
|         break;
 | |
|       case 138: /* on_opt ::= */
 | |
|       case 151: /* having_opt ::= */
 | |
|       case 158: /* where_opt ::= */
 | |
|       case 203: /* escape ::= */
 | |
|       case 227: /* case_else ::= */
 | |
|       case 229: /* case_operand ::= */
 | |
| {yygotominor.yy172 = 0;}
 | |
|         break;
 | |
|       case 139: /* using_opt ::= USING LP inscollist RP */
 | |
|       case 171: /* inscollist_opt ::= LP inscollist RP */
 | |
| {yygotominor.yy432 = yymsp[-1].minor.yy432;}
 | |
|         break;
 | |
|       case 140: /* using_opt ::= */
 | |
|       case 170: /* inscollist_opt ::= */
 | |
| {yygotominor.yy432 = 0;}
 | |
|         break;
 | |
|       case 142: /* orderby_opt ::= ORDER BY sortlist */
 | |
|       case 150: /* groupby_opt ::= GROUP BY nexprlist */
 | |
|       case 230: /* exprlist ::= nexprlist */
 | |
| {yygotominor.yy174 = yymsp[0].minor.yy174;}
 | |
|         break;
 | |
|       case 143: /* sortlist ::= sortlist COMMA sortitem sortorder */
 | |
| {
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174,yymsp[-1].minor.yy172,0);
 | |
|   if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
 | |
| }
 | |
|         break;
 | |
|       case 144: /* sortlist ::= sortitem sortorder */
 | |
| {
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy172,0);
 | |
|   if( yygotominor.yy174 && yygotominor.yy174->a ) yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46;
 | |
| }
 | |
|         break;
 | |
|       case 146: /* sortorder ::= ASC */
 | |
|       case 148: /* sortorder ::= */
 | |
| {yygotominor.yy46 = SQLITE_SO_ASC;}
 | |
|         break;
 | |
|       case 147: /* sortorder ::= DESC */
 | |
| {yygotominor.yy46 = SQLITE_SO_DESC;}
 | |
|         break;
 | |
|       case 153: /* limit_opt ::= */
 | |
| {yygotominor.yy234.pLimit = 0; yygotominor.yy234.pOffset = 0;}
 | |
|         break;
 | |
|       case 154: /* limit_opt ::= LIMIT expr */
 | |
| {yygotominor.yy234.pLimit = yymsp[0].minor.yy172; yygotominor.yy234.pOffset = 0;}
 | |
|         break;
 | |
|       case 155: /* limit_opt ::= LIMIT expr OFFSET expr */
 | |
| {yygotominor.yy234.pLimit = yymsp[-2].minor.yy172; yygotominor.yy234.pOffset = yymsp[0].minor.yy172;}
 | |
|         break;
 | |
|       case 156: /* limit_opt ::= LIMIT expr COMMA expr */
 | |
| {yygotominor.yy234.pOffset = yymsp[-2].minor.yy172; yygotominor.yy234.pLimit = yymsp[0].minor.yy172;}
 | |
|         break;
 | |
|       case 157: /* cmd ::= DELETE FROM fullname where_opt */
 | |
| {sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy373,yymsp[0].minor.yy172);}
 | |
|         break;
 | |
|       case 160: /* cmd ::= UPDATE orconf fullname SET setlist where_opt */
 | |
| {
 | |
|   sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy174,SQLITE_MAX_COLUMN,"set list"); 
 | |
|   sqlite3Update(pParse,yymsp[-3].minor.yy373,yymsp[-1].minor.yy174,yymsp[0].minor.yy172,yymsp[-4].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 161: /* setlist ::= setlist COMMA nm EQ expr */
 | |
| {yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
 | |
|         break;
 | |
|       case 162: /* setlist ::= nm EQ expr */
 | |
| {yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);}
 | |
|         break;
 | |
|       case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */
 | |
| {sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);}
 | |
|         break;
 | |
|       case 164: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */
 | |
| {sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219, yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);}
 | |
|         break;
 | |
|       case 165: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */
 | |
| {sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432, yymsp[-5].minor.yy46);}
 | |
|         break;
 | |
|       case 168: /* itemlist ::= itemlist COMMA expr */
 | |
|       case 232: /* nexprlist ::= nexprlist COMMA expr */
 | |
| {yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[0].minor.yy172,0);}
 | |
|         break;
 | |
|       case 169: /* itemlist ::= expr */
 | |
|       case 233: /* nexprlist ::= expr */
 | |
| {yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,0);}
 | |
|         break;
 | |
|       case 172: /* inscollist ::= inscollist COMMA nm */
 | |
| {yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 173: /* inscollist ::= nm */
 | |
| {yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 175: /* expr ::= LP expr RP */
 | |
| {yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
 | |
|         break;
 | |
|       case 176: /* term ::= NULL */
 | |
|       case 181: /* term ::= INTEGER|FLOAT|BLOB */
 | |
|       case 182: /* term ::= STRING */
 | |
| {yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);}
 | |
|         break;
 | |
|       case 177: /* expr ::= ID */
 | |
|       case 178: /* expr ::= JOIN_KW */
 | |
| {yygotominor.yy172 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);}
 | |
|         break;
 | |
|       case 179: /* expr ::= nm DOT nm */
 | |
| {
 | |
|   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
 | |
|   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
 | |
| }
 | |
|         break;
 | |
|       case 180: /* expr ::= nm DOT nm DOT nm */
 | |
| {
 | |
|   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410);
 | |
|   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410);
 | |
|   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410);
 | |
|   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
 | |
| }
 | |
|         break;
 | |
|       case 183: /* expr ::= REGISTER */
 | |
| {yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);}
 | |
|         break;
 | |
|       case 184: /* expr ::= VARIABLE */
 | |
| {
 | |
|   Token *pToken = &yymsp[0].minor.yy0;
 | |
|   Expr *pExpr = yygotominor.yy172 = sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken);
 | |
|   sqlite3ExprAssignVarNumber(pParse, pExpr);
 | |
| }
 | |
|         break;
 | |
|       case 185: /* expr ::= expr COLLATE ids */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410);
 | |
| }
 | |
|         break;
 | |
|       case 186: /* expr ::= CAST LP expr AS typetoken RP */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 187: /* expr ::= ID LP distinct exprlist RP */
 | |
| {
 | |
|   if( yymsp[-1].minor.yy174 && yymsp[-1].minor.yy174->nExpr>SQLITE_MAX_FUNCTION_ARG ){
 | |
|     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
 | |
|   }
 | |
|   yygotominor.yy172 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy174, &yymsp[-4].minor.yy0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
 | |
|   if( yymsp[-2].minor.yy46 && yygotominor.yy172 ){
 | |
|     yygotominor.yy172->flags |= EP_Distinct;
 | |
|   }
 | |
| }
 | |
|         break;
 | |
|       case 188: /* expr ::= ID LP STAR RP */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 189: /* term ::= CTIME_KW */
 | |
| {
 | |
|   /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
 | |
|   ** treated as functions that return constants */
 | |
|   yygotominor.yy172 = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0);
 | |
|   if( yygotominor.yy172 ){
 | |
|     yygotominor.yy172->op = TK_CONST_FUNC;  
 | |
|     yygotominor.yy172->span = yymsp[0].minor.yy0;
 | |
|   }
 | |
| }
 | |
|         break;
 | |
|       case 190: /* expr ::= expr AND expr */
 | |
|       case 191: /* expr ::= expr OR expr */
 | |
|       case 192: /* expr ::= expr LT|GT|GE|LE expr */
 | |
|       case 193: /* expr ::= expr EQ|NE expr */
 | |
|       case 194: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */
 | |
|       case 195: /* expr ::= expr PLUS|MINUS expr */
 | |
|       case 196: /* expr ::= expr STAR|SLASH|REM expr */
 | |
|       case 197: /* expr ::= expr CONCAT expr */
 | |
| {yygotominor.yy172 = sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy172,yymsp[0].minor.yy172,0);}
 | |
|         break;
 | |
|       case 198: /* likeop ::= LIKE_KW */
 | |
|       case 200: /* likeop ::= MATCH */
 | |
| {yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 0;}
 | |
|         break;
 | |
|       case 199: /* likeop ::= NOT LIKE_KW */
 | |
|       case 201: /* likeop ::= NOT MATCH */
 | |
| {yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 1;}
 | |
|         break;
 | |
|       case 204: /* expr ::= expr likeop expr escape */
 | |
| {
 | |
|   ExprList *pList;
 | |
|   pList = sqlite3ExprListAppend(pParse,0, yymsp[-1].minor.yy172, 0);
 | |
|   pList = sqlite3ExprListAppend(pParse,pList, yymsp[-3].minor.yy172, 0);
 | |
|   if( yymsp[0].minor.yy172 ){
 | |
|     pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
 | |
|   }
 | |
|   yygotominor.yy172 = sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy72.eOperator);
 | |
|   if( yymsp[-2].minor.yy72.not ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span, &yymsp[-1].minor.yy172->span);
 | |
|   if( yygotominor.yy172 ) yygotominor.yy172->flags |= EP_InfixFunc;
 | |
| }
 | |
|         break;
 | |
|       case 205: /* expr ::= expr ISNULL|NOTNULL */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, yymsp[-1].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy172->span,&yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 206: /* expr ::= expr IS NULL */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_ISNULL, yymsp[-2].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 207: /* expr ::= expr NOT NULL */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 208: /* expr ::= expr IS NOT NULL */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,&yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 209: /* expr ::= NOT expr */
 | |
|       case 210: /* expr ::= BITNOT expr */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
 | |
| }
 | |
|         break;
 | |
|       case 211: /* expr ::= MINUS expr */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
 | |
| }
 | |
|         break;
 | |
|       case 212: /* expr ::= PLUS expr */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_UPLUS, yymsp[0].minor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span);
 | |
| }
 | |
|         break;
 | |
|       case 215: /* expr ::= expr between_op expr AND expr */
 | |
| {
 | |
|   ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
 | |
|   pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0);
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0);
 | |
|   if( yygotominor.yy172 ){
 | |
|     yygotominor.yy172->pList = pList;
 | |
|   }else{
 | |
|     sqlite3ExprListDelete(pList);
 | |
|   } 
 | |
|   if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
 | |
|   sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span);
 | |
| }
 | |
|         break;
 | |
|       case 218: /* expr ::= expr in_op LP exprlist RP */
 | |
| {
 | |
|     yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
 | |
|     if( yygotominor.yy172 ){
 | |
|       yygotominor.yy172->pList = yymsp[-1].minor.yy174;
 | |
|       sqlite3ExprSetHeight(yygotominor.yy172);
 | |
|     }else{
 | |
|       sqlite3ExprListDelete(yymsp[-1].minor.yy174);
 | |
|     }
 | |
|     if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
 | |
|     sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
 | |
|   }
 | |
|         break;
 | |
|       case 219: /* expr ::= LP select RP */
 | |
| {
 | |
|     yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
 | |
|     if( yygotominor.yy172 ){
 | |
|       yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
 | |
|       sqlite3ExprSetHeight(yygotominor.yy172);
 | |
|     }else{
 | |
|       sqlite3SelectDelete(yymsp[-1].minor.yy219);
 | |
|     }
 | |
|     sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
 | |
|   }
 | |
|         break;
 | |
|       case 220: /* expr ::= expr in_op LP select RP */
 | |
| {
 | |
|     yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0);
 | |
|     if( yygotominor.yy172 ){
 | |
|       yygotominor.yy172->pSelect = yymsp[-1].minor.yy219;
 | |
|       sqlite3ExprSetHeight(yygotominor.yy172);
 | |
|     }else{
 | |
|       sqlite3SelectDelete(yymsp[-1].minor.yy219);
 | |
|     }
 | |
|     if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
 | |
|     sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0);
 | |
|   }
 | |
|         break;
 | |
|       case 221: /* expr ::= expr in_op nm dbnm */
 | |
| {
 | |
|     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);
 | |
|     yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0);
 | |
|     if( yygotominor.yy172 ){
 | |
|       yygotominor.yy172->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
 | |
|       sqlite3ExprSetHeight(yygotominor.yy172);
 | |
|     }else{
 | |
|       sqlite3SrcListDelete(pSrc);
 | |
|     }
 | |
|     if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0);
 | |
|     sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410);
 | |
|   }
 | |
|         break;
 | |
|       case 222: /* expr ::= EXISTS LP select RP */
 | |
| {
 | |
|     Expr *p = yygotominor.yy172 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
 | |
|     if( p ){
 | |
|       p->pSelect = yymsp[-1].minor.yy219;
 | |
|       sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
 | |
|       sqlite3ExprSetHeight(yygotominor.yy172);
 | |
|     }else{
 | |
|       sqlite3SelectDelete(yymsp[-1].minor.yy219);
 | |
|     }
 | |
|   }
 | |
|         break;
 | |
|       case 223: /* expr ::= CASE case_operand case_exprlist case_else END */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0);
 | |
|   if( yygotominor.yy172 ){
 | |
|     yygotominor.yy172->pList = yymsp[-2].minor.yy174;
 | |
|     sqlite3ExprSetHeight(yygotominor.yy172);
 | |
|   }else{
 | |
|     sqlite3ExprListDelete(yymsp[-2].minor.yy174);
 | |
|   }
 | |
|   sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
 | |
| }
 | |
|         break;
 | |
|       case 224: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
 | |
| {
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, yymsp[-2].minor.yy172, 0);
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
 | |
| }
 | |
|         break;
 | |
|       case 225: /* case_exprlist ::= WHEN expr THEN expr */
 | |
| {
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0);
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0);
 | |
| }
 | |
|         break;
 | |
|       case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */
 | |
| {
 | |
|   sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410, 
 | |
|                      sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46,
 | |
|                       &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 235: /* uniqueflag ::= UNIQUE */
 | |
|       case 282: /* raisetype ::= ABORT */
 | |
| {yygotominor.yy46 = OE_Abort;}
 | |
|         break;
 | |
|       case 236: /* uniqueflag ::= */
 | |
| {yygotominor.yy46 = OE_None;}
 | |
|         break;
 | |
|       case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */
 | |
| {
 | |
|   Expr *p = 0;
 | |
|   if( yymsp[-1].minor.yy410.n>0 ){
 | |
|     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
 | |
|     sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
 | |
|   }
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410);
 | |
|   sqlite3ExprListCheckLength(pParse, yygotominor.yy174, SQLITE_MAX_COLUMN, "index");
 | |
|   if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
 | |
| }
 | |
|         break;
 | |
|       case 240: /* idxlist ::= idxitem collate sortorder */
 | |
| {
 | |
|   Expr *p = 0;
 | |
|   if( yymsp[-1].minor.yy410.n>0 ){
 | |
|     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
 | |
|     sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410);
 | |
|   }
 | |
|   yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy410);
 | |
|   sqlite3ExprListCheckLength(pParse, yygotominor.yy174, SQLITE_MAX_COLUMN, "index");
 | |
|   if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46;
 | |
| }
 | |
|         break;
 | |
|       case 242: /* collate ::= */
 | |
| {yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;}
 | |
|         break;
 | |
|       case 244: /* cmd ::= DROP INDEX ifexists fullname */
 | |
| {sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);}
 | |
|         break;
 | |
|       case 245: /* cmd ::= VACUUM */
 | |
|       case 246: /* cmd ::= VACUUM nm */
 | |
| {sqlite3Vacuum(pParse);}
 | |
|         break;
 | |
|       case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */
 | |
| {sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);}
 | |
|         break;
 | |
|       case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */
 | |
| {sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);}
 | |
|         break;
 | |
|       case 249: /* cmd ::= PRAGMA nm dbnm EQ minus_num */
 | |
| {
 | |
|   sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1);
 | |
| }
 | |
|         break;
 | |
|       case 250: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */
 | |
| {sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);}
 | |
|         break;
 | |
|       case 251: /* cmd ::= PRAGMA nm dbnm */
 | |
| {sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);}
 | |
|         break;
 | |
|       case 259: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
 | |
| {
 | |
|   Token all;
 | |
|   all.z = yymsp[-3].minor.yy410.z;
 | |
|   all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n;
 | |
|   sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all);
 | |
| }
 | |
|         break;
 | |
|       case 260: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
 | |
| {
 | |
|   sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46);
 | |
|   yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410);
 | |
| }
 | |
|         break;
 | |
|       case 261: /* trigger_time ::= BEFORE */
 | |
|       case 264: /* trigger_time ::= */
 | |
| { yygotominor.yy46 = TK_BEFORE; }
 | |
|         break;
 | |
|       case 262: /* trigger_time ::= AFTER */
 | |
| { yygotominor.yy46 = TK_AFTER;  }
 | |
|         break;
 | |
|       case 263: /* trigger_time ::= INSTEAD OF */
 | |
| { yygotominor.yy46 = TK_INSTEAD;}
 | |
|         break;
 | |
|       case 265: /* trigger_event ::= DELETE|INSERT */
 | |
|       case 266: /* trigger_event ::= UPDATE */
 | |
| {yygotominor.yy370.a = yymsp[0].major; yygotominor.yy370.b = 0;}
 | |
|         break;
 | |
|       case 267: /* trigger_event ::= UPDATE OF inscollist */
 | |
| {yygotominor.yy370.a = TK_UPDATE; yygotominor.yy370.b = yymsp[0].minor.yy432;}
 | |
|         break;
 | |
|       case 270: /* when_clause ::= */
 | |
|       case 287: /* key_opt ::= */
 | |
| { yygotominor.yy172 = 0; }
 | |
|         break;
 | |
|       case 271: /* when_clause ::= WHEN expr */
 | |
|       case 288: /* key_opt ::= KEY expr */
 | |
| { yygotominor.yy172 = yymsp[0].minor.yy172; }
 | |
|         break;
 | |
|       case 272: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
 | |
| {
 | |
|   if( yymsp[-2].minor.yy243 ){
 | |
|     yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243;
 | |
|   }else{
 | |
|     yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243;
 | |
|   }
 | |
|   yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243;
 | |
|   yygotominor.yy243 = yymsp[-2].minor.yy243;
 | |
| }
 | |
|         break;
 | |
|       case 273: /* trigger_cmd_list ::= */
 | |
| { yygotominor.yy243 = 0; }
 | |
|         break;
 | |
|       case 274: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
 | |
| { yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); }
 | |
|         break;
 | |
|       case 275: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
 | |
| {yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);}
 | |
|         break;
 | |
|       case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
 | |
| {yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);}
 | |
|         break;
 | |
|       case 277: /* trigger_cmd ::= DELETE FROM nm where_opt */
 | |
| {yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410, yymsp[0].minor.yy172);}
 | |
|         break;
 | |
|       case 278: /* trigger_cmd ::= select */
 | |
| {yygotominor.yy243 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219); }
 | |
|         break;
 | |
|       case 279: /* expr ::= RAISE LP IGNORE RP */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 
 | |
|   if( yygotominor.yy172 ){
 | |
|     yygotominor.yy172->iColumn = OE_Ignore;
 | |
|     sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
 | |
|   }
 | |
| }
 | |
|         break;
 | |
|       case 280: /* expr ::= RAISE LP raisetype COMMA nm RP */
 | |
| {
 | |
|   yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410); 
 | |
|   if( yygotominor.yy172 ) {
 | |
|     yygotominor.yy172->iColumn = yymsp[-3].minor.yy46;
 | |
|     sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
 | |
|   }
 | |
| }
 | |
|         break;
 | |
|       case 281: /* raisetype ::= ROLLBACK */
 | |
| {yygotominor.yy46 = OE_Rollback;}
 | |
|         break;
 | |
|       case 283: /* raisetype ::= FAIL */
 | |
| {yygotominor.yy46 = OE_Fail;}
 | |
|         break;
 | |
|       case 284: /* cmd ::= DROP TRIGGER ifexists fullname */
 | |
| {
 | |
|   sqlite3DropTrigger(pParse,yymsp[0].minor.yy373,yymsp[-1].minor.yy46);
 | |
| }
 | |
|         break;
 | |
|       case 285: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
 | |
| {
 | |
|   sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, yymsp[0].minor.yy172);
 | |
| }
 | |
|         break;
 | |
|       case 286: /* cmd ::= DETACH database_kw_opt expr */
 | |
| {
 | |
|   sqlite3Detach(pParse, yymsp[0].minor.yy172);
 | |
| }
 | |
|         break;
 | |
|       case 291: /* cmd ::= REINDEX */
 | |
| {sqlite3Reindex(pParse, 0, 0);}
 | |
|         break;
 | |
|       case 292: /* cmd ::= REINDEX nm dbnm */
 | |
| {sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 293: /* cmd ::= ANALYZE */
 | |
| {sqlite3Analyze(pParse, 0, 0);}
 | |
|         break;
 | |
|       case 294: /* cmd ::= ANALYZE nm dbnm */
 | |
| {sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);}
 | |
|         break;
 | |
|       case 295: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
 | |
| {
 | |
|   sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410);
 | |
| }
 | |
|         break;
 | |
|       case 296: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
 | |
| {
 | |
|   sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410);
 | |
| }
 | |
|         break;
 | |
|       case 297: /* add_column_fullname ::= fullname */
 | |
| {
 | |
|   sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373);
 | |
| }
 | |
|         break;
 | |
|       case 300: /* cmd ::= create_vtab */
 | |
| {sqlite3VtabFinishParse(pParse,0);}
 | |
|         break;
 | |
|       case 301: /* cmd ::= create_vtab LP vtabarglist RP */
 | |
| {sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
 | |
|         break;
 | |
|       case 302: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */
 | |
| {
 | |
|     sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410);
 | |
| }
 | |
|         break;
 | |
|       case 305: /* vtabarg ::= */
 | |
| {sqlite3VtabArgInit(pParse);}
 | |
|         break;
 | |
|       case 307: /* vtabargtoken ::= ANY */
 | |
|       case 308: /* vtabargtoken ::= lp anylist RP */
 | |
|       case 309: /* lp ::= LP */
 | |
|       case 311: /* anylist ::= anylist ANY */
 | |
| {sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
 | |
|         break;
 | |
|   };
 | |
|   yygoto = yyRuleInfo[yyruleno].lhs;
 | |
|   yysize = yyRuleInfo[yyruleno].nrhs;
 | |
|   yypParser->yyidx -= yysize;
 | |
|   yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto);
 | |
|   if( yyact < YYNSTATE ){
 | |
| #ifdef NDEBUG
 | |
|     /* If we are not debugging and the reduce action popped at least
 | |
|     ** one element off the stack, then we can push the new element back
 | |
|     ** onto the stack here, and skip the stack overflow test in yy_shift().
 | |
|     ** That gives a significant speed improvement. */
 | |
|     if( yysize ){
 | |
|       yypParser->yyidx++;
 | |
|       yymsp -= yysize-1;
 | |
|       yymsp->stateno = yyact;
 | |
|       yymsp->major = yygoto;
 | |
|       yymsp->minor = yygotominor;
 | |
|     }else
 | |
| #endif
 | |
|     {
 | |
|       yy_shift(yypParser,yyact,yygoto,&yygotominor);
 | |
|     }
 | |
|   }else{
 | |
|     assert( yyact == YYNSTATE + YYNRULE + 1 );
 | |
|     yy_accept(yypParser);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following code executes when the parse fails
 | |
| */
 | |
| static void yy_parse_failed(
 | |
|   yyParser *yypParser           /* The parser */
 | |
| ){
 | |
|   sqlite3ParserARG_FETCH;
 | |
| #ifndef NDEBUG
 | |
|   if( yyTraceFILE ){
 | |
|     fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
 | |
|   }
 | |
| #endif
 | |
|   while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
 | |
|   /* Here code is inserted which will be executed whenever the
 | |
|   ** parser fails */
 | |
|   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following code executes when a syntax error first occurs.
 | |
| */
 | |
| static void yy_syntax_error(
 | |
|   yyParser *yypParser,           /* The parser */
 | |
|   int yymajor,                   /* The major type of the error token */
 | |
|   YYMINORTYPE yyminor            /* The minor type of the error token */
 | |
| ){
 | |
|   sqlite3ParserARG_FETCH;
 | |
| #define TOKEN (yyminor.yy0)
 | |
| 
 | |
|   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
 | |
|   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
 | |
|   pParse->parseError = 1;
 | |
|   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The following is executed when the parser accepts
 | |
| */
 | |
| static void yy_accept(
 | |
|   yyParser *yypParser           /* The parser */
 | |
| ){
 | |
|   sqlite3ParserARG_FETCH;
 | |
| #ifndef NDEBUG
 | |
|   if( yyTraceFILE ){
 | |
|     fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
 | |
|   }
 | |
| #endif
 | |
|   while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
 | |
|   /* Here code is inserted which will be executed whenever the
 | |
|   ** parser accepts */
 | |
|   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
 | |
| }
 | |
| 
 | |
| /* The main parser program.
 | |
| ** The first argument is a pointer to a structure obtained from
 | |
| ** "sqlite3ParserAlloc" which describes the current state of the parser.
 | |
| ** The second argument is the major token number.  The third is
 | |
| ** the minor token.  The fourth optional argument is whatever the
 | |
| ** user wants (and specified in the grammar) and is available for
 | |
| ** use by the action routines.
 | |
| **
 | |
| ** Inputs:
 | |
| ** <ul>
 | |
| ** <li> A pointer to the parser (an opaque structure.)
 | |
| ** <li> The major token number.
 | |
| ** <li> The minor token number.
 | |
| ** <li> An option argument of a grammar-specified type.
 | |
| ** </ul>
 | |
| **
 | |
| ** Outputs:
 | |
| ** None.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Parser(
 | |
|   void *yyp,                   /* The parser */
 | |
|   int yymajor,                 /* The major token code number */
 | |
|   sqlite3ParserTOKENTYPE yyminor       /* The value for the token */
 | |
|   sqlite3ParserARG_PDECL               /* Optional %extra_argument parameter */
 | |
| ){
 | |
|   YYMINORTYPE yyminorunion;
 | |
|   int yyact;            /* The parser action. */
 | |
|   int yyendofinput;     /* True if we are at the end of input */
 | |
| #ifdef YYERRORSYMBOL
 | |
|   int yyerrorhit = 0;   /* True if yymajor has invoked an error */
 | |
| #endif
 | |
|   yyParser *yypParser;  /* The parser */
 | |
| 
 | |
|   /* (re)initialize the parser, if necessary */
 | |
|   yypParser = (yyParser*)yyp;
 | |
|   if( yypParser->yyidx<0 ){
 | |
| #if YYSTACKDEPTH<=0
 | |
|     if( yypParser->yystksz <=0 ){
 | |
|       memset(&yyminorunion, 0, sizeof(yyminorunion));
 | |
|       yyStackOverflow(yypParser, &yyminorunion);
 | |
|       return;
 | |
|     }
 | |
| #endif
 | |
|     yypParser->yyidx = 0;
 | |
|     yypParser->yyerrcnt = -1;
 | |
|     yypParser->yystack[0].stateno = 0;
 | |
|     yypParser->yystack[0].major = 0;
 | |
|   }
 | |
|   yyminorunion.yy0 = yyminor;
 | |
|   yyendofinput = (yymajor==0);
 | |
|   sqlite3ParserARG_STORE;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if( yyTraceFILE ){
 | |
|     fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   do{
 | |
|     yyact = yy_find_shift_action(yypParser,yymajor);
 | |
|     if( yyact<YYNSTATE ){
 | |
|       assert( !yyendofinput );  /* Impossible to shift the $ token */
 | |
|       yy_shift(yypParser,yyact,yymajor,&yyminorunion);
 | |
|       yypParser->yyerrcnt--;
 | |
|       yymajor = YYNOCODE;
 | |
|     }else if( yyact < YYNSTATE + YYNRULE ){
 | |
|       yy_reduce(yypParser,yyact-YYNSTATE);
 | |
|     }else{
 | |
|       assert( yyact == YY_ERROR_ACTION );
 | |
| #ifdef YYERRORSYMBOL
 | |
|       int yymx;
 | |
| #endif
 | |
| #ifndef NDEBUG
 | |
|       if( yyTraceFILE ){
 | |
|         fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
 | |
|       }
 | |
| #endif
 | |
| #ifdef YYERRORSYMBOL
 | |
|       /* A syntax error has occurred.
 | |
|       ** The response to an error depends upon whether or not the
 | |
|       ** grammar defines an error token "ERROR".  
 | |
|       **
 | |
|       ** This is what we do if the grammar does define ERROR:
 | |
|       **
 | |
|       **  * Call the %syntax_error function.
 | |
|       **
 | |
|       **  * Begin popping the stack until we enter a state where
 | |
|       **    it is legal to shift the error symbol, then shift
 | |
|       **    the error symbol.
 | |
|       **
 | |
|       **  * Set the error count to three.
 | |
|       **
 | |
|       **  * Begin accepting and shifting new tokens.  No new error
 | |
|       **    processing will occur until three tokens have been
 | |
|       **    shifted successfully.
 | |
|       **
 | |
|       */
 | |
|       if( yypParser->yyerrcnt<0 ){
 | |
|         yy_syntax_error(yypParser,yymajor,yyminorunion);
 | |
|       }
 | |
|       yymx = yypParser->yystack[yypParser->yyidx].major;
 | |
|       if( yymx==YYERRORSYMBOL || yyerrorhit ){
 | |
| #ifndef NDEBUG
 | |
|         if( yyTraceFILE ){
 | |
|           fprintf(yyTraceFILE,"%sDiscard input token %s\n",
 | |
|              yyTracePrompt,yyTokenName[yymajor]);
 | |
|         }
 | |
| #endif
 | |
|         yy_destructor(yymajor,&yyminorunion);
 | |
|         yymajor = YYNOCODE;
 | |
|       }else{
 | |
|          while(
 | |
|           yypParser->yyidx >= 0 &&
 | |
|           yymx != YYERRORSYMBOL &&
 | |
|           (yyact = yy_find_reduce_action(
 | |
|                         yypParser->yystack[yypParser->yyidx].stateno,
 | |
|                         YYERRORSYMBOL)) >= YYNSTATE
 | |
|         ){
 | |
|           yy_pop_parser_stack(yypParser);
 | |
|         }
 | |
|         if( yypParser->yyidx < 0 || yymajor==0 ){
 | |
|           yy_destructor(yymajor,&yyminorunion);
 | |
|           yy_parse_failed(yypParser);
 | |
|           yymajor = YYNOCODE;
 | |
|         }else if( yymx!=YYERRORSYMBOL ){
 | |
|           YYMINORTYPE u2;
 | |
|           u2.YYERRSYMDT = 0;
 | |
|           yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
 | |
|         }
 | |
|       }
 | |
|       yypParser->yyerrcnt = 3;
 | |
|       yyerrorhit = 1;
 | |
| #else  /* YYERRORSYMBOL is not defined */
 | |
|       /* This is what we do if the grammar does not define ERROR:
 | |
|       **
 | |
|       **  * Report an error message, and throw away the input token.
 | |
|       **
 | |
|       **  * If the input token is $, then fail the parse.
 | |
|       **
 | |
|       ** As before, subsequent error messages are suppressed until
 | |
|       ** three input tokens have been successfully shifted.
 | |
|       */
 | |
|       if( yypParser->yyerrcnt<=0 ){
 | |
|         yy_syntax_error(yypParser,yymajor,yyminorunion);
 | |
|       }
 | |
|       yypParser->yyerrcnt = 3;
 | |
|       yy_destructor(yymajor,&yyminorunion);
 | |
|       if( yyendofinput ){
 | |
|         yy_parse_failed(yypParser);
 | |
|       }
 | |
|       yymajor = YYNOCODE;
 | |
| #endif
 | |
|     }
 | |
|   }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /************** End of parse.c ***********************************************/
 | |
| /************** Begin file tokenize.c ****************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** An tokenizer for SQL
 | |
| **
 | |
| ** This file contains C code that splits an SQL input string up into
 | |
| ** individual tokens and sends those tokens one-by-one over to the
 | |
| ** parser for analysis.
 | |
| **
 | |
| ** $Id: tokenize.c,v 1.138 2008/01/22 23:37:10 drh Exp $
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The charMap() macro maps alphabetic characters into their
 | |
| ** lower-case ASCII equivalent.  On ASCII machines, this is just
 | |
| ** an upper-to-lower case map.  On EBCDIC machines we also need
 | |
| ** to adjust the encoding.  Only alphabetic characters and underscores
 | |
| ** need to be translated.
 | |
| */
 | |
| #ifdef SQLITE_ASCII
 | |
| # define charMap(X) sqlite3UpperToLower[(unsigned char)X]
 | |
| #endif
 | |
| #ifdef SQLITE_EBCDIC
 | |
| # define charMap(X) ebcdicToAscii[(unsigned char)X]
 | |
| const unsigned char ebcdicToAscii[] = {
 | |
| /* 0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 0x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 1x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 2x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 3x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 4x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 5x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, 95,  0,  0,  /* 6x */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* 7x */
 | |
|    0, 97, 98, 99,100,101,102,103,104,105,  0,  0,  0,  0,  0,  0,  /* 8x */
 | |
|    0,106,107,108,109,110,111,112,113,114,  0,  0,  0,  0,  0,  0,  /* 9x */
 | |
|    0,  0,115,116,117,118,119,120,121,122,  0,  0,  0,  0,  0,  0,  /* Ax */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* Bx */
 | |
|    0, 97, 98, 99,100,101,102,103,104,105,  0,  0,  0,  0,  0,  0,  /* Cx */
 | |
|    0,106,107,108,109,110,111,112,113,114,  0,  0,  0,  0,  0,  0,  /* Dx */
 | |
|    0,  0,115,116,117,118,119,120,121,122,  0,  0,  0,  0,  0,  0,  /* Ex */
 | |
|    0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  /* Fx */
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The sqlite3KeywordCode function looks up an identifier to determine if
 | |
| ** it is a keyword.  If it is a keyword, the token code of that keyword is 
 | |
| ** returned.  If the input is not a keyword, TK_ID is returned.
 | |
| **
 | |
| ** The implementation of this routine was generated by a program,
 | |
| ** mkkeywordhash.h, located in the tool subdirectory of the distribution.
 | |
| ** The output of the mkkeywordhash.c program is written into a file
 | |
| ** named keywordhash.h and then included into this source file by
 | |
| ** the #include below.
 | |
| */
 | |
| /************** Include keywordhash.h in the middle of tokenize.c ************/
 | |
| /************** Begin file keywordhash.h *************************************/
 | |
| /***** This file contains automatically generated code ******
 | |
| **
 | |
| ** The code in this file has been automatically generated by
 | |
| **
 | |
| **     $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $
 | |
| **
 | |
| ** The code in this file implements a function that determines whether
 | |
| ** or not a given identifier is really an SQL keyword.  The same thing
 | |
| ** might be implemented more directly using a hand-written hash table.
 | |
| ** But by using this automatically generated code, the size of the code
 | |
| ** is substantially reduced.  This is important for embedded applications
 | |
| ** on platforms with limited memory.
 | |
| */
 | |
| /* Hash score: 165 */
 | |
| static int keywordCode(const char *z, int n){
 | |
|   /* zText[] encodes 775 bytes of keywords in 526 bytes */
 | |
|   static const char zText[526] =
 | |
|     "BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT"
 | |
|     "HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES"
 | |
|     "UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN"
 | |
|     "OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH"
 | |
|     "IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN"
 | |
|     "WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT"
 | |
|     "CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB"
 | |
|     "YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM"
 | |
|     "VIEWINITIALLY";
 | |
|   static const unsigned char aHash[127] = {
 | |
|       63,  92, 109,  61,   0,  38,   0,   0,  69,   0,  64,   0,   0,
 | |
|      102,   4,  65,   7,   0, 108,  72, 103,  99,   0,  22,   0,   0,
 | |
|      113,   0, 111, 106,   0,  18,  80,   0,   1,   0,   0,  56,  57,
 | |
|        0,  55,  11,   0,  33,  77,  89,   0, 110,  88,   0,   0,  45,
 | |
|        0,  90,  54,   0,  20,   0, 114,  34,  19,   0,  10,  97,  28,
 | |
|       83,   0,   0, 116,  93,  47, 115,  41,  12,  44,   0,  78,   0,
 | |
|       87,  29,   0,  86,   0,   0,   0,  82,  79,  84,  75,  96,   6,
 | |
|       14,  95,   0,  68,   0,  21,  76,  98,  27,   0, 112,  67, 104,
 | |
|       49,  40,  71,   0,   0,  81, 100,   0, 107,   0,  15,   0,   0,
 | |
|       24,   0,  73,  42,  50,   0,  16,  48,   0,  37,
 | |
|   };
 | |
|   static const unsigned char aNext[116] = {
 | |
|        0,   0,   0,   0,   0,   0,   0,   0,   0,   9,   0,   0,   0,
 | |
|        0,   0,   0,   0,   5,   0,   0,   0,   0,   0,   0,   0,   0,
 | |
|        0,   0,   0,   0,   0,   0,   0,   0,   0,   0,  32,   0,   0,
 | |
|       17,   0,   0,   0,  36,  39,   0,   0,  25,   0,   0,  31,   0,
 | |
|        0,   0,  43,  52,   0,   0,   0,  53,   0,   0,   0,   0,   0,
 | |
|        0,   0,   0,   0,  51,   0,   0,   0,   0,  26,   0,   8,  46,
 | |
|        2,   0,   0,   0,   0,   0,   0,   0,   3,  58,  66,   0,  13,
 | |
|        0,  91,  85,   0,  94,   0,  74,   0,   0,  62,   0,  35, 101,
 | |
|        0,   0, 105,  23,  30,  60,  70,   0,   0,  59,   0,   0,
 | |
|   };
 | |
|   static const unsigned char aLen[116] = {
 | |
|        6,   7,   3,   6,   6,   7,   7,   3,   4,   6,   4,   5,   3,
 | |
|       10,   9,   5,   4,   4,   3,   8,   2,   6,  11,   2,   7,   5,
 | |
|        5,   4,   6,   7,  10,   6,   5,   6,   6,   5,   6,   4,   9,
 | |
|        2,   5,   5,   7,   5,   9,   6,   7,   7,   3,   4,   4,   7,
 | |
|        3,  10,   4,   7,   6,  12,   6,   6,   9,   4,   6,   5,   4,
 | |
|        7,   6,   5,   6,   7,   5,   4,   5,   6,   5,   7,   3,   7,
 | |
|       13,   2,   2,   4,   6,   6,   8,   5,  17,  12,   7,   8,   8,
 | |
|        2,   4,   4,   4,   4,   4,   2,   2,   4,   6,   2,   3,   6,
 | |
|        5,   8,   5,   5,   8,   3,   5,   5,   6,   4,   9,   3,
 | |
|   };
 | |
|   static const unsigned short int aOffset[116] = {
 | |
|        0,   2,   2,   6,  10,  13,  18,  23,  25,  26,  31,  33,  37,
 | |
|       40,  47,  55,  58,  61,  63,  65,  70,  71,  76,  85,  86,  91,
 | |
|       95,  99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148,
 | |
|      152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199,
 | |
|      200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277,
 | |
|      279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339,
 | |
|      346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418,
 | |
|      419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458,
 | |
|      464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521,
 | |
|   };
 | |
|   static const unsigned char aCode[116] = {
 | |
|     TK_BEFORE,     TK_FOREIGN,    TK_FOR,        TK_IGNORE,     TK_LIKE_KW,    
 | |
|     TK_EXPLAIN,    TK_INSTEAD,    TK_ADD,        TK_DESC,       TK_ESCAPE,     
 | |
|     TK_EACH,       TK_CHECK,      TK_KEY,        TK_CONSTRAINT, TK_INTERSECT,  
 | |
|     TK_TABLE,      TK_JOIN_KW,    TK_THEN,       TK_END,        TK_DATABASE,   
 | |
|     TK_AS,         TK_SELECT,     TK_TRANSACTION,TK_ON,         TK_JOIN_KW,    
 | |
|     TK_ALTER,      TK_RAISE,      TK_ELSE,       TK_EXCEPT,     TK_TRIGGER,    
 | |
|     TK_REFERENCES, TK_UNIQUE,     TK_QUERY,      TK_ATTACH,     TK_HAVING,     
 | |
|     TK_GROUP,      TK_UPDATE,     TK_TEMP,       TK_TEMP,       TK_OR,         
 | |
|     TK_BEGIN,      TK_JOIN_KW,    TK_REINDEX,    TK_INDEX,      TK_EXCLUSIVE,  
 | |
|     TK_EXISTS,     TK_BETWEEN,    TK_NOTNULL,    TK_NOT,        TK_NULL,       
 | |
|     TK_LIKE_KW,    TK_CASCADE,    TK_ASC,        TK_DEFERRABLE, TK_CASE,       
 | |
|     TK_COLLATE,    TK_CREATE,     TK_CTIME_KW,   TK_DELETE,     TK_DETACH,     
 | |
|     TK_IMMEDIATE,  TK_JOIN,       TK_INSERT,     TK_MATCH,      TK_PLAN,       
 | |
|     TK_ANALYZE,    TK_PRAGMA,     TK_ABORT,      TK_VALUES,     TK_VIRTUAL,    
 | |
|     TK_LIMIT,      TK_WHEN,       TK_WHERE,      TK_RENAME,     TK_AFTER,      
 | |
|     TK_REPLACE,    TK_AND,        TK_DEFAULT,    TK_AUTOINCR,   TK_TO,         
 | |
|     TK_IN,         TK_CAST,       TK_COLUMNKW,   TK_COMMIT,     TK_CONFLICT,   
 | |
|     TK_JOIN_KW,    TK_CTIME_KW,   TK_CTIME_KW,   TK_PRIMARY,    TK_DEFERRED,   
 | |
|     TK_DISTINCT,   TK_IS,         TK_DROP,       TK_FAIL,       TK_FROM,       
 | |
|     TK_JOIN_KW,    TK_LIKE_KW,    TK_BY,         TK_IF,         TK_INTO,       
 | |
|     TK_OFFSET,     TK_OF,         TK_SET,        TK_ISNULL,     TK_ORDER,      
 | |
|     TK_RESTRICT,   TK_JOIN_KW,    TK_JOIN_KW,    TK_ROLLBACK,   TK_ROW,        
 | |
|     TK_UNION,      TK_USING,      TK_VACUUM,     TK_VIEW,       TK_INITIALLY,  
 | |
|     TK_ALL,        
 | |
|   };
 | |
|   int h, i;
 | |
|   if( n<2 ) return TK_ID;
 | |
|   h = ((charMap(z[0])*4) ^
 | |
|       (charMap(z[n-1])*3) ^
 | |
|       n) % 127;
 | |
|   for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
 | |
|     if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
 | |
|       return aCode[i];
 | |
|     }
 | |
|   }
 | |
|   return TK_ID;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
 | |
|   return keywordCode((char*)z, n);
 | |
| }
 | |
| 
 | |
| /************** End of keywordhash.h *****************************************/
 | |
| /************** Continuing where we left off in tokenize.c *******************/
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** If X is a character that can be used in an identifier then
 | |
| ** IdChar(X) will be true.  Otherwise it is false.
 | |
| **
 | |
| ** For ASCII, any character with the high-order bit set is
 | |
| ** allowed in an identifier.  For 7-bit characters, 
 | |
| ** sqlite3IsIdChar[X] must be 1.
 | |
| **
 | |
| ** For EBCDIC, the rules are more complex but have the same
 | |
| ** end result.
 | |
| **
 | |
| ** Ticket #1066.  the SQL standard does not allow '$' in the
 | |
| ** middle of identfiers.  But many SQL implementations do. 
 | |
| ** SQLite will allow '$' in identifiers for compatibility.
 | |
| ** But the feature is undocumented.
 | |
| */
 | |
| #ifdef SQLITE_ASCII
 | |
| SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = {
 | |
| /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
 | |
|     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
 | |
| };
 | |
| #define IdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
 | |
| #endif
 | |
| #ifdef SQLITE_EBCDIC
 | |
| SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = {
 | |
| /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
 | |
|     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 4x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,  /* 5x */
 | |
|     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,  /* 6x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,  /* 7x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0,  /* 8x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0,  /* 9x */
 | |
|     1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,  /* Ax */
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* Bx */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Cx */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Dx */
 | |
|     0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,  /* Ex */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,  /* Fx */
 | |
| };
 | |
| #define IdChar(C)  (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return the length of the token that begins at z[0]. 
 | |
| ** Store the token type in *tokenType before returning.
 | |
| */
 | |
| static int getToken(const unsigned char *z, int *tokenType){
 | |
|   int i, c;
 | |
|   switch( *z ){
 | |
|     case ' ': case '\t': case '\n': case '\f': case '\r': {
 | |
|       for(i=1; isspace(z[i]); i++){}
 | |
|       *tokenType = TK_SPACE;
 | |
|       return i;
 | |
|     }
 | |
|     case '-': {
 | |
|       if( z[1]=='-' ){
 | |
|         for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
 | |
|         *tokenType = TK_COMMENT;
 | |
|         return i;
 | |
|       }
 | |
|       *tokenType = TK_MINUS;
 | |
|       return 1;
 | |
|     }
 | |
|     case '(': {
 | |
|       *tokenType = TK_LP;
 | |
|       return 1;
 | |
|     }
 | |
|     case ')': {
 | |
|       *tokenType = TK_RP;
 | |
|       return 1;
 | |
|     }
 | |
|     case ';': {
 | |
|       *tokenType = TK_SEMI;
 | |
|       return 1;
 | |
|     }
 | |
|     case '+': {
 | |
|       *tokenType = TK_PLUS;
 | |
|       return 1;
 | |
|     }
 | |
|     case '*': {
 | |
|       *tokenType = TK_STAR;
 | |
|       return 1;
 | |
|     }
 | |
|     case '/': {
 | |
|       if( z[1]!='*' || z[2]==0 ){
 | |
|         *tokenType = TK_SLASH;
 | |
|         return 1;
 | |
|       }
 | |
|       for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
 | |
|       if( c ) i++;
 | |
|       *tokenType = TK_COMMENT;
 | |
|       return i;
 | |
|     }
 | |
|     case '%': {
 | |
|       *tokenType = TK_REM;
 | |
|       return 1;
 | |
|     }
 | |
|     case '=': {
 | |
|       *tokenType = TK_EQ;
 | |
|       return 1 + (z[1]=='=');
 | |
|     }
 | |
|     case '<': {
 | |
|       if( (c=z[1])=='=' ){
 | |
|         *tokenType = TK_LE;
 | |
|         return 2;
 | |
|       }else if( c=='>' ){
 | |
|         *tokenType = TK_NE;
 | |
|         return 2;
 | |
|       }else if( c=='<' ){
 | |
|         *tokenType = TK_LSHIFT;
 | |
|         return 2;
 | |
|       }else{
 | |
|         *tokenType = TK_LT;
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     case '>': {
 | |
|       if( (c=z[1])=='=' ){
 | |
|         *tokenType = TK_GE;
 | |
|         return 2;
 | |
|       }else if( c=='>' ){
 | |
|         *tokenType = TK_RSHIFT;
 | |
|         return 2;
 | |
|       }else{
 | |
|         *tokenType = TK_GT;
 | |
|         return 1;
 | |
|       }
 | |
|     }
 | |
|     case '!': {
 | |
|       if( z[1]!='=' ){
 | |
|         *tokenType = TK_ILLEGAL;
 | |
|         return 2;
 | |
|       }else{
 | |
|         *tokenType = TK_NE;
 | |
|         return 2;
 | |
|       }
 | |
|     }
 | |
|     case '|': {
 | |
|       if( z[1]!='|' ){
 | |
|         *tokenType = TK_BITOR;
 | |
|         return 1;
 | |
|       }else{
 | |
|         *tokenType = TK_CONCAT;
 | |
|         return 2;
 | |
|       }
 | |
|     }
 | |
|     case ',': {
 | |
|       *tokenType = TK_COMMA;
 | |
|       return 1;
 | |
|     }
 | |
|     case '&': {
 | |
|       *tokenType = TK_BITAND;
 | |
|       return 1;
 | |
|     }
 | |
|     case '~': {
 | |
|       *tokenType = TK_BITNOT;
 | |
|       return 1;
 | |
|     }
 | |
|     case '`':
 | |
|     case '\'':
 | |
|     case '"': {
 | |
|       int delim = z[0];
 | |
|       for(i=1; (c=z[i])!=0; i++){
 | |
|         if( c==delim ){
 | |
|           if( z[i+1]==delim ){
 | |
|             i++;
 | |
|           }else{
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if( c ){
 | |
|         *tokenType = TK_STRING;
 | |
|         return i+1;
 | |
|       }else{
 | |
|         *tokenType = TK_ILLEGAL;
 | |
|         return i;
 | |
|       }
 | |
|     }
 | |
|     case '.': {
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|       if( !isdigit(z[1]) )
 | |
| #endif
 | |
|       {
 | |
|         *tokenType = TK_DOT;
 | |
|         return 1;
 | |
|       }
 | |
|       /* If the next character is a digit, this is a floating point
 | |
|       ** number that begins with ".".  Fall thru into the next case */
 | |
|     }
 | |
|     case '0': case '1': case '2': case '3': case '4':
 | |
|     case '5': case '6': case '7': case '8': case '9': {
 | |
|       *tokenType = TK_INTEGER;
 | |
|       for(i=0; isdigit(z[i]); i++){}
 | |
| #ifndef SQLITE_OMIT_FLOATING_POINT
 | |
|       if( z[i]=='.' ){
 | |
|         i++;
 | |
|         while( isdigit(z[i]) ){ i++; }
 | |
|         *tokenType = TK_FLOAT;
 | |
|       }
 | |
|       if( (z[i]=='e' || z[i]=='E') &&
 | |
|            ( isdigit(z[i+1]) 
 | |
|             || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
 | |
|            )
 | |
|       ){
 | |
|         i += 2;
 | |
|         while( isdigit(z[i]) ){ i++; }
 | |
|         *tokenType = TK_FLOAT;
 | |
|       }
 | |
| #endif
 | |
|       while( IdChar(z[i]) ){
 | |
|         *tokenType = TK_ILLEGAL;
 | |
|         i++;
 | |
|       }
 | |
|       return i;
 | |
|     }
 | |
|     case '[': {
 | |
|       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
 | |
|       *tokenType = c==']' ? TK_ID : TK_ILLEGAL;
 | |
|       return i;
 | |
|     }
 | |
|     case '?': {
 | |
|       *tokenType = TK_VARIABLE;
 | |
|       for(i=1; isdigit(z[i]); i++){}
 | |
|       return i;
 | |
|     }
 | |
|     case '#': {
 | |
|       for(i=1; isdigit(z[i]); i++){}
 | |
|       if( i>1 ){
 | |
|         /* Parameters of the form #NNN (where NNN is a number) are used
 | |
|         ** internally by sqlite3NestedParse.  */
 | |
|         *tokenType = TK_REGISTER;
 | |
|         return i;
 | |
|       }
 | |
|       /* Fall through into the next case if the '#' is not followed by
 | |
|       ** a digit. Try to match #AAAA where AAAA is a parameter name. */
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_TCL_VARIABLE
 | |
|     case '$':
 | |
| #endif
 | |
|     case '@':  /* For compatibility with MS SQL Server */
 | |
|     case ':': {
 | |
|       int n = 0;
 | |
|       *tokenType = TK_VARIABLE;
 | |
|       for(i=1; (c=z[i])!=0; i++){
 | |
|         if( IdChar(c) ){
 | |
|           n++;
 | |
| #ifndef SQLITE_OMIT_TCL_VARIABLE
 | |
|         }else if( c=='(' && n>0 ){
 | |
|           do{
 | |
|             i++;
 | |
|           }while( (c=z[i])!=0 && !isspace(c) && c!=')' );
 | |
|           if( c==')' ){
 | |
|             i++;
 | |
|           }else{
 | |
|             *tokenType = TK_ILLEGAL;
 | |
|           }
 | |
|           break;
 | |
|         }else if( c==':' && z[i+1]==':' ){
 | |
|           i++;
 | |
| #endif
 | |
|         }else{
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if( n==0 ) *tokenType = TK_ILLEGAL;
 | |
|       return i;
 | |
|     }
 | |
| #ifndef SQLITE_OMIT_BLOB_LITERAL
 | |
|     case 'x': case 'X': {
 | |
|       if( z[1]=='\'' ){
 | |
|         *tokenType = TK_BLOB;
 | |
|         for(i=2; (c=z[i])!=0 && c!='\''; i++){
 | |
|           if( !isxdigit(c) ){
 | |
|             *tokenType = TK_ILLEGAL;
 | |
|           }
 | |
|         }
 | |
|         if( i%2 || !c ) *tokenType = TK_ILLEGAL;
 | |
|         if( c ) i++;
 | |
|         return i;
 | |
|       }
 | |
|       /* Otherwise fall through to the next case */
 | |
|     }
 | |
| #endif
 | |
|     default: {
 | |
|       if( !IdChar(*z) ){
 | |
|         break;
 | |
|       }
 | |
|       for(i=1; IdChar(z[i]); i++){}
 | |
|       *tokenType = keywordCode((char*)z, i);
 | |
|       return i;
 | |
|     }
 | |
|   }
 | |
|   *tokenType = TK_ILLEGAL;
 | |
|   return 1;
 | |
| }
 | |
| SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){
 | |
|   return getToken(z, tokenType);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Run the parser on the given SQL string.  The parser structure is
 | |
| ** passed in.  An SQLITE_ status code is returned.  If an error occurs
 | |
| ** and pzErrMsg!=NULL then an error message might be written into 
 | |
| ** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that
 | |
| ** error message.  Or maybe not.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
 | |
|   int nErr = 0;
 | |
|   int i;
 | |
|   void *pEngine;
 | |
|   int tokenType;
 | |
|   int lastTokenParsed = -1;
 | |
|   sqlite3 *db = pParse->db;
 | |
| 
 | |
|   if( db->activeVdbeCnt==0 ){
 | |
|     db->u1.isInterrupted = 0;
 | |
|   }
 | |
|   pParse->rc = SQLITE_OK;
 | |
|   i = 0;
 | |
|   pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc);
 | |
|   if( pEngine==0 ){
 | |
|     db->mallocFailed = 1;
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   assert( pParse->sLastToken.dyn==0 );
 | |
|   assert( pParse->pNewTable==0 );
 | |
|   assert( pParse->pNewTrigger==0 );
 | |
|   assert( pParse->nVar==0 );
 | |
|   assert( pParse->nVarExpr==0 );
 | |
|   assert( pParse->nVarExprAlloc==0 );
 | |
|   assert( pParse->apVarExpr==0 );
 | |
|   pParse->zTail = pParse->zSql = zSql;
 | |
|   while( !db->mallocFailed && zSql[i]!=0 ){
 | |
|     assert( i>=0 );
 | |
|     pParse->sLastToken.z = (u8*)&zSql[i];
 | |
|     assert( pParse->sLastToken.dyn==0 );
 | |
|     pParse->sLastToken.n = getToken((unsigned char*)&zSql[i],&tokenType);
 | |
|     i += pParse->sLastToken.n;
 | |
|     if( SQLITE_MAX_SQL_LENGTH>0 && i>SQLITE_MAX_SQL_LENGTH ){
 | |
|       pParse->rc = SQLITE_TOOBIG;
 | |
|       break;
 | |
|     }
 | |
|     switch( tokenType ){
 | |
|       case TK_SPACE:
 | |
|       case TK_COMMENT: {
 | |
|         if( db->u1.isInterrupted ){
 | |
|           pParse->rc = SQLITE_INTERRUPT;
 | |
|           sqlite3SetString(pzErrMsg, "interrupt", (char*)0);
 | |
|           goto abort_parse;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case TK_ILLEGAL: {
 | |
|         if( pzErrMsg ){
 | |
|           sqlite3_free(*pzErrMsg);
 | |
|           *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"",
 | |
|                           &pParse->sLastToken);
 | |
|         }
 | |
|         nErr++;
 | |
|         goto abort_parse;
 | |
|       }
 | |
|       case TK_SEMI: {
 | |
|         pParse->zTail = &zSql[i];
 | |
|         /* Fall thru into the default case */
 | |
|       }
 | |
|       default: {
 | |
|         sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
 | |
|         lastTokenParsed = tokenType;
 | |
|         if( pParse->rc!=SQLITE_OK ){
 | |
|           goto abort_parse;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| abort_parse:
 | |
|   if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
 | |
|     if( lastTokenParsed!=TK_SEMI ){
 | |
|       sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
 | |
|       pParse->zTail = &zSql[i];
 | |
|     }
 | |
|     sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
 | |
|   }
 | |
|   sqlite3ParserFree(pEngine, sqlite3_free);
 | |
|   if( db->mallocFailed ){
 | |
|     pParse->rc = SQLITE_NOMEM;
 | |
|   }
 | |
|   if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
 | |
|     sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0);
 | |
|   }
 | |
|   if( pParse->zErrMsg ){
 | |
|     if( pzErrMsg && *pzErrMsg==0 ){
 | |
|       *pzErrMsg = pParse->zErrMsg;
 | |
|     }else{
 | |
|       sqlite3_free(pParse->zErrMsg);
 | |
|     }
 | |
|     pParse->zErrMsg = 0;
 | |
|     nErr++;
 | |
|   }
 | |
|   if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){
 | |
|     sqlite3VdbeDelete(pParse->pVdbe);
 | |
|     pParse->pVdbe = 0;
 | |
|   }
 | |
| #ifndef SQLITE_OMIT_SHARED_CACHE
 | |
|   if( pParse->nested==0 ){
 | |
|     sqlite3_free(pParse->aTableLock);
 | |
|     pParse->aTableLock = 0;
 | |
|     pParse->nTableLock = 0;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if( !IN_DECLARE_VTAB ){
 | |
|     /* If the pParse->declareVtab flag is set, do not delete any table 
 | |
|     ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
 | |
|     ** will take responsibility for freeing the Table structure.
 | |
|     */
 | |
|     sqlite3DeleteTable(pParse->pNewTable);
 | |
|   }
 | |
| 
 | |
|   sqlite3DeleteTrigger(pParse->pNewTrigger);
 | |
|   sqlite3_free(pParse->apVarExpr);
 | |
|   if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
 | |
|     pParse->rc = SQLITE_ERROR;
 | |
|   }
 | |
|   return nErr;
 | |
| }
 | |
| 
 | |
| /************** End of tokenize.c ********************************************/
 | |
| /************** Begin file complete.c ****************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** An tokenizer for SQL
 | |
| **
 | |
| ** This file contains C code that implements the sqlite3_complete() API.
 | |
| ** This code used to be part of the tokenizer.c source file.  But by
 | |
| ** separating it out, the code will be automatically omitted from
 | |
| ** static links that do not use it.
 | |
| **
 | |
| ** $Id: complete.c,v 1.6 2007/08/27 23:26:59 drh Exp $
 | |
| */
 | |
| #ifndef SQLITE_OMIT_COMPLETE
 | |
| 
 | |
| /*
 | |
| ** This is defined in tokenize.c.  We just have to import the definition.
 | |
| */
 | |
| #ifndef SQLITE_AMALGAMATION
 | |
| #ifdef SQLITE_ASCII
 | |
| SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[];
 | |
| #define IdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20]))
 | |
| #endif
 | |
| #ifdef SQLITE_EBCDIC
 | |
| SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[];
 | |
| #define IdChar(C)  (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40]))
 | |
| #endif
 | |
| #endif /* SQLITE_AMALGAMATION */
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Token types used by the sqlite3_complete() routine.  See the header
 | |
| ** comments on that procedure for additional information.
 | |
| */
 | |
| #define tkSEMI    0
 | |
| #define tkWS      1
 | |
| #define tkOTHER   2
 | |
| #define tkEXPLAIN 3
 | |
| #define tkCREATE  4
 | |
| #define tkTEMP    5
 | |
| #define tkTRIGGER 6
 | |
| #define tkEND     7
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the given SQL string ends in a semicolon.
 | |
| **
 | |
| ** Special handling is require for CREATE TRIGGER statements.
 | |
| ** Whenever the CREATE TRIGGER keywords are seen, the statement
 | |
| ** must end with ";END;".
 | |
| **
 | |
| ** This implementation uses a state machine with 7 states:
 | |
| **
 | |
| **   (0) START     At the beginning or end of an SQL statement.  This routine
 | |
| **                 returns 1 if it ends in the START state and 0 if it ends
 | |
| **                 in any other state.
 | |
| **
 | |
| **   (1) NORMAL    We are in the middle of statement which ends with a single
 | |
| **                 semicolon.
 | |
| **
 | |
| **   (2) EXPLAIN   The keyword EXPLAIN has been seen at the beginning of 
 | |
| **                 a statement.
 | |
| **
 | |
| **   (3) CREATE    The keyword CREATE has been seen at the beginning of a
 | |
| **                 statement, possibly preceeded by EXPLAIN and/or followed by
 | |
| **                 TEMP or TEMPORARY
 | |
| **
 | |
| **   (4) TRIGGER   We are in the middle of a trigger definition that must be
 | |
| **                 ended by a semicolon, the keyword END, and another semicolon.
 | |
| **
 | |
| **   (5) SEMI      We've seen the first semicolon in the ";END;" that occurs at
 | |
| **                 the end of a trigger definition.
 | |
| **
 | |
| **   (6) END       We've seen the ";END" of the ";END;" that occurs at the end
 | |
| **                 of a trigger difinition.
 | |
| **
 | |
| ** Transitions between states above are determined by tokens extracted
 | |
| ** from the input.  The following tokens are significant:
 | |
| **
 | |
| **   (0) tkSEMI      A semicolon.
 | |
| **   (1) tkWS        Whitespace
 | |
| **   (2) tkOTHER     Any other SQL token.
 | |
| **   (3) tkEXPLAIN   The "explain" keyword.
 | |
| **   (4) tkCREATE    The "create" keyword.
 | |
| **   (5) tkTEMP      The "temp" or "temporary" keyword.
 | |
| **   (6) tkTRIGGER   The "trigger" keyword.
 | |
| **   (7) tkEND       The "end" keyword.
 | |
| **
 | |
| ** Whitespace never causes a state transition and is always ignored.
 | |
| **
 | |
| ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
 | |
| ** to recognize the end of a trigger can be omitted.  All we have to do
 | |
| ** is look for a semicolon that is not part of an string or comment.
 | |
| */
 | |
| SQLITE_API int sqlite3_complete(const char *zSql){
 | |
|   u8 state = 0;   /* Current state, using numbers defined in header comment */
 | |
|   u8 token;       /* Value of the next token */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRIGGER
 | |
|   /* A complex statement machine used to detect the end of a CREATE TRIGGER
 | |
|   ** statement.  This is the normal case.
 | |
|   */
 | |
|   static const u8 trans[7][8] = {
 | |
|                      /* Token:                                                */
 | |
|      /* State:       **  SEMI  WS  OTHER EXPLAIN  CREATE  TEMP  TRIGGER  END  */
 | |
|      /* 0   START: */ {    0,  0,     1,      2,      3,    1,       1,   1,  },
 | |
|      /* 1  NORMAL: */ {    0,  1,     1,      1,      1,    1,       1,   1,  },
 | |
|      /* 2 EXPLAIN: */ {    0,  2,     1,      1,      3,    1,       1,   1,  },
 | |
|      /* 3  CREATE: */ {    0,  3,     1,      1,      1,    3,       4,   1,  },
 | |
|      /* 4 TRIGGER: */ {    5,  4,     4,      4,      4,    4,       4,   4,  },
 | |
|      /* 5    SEMI: */ {    5,  5,     4,      4,      4,    4,       4,   6,  },
 | |
|      /* 6     END: */ {    0,  6,     4,      4,      4,    4,       4,   4,  },
 | |
|   };
 | |
| #else
 | |
|   /* If triggers are not suppored by this compile then the statement machine
 | |
|   ** used to detect the end of a statement is much simplier
 | |
|   */
 | |
|   static const u8 trans[2][3] = {
 | |
|                      /* Token:           */
 | |
|      /* State:       **  SEMI  WS  OTHER */
 | |
|      /* 0   START: */ {    0,  0,     1, },
 | |
|      /* 1  NORMAL: */ {    0,  1,     1, },
 | |
|   };
 | |
| #endif /* SQLITE_OMIT_TRIGGER */
 | |
| 
 | |
|   while( *zSql ){
 | |
|     switch( *zSql ){
 | |
|       case ';': {  /* A semicolon */
 | |
|         token = tkSEMI;
 | |
|         break;
 | |
|       }
 | |
|       case ' ':
 | |
|       case '\r':
 | |
|       case '\t':
 | |
|       case '\n':
 | |
|       case '\f': {  /* White space is ignored */
 | |
|         token = tkWS;
 | |
|         break;
 | |
|       }
 | |
|       case '/': {   /* C-style comments */
 | |
|         if( zSql[1]!='*' ){
 | |
|           token = tkOTHER;
 | |
|           break;
 | |
|         }
 | |
|         zSql += 2;
 | |
|         while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
 | |
|         if( zSql[0]==0 ) return 0;
 | |
|         zSql++;
 | |
|         token = tkWS;
 | |
|         break;
 | |
|       }
 | |
|       case '-': {   /* SQL-style comments from "--" to end of line */
 | |
|         if( zSql[1]!='-' ){
 | |
|           token = tkOTHER;
 | |
|           break;
 | |
|         }
 | |
|         while( *zSql && *zSql!='\n' ){ zSql++; }
 | |
|         if( *zSql==0 ) return state==0;
 | |
|         token = tkWS;
 | |
|         break;
 | |
|       }
 | |
|       case '[': {   /* Microsoft-style identifiers in [...] */
 | |
|         zSql++;
 | |
|         while( *zSql && *zSql!=']' ){ zSql++; }
 | |
|         if( *zSql==0 ) return 0;
 | |
|         token = tkOTHER;
 | |
|         break;
 | |
|       }
 | |
|       case '`':     /* Grave-accent quoted symbols used by MySQL */
 | |
|       case '"':     /* single- and double-quoted strings */
 | |
|       case '\'': {
 | |
|         int c = *zSql;
 | |
|         zSql++;
 | |
|         while( *zSql && *zSql!=c ){ zSql++; }
 | |
|         if( *zSql==0 ) return 0;
 | |
|         token = tkOTHER;
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         int c;
 | |
|         if( IdChar((u8)*zSql) ){
 | |
|           /* Keywords and unquoted identifiers */
 | |
|           int nId;
 | |
|           for(nId=1; IdChar(zSql[nId]); nId++){}
 | |
| #ifdef SQLITE_OMIT_TRIGGER
 | |
|           token = tkOTHER;
 | |
| #else
 | |
|           switch( *zSql ){
 | |
|             case 'c': case 'C': {
 | |
|               if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){
 | |
|                 token = tkCREATE;
 | |
|               }else{
 | |
|                 token = tkOTHER;
 | |
|               }
 | |
|               break;
 | |
|             }
 | |
|             case 't': case 'T': {
 | |
|               if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){
 | |
|                 token = tkTRIGGER;
 | |
|               }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){
 | |
|                 token = tkTEMP;
 | |
|               }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){
 | |
|                 token = tkTEMP;
 | |
|               }else{
 | |
|                 token = tkOTHER;
 | |
|               }
 | |
|               break;
 | |
|             }
 | |
|             case 'e':  case 'E': {
 | |
|               if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){
 | |
|                 token = tkEND;
 | |
|               }else
 | |
| #ifndef SQLITE_OMIT_EXPLAIN
 | |
|               if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){
 | |
|                 token = tkEXPLAIN;
 | |
|               }else
 | |
| #endif
 | |
|               {
 | |
|                 token = tkOTHER;
 | |
|               }
 | |
|               break;
 | |
|             }
 | |
|             default: {
 | |
|               token = tkOTHER;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
| #endif /* SQLITE_OMIT_TRIGGER */
 | |
|           zSql += nId-1;
 | |
|         }else{
 | |
|           /* Operators and special symbols */
 | |
|           token = tkOTHER;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     state = trans[state][token];
 | |
|     zSql++;
 | |
|   }
 | |
|   return state==0;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** This routine is the same as the sqlite3_complete() routine described
 | |
| ** above, except that the parameter is required to be UTF-16 encoded, not
 | |
| ** UTF-8.
 | |
| */
 | |
| SQLITE_API int sqlite3_complete16(const void *zSql){
 | |
|   sqlite3_value *pVal;
 | |
|   char const *zSql8;
 | |
|   int rc = SQLITE_NOMEM;
 | |
| 
 | |
|   pVal = sqlite3ValueNew(0);
 | |
|   sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC);
 | |
|   zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8);
 | |
|   if( zSql8 ){
 | |
|     rc = sqlite3_complete(zSql8);
 | |
|   }
 | |
|   sqlite3ValueFree(pVal);
 | |
|   return sqlite3ApiExit(0, rc);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| #endif /* SQLITE_OMIT_COMPLETE */
 | |
| 
 | |
| /************** End of complete.c ********************************************/
 | |
| /************** Begin file main.c ********************************************/
 | |
| /*
 | |
| ** 2001 September 15
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Main file for the SQLite library.  The routines in this file
 | |
| ** implement the programmer interface to the library.  Routines in
 | |
| ** other files are for internal use by SQLite and should not be
 | |
| ** accessed by users of the library.
 | |
| **
 | |
| ** $Id: main.c,v 1.421 2008/03/07 21:37:19 drh Exp $
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_FTS3
 | |
| /************** Include fts3.h in the middle of main.c ***********************/
 | |
| /************** Begin file fts3.h ********************************************/
 | |
| /*
 | |
| ** 2006 Oct 10
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This header file is used by programs that want to link against the
 | |
| ** FTS3 library.  All it does is declare the sqlite3Fts3Init() interface.
 | |
| */
 | |
| 
 | |
| #if 0
 | |
| extern "C" {
 | |
| #endif  /* __cplusplus */
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db);
 | |
| 
 | |
| #if 0
 | |
| }  /* extern "C" */
 | |
| #endif  /* __cplusplus */
 | |
| 
 | |
| /************** End of fts3.h ************************************************/
 | |
| /************** Continuing where we left off in main.c ***********************/
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** The version of the library
 | |
| */
 | |
| SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
 | |
| SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }
 | |
| SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }
 | |
| SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }
 | |
| 
 | |
| /*
 | |
| ** If the following function pointer is not NULL and if
 | |
| ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
 | |
| ** I/O active are written using this function.  These messages
 | |
| ** are intended for debugging activity only.
 | |
| */
 | |
| SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
 | |
| 
 | |
| /*
 | |
| ** If the following global variable points to a string which is the
 | |
| ** name of a directory, then that directory will be used to store
 | |
| ** temporary files.
 | |
| **
 | |
| ** See also the "PRAGMA temp_store_directory" SQL command.
 | |
| */
 | |
| SQLITE_API char *sqlite3_temp_directory = 0;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return true if the buffer z[0..n-1] contains all spaces.
 | |
| */
 | |
| static int allSpaces(const char *z, int n){
 | |
|   while( n>0 && z[--n]==' ' ){}
 | |
|   return n==0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is the default collating function named "BINARY" which is always
 | |
| ** available.
 | |
| **
 | |
| ** If the padFlag argument is not NULL then space padding at the end
 | |
| ** of strings is ignored.  This implements the RTRIM collation.
 | |
| */
 | |
| static int binCollFunc(
 | |
|   void *padFlag,
 | |
|   int nKey1, const void *pKey1,
 | |
|   int nKey2, const void *pKey2
 | |
| ){
 | |
|   int rc, n;
 | |
|   n = nKey1<nKey2 ? nKey1 : nKey2;
 | |
|   rc = memcmp(pKey1, pKey2, n);
 | |
|   if( rc==0 ){
 | |
|     if( padFlag
 | |
|      && allSpaces(((char*)pKey1)+n, nKey1-n)
 | |
|      && allSpaces(((char*)pKey2)+n, nKey2-n)
 | |
|     ){
 | |
|       /* Leave rc unchanged at 0 */
 | |
|     }else{
 | |
|       rc = nKey1 - nKey2;
 | |
|     }
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Another built-in collating sequence: NOCASE. 
 | |
| **
 | |
| ** This collating sequence is intended to be used for "case independant
 | |
| ** comparison". SQLite's knowledge of upper and lower case equivalents
 | |
| ** extends only to the 26 characters used in the English language.
 | |
| **
 | |
| ** At the moment there is only a UTF-8 implementation.
 | |
| */
 | |
| static int nocaseCollatingFunc(
 | |
|   void *NotUsed,
 | |
|   int nKey1, const void *pKey1,
 | |
|   int nKey2, const void *pKey2
 | |
| ){
 | |
|   int r = sqlite3StrNICmp(
 | |
|       (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2);
 | |
|   if( 0==r ){
 | |
|     r = nKey1-nKey2;
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the ROWID of the most recent insert
 | |
| */
 | |
| SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
 | |
|   return db->lastRowid;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of changes in the most recent call to sqlite3_exec().
 | |
| */
 | |
| SQLITE_API int sqlite3_changes(sqlite3 *db){
 | |
|   return db->nChange;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return the number of changes since the database handle was opened.
 | |
| */
 | |
| SQLITE_API int sqlite3_total_changes(sqlite3 *db){
 | |
|   return db->nTotalChange;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close an existing SQLite database
 | |
| */
 | |
| SQLITE_API int sqlite3_close(sqlite3 *db){
 | |
|   HashElem *i;
 | |
|   int j;
 | |
| 
 | |
|   if( !db ){
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
|   if( !sqlite3SafetyCheckSickOrOk(db) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
| 
 | |
| #ifdef SQLITE_SSE
 | |
|   {
 | |
|     extern void sqlite3SseCleanup(sqlite3*);
 | |
|     sqlite3SseCleanup(db);
 | |
|   }
 | |
| #endif 
 | |
| 
 | |
|   sqlite3ResetInternalSchema(db, 0);
 | |
| 
 | |
|   /* If a transaction is open, the ResetInternalSchema() call above
 | |
|   ** will not have called the xDisconnect() method on any virtual
 | |
|   ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
 | |
|   ** call will do so. We need to do this before the check for active
 | |
|   ** SQL statements below, as the v-table implementation may be storing
 | |
|   ** some prepared statements internally.
 | |
|   */
 | |
|   sqlite3VtabRollback(db);
 | |
| 
 | |
|   /* If there are any outstanding VMs, return SQLITE_BUSY. */
 | |
|   if( db->pVdbe ){
 | |
|     sqlite3Error(db, SQLITE_BUSY, 
 | |
|         "Unable to close due to unfinalised statements");
 | |
|     sqlite3_mutex_leave(db->mutex);
 | |
|     return SQLITE_BUSY;
 | |
|   }
 | |
|   assert( sqlite3SafetyCheckSickOrOk(db) );
 | |
| 
 | |
|   for(j=0; j<db->nDb; j++){
 | |
|     struct Db *pDb = &db->aDb[j];
 | |
|     if( pDb->pBt ){
 | |
|       sqlite3BtreeClose(pDb->pBt);
 | |
|       pDb->pBt = 0;
 | |
|       if( j!=1 ){
 | |
|         pDb->pSchema = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3ResetInternalSchema(db, 0);
 | |
|   assert( db->nDb<=2 );
 | |
|   assert( db->aDb==db->aDbStatic );
 | |
|   for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
 | |
|     FuncDef *pFunc, *pNext;
 | |
|     for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
 | |
|       pNext = pFunc->pNext;
 | |
|       sqlite3_free(pFunc);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){
 | |
|     CollSeq *pColl = (CollSeq *)sqliteHashData(i);
 | |
|     /* Invoke any destructors registered for collation sequence user data. */
 | |
|     for(j=0; j<3; j++){
 | |
|       if( pColl[j].xDel ){
 | |
|         pColl[j].xDel(pColl[j].pUser);
 | |
|       }
 | |
|     }
 | |
|     sqlite3_free(pColl);
 | |
|   }
 | |
|   sqlite3HashClear(&db->aCollSeq);
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){
 | |
|     Module *pMod = (Module *)sqliteHashData(i);
 | |
|     if( pMod->xDestroy ){
 | |
|       pMod->xDestroy(pMod->pAux);
 | |
|     }
 | |
|     sqlite3_free(pMod);
 | |
|   }
 | |
|   sqlite3HashClear(&db->aModule);
 | |
| #endif
 | |
| 
 | |
|   sqlite3HashClear(&db->aFunc);
 | |
|   sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
 | |
|   if( db->pErr ){
 | |
|     sqlite3ValueFree(db->pErr);
 | |
|   }
 | |
|   sqlite3CloseExtensions(db);
 | |
| 
 | |
|   db->magic = SQLITE_MAGIC_ERROR;
 | |
| 
 | |
|   /* The temp-database schema is allocated differently from the other schema
 | |
|   ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()).
 | |
|   ** So it needs to be freed here. Todo: Why not roll the temp schema into
 | |
|   ** the same sqliteMalloc() as the one that allocates the database 
 | |
|   ** structure?
 | |
|   */
 | |
|   sqlite3_free(db->aDb[1].pSchema);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   db->magic = SQLITE_MAGIC_CLOSED;
 | |
|   sqlite3_mutex_free(db->mutex);
 | |
|   sqlite3_free(db);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rollback all database files.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){
 | |
|   int i;
 | |
|   int inTrans = 0;
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1);
 | |
|   for(i=0; i<db->nDb; i++){
 | |
|     if( db->aDb[i].pBt ){
 | |
|       if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){
 | |
|         inTrans = 1;
 | |
|       }
 | |
|       sqlite3BtreeRollback(db->aDb[i].pBt);
 | |
|       db->aDb[i].inTrans = 0;
 | |
|     }
 | |
|   }
 | |
|   sqlite3VtabRollback(db);
 | |
|   sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
 | |
| 
 | |
|   if( db->flags&SQLITE_InternChanges ){
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
|     sqlite3ResetInternalSchema(db, 0);
 | |
|   }
 | |
| 
 | |
|   /* If one has been configured, invoke the rollback-hook callback */
 | |
|   if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){
 | |
|     db->xRollbackCallback(db->pRollbackArg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a static string that describes the kind of error specified in the
 | |
| ** argument.
 | |
| */
 | |
| SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){
 | |
|   const char *z;
 | |
|   switch( rc & 0xff ){
 | |
|     case SQLITE_ROW:
 | |
|     case SQLITE_DONE:
 | |
|     case SQLITE_OK:         z = "not an error";                          break;
 | |
|     case SQLITE_ERROR:      z = "SQL logic error or missing database";   break;
 | |
|     case SQLITE_PERM:       z = "access permission denied";              break;
 | |
|     case SQLITE_ABORT:      z = "callback requested query abort";        break;
 | |
|     case SQLITE_BUSY:       z = "database is locked";                    break;
 | |
|     case SQLITE_LOCKED:     z = "database table is locked";              break;
 | |
|     case SQLITE_NOMEM:      z = "out of memory";                         break;
 | |
|     case SQLITE_READONLY:   z = "attempt to write a readonly database";  break;
 | |
|     case SQLITE_INTERRUPT:  z = "interrupted";                           break;
 | |
|     case SQLITE_IOERR:      z = "disk I/O error";                        break;
 | |
|     case SQLITE_CORRUPT:    z = "database disk image is malformed";      break;
 | |
|     case SQLITE_FULL:       z = "database or disk is full";              break;
 | |
|     case SQLITE_CANTOPEN:   z = "unable to open database file";          break;
 | |
|     case SQLITE_EMPTY:      z = "table contains no data";                break;
 | |
|     case SQLITE_SCHEMA:     z = "database schema has changed";           break;
 | |
|     case SQLITE_TOOBIG:     z = "String or BLOB exceeded size limit";    break;
 | |
|     case SQLITE_CONSTRAINT: z = "constraint failed";                     break;
 | |
|     case SQLITE_MISMATCH:   z = "datatype mismatch";                     break;
 | |
|     case SQLITE_MISUSE:     z = "library routine called out of sequence";break;
 | |
|     case SQLITE_NOLFS:      z = "kernel lacks large file support";       break;
 | |
|     case SQLITE_AUTH:       z = "authorization denied";                  break;
 | |
|     case SQLITE_FORMAT:     z = "auxiliary database format error";       break;
 | |
|     case SQLITE_RANGE:      z = "bind or column index out of range";     break;
 | |
|     case SQLITE_NOTADB:     z = "file is encrypted or is not a database";break;
 | |
|     default:                z = "unknown error";                         break;
 | |
|   }
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine implements a busy callback that sleeps and tries
 | |
| ** again until a timeout value is reached.  The timeout value is
 | |
| ** an integer number of milliseconds passed in as the first
 | |
| ** argument.
 | |
| */
 | |
| static int sqliteDefaultBusyCallback(
 | |
|  void *ptr,               /* Database connection */
 | |
|  int count                /* Number of times table has been busy */
 | |
| ){
 | |
| #if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP)
 | |
|   static const u8 delays[] =
 | |
|      { 1, 2, 5, 10, 15, 20, 25, 25,  25,  50,  50, 100 };
 | |
|   static const u8 totals[] =
 | |
|      { 0, 1, 3,  8, 18, 33, 53, 78, 103, 128, 178, 228 };
 | |
| # define NDELAY (sizeof(delays)/sizeof(delays[0]))
 | |
|   sqlite3 *db = (sqlite3 *)ptr;
 | |
|   int timeout = db->busyTimeout;
 | |
|   int delay, prior;
 | |
| 
 | |
|   assert( count>=0 );
 | |
|   if( count < NDELAY ){
 | |
|     delay = delays[count];
 | |
|     prior = totals[count];
 | |
|   }else{
 | |
|     delay = delays[NDELAY-1];
 | |
|     prior = totals[NDELAY-1] + delay*(count-(NDELAY-1));
 | |
|   }
 | |
|   if( prior + delay > timeout ){
 | |
|     delay = timeout - prior;
 | |
|     if( delay<=0 ) return 0;
 | |
|   }
 | |
|   sqlite3OsSleep(db->pVfs, delay*1000);
 | |
|   return 1;
 | |
| #else
 | |
|   sqlite3 *db = (sqlite3 *)ptr;
 | |
|   int timeout = ((sqlite3 *)ptr)->busyTimeout;
 | |
|   if( (count+1)*1000 > timeout ){
 | |
|     return 0;
 | |
|   }
 | |
|   sqlite3OsSleep(db->pVfs, 1000000);
 | |
|   return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the given busy handler.
 | |
| **
 | |
| ** This routine is called when an operation failed with a lock.
 | |
| ** If this routine returns non-zero, the lock is retried.  If it
 | |
| ** returns 0, the operation aborts with an SQLITE_BUSY error.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){
 | |
|   int rc;
 | |
|   if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0;
 | |
|   rc = p->xFunc(p->pArg, p->nBusy);
 | |
|   if( rc==0 ){
 | |
|     p->nBusy = -1;
 | |
|   }else{
 | |
|     p->nBusy++;
 | |
|   }
 | |
|   return rc; 
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine sets the busy callback for an Sqlite database to the
 | |
| ** given callback function with the given argument.
 | |
| */
 | |
| SQLITE_API int sqlite3_busy_handler(
 | |
|   sqlite3 *db,
 | |
|   int (*xBusy)(void*,int),
 | |
|   void *pArg
 | |
| ){
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   db->busyHandler.xFunc = xBusy;
 | |
|   db->busyHandler.pArg = pArg;
 | |
|   db->busyHandler.nBusy = 0;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
 | |
| /*
 | |
| ** This routine sets the progress callback for an Sqlite database to the
 | |
| ** given callback function with the given argument. The progress callback will
 | |
| ** be invoked every nOps opcodes.
 | |
| */
 | |
| SQLITE_API void sqlite3_progress_handler(
 | |
|   sqlite3 *db, 
 | |
|   int nOps,
 | |
|   int (*xProgress)(void*), 
 | |
|   void *pArg
 | |
| ){
 | |
|   if( sqlite3SafetyCheckOk(db) ){
 | |
|     sqlite3_mutex_enter(db->mutex);
 | |
|     if( nOps>0 ){
 | |
|       db->xProgress = xProgress;
 | |
|       db->nProgressOps = nOps;
 | |
|       db->pProgressArg = pArg;
 | |
|     }else{
 | |
|       db->xProgress = 0;
 | |
|       db->nProgressOps = 0;
 | |
|       db->pProgressArg = 0;
 | |
|     }
 | |
|     sqlite3_mutex_leave(db->mutex);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine installs a default busy handler that waits for the
 | |
| ** specified number of milliseconds before returning 0.
 | |
| */
 | |
| SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
 | |
|   if( ms>0 ){
 | |
|     db->busyTimeout = ms;
 | |
|     sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
 | |
|   }else{
 | |
|     sqlite3_busy_handler(db, 0, 0);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Cause any pending operation to stop at its earliest opportunity.
 | |
| */
 | |
| SQLITE_API void sqlite3_interrupt(sqlite3 *db){
 | |
|   if( sqlite3SafetyCheckOk(db) ){
 | |
|     db->u1.isInterrupted = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This function is exactly the same as sqlite3_create_function(), except
 | |
| ** that it is designed to be called by internal code. The difference is
 | |
| ** that if a malloc() fails in sqlite3_create_function(), an error code
 | |
| ** is returned and the mallocFailed flag cleared. 
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3CreateFunc(
 | |
|   sqlite3 *db,
 | |
|   const char *zFunctionName,
 | |
|   int nArg,
 | |
|   int enc,
 | |
|   void *pUserData,
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
 | |
|   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
 | |
|   void (*xFinal)(sqlite3_context*)
 | |
| ){
 | |
|   FuncDef *p;
 | |
|   int nName;
 | |
| 
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   if( zFunctionName==0 ||
 | |
|       (xFunc && (xFinal || xStep)) || 
 | |
|       (!xFunc && (xFinal && !xStep)) ||
 | |
|       (!xFunc && (!xFinal && xStep)) ||
 | |
|       (nArg<-1 || nArg>127) ||
 | |
|       (255<(nName = strlen(zFunctionName))) ){
 | |
|     sqlite3Error(db, SQLITE_ERROR, "bad parameters");
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
|   
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
|   /* If SQLITE_UTF16 is specified as the encoding type, transform this
 | |
|   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
 | |
|   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
 | |
|   **
 | |
|   ** If SQLITE_ANY is specified, add three versions of the function
 | |
|   ** to the hash table.
 | |
|   */
 | |
|   if( enc==SQLITE_UTF16 ){
 | |
|     enc = SQLITE_UTF16NATIVE;
 | |
|   }else if( enc==SQLITE_ANY ){
 | |
|     int rc;
 | |
|     rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8,
 | |
|          pUserData, xFunc, xStep, xFinal);
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE,
 | |
|           pUserData, xFunc, xStep, xFinal);
 | |
|     }
 | |
|     if( rc!=SQLITE_OK ){
 | |
|       return rc;
 | |
|     }
 | |
|     enc = SQLITE_UTF16BE;
 | |
|   }
 | |
| #else
 | |
|   enc = SQLITE_UTF8;
 | |
| #endif
 | |
|   
 | |
|   /* Check if an existing function is being overridden or deleted. If so,
 | |
|   ** and there are active VMs, then return SQLITE_BUSY. If a function
 | |
|   ** is being overridden/deleted but there are no active VMs, allow the
 | |
|   ** operation to continue but invalidate all precompiled statements.
 | |
|   */
 | |
|   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0);
 | |
|   if( p && p->iPrefEnc==enc && p->nArg==nArg ){
 | |
|     if( db->activeVdbeCnt ){
 | |
|       sqlite3Error(db, SQLITE_BUSY, 
 | |
|         "Unable to delete/modify user-function due to active statements");
 | |
|       assert( !db->mallocFailed );
 | |
|       return SQLITE_BUSY;
 | |
|     }else{
 | |
|       sqlite3ExpirePreparedStatements(db);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1);
 | |
|   assert(p || db->mallocFailed);
 | |
|   if( !p ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   p->flags = 0;
 | |
|   p->xFunc = xFunc;
 | |
|   p->xStep = xStep;
 | |
|   p->xFinalize = xFinal;
 | |
|   p->pUserData = pUserData;
 | |
|   p->nArg = nArg;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create new user functions.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_function(
 | |
|   sqlite3 *db,
 | |
|   const char *zFunctionName,
 | |
|   int nArg,
 | |
|   int enc,
 | |
|   void *p,
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
 | |
|   void (*xStep)(sqlite3_context*,int,sqlite3_value **),
 | |
|   void (*xFinal)(sqlite3_context*)
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal);
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| SQLITE_API int sqlite3_create_function16(
 | |
|   sqlite3 *db,
 | |
|   const void *zFunctionName,
 | |
|   int nArg,
 | |
|   int eTextRep,
 | |
|   void *p,
 | |
|   void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void (*xStep)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void (*xFinal)(sqlite3_context*)
 | |
| ){
 | |
|   int rc;
 | |
|   char *zFunc8;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1);
 | |
|   rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal);
 | |
|   sqlite3_free(zFunc8);
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Declare that a function has been overloaded by a virtual table.
 | |
| **
 | |
| ** If the function already exists as a regular global function, then
 | |
| ** this routine is a no-op.  If the function does not exist, then create
 | |
| ** a new one that always throws a run-time error.  
 | |
| **
 | |
| ** When virtual tables intend to provide an overloaded function, they
 | |
| ** should call this routine to make sure the global function exists.
 | |
| ** A global function must exist in order for name resolution to work
 | |
| ** properly.
 | |
| */
 | |
| SQLITE_API int sqlite3_overload_function(
 | |
|   sqlite3 *db,
 | |
|   const char *zName,
 | |
|   int nArg
 | |
| ){
 | |
|   int nName = strlen(zName);
 | |
|   int rc;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
 | |
|     sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
 | |
|                       0, sqlite3InvalidFunction, 0, 0);
 | |
|   }
 | |
|   rc = sqlite3ApiExit(db, SQLITE_OK);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_TRACE
 | |
| /*
 | |
| ** Register a trace function.  The pArg from the previously registered trace
 | |
| ** is returned.  
 | |
| **
 | |
| ** A NULL trace function means that no tracing is executes.  A non-NULL
 | |
| ** trace is a pointer to a function that is invoked at the start of each
 | |
| ** SQL statement.
 | |
| */
 | |
| SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
 | |
|   void *pOld;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pOld = db->pTraceArg;
 | |
|   db->xTrace = xTrace;
 | |
|   db->pTraceArg = pArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return pOld;
 | |
| }
 | |
| /*
 | |
| ** Register a profile function.  The pArg from the previously registered 
 | |
| ** profile function is returned.  
 | |
| **
 | |
| ** A NULL profile function means that no profiling is executes.  A non-NULL
 | |
| ** profile is a pointer to a function that is invoked at the conclusion of
 | |
| ** each SQL statement that is run.
 | |
| */
 | |
| SQLITE_API void *sqlite3_profile(
 | |
|   sqlite3 *db,
 | |
|   void (*xProfile)(void*,const char*,sqlite_uint64),
 | |
|   void *pArg
 | |
| ){
 | |
|   void *pOld;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pOld = db->pProfileArg;
 | |
|   db->xProfile = xProfile;
 | |
|   db->pProfileArg = pArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return pOld;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_TRACE */
 | |
| 
 | |
| /*** EXPERIMENTAL ***
 | |
| **
 | |
| ** Register a function to be invoked when a transaction comments.
 | |
| ** If the invoked function returns non-zero, then the commit becomes a
 | |
| ** rollback.
 | |
| */
 | |
| SQLITE_API void *sqlite3_commit_hook(
 | |
|   sqlite3 *db,              /* Attach the hook to this database */
 | |
|   int (*xCallback)(void*),  /* Function to invoke on each commit */
 | |
|   void *pArg                /* Argument to the function */
 | |
| ){
 | |
|   void *pOld;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pOld = db->pCommitArg;
 | |
|   db->xCommitCallback = xCallback;
 | |
|   db->pCommitArg = pArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return pOld;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register a callback to be invoked each time a row is updated,
 | |
| ** inserted or deleted using this database connection.
 | |
| */
 | |
| SQLITE_API void *sqlite3_update_hook(
 | |
|   sqlite3 *db,              /* Attach the hook to this database */
 | |
|   void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
 | |
|   void *pArg                /* Argument to the function */
 | |
| ){
 | |
|   void *pRet;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pRet = db->pUpdateArg;
 | |
|   db->xUpdateCallback = xCallback;
 | |
|   db->pUpdateArg = pArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return pRet;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register a callback to be invoked each time a transaction is rolled
 | |
| ** back by this database connection.
 | |
| */
 | |
| SQLITE_API void *sqlite3_rollback_hook(
 | |
|   sqlite3 *db,              /* Attach the hook to this database */
 | |
|   void (*xCallback)(void*), /* Callback function */
 | |
|   void *pArg                /* Argument to the function */
 | |
| ){
 | |
|   void *pRet;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   pRet = db->pRollbackArg;
 | |
|   db->xRollbackCallback = xCallback;
 | |
|   db->pRollbackArg = pArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return pRet;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine is called to create a connection to a database BTree
 | |
| ** driver.  If zFilename is the name of a file, then that file is
 | |
| ** opened and used.  If zFilename is the magic name ":memory:" then
 | |
| ** the database is stored in memory (and is thus forgotten as soon as
 | |
| ** the connection is closed.)  If zFilename is NULL then the database
 | |
| ** is a "virtual" database for transient use only and is deleted as
 | |
| ** soon as the connection is closed.
 | |
| **
 | |
| ** A virtual database can be either a disk file (that is automatically
 | |
| ** deleted when the file is closed) or it an be held entirely in memory,
 | |
| ** depending on the values of the TEMP_STORE compile-time macro and the
 | |
| ** db->temp_store variable, according to the following chart:
 | |
| **
 | |
| **       TEMP_STORE     db->temp_store     Location of temporary database
 | |
| **       ----------     --------------     ------------------------------
 | |
| **           0               any             file
 | |
| **           1                1              file
 | |
| **           1                2              memory
 | |
| **           1                0              file
 | |
| **           2                1              file
 | |
| **           2                2              memory
 | |
| **           2                0              memory
 | |
| **           3               any             memory
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3BtreeFactory(
 | |
|   const sqlite3 *db,        /* Main database when opening aux otherwise 0 */
 | |
|   const char *zFilename,    /* Name of the file containing the BTree database */
 | |
|   int omitJournal,          /* if TRUE then do not journal this file */
 | |
|   int nCache,               /* How many pages in the page cache */
 | |
|   int vfsFlags,             /* Flags passed through to vfsOpen */
 | |
|   Btree **ppBtree           /* Pointer to new Btree object written here */
 | |
| ){
 | |
|   int btFlags = 0;
 | |
|   int rc;
 | |
|   
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
|   assert( ppBtree != 0);
 | |
|   if( omitJournal ){
 | |
|     btFlags |= BTREE_OMIT_JOURNAL;
 | |
|   }
 | |
|   if( db->flags & SQLITE_NoReadlock ){
 | |
|     btFlags |= BTREE_NO_READLOCK;
 | |
|   }
 | |
|   if( zFilename==0 ){
 | |
| #if TEMP_STORE==0
 | |
|     /* Do nothing */
 | |
| #endif
 | |
| #ifndef SQLITE_OMIT_MEMORYDB
 | |
| #if TEMP_STORE==1
 | |
|     if( db->temp_store==2 ) zFilename = ":memory:";
 | |
| #endif
 | |
| #if TEMP_STORE==2
 | |
|     if( db->temp_store!=1 ) zFilename = ":memory:";
 | |
| #endif
 | |
| #if TEMP_STORE==3
 | |
|     zFilename = ":memory:";
 | |
| #endif
 | |
| #endif /* SQLITE_OMIT_MEMORYDB */
 | |
|   }
 | |
| 
 | |
|   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){
 | |
|     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
 | |
|   }
 | |
|   rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags);
 | |
|   if( rc==SQLITE_OK ){
 | |
|     sqlite3BtreeSetCacheSize(*ppBtree, nCache);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return UTF-8 encoded English language explanation of the most recent
 | |
| ** error.
 | |
| */
 | |
| SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
 | |
|   const char *z;
 | |
|   if( !db ){
 | |
|     return sqlite3ErrStr(SQLITE_NOMEM);
 | |
|   }
 | |
|   if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
 | |
|     return sqlite3ErrStr(SQLITE_MISUSE);
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   z = (char*)sqlite3_value_text(db->pErr);
 | |
|   if( z==0 ){
 | |
|     z = sqlite3ErrStr(db->errCode);
 | |
|   }
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Return UTF-16 encoded English language explanation of the most recent
 | |
| ** error.
 | |
| */
 | |
| SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
 | |
|   /* Because all the characters in the string are in the unicode
 | |
|   ** range 0x00-0xFF, if we pad the big-endian string with a 
 | |
|   ** zero byte, we can obtain the little-endian string with
 | |
|   ** &big_endian[1].
 | |
|   */
 | |
|   static const char outOfMemBe[] = {
 | |
|     0, 'o', 0, 'u', 0, 't', 0, ' ', 
 | |
|     0, 'o', 0, 'f', 0, ' ', 
 | |
|     0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0
 | |
|   };
 | |
|   static const char misuseBe [] = {
 | |
|     0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', 
 | |
|     0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', 
 | |
|     0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', 
 | |
|     0, 'o', 0, 'u', 0, 't', 0, ' ', 
 | |
|     0, 'o', 0, 'f', 0, ' ', 
 | |
|     0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0
 | |
|   };
 | |
| 
 | |
|   const void *z;
 | |
|   if( !db ){
 | |
|     return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
 | |
|   }
 | |
|   if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){
 | |
|     return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]);
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   z = sqlite3_value_text16(db->pErr);
 | |
|   if( z==0 ){
 | |
|     sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode),
 | |
|          SQLITE_UTF8, SQLITE_STATIC);
 | |
|     z = sqlite3_value_text16(db->pErr);
 | |
|   }
 | |
|   sqlite3ApiExit(0, 0);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return z;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** Return the most recent error code generated by an SQLite routine. If NULL is
 | |
| ** passed to this function, we assume a malloc() failed during sqlite3_open().
 | |
| */
 | |
| SQLITE_API int sqlite3_errcode(sqlite3 *db){
 | |
|   if( db && !sqlite3SafetyCheckSickOrOk(db) ){
 | |
|     return SQLITE_MISUSE;
 | |
|   }
 | |
|   if( !db || db->mallocFailed ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   return db->errCode & db->errMask;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new collating function for database "db".  The name is zName
 | |
| ** and the encoding is enc.
 | |
| */
 | |
| static int createCollation(
 | |
|   sqlite3* db, 
 | |
|   const char *zName, 
 | |
|   int enc, 
 | |
|   void* pCtx,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*),
 | |
|   void(*xDel)(void*)
 | |
| ){
 | |
|   CollSeq *pColl;
 | |
|   int enc2;
 | |
|   
 | |
|   assert( sqlite3_mutex_held(db->mutex) );
 | |
| 
 | |
|   /* If SQLITE_UTF16 is specified as the encoding type, transform this
 | |
|   ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the
 | |
|   ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally.
 | |
|   */
 | |
|   enc2 = enc & ~SQLITE_UTF16_ALIGNED;
 | |
|   if( enc2==SQLITE_UTF16 ){
 | |
|     enc2 = SQLITE_UTF16NATIVE;
 | |
|   }
 | |
| 
 | |
|   if( (enc2&~3)!=0 ){
 | |
|     sqlite3Error(db, SQLITE_ERROR, "unknown encoding");
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Check if this call is removing or replacing an existing collation 
 | |
|   ** sequence. If so, and there are active VMs, return busy. If there
 | |
|   ** are no active VMs, invalidate any pre-compiled statements.
 | |
|   */
 | |
|   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0);
 | |
|   if( pColl && pColl->xCmp ){
 | |
|     if( db->activeVdbeCnt ){
 | |
|       sqlite3Error(db, SQLITE_BUSY, 
 | |
|         "Unable to delete/modify collation sequence due to active statements");
 | |
|       return SQLITE_BUSY;
 | |
|     }
 | |
|     sqlite3ExpirePreparedStatements(db);
 | |
| 
 | |
|     /* If collation sequence pColl was created directly by a call to
 | |
|     ** sqlite3_create_collation, and not generated by synthCollSeq(),
 | |
|     ** then any copies made by synthCollSeq() need to be invalidated.
 | |
|     ** Also, collation destructor - CollSeq.xDel() - function may need
 | |
|     ** to be called.
 | |
|     */ 
 | |
|     if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){
 | |
|       CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName));
 | |
|       int j;
 | |
|       for(j=0; j<3; j++){
 | |
|         CollSeq *p = &aColl[j];
 | |
|         if( p->enc==pColl->enc ){
 | |
|           if( p->xDel ){
 | |
|             p->xDel(p->pUser);
 | |
|           }
 | |
|           p->xCmp = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1);
 | |
|   if( pColl ){
 | |
|     pColl->xCmp = xCompare;
 | |
|     pColl->pUser = pCtx;
 | |
|     pColl->xDel = xDel;
 | |
|     pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED);
 | |
|   }
 | |
|   sqlite3Error(db, SQLITE_OK, 0);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** This routine does the work of opening a database on behalf of
 | |
| ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename"  
 | |
| ** is UTF-8 encoded.
 | |
| */
 | |
| static int openDatabase(
 | |
|   const char *zFilename, /* Database filename UTF-8 encoded */
 | |
|   sqlite3 **ppDb,        /* OUT: Returned database handle */
 | |
|   unsigned flags,        /* Operational flags */
 | |
|   const char *zVfs       /* Name of the VFS to use */
 | |
| ){
 | |
|   sqlite3 *db;
 | |
|   int rc;
 | |
|   CollSeq *pColl;
 | |
| 
 | |
|   /* Remove harmful bits from the flags parameter */
 | |
|   flags &=  ~( SQLITE_OPEN_DELETEONCLOSE |
 | |
|                SQLITE_OPEN_MAIN_DB |
 | |
|                SQLITE_OPEN_TEMP_DB | 
 | |
|                SQLITE_OPEN_TRANSIENT_DB | 
 | |
|                SQLITE_OPEN_MAIN_JOURNAL | 
 | |
|                SQLITE_OPEN_TEMP_JOURNAL | 
 | |
|                SQLITE_OPEN_SUBJOURNAL | 
 | |
|                SQLITE_OPEN_MASTER_JOURNAL
 | |
|              );
 | |
| 
 | |
|   /* Allocate the sqlite data structure */
 | |
|   db = sqlite3MallocZero( sizeof(sqlite3) );
 | |
|   if( db==0 ) goto opendb_out;
 | |
|   db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
 | |
|   if( db->mutex==0 ){
 | |
|     sqlite3_free(db);
 | |
|     db = 0;
 | |
|     goto opendb_out;
 | |
|   }
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   db->errMask = 0xff;
 | |
|   db->priorNewRowid = 0;
 | |
|   db->nDb = 2;
 | |
|   db->magic = SQLITE_MAGIC_BUSY;
 | |
|   db->aDb = db->aDbStatic;
 | |
|   db->autoCommit = 1;
 | |
|   db->nextAutovac = -1;
 | |
|   db->flags |= SQLITE_ShortColNames
 | |
| #if SQLITE_DEFAULT_FILE_FORMAT<4
 | |
|                  | SQLITE_LegacyFileFmt
 | |
| #endif
 | |
| #ifdef SQLITE_ENABLE_LOAD_EXTENSION
 | |
|                  | SQLITE_LoadExtension
 | |
| #endif
 | |
|       ;
 | |
|   sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
 | |
|   sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);
 | |
| #ifndef SQLITE_OMIT_VIRTUALTABLE
 | |
|   sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0);
 | |
| #endif
 | |
| 
 | |
|   db->pVfs = sqlite3_vfs_find(zVfs);
 | |
|   if( !db->pVfs ){
 | |
|     rc = SQLITE_ERROR;
 | |
|     db->magic = SQLITE_MAGIC_SICK;
 | |
|     sqlite3Error(db, rc, "no such vfs: %s", zVfs);
 | |
|     goto opendb_out;
 | |
|   }
 | |
| 
 | |
|   /* Add the default collation sequence BINARY. BINARY works for both UTF-8
 | |
|   ** and UTF-16, so add a version for each to avoid any unnecessary
 | |
|   ** conversions. The only error that can occur here is a malloc() failure.
 | |
|   */
 | |
|   createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
 | |
|   createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
 | |
|   createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
 | |
|   createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
 | |
|   if( db->mallocFailed ||
 | |
|       (db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0))==0 
 | |
|   ){
 | |
|     assert( db->mallocFailed );
 | |
|     db->magic = SQLITE_MAGIC_SICK;
 | |
|     goto opendb_out;
 | |
|   }
 | |
| 
 | |
|   /* Also add a UTF-8 case-insensitive collation sequence. */
 | |
|   createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
 | |
| 
 | |
|   /* Set flags on the built-in collating sequences */
 | |
|   db->pDfltColl->type = SQLITE_COLL_BINARY;
 | |
|   pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0);
 | |
|   if( pColl ){
 | |
|     pColl->type = SQLITE_COLL_NOCASE;
 | |
|   }
 | |
| 
 | |
|   /* Open the backend database driver */
 | |
|   db->openFlags = flags;
 | |
|   rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, 
 | |
|                            flags | SQLITE_OPEN_MAIN_DB,
 | |
|                            &db->aDb[0].pBt);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     sqlite3Error(db, rc, 0);
 | |
|     db->magic = SQLITE_MAGIC_SICK;
 | |
|     goto opendb_out;
 | |
|   }
 | |
|   db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
 | |
|   db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);
 | |
| 
 | |
| 
 | |
|   /* The default safety_level for the main database is 'full'; for the temp
 | |
|   ** database it is 'NONE'. This matches the pager layer defaults.  
 | |
|   */
 | |
|   db->aDb[0].zName = "main";
 | |
|   db->aDb[0].safety_level = 3;
 | |
| #ifndef SQLITE_OMIT_TEMPDB
 | |
|   db->aDb[1].zName = "temp";
 | |
|   db->aDb[1].safety_level = 1;
 | |
| #endif
 | |
| 
 | |
|   db->magic = SQLITE_MAGIC_OPEN;
 | |
|   if( db->mallocFailed ){
 | |
|     goto opendb_out;
 | |
|   }
 | |
| 
 | |
|   /* Register all built-in functions, but do not attempt to read the
 | |
|   ** database schema yet. This is delayed until the first time the database
 | |
|   ** is accessed.
 | |
|   */
 | |
|   sqlite3Error(db, SQLITE_OK, 0);
 | |
|   sqlite3RegisterBuiltinFunctions(db);
 | |
| 
 | |
|   /* Load automatic extensions - extensions that have been registered
 | |
|   ** using the sqlite3_automatic_extension() API.
 | |
|   */
 | |
|   (void)sqlite3AutoLoadExtensions(db);
 | |
|   if( sqlite3_errcode(db)!=SQLITE_OK ){
 | |
|     goto opendb_out;
 | |
|   }
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_FTS1
 | |
|   if( !db->mallocFailed ){
 | |
|     extern int sqlite3Fts1Init(sqlite3*);
 | |
|     rc = sqlite3Fts1Init(db);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_FTS2
 | |
|   if( !db->mallocFailed && rc==SQLITE_OK ){
 | |
|     extern int sqlite3Fts2Init(sqlite3*);
 | |
|     rc = sqlite3Fts2Init(db);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_FTS3
 | |
|   if( !db->mallocFailed && rc==SQLITE_OK ){
 | |
|     rc = sqlite3Fts3Init(db);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef SQLITE_ENABLE_ICU
 | |
|   if( !db->mallocFailed && rc==SQLITE_OK ){
 | |
|     extern int sqlite3IcuInit(sqlite3*);
 | |
|     rc = sqlite3IcuInit(db);
 | |
|   }
 | |
| #endif
 | |
|   sqlite3Error(db, rc, 0);
 | |
| 
 | |
|   /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
 | |
|   ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
 | |
|   ** mode.  Doing nothing at all also makes NORMAL the default.
 | |
|   */
 | |
| #ifdef SQLITE_DEFAULT_LOCKING_MODE
 | |
|   db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
 | |
|   sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt),
 | |
|                           SQLITE_DEFAULT_LOCKING_MODE);
 | |
| #endif
 | |
| 
 | |
| opendb_out:
 | |
|   if( db ){
 | |
|     assert( db->mutex!=0 );
 | |
|     sqlite3_mutex_leave(db->mutex);
 | |
|   }
 | |
|   if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){
 | |
|     sqlite3_close(db);
 | |
|     db = 0;
 | |
|   }
 | |
|   *ppDb = db;
 | |
|   return sqlite3ApiExit(0, rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Open a new database handle.
 | |
| */
 | |
| SQLITE_API int sqlite3_open(
 | |
|   const char *zFilename, 
 | |
|   sqlite3 **ppDb 
 | |
| ){
 | |
|   return openDatabase(zFilename, ppDb,
 | |
|                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
 | |
| }
 | |
| SQLITE_API int sqlite3_open_v2(
 | |
|   const char *filename,   /* Database filename (UTF-8) */
 | |
|   sqlite3 **ppDb,         /* OUT: SQLite db handle */
 | |
|   int flags,              /* Flags */
 | |
|   const char *zVfs        /* Name of VFS module to use */
 | |
| ){
 | |
|   return openDatabase(filename, ppDb, flags, zVfs);
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Open a new database handle.
 | |
| */
 | |
| SQLITE_API int sqlite3_open16(
 | |
|   const void *zFilename, 
 | |
|   sqlite3 **ppDb
 | |
| ){
 | |
|   char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
 | |
|   sqlite3_value *pVal;
 | |
|   int rc = SQLITE_NOMEM;
 | |
| 
 | |
|   assert( zFilename );
 | |
|   assert( ppDb );
 | |
|   *ppDb = 0;
 | |
|   pVal = sqlite3ValueNew(0);
 | |
|   sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
 | |
|   zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
 | |
|   if( zFilename8 ){
 | |
|     rc = openDatabase(zFilename8, ppDb,
 | |
|                       SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
 | |
|     assert( *ppDb || rc==SQLITE_NOMEM );
 | |
|     if( rc==SQLITE_OK ){
 | |
|       rc = sqlite3_exec(*ppDb, "PRAGMA encoding = 'UTF-16'", 0, 0, 0);
 | |
|       if( rc!=SQLITE_OK ){
 | |
|         sqlite3_close(*ppDb);
 | |
|         *ppDb = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   sqlite3ValueFree(pVal);
 | |
| 
 | |
|   return sqlite3ApiExit(0, rc);
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** Register a new collation sequence with the database handle db.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_collation(
 | |
|   sqlite3* db, 
 | |
|   const char *zName, 
 | |
|   int enc, 
 | |
|   void* pCtx,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*)
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   rc = createCollation(db, zName, enc, pCtx, xCompare, 0);
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Register a new collation sequence with the database handle db.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_collation_v2(
 | |
|   sqlite3* db, 
 | |
|   const char *zName, 
 | |
|   int enc, 
 | |
|   void* pCtx,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*),
 | |
|   void(*xDel)(void*)
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   rc = createCollation(db, zName, enc, pCtx, xCompare, xDel);
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Register a new collation sequence with the database handle db.
 | |
| */
 | |
| SQLITE_API int sqlite3_create_collation16(
 | |
|   sqlite3* db, 
 | |
|   const char *zName, 
 | |
|   int enc, 
 | |
|   void* pCtx,
 | |
|   int(*xCompare)(void*,int,const void*,int,const void*)
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   char *zName8;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   assert( !db->mallocFailed );
 | |
|   zName8 = sqlite3Utf16to8(db, zName, -1);
 | |
|   if( zName8 ){
 | |
|     rc = createCollation(db, zName8, enc, pCtx, xCompare, 0);
 | |
|     sqlite3_free(zName8);
 | |
|   }
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| /*
 | |
| ** Register a collation sequence factory callback with the database handle
 | |
| ** db. Replace any previously installed collation sequence factory.
 | |
| */
 | |
| SQLITE_API int sqlite3_collation_needed(
 | |
|   sqlite3 *db, 
 | |
|   void *pCollNeededArg, 
 | |
|   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
 | |
| ){
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   db->xCollNeeded = xCollNeeded;
 | |
|   db->xCollNeeded16 = 0;
 | |
|   db->pCollNeededArg = pCollNeededArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| #ifndef SQLITE_OMIT_UTF16
 | |
| /*
 | |
| ** Register a collation sequence factory callback with the database handle
 | |
| ** db. Replace any previously installed collation sequence factory.
 | |
| */
 | |
| SQLITE_API int sqlite3_collation_needed16(
 | |
|   sqlite3 *db, 
 | |
|   void *pCollNeededArg, 
 | |
|   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
 | |
| ){
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   db->xCollNeeded = 0;
 | |
|   db->xCollNeeded16 = xCollNeeded16;
 | |
|   db->pCollNeededArg = pCollNeededArg;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif /* SQLITE_OMIT_UTF16 */
 | |
| 
 | |
| #ifndef SQLITE_OMIT_GLOBALRECOVER
 | |
| /*
 | |
| ** This function is now an anachronism. It used to be used to recover from a
 | |
| ** malloc() failure, but SQLite now does this automatically.
 | |
| */
 | |
| SQLITE_API int sqlite3_global_recover(void){
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Test to see whether or not the database connection is in autocommit
 | |
| ** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
 | |
| ** by default.  Autocommit is disabled by a BEGIN statement and reenabled
 | |
| ** by the next COMMIT or ROLLBACK.
 | |
| **
 | |
| ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
 | |
| */
 | |
| SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
 | |
|   return db->autoCommit;
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_DEBUG
 | |
| /*
 | |
| ** The following routine is subtituted for constant SQLITE_CORRUPT in
 | |
| ** debugging builds.  This provides a way to set a breakpoint for when
 | |
| ** corruption is first detected.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Corrupt(void){
 | |
|   return SQLITE_CORRUPT;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** This is a convenience routine that makes sure that all thread-specific
 | |
| ** data for this thread has been deallocated.
 | |
| **
 | |
| ** SQLite no longer uses thread-specific data so this routine is now a
 | |
| ** no-op.  It is retained for historical compatibility.
 | |
| */
 | |
| SQLITE_API void sqlite3_thread_cleanup(void){
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return meta information about a specific column of a database table.
 | |
| ** See comment in sqlite3.h (sqlite.h.in) for details.
 | |
| */
 | |
| #ifdef SQLITE_ENABLE_COLUMN_METADATA
 | |
| SQLITE_API int sqlite3_table_column_metadata(
 | |
|   sqlite3 *db,                /* Connection handle */
 | |
|   const char *zDbName,        /* Database name or NULL */
 | |
|   const char *zTableName,     /* Table name */
 | |
|   const char *zColumnName,    /* Column name */
 | |
|   char const **pzDataType,    /* OUTPUT: Declared data type */
 | |
|   char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
 | |
|   int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
 | |
|   int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
 | |
|   int *pAutoinc               /* OUTPUT: True if colums is auto-increment */
 | |
| ){
 | |
|   int rc;
 | |
|   char *zErrMsg = 0;
 | |
|   Table *pTab = 0;
 | |
|   Column *pCol = 0;
 | |
|   int iCol;
 | |
| 
 | |
|   char const *zDataType = 0;
 | |
|   char const *zCollSeq = 0;
 | |
|   int notnull = 0;
 | |
|   int primarykey = 0;
 | |
|   int autoinc = 0;
 | |
| 
 | |
|   /* Ensure the database schema has been loaded */
 | |
|   (void)sqlite3SafetyOn(db);
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   sqlite3BtreeEnterAll(db);
 | |
|   rc = sqlite3Init(db, &zErrMsg);
 | |
|   sqlite3BtreeLeaveAll(db);
 | |
|   if( SQLITE_OK!=rc ){
 | |
|     goto error_out;
 | |
|   }
 | |
| 
 | |
|   /* Locate the table in question */
 | |
|   pTab = sqlite3FindTable(db, zTableName, zDbName);
 | |
|   if( !pTab || pTab->pSelect ){
 | |
|     pTab = 0;
 | |
|     goto error_out;
 | |
|   }
 | |
| 
 | |
|   /* Find the column for which info is requested */
 | |
|   if( sqlite3IsRowid(zColumnName) ){
 | |
|     iCol = pTab->iPKey;
 | |
|     if( iCol>=0 ){
 | |
|       pCol = &pTab->aCol[iCol];
 | |
|     }
 | |
|   }else{
 | |
|     for(iCol=0; iCol<pTab->nCol; iCol++){
 | |
|       pCol = &pTab->aCol[iCol];
 | |
|       if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if( iCol==pTab->nCol ){
 | |
|       pTab = 0;
 | |
|       goto error_out;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The following block stores the meta information that will be returned
 | |
|   ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
 | |
|   ** and autoinc. At this point there are two possibilities:
 | |
|   ** 
 | |
|   **     1. The specified column name was rowid", "oid" or "_rowid_" 
 | |
|   **        and there is no explicitly declared IPK column. 
 | |
|   **
 | |
|   **     2. The table is not a view and the column name identified an 
 | |
|   **        explicitly declared column. Copy meta information from *pCol.
 | |
|   */ 
 | |
|   if( pCol ){
 | |
|     zDataType = pCol->zType;
 | |
|     zCollSeq = pCol->zColl;
 | |
|     notnull = (pCol->notNull?1:0);
 | |
|     primarykey  = (pCol->isPrimKey?1:0);
 | |
|     autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0);
 | |
|   }else{
 | |
|     zDataType = "INTEGER";
 | |
|     primarykey = 1;
 | |
|   }
 | |
|   if( !zCollSeq ){
 | |
|     zCollSeq = "BINARY";
 | |
|   }
 | |
| 
 | |
| error_out:
 | |
|   (void)sqlite3SafetyOff(db);
 | |
| 
 | |
|   /* Whether the function call succeeded or failed, set the output parameters
 | |
|   ** to whatever their local counterparts contain. If an error did occur,
 | |
|   ** this has the effect of zeroing all output parameters.
 | |
|   */
 | |
|   if( pzDataType ) *pzDataType = zDataType;
 | |
|   if( pzCollSeq ) *pzCollSeq = zCollSeq;
 | |
|   if( pNotNull ) *pNotNull = notnull;
 | |
|   if( pPrimaryKey ) *pPrimaryKey = primarykey;
 | |
|   if( pAutoinc ) *pAutoinc = autoinc;
 | |
| 
 | |
|   if( SQLITE_OK==rc && !pTab ){
 | |
|     sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".", 
 | |
|         zColumnName, 0);
 | |
|     rc = SQLITE_ERROR;
 | |
|   }
 | |
|   sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
 | |
|   sqlite3_free(zErrMsg);
 | |
|   rc = sqlite3ApiExit(db, rc);
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Sleep for a little while.  Return the amount of time slept.
 | |
| */
 | |
| SQLITE_API int sqlite3_sleep(int ms){
 | |
|   sqlite3_vfs *pVfs;
 | |
|   int rc;
 | |
|   pVfs = sqlite3_vfs_find(0);
 | |
| 
 | |
|   /* This function works in milliseconds, but the underlying OsSleep() 
 | |
|   ** API uses microseconds. Hence the 1000's.
 | |
|   */
 | |
|   rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Enable or disable the extended result codes.
 | |
| */
 | |
| SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   db->errMask = onoff ? 0xffffffff : 0xff;
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Invoke the xFileControl method on a particular database.
 | |
| */
 | |
| SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
 | |
|   int rc = SQLITE_ERROR;
 | |
|   int iDb;
 | |
|   sqlite3_mutex_enter(db->mutex);
 | |
|   if( zDbName==0 ){
 | |
|     iDb = 0;
 | |
|   }else{
 | |
|     for(iDb=0; iDb<db->nDb; iDb++){
 | |
|       if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
 | |
|     }
 | |
|   }
 | |
|   if( iDb<db->nDb ){
 | |
|     Btree *pBtree = db->aDb[iDb].pBt;
 | |
|     if( pBtree ){
 | |
|       Pager *pPager;
 | |
|       sqlite3_file *fd;
 | |
|       sqlite3BtreeEnter(pBtree);
 | |
|       pPager = sqlite3BtreePager(pBtree);
 | |
|       assert( pPager!=0 );
 | |
|       fd = sqlite3PagerFile(pPager);
 | |
|       assert( fd!=0 );
 | |
|       if( fd->pMethods ){
 | |
|         rc = sqlite3OsFileControl(fd, op, pArg);
 | |
|       }
 | |
|       sqlite3BtreeLeave(pBtree);
 | |
|     }
 | |
|   }
 | |
|   sqlite3_mutex_leave(db->mutex);
 | |
|   return rc;   
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Interface to the testing logic.
 | |
| */
 | |
| SQLITE_API int sqlite3_test_control(int op, ...){
 | |
|   va_list ap;
 | |
|   int rc = 0;
 | |
|   va_start(ap, op);
 | |
|   switch( op ){
 | |
| #ifndef SQLITE_OMIT_FAULTINJECTOR
 | |
|     case SQLITE_TESTCTRL_FAULT_CONFIG: {
 | |
|       int id = va_arg(ap, int);
 | |
|       int nDelay = va_arg(ap, int);
 | |
|       int nRepeat = va_arg(ap, int);
 | |
|       sqlite3FaultConfig(id, nDelay, nRepeat);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TESTCTRL_FAULT_FAILURES: {
 | |
|       int id = va_arg(ap, int);
 | |
|       rc = sqlite3FaultFailures(id);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES: {
 | |
|       int id = va_arg(ap, int);
 | |
|       rc = sqlite3FaultBenignFailures(id);
 | |
|       break;
 | |
|     }
 | |
|     case SQLITE_TESTCTRL_FAULT_PENDING: {
 | |
|       int id = va_arg(ap, int);
 | |
|       rc = sqlite3FaultPending(id);
 | |
|       break;
 | |
|     }
 | |
| #endif /* SQLITE_OMIT_FAULTINJECTOR */
 | |
|   }
 | |
|   va_end(ap);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /************** End of main.c ************************************************/
 | |
| /************** Begin file fts3.c ********************************************/
 | |
| /*
 | |
| ** 2006 Oct 10
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This is an SQLite module implementing full-text search.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only compiled if:
 | |
| **
 | |
| **     * The FTS3 module is being built as an extension
 | |
| **       (in which case SQLITE_CORE is not defined), or
 | |
| **
 | |
| **     * The FTS3 module is being built into the core of
 | |
| **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
 | |
| */
 | |
| 
 | |
| /* TODO(shess) Consider exporting this comment to an HTML file or the
 | |
| ** wiki.
 | |
| */
 | |
| /* The full-text index is stored in a series of b+tree (-like)
 | |
| ** structures called segments which map terms to doclists.  The
 | |
| ** structures are like b+trees in layout, but are constructed from the
 | |
| ** bottom up in optimal fashion and are not updatable.  Since trees
 | |
| ** are built from the bottom up, things will be described from the
 | |
| ** bottom up.
 | |
| **
 | |
| **
 | |
| **** Varints ****
 | |
| ** The basic unit of encoding is a variable-length integer called a
 | |
| ** varint.  We encode variable-length integers in little-endian order
 | |
| ** using seven bits * per byte as follows:
 | |
| **
 | |
| ** KEY:
 | |
| **         A = 0xxxxxxx    7 bits of data and one flag bit
 | |
| **         B = 1xxxxxxx    7 bits of data and one flag bit
 | |
| **
 | |
| **  7 bits - A
 | |
| ** 14 bits - BA
 | |
| ** 21 bits - BBA
 | |
| ** and so on.
 | |
| **
 | |
| ** This is identical to how sqlite encodes varints (see util.c).
 | |
| **
 | |
| **
 | |
| **** Document lists ****
 | |
| ** A doclist (document list) holds a docid-sorted list of hits for a
 | |
| ** given term.  Doclists hold docids, and can optionally associate
 | |
| ** token positions and offsets with docids.
 | |
| **
 | |
| ** A DL_POSITIONS_OFFSETS doclist is stored like this:
 | |
| **
 | |
| ** array {
 | |
| **   varint docid;
 | |
| **   array {                (position list for column 0)
 | |
| **     varint position;     (delta from previous position plus POS_BASE)
 | |
| **     varint startOffset;  (delta from previous startOffset)
 | |
| **     varint endOffset;    (delta from startOffset)
 | |
| **   }
 | |
| **   array {
 | |
| **     varint POS_COLUMN;   (marks start of position list for new column)
 | |
| **     varint column;       (index of new column)
 | |
| **     array {
 | |
| **       varint position;   (delta from previous position plus POS_BASE)
 | |
| **       varint startOffset;(delta from previous startOffset)
 | |
| **       varint endOffset;  (delta from startOffset)
 | |
| **     }
 | |
| **   }
 | |
| **   varint POS_END;        (marks end of positions for this document.
 | |
| ** }
 | |
| **
 | |
| ** Here, array { X } means zero or more occurrences of X, adjacent in
 | |
| ** memory.  A "position" is an index of a token in the token stream
 | |
| ** generated by the tokenizer, while an "offset" is a byte offset,
 | |
| ** both based at 0.  Note that POS_END and POS_COLUMN occur in the
 | |
| ** same logical place as the position element, and act as sentinals
 | |
| ** ending a position list array.
 | |
| **
 | |
| ** A DL_POSITIONS doclist omits the startOffset and endOffset
 | |
| ** information.  A DL_DOCIDS doclist omits both the position and
 | |
| ** offset information, becoming an array of varint-encoded docids.
 | |
| **
 | |
| ** On-disk data is stored as type DL_DEFAULT, so we don't serialize
 | |
| ** the type.  Due to how deletion is implemented in the segmentation
 | |
| ** system, on-disk doclists MUST store at least positions.
 | |
| **
 | |
| **
 | |
| **** Segment leaf nodes ****
 | |
| ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
 | |
| ** nodes are written using LeafWriter, and read using LeafReader (to
 | |
| ** iterate through a single leaf node's data) and LeavesReader (to
 | |
| ** iterate through a segment's entire leaf layer).  Leaf nodes have
 | |
| ** the format:
 | |
| **
 | |
| ** varint iHeight;             (height from leaf level, always 0)
 | |
| ** varint nTerm;               (length of first term)
 | |
| ** char pTerm[nTerm];          (content of first term)
 | |
| ** varint nDoclist;            (length of term's associated doclist)
 | |
| ** char pDoclist[nDoclist];    (content of doclist)
 | |
| ** array {
 | |
| **                             (further terms are delta-encoded)
 | |
| **   varint nPrefix;           (length of prefix shared with previous term)
 | |
| **   varint nSuffix;           (length of unshared suffix)
 | |
| **   char pTermSuffix[nSuffix];(unshared suffix of next term)
 | |
| **   varint nDoclist;          (length of term's associated doclist)
 | |
| **   char pDoclist[nDoclist];  (content of doclist)
 | |
| ** }
 | |
| **
 | |
| ** Here, array { X } means zero or more occurrences of X, adjacent in
 | |
| ** memory.
 | |
| **
 | |
| ** Leaf nodes are broken into blocks which are stored contiguously in
 | |
| ** the %_segments table in sorted order.  This means that when the end
 | |
| ** of a node is reached, the next term is in the node with the next
 | |
| ** greater node id.
 | |
| **
 | |
| ** New data is spilled to a new leaf node when the current node
 | |
| ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
 | |
| ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
 | |
| ** node (a leaf node with a single term and doclist).  The goal of
 | |
| ** these settings is to pack together groups of small doclists while
 | |
| ** making it efficient to directly access large doclists.  The
 | |
| ** assumption is that large doclists represent terms which are more
 | |
| ** likely to be query targets.
 | |
| **
 | |
| ** TODO(shess) It may be useful for blocking decisions to be more
 | |
| ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
 | |
| ** node rather than splitting into 2k and .5k nodes.  My intuition is
 | |
| ** that this might extend through 2x or 4x the pagesize.
 | |
| **
 | |
| **
 | |
| **** Segment interior nodes ****
 | |
| ** Segment interior nodes store blockids for subtree nodes and terms
 | |
| ** to describe what data is stored by the each subtree.  Interior
 | |
| ** nodes are written using InteriorWriter, and read using
 | |
| ** InteriorReader.  InteriorWriters are created as needed when
 | |
| ** SegmentWriter creates new leaf nodes, or when an interior node
 | |
| ** itself grows too big and must be split.  The format of interior
 | |
| ** nodes:
 | |
| **
 | |
| ** varint iHeight;           (height from leaf level, always >0)
 | |
| ** varint iBlockid;          (block id of node's leftmost subtree)
 | |
| ** optional {
 | |
| **   varint nTerm;           (length of first term)
 | |
| **   char pTerm[nTerm];      (content of first term)
 | |
| **   array {
 | |
| **                                (further terms are delta-encoded)
 | |
| **     varint nPrefix;            (length of shared prefix with previous term)
 | |
| **     varint nSuffix;            (length of unshared suffix)
 | |
| **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
 | |
| **   }
 | |
| ** }
 | |
| **
 | |
| ** Here, optional { X } means an optional element, while array { X }
 | |
| ** means zero or more occurrences of X, adjacent in memory.
 | |
| **
 | |
| ** An interior node encodes n terms separating n+1 subtrees.  The
 | |
| ** subtree blocks are contiguous, so only the first subtree's blockid
 | |
| ** is encoded.  The subtree at iBlockid will contain all terms less
 | |
| ** than the first term encoded (or all terms if no term is encoded).
 | |
| ** Otherwise, for terms greater than or equal to pTerm[i] but less
 | |
| ** than pTerm[i+1], the subtree for that term will be rooted at
 | |
| ** iBlockid+i.  Interior nodes only store enough term data to
 | |
| ** distinguish adjacent children (if the rightmost term of the left
 | |
| ** child is "something", and the leftmost term of the right child is
 | |
| ** "wicked", only "w" is stored).
 | |
| **
 | |
| ** New data is spilled to a new interior node at the same height when
 | |
| ** the current node exceeds INTERIOR_MAX bytes (default 2048).
 | |
| ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
 | |
| ** interior nodes and making the tree too skinny.  The interior nodes
 | |
| ** at a given height are naturally tracked by interior nodes at
 | |
| ** height+1, and so on.
 | |
| **
 | |
| **
 | |
| **** Segment directory ****
 | |
| ** The segment directory in table %_segdir stores meta-information for
 | |
| ** merging and deleting segments, and also the root node of the
 | |
| ** segment's tree.
 | |
| **
 | |
| ** The root node is the top node of the segment's tree after encoding
 | |
| ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
 | |
| ** This could be either a leaf node or an interior node.  If the top
 | |
| ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
 | |
| ** and a new root interior node is generated (which should always fit
 | |
| ** within ROOT_MAX because it only needs space for 2 varints, the
 | |
| ** height and the blockid of the previous root).
 | |
| **
 | |
| ** The meta-information in the segment directory is:
 | |
| **   level               - segment level (see below)
 | |
| **   idx                 - index within level
 | |
| **                       - (level,idx uniquely identify a segment)
 | |
| **   start_block         - first leaf node
 | |
| **   leaves_end_block    - last leaf node
 | |
| **   end_block           - last block (including interior nodes)
 | |
| **   root                - contents of root node
 | |
| **
 | |
| ** If the root node is a leaf node, then start_block,
 | |
| ** leaves_end_block, and end_block are all 0.
 | |
| **
 | |
| **
 | |
| **** Segment merging ****
 | |
| ** To amortize update costs, segments are groups into levels and
 | |
| ** merged in matches.  Each increase in level represents exponentially
 | |
| ** more documents.
 | |
| **
 | |
| ** New documents (actually, document updates) are tokenized and
 | |
| ** written individually (using LeafWriter) to a level 0 segment, with
 | |
| ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
 | |
| ** level 0 segments are merged into a single level 1 segment.  Level 1
 | |
| ** is populated like level 0, and eventually MERGE_COUNT level 1
 | |
| ** segments are merged to a single level 2 segment (representing
 | |
| ** MERGE_COUNT^2 updates), and so on.
 | |
| **
 | |
| ** A segment merge traverses all segments at a given level in
 | |
| ** parallel, performing a straightforward sorted merge.  Since segment
 | |
| ** leaf nodes are written in to the %_segments table in order, this
 | |
| ** merge traverses the underlying sqlite disk structures efficiently.
 | |
| ** After the merge, all segment blocks from the merged level are
 | |
| ** deleted.
 | |
| **
 | |
| ** MERGE_COUNT controls how often we merge segments.  16 seems to be
 | |
| ** somewhat of a sweet spot for insertion performance.  32 and 64 show
 | |
| ** very similar performance numbers to 16 on insertion, though they're
 | |
| ** a tiny bit slower (perhaps due to more overhead in merge-time
 | |
| ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
 | |
| ** 16, 2 about 66% slower than 16.
 | |
| **
 | |
| ** At query time, high MERGE_COUNT increases the number of segments
 | |
| ** which need to be scanned and merged.  For instance, with 100k docs
 | |
| ** inserted:
 | |
| **
 | |
| **    MERGE_COUNT   segments
 | |
| **       16           25
 | |
| **        8           12
 | |
| **        4           10
 | |
| **        2            6
 | |
| **
 | |
| ** This appears to have only a moderate impact on queries for very
 | |
| ** frequent terms (which are somewhat dominated by segment merge
 | |
| ** costs), and infrequent and non-existent terms still seem to be fast
 | |
| ** even with many segments.
 | |
| **
 | |
| ** TODO(shess) That said, it would be nice to have a better query-side
 | |
| ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
 | |
| ** optimizations to things like doclist merging will swing the sweet
 | |
| ** spot around.
 | |
| **
 | |
| **
 | |
| **
 | |
| **** Handling of deletions and updates ****
 | |
| ** Since we're using a segmented structure, with no docid-oriented
 | |
| ** index into the term index, we clearly cannot simply update the term
 | |
| ** index when a document is deleted or updated.  For deletions, we
 | |
| ** write an empty doclist (varint(docid) varint(POS_END)), for updates
 | |
| ** we simply write the new doclist.  Segment merges overwrite older
 | |
| ** data for a particular docid with newer data, so deletes or updates
 | |
| ** will eventually overtake the earlier data and knock it out.  The
 | |
| ** query logic likewise merges doclists so that newer data knocks out
 | |
| ** older data.
 | |
| **
 | |
| ** TODO(shess) Provide a VACUUM type operation to clear out all
 | |
| ** deletions and duplications.  This would basically be a forced merge
 | |
| ** into a single segment.
 | |
| */
 | |
| 
 | |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
 | |
| 
 | |
| #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
 | |
| # define SQLITE_CORE 1
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /************** Include fts3_hash.h in the middle of fts3.c ******************/
 | |
| /************** Begin file fts3_hash.h ***************************************/
 | |
| /*
 | |
| ** 2001 September 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This is the header file for the generic hash-table implemenation
 | |
| ** used in SQLite.  We've modified it slightly to serve as a standalone
 | |
| ** hash table implementation for the full-text indexing module.
 | |
| **
 | |
| */
 | |
| #ifndef _FTS3_HASH_H_
 | |
| #define _FTS3_HASH_H_
 | |
| 
 | |
| /* Forward declarations of structures. */
 | |
| typedef struct fts3Hash fts3Hash;
 | |
| typedef struct fts3HashElem fts3HashElem;
 | |
| 
 | |
| /* A complete hash table is an instance of the following structure.
 | |
| ** The internals of this structure are intended to be opaque -- client
 | |
| ** code should not attempt to access or modify the fields of this structure
 | |
| ** directly.  Change this structure only by using the routines below.
 | |
| ** However, many of the "procedures" and "functions" for modifying and
 | |
| ** accessing this structure are really macros, so we can't really make
 | |
| ** this structure opaque.
 | |
| */
 | |
| struct fts3Hash {
 | |
|   char keyClass;          /* HASH_INT, _POINTER, _STRING, _BINARY */
 | |
|   char copyKey;           /* True if copy of key made on insert */
 | |
|   int count;              /* Number of entries in this table */
 | |
|   fts3HashElem *first;    /* The first element of the array */
 | |
|   int htsize;             /* Number of buckets in the hash table */
 | |
|   struct _fts3ht {        /* the hash table */
 | |
|     int count;               /* Number of entries with this hash */
 | |
|     fts3HashElem *chain;     /* Pointer to first entry with this hash */
 | |
|   } *ht;
 | |
| };
 | |
| 
 | |
| /* Each element in the hash table is an instance of the following 
 | |
| ** structure.  All elements are stored on a single doubly-linked list.
 | |
| **
 | |
| ** Again, this structure is intended to be opaque, but it can't really
 | |
| ** be opaque because it is used by macros.
 | |
| */
 | |
| struct fts3HashElem {
 | |
|   fts3HashElem *next, *prev; /* Next and previous elements in the table */
 | |
|   void *data;                /* Data associated with this element */
 | |
|   void *pKey; int nKey;      /* Key associated with this element */
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** There are 2 different modes of operation for a hash table:
 | |
| **
 | |
| **   FTS3_HASH_STRING        pKey points to a string that is nKey bytes long
 | |
| **                           (including the null-terminator, if any).  Case
 | |
| **                           is respected in comparisons.
 | |
| **
 | |
| **   FTS3_HASH_BINARY        pKey points to binary data nKey bytes long. 
 | |
| **                           memcmp() is used to compare keys.
 | |
| **
 | |
| ** A copy of the key is made if the copyKey parameter to fts3HashInit is 1.  
 | |
| */
 | |
| #define FTS3_HASH_STRING    1
 | |
| #define FTS3_HASH_BINARY    2
 | |
| 
 | |
| /*
 | |
| ** Access routines.  To delete, insert a NULL pointer.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey);
 | |
| SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData);
 | |
| SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey);
 | |
| SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash*);
 | |
| 
 | |
| /*
 | |
| ** Shorthand for the functions above
 | |
| */
 | |
| #define fts3HashInit   sqlite3Fts3HashInit
 | |
| #define fts3HashInsert sqlite3Fts3HashInsert
 | |
| #define fts3HashFind   sqlite3Fts3HashFind
 | |
| #define fts3HashClear  sqlite3Fts3HashClear
 | |
| 
 | |
| /*
 | |
| ** Macros for looping over all elements of a hash table.  The idiom is
 | |
| ** like this:
 | |
| **
 | |
| **   fts3Hash h;
 | |
| **   fts3HashElem *p;
 | |
| **   ...
 | |
| **   for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){
 | |
| **     SomeStructure *pData = fts3HashData(p);
 | |
| **     // do something with pData
 | |
| **   }
 | |
| */
 | |
| #define fts3HashFirst(H)  ((H)->first)
 | |
| #define fts3HashNext(E)   ((E)->next)
 | |
| #define fts3HashData(E)   ((E)->data)
 | |
| #define fts3HashKey(E)    ((E)->pKey)
 | |
| #define fts3HashKeysize(E) ((E)->nKey)
 | |
| 
 | |
| /*
 | |
| ** Number of entries in a hash table
 | |
| */
 | |
| #define fts3HashCount(H)  ((H)->count)
 | |
| 
 | |
| #endif /* _FTS3_HASH_H_ */
 | |
| 
 | |
| /************** End of fts3_hash.h *******************************************/
 | |
| /************** Continuing where we left off in fts3.c ***********************/
 | |
| /************** Include fts3_tokenizer.h in the middle of fts3.c *************/
 | |
| /************** Begin file fts3_tokenizer.h **********************************/
 | |
| /*
 | |
| ** 2006 July 10
 | |
| **
 | |
| ** The author disclaims copyright to this source code.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Defines the interface to tokenizers used by fulltext-search.  There
 | |
| ** are three basic components:
 | |
| **
 | |
| ** sqlite3_tokenizer_module is a singleton defining the tokenizer
 | |
| ** interface functions.  This is essentially the class structure for
 | |
| ** tokenizers.
 | |
| **
 | |
| ** sqlite3_tokenizer is used to define a particular tokenizer, perhaps
 | |
| ** including customization information defined at creation time.
 | |
| **
 | |
| ** sqlite3_tokenizer_cursor is generated by a tokenizer to generate
 | |
| ** tokens from a particular input.
 | |
| */
 | |
| #ifndef _FTS3_TOKENIZER_H_
 | |
| #define _FTS3_TOKENIZER_H_
 | |
| 
 | |
| /* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time.
 | |
| ** If tokenizers are to be allowed to call sqlite3_*() functions, then
 | |
| ** we will need a way to register the API consistently.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** Structures used by the tokenizer interface. When a new tokenizer
 | |
| ** implementation is registered, the caller provides a pointer to
 | |
| ** an sqlite3_tokenizer_module containing pointers to the callback
 | |
| ** functions that make up an implementation.
 | |
| **
 | |
| ** When an fts3 table is created, it passes any arguments passed to
 | |
| ** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the
 | |
| ** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer
 | |
| ** implementation. The xCreate() function in turn returns an 
 | |
| ** sqlite3_tokenizer structure representing the specific tokenizer to
 | |
| ** be used for the fts3 table (customized by the tokenizer clause arguments).
 | |
| **
 | |
| ** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen()
 | |
| ** method is called. It returns an sqlite3_tokenizer_cursor object
 | |
| ** that may be used to tokenize a specific input buffer based on
 | |
| ** the tokenization rules supplied by a specific sqlite3_tokenizer
 | |
| ** object.
 | |
| */
 | |
| typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module;
 | |
| typedef struct sqlite3_tokenizer sqlite3_tokenizer;
 | |
| typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor;
 | |
| 
 | |
| struct sqlite3_tokenizer_module {
 | |
| 
 | |
|   /*
 | |
|   ** Structure version. Should always be set to 0.
 | |
|   */
 | |
|   int iVersion;
 | |
| 
 | |
|   /*
 | |
|   ** Create a new tokenizer. The values in the argv[] array are the
 | |
|   ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL
 | |
|   ** TABLE statement that created the fts3 table. For example, if
 | |
|   ** the following SQL is executed:
 | |
|   **
 | |
|   **   CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2)
 | |
|   **
 | |
|   ** then argc is set to 2, and the argv[] array contains pointers
 | |
|   ** to the strings "arg1" and "arg2".
 | |
|   **
 | |
|   ** This method should return either SQLITE_OK (0), or an SQLite error 
 | |
|   ** code. If SQLITE_OK is returned, then *ppTokenizer should be set
 | |
|   ** to point at the newly created tokenizer structure. The generic
 | |
|   ** sqlite3_tokenizer.pModule variable should not be initialised by
 | |
|   ** this callback. The caller will do so.
 | |
|   */
 | |
|   int (*xCreate)(
 | |
|     int argc,                           /* Size of argv array */
 | |
|     const char *const*argv,             /* Tokenizer argument strings */
 | |
|     sqlite3_tokenizer **ppTokenizer     /* OUT: Created tokenizer */
 | |
|   );
 | |
| 
 | |
|   /*
 | |
|   ** Destroy an existing tokenizer. The fts3 module calls this method
 | |
|   ** exactly once for each successful call to xCreate().
 | |
|   */
 | |
|   int (*xDestroy)(sqlite3_tokenizer *pTokenizer);
 | |
| 
 | |
|   /*
 | |
|   ** Create a tokenizer cursor to tokenize an input buffer. The caller
 | |
|   ** is responsible for ensuring that the input buffer remains valid
 | |
|   ** until the cursor is closed (using the xClose() method). 
 | |
|   */
 | |
|   int (*xOpen)(
 | |
|     sqlite3_tokenizer *pTokenizer,       /* Tokenizer object */
 | |
|     const char *pInput, int nBytes,      /* Input buffer */
 | |
|     sqlite3_tokenizer_cursor **ppCursor  /* OUT: Created tokenizer cursor */
 | |
|   );
 | |
| 
 | |
|   /*
 | |
|   ** Destroy an existing tokenizer cursor. The fts3 module calls this 
 | |
|   ** method exactly once for each successful call to xOpen().
 | |
|   */
 | |
|   int (*xClose)(sqlite3_tokenizer_cursor *pCursor);
 | |
| 
 | |
|   /*
 | |
|   ** Retrieve the next token from the tokenizer cursor pCursor. This
 | |
|   ** method should either return SQLITE_OK and set the values of the
 | |
|   ** "OUT" variables identified below, or SQLITE_DONE to indicate that
 | |
|   ** the end of the buffer has been reached, or an SQLite error code.
 | |
|   **
 | |
|   ** *ppToken should be set to point at a buffer containing the 
 | |
|   ** normalized version of the token (i.e. after any case-folding and/or
 | |
|   ** stemming has been performed). *pnBytes should be set to the length
 | |
|   ** of this buffer in bytes. The input text that generated the token is
 | |
|   ** identified by the byte offsets returned in *piStartOffset and
 | |
|   ** *piEndOffset.
 | |
|   **
 | |
|   ** The buffer *ppToken is set to point at is managed by the tokenizer
 | |
|   ** implementation. It is only required to be valid until the next call
 | |
|   ** to xNext() or xClose(). 
 | |
|   */
 | |
|   /* TODO(shess) current implementation requires pInput to be
 | |
|   ** nul-terminated.  This should either be fixed, or pInput/nBytes
 | |
|   ** should be converted to zInput.
 | |
|   */
 | |
|   int (*xNext)(
 | |
|     sqlite3_tokenizer_cursor *pCursor,   /* Tokenizer cursor */
 | |
|     const char **ppToken, int *pnBytes,  /* OUT: Normalized text for token */
 | |
|     int *piStartOffset,  /* OUT: Byte offset of token in input buffer */
 | |
|     int *piEndOffset,    /* OUT: Byte offset of end of token in input buffer */
 | |
|     int *piPosition      /* OUT: Number of tokens returned before this one */
 | |
|   );
 | |
| };
 | |
| 
 | |
| struct sqlite3_tokenizer {
 | |
|   const sqlite3_tokenizer_module *pModule;  /* The module for this tokenizer */
 | |
|   /* Tokenizer implementations will typically add additional fields */
 | |
| };
 | |
| 
 | |
| struct sqlite3_tokenizer_cursor {
 | |
|   sqlite3_tokenizer *pTokenizer;       /* Tokenizer for this cursor. */
 | |
|   /* Tokenizer implementations will typically add additional fields */
 | |
| };
 | |
| 
 | |
| #endif /* _FTS3_TOKENIZER_H_ */
 | |
| 
 | |
| /************** End of fts3_tokenizer.h **************************************/
 | |
| /************** Continuing where we left off in fts3.c ***********************/
 | |
| #ifndef SQLITE_CORE 
 | |
|   SQLITE_EXTENSION_INIT1
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it
 | |
| ** would be nice to order the file better, perhaps something along the
 | |
| ** lines of:
 | |
| **
 | |
| **  - utility functions
 | |
| **  - table setup functions
 | |
| **  - table update functions
 | |
| **  - table query functions
 | |
| **
 | |
| ** Put the query functions last because they're likely to reference
 | |
| ** typedefs or functions from the table update section.
 | |
| */
 | |
| 
 | |
| #if 0
 | |
| # define FTSTRACE(A)  printf A; fflush(stdout)
 | |
| #else
 | |
| # define FTSTRACE(A)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Default span for NEAR operators.
 | |
| */
 | |
| #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
 | |
| 
 | |
| /* It is not safe to call isspace(), tolower(), or isalnum() on
 | |
| ** hi-bit-set characters.  This is the same solution used in the
 | |
| ** tokenizer.
 | |
| */
 | |
| /* TODO(shess) The snippet-generation code should be using the
 | |
| ** tokenizer-generated tokens rather than doing its own local
 | |
| ** tokenization.
 | |
| */
 | |
| /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
 | |
| static int safe_isspace(char c){
 | |
|   return (c&0x80)==0 ? isspace(c) : 0;
 | |
| }
 | |
| static int safe_tolower(char c){
 | |
|   return (c&0x80)==0 ? tolower(c) : c;
 | |
| }
 | |
| static int safe_isalnum(char c){
 | |
|   return (c&0x80)==0 ? isalnum(c) : 0;
 | |
| }
 | |
| 
 | |
| typedef enum DocListType {
 | |
|   DL_DOCIDS,              /* docids only */
 | |
|   DL_POSITIONS,           /* docids + positions */
 | |
|   DL_POSITIONS_OFFSETS    /* docids + positions + offsets */
 | |
| } DocListType;
 | |
| 
 | |
| /*
 | |
| ** By default, only positions and not offsets are stored in the doclists.
 | |
| ** To change this so that offsets are stored too, compile with
 | |
| **
 | |
| **          -DDL_DEFAULT=DL_POSITIONS_OFFSETS
 | |
| **
 | |
| ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
 | |
| ** into (no deletes or updates).
 | |
| */
 | |
| #ifndef DL_DEFAULT
 | |
| # define DL_DEFAULT DL_POSITIONS
 | |
| #endif
 | |
| 
 | |
| enum {
 | |
|   POS_END = 0,        /* end of this position list */
 | |
|   POS_COLUMN,         /* followed by new column number */
 | |
|   POS_BASE
 | |
| };
 | |
| 
 | |
| /* MERGE_COUNT controls how often we merge segments (see comment at
 | |
| ** top of file).
 | |
| */
 | |
| #define MERGE_COUNT 16
 | |
| 
 | |
| /* utility functions */
 | |
| 
 | |
| /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
 | |
| ** record to prevent errors of the form:
 | |
| **
 | |
| ** my_function(SomeType *b){
 | |
| **   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b)
 | |
| ** }
 | |
| */
 | |
| /* TODO(shess) Obvious candidates for a header file. */
 | |
| #define CLEAR(b) memset(b, '\0', sizeof(*(b)))
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| #  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
 | |
| #else
 | |
| #  define SCRAMBLE(b)
 | |
| #endif
 | |
| 
 | |
| /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
 | |
| #define VARINT_MAX 10
 | |
| 
 | |
| /* Write a 64-bit variable-length integer to memory starting at p[0].
 | |
|  * The length of data written will be between 1 and VARINT_MAX bytes.
 | |
|  * The number of bytes written is returned. */
 | |
| static int fts3PutVarint(char *p, sqlite_int64 v){
 | |
|   unsigned char *q = (unsigned char *) p;
 | |
|   sqlite_uint64 vu = v;
 | |
|   do{
 | |
|     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
 | |
|     vu >>= 7;
 | |
|   }while( vu!=0 );
 | |
|   q[-1] &= 0x7f;  /* turn off high bit in final byte */
 | |
|   assert( q - (unsigned char *)p <= VARINT_MAX );
 | |
|   return (int) (q - (unsigned char *)p);
 | |
| }
 | |
| 
 | |
| /* Read a 64-bit variable-length integer from memory starting at p[0].
 | |
|  * Return the number of bytes read, or 0 on error.
 | |
|  * The value is stored in *v. */
 | |
| static int fts3GetVarint(const char *p, sqlite_int64 *v){
 | |
|   const unsigned char *q = (const unsigned char *) p;
 | |
|   sqlite_uint64 x = 0, y = 1;
 | |
|   while( (*q & 0x80) == 0x80 ){
 | |
|     x += y * (*q++ & 0x7f);
 | |
|     y <<= 7;
 | |
|     if( q - (unsigned char *)p >= VARINT_MAX ){  /* bad data */
 | |
|       assert( 0 );
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   x += y * (*q++);
 | |
|   *v = (sqlite_int64) x;
 | |
|   return (int) (q - (unsigned char *)p);
 | |
| }
 | |
| 
 | |
| static int fts3GetVarint32(const char *p, int *pi){
 | |
|  sqlite_int64 i;
 | |
|  int ret = fts3GetVarint(p, &i);
 | |
|  *pi = (int) i;
 | |
|  assert( *pi==i );
 | |
|  return ret;
 | |
| }
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* DataBuffer is used to collect data into a buffer in piecemeal
 | |
| ** fashion.  It implements the usual distinction between amount of
 | |
| ** data currently stored (nData) and buffer capacity (nCapacity).
 | |
| **
 | |
| ** dataBufferInit - create a buffer with given initial capacity.
 | |
| ** dataBufferReset - forget buffer's data, retaining capacity.
 | |
| ** dataBufferDestroy - free buffer's data.
 | |
| ** dataBufferSwap - swap contents of two buffers.
 | |
| ** dataBufferExpand - expand capacity without adding data.
 | |
| ** dataBufferAppend - append data.
 | |
| ** dataBufferAppend2 - append two pieces of data at once.
 | |
| ** dataBufferReplace - replace buffer's data.
 | |
| */
 | |
| typedef struct DataBuffer {
 | |
|   char *pData;          /* Pointer to malloc'ed buffer. */
 | |
|   int nCapacity;        /* Size of pData buffer. */
 | |
|   int nData;            /* End of data loaded into pData. */
 | |
| } DataBuffer;
 | |
| 
 | |
| static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
 | |
|   assert( nCapacity>=0 );
 | |
|   pBuffer->nData = 0;
 | |
|   pBuffer->nCapacity = nCapacity;
 | |
|   pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
 | |
| }
 | |
| static void dataBufferReset(DataBuffer *pBuffer){
 | |
|   pBuffer->nData = 0;
 | |
| }
 | |
| static void dataBufferDestroy(DataBuffer *pBuffer){
 | |
|   if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
 | |
|   SCRAMBLE(pBuffer);
 | |
| }
 | |
| static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
 | |
|   DataBuffer tmp = *pBuffer1;
 | |
|   *pBuffer1 = *pBuffer2;
 | |
|   *pBuffer2 = tmp;
 | |
| }
 | |
| static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
 | |
|   assert( nAddCapacity>0 );
 | |
|   /* TODO(shess) Consider expanding more aggressively.  Note that the
 | |
|   ** underlying malloc implementation may take care of such things for
 | |
|   ** us already.
 | |
|   */
 | |
|   if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
 | |
|     pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
 | |
|     pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
 | |
|   }
 | |
| }
 | |
| static void dataBufferAppend(DataBuffer *pBuffer,
 | |
|                              const char *pSource, int nSource){
 | |
|   assert( nSource>0 && pSource!=NULL );
 | |
|   dataBufferExpand(pBuffer, nSource);
 | |
|   memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
 | |
|   pBuffer->nData += nSource;
 | |
| }
 | |
| static void dataBufferAppend2(DataBuffer *pBuffer,
 | |
|                               const char *pSource1, int nSource1,
 | |
|                               const char *pSource2, int nSource2){
 | |
|   assert( nSource1>0 && pSource1!=NULL );
 | |
|   assert( nSource2>0 && pSource2!=NULL );
 | |
|   dataBufferExpand(pBuffer, nSource1+nSource2);
 | |
|   memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
 | |
|   memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
 | |
|   pBuffer->nData += nSource1+nSource2;
 | |
| }
 | |
| static void dataBufferReplace(DataBuffer *pBuffer,
 | |
|                               const char *pSource, int nSource){
 | |
|   dataBufferReset(pBuffer);
 | |
|   dataBufferAppend(pBuffer, pSource, nSource);
 | |
| }
 | |
| 
 | |
| /* StringBuffer is a null-terminated version of DataBuffer. */
 | |
| typedef struct StringBuffer {
 | |
|   DataBuffer b;            /* Includes null terminator. */
 | |
| } StringBuffer;
 | |
| 
 | |
| static void initStringBuffer(StringBuffer *sb){
 | |
|   dataBufferInit(&sb->b, 100);
 | |
|   dataBufferReplace(&sb->b, "", 1);
 | |
| }
 | |
| static int stringBufferLength(StringBuffer *sb){
 | |
|   return sb->b.nData-1;
 | |
| }
 | |
| static char *stringBufferData(StringBuffer *sb){
 | |
|   return sb->b.pData;
 | |
| }
 | |
| static void stringBufferDestroy(StringBuffer *sb){
 | |
|   dataBufferDestroy(&sb->b);
 | |
| }
 | |
| 
 | |
| static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
 | |
|   assert( sb->b.nData>0 );
 | |
|   if( nFrom>0 ){
 | |
|     sb->b.nData--;
 | |
|     dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
 | |
|   }
 | |
| }
 | |
| static void append(StringBuffer *sb, const char *zFrom){
 | |
|   nappend(sb, zFrom, strlen(zFrom));
 | |
| }
 | |
| 
 | |
| /* Append a list of strings separated by commas. */
 | |
| static void appendList(StringBuffer *sb, int nString, char **azString){
 | |
|   int i;
 | |
|   for(i=0; i<nString; ++i){
 | |
|     if( i>0 ) append(sb, ", ");
 | |
|     append(sb, azString[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int endsInWhiteSpace(StringBuffer *p){
 | |
|   return stringBufferLength(p)>0 &&
 | |
|     safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
 | |
| }
 | |
| 
 | |
| /* If the StringBuffer ends in something other than white space, add a
 | |
| ** single space character to the end.
 | |
| */
 | |
| static void appendWhiteSpace(StringBuffer *p){
 | |
|   if( stringBufferLength(p)==0 ) return;
 | |
|   if( !endsInWhiteSpace(p) ) append(p, " ");
 | |
| }
 | |
| 
 | |
| /* Remove white space from the end of the StringBuffer */
 | |
| static void trimWhiteSpace(StringBuffer *p){
 | |
|   while( endsInWhiteSpace(p) ){
 | |
|     p->b.pData[--p->b.nData-1] = '\0';
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* DLReader is used to read document elements from a doclist.  The
 | |
| ** current docid is cached, so dlrDocid() is fast.  DLReader does not
 | |
| ** own the doclist buffer.
 | |
| **
 | |
| ** dlrAtEnd - true if there's no more data to read.
 | |
| ** dlrDocid - docid of current document.
 | |
| ** dlrDocData - doclist data for current document (including docid).
 | |
| ** dlrDocDataBytes - length of same.
 | |
| ** dlrAllDataBytes - length of all remaining data.
 | |
| ** dlrPosData - position data for current document.
 | |
| ** dlrPosDataLen - length of pos data for current document (incl POS_END).
 | |
| ** dlrStep - step to current document.
 | |
| ** dlrInit - initial for doclist of given type against given data.
 | |
| ** dlrDestroy - clean up.
 | |
| **
 | |
| ** Expected usage is something like:
 | |
| **
 | |
| **   DLReader reader;
 | |
| **   dlrInit(&reader, pData, nData);
 | |
| **   while( !dlrAtEnd(&reader) ){
 | |
| **     // calls to dlrDocid() and kin.
 | |
| **     dlrStep(&reader);
 | |
| **   }
 | |
| **   dlrDestroy(&reader);
 | |
| */
 | |
| typedef struct DLReader {
 | |
|   DocListType iType;
 | |
|   const char *pData;
 | |
|   int nData;
 | |
| 
 | |
|   sqlite_int64 iDocid;
 | |
|   int nElement;
 | |
| } DLReader;
 | |
| 
 | |
| static int dlrAtEnd(DLReader *pReader){
 | |
|   assert( pReader->nData>=0 );
 | |
|   return pReader->nData==0;
 | |
| }
 | |
| static sqlite_int64 dlrDocid(DLReader *pReader){
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
|   return pReader->iDocid;
 | |
| }
 | |
| static const char *dlrDocData(DLReader *pReader){
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
|   return pReader->pData;
 | |
| }
 | |
| static int dlrDocDataBytes(DLReader *pReader){
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
|   return pReader->nElement;
 | |
| }
 | |
| static int dlrAllDataBytes(DLReader *pReader){
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
|   return pReader->nData;
 | |
| }
 | |
| /* TODO(shess) Consider adding a field to track iDocid varint length
 | |
| ** to make these two functions faster.  This might matter (a tiny bit)
 | |
| ** for queries.
 | |
| */
 | |
| static const char *dlrPosData(DLReader *pReader){
 | |
|   sqlite_int64 iDummy;
 | |
|   int n = fts3GetVarint(pReader->pData, &iDummy);
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
|   return pReader->pData+n;
 | |
| }
 | |
| static int dlrPosDataLen(DLReader *pReader){
 | |
|   sqlite_int64 iDummy;
 | |
|   int n = fts3GetVarint(pReader->pData, &iDummy);
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
|   return pReader->nElement-n;
 | |
| }
 | |
| static void dlrStep(DLReader *pReader){
 | |
|   assert( !dlrAtEnd(pReader) );
 | |
| 
 | |
|   /* Skip past current doclist element. */
 | |
|   assert( pReader->nElement<=pReader->nData );
 | |
|   pReader->pData += pReader->nElement;
 | |
|   pReader->nData -= pReader->nElement;
 | |
| 
 | |
|   /* If there is more data, read the next doclist element. */
 | |
|   if( pReader->nData!=0 ){
 | |
|     sqlite_int64 iDocidDelta;
 | |
|     int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
 | |
|     pReader->iDocid += iDocidDelta;
 | |
|     if( pReader->iType>=DL_POSITIONS ){
 | |
|       assert( n<pReader->nData );
 | |
|       while( 1 ){
 | |
|         n += fts3GetVarint32(pReader->pData+n, &iDummy);
 | |
|         assert( n<=pReader->nData );
 | |
|         if( iDummy==POS_END ) break;
 | |
|         if( iDummy==POS_COLUMN ){
 | |
|           n += fts3GetVarint32(pReader->pData+n, &iDummy);
 | |
|           assert( n<pReader->nData );
 | |
|         }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
 | |
|           n += fts3GetVarint32(pReader->pData+n, &iDummy);
 | |
|           n += fts3GetVarint32(pReader->pData+n, &iDummy);
 | |
|           assert( n<pReader->nData );
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     pReader->nElement = n;
 | |
|     assert( pReader->nElement<=pReader->nData );
 | |
|   }
 | |
| }
 | |
| static void dlrInit(DLReader *pReader, DocListType iType,
 | |
|                     const char *pData, int nData){
 | |
|   assert( pData!=NULL && nData!=0 );
 | |
|   pReader->iType = iType;
 | |
|   pReader->pData = pData;
 | |
|   pReader->nData = nData;
 | |
|   pReader->nElement = 0;
 | |
|   pReader->iDocid = 0;
 | |
| 
 | |
|   /* Load the first element's data.  There must be a first element. */
 | |
|   dlrStep(pReader);
 | |
| }
 | |
| static void dlrDestroy(DLReader *pReader){
 | |
|   SCRAMBLE(pReader);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* Verify that the doclist can be validly decoded.  Also returns the
 | |
| ** last docid found because it is convenient in other assertions for
 | |
| ** DLWriter.
 | |
| */
 | |
| static void docListValidate(DocListType iType, const char *pData, int nData,
 | |
|                             sqlite_int64 *pLastDocid){
 | |
|   sqlite_int64 iPrevDocid = 0;
 | |
|   assert( nData>0 );
 | |
|   assert( pData!=0 );
 | |
|   assert( pData+nData>pData );
 | |
|   while( nData!=0 ){
 | |
|     sqlite_int64 iDocidDelta;
 | |
|     int n = fts3GetVarint(pData, &iDocidDelta);
 | |
|     iPrevDocid += iDocidDelta;
 | |
|     if( iType>DL_DOCIDS ){
 | |
|       int iDummy;
 | |
|       while( 1 ){
 | |
|         n += fts3GetVarint32(pData+n, &iDummy);
 | |
|         if( iDummy==POS_END ) break;
 | |
|         if( iDummy==POS_COLUMN ){
 | |
|           n += fts3GetVarint32(pData+n, &iDummy);
 | |
|         }else if( iType>DL_POSITIONS ){
 | |
|           n += fts3GetVarint32(pData+n, &iDummy);
 | |
|           n += fts3GetVarint32(pData+n, &iDummy);
 | |
|         }
 | |
|         assert( n<=nData );
 | |
|       }
 | |
|     }
 | |
|     assert( n<=nData );
 | |
|     pData += n;
 | |
|     nData -= n;
 | |
|   }
 | |
|   if( pLastDocid ) *pLastDocid = iPrevDocid;
 | |
| }
 | |
| #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
 | |
| #else
 | |
| #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
 | |
| #endif
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* DLWriter is used to write doclist data to a DataBuffer.  DLWriter
 | |
| ** always appends to the buffer and does not own it.
 | |
| **
 | |
| ** dlwInit - initialize to write a given type doclistto a buffer.
 | |
| ** dlwDestroy - clear the writer's memory.  Does not free buffer.
 | |
| ** dlwAppend - append raw doclist data to buffer.
 | |
| ** dlwCopy - copy next doclist from reader to writer.
 | |
| ** dlwAdd - construct doclist element and append to buffer.
 | |
| **    Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
 | |
| */
 | |
| typedef struct DLWriter {
 | |
|   DocListType iType;
 | |
|   DataBuffer *b;
 | |
|   sqlite_int64 iPrevDocid;
 | |
| #ifndef NDEBUG
 | |
|   int has_iPrevDocid;
 | |
| #endif
 | |
| } DLWriter;
 | |
| 
 | |
| static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
 | |
|   pWriter->b = b;
 | |
|   pWriter->iType = iType;
 | |
|   pWriter->iPrevDocid = 0;
 | |
| #ifndef NDEBUG
 | |
|   pWriter->has_iPrevDocid = 0;
 | |
| #endif
 | |
| }
 | |
| static void dlwDestroy(DLWriter *pWriter){
 | |
|   SCRAMBLE(pWriter);
 | |
| }
 | |
| /* iFirstDocid is the first docid in the doclist in pData.  It is
 | |
| ** needed because pData may point within a larger doclist, in which
 | |
| ** case the first item would be delta-encoded.
 | |
| **
 | |
| ** iLastDocid is the final docid in the doclist in pData.  It is
 | |
| ** needed to create the new iPrevDocid for future delta-encoding.  The
 | |
| ** code could decode the passed doclist to recreate iLastDocid, but
 | |
| ** the only current user (docListMerge) already has decoded this
 | |
| ** information.
 | |
| */
 | |
| /* TODO(shess) This has become just a helper for docListMerge.
 | |
| ** Consider a refactor to make this cleaner.
 | |
| */
 | |
| static void dlwAppend(DLWriter *pWriter,
 | |
|                       const char *pData, int nData,
 | |
|                       sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
 | |
|   sqlite_int64 iDocid = 0;
 | |
|   char c[VARINT_MAX];
 | |
|   int nFirstOld, nFirstNew;     /* Old and new varint len of first docid. */
 | |
| #ifndef NDEBUG
 | |
|   sqlite_int64 iLastDocidDelta;
 | |
| #endif
 | |
| 
 | |
|   /* Recode the initial docid as delta from iPrevDocid. */
 | |
|   nFirstOld = fts3GetVarint(pData, &iDocid);
 | |
|   assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
 | |
|   nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
 | |
| 
 | |
|   /* Verify that the incoming doclist is valid AND that it ends with
 | |
|   ** the expected docid.  This is essential because we'll trust this
 | |
|   ** docid in future delta-encoding.
 | |
|   */
 | |
|   ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
 | |
|   assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
 | |
| 
 | |
|   /* Append recoded initial docid and everything else.  Rest of docids
 | |
|   ** should have been delta-encoded from previous initial docid.
 | |
|   */
 | |
|   if( nFirstOld<nData ){
 | |
|     dataBufferAppend2(pWriter->b, c, nFirstNew,
 | |
|                       pData+nFirstOld, nData-nFirstOld);
 | |
|   }else{
 | |
|     dataBufferAppend(pWriter->b, c, nFirstNew);
 | |
|   }
 | |
|   pWriter->iPrevDocid = iLastDocid;
 | |
| }
 | |
| static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
 | |
|   dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
 | |
|             dlrDocid(pReader), dlrDocid(pReader));
 | |
| }
 | |
| static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
 | |
|   char c[VARINT_MAX];
 | |
|   int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
 | |
| 
 | |
|   /* Docids must ascend. */
 | |
|   assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
 | |
|   assert( pWriter->iType==DL_DOCIDS );
 | |
| 
 | |
|   dataBufferAppend(pWriter->b, c, n);
 | |
|   pWriter->iPrevDocid = iDocid;
 | |
| #ifndef NDEBUG
 | |
|   pWriter->has_iPrevDocid = 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* PLReader is used to read data from a document's position list.  As
 | |
| ** the caller steps through the list, data is cached so that varints
 | |
| ** only need to be decoded once.
 | |
| **
 | |
| ** plrInit, plrDestroy - create/destroy a reader.
 | |
| ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
 | |
| ** plrAtEnd - at end of stream, only call plrDestroy once true.
 | |
| ** plrStep - step to the next element.
 | |
| */
 | |
| typedef struct PLReader {
 | |
|   /* These refer to the next position's data.  nData will reach 0 when
 | |
|   ** reading the last position, so plrStep() signals EOF by setting
 | |
|   ** pData to NULL.
 | |
|   */
 | |
|   const char *pData;
 | |
|   int nData;
 | |
| 
 | |
|   DocListType iType;
 | |
|   int iColumn;         /* the last column read */
 | |
|   int iPosition;       /* the last position read */
 | |
|   int iStartOffset;    /* the last start offset read */
 | |
|   int iEndOffset;      /* the last end offset read */
 | |
| } PLReader;
 | |
| 
 | |
| static int plrAtEnd(PLReader *pReader){
 | |
|   return pReader->pData==NULL;
 | |
| }
 | |
| static int plrColumn(PLReader *pReader){
 | |
|   assert( !plrAtEnd(pReader) );
 | |
|   return pReader->iColumn;
 | |
| }
 | |
| static int plrPosition(PLReader *pReader){
 | |
|   assert( !plrAtEnd(pReader) );
 | |
|   return pReader->iPosition;
 | |
| }
 | |
| static int plrStartOffset(PLReader *pReader){
 | |
|   assert( !plrAtEnd(pReader) );
 | |
|   return pReader->iStartOffset;
 | |
| }
 | |
| static int plrEndOffset(PLReader *pReader){
 | |
|   assert( !plrAtEnd(pReader) );
 | |
|   return pReader->iEndOffset;
 | |
| }
 | |
| static void plrStep(PLReader *pReader){
 | |
|   int i, n;
 | |
| 
 | |
|   assert( !plrAtEnd(pReader) );
 | |
| 
 | |
|   if( pReader->nData==0 ){
 | |
|     pReader->pData = NULL;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   n = fts3GetVarint32(pReader->pData, &i);
 | |
|   if( i==POS_COLUMN ){
 | |
|     n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
 | |
|     pReader->iPosition = 0;
 | |
|     pReader->iStartOffset = 0;
 | |
|     n += fts3GetVarint32(pReader->pData+n, &i);
 | |
|   }
 | |
|   /* Should never see adjacent column changes. */
 | |
|   assert( i!=POS_COLUMN );
 | |
| 
 | |
|   if( i==POS_END ){
 | |
|     pReader->nData = 0;
 | |
|     pReader->pData = NULL;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   pReader->iPosition += i-POS_BASE;
 | |
|   if( pReader->iType==DL_POSITIONS_OFFSETS ){
 | |
|     n += fts3GetVarint32(pReader->pData+n, &i);
 | |
|     pReader->iStartOffset += i;
 | |
|     n += fts3GetVarint32(pReader->pData+n, &i);
 | |
|     pReader->iEndOffset = pReader->iStartOffset+i;
 | |
|   }
 | |
|   assert( n<=pReader->nData );
 | |
|   pReader->pData += n;
 | |
|   pReader->nData -= n;
 | |
| }
 | |
| 
 | |
| static void plrInit(PLReader *pReader, DLReader *pDLReader){
 | |
|   pReader->pData = dlrPosData(pDLReader);
 | |
|   pReader->nData = dlrPosDataLen(pDLReader);
 | |
|   pReader->iType = pDLReader->iType;
 | |
|   pReader->iColumn = 0;
 | |
|   pReader->iPosition = 0;
 | |
|   pReader->iStartOffset = 0;
 | |
|   pReader->iEndOffset = 0;
 | |
|   plrStep(pReader);
 | |
| }
 | |
| static void plrDestroy(PLReader *pReader){
 | |
|   SCRAMBLE(pReader);
 | |
| }
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* PLWriter is used in constructing a document's position list.  As a
 | |
| ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
 | |
| ** PLWriter writes to the associated DLWriter's buffer.
 | |
| **
 | |
| ** plwInit - init for writing a document's poslist.
 | |
| ** plwDestroy - clear a writer.
 | |
| ** plwAdd - append position and offset information.
 | |
| ** plwCopy - copy next position's data from reader to writer.
 | |
| ** plwTerminate - add any necessary doclist terminator.
 | |
| **
 | |
| ** Calling plwAdd() after plwTerminate() may result in a corrupt
 | |
| ** doclist.
 | |
| */
 | |
| /* TODO(shess) Until we've written the second item, we can cache the
 | |
| ** first item's information.  Then we'd have three states:
 | |
| **
 | |
| ** - initialized with docid, no positions.
 | |
| ** - docid and one position.
 | |
| ** - docid and multiple positions.
 | |
| **
 | |
| ** Only the last state needs to actually write to dlw->b, which would
 | |
| ** be an improvement in the DLCollector case.
 | |
| */
 | |
| typedef struct PLWriter {
 | |
|   DLWriter *dlw;
 | |
| 
 | |
|   int iColumn;    /* the last column written */
 | |
|   int iPos;       /* the last position written */
 | |
|   int iOffset;    /* the last start offset written */
 | |
| } PLWriter;
 | |
| 
 | |
| /* TODO(shess) In the case where the parent is reading these values
 | |
| ** from a PLReader, we could optimize to a copy if that PLReader has
 | |
| ** the same type as pWriter.
 | |
| */
 | |
| static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
 | |
|                    int iStartOffset, int iEndOffset){
 | |
|   /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
 | |
|   ** iStartOffsetDelta, and iEndOffsetDelta.
 | |
|   */
 | |
|   char c[5*VARINT_MAX];
 | |
|   int n = 0;
 | |
| 
 | |
|   /* Ban plwAdd() after plwTerminate(). */
 | |
|   assert( pWriter->iPos!=-1 );
 | |
| 
 | |
|   if( pWriter->dlw->iType==DL_DOCIDS ) return;
 | |
| 
 | |
|   if( iColumn!=pWriter->iColumn ){
 | |
|     n += fts3PutVarint(c+n, POS_COLUMN);
 | |
|     n += fts3PutVarint(c+n, iColumn);
 | |
|     pWriter->iColumn = iColumn;
 | |
|     pWriter->iPos = 0;
 | |
|     pWriter->iOffset = 0;
 | |
|   }
 | |
|   assert( iPos>=pWriter->iPos );
 | |
|   n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
 | |
|   pWriter->iPos = iPos;
 | |
|   if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
 | |
|     assert( iStartOffset>=pWriter->iOffset );
 | |
|     n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
 | |
|     pWriter->iOffset = iStartOffset;
 | |
|     assert( iEndOffset>=iStartOffset );
 | |
|     n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
 | |
|   }
 | |
|   dataBufferAppend(pWriter->dlw->b, c, n);
 | |
| }
 | |
| static void plwCopy(PLWriter *pWriter, PLReader *pReader){
 | |
|   plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
 | |
|          plrStartOffset(pReader), plrEndOffset(pReader));
 | |
| }
 | |
| static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
 | |
|   char c[VARINT_MAX];
 | |
|   int n;
 | |
| 
 | |
|   pWriter->dlw = dlw;
 | |
| 
 | |
|   /* Docids must ascend. */
 | |
|   assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
 | |
|   n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
 | |
|   dataBufferAppend(pWriter->dlw->b, c, n);
 | |
|   pWriter->dlw->iPrevDocid = iDocid;
 | |
| #ifndef NDEBUG
 | |
|   pWriter->dlw->has_iPrevDocid = 1;
 | |
| #endif
 | |
| 
 | |
|   pWriter->iColumn = 0;
 | |
|   pWriter->iPos = 0;
 | |
|   pWriter->iOffset = 0;
 | |
| }
 | |
| /* TODO(shess) Should plwDestroy() also terminate the doclist?  But
 | |
| ** then plwDestroy() would no longer be just a destructor, it would
 | |
| ** also be doing work, which isn't consistent with the overall idiom.
 | |
| ** Another option would be for plwAdd() to always append any necessary
 | |
| ** terminator, so that the output is always correct.  But that would
 | |
| ** add incremental work to the common case with the only benefit being
 | |
| ** API elegance.  Punt for now.
 | |
| */
 | |
| static void plwTerminate(PLWriter *pWriter){
 | |
|   if( pWriter->dlw->iType>DL_DOCIDS ){
 | |
|     char c[VARINT_MAX];
 | |
|     int n = fts3PutVarint(c, POS_END);
 | |
|     dataBufferAppend(pWriter->dlw->b, c, n);
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   /* Mark as terminated for assert in plwAdd(). */
 | |
|   pWriter->iPos = -1;
 | |
| #endif
 | |
| }
 | |
| static void plwDestroy(PLWriter *pWriter){
 | |
|   SCRAMBLE(pWriter);
 | |
| }
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* DLCollector wraps PLWriter and DLWriter to provide a
 | |
| ** dynamically-allocated doclist area to use during tokenization.
 | |
| **
 | |
| ** dlcNew - malloc up and initialize a collector.
 | |
| ** dlcDelete - destroy a collector and all contained items.
 | |
| ** dlcAddPos - append position and offset information.
 | |
| ** dlcAddDoclist - add the collected doclist to the given buffer.
 | |
| ** dlcNext - terminate the current document and open another.
 | |
| */
 | |
| typedef struct DLCollector {
 | |
|   DataBuffer b;
 | |
|   DLWriter dlw;
 | |
|   PLWriter plw;
 | |
| } DLCollector;
 | |
| 
 | |
| /* TODO(shess) This could also be done by calling plwTerminate() and
 | |
| ** dataBufferAppend().  I tried that, expecting nominal performance
 | |
| ** differences, but it seemed to pretty reliably be worth 1% to code
 | |
| ** it this way.  I suspect it is the incremental malloc overhead (some
 | |
| ** percentage of the plwTerminate() calls will cause a realloc), so
 | |
| ** this might be worth revisiting if the DataBuffer implementation
 | |
| ** changes.
 | |
| */
 | |
| static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
 | |
|   if( pCollector->dlw.iType>DL_DOCIDS ){
 | |
|     char c[VARINT_MAX];
 | |
|     int n = fts3PutVarint(c, POS_END);
 | |
|     dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
 | |
|   }else{
 | |
|     dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
 | |
|   }
 | |
| }
 | |
| static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
 | |
|   plwTerminate(&pCollector->plw);
 | |
|   plwDestroy(&pCollector->plw);
 | |
|   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
 | |
| }
 | |
| static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
 | |
|                       int iStartOffset, int iEndOffset){
 | |
|   plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
 | |
| }
 | |
| 
 | |
| static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
 | |
|   DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
 | |
|   dataBufferInit(&pCollector->b, 0);
 | |
|   dlwInit(&pCollector->dlw, iType, &pCollector->b);
 | |
|   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
 | |
|   return pCollector;
 | |
| }
 | |
| static void dlcDelete(DLCollector *pCollector){
 | |
|   plwDestroy(&pCollector->plw);
 | |
|   dlwDestroy(&pCollector->dlw);
 | |
|   dataBufferDestroy(&pCollector->b);
 | |
|   SCRAMBLE(pCollector);
 | |
|   sqlite3_free(pCollector);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Copy the doclist data of iType in pData/nData into *out, trimming
 | |
| ** unnecessary data as we go.  Only columns matching iColumn are
 | |
| ** copied, all columns copied if iColumn is -1.  Elements with no
 | |
| ** matching columns are dropped.  The output is an iOutType doclist.
 | |
| */
 | |
| /* NOTE(shess) This code is only valid after all doclists are merged.
 | |
| ** If this is run before merges, then doclist items which represent
 | |
| ** deletion will be trimmed, and will thus not effect a deletion
 | |
| ** during the merge.
 | |
| */
 | |
| static void docListTrim(DocListType iType, const char *pData, int nData,
 | |
|                         int iColumn, DocListType iOutType, DataBuffer *out){
 | |
|   DLReader dlReader;
 | |
|   DLWriter dlWriter;
 | |
| 
 | |
|   assert( iOutType<=iType );
 | |
| 
 | |
|   dlrInit(&dlReader, iType, pData, nData);
 | |
|   dlwInit(&dlWriter, iOutType, out);
 | |
| 
 | |
|   while( !dlrAtEnd(&dlReader) ){
 | |
|     PLReader plReader;
 | |
|     PLWriter plWriter;
 | |
|     int match = 0;
 | |
| 
 | |
|     plrInit(&plReader, &dlReader);
 | |
| 
 | |
|     while( !plrAtEnd(&plReader) ){
 | |
|       if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
 | |
|         if( !match ){
 | |
|           plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
 | |
|           match = 1;
 | |
|         }
 | |
|         plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
 | |
|                plrStartOffset(&plReader), plrEndOffset(&plReader));
 | |
|       }
 | |
|       plrStep(&plReader);
 | |
|     }
 | |
|     if( match ){
 | |
|       plwTerminate(&plWriter);
 | |
|       plwDestroy(&plWriter);
 | |
|     }
 | |
| 
 | |
|     plrDestroy(&plReader);
 | |
|     dlrStep(&dlReader);
 | |
|   }
 | |
|   dlwDestroy(&dlWriter);
 | |
|   dlrDestroy(&dlReader);
 | |
| }
 | |
| 
 | |
| /* Used by docListMerge() to keep doclists in the ascending order by
 | |
| ** docid, then ascending order by age (so the newest comes first).
 | |
| */
 | |
| typedef struct OrderedDLReader {
 | |
|   DLReader *pReader;
 | |
| 
 | |
|   /* TODO(shess) If we assume that docListMerge pReaders is ordered by
 | |
|   ** age (which we do), then we could use pReader comparisons to break
 | |
|   ** ties.
 | |
|   */
 | |
|   int idx;
 | |
| } OrderedDLReader;
 | |
| 
 | |
| /* Order eof to end, then by docid asc, idx desc. */
 | |
| static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
 | |
|   if( dlrAtEnd(r1->pReader) ){
 | |
|     if( dlrAtEnd(r2->pReader) ) return 0;  /* Both atEnd(). */
 | |
|     return 1;                              /* Only r1 atEnd(). */
 | |
|   }
 | |
|   if( dlrAtEnd(r2->pReader) ) return -1;   /* Only r2 atEnd(). */
 | |
| 
 | |
|   if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
 | |
|   if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
 | |
| 
 | |
|   /* Descending on idx. */
 | |
|   return r2->idx-r1->idx;
 | |
| }
 | |
| 
 | |
| /* Bubble p[0] to appropriate place in p[1..n-1].  Assumes that
 | |
| ** p[1..n-1] is already sorted.
 | |
| */
 | |
| /* TODO(shess) Is this frequent enough to warrant a binary search?
 | |
| ** Before implementing that, instrument the code to check.  In most
 | |
| ** current usage, I expect that p[0] will be less than p[1] a very
 | |
| ** high proportion of the time.
 | |
| */
 | |
| static void orderedDLReaderReorder(OrderedDLReader *p, int n){
 | |
|   while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
 | |
|     OrderedDLReader tmp = p[0];
 | |
|     p[0] = p[1];
 | |
|     p[1] = tmp;
 | |
|     n--;
 | |
|     p++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Given an array of doclist readers, merge their doclist elements
 | |
| ** into out in sorted order (by docid), dropping elements from older
 | |
| ** readers when there is a duplicate docid.  pReaders is assumed to be
 | |
| ** ordered by age, oldest first.
 | |
| */
 | |
| /* TODO(shess) nReaders must be <= MERGE_COUNT.  This should probably
 | |
| ** be fixed.
 | |
| */
 | |
| static void docListMerge(DataBuffer *out,
 | |
|                          DLReader *pReaders, int nReaders){
 | |
|   OrderedDLReader readers[MERGE_COUNT];
 | |
|   DLWriter writer;
 | |
|   int i, n;
 | |
|   const char *pStart = 0;
 | |
|   int nStart = 0;
 | |
|   sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
 | |
| 
 | |
|   assert( nReaders>0 );
 | |
|   if( nReaders==1 ){
 | |
|     dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   assert( nReaders<=MERGE_COUNT );
 | |
|   n = 0;
 | |
|   for(i=0; i<nReaders; i++){
 | |
|     assert( pReaders[i].iType==pReaders[0].iType );
 | |
|     readers[i].pReader = pReaders+i;
 | |
|     readers[i].idx = i;
 | |
|     n += dlrAllDataBytes(&pReaders[i]);
 | |
|   }
 | |
|   /* Conservatively size output to sum of inputs.  Output should end
 | |
|   ** up strictly smaller than input.
 | |
|   */
 | |
|   dataBufferExpand(out, n);
 | |
| 
 | |
|   /* Get the readers into sorted order. */
 | |
|   while( i-->0 ){
 | |
|     orderedDLReaderReorder(readers+i, nReaders-i);
 | |
|   }
 | |
| 
 | |
|   dlwInit(&writer, pReaders[0].iType, out);
 | |
|   while( !dlrAtEnd(readers[0].pReader) ){
 | |
|     sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
 | |
| 
 | |
|     /* If this is a continuation of the current buffer to copy, extend
 | |
|     ** that buffer.  memcpy() seems to be more efficient if it has a
 | |
|     ** lots of data to copy.
 | |
|     */
 | |
|     if( dlrDocData(readers[0].pReader)==pStart+nStart ){
 | |
|       nStart += dlrDocDataBytes(readers[0].pReader);
 | |
|     }else{
 | |
|       if( pStart!=0 ){
 | |
|         dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
 | |
|       }
 | |
|       pStart = dlrDocData(readers[0].pReader);
 | |
|       nStart = dlrDocDataBytes(readers[0].pReader);
 | |
|       iFirstDocid = iDocid;
 | |
|     }
 | |
|     iLastDocid = iDocid;
 | |
|     dlrStep(readers[0].pReader);
 | |
| 
 | |
|     /* Drop all of the older elements with the same docid. */
 | |
|     for(i=1; i<nReaders &&
 | |
|              !dlrAtEnd(readers[i].pReader) &&
 | |
|              dlrDocid(readers[i].pReader)==iDocid; i++){
 | |
|       dlrStep(readers[i].pReader);
 | |
|     }
 | |
| 
 | |
|     /* Get the readers back into order. */
 | |
|     while( i-->0 ){
 | |
|       orderedDLReaderReorder(readers+i, nReaders-i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Copy over any remaining elements. */
 | |
|   if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
 | |
|   dlwDestroy(&writer);
 | |
| }
 | |
| 
 | |
| /* Helper function for posListUnion().  Compares the current position
 | |
| ** between left and right, returning as standard C idiom of <0 if
 | |
| ** left<right, >0 if left>right, and 0 if left==right.  "End" always
 | |
| ** compares greater.
 | |
| */
 | |
| static int posListCmp(PLReader *pLeft, PLReader *pRight){
 | |
|   assert( pLeft->iType==pRight->iType );
 | |
|   if( pLeft->iType==DL_DOCIDS ) return 0;
 | |
| 
 | |
|   if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
 | |
|   if( plrAtEnd(pRight) ) return -1;
 | |
| 
 | |
|   if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
 | |
|   if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
 | |
| 
 | |
|   if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
 | |
|   if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
 | |
|   if( pLeft->iType==DL_POSITIONS ) return 0;
 | |
| 
 | |
|   if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
 | |
|   if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
 | |
| 
 | |
|   if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
 | |
|   if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Write the union of position lists in pLeft and pRight to pOut.
 | |
| ** "Union" in this case meaning "All unique position tuples".  Should
 | |
| ** work with any doclist type, though both inputs and the output
 | |
| ** should be the same type.
 | |
| */
 | |
| static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
 | |
|   PLReader left, right;
 | |
|   PLWriter writer;
 | |
| 
 | |
|   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
 | |
|   assert( pLeft->iType==pRight->iType );
 | |
|   assert( pLeft->iType==pOut->iType );
 | |
| 
 | |
|   plrInit(&left, pLeft);
 | |
|   plrInit(&right, pRight);
 | |
|   plwInit(&writer, pOut, dlrDocid(pLeft));
 | |
| 
 | |
|   while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
 | |
|     int c = posListCmp(&left, &right);
 | |
|     if( c<0 ){
 | |
|       plwCopy(&writer, &left);
 | |
|       plrStep(&left);
 | |
|     }else if( c>0 ){
 | |
|       plwCopy(&writer, &right);
 | |
|       plrStep(&right);
 | |
|     }else{
 | |
|       plwCopy(&writer, &left);
 | |
|       plrStep(&left);
 | |
|       plrStep(&right);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   plwTerminate(&writer);
 | |
|   plwDestroy(&writer);
 | |
|   plrDestroy(&left);
 | |
|   plrDestroy(&right);
 | |
| }
 | |
| 
 | |
| /* Write the union of doclists in pLeft and pRight to pOut.  For
 | |
| ** docids in common between the inputs, the union of the position
 | |
| ** lists is written.  Inputs and outputs are always type DL_DEFAULT.
 | |
| */
 | |
| static void docListUnion(
 | |
|   const char *pLeft, int nLeft,
 | |
|   const char *pRight, int nRight,
 | |
|   DataBuffer *pOut      /* Write the combined doclist here */
 | |
| ){
 | |
|   DLReader left, right;
 | |
|   DLWriter writer;
 | |
| 
 | |
|   if( nLeft==0 ){
 | |
|     if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
 | |
|     return;
 | |
|   }
 | |
|   if( nRight==0 ){
 | |
|     dataBufferAppend(pOut, pLeft, nLeft);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
 | |
|   dlrInit(&right, DL_DEFAULT, pRight, nRight);
 | |
|   dlwInit(&writer, DL_DEFAULT, pOut);
 | |
| 
 | |
|   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
 | |
|     if( dlrAtEnd(&right) ){
 | |
|       dlwCopy(&writer, &left);
 | |
|       dlrStep(&left);
 | |
|     }else if( dlrAtEnd(&left) ){
 | |
|       dlwCopy(&writer, &right);
 | |
|       dlrStep(&right);
 | |
|     }else if( dlrDocid(&left)<dlrDocid(&right) ){
 | |
|       dlwCopy(&writer, &left);
 | |
|       dlrStep(&left);
 | |
|     }else if( dlrDocid(&left)>dlrDocid(&right) ){
 | |
|       dlwCopy(&writer, &right);
 | |
|       dlrStep(&right);
 | |
|     }else{
 | |
|       posListUnion(&left, &right, &writer);
 | |
|       dlrStep(&left);
 | |
|       dlrStep(&right);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   dlrDestroy(&left);
 | |
|   dlrDestroy(&right);
 | |
|   dlwDestroy(&writer);
 | |
| }
 | |
| 
 | |
| /* 
 | |
| ** This function is used as part of the implementation of phrase and
 | |
| ** NEAR matching.
 | |
| **
 | |
| ** pLeft and pRight are DLReaders positioned to the same docid in
 | |
| ** lists of type DL_POSITION. This function writes an entry to the
 | |
| ** DLWriter pOut for each position in pRight that is less than
 | |
| ** (nNear+1) greater (but not equal to or smaller) than a position 
 | |
| ** in pLeft. For example, if nNear is 0, and the positions contained
 | |
| ** by pLeft and pRight are:
 | |
| **
 | |
| **    pLeft:  5 10 15 20
 | |
| **    pRight: 6  9 17 21
 | |
| **
 | |
| ** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
 | |
| ** then a positionids "6" and "21" are also added to pOut.
 | |
| **
 | |
| ** If boolean argument isSaveLeft is true, then positionids are copied
 | |
| ** from pLeft instead of pRight. In the example above, the positions "5"
 | |
| ** and "20" would be added instead of "6" and "21".
 | |
| */
 | |
| static void posListPhraseMerge(
 | |
|   DLReader *pLeft, 
 | |
|   DLReader *pRight,
 | |
|   int nNear,
 | |
|   int isSaveLeft,
 | |
|   DLWriter *pOut
 | |
| ){
 | |
|   PLReader left, right;
 | |
|   PLWriter writer;
 | |
|   int match = 0;
 | |
| 
 | |
|   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
 | |
|   assert( pOut->iType!=DL_POSITIONS_OFFSETS );
 | |
| 
 | |
|   plrInit(&left, pLeft);
 | |
|   plrInit(&right, pRight);
 | |
| 
 | |
|   while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
 | |
|     if( plrColumn(&left)<plrColumn(&right) ){
 | |
|       plrStep(&left);
 | |
|     }else if( plrColumn(&left)>plrColumn(&right) ){
 | |
|       plrStep(&right);
 | |
|     }else if( plrPosition(&left)>=plrPosition(&right) ){
 | |
|       plrStep(&right);
 | |
|     }else{
 | |
|       if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
 | |
|         if( !match ){
 | |
|           plwInit(&writer, pOut, dlrDocid(pLeft));
 | |
|           match = 1;
 | |
|         }
 | |
|         if( !isSaveLeft ){
 | |
|           plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
 | |
|         }else{
 | |
|           plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
 | |
|         }
 | |
|         plrStep(&right);
 | |
|       }else{
 | |
|         plrStep(&left);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( match ){
 | |
|     plwTerminate(&writer);
 | |
|     plwDestroy(&writer);
 | |
|   }
 | |
| 
 | |
|   plrDestroy(&left);
 | |
|   plrDestroy(&right);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compare the values pointed to by the PLReaders passed as arguments. 
 | |
| ** Return -1 if the value pointed to by pLeft is considered less than
 | |
| ** the value pointed to by pRight, +1 if it is considered greater
 | |
| ** than it, or 0 if it is equal. i.e.
 | |
| **
 | |
| **     (*pLeft - *pRight)
 | |
| **
 | |
| ** A PLReader that is in the EOF condition is considered greater than
 | |
| ** any other. If neither argument is in EOF state, the return value of
 | |
| ** plrColumn() is used. If the plrColumn() values are equal, the
 | |
| ** comparison is on the basis of plrPosition().
 | |
| */
 | |
| static int plrCompare(PLReader *pLeft, PLReader *pRight){
 | |
|   assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
 | |
| 
 | |
|   if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
 | |
|     return (plrAtEnd(pRight) ? -1 : 1);
 | |
|   }
 | |
|   if( plrColumn(pLeft)!=plrColumn(pRight) ){
 | |
|     return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
 | |
|   }
 | |
|   if( plrPosition(pLeft)!=plrPosition(pRight) ){
 | |
|     return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* We have two doclists with positions:  pLeft and pRight. Depending
 | |
| ** on the value of the nNear parameter, perform either a phrase
 | |
| ** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
 | |
| ** and write the results into pOut.
 | |
| **
 | |
| ** A phrase intersection means that two documents only match
 | |
| ** if pLeft.iPos+1==pRight.iPos.
 | |
| **
 | |
| ** A NEAR intersection means that two documents only match if 
 | |
| ** (abs(pLeft.iPos-pRight.iPos)<nNear).
 | |
| **
 | |
| ** If a NEAR intersection is requested, then the nPhrase argument should
 | |
| ** be passed the number of tokens in the two operands to the NEAR operator
 | |
| ** combined. For example:
 | |
| **
 | |
| **       Query syntax               nPhrase
 | |
| **      ------------------------------------
 | |
| **       "A B C" NEAR "D E"         5
 | |
| **       A NEAR B                   2
 | |
| **
 | |
| ** iType controls the type of data written to pOut.  If iType is
 | |
| ** DL_POSITIONS, the positions are those from pRight.
 | |
| */
 | |
| static void docListPhraseMerge(
 | |
|   const char *pLeft, int nLeft,
 | |
|   const char *pRight, int nRight,
 | |
|   int nNear,            /* 0 for a phrase merge, non-zero for a NEAR merge */
 | |
|   int nPhrase,          /* Number of tokens in left+right operands to NEAR */
 | |
|   DocListType iType,    /* Type of doclist to write to pOut */
 | |
|   DataBuffer *pOut      /* Write the combined doclist here */
 | |
| ){
 | |
|   DLReader left, right;
 | |
|   DLWriter writer;
 | |
| 
 | |
|   if( nLeft==0 || nRight==0 ) return;
 | |
| 
 | |
|   assert( iType!=DL_POSITIONS_OFFSETS );
 | |
| 
 | |
|   dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
 | |
|   dlrInit(&right, DL_POSITIONS, pRight, nRight);
 | |
|   dlwInit(&writer, iType, pOut);
 | |
| 
 | |
|   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
 | |
|     if( dlrDocid(&left)<dlrDocid(&right) ){
 | |
|       dlrStep(&left);
 | |
|     }else if( dlrDocid(&right)<dlrDocid(&left) ){
 | |
|       dlrStep(&right);
 | |
|     }else{
 | |
|       if( nNear==0 ){
 | |
|         posListPhraseMerge(&left, &right, 0, 0, &writer);
 | |
|       }else{
 | |
|         /* This case occurs when two terms (simple terms or phrases) are
 | |
|          * connected by a NEAR operator, span (nNear+1). i.e.
 | |
|          *
 | |
|          *     '"terrible company" NEAR widget'
 | |
|          */
 | |
|         DataBuffer one = {0, 0, 0};
 | |
|         DataBuffer two = {0, 0, 0};
 | |
| 
 | |
|         DLWriter dlwriter2;
 | |
|         DLReader dr1 = {0, 0, 0, 0, 0}; 
 | |
|         DLReader dr2 = {0, 0, 0, 0, 0};
 | |
| 
 | |
|         dlwInit(&dlwriter2, iType, &one);
 | |
|         posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
 | |
|         dlwInit(&dlwriter2, iType, &two);
 | |
|         posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
 | |
| 
 | |
|         if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
 | |
|         if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
 | |
| 
 | |
|         if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
 | |
|           PLReader pr1 = {0};
 | |
|           PLReader pr2 = {0};
 | |
| 
 | |
|           PLWriter plwriter;
 | |
|           plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
 | |
| 
 | |
|           if( one.nData ) plrInit(&pr1, &dr1);
 | |
|           if( two.nData ) plrInit(&pr2, &dr2);
 | |
|           while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
 | |
|             int iCompare = plrCompare(&pr1, &pr2);
 | |
|             switch( iCompare ){
 | |
|               case -1:
 | |
|                 plwCopy(&plwriter, &pr1);
 | |
|                 plrStep(&pr1);
 | |
|                 break;
 | |
|               case 1:
 | |
|                 plwCopy(&plwriter, &pr2);
 | |
|                 plrStep(&pr2);
 | |
|                 break;
 | |
|               case 0:
 | |
|                 plwCopy(&plwriter, &pr1);
 | |
|                 plrStep(&pr1);
 | |
|                 plrStep(&pr2);
 | |
|                 break;
 | |
|             }
 | |
|           }
 | |
|           plwTerminate(&plwriter);
 | |
|         }
 | |
|         dataBufferDestroy(&one);
 | |
|         dataBufferDestroy(&two);
 | |
|       }
 | |
|       dlrStep(&left);
 | |
|       dlrStep(&right);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   dlrDestroy(&left);
 | |
|   dlrDestroy(&right);
 | |
|   dlwDestroy(&writer);
 | |
| }
 | |
| 
 | |
| /* We have two DL_DOCIDS doclists:  pLeft and pRight.
 | |
| ** Write the intersection of these two doclists into pOut as a
 | |
| ** DL_DOCIDS doclist.
 | |
| */
 | |
| static void docListAndMerge(
 | |
|   const char *pLeft, int nLeft,
 | |
|   const char *pRight, int nRight,
 | |
|   DataBuffer *pOut      /* Write the combined doclist here */
 | |
| ){
 | |
|   DLReader left, right;
 | |
|   DLWriter writer;
 | |
| 
 | |
|   if( nLeft==0 || nRight==0 ) return;
 | |
| 
 | |
|   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
 | |
|   dlrInit(&right, DL_DOCIDS, pRight, nRight);
 | |
|   dlwInit(&writer, DL_DOCIDS, pOut);
 | |
| 
 | |
|   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
 | |
|     if( dlrDocid(&left)<dlrDocid(&right) ){
 | |
|       dlrStep(&left);
 | |
|     }else if( dlrDocid(&right)<dlrDocid(&left) ){
 | |
|       dlrStep(&right);
 | |
|     }else{
 | |
|       dlwAdd(&writer, dlrDocid(&left));
 | |
|       dlrStep(&left);
 | |
|       dlrStep(&right);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   dlrDestroy(&left);
 | |
|   dlrDestroy(&right);
 | |
|   dlwDestroy(&writer);
 | |
| }
 | |
| 
 | |
| /* We have two DL_DOCIDS doclists:  pLeft and pRight.
 | |
| ** Write the union of these two doclists into pOut as a
 | |
| ** DL_DOCIDS doclist.
 | |
| */
 | |
| static void docListOrMerge(
 | |
|   const char *pLeft, int nLeft,
 | |
|   const char *pRight, int nRight,
 | |
|   DataBuffer *pOut      /* Write the combined doclist here */
 | |
| ){
 | |
|   DLReader left, right;
 | |
|   DLWriter writer;
 | |
| 
 | |
|   if( nLeft==0 ){
 | |
|     if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
 | |
|     return;
 | |
|   }
 | |
|   if( nRight==0 ){
 | |
|     dataBufferAppend(pOut, pLeft, nLeft);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
 | |
|   dlrInit(&right, DL_DOCIDS, pRight, nRight);
 | |
|   dlwInit(&writer, DL_DOCIDS, pOut);
 | |
| 
 | |
|   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
 | |
|     if( dlrAtEnd(&right) ){
 | |
|       dlwAdd(&writer, dlrDocid(&left));
 | |
|       dlrStep(&left);
 | |
|     }else if( dlrAtEnd(&left) ){
 | |
|       dlwAdd(&writer, dlrDocid(&right));
 | |
|       dlrStep(&right);
 | |
|     }else if( dlrDocid(&left)<dlrDocid(&right) ){
 | |
|       dlwAdd(&writer, dlrDocid(&left));
 | |
|       dlrStep(&left);
 | |
|     }else if( dlrDocid(&right)<dlrDocid(&left) ){
 | |
|       dlwAdd(&writer, dlrDocid(&right));
 | |
|       dlrStep(&right);
 | |
|     }else{
 | |
|       dlwAdd(&writer, dlrDocid(&left));
 | |
|       dlrStep(&left);
 | |
|       dlrStep(&right);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   dlrDestroy(&left);
 | |
|   dlrDestroy(&right);
 | |
|   dlwDestroy(&writer);
 | |
| }
 | |
| 
 | |
| /* We have two DL_DOCIDS doclists:  pLeft and pRight.
 | |
| ** Write into pOut as DL_DOCIDS doclist containing all documents that
 | |
| ** occur in pLeft but not in pRight.
 | |
| */
 | |
| static void docListExceptMerge(
 | |
|   const char *pLeft, int nLeft,
 | |
|   const char *pRight, int nRight,
 | |
|   DataBuffer *pOut      /* Write the combined doclist here */
 | |
| ){
 | |
|   DLReader left, right;
 | |
|   DLWriter writer;
 | |
| 
 | |
|   if( nLeft==0 ) return;
 | |
|   if( nRight==0 ){
 | |
|     dataBufferAppend(pOut, pLeft, nLeft);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
 | |
|   dlrInit(&right, DL_DOCIDS, pRight, nRight);
 | |
|   dlwInit(&writer, DL_DOCIDS, pOut);
 | |
| 
 | |
|   while( !dlrAtEnd(&left) ){
 | |
|     while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
 | |
|       dlrStep(&right);
 | |
|     }
 | |
|     if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
 | |
|       dlwAdd(&writer, dlrDocid(&left));
 | |
|     }
 | |
|     dlrStep(&left);
 | |
|   }
 | |
| 
 | |
|   dlrDestroy(&left);
 | |
|   dlrDestroy(&right);
 | |
|   dlwDestroy(&writer);
 | |
| }
 | |
| 
 | |
| static char *string_dup_n(const char *s, int n){
 | |
|   char *str = sqlite3_malloc(n + 1);
 | |
|   memcpy(str, s, n);
 | |
|   str[n] = '\0';
 | |
|   return str;
 | |
| }
 | |
| 
 | |
| /* Duplicate a string; the caller must free() the returned string.
 | |
|  * (We don't use strdup() since it is not part of the standard C library and
 | |
|  * may not be available everywhere.) */
 | |
| static char *string_dup(const char *s){
 | |
|   return string_dup_n(s, strlen(s));
 | |
| }
 | |
| 
 | |
| /* Format a string, replacing each occurrence of the % character with
 | |
|  * zDb.zName.  This may be more convenient than sqlite_mprintf()
 | |
|  * when one string is used repeatedly in a format string.
 | |
|  * The caller must free() the returned string. */
 | |
| static char *string_format(const char *zFormat,
 | |
|                            const char *zDb, const char *zName){
 | |
|   const char *p;
 | |
|   size_t len = 0;
 | |
|   size_t nDb = strlen(zDb);
 | |
|   size_t nName = strlen(zName);
 | |
|   size_t nFullTableName = nDb+1+nName;
 | |
|   char *result;
 | |
|   char *r;
 | |
| 
 | |
|   /* first compute length needed */
 | |
|   for(p = zFormat ; *p ; ++p){
 | |
|     len += (*p=='%' ? nFullTableName : 1);
 | |
|   }
 | |
|   len += 1;  /* for null terminator */
 | |
| 
 | |
|   r = result = sqlite3_malloc(len);
 | |
|   for(p = zFormat; *p; ++p){
 | |
|     if( *p=='%' ){
 | |
|       memcpy(r, zDb, nDb);
 | |
|       r += nDb;
 | |
|       *r++ = '.';
 | |
|       memcpy(r, zName, nName);
 | |
|       r += nName;
 | |
|     } else {
 | |
|       *r++ = *p;
 | |
|     }
 | |
|   }
 | |
|   *r++ = '\0';
 | |
|   assert( r == result + len );
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
 | |
|                     const char *zFormat){
 | |
|   char *zCommand = string_format(zFormat, zDb, zName);
 | |
|   int rc;
 | |
|   FTSTRACE(("FTS3 sql: %s\n", zCommand));
 | |
|   rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
 | |
|   sqlite3_free(zCommand);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
 | |
|                        sqlite3_stmt **ppStmt, const char *zFormat){
 | |
|   char *zCommand = string_format(zFormat, zDb, zName);
 | |
|   int rc;
 | |
|   FTSTRACE(("FTS3 prepare: %s\n", zCommand));
 | |
|   rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
 | |
|   sqlite3_free(zCommand);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* end utility functions */
 | |
| 
 | |
| /* Forward reference */
 | |
| typedef struct fulltext_vtab fulltext_vtab;
 | |
| 
 | |
| /* A single term in a query is represented by an instances of
 | |
| ** the following structure. Each word which may match against
 | |
| ** document content is a term. Operators, like NEAR or OR, are
 | |
| ** not terms. Query terms are organized as a flat list stored
 | |
| ** in the Query.pTerms array.
 | |
| **
 | |
| ** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
 | |
| ** is the first in a contiguous string of terms that are either part
 | |
| ** of the same phrase, or connected by the NEAR operator.
 | |
| **
 | |
| ** If the QueryTerm.nNear variable is non-zero, then the token is followed 
 | |
| ** by a NEAR operator with span set to (nNear-1). For example, the 
 | |
| ** following query:
 | |
| **
 | |
| ** The QueryTerm.iPhrase variable stores the index of the token within
 | |
| ** its phrase, indexed starting at 1, or 1 if the token is not part 
 | |
| ** of any phrase.
 | |
| **
 | |
| ** For example, the data structure used to represent the following query:
 | |
| **
 | |
| **     ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
 | |
| **
 | |
| ** is:
 | |
| **
 | |
| **     {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
 | |
| **     {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
 | |
| **     {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
 | |
| **     {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
 | |
| **
 | |
| ** compiling the FTS3 syntax to Query structures is done by the parseQuery()
 | |
| ** function.
 | |
| */
 | |
| typedef struct QueryTerm {
 | |
|   short int nPhrase; /* How many following terms are part of the same phrase */
 | |
|   short int iPhrase; /* This is the i-th term of a phrase. */
 | |
|   short int iColumn; /* Column of the index that must match this term */
 | |
|   signed char nNear; /* term followed by a NEAR operator with span=(nNear-1) */
 | |
|   signed char isOr;  /* this term is preceded by "OR" */
 | |
|   signed char isNot; /* this term is preceded by "-" */
 | |
|   signed char isPrefix; /* this term is followed by "*" */
 | |
|   char *pTerm;       /* text of the term.  '\000' terminated.  malloced */
 | |
|   int nTerm;         /* Number of bytes in pTerm[] */
 | |
| } QueryTerm;
 | |
| 
 | |
| 
 | |
| /* A query string is parsed into a Query structure.
 | |
|  *
 | |
|  * We could, in theory, allow query strings to be complicated
 | |
|  * nested expressions with precedence determined by parentheses.
 | |
|  * But none of the major search engines do this.  (Perhaps the
 | |
|  * feeling is that an parenthesized expression is two complex of
 | |
|  * an idea for the average user to grasp.)  Taking our lead from
 | |
|  * the major search engines, we will allow queries to be a list
 | |
|  * of terms (with an implied AND operator) or phrases in double-quotes,
 | |
|  * with a single optional "-" before each non-phrase term to designate
 | |
|  * negation and an optional OR connector.
 | |
|  *
 | |
|  * OR binds more tightly than the implied AND, which is what the
 | |
|  * major search engines seem to do.  So, for example:
 | |
|  * 
 | |
|  *    [one two OR three]     ==>    one AND (two OR three)
 | |
|  *    [one OR two three]     ==>    (one OR two) AND three
 | |
|  *
 | |
|  * A "-" before a term matches all entries that lack that term.
 | |
|  * The "-" must occur immediately before the term with in intervening
 | |
|  * space.  This is how the search engines do it.
 | |
|  *
 | |
|  * A NOT term cannot be the right-hand operand of an OR.  If this
 | |
|  * occurs in the query string, the NOT is ignored:
 | |
|  *
 | |
|  *    [one OR -two]          ==>    one OR two
 | |
|  *
 | |
|  */
 | |
| typedef struct Query {
 | |
|   fulltext_vtab *pFts;  /* The full text index */
 | |
|   int nTerms;           /* Number of terms in the query */
 | |
|   QueryTerm *pTerms;    /* Array of terms.  Space obtained from malloc() */
 | |
|   int nextIsOr;         /* Set the isOr flag on the next inserted term */
 | |
|   int nextIsNear;       /* Set the isOr flag on the next inserted term */
 | |
|   int nextColumn;       /* Next word parsed must be in this column */
 | |
|   int dfltColumn;       /* The default column */
 | |
| } Query;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** An instance of the following structure keeps track of generated
 | |
| ** matching-word offset information and snippets.
 | |
| */
 | |
| typedef struct Snippet {
 | |
|   int nMatch;     /* Total number of matches */
 | |
|   int nAlloc;     /* Space allocated for aMatch[] */
 | |
|   struct snippetMatch { /* One entry for each matching term */
 | |
|     char snStatus;       /* Status flag for use while constructing snippets */
 | |
|     short int iCol;      /* The column that contains the match */
 | |
|     short int iTerm;     /* The index in Query.pTerms[] of the matching term */
 | |
|     int iToken;          /* The index of the matching document token */
 | |
|     short int nByte;     /* Number of bytes in the term */
 | |
|     int iStart;          /* The offset to the first character of the term */
 | |
|   } *aMatch;      /* Points to space obtained from malloc */
 | |
|   char *zOffset;  /* Text rendering of aMatch[] */
 | |
|   int nOffset;    /* strlen(zOffset) */
 | |
|   char *zSnippet; /* Snippet text */
 | |
|   int nSnippet;   /* strlen(zSnippet) */
 | |
| } Snippet;
 | |
| 
 | |
| 
 | |
| typedef enum QueryType {
 | |
|   QUERY_GENERIC,   /* table scan */
 | |
|   QUERY_DOCID,     /* lookup by docid */
 | |
|   QUERY_FULLTEXT   /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
 | |
| } QueryType;
 | |
| 
 | |
| typedef enum fulltext_statement {
 | |
|   CONTENT_INSERT_STMT,
 | |
|   CONTENT_SELECT_STMT,
 | |
|   CONTENT_UPDATE_STMT,
 | |
|   CONTENT_DELETE_STMT,
 | |
| 
 | |
|   BLOCK_INSERT_STMT,
 | |
|   BLOCK_SELECT_STMT,
 | |
|   BLOCK_DELETE_STMT,
 | |
| 
 | |
|   SEGDIR_MAX_INDEX_STMT,
 | |
|   SEGDIR_SET_STMT,
 | |
|   SEGDIR_SELECT_STMT,
 | |
|   SEGDIR_SPAN_STMT,
 | |
|   SEGDIR_DELETE_STMT,
 | |
|   SEGDIR_SELECT_ALL_STMT,
 | |
| 
 | |
|   MAX_STMT                     /* Always at end! */
 | |
| } fulltext_statement;
 | |
| 
 | |
| /* These must exactly match the enum above. */
 | |
| /* TODO(shess): Is there some risk that a statement will be used in two
 | |
| ** cursors at once, e.g.  if a query joins a virtual table to itself?
 | |
| ** If so perhaps we should move some of these to the cursor object.
 | |
| */
 | |
| static const char *const fulltext_zStatement[MAX_STMT] = {
 | |
|   /* CONTENT_INSERT */ NULL,  /* generated in contentInsertStatement() */
 | |
|   /* CONTENT_SELECT */ NULL,  /* generated in contentSelectStatement() */
 | |
|   /* CONTENT_UPDATE */ NULL,  /* generated in contentUpdateStatement() */
 | |
|   /* CONTENT_DELETE */ "delete from %_content where docid = ?",
 | |
| 
 | |
|   /* BLOCK_INSERT */
 | |
|   "insert into %_segments (blockid, block) values (null, ?)",
 | |
|   /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
 | |
|   /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
 | |
| 
 | |
|   /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
 | |
|   /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
 | |
|   /* SEGDIR_SELECT */
 | |
|   "select start_block, leaves_end_block, root from %_segdir "
 | |
|   " where level = ? order by idx",
 | |
|   /* SEGDIR_SPAN */
 | |
|   "select min(start_block), max(end_block) from %_segdir "
 | |
|   " where level = ? and start_block <> 0",
 | |
|   /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
 | |
|   /* SEGDIR_SELECT_ALL */
 | |
|   "select root, leaves_end_block from %_segdir order by level desc, idx",
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** A connection to a fulltext index is an instance of the following
 | |
| ** structure.  The xCreate and xConnect methods create an instance
 | |
| ** of this structure and xDestroy and xDisconnect free that instance.
 | |
| ** All other methods receive a pointer to the structure as one of their
 | |
| ** arguments.
 | |
| */
 | |
| struct fulltext_vtab {
 | |
|   sqlite3_vtab base;               /* Base class used by SQLite core */
 | |
|   sqlite3 *db;                     /* The database connection */
 | |
|   const char *zDb;                 /* logical database name */
 | |
|   const char *zName;               /* virtual table name */
 | |
|   int nColumn;                     /* number of columns in virtual table */
 | |
|   char **azColumn;                 /* column names.  malloced */
 | |
|   char **azContentColumn;          /* column names in content table; malloced */
 | |
|   sqlite3_tokenizer *pTokenizer;   /* tokenizer for inserts and queries */
 | |
| 
 | |
|   /* Precompiled statements which we keep as long as the table is
 | |
|   ** open.
 | |
|   */
 | |
|   sqlite3_stmt *pFulltextStatements[MAX_STMT];
 | |
| 
 | |
|   /* Precompiled statements used for segment merges.  We run a
 | |
|   ** separate select across the leaf level of each tree being merged.
 | |
|   */
 | |
|   sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
 | |
|   /* The statement used to prepare pLeafSelectStmts. */
 | |
| #define LEAF_SELECT \
 | |
|   "select block from %_segments where blockid between ? and ? order by blockid"
 | |
| 
 | |
|   /* These buffer pending index updates during transactions.
 | |
|   ** nPendingData estimates the memory size of the pending data.  It
 | |
|   ** doesn't include the hash-bucket overhead, nor any malloc
 | |
|   ** overhead.  When nPendingData exceeds kPendingThreshold, the
 | |
|   ** buffer is flushed even before the transaction closes.
 | |
|   ** pendingTerms stores the data, and is only valid when nPendingData
 | |
|   ** is >=0 (nPendingData<0 means pendingTerms has not been
 | |
|   ** initialized).  iPrevDocid is the last docid written, used to make
 | |
|   ** certain we're inserting in sorted order.
 | |
|   */
 | |
|   int nPendingData;
 | |
| #define kPendingThreshold (1*1024*1024)
 | |
|   sqlite_int64 iPrevDocid;
 | |
|   fts3Hash pendingTerms;
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** When the core wants to do a query, it create a cursor using a
 | |
| ** call to xOpen.  This structure is an instance of a cursor.  It
 | |
| ** is destroyed by xClose.
 | |
| */
 | |
| typedef struct fulltext_cursor {
 | |
|   sqlite3_vtab_cursor base;        /* Base class used by SQLite core */
 | |
|   QueryType iCursorType;           /* Copy of sqlite3_index_info.idxNum */
 | |
|   sqlite3_stmt *pStmt;             /* Prepared statement in use by the cursor */
 | |
|   int eof;                         /* True if at End Of Results */
 | |
|   Query q;                         /* Parsed query string */
 | |
|   Snippet snippet;                 /* Cached snippet for the current row */
 | |
|   int iColumn;                     /* Column being searched */
 | |
|   DataBuffer result;               /* Doclist results from fulltextQuery */
 | |
|   DLReader reader;                 /* Result reader if result not empty */
 | |
| } fulltext_cursor;
 | |
| 
 | |
| static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
 | |
|   return (fulltext_vtab *) c->base.pVtab;
 | |
| }
 | |
| 
 | |
| static const sqlite3_module fts3Module;   /* forward declaration */
 | |
| 
 | |
| /* Return a dynamically generated statement of the form
 | |
|  *   insert into %_content (docid, ...) values (?, ...)
 | |
|  */
 | |
| static const char *contentInsertStatement(fulltext_vtab *v){
 | |
|   StringBuffer sb;
 | |
|   int i;
 | |
| 
 | |
|   initStringBuffer(&sb);
 | |
|   append(&sb, "insert into %_content (docid, ");
 | |
|   appendList(&sb, v->nColumn, v->azContentColumn);
 | |
|   append(&sb, ") values (?");
 | |
|   for(i=0; i<v->nColumn; ++i)
 | |
|     append(&sb, ", ?");
 | |
|   append(&sb, ")");
 | |
|   return stringBufferData(&sb);
 | |
| }
 | |
| 
 | |
| /* Return a dynamically generated statement of the form
 | |
|  *   select <content columns> from %_content where docid = ?
 | |
|  */
 | |
| static const char *contentSelectStatement(fulltext_vtab *v){
 | |
|   StringBuffer sb;
 | |
|   initStringBuffer(&sb);
 | |
|   append(&sb, "SELECT ");
 | |
|   appendList(&sb, v->nColumn, v->azContentColumn);
 | |
|   append(&sb, " FROM %_content WHERE docid = ?");
 | |
|   return stringBufferData(&sb);
 | |
| }
 | |
| 
 | |
| /* Return a dynamically generated statement of the form
 | |
|  *   update %_content set [col_0] = ?, [col_1] = ?, ...
 | |
|  *                    where docid = ?
 | |
|  */
 | |
| static const char *contentUpdateStatement(fulltext_vtab *v){
 | |
|   StringBuffer sb;
 | |
|   int i;
 | |
| 
 | |
|   initStringBuffer(&sb);
 | |
|   append(&sb, "update %_content set ");
 | |
|   for(i=0; i<v->nColumn; ++i) {
 | |
|     if( i>0 ){
 | |
|       append(&sb, ", ");
 | |
|     }
 | |
|     append(&sb, v->azContentColumn[i]);
 | |
|     append(&sb, " = ?");
 | |
|   }
 | |
|   append(&sb, " where docid = ?");
 | |
|   return stringBufferData(&sb);
 | |
| }
 | |
| 
 | |
| /* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
 | |
| ** If the indicated statement has never been prepared, it is prepared
 | |
| ** and cached, otherwise the cached version is reset.
 | |
| */
 | |
| static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
 | |
|                              sqlite3_stmt **ppStmt){
 | |
|   assert( iStmt<MAX_STMT );
 | |
|   if( v->pFulltextStatements[iStmt]==NULL ){
 | |
|     const char *zStmt;
 | |
|     int rc;
 | |
|     switch( iStmt ){
 | |
|       case CONTENT_INSERT_STMT:
 | |
|         zStmt = contentInsertStatement(v); break;
 | |
|       case CONTENT_SELECT_STMT:
 | |
|         zStmt = contentSelectStatement(v); break;
 | |
|       case CONTENT_UPDATE_STMT:
 | |
|         zStmt = contentUpdateStatement(v); break;
 | |
|       default:
 | |
|         zStmt = fulltext_zStatement[iStmt];
 | |
|     }
 | |
|     rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
 | |
|                          zStmt);
 | |
|     if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   } else {
 | |
|     int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
| 
 | |
|   *ppStmt = v->pFulltextStatements[iStmt];
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
 | |
| ** SQLITE_ROW to SQLITE_ERROR.  Useful for statements like UPDATE,
 | |
| ** where we expect no results.
 | |
| */
 | |
| static int sql_single_step(sqlite3_stmt *s){
 | |
|   int rc = sqlite3_step(s);
 | |
|   return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
 | |
| }
 | |
| 
 | |
| /* Like sql_get_statement(), but for special replicated LEAF_SELECT
 | |
| ** statements.
 | |
| */
 | |
| /* TODO(shess) Write version for generic statements and then share
 | |
| ** that between the cached-statement functions.
 | |
| */
 | |
| static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
 | |
|                                   sqlite3_stmt **ppStmt){
 | |
|   assert( idx>=0 && idx<MERGE_COUNT );
 | |
|   if( v->pLeafSelectStmts[idx]==NULL ){
 | |
|     int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
 | |
|                          LEAF_SELECT);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }else{
 | |
|     int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
| 
 | |
|   *ppStmt = v->pLeafSelectStmts[idx];
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* insert into %_content (docid, ...) values ([docid], [pValues])
 | |
| ** If the docid contains SQL NULL, then a unique docid will be
 | |
| ** generated.
 | |
| */
 | |
| static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
 | |
|                           sqlite3_value **pValues){
 | |
|   sqlite3_stmt *s;
 | |
|   int i;
 | |
|   int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_value(s, 1, docid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   for(i=0; i<v->nColumn; ++i){
 | |
|     rc = sqlite3_bind_value(s, 2+i, pValues[i]);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
| 
 | |
|   return sql_single_step(s);
 | |
| }
 | |
| 
 | |
| /* update %_content set col0 = pValues[0], col1 = pValues[1], ...
 | |
|  *                  where docid = [iDocid] */
 | |
| static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
 | |
|                           sqlite_int64 iDocid){
 | |
|   sqlite3_stmt *s;
 | |
|   int i;
 | |
|   int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   for(i=0; i<v->nColumn; ++i){
 | |
|     rc = sqlite3_bind_value(s, 1+i, pValues[i]);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return sql_single_step(s);
 | |
| }
 | |
| 
 | |
| static void freeStringArray(int nString, const char **pString){
 | |
|   int i;
 | |
| 
 | |
|   for (i=0 ; i < nString ; ++i) {
 | |
|     if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
 | |
|   }
 | |
|   sqlite3_free((void *) pString);
 | |
| }
 | |
| 
 | |
| /* select * from %_content where docid = [iDocid]
 | |
|  * The caller must delete the returned array and all strings in it.
 | |
|  * null fields will be NULL in the returned array.
 | |
|  *
 | |
|  * TODO: Perhaps we should return pointer/length strings here for consistency
 | |
|  * with other code which uses pointer/length. */
 | |
| static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
 | |
|                           const char ***pValues){
 | |
|   sqlite3_stmt *s;
 | |
|   const char **values;
 | |
|   int i;
 | |
|   int rc;
 | |
| 
 | |
|   *pValues = NULL;
 | |
| 
 | |
|   rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 1, iDocid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc!=SQLITE_ROW ) return rc;
 | |
| 
 | |
|   values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
 | |
|   for(i=0; i<v->nColumn; ++i){
 | |
|     if( sqlite3_column_type(s, i)==SQLITE_NULL ){
 | |
|       values[i] = NULL;
 | |
|     }else{
 | |
|       values[i] = string_dup((char*)sqlite3_column_text(s, i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* We expect only one row.  We must execute another sqlite3_step()
 | |
|    * to complete the iteration; otherwise the table will remain locked. */
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_DONE ){
 | |
|     *pValues = values;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   freeStringArray(v->nColumn, values);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* delete from %_content where docid = [iDocid ] */
 | |
| static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 1, iDocid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return sql_single_step(s);
 | |
| }
 | |
| 
 | |
| /* insert into %_segments values ([pData])
 | |
| **   returns assigned blockid in *piBlockid
 | |
| */
 | |
| static int block_insert(fulltext_vtab *v, const char *pData, int nData,
 | |
|                         sqlite_int64 *piBlockid){
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
 | |
|   if( rc!=SQLITE_DONE ) return rc;
 | |
| 
 | |
|   /* blockid column is an alias for rowid. */
 | |
|   *piBlockid = sqlite3_last_insert_rowid(v->db);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* delete from %_segments
 | |
| **   where blockid between [iStartBlockid] and [iEndBlockid]
 | |
| **
 | |
| ** Deletes the range of blocks, inclusive, used to delete the blocks
 | |
| ** which form a segment.
 | |
| */
 | |
| static int block_delete(fulltext_vtab *v,
 | |
|                         sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 1, iStartBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 2, iEndBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return sql_single_step(s);
 | |
| }
 | |
| 
 | |
| /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
 | |
| ** at iLevel.  Returns SQLITE_DONE if there are no segments at
 | |
| ** iLevel.  Otherwise returns an error.
 | |
| */
 | |
| static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int(s, 1, iLevel);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_step(s);
 | |
|   /* Should always get at least one row due to how max() works. */
 | |
|   if( rc==SQLITE_DONE ) return SQLITE_DONE;
 | |
|   if( rc!=SQLITE_ROW ) return rc;
 | |
| 
 | |
|   /* NULL means that there were no inputs to max(). */
 | |
|   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
 | |
|     rc = sqlite3_step(s);
 | |
|     if( rc==SQLITE_ROW ) return SQLITE_ERROR;
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   *pidx = sqlite3_column_int(s, 0);
 | |
| 
 | |
|   /* We expect only one row.  We must execute another sqlite3_step()
 | |
|    * to complete the iteration; otherwise the table will remain locked. */
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
 | |
|   if( rc!=SQLITE_DONE ) return rc;
 | |
|   return SQLITE_ROW;
 | |
| }
 | |
| 
 | |
| /* insert into %_segdir values (
 | |
| **   [iLevel], [idx],
 | |
| **   [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
 | |
| **   [pRootData]
 | |
| ** )
 | |
| */
 | |
| static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
 | |
|                       sqlite_int64 iStartBlockid,
 | |
|                       sqlite_int64 iLeavesEndBlockid,
 | |
|                       sqlite_int64 iEndBlockid,
 | |
|                       const char *pRootData, int nRootData){
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int(s, 1, iLevel);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int(s, 2, idx);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 3, iStartBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 5, iEndBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return sql_single_step(s);
 | |
| }
 | |
| 
 | |
| /* Queries %_segdir for the block span of the segments in level
 | |
| ** iLevel.  Returns SQLITE_DONE if there are no blocks for iLevel,
 | |
| ** SQLITE_ROW if there are blocks, else an error.
 | |
| */
 | |
| static int segdir_span(fulltext_vtab *v, int iLevel,
 | |
|                        sqlite_int64 *piStartBlockid,
 | |
|                        sqlite_int64 *piEndBlockid){
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int(s, 1, iLevel);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_DONE ) return SQLITE_DONE;  /* Should never happen */
 | |
|   if( rc!=SQLITE_ROW ) return rc;
 | |
| 
 | |
|   /* This happens if all segments at this level are entirely inline. */
 | |
|   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
 | |
|     /* We expect only one row.  We must execute another sqlite3_step()
 | |
|      * to complete the iteration; otherwise the table will remain locked. */
 | |
|     int rc2 = sqlite3_step(s);
 | |
|     if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
 | |
|     return rc2;
 | |
|   }
 | |
| 
 | |
|   *piStartBlockid = sqlite3_column_int64(s, 0);
 | |
|   *piEndBlockid = sqlite3_column_int64(s, 1);
 | |
| 
 | |
|   /* We expect only one row.  We must execute another sqlite3_step()
 | |
|    * to complete the iteration; otherwise the table will remain locked. */
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
 | |
|   if( rc!=SQLITE_DONE ) return rc;
 | |
|   return SQLITE_ROW;
 | |
| }
 | |
| 
 | |
| /* Delete the segment blocks and segment directory records for all
 | |
| ** segments at iLevel.
 | |
| */
 | |
| static int segdir_delete(fulltext_vtab *v, int iLevel){
 | |
|   sqlite3_stmt *s;
 | |
|   sqlite_int64 iStartBlockid, iEndBlockid;
 | |
|   int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
 | |
|   if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
 | |
| 
 | |
|   if( rc==SQLITE_ROW ){
 | |
|     rc = block_delete(v, iStartBlockid, iEndBlockid);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
| 
 | |
|   /* Delete the segment directory itself. */
 | |
|   rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 1, iLevel);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return sql_single_step(s);
 | |
| }
 | |
| 
 | |
| /* TODO(shess) clearPendingTerms() is far down the file because
 | |
| ** writeZeroSegment() is far down the file because LeafWriter is far
 | |
| ** down the file.  Consider refactoring the code to move the non-vtab
 | |
| ** code above the vtab code so that we don't need this forward
 | |
| ** reference.
 | |
| */
 | |
| static int clearPendingTerms(fulltext_vtab *v);
 | |
| 
 | |
| /*
 | |
| ** Free the memory used to contain a fulltext_vtab structure.
 | |
| */
 | |
| static void fulltext_vtab_destroy(fulltext_vtab *v){
 | |
|   int iStmt, i;
 | |
| 
 | |
|   FTSTRACE(("FTS3 Destroy %p\n", v));
 | |
|   for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
 | |
|     if( v->pFulltextStatements[iStmt]!=NULL ){
 | |
|       sqlite3_finalize(v->pFulltextStatements[iStmt]);
 | |
|       v->pFulltextStatements[iStmt] = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for( i=0; i<MERGE_COUNT; i++ ){
 | |
|     if( v->pLeafSelectStmts[i]!=NULL ){
 | |
|       sqlite3_finalize(v->pLeafSelectStmts[i]);
 | |
|       v->pLeafSelectStmts[i] = NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( v->pTokenizer!=NULL ){
 | |
|     v->pTokenizer->pModule->xDestroy(v->pTokenizer);
 | |
|     v->pTokenizer = NULL;
 | |
|   }
 | |
| 
 | |
|   clearPendingTerms(v);
 | |
| 
 | |
|   sqlite3_free(v->azColumn);
 | |
|   for(i = 0; i < v->nColumn; ++i) {
 | |
|     sqlite3_free(v->azContentColumn[i]);
 | |
|   }
 | |
|   sqlite3_free(v->azContentColumn);
 | |
|   sqlite3_free(v);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Token types for parsing the arguments to xConnect or xCreate.
 | |
| */
 | |
| #define TOKEN_EOF         0    /* End of file */
 | |
| #define TOKEN_SPACE       1    /* Any kind of whitespace */
 | |
| #define TOKEN_ID          2    /* An identifier */
 | |
| #define TOKEN_STRING      3    /* A string literal */
 | |
| #define TOKEN_PUNCT       4    /* A single punctuation character */
 | |
| 
 | |
| /*
 | |
| ** If X is a character that can be used in an identifier then
 | |
| ** ftsIdChar(X) will be true.  Otherwise it is false.
 | |
| **
 | |
| ** For ASCII, any character with the high-order bit set is
 | |
| ** allowed in an identifier.  For 7-bit characters, 
 | |
| ** isFtsIdChar[X] must be 1.
 | |
| **
 | |
| ** Ticket #1066.  the SQL standard does not allow '$' in the
 | |
| ** middle of identfiers.  But many SQL implementations do. 
 | |
| ** SQLite will allow '$' in identifiers for compatibility.
 | |
| ** But the feature is undocumented.
 | |
| */
 | |
| static const char isFtsIdChar[] = {
 | |
| /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
 | |
|     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
 | |
| };
 | |
| #define ftsIdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Return the length of the token that begins at z[0]. 
 | |
| ** Store the token type in *tokenType before returning.
 | |
| */
 | |
| static int ftsGetToken(const char *z, int *tokenType){
 | |
|   int i, c;
 | |
|   switch( *z ){
 | |
|     case 0: {
 | |
|       *tokenType = TOKEN_EOF;
 | |
|       return 0;
 | |
|     }
 | |
|     case ' ': case '\t': case '\n': case '\f': case '\r': {
 | |
|       for(i=1; safe_isspace(z[i]); i++){}
 | |
|       *tokenType = TOKEN_SPACE;
 | |
|       return i;
 | |
|     }
 | |
|     case '`':
 | |
|     case '\'':
 | |
|     case '"': {
 | |
|       int delim = z[0];
 | |
|       for(i=1; (c=z[i])!=0; i++){
 | |
|         if( c==delim ){
 | |
|           if( z[i+1]==delim ){
 | |
|             i++;
 | |
|           }else{
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       *tokenType = TOKEN_STRING;
 | |
|       return i + (c!=0);
 | |
|     }
 | |
|     case '[': {
 | |
|       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
 | |
|       *tokenType = TOKEN_ID;
 | |
|       return i;
 | |
|     }
 | |
|     default: {
 | |
|       if( !ftsIdChar(*z) ){
 | |
|         break;
 | |
|       }
 | |
|       for(i=1; ftsIdChar(z[i]); i++){}
 | |
|       *tokenType = TOKEN_ID;
 | |
|       return i;
 | |
|     }
 | |
|   }
 | |
|   *tokenType = TOKEN_PUNCT;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** A token extracted from a string is an instance of the following
 | |
| ** structure.
 | |
| */
 | |
| typedef struct FtsToken {
 | |
|   const char *z;       /* Pointer to token text.  Not '\000' terminated */
 | |
|   short int n;         /* Length of the token text in bytes. */
 | |
| } FtsToken;
 | |
| 
 | |
| /*
 | |
| ** Given a input string (which is really one of the argv[] parameters
 | |
| ** passed into xConnect or xCreate) split the string up into tokens.
 | |
| ** Return an array of pointers to '\000' terminated strings, one string
 | |
| ** for each non-whitespace token.
 | |
| **
 | |
| ** The returned array is terminated by a single NULL pointer.
 | |
| **
 | |
| ** Space to hold the returned array is obtained from a single
 | |
| ** malloc and should be freed by passing the return value to free().
 | |
| ** The individual strings within the token list are all a part of
 | |
| ** the single memory allocation and will all be freed at once.
 | |
| */
 | |
| static char **tokenizeString(const char *z, int *pnToken){
 | |
|   int nToken = 0;
 | |
|   FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
 | |
|   int n = 1;
 | |
|   int e, i;
 | |
|   int totalSize = 0;
 | |
|   char **azToken;
 | |
|   char *zCopy;
 | |
|   while( n>0 ){
 | |
|     n = ftsGetToken(z, &e);
 | |
|     if( e!=TOKEN_SPACE ){
 | |
|       aToken[nToken].z = z;
 | |
|       aToken[nToken].n = n;
 | |
|       nToken++;
 | |
|       totalSize += n+1;
 | |
|     }
 | |
|     z += n;
 | |
|   }
 | |
|   azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
 | |
|   zCopy = (char*)&azToken[nToken];
 | |
|   nToken--;
 | |
|   for(i=0; i<nToken; i++){
 | |
|     azToken[i] = zCopy;
 | |
|     n = aToken[i].n;
 | |
|     memcpy(zCopy, aToken[i].z, n);
 | |
|     zCopy[n] = 0;
 | |
|     zCopy += n+1;
 | |
|   }
 | |
|   azToken[nToken] = 0;
 | |
|   sqlite3_free(aToken);
 | |
|   *pnToken = nToken;
 | |
|   return azToken;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert an SQL-style quoted string into a normal string by removing
 | |
| ** the quote characters.  The conversion is done in-place.  If the
 | |
| ** input does not begin with a quote character, then this routine
 | |
| ** is a no-op.
 | |
| **
 | |
| ** Examples:
 | |
| **
 | |
| **     "abc"   becomes   abc
 | |
| **     'xyz'   becomes   xyz
 | |
| **     [pqr]   becomes   pqr
 | |
| **     `mno`   becomes   mno
 | |
| */
 | |
| static void dequoteString(char *z){
 | |
|   int quote;
 | |
|   int i, j;
 | |
|   if( z==0 ) return;
 | |
|   quote = z[0];
 | |
|   switch( quote ){
 | |
|     case '\'':  break;
 | |
|     case '"':   break;
 | |
|     case '`':   break;                /* For MySQL compatibility */
 | |
|     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
 | |
|     default:    return;
 | |
|   }
 | |
|   for(i=1, j=0; z[i]; i++){
 | |
|     if( z[i]==quote ){
 | |
|       if( z[i+1]==quote ){
 | |
|         z[j++] = quote;
 | |
|         i++;
 | |
|       }else{
 | |
|         z[j++] = 0;
 | |
|         break;
 | |
|       }
 | |
|     }else{
 | |
|       z[j++] = z[i];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The input azIn is a NULL-terminated list of tokens.  Remove the first
 | |
| ** token and all punctuation tokens.  Remove the quotes from
 | |
| ** around string literal tokens.
 | |
| **
 | |
| ** Example:
 | |
| **
 | |
| **     input:      tokenize chinese ( 'simplifed' , 'mixed' )
 | |
| **     output:     chinese simplifed mixed
 | |
| **
 | |
| ** Another example:
 | |
| **
 | |
| **     input:      delimiters ( '[' , ']' , '...' )
 | |
| **     output:     [ ] ...
 | |
| */
 | |
| static void tokenListToIdList(char **azIn){
 | |
|   int i, j;
 | |
|   if( azIn ){
 | |
|     for(i=0, j=-1; azIn[i]; i++){
 | |
|       if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
 | |
|         dequoteString(azIn[i]);
 | |
|         if( j>=0 ){
 | |
|           azIn[j] = azIn[i];
 | |
|         }
 | |
|         j++;
 | |
|       }
 | |
|     }
 | |
|     azIn[j] = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Find the first alphanumeric token in the string zIn.  Null-terminate
 | |
| ** this token.  Remove any quotation marks.  And return a pointer to
 | |
| ** the result.
 | |
| */
 | |
| static char *firstToken(char *zIn, char **pzTail){
 | |
|   int n, ttype;
 | |
|   while(1){
 | |
|     n = ftsGetToken(zIn, &ttype);
 | |
|     if( ttype==TOKEN_SPACE ){
 | |
|       zIn += n;
 | |
|     }else if( ttype==TOKEN_EOF ){
 | |
|       *pzTail = zIn;
 | |
|       return 0;
 | |
|     }else{
 | |
|       zIn[n] = 0;
 | |
|       *pzTail = &zIn[1];
 | |
|       dequoteString(zIn);
 | |
|       return zIn;
 | |
|     }
 | |
|   }
 | |
|   /*NOTREACHED*/
 | |
| }
 | |
| 
 | |
| /* Return true if...
 | |
| **
 | |
| **   *  s begins with the string t, ignoring case
 | |
| **   *  s is longer than t
 | |
| **   *  The first character of s beyond t is not a alphanumeric
 | |
| ** 
 | |
| ** Ignore leading space in *s.
 | |
| **
 | |
| ** To put it another way, return true if the first token of
 | |
| ** s[] is t[].
 | |
| */
 | |
| static int startsWith(const char *s, const char *t){
 | |
|   while( safe_isspace(*s) ){ s++; }
 | |
|   while( *t ){
 | |
|     if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
 | |
|   }
 | |
|   return *s!='_' && !safe_isalnum(*s);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** An instance of this structure defines the "spec" of a
 | |
| ** full text index.  This structure is populated by parseSpec
 | |
| ** and use by fulltextConnect and fulltextCreate.
 | |
| */
 | |
| typedef struct TableSpec {
 | |
|   const char *zDb;         /* Logical database name */
 | |
|   const char *zName;       /* Name of the full-text index */
 | |
|   int nColumn;             /* Number of columns to be indexed */
 | |
|   char **azColumn;         /* Original names of columns to be indexed */
 | |
|   char **azContentColumn;  /* Column names for %_content */
 | |
|   char **azTokenizer;      /* Name of tokenizer and its arguments */
 | |
| } TableSpec;
 | |
| 
 | |
| /*
 | |
| ** Reclaim all of the memory used by a TableSpec
 | |
| */
 | |
| static void clearTableSpec(TableSpec *p) {
 | |
|   sqlite3_free(p->azColumn);
 | |
|   sqlite3_free(p->azContentColumn);
 | |
|   sqlite3_free(p->azTokenizer);
 | |
| }
 | |
| 
 | |
| /* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
 | |
|  *
 | |
|  * CREATE VIRTUAL TABLE email
 | |
|  *        USING fts3(subject, body, tokenize mytokenizer(myarg))
 | |
|  *
 | |
|  * We return parsed information in a TableSpec structure.
 | |
|  * 
 | |
|  */
 | |
| static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
 | |
|                      char**pzErr){
 | |
|   int i, n;
 | |
|   char *z, *zDummy;
 | |
|   char **azArg;
 | |
|   const char *zTokenizer = 0;    /* argv[] entry describing the tokenizer */
 | |
| 
 | |
|   assert( argc>=3 );
 | |
|   /* Current interface:
 | |
|   ** argv[0] - module name
 | |
|   ** argv[1] - database name
 | |
|   ** argv[2] - table name
 | |
|   ** argv[3..] - columns, optionally followed by tokenizer specification
 | |
|   **             and snippet delimiters specification.
 | |
|   */
 | |
| 
 | |
|   /* Make a copy of the complete argv[][] array in a single allocation.
 | |
|   ** The argv[][] array is read-only and transient.  We can write to the
 | |
|   ** copy in order to modify things and the copy is persistent.
 | |
|   */
 | |
|   CLEAR(pSpec);
 | |
|   for(i=n=0; i<argc; i++){
 | |
|     n += strlen(argv[i]) + 1;
 | |
|   }
 | |
|   azArg = sqlite3_malloc( sizeof(char*)*argc + n );
 | |
|   if( azArg==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   z = (char*)&azArg[argc];
 | |
|   for(i=0; i<argc; i++){
 | |
|     azArg[i] = z;
 | |
|     strcpy(z, argv[i]);
 | |
|     z += strlen(z)+1;
 | |
|   }
 | |
| 
 | |
|   /* Identify the column names and the tokenizer and delimiter arguments
 | |
|   ** in the argv[][] array.
 | |
|   */
 | |
|   pSpec->zDb = azArg[1];
 | |
|   pSpec->zName = azArg[2];
 | |
|   pSpec->nColumn = 0;
 | |
|   pSpec->azColumn = azArg;
 | |
|   zTokenizer = "tokenize simple";
 | |
|   for(i=3; i<argc; ++i){
 | |
|     if( startsWith(azArg[i],"tokenize") ){
 | |
|       zTokenizer = azArg[i];
 | |
|     }else{
 | |
|       z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
 | |
|       pSpec->nColumn++;
 | |
|     }
 | |
|   }
 | |
|   if( pSpec->nColumn==0 ){
 | |
|     azArg[0] = "content";
 | |
|     pSpec->nColumn = 1;
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Construct the list of content column names.
 | |
|   **
 | |
|   ** Each content column name will be of the form cNNAAAA
 | |
|   ** where NN is the column number and AAAA is the sanitized
 | |
|   ** column name.  "sanitized" means that special characters are
 | |
|   ** converted to "_".  The cNN prefix guarantees that all column
 | |
|   ** names are unique.
 | |
|   **
 | |
|   ** The AAAA suffix is not strictly necessary.  It is included
 | |
|   ** for the convenience of people who might examine the generated
 | |
|   ** %_content table and wonder what the columns are used for.
 | |
|   */
 | |
|   pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
 | |
|   if( pSpec->azContentColumn==0 ){
 | |
|     clearTableSpec(pSpec);
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
|   for(i=0; i<pSpec->nColumn; i++){
 | |
|     char *p;
 | |
|     pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
 | |
|     for (p = pSpec->azContentColumn[i]; *p ; ++p) {
 | |
|       if( !safe_isalnum(*p) ) *p = '_';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /*
 | |
|   ** Parse the tokenizer specification string.
 | |
|   */
 | |
|   pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
 | |
|   tokenListToIdList(pSpec->azTokenizer);
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Generate a CREATE TABLE statement that describes the schema of
 | |
| ** the virtual table.  Return a pointer to this schema string.
 | |
| **
 | |
| ** Space is obtained from sqlite3_mprintf() and should be freed
 | |
| ** using sqlite3_free().
 | |
| */
 | |
| static char *fulltextSchema(
 | |
|   int nColumn,                  /* Number of columns */
 | |
|   const char *const* azColumn,  /* List of columns */
 | |
|   const char *zTableName        /* Name of the table */
 | |
| ){
 | |
|   int i;
 | |
|   char *zSchema, *zNext;
 | |
|   const char *zSep = "(";
 | |
|   zSchema = sqlite3_mprintf("CREATE TABLE x");
 | |
|   for(i=0; i<nColumn; i++){
 | |
|     zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
 | |
|     sqlite3_free(zSchema);
 | |
|     zSchema = zNext;
 | |
|     zSep = ",";
 | |
|   }
 | |
|   zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
 | |
|   sqlite3_free(zSchema);
 | |
|   zSchema = zNext;
 | |
|   zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
 | |
|   sqlite3_free(zSchema);
 | |
|   return zNext;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Build a new sqlite3_vtab structure that will describe the
 | |
| ** fulltext index defined by spec.
 | |
| */
 | |
| static int constructVtab(
 | |
|   sqlite3 *db,              /* The SQLite database connection */
 | |
|   fts3Hash *pHash,          /* Hash table containing tokenizers */
 | |
|   TableSpec *spec,          /* Parsed spec information from parseSpec() */
 | |
|   sqlite3_vtab **ppVTab,    /* Write the resulting vtab structure here */
 | |
|   char **pzErr              /* Write any error message here */
 | |
| ){
 | |
|   int rc;
 | |
|   int n;
 | |
|   fulltext_vtab *v = 0;
 | |
|   const sqlite3_tokenizer_module *m = NULL;
 | |
|   char *schema;
 | |
| 
 | |
|   char const *zTok;         /* Name of tokenizer to use for this fts table */
 | |
|   int nTok;                 /* Length of zTok, including nul terminator */
 | |
| 
 | |
|   v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
 | |
|   if( v==0 ) return SQLITE_NOMEM;
 | |
|   CLEAR(v);
 | |
|   /* sqlite will initialize v->base */
 | |
|   v->db = db;
 | |
|   v->zDb = spec->zDb;       /* Freed when azColumn is freed */
 | |
|   v->zName = spec->zName;   /* Freed when azColumn is freed */
 | |
|   v->nColumn = spec->nColumn;
 | |
|   v->azContentColumn = spec->azContentColumn;
 | |
|   spec->azContentColumn = 0;
 | |
|   v->azColumn = spec->azColumn;
 | |
|   spec->azColumn = 0;
 | |
| 
 | |
|   if( spec->azTokenizer==0 ){
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| 
 | |
|   zTok = spec->azTokenizer[0]; 
 | |
|   if( !zTok ){
 | |
|     zTok = "simple";
 | |
|   }
 | |
|   nTok = strlen(zTok)+1;
 | |
| 
 | |
|   m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
 | |
|   if( !m ){
 | |
|     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
 | |
|     rc = SQLITE_ERROR;
 | |
|     goto err;
 | |
|   }
 | |
| 
 | |
|   for(n=0; spec->azTokenizer[n]; n++){}
 | |
|   if( n ){
 | |
|     rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
 | |
|                     &v->pTokenizer);
 | |
|   }else{
 | |
|     rc = m->xCreate(0, 0, &v->pTokenizer);
 | |
|   }
 | |
|   if( rc!=SQLITE_OK ) goto err;
 | |
|   v->pTokenizer->pModule = m;
 | |
| 
 | |
|   /* TODO: verify the existence of backing tables foo_content, foo_term */
 | |
| 
 | |
|   schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
 | |
|                           spec->zName);
 | |
|   rc = sqlite3_declare_vtab(db, schema);
 | |
|   sqlite3_free(schema);
 | |
|   if( rc!=SQLITE_OK ) goto err;
 | |
| 
 | |
|   memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
 | |
| 
 | |
|   /* Indicate that the buffer is not live. */
 | |
|   v->nPendingData = -1;
 | |
| 
 | |
|   *ppVTab = &v->base;
 | |
|   FTSTRACE(("FTS3 Connect %p\n", v));
 | |
| 
 | |
|   return rc;
 | |
| 
 | |
| err:
 | |
|   fulltext_vtab_destroy(v);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int fulltextConnect(
 | |
|   sqlite3 *db,
 | |
|   void *pAux,
 | |
|   int argc, const char *const*argv,
 | |
|   sqlite3_vtab **ppVTab,
 | |
|   char **pzErr
 | |
| ){
 | |
|   TableSpec spec;
 | |
|   int rc = parseSpec(&spec, argc, argv, pzErr);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
 | |
|   clearTableSpec(&spec);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* The %_content table holds the text of each document, with
 | |
| ** the docid column exposed as the SQLite rowid for the table.
 | |
| */
 | |
| /* TODO(shess) This comment needs elaboration to match the updated
 | |
| ** code.  Work it into the top-of-file comment at that time.
 | |
| */
 | |
| static int fulltextCreate(sqlite3 *db, void *pAux,
 | |
|                           int argc, const char * const *argv,
 | |
|                           sqlite3_vtab **ppVTab, char **pzErr){
 | |
|   int rc;
 | |
|   TableSpec spec;
 | |
|   StringBuffer schema;
 | |
|   FTSTRACE(("FTS3 Create\n"));
 | |
| 
 | |
|   rc = parseSpec(&spec, argc, argv, pzErr);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   initStringBuffer(&schema);
 | |
|   append(&schema, "CREATE TABLE %_content(");
 | |
|   append(&schema, "  docid INTEGER PRIMARY KEY,");
 | |
|   appendList(&schema, spec.nColumn, spec.azContentColumn);
 | |
|   append(&schema, ")");
 | |
|   rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
 | |
|   stringBufferDestroy(&schema);
 | |
|   if( rc!=SQLITE_OK ) goto out;
 | |
| 
 | |
|   rc = sql_exec(db, spec.zDb, spec.zName,
 | |
|                 "create table %_segments("
 | |
|                 "  blockid INTEGER PRIMARY KEY,"
 | |
|                 "  block blob"
 | |
|                 ");"
 | |
|                 );
 | |
|   if( rc!=SQLITE_OK ) goto out;
 | |
| 
 | |
|   rc = sql_exec(db, spec.zDb, spec.zName,
 | |
|                 "create table %_segdir("
 | |
|                 "  level integer,"
 | |
|                 "  idx integer,"
 | |
|                 "  start_block integer,"
 | |
|                 "  leaves_end_block integer,"
 | |
|                 "  end_block integer,"
 | |
|                 "  root blob,"
 | |
|                 "  primary key(level, idx)"
 | |
|                 ");");
 | |
|   if( rc!=SQLITE_OK ) goto out;
 | |
| 
 | |
|   rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
 | |
| 
 | |
| out:
 | |
|   clearTableSpec(&spec);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Decide how to handle an SQL query. */
 | |
| static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
 | |
|   fulltext_vtab *v = (fulltext_vtab *)pVTab;
 | |
|   int i;
 | |
|   FTSTRACE(("FTS3 BestIndex\n"));
 | |
| 
 | |
|   for(i=0; i<pInfo->nConstraint; ++i){
 | |
|     const struct sqlite3_index_constraint *pConstraint;
 | |
|     pConstraint = &pInfo->aConstraint[i];
 | |
|     if( pConstraint->usable ) {
 | |
|       if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
 | |
|           pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
 | |
|         pInfo->idxNum = QUERY_DOCID;      /* lookup by docid */
 | |
|         FTSTRACE(("FTS3 QUERY_DOCID\n"));
 | |
|       } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
 | |
|                  pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
 | |
|         /* full-text search */
 | |
|         pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
 | |
|         FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
 | |
|       } else continue;
 | |
| 
 | |
|       pInfo->aConstraintUsage[i].argvIndex = 1;
 | |
|       pInfo->aConstraintUsage[i].omit = 1;
 | |
| 
 | |
|       /* An arbitrary value for now.
 | |
|        * TODO: Perhaps docid matches should be considered cheaper than
 | |
|        * full-text searches. */
 | |
|       pInfo->estimatedCost = 1.0;   
 | |
| 
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   pInfo->idxNum = QUERY_GENERIC;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int fulltextDisconnect(sqlite3_vtab *pVTab){
 | |
|   FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
 | |
|   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int fulltextDestroy(sqlite3_vtab *pVTab){
 | |
|   fulltext_vtab *v = (fulltext_vtab *)pVTab;
 | |
|   int rc;
 | |
| 
 | |
|   FTSTRACE(("FTS3 Destroy %p\n", pVTab));
 | |
|   rc = sql_exec(v->db, v->zDb, v->zName,
 | |
|                 "drop table if exists %_content;"
 | |
|                 "drop table if exists %_segments;"
 | |
|                 "drop table if exists %_segdir;"
 | |
|                 );
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
 | |
|   fulltext_cursor *c;
 | |
| 
 | |
|   c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
 | |
|   if( c ){
 | |
|     memset(c, 0, sizeof(fulltext_cursor));
 | |
|     /* sqlite will initialize c->base */
 | |
|     *ppCursor = &c->base;
 | |
|     FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
 | |
|     return SQLITE_OK;
 | |
|   }else{
 | |
|     return SQLITE_NOMEM;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Free all of the dynamically allocated memory held by *q
 | |
| */
 | |
| static void queryClear(Query *q){
 | |
|   int i;
 | |
|   for(i = 0; i < q->nTerms; ++i){
 | |
|     sqlite3_free(q->pTerms[i].pTerm);
 | |
|   }
 | |
|   sqlite3_free(q->pTerms);
 | |
|   CLEAR(q);
 | |
| }
 | |
| 
 | |
| /* Free all of the dynamically allocated memory held by the
 | |
| ** Snippet
 | |
| */
 | |
| static void snippetClear(Snippet *p){
 | |
|   sqlite3_free(p->aMatch);
 | |
|   sqlite3_free(p->zOffset);
 | |
|   sqlite3_free(p->zSnippet);
 | |
|   CLEAR(p);
 | |
| }
 | |
| /*
 | |
| ** Append a single entry to the p->aMatch[] log.
 | |
| */
 | |
| static void snippetAppendMatch(
 | |
|   Snippet *p,               /* Append the entry to this snippet */
 | |
|   int iCol, int iTerm,      /* The column and query term */
 | |
|   int iToken,               /* Matching token in document */
 | |
|   int iStart, int nByte     /* Offset and size of the match */
 | |
| ){
 | |
|   int i;
 | |
|   struct snippetMatch *pMatch;
 | |
|   if( p->nMatch+1>=p->nAlloc ){
 | |
|     p->nAlloc = p->nAlloc*2 + 10;
 | |
|     p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
 | |
|     if( p->aMatch==0 ){
 | |
|       p->nMatch = 0;
 | |
|       p->nAlloc = 0;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   i = p->nMatch++;
 | |
|   pMatch = &p->aMatch[i];
 | |
|   pMatch->iCol = iCol;
 | |
|   pMatch->iTerm = iTerm;
 | |
|   pMatch->iToken = iToken;
 | |
|   pMatch->iStart = iStart;
 | |
|   pMatch->nByte = nByte;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
 | |
| */
 | |
| #define FTS3_ROTOR_SZ   (32)
 | |
| #define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
 | |
| 
 | |
| /*
 | |
| ** Add entries to pSnippet->aMatch[] for every match that occurs against
 | |
| ** document zDoc[0..nDoc-1] which is stored in column iColumn.
 | |
| */
 | |
| static void snippetOffsetsOfColumn(
 | |
|   Query *pQuery,
 | |
|   Snippet *pSnippet,
 | |
|   int iColumn,
 | |
|   const char *zDoc,
 | |
|   int nDoc
 | |
| ){
 | |
|   const sqlite3_tokenizer_module *pTModule;  /* The tokenizer module */
 | |
|   sqlite3_tokenizer *pTokenizer;             /* The specific tokenizer */
 | |
|   sqlite3_tokenizer_cursor *pTCursor;        /* Tokenizer cursor */
 | |
|   fulltext_vtab *pVtab;                /* The full text index */
 | |
|   int nColumn;                         /* Number of columns in the index */
 | |
|   const QueryTerm *aTerm;              /* Query string terms */
 | |
|   int nTerm;                           /* Number of query string terms */  
 | |
|   int i, j;                            /* Loop counters */
 | |
|   int rc;                              /* Return code */
 | |
|   unsigned int match, prevMatch;       /* Phrase search bitmasks */
 | |
|   const char *zToken;                  /* Next token from the tokenizer */
 | |
|   int nToken;                          /* Size of zToken */
 | |
|   int iBegin, iEnd, iPos;              /* Offsets of beginning and end */
 | |
| 
 | |
|   /* The following variables keep a circular buffer of the last
 | |
|   ** few tokens */
 | |
|   unsigned int iRotor = 0;             /* Index of current token */
 | |
|   int iRotorBegin[FTS3_ROTOR_SZ];      /* Beginning offset of token */
 | |
|   int iRotorLen[FTS3_ROTOR_SZ];        /* Length of token */
 | |
| 
 | |
|   pVtab = pQuery->pFts;
 | |
|   nColumn = pVtab->nColumn;
 | |
|   pTokenizer = pVtab->pTokenizer;
 | |
|   pTModule = pTokenizer->pModule;
 | |
|   rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
 | |
|   if( rc ) return;
 | |
|   pTCursor->pTokenizer = pTokenizer;
 | |
|   aTerm = pQuery->pTerms;
 | |
|   nTerm = pQuery->nTerms;
 | |
|   if( nTerm>=FTS3_ROTOR_SZ ){
 | |
|     nTerm = FTS3_ROTOR_SZ - 1;
 | |
|   }
 | |
|   prevMatch = 0;
 | |
|   while(1){
 | |
|     rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
 | |
|     if( rc ) break;
 | |
|     iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
 | |
|     iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
 | |
|     match = 0;
 | |
|     for(i=0; i<nTerm; i++){
 | |
|       int iCol;
 | |
|       iCol = aTerm[i].iColumn;
 | |
|       if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
 | |
|       if( aTerm[i].nTerm>nToken ) continue;
 | |
|       if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
 | |
|       assert( aTerm[i].nTerm<=nToken );
 | |
|       if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
 | |
|       if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
 | |
|       match |= 1<<i;
 | |
|       if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
 | |
|         for(j=aTerm[i].iPhrase-1; j>=0; j--){
 | |
|           int k = (iRotor-j) & FTS3_ROTOR_MASK;
 | |
|           snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
 | |
|                 iRotorBegin[k], iRotorLen[k]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     prevMatch = match<<1;
 | |
|     iRotor++;
 | |
|   }
 | |
|   pTModule->xClose(pTCursor);  
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Remove entries from the pSnippet structure to account for the NEAR
 | |
| ** operator. When this is called, pSnippet contains the list of token 
 | |
| ** offsets produced by treating all NEAR operators as AND operators.
 | |
| ** This function removes any entries that should not be present after
 | |
| ** accounting for the NEAR restriction. For example, if the queried
 | |
| ** document is:
 | |
| **
 | |
| **     "A B C D E A"
 | |
| **
 | |
| ** and the query is:
 | |
| ** 
 | |
| **     A NEAR/0 E
 | |
| **
 | |
| ** then when this function is called the Snippet contains token offsets
 | |
| ** 0, 4 and 5. This function removes the "0" entry (because the first A
 | |
| ** is not near enough to an E).
 | |
| */
 | |
| static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
 | |
|   int ii;
 | |
|   int iDir = 1;
 | |
| 
 | |
|   while(iDir>-2) {
 | |
|     assert( iDir==1 || iDir==-1 );
 | |
|     for(ii=0; ii<pSnippet->nMatch; ii++){
 | |
|       int jj;
 | |
|       int nNear;
 | |
|       struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
 | |
|       QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
 | |
| 
 | |
|       if( (pMatch->iTerm+iDir)<0 
 | |
|        || (pMatch->iTerm+iDir)>=pQuery->nTerms
 | |
|       ){
 | |
|         continue;
 | |
|       }
 | |
|      
 | |
|       nNear = pQueryTerm->nNear;
 | |
|       if( iDir<0 ){
 | |
|         nNear = pQueryTerm[-1].nNear;
 | |
|       }
 | |
|   
 | |
|       if( pMatch->iTerm>=0 && nNear ){
 | |
|         int isOk = 0;
 | |
|         int iNextTerm = pMatch->iTerm+iDir;
 | |
|         int iPrevTerm = iNextTerm;
 | |
| 
 | |
|         int iEndToken;
 | |
|         int iStartToken;
 | |
| 
 | |
|         if( iDir<0 ){
 | |
|           int nPhrase = 1;
 | |
|           iStartToken = pMatch->iToken;
 | |
|           while( (pMatch->iTerm+nPhrase)<pQuery->nTerms 
 | |
|               && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1 
 | |
|           ){
 | |
|             nPhrase++;
 | |
|           }
 | |
|           iEndToken = iStartToken + nPhrase - 1;
 | |
|         }else{
 | |
|           iEndToken   = pMatch->iToken;
 | |
|           iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
 | |
|         }
 | |
| 
 | |
|         while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
 | |
|           iNextTerm--;
 | |
|         }
 | |
|         while( (iPrevTerm+1)<pQuery->nTerms && 
 | |
|                pQuery->pTerms[iPrevTerm+1].iPhrase>1 
 | |
|         ){
 | |
|           iPrevTerm++;
 | |
|         }
 | |
|   
 | |
|         for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
 | |
|           struct snippetMatch *p = &pSnippet->aMatch[jj];
 | |
|           if( p->iCol==pMatch->iCol && ((
 | |
|                p->iTerm==iNextTerm && 
 | |
|                p->iToken>iEndToken && 
 | |
|                p->iToken<=iEndToken+nNear
 | |
|           ) || (
 | |
|                p->iTerm==iPrevTerm && 
 | |
|                p->iToken<iStartToken && 
 | |
|                p->iToken>=iStartToken-nNear
 | |
|           ))){
 | |
|             isOk = 1;
 | |
|           }
 | |
|         }
 | |
|         if( !isOk ){
 | |
|           for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
 | |
|             pMatch[jj].iTerm = -1;
 | |
|           }
 | |
|           ii = -1;
 | |
|           iDir = 1;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     iDir -= 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Compute all offsets for the current row of the query.  
 | |
| ** If the offsets have already been computed, this routine is a no-op.
 | |
| */
 | |
| static void snippetAllOffsets(fulltext_cursor *p){
 | |
|   int nColumn;
 | |
|   int iColumn, i;
 | |
|   int iFirst, iLast;
 | |
|   fulltext_vtab *pFts;
 | |
| 
 | |
|   if( p->snippet.nMatch ) return;
 | |
|   if( p->q.nTerms==0 ) return;
 | |
|   pFts = p->q.pFts;
 | |
|   nColumn = pFts->nColumn;
 | |
|   iColumn = (p->iCursorType - QUERY_FULLTEXT);
 | |
|   if( iColumn<0 || iColumn>=nColumn ){
 | |
|     iFirst = 0;
 | |
|     iLast = nColumn-1;
 | |
|   }else{
 | |
|     iFirst = iColumn;
 | |
|     iLast = iColumn;
 | |
|   }
 | |
|   for(i=iFirst; i<=iLast; i++){
 | |
|     const char *zDoc;
 | |
|     int nDoc;
 | |
|     zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
 | |
|     nDoc = sqlite3_column_bytes(p->pStmt, i+1);
 | |
|     snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
 | |
|   }
 | |
| 
 | |
|   trimSnippetOffsetsForNear(&p->q, &p->snippet);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Convert the information in the aMatch[] array of the snippet
 | |
| ** into the string zOffset[0..nOffset-1].
 | |
| */
 | |
| static void snippetOffsetText(Snippet *p){
 | |
|   int i;
 | |
|   int cnt = 0;
 | |
|   StringBuffer sb;
 | |
|   char zBuf[200];
 | |
|   if( p->zOffset ) return;
 | |
|   initStringBuffer(&sb);
 | |
|   for(i=0; i<p->nMatch; i++){
 | |
|     struct snippetMatch *pMatch = &p->aMatch[i];
 | |
|     if( pMatch->iTerm>=0 ){
 | |
|       /* If snippetMatch.iTerm is less than 0, then the match was 
 | |
|       ** discarded as part of processing the NEAR operator (see the 
 | |
|       ** trimSnippetOffsetsForNear() function for details). Ignore 
 | |
|       ** it in this case
 | |
|       */
 | |
|       zBuf[0] = ' ';
 | |
|       sprintf(&zBuf[cnt>0], "%d %d %d %d", pMatch->iCol,
 | |
|           pMatch->iTerm, pMatch->iStart, pMatch->nByte);
 | |
|       append(&sb, zBuf);
 | |
|       cnt++;
 | |
|     }
 | |
|   }
 | |
|   p->zOffset = stringBufferData(&sb);
 | |
|   p->nOffset = stringBufferLength(&sb);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** zDoc[0..nDoc-1] is phrase of text.  aMatch[0..nMatch-1] are a set
 | |
| ** of matching words some of which might be in zDoc.  zDoc is column
 | |
| ** number iCol.
 | |
| **
 | |
| ** iBreak is suggested spot in zDoc where we could begin or end an
 | |
| ** excerpt.  Return a value similar to iBreak but possibly adjusted
 | |
| ** to be a little left or right so that the break point is better.
 | |
| */
 | |
| static int wordBoundary(
 | |
|   int iBreak,                   /* The suggested break point */
 | |
|   const char *zDoc,             /* Document text */
 | |
|   int nDoc,                     /* Number of bytes in zDoc[] */
 | |
|   struct snippetMatch *aMatch,  /* Matching words */
 | |
|   int nMatch,                   /* Number of entries in aMatch[] */
 | |
|   int iCol                      /* The column number for zDoc[] */
 | |
| ){
 | |
|   int i;
 | |
|   if( iBreak<=10 ){
 | |
|     return 0;
 | |
|   }
 | |
|   if( iBreak>=nDoc-10 ){
 | |
|     return nDoc;
 | |
|   }
 | |
|   for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
 | |
|   while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
 | |
|   if( i<nMatch ){
 | |
|     if( aMatch[i].iStart<iBreak+10 ){
 | |
|       return aMatch[i].iStart;
 | |
|     }
 | |
|     if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
 | |
|       return aMatch[i-1].iStart;
 | |
|     }
 | |
|   }
 | |
|   for(i=1; i<=10; i++){
 | |
|     if( safe_isspace(zDoc[iBreak-i]) ){
 | |
|       return iBreak - i + 1;
 | |
|     }
 | |
|     if( safe_isspace(zDoc[iBreak+i]) ){
 | |
|       return iBreak + i + 1;
 | |
|     }
 | |
|   }
 | |
|   return iBreak;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Allowed values for Snippet.aMatch[].snStatus
 | |
| */
 | |
| #define SNIPPET_IGNORE  0   /* It is ok to omit this match from the snippet */
 | |
| #define SNIPPET_DESIRED 1   /* We want to include this match in the snippet */
 | |
| 
 | |
| /*
 | |
| ** Generate the text of a snippet.
 | |
| */
 | |
| static void snippetText(
 | |
|   fulltext_cursor *pCursor,   /* The cursor we need the snippet for */
 | |
|   const char *zStartMark,     /* Markup to appear before each match */
 | |
|   const char *zEndMark,       /* Markup to appear after each match */
 | |
|   const char *zEllipsis       /* Ellipsis mark */
 | |
| ){
 | |
|   int i, j;
 | |
|   struct snippetMatch *aMatch;
 | |
|   int nMatch;
 | |
|   int nDesired;
 | |
|   StringBuffer sb;
 | |
|   int tailCol;
 | |
|   int tailOffset;
 | |
|   int iCol;
 | |
|   int nDoc;
 | |
|   const char *zDoc;
 | |
|   int iStart, iEnd;
 | |
|   int tailEllipsis = 0;
 | |
|   int iMatch;
 | |
|   
 | |
| 
 | |
|   sqlite3_free(pCursor->snippet.zSnippet);
 | |
|   pCursor->snippet.zSnippet = 0;
 | |
|   aMatch = pCursor->snippet.aMatch;
 | |
|   nMatch = pCursor->snippet.nMatch;
 | |
|   initStringBuffer(&sb);
 | |
| 
 | |
|   for(i=0; i<nMatch; i++){
 | |
|     aMatch[i].snStatus = SNIPPET_IGNORE;
 | |
|   }
 | |
|   nDesired = 0;
 | |
|   for(i=0; i<pCursor->q.nTerms; i++){
 | |
|     for(j=0; j<nMatch; j++){
 | |
|       if( aMatch[j].iTerm==i ){
 | |
|         aMatch[j].snStatus = SNIPPET_DESIRED;
 | |
|         nDesired++;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   iMatch = 0;
 | |
|   tailCol = -1;
 | |
|   tailOffset = 0;
 | |
|   for(i=0; i<nMatch && nDesired>0; i++){
 | |
|     if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
 | |
|     nDesired--;
 | |
|     iCol = aMatch[i].iCol;
 | |
|     zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
 | |
|     nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
 | |
|     iStart = aMatch[i].iStart - 40;
 | |
|     iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
 | |
|     if( iStart<=10 ){
 | |
|       iStart = 0;
 | |
|     }
 | |
|     if( iCol==tailCol && iStart<=tailOffset+20 ){
 | |
|       iStart = tailOffset;
 | |
|     }
 | |
|     if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
 | |
|       trimWhiteSpace(&sb);
 | |
|       appendWhiteSpace(&sb);
 | |
|       append(&sb, zEllipsis);
 | |
|       appendWhiteSpace(&sb);
 | |
|     }
 | |
|     iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
 | |
|     iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
 | |
|     if( iEnd>=nDoc-10 ){
 | |
|       iEnd = nDoc;
 | |
|       tailEllipsis = 0;
 | |
|     }else{
 | |
|       tailEllipsis = 1;
 | |
|     }
 | |
|     while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
 | |
|     while( iStart<iEnd ){
 | |
|       while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
 | |
|              && aMatch[iMatch].iCol<=iCol ){
 | |
|         iMatch++;
 | |
|       }
 | |
|       if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
 | |
|              && aMatch[iMatch].iCol==iCol ){
 | |
|         nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
 | |
|         iStart = aMatch[iMatch].iStart;
 | |
|         append(&sb, zStartMark);
 | |
|         nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
 | |
|         append(&sb, zEndMark);
 | |
|         iStart += aMatch[iMatch].nByte;
 | |
|         for(j=iMatch+1; j<nMatch; j++){
 | |
|           if( aMatch[j].iTerm==aMatch[iMatch].iTerm
 | |
|               && aMatch[j].snStatus==SNIPPET_DESIRED ){
 | |
|             nDesired--;
 | |
|             aMatch[j].snStatus = SNIPPET_IGNORE;
 | |
|           }
 | |
|         }
 | |
|       }else{
 | |
|         nappend(&sb, &zDoc[iStart], iEnd - iStart);
 | |
|         iStart = iEnd;
 | |
|       }
 | |
|     }
 | |
|     tailCol = iCol;
 | |
|     tailOffset = iEnd;
 | |
|   }
 | |
|   trimWhiteSpace(&sb);
 | |
|   if( tailEllipsis ){
 | |
|     appendWhiteSpace(&sb);
 | |
|     append(&sb, zEllipsis);
 | |
|   }
 | |
|   pCursor->snippet.zSnippet = stringBufferData(&sb);
 | |
|   pCursor->snippet.nSnippet = stringBufferLength(&sb);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Close the cursor.  For additional information see the documentation
 | |
| ** on the xClose method of the virtual table interface.
 | |
| */
 | |
| static int fulltextClose(sqlite3_vtab_cursor *pCursor){
 | |
|   fulltext_cursor *c = (fulltext_cursor *) pCursor;
 | |
|   FTSTRACE(("FTS3 Close %p\n", c));
 | |
|   sqlite3_finalize(c->pStmt);
 | |
|   queryClear(&c->q);
 | |
|   snippetClear(&c->snippet);
 | |
|   if( c->result.nData!=0 ) dlrDestroy(&c->reader);
 | |
|   dataBufferDestroy(&c->result);
 | |
|   sqlite3_free(c);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| static int fulltextNext(sqlite3_vtab_cursor *pCursor){
 | |
|   fulltext_cursor *c = (fulltext_cursor *) pCursor;
 | |
|   int rc;
 | |
| 
 | |
|   FTSTRACE(("FTS3 Next %p\n", pCursor));
 | |
|   snippetClear(&c->snippet);
 | |
|   if( c->iCursorType < QUERY_FULLTEXT ){
 | |
|     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
 | |
|     rc = sqlite3_step(c->pStmt);
 | |
|     switch( rc ){
 | |
|       case SQLITE_ROW:
 | |
|         c->eof = 0;
 | |
|         return SQLITE_OK;
 | |
|       case SQLITE_DONE:
 | |
|         c->eof = 1;
 | |
|         return SQLITE_OK;
 | |
|       default:
 | |
|         c->eof = 1;
 | |
|         return rc;
 | |
|     }
 | |
|   } else {  /* full-text query */
 | |
|     rc = sqlite3_reset(c->pStmt);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
 | |
|       c->eof = 1;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|     rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
 | |
|     dlrStep(&c->reader);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
 | |
|     rc = sqlite3_step(c->pStmt);
 | |
|     if( rc==SQLITE_ROW ){   /* the case we expect */
 | |
|       c->eof = 0;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|     /* an error occurred; abort */
 | |
|     return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* TODO(shess) If we pushed LeafReader to the top of the file, or to
 | |
| ** another file, term_select() could be pushed above
 | |
| ** docListOfTerm().
 | |
| */
 | |
| static int termSelect(fulltext_vtab *v, int iColumn,
 | |
|                       const char *pTerm, int nTerm, int isPrefix,
 | |
|                       DocListType iType, DataBuffer *out);
 | |
| 
 | |
| /* Return a DocList corresponding to the query term *pTerm.  If *pTerm
 | |
| ** is the first term of a phrase query, go ahead and evaluate the phrase
 | |
| ** query and return the doclist for the entire phrase query.
 | |
| **
 | |
| ** The resulting DL_DOCIDS doclist is stored in pResult, which is
 | |
| ** overwritten.
 | |
| */
 | |
| static int docListOfTerm(
 | |
|   fulltext_vtab *v,    /* The full text index */
 | |
|   int iColumn,         /* column to restrict to.  No restriction if >=nColumn */
 | |
|   QueryTerm *pQTerm,   /* Term we are looking for, or 1st term of a phrase */
 | |
|   DataBuffer *pResult  /* Write the result here */
 | |
| ){
 | |
|   DataBuffer left, right, new;
 | |
|   int i, rc;
 | |
| 
 | |
|   /* No phrase search if no position info. */
 | |
|   assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
 | |
| 
 | |
|   /* This code should never be called with buffered updates. */
 | |
|   assert( v->nPendingData<0 );
 | |
| 
 | |
|   dataBufferInit(&left, 0);
 | |
|   rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
 | |
|                   (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
 | |
|   if( rc ) return rc;
 | |
|   for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
 | |
|     /* If this token is connected to the next by a NEAR operator, and
 | |
|     ** the next token is the start of a phrase, then set nPhraseRight
 | |
|     ** to the number of tokens in the phrase. Otherwise leave it at 1.
 | |
|     */
 | |
|     int nPhraseRight = 1;
 | |
|     while( (i+nPhraseRight)<=pQTerm->nPhrase 
 | |
|         && pQTerm[i+nPhraseRight].nNear==0 
 | |
|     ){
 | |
|       nPhraseRight++;
 | |
|     }
 | |
| 
 | |
|     dataBufferInit(&right, 0);
 | |
|     rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
 | |
|                     pQTerm[i].isPrefix, DL_POSITIONS, &right);
 | |
|     if( rc ){
 | |
|       dataBufferDestroy(&left);
 | |
|       return rc;
 | |
|     }
 | |
|     dataBufferInit(&new, 0);
 | |
|     docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
 | |
|                        pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
 | |
|                        ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
 | |
|                        &new);
 | |
|     dataBufferDestroy(&left);
 | |
|     dataBufferDestroy(&right);
 | |
|     left = new;
 | |
|   }
 | |
|   *pResult = left;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Add a new term pTerm[0..nTerm-1] to the query *q.
 | |
| */
 | |
| static void queryAdd(Query *q, const char *pTerm, int nTerm){
 | |
|   QueryTerm *t;
 | |
|   ++q->nTerms;
 | |
|   q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
 | |
|   if( q->pTerms==0 ){
 | |
|     q->nTerms = 0;
 | |
|     return;
 | |
|   }
 | |
|   t = &q->pTerms[q->nTerms - 1];
 | |
|   CLEAR(t);
 | |
|   t->pTerm = sqlite3_malloc(nTerm+1);
 | |
|   memcpy(t->pTerm, pTerm, nTerm);
 | |
|   t->pTerm[nTerm] = 0;
 | |
|   t->nTerm = nTerm;
 | |
|   t->isOr = q->nextIsOr;
 | |
|   t->isPrefix = 0;
 | |
|   q->nextIsOr = 0;
 | |
|   t->iColumn = q->nextColumn;
 | |
|   q->nextColumn = q->dfltColumn;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Check to see if the string zToken[0...nToken-1] matches any
 | |
| ** column name in the virtual table.   If it does,
 | |
| ** return the zero-indexed column number.  If not, return -1.
 | |
| */
 | |
| static int checkColumnSpecifier(
 | |
|   fulltext_vtab *pVtab,    /* The virtual table */
 | |
|   const char *zToken,      /* Text of the token */
 | |
|   int nToken               /* Number of characters in the token */
 | |
| ){
 | |
|   int i;
 | |
|   for(i=0; i<pVtab->nColumn; i++){
 | |
|     if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
 | |
|         && pVtab->azColumn[i][nToken]==0 ){
 | |
|       return i;
 | |
|     }
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Parse the text at pSegment[0..nSegment-1].  Add additional terms
 | |
| ** to the query being assemblied in pQuery.
 | |
| **
 | |
| ** inPhrase is true if pSegment[0..nSegement-1] is contained within
 | |
| ** double-quotes.  If inPhrase is true, then the first term
 | |
| ** is marked with the number of terms in the phrase less one and
 | |
| ** OR and "-" syntax is ignored.  If inPhrase is false, then every
 | |
| ** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
 | |
| */
 | |
| static int tokenizeSegment(
 | |
|   sqlite3_tokenizer *pTokenizer,          /* The tokenizer to use */
 | |
|   const char *pSegment, int nSegment,     /* Query expression being parsed */
 | |
|   int inPhrase,                           /* True if within "..." */
 | |
|   Query *pQuery                           /* Append results here */
 | |
| ){
 | |
|   const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
 | |
|   sqlite3_tokenizer_cursor *pCursor;
 | |
|   int firstIndex = pQuery->nTerms;
 | |
|   int iCol;
 | |
|   int nTerm = 1;
 | |
|   
 | |
|   int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   pCursor->pTokenizer = pTokenizer;
 | |
| 
 | |
|   while( 1 ){
 | |
|     const char *pToken;
 | |
|     int nToken, iBegin, iEnd, iPos;
 | |
| 
 | |
|     rc = pModule->xNext(pCursor,
 | |
|                         &pToken, &nToken,
 | |
|                         &iBegin, &iEnd, &iPos);
 | |
|     if( rc!=SQLITE_OK ) break;
 | |
|     if( !inPhrase &&
 | |
|         pSegment[iEnd]==':' &&
 | |
|          (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
 | |
|       pQuery->nextColumn = iCol;
 | |
|       continue;
 | |
|     }
 | |
|     if( !inPhrase && pQuery->nTerms>0 && nToken==2 
 | |
|      && pSegment[iBegin+0]=='O'
 | |
|      && pSegment[iBegin+1]=='R' 
 | |
|     ){
 | |
|       pQuery->nextIsOr = 1;
 | |
|       continue;
 | |
|     }
 | |
|     if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4 
 | |
|       && pSegment[iBegin+0]=='N' 
 | |
|       && pSegment[iBegin+1]=='E' 
 | |
|       && pSegment[iBegin+2]=='A' 
 | |
|       && pSegment[iBegin+3]=='R' 
 | |
|     ){
 | |
|       QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
 | |
|       if( (iBegin+6)<nSegment 
 | |
|        && pSegment[iBegin+4] == '/'
 | |
|        && pSegment[iBegin+5]>='0' && pSegment[iBegin+5]<='9'
 | |
|       ){
 | |
|         pTerm->nNear = (pSegment[iBegin+5] - '0');
 | |
|         nToken += 2;
 | |
|         if( pSegment[iBegin+6]>='0' && pSegment[iBegin+6]<=9 ){
 | |
|           pTerm->nNear = pTerm->nNear * 10 + (pSegment[iBegin+6] - '0');
 | |
|           iEnd++;
 | |
|         }
 | |
|         pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos);
 | |
|       } else {
 | |
|         pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
 | |
|       }
 | |
|       pTerm->nNear++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     queryAdd(pQuery, pToken, nToken);
 | |
|     if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
 | |
|       pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
 | |
|     }
 | |
|     if( iEnd<nSegment && pSegment[iEnd]=='*' ){
 | |
|       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
 | |
|     }
 | |
|     pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
 | |
|     if( inPhrase ){
 | |
|       nTerm++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( inPhrase && pQuery->nTerms>firstIndex ){
 | |
|     pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
 | |
|   }
 | |
| 
 | |
|   return pModule->xClose(pCursor);
 | |
| }
 | |
| 
 | |
| /* Parse a query string, yielding a Query object pQuery.
 | |
| **
 | |
| ** The calling function will need to queryClear() to clean up
 | |
| ** the dynamically allocated memory held by pQuery.
 | |
| */
 | |
| static int parseQuery(
 | |
|   fulltext_vtab *v,        /* The fulltext index */
 | |
|   const char *zInput,      /* Input text of the query string */
 | |
|   int nInput,              /* Size of the input text */
 | |
|   int dfltColumn,          /* Default column of the index to match against */
 | |
|   Query *pQuery            /* Write the parse results here. */
 | |
| ){
 | |
|   int iInput, inPhrase = 0;
 | |
|   int ii;
 | |
|   QueryTerm *aTerm;
 | |
| 
 | |
|   if( zInput==0 ) nInput = 0;
 | |
|   if( nInput<0 ) nInput = strlen(zInput);
 | |
|   pQuery->nTerms = 0;
 | |
|   pQuery->pTerms = NULL;
 | |
|   pQuery->nextIsOr = 0;
 | |
|   pQuery->nextColumn = dfltColumn;
 | |
|   pQuery->dfltColumn = dfltColumn;
 | |
|   pQuery->pFts = v;
 | |
| 
 | |
|   for(iInput=0; iInput<nInput; ++iInput){
 | |
|     int i;
 | |
|     for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
 | |
|     if( i>iInput ){
 | |
|       tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
 | |
|                        pQuery);
 | |
|     }
 | |
|     iInput = i;
 | |
|     if( i<nInput ){
 | |
|       assert( zInput[i]=='"' );
 | |
|       inPhrase = !inPhrase;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( inPhrase ){
 | |
|     /* unmatched quote */
 | |
|     queryClear(pQuery);
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Modify the values of the QueryTerm.nPhrase variables to account for
 | |
|   ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
 | |
|   ** and tokens connected by the NEAR operator are handled as a single
 | |
|   ** phrase. See comments above the QueryTerm structure for details.
 | |
|   */
 | |
|   aTerm = pQuery->pTerms;
 | |
|   for(ii=0; ii<pQuery->nTerms; ii++){
 | |
|     if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
 | |
|       while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
 | |
|         aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* TODO(shess) Refactor the code to remove this forward decl. */
 | |
| static int flushPendingTerms(fulltext_vtab *v);
 | |
| 
 | |
| /* Perform a full-text query using the search expression in
 | |
| ** zInput[0..nInput-1].  Return a list of matching documents
 | |
| ** in pResult.
 | |
| **
 | |
| ** Queries must match column iColumn.  Or if iColumn>=nColumn
 | |
| ** they are allowed to match against any column.
 | |
| */
 | |
| static int fulltextQuery(
 | |
|   fulltext_vtab *v,      /* The full text index */
 | |
|   int iColumn,           /* Match against this column by default */
 | |
|   const char *zInput,    /* The query string */
 | |
|   int nInput,            /* Number of bytes in zInput[] */
 | |
|   DataBuffer *pResult,   /* Write the result doclist here */
 | |
|   Query *pQuery          /* Put parsed query string here */
 | |
| ){
 | |
|   int i, iNext, rc;
 | |
|   DataBuffer left, right, or, new;
 | |
|   int nNot = 0;
 | |
|   QueryTerm *aTerm;
 | |
| 
 | |
|   /* TODO(shess) Instead of flushing pendingTerms, we could query for
 | |
|   ** the relevant term and merge the doclist into what we receive from
 | |
|   ** the database.  Wait and see if this is a common issue, first.
 | |
|   **
 | |
|   ** A good reason not to flush is to not generate update-related
 | |
|   ** error codes from here.
 | |
|   */
 | |
| 
 | |
|   /* Flush any buffered updates before executing the query. */
 | |
|   rc = flushPendingTerms(v);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* TODO(shess) I think that the queryClear() calls below are not
 | |
|   ** necessary, because fulltextClose() already clears the query.
 | |
|   */
 | |
|   rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* Empty or NULL queries return no results. */
 | |
|   if( pQuery->nTerms==0 ){
 | |
|     dataBufferInit(pResult, 0);
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Merge AND terms. */
 | |
|   /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
 | |
|   aTerm = pQuery->pTerms;
 | |
|   for(i = 0; i<pQuery->nTerms; i=iNext){
 | |
|     if( aTerm[i].isNot ){
 | |
|       /* Handle all NOT terms in a separate pass */
 | |
|       nNot++;
 | |
|       iNext = i + aTerm[i].nPhrase+1;
 | |
|       continue;
 | |
|     }
 | |
|     iNext = i + aTerm[i].nPhrase + 1;
 | |
|     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
 | |
|     if( rc ){
 | |
|       if( i!=nNot ) dataBufferDestroy(&left);
 | |
|       queryClear(pQuery);
 | |
|       return rc;
 | |
|     }
 | |
|     while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
 | |
|       rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
 | |
|       iNext += aTerm[iNext].nPhrase + 1;
 | |
|       if( rc ){
 | |
|         if( i!=nNot ) dataBufferDestroy(&left);
 | |
|         dataBufferDestroy(&right);
 | |
|         queryClear(pQuery);
 | |
|         return rc;
 | |
|       }
 | |
|       dataBufferInit(&new, 0);
 | |
|       docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
 | |
|       dataBufferDestroy(&right);
 | |
|       dataBufferDestroy(&or);
 | |
|       right = new;
 | |
|     }
 | |
|     if( i==nNot ){           /* first term processed. */
 | |
|       left = right;
 | |
|     }else{
 | |
|       dataBufferInit(&new, 0);
 | |
|       docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
 | |
|       dataBufferDestroy(&right);
 | |
|       dataBufferDestroy(&left);
 | |
|       left = new;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if( nNot==pQuery->nTerms ){
 | |
|     /* We do not yet know how to handle a query of only NOT terms */
 | |
|     return SQLITE_ERROR;
 | |
|   }
 | |
| 
 | |
|   /* Do the EXCEPT terms */
 | |
|   for(i=0; i<pQuery->nTerms;  i += aTerm[i].nPhrase + 1){
 | |
|     if( !aTerm[i].isNot ) continue;
 | |
|     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
 | |
|     if( rc ){
 | |
|       queryClear(pQuery);
 | |
|       dataBufferDestroy(&left);
 | |
|       return rc;
 | |
|     }
 | |
|     dataBufferInit(&new, 0);
 | |
|     docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
 | |
|     dataBufferDestroy(&right);
 | |
|     dataBufferDestroy(&left);
 | |
|     left = new;
 | |
|   }
 | |
| 
 | |
|   *pResult = left;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is the xFilter interface for the virtual table.  See
 | |
| ** the virtual table xFilter method documentation for additional
 | |
| ** information.
 | |
| **
 | |
| ** If idxNum==QUERY_GENERIC then do a full table scan against
 | |
| ** the %_content table.
 | |
| **
 | |
| ** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
 | |
| ** in the %_content table.
 | |
| **
 | |
| ** If idxNum>=QUERY_FULLTEXT then use the full text index.  The
 | |
| ** column on the left-hand side of the MATCH operator is column
 | |
| ** number idxNum-QUERY_FULLTEXT, 0 indexed.  argv[0] is the right-hand
 | |
| ** side of the MATCH operator.
 | |
| */
 | |
| /* TODO(shess) Upgrade the cursor initialization and destruction to
 | |
| ** account for fulltextFilter() being called multiple times on the
 | |
| ** same cursor.  The current solution is very fragile.  Apply fix to
 | |
| ** fts3 as appropriate.
 | |
| */
 | |
| static int fulltextFilter(
 | |
|   sqlite3_vtab_cursor *pCursor,     /* The cursor used for this query */
 | |
|   int idxNum, const char *idxStr,   /* Which indexing scheme to use */
 | |
|   int argc, sqlite3_value **argv    /* Arguments for the indexing scheme */
 | |
| ){
 | |
|   fulltext_cursor *c = (fulltext_cursor *) pCursor;
 | |
|   fulltext_vtab *v = cursor_vtab(c);
 | |
|   int rc;
 | |
|   StringBuffer sb;
 | |
| 
 | |
|   FTSTRACE(("FTS3 Filter %p\n",pCursor));
 | |
| 
 | |
|   initStringBuffer(&sb);
 | |
|   append(&sb, "SELECT docid, ");
 | |
|   appendList(&sb, v->nColumn, v->azContentColumn);
 | |
|   append(&sb, " FROM %_content");
 | |
|   if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
 | |
|   sqlite3_finalize(c->pStmt);
 | |
|   rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb));
 | |
|   stringBufferDestroy(&sb);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   c->iCursorType = idxNum;
 | |
|   switch( idxNum ){
 | |
|     case QUERY_GENERIC:
 | |
|       break;
 | |
| 
 | |
|     case QUERY_DOCID:
 | |
|       rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
|       break;
 | |
| 
 | |
|     default:   /* full-text search */
 | |
|     {
 | |
|       const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
 | |
|       assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
 | |
|       assert( argc==1 );
 | |
|       queryClear(&c->q);
 | |
|       if( c->result.nData!=0 ){
 | |
|         /* This case happens if the same cursor is used repeatedly. */
 | |
|         dlrDestroy(&c->reader);
 | |
|         dataBufferReset(&c->result);
 | |
|       }else{
 | |
|         dataBufferInit(&c->result, 0);
 | |
|       }
 | |
|       rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
|       if( c->result.nData!=0 ){
 | |
|         dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return fulltextNext(pCursor);
 | |
| }
 | |
| 
 | |
| /* This is the xEof method of the virtual table.  The SQLite core
 | |
| ** calls this routine to find out if it has reached the end of
 | |
| ** a query's results set.
 | |
| */
 | |
| static int fulltextEof(sqlite3_vtab_cursor *pCursor){
 | |
|   fulltext_cursor *c = (fulltext_cursor *) pCursor;
 | |
|   return c->eof;
 | |
| }
 | |
| 
 | |
| /* This is the xColumn method of the virtual table.  The SQLite
 | |
| ** core calls this method during a query when it needs the value
 | |
| ** of a column from the virtual table.  This method needs to use
 | |
| ** one of the sqlite3_result_*() routines to store the requested
 | |
| ** value back in the pContext.
 | |
| */
 | |
| static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
 | |
|                           sqlite3_context *pContext, int idxCol){
 | |
|   fulltext_cursor *c = (fulltext_cursor *) pCursor;
 | |
|   fulltext_vtab *v = cursor_vtab(c);
 | |
| 
 | |
|   if( idxCol<v->nColumn ){
 | |
|     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
 | |
|     sqlite3_result_value(pContext, pVal);
 | |
|   }else if( idxCol==v->nColumn ){
 | |
|     /* The extra column whose name is the same as the table.
 | |
|     ** Return a blob which is a pointer to the cursor
 | |
|     */
 | |
|     sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
 | |
|   }else if( idxCol==v->nColumn+1 ){
 | |
|     /* The docid column, which is an alias for rowid. */
 | |
|     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
 | |
|     sqlite3_result_value(pContext, pVal);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* This is the xRowid method.  The SQLite core calls this routine to
 | |
| ** retrieve the rowid for the current row of the result set.  fts3
 | |
| ** exposes %_content.docid as the rowid for the virtual table.  The
 | |
| ** rowid should be written to *pRowid.
 | |
| */
 | |
| static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
 | |
|   fulltext_cursor *c = (fulltext_cursor *) pCursor;
 | |
| 
 | |
|   *pRowid = sqlite3_column_int64(c->pStmt, 0);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Add all terms in [zText] to pendingTerms table.  If [iColumn] > 0,
 | |
| ** we also store positions and offsets in the hash table using that
 | |
| ** column number.
 | |
| */
 | |
| static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
 | |
|                       const char *zText, int iColumn){
 | |
|   sqlite3_tokenizer *pTokenizer = v->pTokenizer;
 | |
|   sqlite3_tokenizer_cursor *pCursor;
 | |
|   const char *pToken;
 | |
|   int nTokenBytes;
 | |
|   int iStartOffset, iEndOffset, iPosition;
 | |
|   int rc;
 | |
| 
 | |
|   rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   pCursor->pTokenizer = pTokenizer;
 | |
|   while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
 | |
|                                                    &pToken, &nTokenBytes,
 | |
|                                                    &iStartOffset, &iEndOffset,
 | |
|                                                    &iPosition)) ){
 | |
|     DLCollector *p;
 | |
|     int nData;                   /* Size of doclist before our update. */
 | |
| 
 | |
|     /* Positions can't be negative; we use -1 as a terminator
 | |
|      * internally.  Token can't be NULL or empty. */
 | |
|     if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
 | |
|       rc = SQLITE_ERROR;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
 | |
|     if( p==NULL ){
 | |
|       nData = 0;
 | |
|       p = dlcNew(iDocid, DL_DEFAULT);
 | |
|       fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
 | |
| 
 | |
|       /* Overhead for our hash table entry, the key, and the value. */
 | |
|       v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
 | |
|     }else{
 | |
|       nData = p->b.nData;
 | |
|       if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
 | |
|     }
 | |
|     if( iColumn>=0 ){
 | |
|       dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
 | |
|     }
 | |
| 
 | |
|     /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
 | |
|     v->nPendingData += p->b.nData-nData;
 | |
|   }
 | |
| 
 | |
|   /* TODO(shess) Check return?  Should this be able to cause errors at
 | |
|   ** this point?  Actually, same question about sqlite3_finalize(),
 | |
|   ** though one could argue that failure there means that the data is
 | |
|   ** not durable.  *ponder*
 | |
|   */
 | |
|   pTokenizer->pModule->xClose(pCursor);
 | |
|   if( SQLITE_DONE == rc ) return SQLITE_OK;
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Add doclists for all terms in [pValues] to pendingTerms table. */
 | |
| static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
 | |
|                        sqlite3_value **pValues){
 | |
|   int i;
 | |
|   for(i = 0; i < v->nColumn ; ++i){
 | |
|     char *zText = (char*)sqlite3_value_text(pValues[i]);
 | |
|     int rc = buildTerms(v, iDocid, zText, i);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Add empty doclists for all terms in the given row's content to
 | |
| ** pendingTerms.
 | |
| */
 | |
| static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
 | |
|   const char **pValues;
 | |
|   int i, rc;
 | |
| 
 | |
|   /* TODO(shess) Should we allow such tables at all? */
 | |
|   if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
 | |
| 
 | |
|   rc = content_select(v, iDocid, &pValues);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   for(i = 0 ; i < v->nColumn; ++i) {
 | |
|     rc = buildTerms(v, iDocid, pValues[i], -1);
 | |
|     if( rc!=SQLITE_OK ) break;
 | |
|   }
 | |
| 
 | |
|   freeStringArray(v->nColumn, pValues);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* TODO(shess) Refactor the code to remove this forward decl. */
 | |
| static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
 | |
| 
 | |
| /* Insert a row into the %_content table; set *piDocid to be the ID of the
 | |
| ** new row.  Add doclists for terms to pendingTerms.
 | |
| */
 | |
| static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
 | |
|                         sqlite3_value **pValues, sqlite_int64 *piDocid){
 | |
|   int rc;
 | |
| 
 | |
|   rc = content_insert(v, pRequestDocid, pValues);  /* execute an SQL INSERT */
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* docid column is an alias for rowid. */
 | |
|   *piDocid = sqlite3_last_insert_rowid(v->db);
 | |
|   rc = initPendingTerms(v, *piDocid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return insertTerms(v, *piDocid, pValues);
 | |
| }
 | |
| 
 | |
| /* Delete a row from the %_content table; add empty doclists for terms
 | |
| ** to pendingTerms.
 | |
| */
 | |
| static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
 | |
|   int rc = initPendingTerms(v, iRow);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = deleteTerms(v, iRow);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   return content_delete(v, iRow);  /* execute an SQL DELETE */
 | |
| }
 | |
| 
 | |
| /* Update a row in the %_content table; add delete doclists to
 | |
| ** pendingTerms for old terms not in the new data, add insert doclists
 | |
| ** to pendingTerms for terms in the new data.
 | |
| */
 | |
| static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
 | |
|                         sqlite3_value **pValues){
 | |
|   int rc = initPendingTerms(v, iRow);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* Generate an empty doclist for each term that previously appeared in this
 | |
|    * row. */
 | |
|   rc = deleteTerms(v, iRow);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = content_update(v, pValues, iRow);  /* execute an SQL UPDATE */
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* Now add positions for terms which appear in the updated row. */
 | |
|   return insertTerms(v, iRow, pValues);
 | |
| }
 | |
| 
 | |
| /*******************************************************************/
 | |
| /* InteriorWriter is used to collect terms and block references into
 | |
| ** interior nodes in %_segments.  See commentary at top of file for
 | |
| ** format.
 | |
| */
 | |
| 
 | |
| /* How large interior nodes can grow. */
 | |
| #define INTERIOR_MAX 2048
 | |
| 
 | |
| /* Minimum number of terms per interior node (except the root). This
 | |
| ** prevents large terms from making the tree too skinny - must be >0
 | |
| ** so that the tree always makes progress.  Note that the min tree
 | |
| ** fanout will be INTERIOR_MIN_TERMS+1.
 | |
| */
 | |
| #define INTERIOR_MIN_TERMS 7
 | |
| #if INTERIOR_MIN_TERMS<1
 | |
| # error INTERIOR_MIN_TERMS must be greater than 0.
 | |
| #endif
 | |
| 
 | |
| /* ROOT_MAX controls how much data is stored inline in the segment
 | |
| ** directory.
 | |
| */
 | |
| /* TODO(shess) Push ROOT_MAX down to whoever is writing things.  It's
 | |
| ** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
 | |
| ** can both see it, but if the caller passed it in, we wouldn't even
 | |
| ** need a define.
 | |
| */
 | |
| #define ROOT_MAX 1024
 | |
| #if ROOT_MAX<VARINT_MAX*2
 | |
| # error ROOT_MAX must have enough space for a header.
 | |
| #endif
 | |
| 
 | |
| /* InteriorBlock stores a linked-list of interior blocks while a lower
 | |
| ** layer is being constructed.
 | |
| */
 | |
| typedef struct InteriorBlock {
 | |
|   DataBuffer term;           /* Leftmost term in block's subtree. */
 | |
|   DataBuffer data;           /* Accumulated data for the block. */
 | |
|   struct InteriorBlock *next;
 | |
| } InteriorBlock;
 | |
| 
 | |
| static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
 | |
|                                        const char *pTerm, int nTerm){
 | |
|   InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
 | |
|   char c[VARINT_MAX+VARINT_MAX];
 | |
|   int n;
 | |
| 
 | |
|   if( block ){
 | |
|     memset(block, 0, sizeof(*block));
 | |
|     dataBufferInit(&block->term, 0);
 | |
|     dataBufferReplace(&block->term, pTerm, nTerm);
 | |
| 
 | |
|     n = fts3PutVarint(c, iHeight);
 | |
|     n += fts3PutVarint(c+n, iChildBlock);
 | |
|     dataBufferInit(&block->data, INTERIOR_MAX);
 | |
|     dataBufferReplace(&block->data, c, n);
 | |
|   }
 | |
|   return block;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* Verify that the data is readable as an interior node. */
 | |
| static void interiorBlockValidate(InteriorBlock *pBlock){
 | |
|   const char *pData = pBlock->data.pData;
 | |
|   int nData = pBlock->data.nData;
 | |
|   int n, iDummy;
 | |
|   sqlite_int64 iBlockid;
 | |
| 
 | |
|   assert( nData>0 );
 | |
|   assert( pData!=0 );
 | |
|   assert( pData+nData>pData );
 | |
| 
 | |
|   /* Must lead with height of node as a varint(n), n>0 */
 | |
|   n = fts3GetVarint32(pData, &iDummy);
 | |
|   assert( n>0 );
 | |
|   assert( iDummy>0 );
 | |
|   assert( n<nData );
 | |
|   pData += n;
 | |
|   nData -= n;
 | |
| 
 | |
|   /* Must contain iBlockid. */
 | |
|   n = fts3GetVarint(pData, &iBlockid);
 | |
|   assert( n>0 );
 | |
|   assert( n<=nData );
 | |
|   pData += n;
 | |
|   nData -= n;
 | |
| 
 | |
|   /* Zero or more terms of positive length */
 | |
|   if( nData!=0 ){
 | |
|     /* First term is not delta-encoded. */
 | |
|     n = fts3GetVarint32(pData, &iDummy);
 | |
|     assert( n>0 );
 | |
|     assert( iDummy>0 );
 | |
|     assert( n+iDummy>0);
 | |
|     assert( n+iDummy<=nData );
 | |
|     pData += n+iDummy;
 | |
|     nData -= n+iDummy;
 | |
| 
 | |
|     /* Following terms delta-encoded. */
 | |
|     while( nData!=0 ){
 | |
|       /* Length of shared prefix. */
 | |
|       n = fts3GetVarint32(pData, &iDummy);
 | |
|       assert( n>0 );
 | |
|       assert( iDummy>=0 );
 | |
|       assert( n<nData );
 | |
|       pData += n;
 | |
|       nData -= n;
 | |
| 
 | |
|       /* Length and data of distinct suffix. */
 | |
|       n = fts3GetVarint32(pData, &iDummy);
 | |
|       assert( n>0 );
 | |
|       assert( iDummy>0 );
 | |
|       assert( n+iDummy>0);
 | |
|       assert( n+iDummy<=nData );
 | |
|       pData += n+iDummy;
 | |
|       nData -= n+iDummy;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
 | |
| #else
 | |
| #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
 | |
| #endif
 | |
| 
 | |
| typedef struct InteriorWriter {
 | |
|   int iHeight;                   /* from 0 at leaves. */
 | |
|   InteriorBlock *first, *last;
 | |
|   struct InteriorWriter *parentWriter;
 | |
| 
 | |
|   DataBuffer term;               /* Last term written to block "last". */
 | |
|   sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
 | |
| #ifndef NDEBUG
 | |
|   sqlite_int64 iLastChildBlock;  /* for consistency checks. */
 | |
| #endif
 | |
| } InteriorWriter;
 | |
| 
 | |
| /* Initialize an interior node where pTerm[nTerm] marks the leftmost
 | |
| ** term in the tree.  iChildBlock is the leftmost child block at the
 | |
| ** next level down the tree.
 | |
| */
 | |
| static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
 | |
|                                sqlite_int64 iChildBlock,
 | |
|                                InteriorWriter *pWriter){
 | |
|   InteriorBlock *block;
 | |
|   assert( iHeight>0 );
 | |
|   CLEAR(pWriter);
 | |
| 
 | |
|   pWriter->iHeight = iHeight;
 | |
|   pWriter->iOpeningChildBlock = iChildBlock;
 | |
| #ifndef NDEBUG
 | |
|   pWriter->iLastChildBlock = iChildBlock;
 | |
| #endif
 | |
|   block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
 | |
|   pWriter->last = pWriter->first = block;
 | |
|   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
 | |
|   dataBufferInit(&pWriter->term, 0);
 | |
| }
 | |
| 
 | |
| /* Append the child node rooted at iChildBlock to the interior node,
 | |
| ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
 | |
| */
 | |
| static void interiorWriterAppend(InteriorWriter *pWriter,
 | |
|                                  const char *pTerm, int nTerm,
 | |
|                                  sqlite_int64 iChildBlock){
 | |
|   char c[VARINT_MAX+VARINT_MAX];
 | |
|   int n, nPrefix = 0;
 | |
| 
 | |
|   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
 | |
| 
 | |
|   /* The first term written into an interior node is actually
 | |
|   ** associated with the second child added (the first child was added
 | |
|   ** in interiorWriterInit, or in the if clause at the bottom of this
 | |
|   ** function).  That term gets encoded straight up, with nPrefix left
 | |
|   ** at 0.
 | |
|   */
 | |
|   if( pWriter->term.nData==0 ){
 | |
|     n = fts3PutVarint(c, nTerm);
 | |
|   }else{
 | |
|     while( nPrefix<pWriter->term.nData &&
 | |
|            pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
 | |
|       nPrefix++;
 | |
|     }
 | |
| 
 | |
|     n = fts3PutVarint(c, nPrefix);
 | |
|     n += fts3PutVarint(c+n, nTerm-nPrefix);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   pWriter->iLastChildBlock++;
 | |
| #endif
 | |
|   assert( pWriter->iLastChildBlock==iChildBlock );
 | |
| 
 | |
|   /* Overflow to a new block if the new term makes the current block
 | |
|   ** too big, and the current block already has enough terms.
 | |
|   */
 | |
|   if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
 | |
|       iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
 | |
|     pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
 | |
|                                            pTerm, nTerm);
 | |
|     pWriter->last = pWriter->last->next;
 | |
|     pWriter->iOpeningChildBlock = iChildBlock;
 | |
|     dataBufferReset(&pWriter->term);
 | |
|   }else{
 | |
|     dataBufferAppend2(&pWriter->last->data, c, n,
 | |
|                       pTerm+nPrefix, nTerm-nPrefix);
 | |
|     dataBufferReplace(&pWriter->term, pTerm, nTerm);
 | |
|   }
 | |
|   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
 | |
| }
 | |
| 
 | |
| /* Free the space used by pWriter, including the linked-list of
 | |
| ** InteriorBlocks, and parentWriter, if present.
 | |
| */
 | |
| static int interiorWriterDestroy(InteriorWriter *pWriter){
 | |
|   InteriorBlock *block = pWriter->first;
 | |
| 
 | |
|   while( block!=NULL ){
 | |
|     InteriorBlock *b = block;
 | |
|     block = block->next;
 | |
|     dataBufferDestroy(&b->term);
 | |
|     dataBufferDestroy(&b->data);
 | |
|     sqlite3_free(b);
 | |
|   }
 | |
|   if( pWriter->parentWriter!=NULL ){
 | |
|     interiorWriterDestroy(pWriter->parentWriter);
 | |
|     sqlite3_free(pWriter->parentWriter);
 | |
|   }
 | |
|   dataBufferDestroy(&pWriter->term);
 | |
|   SCRAMBLE(pWriter);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* If pWriter can fit entirely in ROOT_MAX, return it as the root info
 | |
| ** directly, leaving *piEndBlockid unchanged.  Otherwise, flush
 | |
| ** pWriter to %_segments, building a new layer of interior nodes, and
 | |
| ** recursively ask for their root into.
 | |
| */
 | |
| static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
 | |
|                                   char **ppRootInfo, int *pnRootInfo,
 | |
|                                   sqlite_int64 *piEndBlockid){
 | |
|   InteriorBlock *block = pWriter->first;
 | |
|   sqlite_int64 iBlockid = 0;
 | |
|   int rc;
 | |
| 
 | |
|   /* If we can fit the segment inline */
 | |
|   if( block==pWriter->last && block->data.nData<ROOT_MAX ){
 | |
|     *ppRootInfo = block->data.pData;
 | |
|     *pnRootInfo = block->data.nData;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Flush the first block to %_segments, and create a new level of
 | |
|   ** interior node.
 | |
|   */
 | |
|   ASSERT_VALID_INTERIOR_BLOCK(block);
 | |
|   rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   *piEndBlockid = iBlockid;
 | |
| 
 | |
|   pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
 | |
|   interiorWriterInit(pWriter->iHeight+1,
 | |
|                      block->term.pData, block->term.nData,
 | |
|                      iBlockid, pWriter->parentWriter);
 | |
| 
 | |
|   /* Flush additional blocks and append to the higher interior
 | |
|   ** node.
 | |
|   */
 | |
|   for(block=block->next; block!=NULL; block=block->next){
 | |
|     ASSERT_VALID_INTERIOR_BLOCK(block);
 | |
|     rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|     *piEndBlockid = iBlockid;
 | |
| 
 | |
|     interiorWriterAppend(pWriter->parentWriter,
 | |
|                          block->term.pData, block->term.nData, iBlockid);
 | |
|   }
 | |
| 
 | |
|   /* Parent node gets the chance to be the root. */
 | |
|   return interiorWriterRootInfo(v, pWriter->parentWriter,
 | |
|                                 ppRootInfo, pnRootInfo, piEndBlockid);
 | |
| }
 | |
| 
 | |
| /****************************************************************/
 | |
| /* InteriorReader is used to read off the data from an interior node
 | |
| ** (see comment at top of file for the format).
 | |
| */
 | |
| typedef struct InteriorReader {
 | |
|   const char *pData;
 | |
|   int nData;
 | |
| 
 | |
|   DataBuffer term;          /* previous term, for decoding term delta. */
 | |
| 
 | |
|   sqlite_int64 iBlockid;
 | |
| } InteriorReader;
 | |
| 
 | |
| static void interiorReaderDestroy(InteriorReader *pReader){
 | |
|   dataBufferDestroy(&pReader->term);
 | |
|   SCRAMBLE(pReader);
 | |
| }
 | |
| 
 | |
| /* TODO(shess) The assertions are great, but what if we're in NDEBUG
 | |
| ** and the blob is empty or otherwise contains suspect data?
 | |
| */
 | |
| static void interiorReaderInit(const char *pData, int nData,
 | |
|                                InteriorReader *pReader){
 | |
|   int n, nTerm;
 | |
| 
 | |
|   /* Require at least the leading flag byte */
 | |
|   assert( nData>0 );
 | |
|   assert( pData[0]!='\0' );
 | |
| 
 | |
|   CLEAR(pReader);
 | |
| 
 | |
|   /* Decode the base blockid, and set the cursor to the first term. */
 | |
|   n = fts3GetVarint(pData+1, &pReader->iBlockid);
 | |
|   assert( 1+n<=nData );
 | |
|   pReader->pData = pData+1+n;
 | |
|   pReader->nData = nData-(1+n);
 | |
| 
 | |
|   /* A single-child interior node (such as when a leaf node was too
 | |
|   ** large for the segment directory) won't have any terms.
 | |
|   ** Otherwise, decode the first term.
 | |
|   */
 | |
|   if( pReader->nData==0 ){
 | |
|     dataBufferInit(&pReader->term, 0);
 | |
|   }else{
 | |
|     n = fts3GetVarint32(pReader->pData, &nTerm);
 | |
|     dataBufferInit(&pReader->term, nTerm);
 | |
|     dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
 | |
|     assert( n+nTerm<=pReader->nData );
 | |
|     pReader->pData += n+nTerm;
 | |
|     pReader->nData -= n+nTerm;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static int interiorReaderAtEnd(InteriorReader *pReader){
 | |
|   return pReader->term.nData==0;
 | |
| }
 | |
| 
 | |
| static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
 | |
|   return pReader->iBlockid;
 | |
| }
 | |
| 
 | |
| static int interiorReaderTermBytes(InteriorReader *pReader){
 | |
|   assert( !interiorReaderAtEnd(pReader) );
 | |
|   return pReader->term.nData;
 | |
| }
 | |
| static const char *interiorReaderTerm(InteriorReader *pReader){
 | |
|   assert( !interiorReaderAtEnd(pReader) );
 | |
|   return pReader->term.pData;
 | |
| }
 | |
| 
 | |
| /* Step forward to the next term in the node. */
 | |
| static void interiorReaderStep(InteriorReader *pReader){
 | |
|   assert( !interiorReaderAtEnd(pReader) );
 | |
| 
 | |
|   /* If the last term has been read, signal eof, else construct the
 | |
|   ** next term.
 | |
|   */
 | |
|   if( pReader->nData==0 ){
 | |
|     dataBufferReset(&pReader->term);
 | |
|   }else{
 | |
|     int n, nPrefix, nSuffix;
 | |
| 
 | |
|     n = fts3GetVarint32(pReader->pData, &nPrefix);
 | |
|     n += fts3GetVarint32(pReader->pData+n, &nSuffix);
 | |
| 
 | |
|     /* Truncate the current term and append suffix data. */
 | |
|     pReader->term.nData = nPrefix;
 | |
|     dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
 | |
| 
 | |
|     assert( n+nSuffix<=pReader->nData );
 | |
|     pReader->pData += n+nSuffix;
 | |
|     pReader->nData -= n+nSuffix;
 | |
|   }
 | |
|   pReader->iBlockid++;
 | |
| }
 | |
| 
 | |
| /* Compare the current term to pTerm[nTerm], returning strcmp-style
 | |
| ** results.  If isPrefix, equality means equal through nTerm bytes.
 | |
| */
 | |
| static int interiorReaderTermCmp(InteriorReader *pReader,
 | |
|                                  const char *pTerm, int nTerm, int isPrefix){
 | |
|   const char *pReaderTerm = interiorReaderTerm(pReader);
 | |
|   int nReaderTerm = interiorReaderTermBytes(pReader);
 | |
|   int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
 | |
| 
 | |
|   if( n==0 ){
 | |
|     if( nReaderTerm>0 ) return -1;
 | |
|     if( nTerm>0 ) return 1;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   c = memcmp(pReaderTerm, pTerm, n);
 | |
|   if( c!=0 ) return c;
 | |
|   if( isPrefix && n==nTerm ) return 0;
 | |
|   return nReaderTerm - nTerm;
 | |
| }
 | |
| 
 | |
| /****************************************************************/
 | |
| /* LeafWriter is used to collect terms and associated doclist data
 | |
| ** into leaf blocks in %_segments (see top of file for format info).
 | |
| ** Expected usage is:
 | |
| **
 | |
| ** LeafWriter writer;
 | |
| ** leafWriterInit(0, 0, &writer);
 | |
| ** while( sorted_terms_left_to_process ){
 | |
| **   // data is doclist data for that term.
 | |
| **   rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
 | |
| **   if( rc!=SQLITE_OK ) goto err;
 | |
| ** }
 | |
| ** rc = leafWriterFinalize(v, &writer);
 | |
| **err:
 | |
| ** leafWriterDestroy(&writer);
 | |
| ** return rc;
 | |
| **
 | |
| ** leafWriterStep() may write a collected leaf out to %_segments.
 | |
| ** leafWriterFinalize() finishes writing any buffered data and stores
 | |
| ** a root node in %_segdir.  leafWriterDestroy() frees all buffers and
 | |
| ** InteriorWriters allocated as part of writing this segment.
 | |
| **
 | |
| ** TODO(shess) Document leafWriterStepMerge().
 | |
| */
 | |
| 
 | |
| /* Put terms with data this big in their own block. */
 | |
| #define STANDALONE_MIN 1024
 | |
| 
 | |
| /* Keep leaf blocks below this size. */
 | |
| #define LEAF_MAX 2048
 | |
| 
 | |
| typedef struct LeafWriter {
 | |
|   int iLevel;
 | |
|   int idx;
 | |
|   sqlite_int64 iStartBlockid;     /* needed to create the root info */
 | |
|   sqlite_int64 iEndBlockid;       /* when we're done writing. */
 | |
| 
 | |
|   DataBuffer term;                /* previous encoded term */
 | |
|   DataBuffer data;                /* encoding buffer */
 | |
| 
 | |
|   /* bytes of first term in the current node which distinguishes that
 | |
|   ** term from the last term of the previous node.
 | |
|   */
 | |
|   int nTermDistinct;
 | |
| 
 | |
|   InteriorWriter parentWriter;    /* if we overflow */
 | |
|   int has_parent;
 | |
| } LeafWriter;
 | |
| 
 | |
| static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
 | |
|   CLEAR(pWriter);
 | |
|   pWriter->iLevel = iLevel;
 | |
|   pWriter->idx = idx;
 | |
| 
 | |
|   dataBufferInit(&pWriter->term, 32);
 | |
| 
 | |
|   /* Start out with a reasonably sized block, though it can grow. */
 | |
|   dataBufferInit(&pWriter->data, LEAF_MAX);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /* Verify that the data is readable as a leaf node. */
 | |
| static void leafNodeValidate(const char *pData, int nData){
 | |
|   int n, iDummy;
 | |
| 
 | |
|   if( nData==0 ) return;
 | |
|   assert( nData>0 );
 | |
|   assert( pData!=0 );
 | |
|   assert( pData+nData>pData );
 | |
| 
 | |
|   /* Must lead with a varint(0) */
 | |
|   n = fts3GetVarint32(pData, &iDummy);
 | |
|   assert( iDummy==0 );
 | |
|   assert( n>0 );
 | |
|   assert( n<nData );
 | |
|   pData += n;
 | |
|   nData -= n;
 | |
| 
 | |
|   /* Leading term length and data must fit in buffer. */
 | |
|   n = fts3GetVarint32(pData, &iDummy);
 | |
|   assert( n>0 );
 | |
|   assert( iDummy>0 );
 | |
|   assert( n+iDummy>0 );
 | |
|   assert( n+iDummy<nData );
 | |
|   pData += n+iDummy;
 | |
|   nData -= n+iDummy;
 | |
| 
 | |
|   /* Leading term's doclist length and data must fit. */
 | |
|   n = fts3GetVarint32(pData, &iDummy);
 | |
|   assert( n>0 );
 | |
|   assert( iDummy>0 );
 | |
|   assert( n+iDummy>0 );
 | |
|   assert( n+iDummy<=nData );
 | |
|   ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
 | |
|   pData += n+iDummy;
 | |
|   nData -= n+iDummy;
 | |
| 
 | |
|   /* Verify that trailing terms and doclists also are readable. */
 | |
|   while( nData!=0 ){
 | |
|     n = fts3GetVarint32(pData, &iDummy);
 | |
|     assert( n>0 );
 | |
|     assert( iDummy>=0 );
 | |
|     assert( n<nData );
 | |
|     pData += n;
 | |
|     nData -= n;
 | |
|     n = fts3GetVarint32(pData, &iDummy);
 | |
|     assert( n>0 );
 | |
|     assert( iDummy>0 );
 | |
|     assert( n+iDummy>0 );
 | |
|     assert( n+iDummy<nData );
 | |
|     pData += n+iDummy;
 | |
|     nData -= n+iDummy;
 | |
| 
 | |
|     n = fts3GetVarint32(pData, &iDummy);
 | |
|     assert( n>0 );
 | |
|     assert( iDummy>0 );
 | |
|     assert( n+iDummy>0 );
 | |
|     assert( n+iDummy<=nData );
 | |
|     ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
 | |
|     pData += n+iDummy;
 | |
|     nData -= n+iDummy;
 | |
|   }
 | |
| }
 | |
| #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
 | |
| #else
 | |
| #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
 | |
| #endif
 | |
| 
 | |
| /* Flush the current leaf node to %_segments, and adding the resulting
 | |
| ** blockid and the starting term to the interior node which will
 | |
| ** contain it.
 | |
| */
 | |
| static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
 | |
|                                    int iData, int nData){
 | |
|   sqlite_int64 iBlockid = 0;
 | |
|   const char *pStartingTerm;
 | |
|   int nStartingTerm, rc, n;
 | |
| 
 | |
|   /* Must have the leading varint(0) flag, plus at least some
 | |
|   ** valid-looking data.
 | |
|   */
 | |
|   assert( nData>2 );
 | |
|   assert( iData>=0 );
 | |
|   assert( iData+nData<=pWriter->data.nData );
 | |
|   ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
 | |
| 
 | |
|   rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   assert( iBlockid!=0 );
 | |
| 
 | |
|   /* Reconstruct the first term in the leaf for purposes of building
 | |
|   ** the interior node.
 | |
|   */
 | |
|   n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
 | |
|   pStartingTerm = pWriter->data.pData+iData+1+n;
 | |
|   assert( pWriter->data.nData>iData+1+n+nStartingTerm );
 | |
|   assert( pWriter->nTermDistinct>0 );
 | |
|   assert( pWriter->nTermDistinct<=nStartingTerm );
 | |
|   nStartingTerm = pWriter->nTermDistinct;
 | |
| 
 | |
|   if( pWriter->has_parent ){
 | |
|     interiorWriterAppend(&pWriter->parentWriter,
 | |
|                          pStartingTerm, nStartingTerm, iBlockid);
 | |
|   }else{
 | |
|     interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
 | |
|                        &pWriter->parentWriter);
 | |
|     pWriter->has_parent = 1;
 | |
|   }
 | |
| 
 | |
|   /* Track the span of this segment's leaf nodes. */
 | |
|   if( pWriter->iEndBlockid==0 ){
 | |
|     pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
 | |
|   }else{
 | |
|     pWriter->iEndBlockid++;
 | |
|     assert( iBlockid==pWriter->iEndBlockid );
 | |
|   }
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
 | |
|   int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* Re-initialize the output buffer. */
 | |
|   dataBufferReset(&pWriter->data);
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Fetch the root info for the segment.  If the entire leaf fits
 | |
| ** within ROOT_MAX, then it will be returned directly, otherwise it
 | |
| ** will be flushed and the root info will be returned from the
 | |
| ** interior node.  *piEndBlockid is set to the blockid of the last
 | |
| ** interior or leaf node written to disk (0 if none are written at
 | |
| ** all).
 | |
| */
 | |
| static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
 | |
|                               char **ppRootInfo, int *pnRootInfo,
 | |
|                               sqlite_int64 *piEndBlockid){
 | |
|   /* we can fit the segment entirely inline */
 | |
|   if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
 | |
|     *ppRootInfo = pWriter->data.pData;
 | |
|     *pnRootInfo = pWriter->data.nData;
 | |
|     *piEndBlockid = 0;
 | |
|     return SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|   /* Flush remaining leaf data. */
 | |
|   if( pWriter->data.nData>0 ){
 | |
|     int rc = leafWriterFlush(v, pWriter);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
| 
 | |
|   /* We must have flushed a leaf at some point. */
 | |
|   assert( pWriter->has_parent );
 | |
| 
 | |
|   /* Tenatively set the end leaf blockid as the end blockid.  If the
 | |
|   ** interior node can be returned inline, this will be the final
 | |
|   ** blockid, otherwise it will be overwritten by
 | |
|   ** interiorWriterRootInfo().
 | |
|   */
 | |
|   *piEndBlockid = pWriter->iEndBlockid;
 | |
| 
 | |
|   return interiorWriterRootInfo(v, &pWriter->parentWriter,
 | |
|                                 ppRootInfo, pnRootInfo, piEndBlockid);
 | |
| }
 | |
| 
 | |
| /* Collect the rootInfo data and store it into the segment directory.
 | |
| ** This has the effect of flushing the segment's leaf data to
 | |
| ** %_segments, and also flushing any interior nodes to %_segments.
 | |
| */
 | |
| static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
 | |
|   sqlite_int64 iEndBlockid;
 | |
|   char *pRootInfo;
 | |
|   int rc, nRootInfo;
 | |
| 
 | |
|   rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* Don't bother storing an entirely empty segment. */
 | |
|   if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
 | |
| 
 | |
|   return segdir_set(v, pWriter->iLevel, pWriter->idx,
 | |
|                     pWriter->iStartBlockid, pWriter->iEndBlockid,
 | |
|                     iEndBlockid, pRootInfo, nRootInfo);
 | |
| }
 | |
| 
 | |
| static void leafWriterDestroy(LeafWriter *pWriter){
 | |
|   if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
 | |
|   dataBufferDestroy(&pWriter->term);
 | |
|   dataBufferDestroy(&pWriter->data);
 | |
| }
 | |
| 
 | |
| /* Encode a term into the leafWriter, delta-encoding as appropriate.
 | |
| ** Returns the length of the new term which distinguishes it from the
 | |
| ** previous term, which can be used to set nTermDistinct when a node
 | |
| ** boundary is crossed.
 | |
| */
 | |
| static int leafWriterEncodeTerm(LeafWriter *pWriter,
 | |
|                                 const char *pTerm, int nTerm){
 | |
|   char c[VARINT_MAX+VARINT_MAX];
 | |
|   int n, nPrefix = 0;
 | |
| 
 | |
|   assert( nTerm>0 );
 | |
|   while( nPrefix<pWriter->term.nData &&
 | |
|          pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
 | |
|     nPrefix++;
 | |
|     /* Failing this implies that the terms weren't in order. */
 | |
|     assert( nPrefix<nTerm );
 | |
|   }
 | |
| 
 | |
|   if( pWriter->data.nData==0 ){
 | |
|     /* Encode the node header and leading term as:
 | |
|     **  varint(0)
 | |
|     **  varint(nTerm)
 | |
|     **  char pTerm[nTerm]
 | |
|     */
 | |
|     n = fts3PutVarint(c, '\0');
 | |
|     n += fts3PutVarint(c+n, nTerm);
 | |
|     dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
 | |
|   }else{
 | |
|     /* Delta-encode the term as:
 | |
|     **  varint(nPrefix)
 | |
|     **  varint(nSuffix)
 | |
|     **  char pTermSuffix[nSuffix]
 | |
|     */
 | |
|     n = fts3PutVarint(c, nPrefix);
 | |
|     n += fts3PutVarint(c+n, nTerm-nPrefix);
 | |
|     dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
 | |
|   }
 | |
|   dataBufferReplace(&pWriter->term, pTerm, nTerm);
 | |
| 
 | |
|   return nPrefix+1;
 | |
| }
 | |
| 
 | |
| /* Used to avoid a memmove when a large amount of doclist data is in
 | |
| ** the buffer.  This constructs a node and term header before
 | |
| ** iDoclistData and flushes the resulting complete node using
 | |
| ** leafWriterInternalFlush().
 | |
| */
 | |
| static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
 | |
|                                  const char *pTerm, int nTerm,
 | |
|                                  int iDoclistData){
 | |
|   char c[VARINT_MAX+VARINT_MAX];
 | |
|   int iData, n = fts3PutVarint(c, 0);
 | |
|   n += fts3PutVarint(c+n, nTerm);
 | |
| 
 | |
|   /* There should always be room for the header.  Even if pTerm shared
 | |
|   ** a substantial prefix with the previous term, the entire prefix
 | |
|   ** could be constructed from earlier data in the doclist, so there
 | |
|   ** should be room.
 | |
|   */
 | |
|   assert( iDoclistData>=n+nTerm );
 | |
| 
 | |
|   iData = iDoclistData-(n+nTerm);
 | |
|   memcpy(pWriter->data.pData+iData, c, n);
 | |
|   memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
 | |
| 
 | |
|   return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
 | |
| }
 | |
| 
 | |
| /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
 | |
| ** %_segments.
 | |
| */
 | |
| static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
 | |
|                                const char *pTerm, int nTerm,
 | |
|                                DLReader *pReaders, int nReaders){
 | |
|   char c[VARINT_MAX+VARINT_MAX];
 | |
|   int iTermData = pWriter->data.nData, iDoclistData;
 | |
|   int i, nData, n, nActualData, nActual, rc, nTermDistinct;
 | |
| 
 | |
|   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
 | |
|   nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
 | |
| 
 | |
|   /* Remember nTermDistinct if opening a new node. */
 | |
|   if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
 | |
| 
 | |
|   iDoclistData = pWriter->data.nData;
 | |
| 
 | |
|   /* Estimate the length of the merged doclist so we can leave space
 | |
|   ** to encode it.
 | |
|   */
 | |
|   for(i=0, nData=0; i<nReaders; i++){
 | |
|     nData += dlrAllDataBytes(&pReaders[i]);
 | |
|   }
 | |
|   n = fts3PutVarint(c, nData);
 | |
|   dataBufferAppend(&pWriter->data, c, n);
 | |
| 
 | |
|   docListMerge(&pWriter->data, pReaders, nReaders);
 | |
|   ASSERT_VALID_DOCLIST(DL_DEFAULT,
 | |
|                        pWriter->data.pData+iDoclistData+n,
 | |
|                        pWriter->data.nData-iDoclistData-n, NULL);
 | |
| 
 | |
|   /* The actual amount of doclist data at this point could be smaller
 | |
|   ** than the length we encoded.  Additionally, the space required to
 | |
|   ** encode this length could be smaller.  For small doclists, this is
 | |
|   ** not a big deal, we can just use memmove() to adjust things.
 | |
|   */
 | |
|   nActualData = pWriter->data.nData-(iDoclistData+n);
 | |
|   nActual = fts3PutVarint(c, nActualData);
 | |
|   assert( nActualData<=nData );
 | |
|   assert( nActual<=n );
 | |
| 
 | |
|   /* If the new doclist is big enough for force a standalone leaf
 | |
|   ** node, we can immediately flush it inline without doing the
 | |
|   ** memmove().
 | |
|   */
 | |
|   /* TODO(shess) This test matches leafWriterStep(), which does this
 | |
|   ** test before it knows the cost to varint-encode the term and
 | |
|   ** doclist lengths.  At some point, change to
 | |
|   ** pWriter->data.nData-iTermData>STANDALONE_MIN.
 | |
|   */
 | |
|   if( nTerm+nActualData>STANDALONE_MIN ){
 | |
|     /* Push leaf node from before this term. */
 | |
|     if( iTermData>0 ){
 | |
|       rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|       pWriter->nTermDistinct = nTermDistinct;
 | |
|     }
 | |
| 
 | |
|     /* Fix the encoded doclist length. */
 | |
|     iDoclistData += n - nActual;
 | |
|     memcpy(pWriter->data.pData+iDoclistData, c, nActual);
 | |
| 
 | |
|     /* Push the standalone leaf node. */
 | |
|     rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     /* Leave the node empty. */
 | |
|     dataBufferReset(&pWriter->data);
 | |
| 
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   /* At this point, we know that the doclist was small, so do the
 | |
|   ** memmove if indicated.
 | |
|   */
 | |
|   if( nActual<n ){
 | |
|     memmove(pWriter->data.pData+iDoclistData+nActual,
 | |
|             pWriter->data.pData+iDoclistData+n,
 | |
|             pWriter->data.nData-(iDoclistData+n));
 | |
|     pWriter->data.nData -= n-nActual;
 | |
|   }
 | |
| 
 | |
|   /* Replace written length with actual length. */
 | |
|   memcpy(pWriter->data.pData+iDoclistData, c, nActual);
 | |
| 
 | |
|   /* If the node is too large, break things up. */
 | |
|   /* TODO(shess) This test matches leafWriterStep(), which does this
 | |
|   ** test before it knows the cost to varint-encode the term and
 | |
|   ** doclist lengths.  At some point, change to
 | |
|   ** pWriter->data.nData>LEAF_MAX.
 | |
|   */
 | |
|   if( iTermData+nTerm+nActualData>LEAF_MAX ){
 | |
|     /* Flush out the leading data as a node */
 | |
|     rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     pWriter->nTermDistinct = nTermDistinct;
 | |
| 
 | |
|     /* Rebuild header using the current term */
 | |
|     n = fts3PutVarint(pWriter->data.pData, 0);
 | |
|     n += fts3PutVarint(pWriter->data.pData+n, nTerm);
 | |
|     memcpy(pWriter->data.pData+n, pTerm, nTerm);
 | |
|     n += nTerm;
 | |
| 
 | |
|     /* There should always be room, because the previous encoding
 | |
|     ** included all data necessary to construct the term.
 | |
|     */
 | |
|     assert( n<iDoclistData );
 | |
|     /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
 | |
|     ** following memcpy() is safe (as opposed to needing a memmove).
 | |
|     */
 | |
|     assert( 2*STANDALONE_MIN<=LEAF_MAX );
 | |
|     assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
 | |
|     memcpy(pWriter->data.pData+n,
 | |
|            pWriter->data.pData+iDoclistData,
 | |
|            pWriter->data.nData-iDoclistData);
 | |
|     pWriter->data.nData -= iDoclistData-n;
 | |
|   }
 | |
|   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
 | |
| ** %_segments.
 | |
| */
 | |
| /* TODO(shess) Revise writeZeroSegment() so that doclists are
 | |
| ** constructed directly in pWriter->data.
 | |
| */
 | |
| static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
 | |
|                           const char *pTerm, int nTerm,
 | |
|                           const char *pData, int nData){
 | |
|   int rc;
 | |
|   DLReader reader;
 | |
| 
 | |
|   dlrInit(&reader, DL_DEFAULT, pData, nData);
 | |
|   rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
 | |
|   dlrDestroy(&reader);
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************/
 | |
| /* LeafReader is used to iterate over an individual leaf node. */
 | |
| typedef struct LeafReader {
 | |
|   DataBuffer term;          /* copy of current term. */
 | |
| 
 | |
|   const char *pData;        /* data for current term. */
 | |
|   int nData;
 | |
| } LeafReader;
 | |
| 
 | |
| static void leafReaderDestroy(LeafReader *pReader){
 | |
|   dataBufferDestroy(&pReader->term);
 | |
|   SCRAMBLE(pReader);
 | |
| }
 | |
| 
 | |
| static int leafReaderAtEnd(LeafReader *pReader){
 | |
|   return pReader->nData<=0;
 | |
| }
 | |
| 
 | |
| /* Access the current term. */
 | |
| static int leafReaderTermBytes(LeafReader *pReader){
 | |
|   return pReader->term.nData;
 | |
| }
 | |
| static const char *leafReaderTerm(LeafReader *pReader){
 | |
|   assert( pReader->term.nData>0 );
 | |
|   return pReader->term.pData;
 | |
| }
 | |
| 
 | |
| /* Access the doclist data for the current term. */
 | |
| static int leafReaderDataBytes(LeafReader *pReader){
 | |
|   int nData;
 | |
|   assert( pReader->term.nData>0 );
 | |
|   fts3GetVarint32(pReader->pData, &nData);
 | |
|   return nData;
 | |
| }
 | |
| static const char *leafReaderData(LeafReader *pReader){
 | |
|   int n, nData;
 | |
|   assert( pReader->term.nData>0 );
 | |
|   n = fts3GetVarint32(pReader->pData, &nData);
 | |
|   return pReader->pData+n;
 | |
| }
 | |
| 
 | |
| static void leafReaderInit(const char *pData, int nData,
 | |
|                            LeafReader *pReader){
 | |
|   int nTerm, n;
 | |
| 
 | |
|   assert( nData>0 );
 | |
|   assert( pData[0]=='\0' );
 | |
| 
 | |
|   CLEAR(pReader);
 | |
| 
 | |
|   /* Read the first term, skipping the header byte. */
 | |
|   n = fts3GetVarint32(pData+1, &nTerm);
 | |
|   dataBufferInit(&pReader->term, nTerm);
 | |
|   dataBufferReplace(&pReader->term, pData+1+n, nTerm);
 | |
| 
 | |
|   /* Position after the first term. */
 | |
|   assert( 1+n+nTerm<nData );
 | |
|   pReader->pData = pData+1+n+nTerm;
 | |
|   pReader->nData = nData-1-n-nTerm;
 | |
| }
 | |
| 
 | |
| /* Step the reader forward to the next term. */
 | |
| static void leafReaderStep(LeafReader *pReader){
 | |
|   int n, nData, nPrefix, nSuffix;
 | |
|   assert( !leafReaderAtEnd(pReader) );
 | |
| 
 | |
|   /* Skip previous entry's data block. */
 | |
|   n = fts3GetVarint32(pReader->pData, &nData);
 | |
|   assert( n+nData<=pReader->nData );
 | |
|   pReader->pData += n+nData;
 | |
|   pReader->nData -= n+nData;
 | |
| 
 | |
|   if( !leafReaderAtEnd(pReader) ){
 | |
|     /* Construct the new term using a prefix from the old term plus a
 | |
|     ** suffix from the leaf data.
 | |
|     */
 | |
|     n = fts3GetVarint32(pReader->pData, &nPrefix);
 | |
|     n += fts3GetVarint32(pReader->pData+n, &nSuffix);
 | |
|     assert( n+nSuffix<pReader->nData );
 | |
|     pReader->term.nData = nPrefix;
 | |
|     dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
 | |
| 
 | |
|     pReader->pData += n+nSuffix;
 | |
|     pReader->nData -= n+nSuffix;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* strcmp-style comparison of pReader's current term against pTerm.
 | |
| ** If isPrefix, equality means equal through nTerm bytes.
 | |
| */
 | |
| static int leafReaderTermCmp(LeafReader *pReader,
 | |
|                              const char *pTerm, int nTerm, int isPrefix){
 | |
|   int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
 | |
|   if( n==0 ){
 | |
|     if( pReader->term.nData>0 ) return -1;
 | |
|     if(nTerm>0 ) return 1;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   c = memcmp(pReader->term.pData, pTerm, n);
 | |
|   if( c!=0 ) return c;
 | |
|   if( isPrefix && n==nTerm ) return 0;
 | |
|   return pReader->term.nData - nTerm;
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************/
 | |
| /* LeavesReader wraps LeafReader to allow iterating over the entire
 | |
| ** leaf layer of the tree.
 | |
| */
 | |
| typedef struct LeavesReader {
 | |
|   int idx;                  /* Index within the segment. */
 | |
| 
 | |
|   sqlite3_stmt *pStmt;      /* Statement we're streaming leaves from. */
 | |
|   int eof;                  /* we've seen SQLITE_DONE from pStmt. */
 | |
| 
 | |
|   LeafReader leafReader;    /* reader for the current leaf. */
 | |
|   DataBuffer rootData;      /* root data for inline. */
 | |
| } LeavesReader;
 | |
| 
 | |
| /* Access the current term. */
 | |
| static int leavesReaderTermBytes(LeavesReader *pReader){
 | |
|   assert( !pReader->eof );
 | |
|   return leafReaderTermBytes(&pReader->leafReader);
 | |
| }
 | |
| static const char *leavesReaderTerm(LeavesReader *pReader){
 | |
|   assert( !pReader->eof );
 | |
|   return leafReaderTerm(&pReader->leafReader);
 | |
| }
 | |
| 
 | |
| /* Access the doclist data for the current term. */
 | |
| static int leavesReaderDataBytes(LeavesReader *pReader){
 | |
|   assert( !pReader->eof );
 | |
|   return leafReaderDataBytes(&pReader->leafReader);
 | |
| }
 | |
| static const char *leavesReaderData(LeavesReader *pReader){
 | |
|   assert( !pReader->eof );
 | |
|   return leafReaderData(&pReader->leafReader);
 | |
| }
 | |
| 
 | |
| static int leavesReaderAtEnd(LeavesReader *pReader){
 | |
|   return pReader->eof;
 | |
| }
 | |
| 
 | |
| /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
 | |
| ** leaving the statement handle open, which locks the table.
 | |
| */
 | |
| /* TODO(shess) This "solution" is not satisfactory.  Really, there
 | |
| ** should be check-in function for all statement handles which
 | |
| ** arranges to call sqlite3_reset().  This most likely will require
 | |
| ** modification to control flow all over the place, though, so for now
 | |
| ** just punt.
 | |
| **
 | |
| ** Note the the current system assumes that segment merges will run to
 | |
| ** completion, which is why this particular probably hasn't arisen in
 | |
| ** this case.  Probably a brittle assumption.
 | |
| */
 | |
| static int leavesReaderReset(LeavesReader *pReader){
 | |
|   return sqlite3_reset(pReader->pStmt);
 | |
| }
 | |
| 
 | |
| static void leavesReaderDestroy(LeavesReader *pReader){
 | |
|   leafReaderDestroy(&pReader->leafReader);
 | |
|   dataBufferDestroy(&pReader->rootData);
 | |
|   SCRAMBLE(pReader);
 | |
| }
 | |
| 
 | |
| /* Initialize pReader with the given root data (if iStartBlockid==0
 | |
| ** the leaf data was entirely contained in the root), or from the
 | |
| ** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
 | |
| */
 | |
| static int leavesReaderInit(fulltext_vtab *v,
 | |
|                             int idx,
 | |
|                             sqlite_int64 iStartBlockid,
 | |
|                             sqlite_int64 iEndBlockid,
 | |
|                             const char *pRootData, int nRootData,
 | |
|                             LeavesReader *pReader){
 | |
|   CLEAR(pReader);
 | |
|   pReader->idx = idx;
 | |
| 
 | |
|   dataBufferInit(&pReader->rootData, 0);
 | |
|   if( iStartBlockid==0 ){
 | |
|     /* Entire leaf level fit in root data. */
 | |
|     dataBufferReplace(&pReader->rootData, pRootData, nRootData);
 | |
|     leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
 | |
|                    &pReader->leafReader);
 | |
|   }else{
 | |
|     sqlite3_stmt *s;
 | |
|     int rc = sql_get_leaf_statement(v, idx, &s);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     rc = sqlite3_bind_int64(s, 1, iStartBlockid);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     rc = sqlite3_bind_int64(s, 2, iEndBlockid);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|     rc = sqlite3_step(s);
 | |
|     if( rc==SQLITE_DONE ){
 | |
|       pReader->eof = 1;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|     if( rc!=SQLITE_ROW ) return rc;
 | |
| 
 | |
|     pReader->pStmt = s;
 | |
|     leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
 | |
|                    sqlite3_column_bytes(pReader->pStmt, 0),
 | |
|                    &pReader->leafReader);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Step the current leaf forward to the next term.  If we reach the
 | |
| ** end of the current leaf, step forward to the next leaf block.
 | |
| */
 | |
| static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
 | |
|   assert( !leavesReaderAtEnd(pReader) );
 | |
|   leafReaderStep(&pReader->leafReader);
 | |
| 
 | |
|   if( leafReaderAtEnd(&pReader->leafReader) ){
 | |
|     int rc;
 | |
|     if( pReader->rootData.pData ){
 | |
|       pReader->eof = 1;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|     rc = sqlite3_step(pReader->pStmt);
 | |
|     if( rc!=SQLITE_ROW ){
 | |
|       pReader->eof = 1;
 | |
|       return rc==SQLITE_DONE ? SQLITE_OK : rc;
 | |
|     }
 | |
|     leafReaderDestroy(&pReader->leafReader);
 | |
|     leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
 | |
|                    sqlite3_column_bytes(pReader->pStmt, 0),
 | |
|                    &pReader->leafReader);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Order LeavesReaders by their term, ignoring idx.  Readers at eof
 | |
| ** always sort to the end.
 | |
| */
 | |
| static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
 | |
|   if( leavesReaderAtEnd(lr1) ){
 | |
|     if( leavesReaderAtEnd(lr2) ) return 0;
 | |
|     return 1;
 | |
|   }
 | |
|   if( leavesReaderAtEnd(lr2) ) return -1;
 | |
| 
 | |
|   return leafReaderTermCmp(&lr1->leafReader,
 | |
|                            leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
 | |
|                            0);
 | |
| }
 | |
| 
 | |
| /* Similar to leavesReaderTermCmp(), with additional ordering by idx
 | |
| ** so that older segments sort before newer segments.
 | |
| */
 | |
| static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
 | |
|   int c = leavesReaderTermCmp(lr1, lr2);
 | |
|   if( c!=0 ) return c;
 | |
|   return lr1->idx-lr2->idx;
 | |
| }
 | |
| 
 | |
| /* Assume that pLr[1]..pLr[nLr] are sorted.  Bubble pLr[0] into its
 | |
| ** sorted position.
 | |
| */
 | |
| static void leavesReaderReorder(LeavesReader *pLr, int nLr){
 | |
|   while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
 | |
|     LeavesReader tmp = pLr[0];
 | |
|     pLr[0] = pLr[1];
 | |
|     pLr[1] = tmp;
 | |
|     nLr--;
 | |
|     pLr++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Initializes pReaders with the segments from level iLevel, returning
 | |
| ** the number of segments in *piReaders.  Leaves pReaders in sorted
 | |
| ** order.
 | |
| */
 | |
| static int leavesReadersInit(fulltext_vtab *v, int iLevel,
 | |
|                              LeavesReader *pReaders, int *piReaders){
 | |
|   sqlite3_stmt *s;
 | |
|   int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int(s, 1, iLevel);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   i = 0;
 | |
|   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
 | |
|     sqlite_int64 iStart = sqlite3_column_int64(s, 0);
 | |
|     sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
 | |
|     const char *pRootData = sqlite3_column_blob(s, 2);
 | |
|     int nRootData = sqlite3_column_bytes(s, 2);
 | |
| 
 | |
|     assert( i<MERGE_COUNT );
 | |
|     rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
 | |
|                           &pReaders[i]);
 | |
|     if( rc!=SQLITE_OK ) break;
 | |
| 
 | |
|     i++;
 | |
|   }
 | |
|   if( rc!=SQLITE_DONE ){
 | |
|     while( i-->0 ){
 | |
|       leavesReaderDestroy(&pReaders[i]);
 | |
|     }
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   *piReaders = i;
 | |
| 
 | |
|   /* Leave our results sorted by term, then age. */
 | |
|   while( i-- ){
 | |
|     leavesReaderReorder(pReaders+i, *piReaders-i);
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Merge doclists from pReaders[nReaders] into a single doclist, which
 | |
| ** is written to pWriter.  Assumes pReaders is ordered oldest to
 | |
| ** newest.
 | |
| */
 | |
| /* TODO(shess) Consider putting this inline in segmentMerge(). */
 | |
| static int leavesReadersMerge(fulltext_vtab *v,
 | |
|                               LeavesReader *pReaders, int nReaders,
 | |
|                               LeafWriter *pWriter){
 | |
|   DLReader dlReaders[MERGE_COUNT];
 | |
|   const char *pTerm = leavesReaderTerm(pReaders);
 | |
|   int i, nTerm = leavesReaderTermBytes(pReaders);
 | |
| 
 | |
|   assert( nReaders<=MERGE_COUNT );
 | |
| 
 | |
|   for(i=0; i<nReaders; i++){
 | |
|     dlrInit(&dlReaders[i], DL_DEFAULT,
 | |
|             leavesReaderData(pReaders+i),
 | |
|             leavesReaderDataBytes(pReaders+i));
 | |
|   }
 | |
| 
 | |
|   return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
 | |
| }
 | |
| 
 | |
| /* Forward ref due to mutual recursion with segdirNextIndex(). */
 | |
| static int segmentMerge(fulltext_vtab *v, int iLevel);
 | |
| 
 | |
| /* Put the next available index at iLevel into *pidx.  If iLevel
 | |
| ** already has MERGE_COUNT segments, they are merged to a higher
 | |
| ** level to make room.
 | |
| */
 | |
| static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
 | |
|   int rc = segdir_max_index(v, iLevel, pidx);
 | |
|   if( rc==SQLITE_DONE ){              /* No segments at iLevel. */
 | |
|     *pidx = 0;
 | |
|   }else if( rc==SQLITE_ROW ){
 | |
|     if( *pidx==(MERGE_COUNT-1) ){
 | |
|       rc = segmentMerge(v, iLevel);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
|       *pidx = 0;
 | |
|     }else{
 | |
|       (*pidx)++;
 | |
|     }
 | |
|   }else{
 | |
|     return rc;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Merge MERGE_COUNT segments at iLevel into a new segment at
 | |
| ** iLevel+1.  If iLevel+1 is already full of segments, those will be
 | |
| ** merged to make room.
 | |
| */
 | |
| static int segmentMerge(fulltext_vtab *v, int iLevel){
 | |
|   LeafWriter writer;
 | |
|   LeavesReader lrs[MERGE_COUNT];
 | |
|   int i, rc, idx = 0;
 | |
| 
 | |
|   /* Determine the next available segment index at the next level,
 | |
|   ** merging as necessary.
 | |
|   */
 | |
|   rc = segdirNextIndex(v, iLevel+1, &idx);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* TODO(shess) This assumes that we'll always see exactly
 | |
|   ** MERGE_COUNT segments to merge at a given level.  That will be
 | |
|   ** broken if we allow the developer to request preemptive or
 | |
|   ** deferred merging.
 | |
|   */
 | |
|   memset(&lrs, '\0', sizeof(lrs));
 | |
|   rc = leavesReadersInit(v, iLevel, lrs, &i);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
|   assert( i==MERGE_COUNT );
 | |
| 
 | |
|   leafWriterInit(iLevel+1, idx, &writer);
 | |
| 
 | |
|   /* Since leavesReaderReorder() pushes readers at eof to the end,
 | |
|   ** when the first reader is empty, all will be empty.
 | |
|   */
 | |
|   while( !leavesReaderAtEnd(lrs) ){
 | |
|     /* Figure out how many readers share their next term. */
 | |
|     for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
 | |
|       if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
 | |
|     }
 | |
| 
 | |
|     rc = leavesReadersMerge(v, lrs, i, &writer);
 | |
|     if( rc!=SQLITE_OK ) goto err;
 | |
| 
 | |
|     /* Step forward those that were merged. */
 | |
|     while( i-->0 ){
 | |
|       rc = leavesReaderStep(v, lrs+i);
 | |
|       if( rc!=SQLITE_OK ) goto err;
 | |
| 
 | |
|       /* Reorder by term, then by age. */
 | |
|       leavesReaderReorder(lrs+i, MERGE_COUNT-i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(i=0; i<MERGE_COUNT; i++){
 | |
|     leavesReaderDestroy(&lrs[i]);
 | |
|   }
 | |
| 
 | |
|   rc = leafWriterFinalize(v, &writer);
 | |
|   leafWriterDestroy(&writer);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* Delete the merged segment data. */
 | |
|   return segdir_delete(v, iLevel);
 | |
| 
 | |
|  err:
 | |
|   for(i=0; i<MERGE_COUNT; i++){
 | |
|     leavesReaderDestroy(&lrs[i]);
 | |
|   }
 | |
|   leafWriterDestroy(&writer);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Accumulate the union of *acc and *pData into *acc. */
 | |
| static void docListAccumulateUnion(DataBuffer *acc,
 | |
|                                    const char *pData, int nData) {
 | |
|   DataBuffer tmp = *acc;
 | |
|   dataBufferInit(acc, tmp.nData+nData);
 | |
|   docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
 | |
|   dataBufferDestroy(&tmp);
 | |
| }
 | |
| 
 | |
| /* TODO(shess) It might be interesting to explore different merge
 | |
| ** strategies, here.  For instance, since this is a sorted merge, we
 | |
| ** could easily merge many doclists in parallel.  With some
 | |
| ** comprehension of the storage format, we could merge all of the
 | |
| ** doclists within a leaf node directly from the leaf node's storage.
 | |
| ** It may be worthwhile to merge smaller doclists before larger
 | |
| ** doclists, since they can be traversed more quickly - but the
 | |
| ** results may have less overlap, making them more expensive in a
 | |
| ** different way.
 | |
| */
 | |
| 
 | |
| /* Scan pReader for pTerm/nTerm, and merge the term's doclist over
 | |
| ** *out (any doclists with duplicate docids overwrite those in *out).
 | |
| ** Internal function for loadSegmentLeaf().
 | |
| */
 | |
| static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
 | |
|                                 const char *pTerm, int nTerm, int isPrefix,
 | |
|                                 DataBuffer *out){
 | |
|   /* doclist data is accumulated into pBuffers similar to how one does
 | |
|   ** increment in binary arithmetic.  If index 0 is empty, the data is
 | |
|   ** stored there.  If there is data there, it is merged and the
 | |
|   ** results carried into position 1, with further merge-and-carry
 | |
|   ** until an empty position is found.
 | |
|   */
 | |
|   DataBuffer *pBuffers = NULL;
 | |
|   int nBuffers = 0, nMaxBuffers = 0, rc;
 | |
| 
 | |
|   assert( nTerm>0 );
 | |
| 
 | |
|   for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
 | |
|       rc=leavesReaderStep(v, pReader)){
 | |
|     /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
 | |
|     ** already taken to compare the terms of two LeavesReaders.  Think
 | |
|     ** on a better name.  [Meanwhile, break encapsulation rather than
 | |
|     ** use a confusing name.]
 | |
|     */
 | |
|     int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
 | |
|     if( c>0 ) break;      /* Past any possible matches. */
 | |
|     if( c==0 ){
 | |
|       const char *pData = leavesReaderData(pReader);
 | |
|       int iBuffer, nData = leavesReaderDataBytes(pReader);
 | |
| 
 | |
|       /* Find the first empty buffer. */
 | |
|       for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
 | |
|         if( 0==pBuffers[iBuffer].nData ) break;
 | |
|       }
 | |
| 
 | |
|       /* Out of buffers, add an empty one. */
 | |
|       if( iBuffer==nBuffers ){
 | |
|         if( nBuffers==nMaxBuffers ){
 | |
|           DataBuffer *p;
 | |
|           nMaxBuffers += 20;
 | |
| 
 | |
|           /* Manual realloc so we can handle NULL appropriately. */
 | |
|           p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
 | |
|           if( p==NULL ){
 | |
|             rc = SQLITE_NOMEM;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           if( nBuffers>0 ){
 | |
|             assert(pBuffers!=NULL);
 | |
|             memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
 | |
|             sqlite3_free(pBuffers);
 | |
|           }
 | |
|           pBuffers = p;
 | |
|         }
 | |
|         dataBufferInit(&(pBuffers[nBuffers]), 0);
 | |
|         nBuffers++;
 | |
|       }
 | |
| 
 | |
|       /* At this point, must have an empty at iBuffer. */
 | |
|       assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
 | |
| 
 | |
|       /* If empty was first buffer, no need for merge logic. */
 | |
|       if( iBuffer==0 ){
 | |
|         dataBufferReplace(&(pBuffers[0]), pData, nData);
 | |
|       }else{
 | |
|         /* pAcc is the empty buffer the merged data will end up in. */
 | |
|         DataBuffer *pAcc = &(pBuffers[iBuffer]);
 | |
|         DataBuffer *p = &(pBuffers[0]);
 | |
| 
 | |
|         /* Handle position 0 specially to avoid need to prime pAcc
 | |
|         ** with pData/nData.
 | |
|         */
 | |
|         dataBufferSwap(p, pAcc);
 | |
|         docListAccumulateUnion(pAcc, pData, nData);
 | |
| 
 | |
|         /* Accumulate remaining doclists into pAcc. */
 | |
|         for(++p; p<pAcc; ++p){
 | |
|           docListAccumulateUnion(pAcc, p->pData, p->nData);
 | |
| 
 | |
|           /* dataBufferReset() could allow a large doclist to blow up
 | |
|           ** our memory requirements.
 | |
|           */
 | |
|           if( p->nCapacity<1024 ){
 | |
|             dataBufferReset(p);
 | |
|           }else{
 | |
|             dataBufferDestroy(p);
 | |
|             dataBufferInit(p, 0);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Union all the doclists together into *out. */
 | |
|   /* TODO(shess) What if *out is big?  Sigh. */
 | |
|   if( rc==SQLITE_OK && nBuffers>0 ){
 | |
|     int iBuffer;
 | |
|     for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
 | |
|       if( pBuffers[iBuffer].nData>0 ){
 | |
|         if( out->nData==0 ){
 | |
|           dataBufferSwap(out, &(pBuffers[iBuffer]));
 | |
|         }else{
 | |
|           docListAccumulateUnion(out, pBuffers[iBuffer].pData,
 | |
|                                  pBuffers[iBuffer].nData);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while( nBuffers-- ){
 | |
|     dataBufferDestroy(&(pBuffers[nBuffers]));
 | |
|   }
 | |
|   if( pBuffers!=NULL ) sqlite3_free(pBuffers);
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Call loadSegmentLeavesInt() with pData/nData as input. */
 | |
| static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
 | |
|                            const char *pTerm, int nTerm, int isPrefix,
 | |
|                            DataBuffer *out){
 | |
|   LeavesReader reader;
 | |
|   int rc;
 | |
| 
 | |
|   assert( nData>1 );
 | |
|   assert( *pData=='\0' );
 | |
|   rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
 | |
|   leavesReaderReset(&reader);
 | |
|   leavesReaderDestroy(&reader);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
 | |
| ** iEndLeaf (inclusive) as input, and merge the resulting doclist into
 | |
| ** out.
 | |
| */
 | |
| static int loadSegmentLeaves(fulltext_vtab *v,
 | |
|                              sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
 | |
|                              const char *pTerm, int nTerm, int isPrefix,
 | |
|                              DataBuffer *out){
 | |
|   int rc;
 | |
|   LeavesReader reader;
 | |
| 
 | |
|   assert( iStartLeaf<=iEndLeaf );
 | |
|   rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
 | |
|   leavesReaderReset(&reader);
 | |
|   leavesReaderDestroy(&reader);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Taking pData/nData as an interior node, find the sequence of child
 | |
| ** nodes which could include pTerm/nTerm/isPrefix.  Note that the
 | |
| ** interior node terms logically come between the blocks, so there is
 | |
| ** one more blockid than there are terms (that block contains terms >=
 | |
| ** the last interior-node term).
 | |
| */
 | |
| /* TODO(shess) The calling code may already know that the end child is
 | |
| ** not worth calculating, because the end may be in a later sibling
 | |
| ** node.  Consider whether breaking symmetry is worthwhile.  I suspect
 | |
| ** it is not worthwhile.
 | |
| */
 | |
| static void getChildrenContaining(const char *pData, int nData,
 | |
|                                   const char *pTerm, int nTerm, int isPrefix,
 | |
|                                   sqlite_int64 *piStartChild,
 | |
|                                   sqlite_int64 *piEndChild){
 | |
|   InteriorReader reader;
 | |
| 
 | |
|   assert( nData>1 );
 | |
|   assert( *pData!='\0' );
 | |
|   interiorReaderInit(pData, nData, &reader);
 | |
| 
 | |
|   /* Scan for the first child which could contain pTerm/nTerm. */
 | |
|   while( !interiorReaderAtEnd(&reader) ){
 | |
|     if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
 | |
|     interiorReaderStep(&reader);
 | |
|   }
 | |
|   *piStartChild = interiorReaderCurrentBlockid(&reader);
 | |
| 
 | |
|   /* Keep scanning to find a term greater than our term, using prefix
 | |
|   ** comparison if indicated.  If isPrefix is false, this will be the
 | |
|   ** same blockid as the starting block.
 | |
|   */
 | |
|   while( !interiorReaderAtEnd(&reader) ){
 | |
|     if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
 | |
|     interiorReaderStep(&reader);
 | |
|   }
 | |
|   *piEndChild = interiorReaderCurrentBlockid(&reader);
 | |
| 
 | |
|   interiorReaderDestroy(&reader);
 | |
| 
 | |
|   /* Children must ascend, and if !prefix, both must be the same. */
 | |
|   assert( *piEndChild>=*piStartChild );
 | |
|   assert( isPrefix || *piStartChild==*piEndChild );
 | |
| }
 | |
| 
 | |
| /* Read block at iBlockid and pass it with other params to
 | |
| ** getChildrenContaining().
 | |
| */
 | |
| static int loadAndGetChildrenContaining(
 | |
|   fulltext_vtab *v,
 | |
|   sqlite_int64 iBlockid,
 | |
|   const char *pTerm, int nTerm, int isPrefix,
 | |
|   sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
 | |
| ){
 | |
|   sqlite3_stmt *s = NULL;
 | |
|   int rc;
 | |
| 
 | |
|   assert( iBlockid!=0 );
 | |
|   assert( pTerm!=NULL );
 | |
|   assert( nTerm!=0 );        /* TODO(shess) Why not allow this? */
 | |
|   assert( piStartChild!=NULL );
 | |
|   assert( piEndChild!=NULL );
 | |
| 
 | |
|   rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_bind_int64(s, 1, iBlockid);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_DONE ) return SQLITE_ERROR;
 | |
|   if( rc!=SQLITE_ROW ) return rc;
 | |
| 
 | |
|   getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
 | |
|                         pTerm, nTerm, isPrefix, piStartChild, piEndChild);
 | |
| 
 | |
|   /* We expect only one row.  We must execute another sqlite3_step()
 | |
|    * to complete the iteration; otherwise the table will remain
 | |
|    * locked. */
 | |
|   rc = sqlite3_step(s);
 | |
|   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
 | |
|   if( rc!=SQLITE_DONE ) return rc;
 | |
| 
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* Traverse the tree represented by pData[nData] looking for
 | |
| ** pTerm[nTerm], placing its doclist into *out.  This is internal to
 | |
| ** loadSegment() to make error-handling cleaner.
 | |
| */
 | |
| static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
 | |
|                           sqlite_int64 iLeavesEnd,
 | |
|                           const char *pTerm, int nTerm, int isPrefix,
 | |
|                           DataBuffer *out){
 | |
|   /* Special case where root is a leaf. */
 | |
|   if( *pData=='\0' ){
 | |
|     return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
 | |
|   }else{
 | |
|     int rc;
 | |
|     sqlite_int64 iStartChild, iEndChild;
 | |
| 
 | |
|     /* Process pData as an interior node, then loop down the tree
 | |
|     ** until we find the set of leaf nodes to scan for the term.
 | |
|     */
 | |
|     getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
 | |
|                           &iStartChild, &iEndChild);
 | |
|     while( iStartChild>iLeavesEnd ){
 | |
|       sqlite_int64 iNextStart, iNextEnd;
 | |
|       rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
 | |
|                                         &iNextStart, &iNextEnd);
 | |
|       if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|       /* If we've branched, follow the end branch, too. */
 | |
|       if( iStartChild!=iEndChild ){
 | |
|         sqlite_int64 iDummy;
 | |
|         rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
 | |
|                                           &iDummy, &iNextEnd);
 | |
|         if( rc!=SQLITE_OK ) return rc;
 | |
|       }
 | |
| 
 | |
|       assert( iNextStart<=iNextEnd );
 | |
|       iStartChild = iNextStart;
 | |
|       iEndChild = iNextEnd;
 | |
|     }
 | |
|     assert( iStartChild<=iLeavesEnd );
 | |
|     assert( iEndChild<=iLeavesEnd );
 | |
| 
 | |
|     /* Scan through the leaf segments for doclists. */
 | |
|     return loadSegmentLeaves(v, iStartChild, iEndChild,
 | |
|                              pTerm, nTerm, isPrefix, out);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
 | |
| ** merge its doclist over *out (any duplicate doclists read from the
 | |
| ** segment rooted at pData will overwrite those in *out).
 | |
| */
 | |
| /* TODO(shess) Consider changing this to determine the depth of the
 | |
| ** leaves using either the first characters of interior nodes (when
 | |
| ** ==1, we're one level above the leaves), or the first character of
 | |
| ** the root (which will describe the height of the tree directly).
 | |
| ** Either feels somewhat tricky to me.
 | |
| */
 | |
| /* TODO(shess) The current merge is likely to be slow for large
 | |
| ** doclists (though it should process from newest/smallest to
 | |
| ** oldest/largest, so it may not be that bad).  It might be useful to
 | |
| ** modify things to allow for N-way merging.  This could either be
 | |
| ** within a segment, with pairwise merges across segments, or across
 | |
| ** all segments at once.
 | |
| */
 | |
| static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
 | |
|                        sqlite_int64 iLeavesEnd,
 | |
|                        const char *pTerm, int nTerm, int isPrefix,
 | |
|                        DataBuffer *out){
 | |
|   DataBuffer result;
 | |
|   int rc;
 | |
| 
 | |
|   assert( nData>1 );
 | |
| 
 | |
|   /* This code should never be called with buffered updates. */
 | |
|   assert( v->nPendingData<0 );
 | |
| 
 | |
|   dataBufferInit(&result, 0);
 | |
|   rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
 | |
|                       pTerm, nTerm, isPrefix, &result);
 | |
|   if( rc==SQLITE_OK && result.nData>0 ){
 | |
|     if( out->nData==0 ){
 | |
|       DataBuffer tmp = *out;
 | |
|       *out = result;
 | |
|       result = tmp;
 | |
|     }else{
 | |
|       DataBuffer merged;
 | |
|       DLReader readers[2];
 | |
| 
 | |
|       dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
 | |
|       dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
 | |
|       dataBufferInit(&merged, out->nData+result.nData);
 | |
|       docListMerge(&merged, readers, 2);
 | |
|       dataBufferDestroy(out);
 | |
|       *out = merged;
 | |
|       dlrDestroy(&readers[0]);
 | |
|       dlrDestroy(&readers[1]);
 | |
|     }
 | |
|   }
 | |
|   dataBufferDestroy(&result);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* Scan the database and merge together the posting lists for the term
 | |
| ** into *out.
 | |
| */
 | |
| static int termSelect(fulltext_vtab *v, int iColumn,
 | |
|                       const char *pTerm, int nTerm, int isPrefix,
 | |
|                       DocListType iType, DataBuffer *out){
 | |
|   DataBuffer doclist;
 | |
|   sqlite3_stmt *s;
 | |
|   int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   /* This code should never be called with buffered updates. */
 | |
|   assert( v->nPendingData<0 );
 | |
| 
 | |
|   dataBufferInit(&doclist, 0);
 | |
| 
 | |
|   /* Traverse the segments from oldest to newest so that newer doclist
 | |
|   ** elements for given docids overwrite older elements.
 | |
|   */
 | |
|   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
 | |
|     const char *pData = sqlite3_column_blob(s, 0);
 | |
|     const int nData = sqlite3_column_bytes(s, 0);
 | |
|     const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
 | |
|     rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
 | |
|                      &doclist);
 | |
|     if( rc!=SQLITE_OK ) goto err;
 | |
|   }
 | |
|   if( rc==SQLITE_DONE ){
 | |
|     if( doclist.nData!=0 ){
 | |
|       /* TODO(shess) The old term_select_all() code applied the column
 | |
|       ** restrict as we merged segments, leading to smaller buffers.
 | |
|       ** This is probably worthwhile to bring back, once the new storage
 | |
|       ** system is checked in.
 | |
|       */
 | |
|       if( iColumn==v->nColumn) iColumn = -1;
 | |
|       docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
 | |
|                   iColumn, iType, out);
 | |
|     }
 | |
|     rc = SQLITE_OK;
 | |
|   }
 | |
| 
 | |
|  err:
 | |
|   dataBufferDestroy(&doclist);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /****************************************************************/
 | |
| /* Used to hold hashtable data for sorting. */
 | |
| typedef struct TermData {
 | |
|   const char *pTerm;
 | |
|   int nTerm;
 | |
|   DLCollector *pCollector;
 | |
| } TermData;
 | |
| 
 | |
| /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
 | |
| ** for equal, >0 for greater-than).
 | |
| */
 | |
| static int termDataCmp(const void *av, const void *bv){
 | |
|   const TermData *a = (const TermData *)av;
 | |
|   const TermData *b = (const TermData *)bv;
 | |
|   int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
 | |
|   int c = memcmp(a->pTerm, b->pTerm, n);
 | |
|   if( c!=0 ) return c;
 | |
|   return a->nTerm-b->nTerm;
 | |
| }
 | |
| 
 | |
| /* Order pTerms data by term, then write a new level 0 segment using
 | |
| ** LeafWriter.
 | |
| */
 | |
| static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
 | |
|   fts3HashElem *e;
 | |
|   int idx, rc, i, n;
 | |
|   TermData *pData;
 | |
|   LeafWriter writer;
 | |
|   DataBuffer dl;
 | |
| 
 | |
|   /* Determine the next index at level 0, merging as necessary. */
 | |
|   rc = segdirNextIndex(v, 0, &idx);
 | |
|   if( rc!=SQLITE_OK ) return rc;
 | |
| 
 | |
|   n = fts3HashCount(pTerms);
 | |
|   pData = sqlite3_malloc(n*sizeof(TermData));
 | |
| 
 | |
|   for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
 | |
|     assert( i<n );
 | |
|     pData[i].pTerm = fts3HashKey(e);
 | |
|     pData[i].nTerm = fts3HashKeysize(e);
 | |
|     pData[i].pCollector = fts3HashData(e);
 | |
|   }
 | |
|   assert( i==n );
 | |
| 
 | |
|   /* TODO(shess) Should we allow user-defined collation sequences,
 | |
|   ** here?  I think we only need that once we support prefix searches.
 | |
|   */
 | |
|   if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
 | |
| 
 | |
|   /* TODO(shess) Refactor so that we can write directly to the segment
 | |
|   ** DataBuffer, as happens for segment merges.
 | |
|   */
 | |
|   leafWriterInit(0, idx, &writer);
 | |
|   dataBufferInit(&dl, 0);
 | |
|   for(i=0; i<n; i++){
 | |
|     dataBufferReset(&dl);
 | |
|     dlcAddDoclist(pData[i].pCollector, &dl);
 | |
|     rc = leafWriterStep(v, &writer,
 | |
|                         pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
 | |
|     if( rc!=SQLITE_OK ) goto err;
 | |
|   }
 | |
|   rc = leafWriterFinalize(v, &writer);
 | |
| 
 | |
|  err:
 | |
|   dataBufferDestroy(&dl);
 | |
|   sqlite3_free(pData);
 | |
|   leafWriterDestroy(&writer);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| /* If pendingTerms has data, free it. */
 | |
| static int clearPendingTerms(fulltext_vtab *v){
 | |
|   if( v->nPendingData>=0 ){
 | |
|     fts3HashElem *e;
 | |
|     for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
 | |
|       dlcDelete(fts3HashData(e));
 | |
|     }
 | |
|     fts3HashClear(&v->pendingTerms);
 | |
|     v->nPendingData = -1;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* If pendingTerms has data, flush it to a level-zero segment, and
 | |
| ** free it.
 | |
| */
 | |
| static int flushPendingTerms(fulltext_vtab *v){
 | |
|   if( v->nPendingData>=0 ){
 | |
|     int rc = writeZeroSegment(v, &v->pendingTerms);
 | |
|     if( rc==SQLITE_OK ) clearPendingTerms(v);
 | |
|     return rc;
 | |
|   }
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* If pendingTerms is "too big", or docid is out of order, flush it.
 | |
| ** Regardless, be certain that pendingTerms is initialized for use.
 | |
| */
 | |
| static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
 | |
|   /* TODO(shess) Explore whether partially flushing the buffer on
 | |
|   ** forced-flush would provide better performance.  I suspect that if
 | |
|   ** we ordered the doclists by size and flushed the largest until the
 | |
|   ** buffer was half empty, that would let the less frequent terms
 | |
|   ** generate longer doclists.
 | |
|   */
 | |
|   if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
 | |
|     int rc = flushPendingTerms(v);
 | |
|     if( rc!=SQLITE_OK ) return rc;
 | |
|   }
 | |
|   if( v->nPendingData<0 ){
 | |
|     fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
 | |
|     v->nPendingData = 0;
 | |
|   }
 | |
|   v->iPrevDocid = iDocid;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /* This function implements the xUpdate callback; it is the top-level entry
 | |
|  * point for inserting, deleting or updating a row in a full-text table. */
 | |
| static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
 | |
|                           sqlite_int64 *pRowid){
 | |
|   fulltext_vtab *v = (fulltext_vtab *) pVtab;
 | |
|   int rc;
 | |
| 
 | |
|   FTSTRACE(("FTS3 Update %p\n", pVtab));
 | |
| 
 | |
|   if( nArg<2 ){
 | |
|     rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
 | |
|   } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
 | |
|     /* An update:
 | |
|      * ppArg[0] = old rowid
 | |
|      * ppArg[1] = new rowid
 | |
|      * ppArg[2..2+v->nColumn-1] = values
 | |
|      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
 | |
|      * ppArg[2+v->nColumn+1] = value for docid
 | |
|      */
 | |
|     sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
 | |
|     if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
 | |
|         sqlite3_value_int64(ppArg[1]) != rowid ){
 | |
|       rc = SQLITE_ERROR;  /* we don't allow changing the rowid */
 | |
|     }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
 | |
|               sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
 | |
|       rc = SQLITE_ERROR;  /* we don't allow changing the docid */
 | |
|     }else{
 | |
|       assert( nArg==2+v->nColumn+2);
 | |
|       rc = index_update(v, rowid, &ppArg[2]);
 | |
|     }
 | |
|   } else {
 | |
|     /* An insert:
 | |
|      * ppArg[1] = requested rowid
 | |
|      * ppArg[2..2+v->nColumn-1] = values
 | |
|      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
 | |
|      * ppArg[2+v->nColumn+1] = value for docid
 | |
|      */
 | |
|     sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
 | |
|     assert( nArg==2+v->nColumn+2);
 | |
|     if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
 | |
|         SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
 | |
|       /* TODO(shess) Consider allowing this to work if the values are
 | |
|       ** identical.  I'm inclined to discourage that usage, though,
 | |
|       ** given that both rowid and docid are special columns.  Better
 | |
|       ** would be to define one or the other as the default winner,
 | |
|       ** but should it be fts3-centric (docid) or SQLite-centric
 | |
|       ** (rowid)?
 | |
|       */
 | |
|       rc = SQLITE_ERROR;
 | |
|     }else{
 | |
|       if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
 | |
|         pRequestDocid = ppArg[1];
 | |
|       }
 | |
|       rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static int fulltextSync(sqlite3_vtab *pVtab){
 | |
|   FTSTRACE(("FTS3 xSync()\n"));
 | |
|   return flushPendingTerms((fulltext_vtab *)pVtab);
 | |
| }
 | |
| 
 | |
| static int fulltextBegin(sqlite3_vtab *pVtab){
 | |
|   fulltext_vtab *v = (fulltext_vtab *) pVtab;
 | |
|   FTSTRACE(("FTS3 xBegin()\n"));
 | |
| 
 | |
|   /* Any buffered updates should have been cleared by the previous
 | |
|   ** transaction.
 | |
|   */
 | |
|   assert( v->nPendingData<0 );
 | |
|   return clearPendingTerms(v);
 | |
| }
 | |
| 
 | |
| static int fulltextCommit(sqlite3_vtab *pVtab){
 | |
|   fulltext_vtab *v = (fulltext_vtab *) pVtab;
 | |
|   FTSTRACE(("FTS3 xCommit()\n"));
 | |
| 
 | |
|   /* Buffered updates should have been cleared by fulltextSync(). */
 | |
|   assert( v->nPendingData<0 );
 | |
|   return clearPendingTerms(v);
 | |
| }
 | |
| 
 | |
| static int fulltextRollback(sqlite3_vtab *pVtab){
 | |
|   FTSTRACE(("FTS3 xRollback()\n"));
 | |
|   return clearPendingTerms((fulltext_vtab *)pVtab);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the snippet() function for FTS3
 | |
| */
 | |
| static void snippetFunc(
 | |
|   sqlite3_context *pContext,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   fulltext_cursor *pCursor;
 | |
|   if( argc<1 ) return;
 | |
|   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
 | |
|       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
 | |
|     sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
 | |
|   }else{
 | |
|     const char *zStart = "<b>";
 | |
|     const char *zEnd = "</b>";
 | |
|     const char *zEllipsis = "<b>...</b>";
 | |
|     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
 | |
|     if( argc>=2 ){
 | |
|       zStart = (const char*)sqlite3_value_text(argv[1]);
 | |
|       if( argc>=3 ){
 | |
|         zEnd = (const char*)sqlite3_value_text(argv[2]);
 | |
|         if( argc>=4 ){
 | |
|           zEllipsis = (const char*)sqlite3_value_text(argv[3]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     snippetAllOffsets(pCursor);
 | |
|     snippetText(pCursor, zStart, zEnd, zEllipsis);
 | |
|     sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
 | |
|                         pCursor->snippet.nSnippet, SQLITE_STATIC);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Implementation of the offsets() function for FTS3
 | |
| */
 | |
| static void snippetOffsetsFunc(
 | |
|   sqlite3_context *pContext,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   fulltext_cursor *pCursor;
 | |
|   if( argc<1 ) return;
 | |
|   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
 | |
|       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
 | |
|     sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
 | |
|   }else{
 | |
|     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
 | |
|     snippetAllOffsets(pCursor);
 | |
|     snippetOffsetText(&pCursor->snippet);
 | |
|     sqlite3_result_text(pContext,
 | |
|                         pCursor->snippet.zOffset, pCursor->snippet.nOffset,
 | |
|                         SQLITE_STATIC);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This routine implements the xFindFunction method for the FTS3
 | |
| ** virtual table.
 | |
| */
 | |
| static int fulltextFindFunction(
 | |
|   sqlite3_vtab *pVtab,
 | |
|   int nArg,
 | |
|   const char *zName,
 | |
|   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
 | |
|   void **ppArg
 | |
| ){
 | |
|   if( strcmp(zName,"snippet")==0 ){
 | |
|     *pxFunc = snippetFunc;
 | |
|     return 1;
 | |
|   }else if( strcmp(zName,"offsets")==0 ){
 | |
|     *pxFunc = snippetOffsetsFunc;
 | |
|     return 1;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Rename an fts3 table.
 | |
| */
 | |
| static int fulltextRename(
 | |
|   sqlite3_vtab *pVtab,
 | |
|   const char *zName
 | |
| ){
 | |
|   fulltext_vtab *p = (fulltext_vtab *)pVtab;
 | |
|   int rc = SQLITE_NOMEM;
 | |
|   char *zSql = sqlite3_mprintf(
 | |
|     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';"
 | |
|     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
 | |
|     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';"
 | |
|     , p->zDb, p->zName, zName 
 | |
|     , p->zDb, p->zName, zName 
 | |
|     , p->zDb, p->zName, zName
 | |
|   );
 | |
|   if( zSql ){
 | |
|     rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
 | |
|     sqlite3_free(zSql);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| static const sqlite3_module fts3Module = {
 | |
|   /* iVersion      */ 0,
 | |
|   /* xCreate       */ fulltextCreate,
 | |
|   /* xConnect      */ fulltextConnect,
 | |
|   /* xBestIndex    */ fulltextBestIndex,
 | |
|   /* xDisconnect   */ fulltextDisconnect,
 | |
|   /* xDestroy      */ fulltextDestroy,
 | |
|   /* xOpen         */ fulltextOpen,
 | |
|   /* xClose        */ fulltextClose,
 | |
|   /* xFilter       */ fulltextFilter,
 | |
|   /* xNext         */ fulltextNext,
 | |
|   /* xEof          */ fulltextEof,
 | |
|   /* xColumn       */ fulltextColumn,
 | |
|   /* xRowid        */ fulltextRowid,
 | |
|   /* xUpdate       */ fulltextUpdate,
 | |
|   /* xBegin        */ fulltextBegin,
 | |
|   /* xSync         */ fulltextSync,
 | |
|   /* xCommit       */ fulltextCommit,
 | |
|   /* xRollback     */ fulltextRollback,
 | |
|   /* xFindFunction */ fulltextFindFunction,
 | |
|   /* xRename */       fulltextRename,
 | |
| };
 | |
| 
 | |
| static void hashDestroy(void *p){
 | |
|   fts3Hash *pHash = (fts3Hash *)p;
 | |
|   sqlite3Fts3HashClear(pHash);
 | |
|   sqlite3_free(pHash);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
 | |
| ** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
 | |
| ** two forward declarations are for functions declared in these files
 | |
| ** used to retrieve the respective implementations.
 | |
| **
 | |
| ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
 | |
| ** to by the argument to point a the "simple" tokenizer implementation.
 | |
| ** Function ...PorterTokenizerModule() sets *pModule to point to the
 | |
| ** porter tokenizer/stemmer implementation.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
 | |
| SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
 | |
| SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
 | |
| 
 | |
| SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
 | |
| 
 | |
| /*
 | |
| ** Initialise the fts3 extension. If this extension is built as part
 | |
| ** of the sqlite library, then this function is called directly by
 | |
| ** SQLite. If fts3 is built as a dynamically loadable extension, this
 | |
| ** function is called by the sqlite3_extension_init() entry point.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){
 | |
|   int rc = SQLITE_OK;
 | |
|   fts3Hash *pHash = 0;
 | |
|   const sqlite3_tokenizer_module *pSimple = 0;
 | |
|   const sqlite3_tokenizer_module *pPorter = 0;
 | |
|   const sqlite3_tokenizer_module *pIcu = 0;
 | |
| 
 | |
|   sqlite3Fts3SimpleTokenizerModule(&pSimple);
 | |
|   sqlite3Fts3PorterTokenizerModule(&pPorter);
 | |
| #ifdef SQLITE_ENABLE_ICU
 | |
|   sqlite3Fts3IcuTokenizerModule(&pIcu);
 | |
| #endif
 | |
| 
 | |
|   /* Allocate and initialise the hash-table used to store tokenizers. */
 | |
|   pHash = sqlite3_malloc(sizeof(fts3Hash));
 | |
|   if( !pHash ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }else{
 | |
|     sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
 | |
|   }
 | |
| 
 | |
|   /* Load the built-in tokenizers into the hash table */
 | |
|   if( rc==SQLITE_OK ){
 | |
|     if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
 | |
|      || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 
 | |
|      || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
 | |
|     ){
 | |
|       rc = SQLITE_NOMEM;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Create the virtual table wrapper around the hash-table and overload 
 | |
|   ** the two scalar functions. If this is successful, register the
 | |
|   ** module with sqlite.
 | |
|   */
 | |
|   if( SQLITE_OK==rc 
 | |
|    && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
 | |
|    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
 | |
|    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
 | |
|   ){
 | |
|     return sqlite3_create_module_v2(
 | |
|         db, "fts3", &fts3Module, (void *)pHash, hashDestroy
 | |
|     );
 | |
|   }
 | |
| 
 | |
|   /* An error has occured. Delete the hash table and return the error code. */
 | |
|   assert( rc!=SQLITE_OK );
 | |
|   if( pHash ){
 | |
|     sqlite3Fts3HashClear(pHash);
 | |
|     sqlite3_free(pHash);
 | |
|   }
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #if !SQLITE_CORE
 | |
| SQLITE_API int sqlite3_extension_init(
 | |
|   sqlite3 *db, 
 | |
|   char **pzErrMsg,
 | |
|   const sqlite3_api_routines *pApi
 | |
| ){
 | |
|   SQLITE_EXTENSION_INIT2(pApi)
 | |
|   return sqlite3Fts3Init(db);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
 | |
| 
 | |
| /************** End of fts3.c ************************************************/
 | |
| /************** Begin file fts3_hash.c ***************************************/
 | |
| /*
 | |
| ** 2001 September 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** This is the implementation of generic hash-tables used in SQLite.
 | |
| ** We've modified it slightly to serve as a standalone hash table
 | |
| ** implementation for the full-text indexing module.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only compiled if:
 | |
| **
 | |
| **     * The FTS3 module is being built as an extension
 | |
| **       (in which case SQLITE_CORE is not defined), or
 | |
| **
 | |
| **     * The FTS3 module is being built into the core of
 | |
| **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
 | |
| */
 | |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Malloc and Free functions
 | |
| */
 | |
| static void *fts3HashMalloc(int n){
 | |
|   void *p = sqlite3_malloc(n);
 | |
|   if( p ){
 | |
|     memset(p, 0, n);
 | |
|   }
 | |
|   return p;
 | |
| }
 | |
| static void fts3HashFree(void *p){
 | |
|   sqlite3_free(p);
 | |
| }
 | |
| 
 | |
| /* Turn bulk memory into a hash table object by initializing the
 | |
| ** fields of the Hash structure.
 | |
| **
 | |
| ** "pNew" is a pointer to the hash table that is to be initialized.
 | |
| ** keyClass is one of the constants 
 | |
| ** FTS3_HASH_BINARY or FTS3_HASH_STRING.  The value of keyClass 
 | |
| ** determines what kind of key the hash table will use.  "copyKey" is
 | |
| ** true if the hash table should make its own private copy of keys and
 | |
| ** false if it should just use the supplied pointer.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){
 | |
|   assert( pNew!=0 );
 | |
|   assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY );
 | |
|   pNew->keyClass = keyClass;
 | |
|   pNew->copyKey = copyKey;
 | |
|   pNew->first = 0;
 | |
|   pNew->count = 0;
 | |
|   pNew->htsize = 0;
 | |
|   pNew->ht = 0;
 | |
| }
 | |
| 
 | |
| /* Remove all entries from a hash table.  Reclaim all memory.
 | |
| ** Call this routine to delete a hash table or to reset a hash table
 | |
| ** to the empty state.
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *pH){
 | |
|   fts3HashElem *elem;         /* For looping over all elements of the table */
 | |
| 
 | |
|   assert( pH!=0 );
 | |
|   elem = pH->first;
 | |
|   pH->first = 0;
 | |
|   fts3HashFree(pH->ht);
 | |
|   pH->ht = 0;
 | |
|   pH->htsize = 0;
 | |
|   while( elem ){
 | |
|     fts3HashElem *next_elem = elem->next;
 | |
|     if( pH->copyKey && elem->pKey ){
 | |
|       fts3HashFree(elem->pKey);
 | |
|     }
 | |
|     fts3HashFree(elem);
 | |
|     elem = next_elem;
 | |
|   }
 | |
|   pH->count = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Hash and comparison functions when the mode is FTS3_HASH_STRING
 | |
| */
 | |
| static int fts3StrHash(const void *pKey, int nKey){
 | |
|   const char *z = (const char *)pKey;
 | |
|   int h = 0;
 | |
|   if( nKey<=0 ) nKey = (int) strlen(z);
 | |
|   while( nKey > 0  ){
 | |
|     h = (h<<3) ^ h ^ *z++;
 | |
|     nKey--;
 | |
|   }
 | |
|   return h & 0x7fffffff;
 | |
| }
 | |
| static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
 | |
|   if( n1!=n2 ) return 1;
 | |
|   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Hash and comparison functions when the mode is FTS3_HASH_BINARY
 | |
| */
 | |
| static int fts3BinHash(const void *pKey, int nKey){
 | |
|   int h = 0;
 | |
|   const char *z = (const char *)pKey;
 | |
|   while( nKey-- > 0 ){
 | |
|     h = (h<<3) ^ h ^ *(z++);
 | |
|   }
 | |
|   return h & 0x7fffffff;
 | |
| }
 | |
| static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){
 | |
|   if( n1!=n2 ) return 1;
 | |
|   return memcmp(pKey1,pKey2,n1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the appropriate hash function given the key class.
 | |
| **
 | |
| ** The C syntax in this function definition may be unfamilar to some 
 | |
| ** programmers, so we provide the following additional explanation:
 | |
| **
 | |
| ** The name of the function is "ftsHashFunction".  The function takes a
 | |
| ** single parameter "keyClass".  The return value of ftsHashFunction()
 | |
| ** is a pointer to another function.  Specifically, the return value
 | |
| ** of ftsHashFunction() is a pointer to a function that takes two parameters
 | |
| ** with types "const void*" and "int" and returns an "int".
 | |
| */
 | |
| static int (*ftsHashFunction(int keyClass))(const void*,int){
 | |
|   if( keyClass==FTS3_HASH_STRING ){
 | |
|     return &fts3StrHash;
 | |
|   }else{
 | |
|     assert( keyClass==FTS3_HASH_BINARY );
 | |
|     return &fts3BinHash;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return a pointer to the appropriate hash function given the key class.
 | |
| **
 | |
| ** For help in interpreted the obscure C code in the function definition,
 | |
| ** see the header comment on the previous function.
 | |
| */
 | |
| static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){
 | |
|   if( keyClass==FTS3_HASH_STRING ){
 | |
|     return &fts3StrCompare;
 | |
|   }else{
 | |
|     assert( keyClass==FTS3_HASH_BINARY );
 | |
|     return &fts3BinCompare;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Link an element into the hash table
 | |
| */
 | |
| static void fts3HashInsertElement(
 | |
|   fts3Hash *pH,            /* The complete hash table */
 | |
|   struct _fts3ht *pEntry,  /* The entry into which pNew is inserted */
 | |
|   fts3HashElem *pNew       /* The element to be inserted */
 | |
| ){
 | |
|   fts3HashElem *pHead;     /* First element already in pEntry */
 | |
|   pHead = pEntry->chain;
 | |
|   if( pHead ){
 | |
|     pNew->next = pHead;
 | |
|     pNew->prev = pHead->prev;
 | |
|     if( pHead->prev ){ pHead->prev->next = pNew; }
 | |
|     else             { pH->first = pNew; }
 | |
|     pHead->prev = pNew;
 | |
|   }else{
 | |
|     pNew->next = pH->first;
 | |
|     if( pH->first ){ pH->first->prev = pNew; }
 | |
|     pNew->prev = 0;
 | |
|     pH->first = pNew;
 | |
|   }
 | |
|   pEntry->count++;
 | |
|   pEntry->chain = pNew;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Resize the hash table so that it cantains "new_size" buckets.
 | |
| ** "new_size" must be a power of 2.  The hash table might fail 
 | |
| ** to resize if sqliteMalloc() fails.
 | |
| */
 | |
| static void fts3Rehash(fts3Hash *pH, int new_size){
 | |
|   struct _fts3ht *new_ht;          /* The new hash table */
 | |
|   fts3HashElem *elem, *next_elem;  /* For looping over existing elements */
 | |
|   int (*xHash)(const void*,int);   /* The hash function */
 | |
| 
 | |
|   assert( (new_size & (new_size-1))==0 );
 | |
|   new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) );
 | |
|   if( new_ht==0 ) return;
 | |
|   fts3HashFree(pH->ht);
 | |
|   pH->ht = new_ht;
 | |
|   pH->htsize = new_size;
 | |
|   xHash = ftsHashFunction(pH->keyClass);
 | |
|   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
 | |
|     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
 | |
|     next_elem = elem->next;
 | |
|     fts3HashInsertElement(pH, &new_ht[h], elem);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* This function (for internal use only) locates an element in an
 | |
| ** hash table that matches the given key.  The hash for this key has
 | |
| ** already been computed and is passed as the 4th parameter.
 | |
| */
 | |
| static fts3HashElem *fts3FindElementByHash(
 | |
|   const fts3Hash *pH, /* The pH to be searched */
 | |
|   const void *pKey,   /* The key we are searching for */
 | |
|   int nKey,
 | |
|   int h               /* The hash for this key. */
 | |
| ){
 | |
|   fts3HashElem *elem;            /* Used to loop thru the element list */
 | |
|   int count;                     /* Number of elements left to test */
 | |
|   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
 | |
| 
 | |
|   if( pH->ht ){
 | |
|     struct _fts3ht *pEntry = &pH->ht[h];
 | |
|     elem = pEntry->chain;
 | |
|     count = pEntry->count;
 | |
|     xCompare = ftsCompareFunction(pH->keyClass);
 | |
|     while( count-- && elem ){
 | |
|       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
 | |
|         return elem;
 | |
|       }
 | |
|       elem = elem->next;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* Remove a single entry from the hash table given a pointer to that
 | |
| ** element and a hash on the element's key.
 | |
| */
 | |
| static void fts3RemoveElementByHash(
 | |
|   fts3Hash *pH,         /* The pH containing "elem" */
 | |
|   fts3HashElem* elem,   /* The element to be removed from the pH */
 | |
|   int h                 /* Hash value for the element */
 | |
| ){
 | |
|   struct _fts3ht *pEntry;
 | |
|   if( elem->prev ){
 | |
|     elem->prev->next = elem->next; 
 | |
|   }else{
 | |
|     pH->first = elem->next;
 | |
|   }
 | |
|   if( elem->next ){
 | |
|     elem->next->prev = elem->prev;
 | |
|   }
 | |
|   pEntry = &pH->ht[h];
 | |
|   if( pEntry->chain==elem ){
 | |
|     pEntry->chain = elem->next;
 | |
|   }
 | |
|   pEntry->count--;
 | |
|   if( pEntry->count<=0 ){
 | |
|     pEntry->chain = 0;
 | |
|   }
 | |
|   if( pH->copyKey && elem->pKey ){
 | |
|     fts3HashFree(elem->pKey);
 | |
|   }
 | |
|   fts3HashFree( elem );
 | |
|   pH->count--;
 | |
|   if( pH->count<=0 ){
 | |
|     assert( pH->first==0 );
 | |
|     assert( pH->count==0 );
 | |
|     fts3HashClear(pH);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Attempt to locate an element of the hash table pH with a key
 | |
| ** that matches pKey,nKey.  Return the data for this element if it is
 | |
| ** found, or NULL if there is no match.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){
 | |
|   int h;                 /* A hash on key */
 | |
|   fts3HashElem *elem;    /* The element that matches key */
 | |
|   int (*xHash)(const void*,int);  /* The hash function */
 | |
| 
 | |
|   if( pH==0 || pH->ht==0 ) return 0;
 | |
|   xHash = ftsHashFunction(pH->keyClass);
 | |
|   assert( xHash!=0 );
 | |
|   h = (*xHash)(pKey,nKey);
 | |
|   assert( (pH->htsize & (pH->htsize-1))==0 );
 | |
|   elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
 | |
|   return elem ? elem->data : 0;
 | |
| }
 | |
| 
 | |
| /* Insert an element into the hash table pH.  The key is pKey,nKey
 | |
| ** and the data is "data".
 | |
| **
 | |
| ** If no element exists with a matching key, then a new
 | |
| ** element is created.  A copy of the key is made if the copyKey
 | |
| ** flag is set.  NULL is returned.
 | |
| **
 | |
| ** If another element already exists with the same key, then the
 | |
| ** new data replaces the old data and the old data is returned.
 | |
| ** The key is not copied in this instance.  If a malloc fails, then
 | |
| ** the new data is returned and the hash table is unchanged.
 | |
| **
 | |
| ** If the "data" parameter to this function is NULL, then the
 | |
| ** element corresponding to "key" is removed from the hash table.
 | |
| */
 | |
| SQLITE_PRIVATE void *sqlite3Fts3HashInsert(
 | |
|   fts3Hash *pH,        /* The hash table to insert into */
 | |
|   const void *pKey,    /* The key */
 | |
|   int nKey,            /* Number of bytes in the key */
 | |
|   void *data           /* The data */
 | |
| ){
 | |
|   int hraw;                 /* Raw hash value of the key */
 | |
|   int h;                    /* the hash of the key modulo hash table size */
 | |
|   fts3HashElem *elem;       /* Used to loop thru the element list */
 | |
|   fts3HashElem *new_elem;   /* New element added to the pH */
 | |
|   int (*xHash)(const void*,int);  /* The hash function */
 | |
| 
 | |
|   assert( pH!=0 );
 | |
|   xHash = ftsHashFunction(pH->keyClass);
 | |
|   assert( xHash!=0 );
 | |
|   hraw = (*xHash)(pKey, nKey);
 | |
|   assert( (pH->htsize & (pH->htsize-1))==0 );
 | |
|   h = hraw & (pH->htsize-1);
 | |
|   elem = fts3FindElementByHash(pH,pKey,nKey,h);
 | |
|   if( elem ){
 | |
|     void *old_data = elem->data;
 | |
|     if( data==0 ){
 | |
|       fts3RemoveElementByHash(pH,elem,h);
 | |
|     }else{
 | |
|       elem->data = data;
 | |
|     }
 | |
|     return old_data;
 | |
|   }
 | |
|   if( data==0 ) return 0;
 | |
|   new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) );
 | |
|   if( new_elem==0 ) return data;
 | |
|   if( pH->copyKey && pKey!=0 ){
 | |
|     new_elem->pKey = fts3HashMalloc( nKey );
 | |
|     if( new_elem->pKey==0 ){
 | |
|       fts3HashFree(new_elem);
 | |
|       return data;
 | |
|     }
 | |
|     memcpy((void*)new_elem->pKey, pKey, nKey);
 | |
|   }else{
 | |
|     new_elem->pKey = (void*)pKey;
 | |
|   }
 | |
|   new_elem->nKey = nKey;
 | |
|   pH->count++;
 | |
|   if( pH->htsize==0 ){
 | |
|     fts3Rehash(pH,8);
 | |
|     if( pH->htsize==0 ){
 | |
|       pH->count = 0;
 | |
|       fts3HashFree(new_elem);
 | |
|       return data;
 | |
|     }
 | |
|   }
 | |
|   if( pH->count > pH->htsize ){
 | |
|     fts3Rehash(pH,pH->htsize*2);
 | |
|   }
 | |
|   assert( pH->htsize>0 );
 | |
|   assert( (pH->htsize & (pH->htsize-1))==0 );
 | |
|   h = hraw & (pH->htsize-1);
 | |
|   fts3HashInsertElement(pH, &pH->ht[h], new_elem);
 | |
|   new_elem->data = data;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
 | |
| 
 | |
| /************** End of fts3_hash.c *******************************************/
 | |
| /************** Begin file fts3_porter.c *************************************/
 | |
| /*
 | |
| ** 2006 September 30
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| *************************************************************************
 | |
| ** Implementation of the full-text-search tokenizer that implements
 | |
| ** a Porter stemmer.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only compiled if:
 | |
| **
 | |
| **     * The FTS3 module is being built as an extension
 | |
| **       (in which case SQLITE_CORE is not defined), or
 | |
| **
 | |
| **     * The FTS3 module is being built into the core of
 | |
| **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
 | |
| */
 | |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Class derived from sqlite3_tokenizer
 | |
| */
 | |
| typedef struct porter_tokenizer {
 | |
|   sqlite3_tokenizer base;      /* Base class */
 | |
| } porter_tokenizer;
 | |
| 
 | |
| /*
 | |
| ** Class derived from sqlit3_tokenizer_cursor
 | |
| */
 | |
| typedef struct porter_tokenizer_cursor {
 | |
|   sqlite3_tokenizer_cursor base;
 | |
|   const char *zInput;          /* input we are tokenizing */
 | |
|   int nInput;                  /* size of the input */
 | |
|   int iOffset;                 /* current position in zInput */
 | |
|   int iToken;                  /* index of next token to be returned */
 | |
|   char *zToken;                /* storage for current token */
 | |
|   int nAllocated;              /* space allocated to zToken buffer */
 | |
| } porter_tokenizer_cursor;
 | |
| 
 | |
| 
 | |
| /* Forward declaration */
 | |
| static const sqlite3_tokenizer_module porterTokenizerModule;
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Create a new tokenizer instance.
 | |
| */
 | |
| static int porterCreate(
 | |
|   int argc, const char * const *argv,
 | |
|   sqlite3_tokenizer **ppTokenizer
 | |
| ){
 | |
|   porter_tokenizer *t;
 | |
|   t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
 | |
|   if( t==NULL ) return SQLITE_NOMEM;
 | |
|   memset(t, 0, sizeof(*t));
 | |
|   *ppTokenizer = &t->base;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Destroy a tokenizer
 | |
| */
 | |
| static int porterDestroy(sqlite3_tokenizer *pTokenizer){
 | |
|   sqlite3_free(pTokenizer);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare to begin tokenizing a particular string.  The input
 | |
| ** string to be tokenized is zInput[0..nInput-1].  A cursor
 | |
| ** used to incrementally tokenize this string is returned in 
 | |
| ** *ppCursor.
 | |
| */
 | |
| static int porterOpen(
 | |
|   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
 | |
|   const char *zInput, int nInput,        /* String to be tokenized */
 | |
|   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
 | |
| ){
 | |
|   porter_tokenizer_cursor *c;
 | |
| 
 | |
|   c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
 | |
|   if( c==NULL ) return SQLITE_NOMEM;
 | |
| 
 | |
|   c->zInput = zInput;
 | |
|   if( zInput==0 ){
 | |
|     c->nInput = 0;
 | |
|   }else if( nInput<0 ){
 | |
|     c->nInput = (int)strlen(zInput);
 | |
|   }else{
 | |
|     c->nInput = nInput;
 | |
|   }
 | |
|   c->iOffset = 0;                 /* start tokenizing at the beginning */
 | |
|   c->iToken = 0;
 | |
|   c->zToken = NULL;               /* no space allocated, yet. */
 | |
|   c->nAllocated = 0;
 | |
| 
 | |
|   *ppCursor = &c->base;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a tokenization cursor previously opened by a call to
 | |
| ** porterOpen() above.
 | |
| */
 | |
| static int porterClose(sqlite3_tokenizer_cursor *pCursor){
 | |
|   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
 | |
|   sqlite3_free(c->zToken);
 | |
|   sqlite3_free(c);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| /*
 | |
| ** Vowel or consonant
 | |
| */
 | |
| static const char cType[] = {
 | |
|    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
 | |
|    1, 1, 1, 2, 1
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** isConsonant() and isVowel() determine if their first character in
 | |
| ** the string they point to is a consonant or a vowel, according
 | |
| ** to Porter ruls.  
 | |
| **
 | |
| ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
 | |
| ** 'Y' is a consonant unless it follows another consonant,
 | |
| ** in which case it is a vowel.
 | |
| **
 | |
| ** In these routine, the letters are in reverse order.  So the 'y' rule
 | |
| ** is that 'y' is a consonant unless it is followed by another
 | |
| ** consonent.
 | |
| */
 | |
| static int isVowel(const char*);
 | |
| static int isConsonant(const char *z){
 | |
|   int j;
 | |
|   char x = *z;
 | |
|   if( x==0 ) return 0;
 | |
|   assert( x>='a' && x<='z' );
 | |
|   j = cType[x-'a'];
 | |
|   if( j<2 ) return j;
 | |
|   return z[1]==0 || isVowel(z + 1);
 | |
| }
 | |
| static int isVowel(const char *z){
 | |
|   int j;
 | |
|   char x = *z;
 | |
|   if( x==0 ) return 0;
 | |
|   assert( x>='a' && x<='z' );
 | |
|   j = cType[x-'a'];
 | |
|   if( j<2 ) return 1-j;
 | |
|   return isConsonant(z + 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Let any sequence of one or more vowels be represented by V and let
 | |
| ** C be sequence of one or more consonants.  Then every word can be
 | |
| ** represented as:
 | |
| **
 | |
| **           [C] (VC){m} [V]
 | |
| **
 | |
| ** In prose:  A word is an optional consonant followed by zero or
 | |
| ** vowel-consonant pairs followed by an optional vowel.  "m" is the
 | |
| ** number of vowel consonant pairs.  This routine computes the value
 | |
| ** of m for the first i bytes of a word.
 | |
| **
 | |
| ** Return true if the m-value for z is 1 or more.  In other words,
 | |
| ** return true if z contains at least one vowel that is followed
 | |
| ** by a consonant.
 | |
| **
 | |
| ** In this routine z[] is in reverse order.  So we are really looking
 | |
| ** for an instance of of a consonant followed by a vowel.
 | |
| */
 | |
| static int m_gt_0(const char *z){
 | |
|   while( isVowel(z) ){ z++; }
 | |
|   if( *z==0 ) return 0;
 | |
|   while( isConsonant(z) ){ z++; }
 | |
|   return *z!=0;
 | |
| }
 | |
| 
 | |
| /* Like mgt0 above except we are looking for a value of m which is
 | |
| ** exactly 1
 | |
| */
 | |
| static int m_eq_1(const char *z){
 | |
|   while( isVowel(z) ){ z++; }
 | |
|   if( *z==0 ) return 0;
 | |
|   while( isConsonant(z) ){ z++; }
 | |
|   if( *z==0 ) return 0;
 | |
|   while( isVowel(z) ){ z++; }
 | |
|   if( *z==0 ) return 1;
 | |
|   while( isConsonant(z) ){ z++; }
 | |
|   return *z==0;
 | |
| }
 | |
| 
 | |
| /* Like mgt0 above except we are looking for a value of m>1 instead
 | |
| ** or m>0
 | |
| */
 | |
| static int m_gt_1(const char *z){
 | |
|   while( isVowel(z) ){ z++; }
 | |
|   if( *z==0 ) return 0;
 | |
|   while( isConsonant(z) ){ z++; }
 | |
|   if( *z==0 ) return 0;
 | |
|   while( isVowel(z) ){ z++; }
 | |
|   if( *z==0 ) return 0;
 | |
|   while( isConsonant(z) ){ z++; }
 | |
|   return *z!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if there is a vowel anywhere within z[0..n-1]
 | |
| */
 | |
| static int hasVowel(const char *z){
 | |
|   while( isConsonant(z) ){ z++; }
 | |
|   return *z!=0;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the word ends in a double consonant.
 | |
| **
 | |
| ** The text is reversed here. So we are really looking at
 | |
| ** the first two characters of z[].
 | |
| */
 | |
| static int doubleConsonant(const char *z){
 | |
|   return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Return TRUE if the word ends with three letters which
 | |
| ** are consonant-vowel-consonent and where the final consonant
 | |
| ** is not 'w', 'x', or 'y'.
 | |
| **
 | |
| ** The word is reversed here.  So we are really checking the
 | |
| ** first three letters and the first one cannot be in [wxy].
 | |
| */
 | |
| static int star_oh(const char *z){
 | |
|   return
 | |
|     z[0]!=0 && isConsonant(z) &&
 | |
|     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
 | |
|     z[1]!=0 && isVowel(z+1) &&
 | |
|     z[2]!=0 && isConsonant(z+2);
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** If the word ends with zFrom and xCond() is true for the stem
 | |
| ** of the word that preceeds the zFrom ending, then change the 
 | |
| ** ending to zTo.
 | |
| **
 | |
| ** The input word *pz and zFrom are both in reverse order.  zTo
 | |
| ** is in normal order. 
 | |
| **
 | |
| ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
 | |
| ** match.  Not that TRUE is returned even if xCond() fails and
 | |
| ** no substitution occurs.
 | |
| */
 | |
| static int stem(
 | |
|   char **pz,             /* The word being stemmed (Reversed) */
 | |
|   const char *zFrom,     /* If the ending matches this... (Reversed) */
 | |
|   const char *zTo,       /* ... change the ending to this (not reversed) */
 | |
|   int (*xCond)(const char*)   /* Condition that must be true */
 | |
| ){
 | |
|   char *z = *pz;
 | |
|   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
 | |
|   if( *zFrom!=0 ) return 0;
 | |
|   if( xCond && !xCond(z) ) return 1;
 | |
|   while( *zTo ){
 | |
|     *(--z) = *(zTo++);
 | |
|   }
 | |
|   *pz = z;
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** This is the fallback stemmer used when the porter stemmer is
 | |
| ** inappropriate.  The input word is copied into the output with
 | |
| ** US-ASCII case folding.  If the input word is too long (more
 | |
| ** than 20 bytes if it contains no digits or more than 6 bytes if
 | |
| ** it contains digits) then word is truncated to 20 or 6 bytes
 | |
| ** by taking 10 or 3 bytes from the beginning and end.
 | |
| */
 | |
| static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
 | |
|   int i, mx, j;
 | |
|   int hasDigit = 0;
 | |
|   for(i=0; i<nIn; i++){
 | |
|     int c = zIn[i];
 | |
|     if( c>='A' && c<='Z' ){
 | |
|       zOut[i] = c - 'A' + 'a';
 | |
|     }else{
 | |
|       if( c>='0' && c<='9' ) hasDigit = 1;
 | |
|       zOut[i] = c;
 | |
|     }
 | |
|   }
 | |
|   mx = hasDigit ? 3 : 10;
 | |
|   if( nIn>mx*2 ){
 | |
|     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
 | |
|       zOut[j] = zOut[i];
 | |
|     }
 | |
|     i = j;
 | |
|   }
 | |
|   zOut[i] = 0;
 | |
|   *pnOut = i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
 | |
| ** zOut is at least big enough to hold nIn bytes.  Write the actual
 | |
| ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
 | |
| **
 | |
| ** Any upper-case characters in the US-ASCII character set ([A-Z])
 | |
| ** are converted to lower case.  Upper-case UTF characters are
 | |
| ** unchanged.
 | |
| **
 | |
| ** Words that are longer than about 20 bytes are stemmed by retaining
 | |
| ** a few bytes from the beginning and the end of the word.  If the
 | |
| ** word contains digits, 3 bytes are taken from the beginning and
 | |
| ** 3 bytes from the end.  For long words without digits, 10 bytes
 | |
| ** are taken from each end.  US-ASCII case folding still applies.
 | |
| ** 
 | |
| ** If the input word contains not digits but does characters not 
 | |
| ** in [a-zA-Z] then no stemming is attempted and this routine just 
 | |
| ** copies the input into the input into the output with US-ASCII
 | |
| ** case folding.
 | |
| **
 | |
| ** Stemming never increases the length of the word.  So there is
 | |
| ** no chance of overflowing the zOut buffer.
 | |
| */
 | |
| static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
 | |
|   int i, j, c;
 | |
|   char zReverse[28];
 | |
|   char *z, *z2;
 | |
|   if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
 | |
|     /* The word is too big or too small for the porter stemmer.
 | |
|     ** Fallback to the copy stemmer */
 | |
|     copy_stemmer(zIn, nIn, zOut, pnOut);
 | |
|     return;
 | |
|   }
 | |
|   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
 | |
|     c = zIn[i];
 | |
|     if( c>='A' && c<='Z' ){
 | |
|       zReverse[j] = c + 'a' - 'A';
 | |
|     }else if( c>='a' && c<='z' ){
 | |
|       zReverse[j] = c;
 | |
|     }else{
 | |
|       /* The use of a character not in [a-zA-Z] means that we fallback
 | |
|       ** to the copy stemmer */
 | |
|       copy_stemmer(zIn, nIn, zOut, pnOut);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
 | |
|   z = &zReverse[j+1];
 | |
| 
 | |
| 
 | |
|   /* Step 1a */
 | |
|   if( z[0]=='s' ){
 | |
|     if(
 | |
|      !stem(&z, "sess", "ss", 0) &&
 | |
|      !stem(&z, "sei", "i", 0)  &&
 | |
|      !stem(&z, "ss", "ss", 0)
 | |
|     ){
 | |
|       z++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Step 1b */  
 | |
|   z2 = z;
 | |
|   if( stem(&z, "dee", "ee", m_gt_0) ){
 | |
|     /* Do nothing.  The work was all in the test */
 | |
|   }else if( 
 | |
|      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
 | |
|       && z!=z2
 | |
|   ){
 | |
|      if( stem(&z, "ta", "ate", 0) ||
 | |
|          stem(&z, "lb", "ble", 0) ||
 | |
|          stem(&z, "zi", "ize", 0) ){
 | |
|        /* Do nothing.  The work was all in the test */
 | |
|      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
 | |
|        z++;
 | |
|      }else if( m_eq_1(z) && star_oh(z) ){
 | |
|        *(--z) = 'e';
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* Step 1c */
 | |
|   if( z[0]=='y' && hasVowel(z+1) ){
 | |
|     z[0] = 'i';
 | |
|   }
 | |
| 
 | |
|   /* Step 2 */
 | |
|   switch( z[1] ){
 | |
|    case 'a':
 | |
|      stem(&z, "lanoita", "ate", m_gt_0) ||
 | |
|      stem(&z, "lanoit", "tion", m_gt_0);
 | |
|      break;
 | |
|    case 'c':
 | |
|      stem(&z, "icne", "ence", m_gt_0) ||
 | |
|      stem(&z, "icna", "ance", m_gt_0);
 | |
|      break;
 | |
|    case 'e':
 | |
|      stem(&z, "rezi", "ize", m_gt_0);
 | |
|      break;
 | |
|    case 'g':
 | |
|      stem(&z, "igol", "log", m_gt_0);
 | |
|      break;
 | |
|    case 'l':
 | |
|      stem(&z, "ilb", "ble", m_gt_0) ||
 | |
|      stem(&z, "illa", "al", m_gt_0) ||
 | |
|      stem(&z, "iltne", "ent", m_gt_0) ||
 | |
|      stem(&z, "ile", "e", m_gt_0) ||
 | |
|      stem(&z, "ilsuo", "ous", m_gt_0);
 | |
|      break;
 | |
|    case 'o':
 | |
|      stem(&z, "noitazi", "ize", m_gt_0) ||
 | |
|      stem(&z, "noita", "ate", m_gt_0) ||
 | |
|      stem(&z, "rota", "ate", m_gt_0);
 | |
|      break;
 | |
|    case 's':
 | |
|      stem(&z, "msila", "al", m_gt_0) ||
 | |
|      stem(&z, "ssenevi", "ive", m_gt_0) ||
 | |
|      stem(&z, "ssenluf", "ful", m_gt_0) ||
 | |
|      stem(&z, "ssensuo", "ous", m_gt_0);
 | |
|      break;
 | |
|    case 't':
 | |
|      stem(&z, "itila", "al", m_gt_0) ||
 | |
|      stem(&z, "itivi", "ive", m_gt_0) ||
 | |
|      stem(&z, "itilib", "ble", m_gt_0);
 | |
|      break;
 | |
|   }
 | |
| 
 | |
|   /* Step 3 */
 | |
|   switch( z[0] ){
 | |
|    case 'e':
 | |
|      stem(&z, "etaci", "ic", m_gt_0) ||
 | |
|      stem(&z, "evita", "", m_gt_0)   ||
 | |
|      stem(&z, "ezila", "al", m_gt_0);
 | |
|      break;
 | |
|    case 'i':
 | |
|      stem(&z, "itici", "ic", m_gt_0);
 | |
|      break;
 | |
|    case 'l':
 | |
|      stem(&z, "laci", "ic", m_gt_0) ||
 | |
|      stem(&z, "luf", "", m_gt_0);
 | |
|      break;
 | |
|    case 's':
 | |
|      stem(&z, "ssen", "", m_gt_0);
 | |
|      break;
 | |
|   }
 | |
| 
 | |
|   /* Step 4 */
 | |
|   switch( z[1] ){
 | |
|    case 'a':
 | |
|      if( z[0]=='l' && m_gt_1(z+2) ){
 | |
|        z += 2;
 | |
|      }
 | |
|      break;
 | |
|    case 'c':
 | |
|      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
 | |
|        z += 4;
 | |
|      }
 | |
|      break;
 | |
|    case 'e':
 | |
|      if( z[0]=='r' && m_gt_1(z+2) ){
 | |
|        z += 2;
 | |
|      }
 | |
|      break;
 | |
|    case 'i':
 | |
|      if( z[0]=='c' && m_gt_1(z+2) ){
 | |
|        z += 2;
 | |
|      }
 | |
|      break;
 | |
|    case 'l':
 | |
|      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
 | |
|        z += 4;
 | |
|      }
 | |
|      break;
 | |
|    case 'n':
 | |
|      if( z[0]=='t' ){
 | |
|        if( z[2]=='a' ){
 | |
|          if( m_gt_1(z+3) ){
 | |
|            z += 3;
 | |
|          }
 | |
|        }else if( z[2]=='e' ){
 | |
|          stem(&z, "tneme", "", m_gt_1) ||
 | |
|          stem(&z, "tnem", "", m_gt_1) ||
 | |
|          stem(&z, "tne", "", m_gt_1);
 | |
|        }
 | |
|      }
 | |
|      break;
 | |
|    case 'o':
 | |
|      if( z[0]=='u' ){
 | |
|        if( m_gt_1(z+2) ){
 | |
|          z += 2;
 | |
|        }
 | |
|      }else if( z[3]=='s' || z[3]=='t' ){
 | |
|        stem(&z, "noi", "", m_gt_1);
 | |
|      }
 | |
|      break;
 | |
|    case 's':
 | |
|      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
 | |
|        z += 3;
 | |
|      }
 | |
|      break;
 | |
|    case 't':
 | |
|      stem(&z, "eta", "", m_gt_1) ||
 | |
|      stem(&z, "iti", "", m_gt_1);
 | |
|      break;
 | |
|    case 'u':
 | |
|      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
 | |
|        z += 3;
 | |
|      }
 | |
|      break;
 | |
|    case 'v':
 | |
|    case 'z':
 | |
|      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
 | |
|        z += 3;
 | |
|      }
 | |
|      break;
 | |
|   }
 | |
| 
 | |
|   /* Step 5a */
 | |
|   if( z[0]=='e' ){
 | |
|     if( m_gt_1(z+1) ){
 | |
|       z++;
 | |
|     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
 | |
|       z++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Step 5b */
 | |
|   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
 | |
|     z++;
 | |
|   }
 | |
| 
 | |
|   /* z[] is now the stemmed word in reverse order.  Flip it back
 | |
|   ** around into forward order and return.
 | |
|   */
 | |
|   *pnOut = i = strlen(z);
 | |
|   zOut[i] = 0;
 | |
|   while( *z ){
 | |
|     zOut[--i] = *(z++);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Characters that can be part of a token.  We assume any character
 | |
| ** whose value is greater than 0x80 (any UTF character) can be
 | |
| ** part of a token.  In other words, delimiters all must have
 | |
| ** values of 0x7f or lower.
 | |
| */
 | |
| static const char porterIdChar[] = {
 | |
| /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
 | |
|     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
 | |
|     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
 | |
| };
 | |
| #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
 | |
| 
 | |
| /*
 | |
| ** Extract the next token from a tokenization cursor.  The cursor must
 | |
| ** have been opened by a prior call to porterOpen().
 | |
| */
 | |
| static int porterNext(
 | |
|   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
 | |
|   const char **pzToken,               /* OUT: *pzToken is the token text */
 | |
|   int *pnBytes,                       /* OUT: Number of bytes in token */
 | |
|   int *piStartOffset,                 /* OUT: Starting offset of token */
 | |
|   int *piEndOffset,                   /* OUT: Ending offset of token */
 | |
|   int *piPosition                     /* OUT: Position integer of token */
 | |
| ){
 | |
|   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
 | |
|   const char *z = c->zInput;
 | |
| 
 | |
|   while( c->iOffset<c->nInput ){
 | |
|     int iStartOffset, ch;
 | |
| 
 | |
|     /* Scan past delimiter characters */
 | |
|     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
 | |
|       c->iOffset++;
 | |
|     }
 | |
| 
 | |
|     /* Count non-delimiter characters. */
 | |
|     iStartOffset = c->iOffset;
 | |
|     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
 | |
|       c->iOffset++;
 | |
|     }
 | |
| 
 | |
|     if( c->iOffset>iStartOffset ){
 | |
|       int n = c->iOffset-iStartOffset;
 | |
|       if( n>c->nAllocated ){
 | |
|         c->nAllocated = n+20;
 | |
|         c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
 | |
|         if( c->zToken==NULL ) return SQLITE_NOMEM;
 | |
|       }
 | |
|       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
 | |
|       *pzToken = c->zToken;
 | |
|       *piStartOffset = iStartOffset;
 | |
|       *piEndOffset = c->iOffset;
 | |
|       *piPosition = c->iToken++;
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_DONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The set of routines that implement the porter-stemmer tokenizer
 | |
| */
 | |
| static const sqlite3_tokenizer_module porterTokenizerModule = {
 | |
|   0,
 | |
|   porterCreate,
 | |
|   porterDestroy,
 | |
|   porterOpen,
 | |
|   porterClose,
 | |
|   porterNext,
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Allocate a new porter tokenizer.  Return a pointer to the new
 | |
| ** tokenizer in *ppModule
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(
 | |
|   sqlite3_tokenizer_module const**ppModule
 | |
| ){
 | |
|   *ppModule = &porterTokenizerModule;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
 | |
| 
 | |
| /************** End of fts3_porter.c *****************************************/
 | |
| /************** Begin file fts3_tokenizer.c **********************************/
 | |
| /*
 | |
| ** 2007 June 22
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** This is part of an SQLite module implementing full-text search.
 | |
| ** This particular file implements the generic tokenizer interface.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only compiled if:
 | |
| **
 | |
| **     * The FTS3 module is being built as an extension
 | |
| **       (in which case SQLITE_CORE is not defined), or
 | |
| **
 | |
| **     * The FTS3 module is being built into the core of
 | |
| **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
 | |
| */
 | |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
 | |
| 
 | |
| #ifndef SQLITE_CORE
 | |
|   SQLITE_EXTENSION_INIT1
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of the SQL scalar function for accessing the underlying 
 | |
| ** hash table. This function may be called as follows:
 | |
| **
 | |
| **   SELECT <function-name>(<key-name>);
 | |
| **   SELECT <function-name>(<key-name>, <pointer>);
 | |
| **
 | |
| ** where <function-name> is the name passed as the second argument
 | |
| ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer').
 | |
| **
 | |
| ** If the <pointer> argument is specified, it must be a blob value
 | |
| ** containing a pointer to be stored as the hash data corresponding
 | |
| ** to the string <key-name>. If <pointer> is not specified, then
 | |
| ** the string <key-name> must already exist in the has table. Otherwise,
 | |
| ** an error is returned.
 | |
| **
 | |
| ** Whether or not the <pointer> argument is specified, the value returned
 | |
| ** is a blob containing the pointer stored as the hash data corresponding
 | |
| ** to string <key-name> (after the hash-table is updated, if applicable).
 | |
| */
 | |
| static void scalarFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   fts3Hash *pHash;
 | |
|   void *pPtr = 0;
 | |
|   const unsigned char *zName;
 | |
|   int nName;
 | |
| 
 | |
|   assert( argc==1 || argc==2 );
 | |
| 
 | |
|   pHash = (fts3Hash *)sqlite3_user_data(context);
 | |
| 
 | |
|   zName = sqlite3_value_text(argv[0]);
 | |
|   nName = sqlite3_value_bytes(argv[0])+1;
 | |
| 
 | |
|   if( argc==2 ){
 | |
|     void *pOld;
 | |
|     int n = sqlite3_value_bytes(argv[1]);
 | |
|     if( n!=sizeof(pPtr) ){
 | |
|       sqlite3_result_error(context, "argument type mismatch", -1);
 | |
|       return;
 | |
|     }
 | |
|     pPtr = *(void **)sqlite3_value_blob(argv[1]);
 | |
|     pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
 | |
|     if( pOld==pPtr ){
 | |
|       sqlite3_result_error(context, "out of memory", -1);
 | |
|       return;
 | |
|     }
 | |
|   }else{
 | |
|     pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
 | |
|     if( !pPtr ){
 | |
|       char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
 | |
|       sqlite3_result_error(context, zErr, -1);
 | |
|       sqlite3_free(zErr);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT);
 | |
| }
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
| 
 | |
| 
 | |
| /*
 | |
| ** Implementation of a special SQL scalar function for testing tokenizers 
 | |
| ** designed to be used in concert with the Tcl testing framework. This
 | |
| ** function must be called with two arguments:
 | |
| **
 | |
| **   SELECT <function-name>(<key-name>, <input-string>);
 | |
| **   SELECT <function-name>(<key-name>, <pointer>);
 | |
| **
 | |
| ** where <function-name> is the name passed as the second argument
 | |
| ** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer')
 | |
| ** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test').
 | |
| **
 | |
| ** The return value is a string that may be interpreted as a Tcl
 | |
| ** list. For each token in the <input-string>, three elements are
 | |
| ** added to the returned list. The first is the token position, the 
 | |
| ** second is the token text (folded, stemmed, etc.) and the third is the
 | |
| ** substring of <input-string> associated with the token. For example, 
 | |
| ** using the built-in "simple" tokenizer:
 | |
| **
 | |
| **   SELECT fts_tokenizer_test('simple', 'I don't see how');
 | |
| **
 | |
| ** will return the string:
 | |
| **
 | |
| **   "{0 i I 1 dont don't 2 see see 3 how how}"
 | |
| **   
 | |
| */
 | |
| static void testFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   fts3Hash *pHash;
 | |
|   sqlite3_tokenizer_module *p;
 | |
|   sqlite3_tokenizer *pTokenizer = 0;
 | |
|   sqlite3_tokenizer_cursor *pCsr = 0;
 | |
| 
 | |
|   const char *zErr = 0;
 | |
| 
 | |
|   const char *zName;
 | |
|   int nName;
 | |
|   const char *zInput;
 | |
|   int nInput;
 | |
| 
 | |
|   const char *zArg = 0;
 | |
| 
 | |
|   const char *zToken;
 | |
|   int nToken;
 | |
|   int iStart;
 | |
|   int iEnd;
 | |
|   int iPos;
 | |
| 
 | |
|   Tcl_Obj *pRet;
 | |
| 
 | |
|   assert( argc==2 || argc==3 );
 | |
| 
 | |
|   nName = sqlite3_value_bytes(argv[0]);
 | |
|   zName = (const char *)sqlite3_value_text(argv[0]);
 | |
|   nInput = sqlite3_value_bytes(argv[argc-1]);
 | |
|   zInput = (const char *)sqlite3_value_text(argv[argc-1]);
 | |
| 
 | |
|   if( argc==3 ){
 | |
|     zArg = (const char *)sqlite3_value_text(argv[1]);
 | |
|   }
 | |
| 
 | |
|   pHash = (fts3Hash *)sqlite3_user_data(context);
 | |
|   p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1);
 | |
| 
 | |
|   if( !p ){
 | |
|     char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
 | |
|     sqlite3_result_error(context, zErr, -1);
 | |
|     sqlite3_free(zErr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   pRet = Tcl_NewObj();
 | |
|   Tcl_IncrRefCount(pRet);
 | |
| 
 | |
|   if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){
 | |
|     zErr = "error in xCreate()";
 | |
|     goto finish;
 | |
|   }
 | |
|   pTokenizer->pModule = p;
 | |
|   if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){
 | |
|     zErr = "error in xOpen()";
 | |
|     goto finish;
 | |
|   }
 | |
|   pCsr->pTokenizer = pTokenizer;
 | |
| 
 | |
|   while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){
 | |
|     Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos));
 | |
|     Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
 | |
|     zToken = &zInput[iStart];
 | |
|     nToken = iEnd-iStart;
 | |
|     Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken));
 | |
|   }
 | |
| 
 | |
|   if( SQLITE_OK!=p->xClose(pCsr) ){
 | |
|     zErr = "error in xClose()";
 | |
|     goto finish;
 | |
|   }
 | |
|   if( SQLITE_OK!=p->xDestroy(pTokenizer) ){
 | |
|     zErr = "error in xDestroy()";
 | |
|     goto finish;
 | |
|   }
 | |
| 
 | |
| finish:
 | |
|   if( zErr ){
 | |
|     sqlite3_result_error(context, zErr, -1);
 | |
|   }else{
 | |
|     sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
 | |
|   }
 | |
|   Tcl_DecrRefCount(pRet);
 | |
| }
 | |
| 
 | |
| static
 | |
| int registerTokenizer(
 | |
|   sqlite3 *db, 
 | |
|   char *zName, 
 | |
|   const sqlite3_tokenizer_module *p
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3_stmt *pStmt;
 | |
|   const char zSql[] = "SELECT fts3_tokenizer(?, ?)";
 | |
| 
 | |
|   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
 | |
|   sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC);
 | |
|   sqlite3_step(pStmt);
 | |
| 
 | |
|   return sqlite3_finalize(pStmt);
 | |
| }
 | |
| 
 | |
| static
 | |
| int queryTokenizer(
 | |
|   sqlite3 *db, 
 | |
|   char *zName,  
 | |
|   const sqlite3_tokenizer_module **pp
 | |
| ){
 | |
|   int rc;
 | |
|   sqlite3_stmt *pStmt;
 | |
|   const char zSql[] = "SELECT fts3_tokenizer(?)";
 | |
| 
 | |
|   *pp = 0;
 | |
|   rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
 | |
|   if( rc!=SQLITE_OK ){
 | |
|     return rc;
 | |
|   }
 | |
| 
 | |
|   sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC);
 | |
|   if( SQLITE_ROW==sqlite3_step(pStmt) ){
 | |
|     if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){
 | |
|       memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return sqlite3_finalize(pStmt);
 | |
| }
 | |
| 
 | |
| SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
 | |
| 
 | |
| /*
 | |
| ** Implementation of the scalar function fts3_tokenizer_internal_test().
 | |
| ** This function is used for testing only, it is not included in the
 | |
| ** build unless SQLITE_TEST is defined.
 | |
| **
 | |
| ** The purpose of this is to test that the fts3_tokenizer() function
 | |
| ** can be used as designed by the C-code in the queryTokenizer and
 | |
| ** registerTokenizer() functions above. These two functions are repeated
 | |
| ** in the README.tokenizer file as an example, so it is important to
 | |
| ** test them.
 | |
| **
 | |
| ** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar
 | |
| ** function with no arguments. An assert() will fail if a problem is
 | |
| ** detected. i.e.:
 | |
| **
 | |
| **     SELECT fts3_tokenizer_internal_test();
 | |
| **
 | |
| */
 | |
| static void intTestFunc(
 | |
|   sqlite3_context *context,
 | |
|   int argc,
 | |
|   sqlite3_value **argv
 | |
| ){
 | |
|   int rc;
 | |
|   const sqlite3_tokenizer_module *p1;
 | |
|   const sqlite3_tokenizer_module *p2;
 | |
|   sqlite3 *db = (sqlite3 *)sqlite3_user_data(context);
 | |
| 
 | |
|   /* Test the query function */
 | |
|   sqlite3Fts3SimpleTokenizerModule(&p1);
 | |
|   rc = queryTokenizer(db, "simple", &p2);
 | |
|   assert( rc==SQLITE_OK );
 | |
|   assert( p1==p2 );
 | |
|   rc = queryTokenizer(db, "nosuchtokenizer", &p2);
 | |
|   assert( rc==SQLITE_ERROR );
 | |
|   assert( p2==0 );
 | |
|   assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") );
 | |
| 
 | |
|   /* Test the storage function */
 | |
|   rc = registerTokenizer(db, "nosuchtokenizer", p1);
 | |
|   assert( rc==SQLITE_OK );
 | |
|   rc = queryTokenizer(db, "nosuchtokenizer", &p2);
 | |
|   assert( rc==SQLITE_OK );
 | |
|   assert( p2==p1 );
 | |
| 
 | |
|   sqlite3_result_text(context, "ok", -1, SQLITE_STATIC);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| ** Set up SQL objects in database db used to access the contents of
 | |
| ** the hash table pointed to by argument pHash. The hash table must
 | |
| ** been initialised to use string keys, and to take a private copy 
 | |
| ** of the key when a value is inserted. i.e. by a call similar to:
 | |
| **
 | |
| **    sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
 | |
| **
 | |
| ** This function adds a scalar function (see header comment above
 | |
| ** scalarFunc() in this file for details) and, if ENABLE_TABLE is
 | |
| ** defined at compilation time, a temporary virtual table (see header 
 | |
| ** comment above struct HashTableVtab) to the database schema. Both 
 | |
| ** provide read/write access to the contents of *pHash.
 | |
| **
 | |
| ** The third argument to this function, zName, is used as the name
 | |
| ** of both the scalar and, if created, the virtual table.
 | |
| */
 | |
| SQLITE_PRIVATE int sqlite3Fts3InitHashTable(
 | |
|   sqlite3 *db, 
 | |
|   fts3Hash *pHash, 
 | |
|   const char *zName
 | |
| ){
 | |
|   int rc = SQLITE_OK;
 | |
|   void *p = (void *)pHash;
 | |
|   const int any = SQLITE_ANY;
 | |
|   char *zTest = 0;
 | |
|   char *zTest2 = 0;
 | |
| 
 | |
| #ifdef SQLITE_TEST
 | |
|   void *pdb = (void *)db;
 | |
|   zTest = sqlite3_mprintf("%s_test", zName);
 | |
|   zTest2 = sqlite3_mprintf("%s_internal_test", zName);
 | |
|   if( !zTest || !zTest2 ){
 | |
|     rc = SQLITE_NOMEM;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if( rc!=SQLITE_OK
 | |
|    || (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
 | |
|    || (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
 | |
| #ifdef SQLITE_TEST
 | |
|    || (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
 | |
|    || (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
 | |
|    || (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
 | |
| #endif
 | |
|   );
 | |
| 
 | |
|   sqlite3_free(zTest);
 | |
|   sqlite3_free(zTest2);
 | |
|   return rc;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
 | |
| 
 | |
| /************** End of fts3_tokenizer.c **************************************/
 | |
| /************** Begin file fts3_tokenizer1.c *********************************/
 | |
| /*
 | |
| ** 2006 Oct 10
 | |
| **
 | |
| ** The author disclaims copyright to this source code.  In place of
 | |
| ** a legal notice, here is a blessing:
 | |
| **
 | |
| **    May you do good and not evil.
 | |
| **    May you find forgiveness for yourself and forgive others.
 | |
| **    May you share freely, never taking more than you give.
 | |
| **
 | |
| ******************************************************************************
 | |
| **
 | |
| ** Implementation of the "simple" full-text-search tokenizer.
 | |
| */
 | |
| 
 | |
| /*
 | |
| ** The code in this file is only compiled if:
 | |
| **
 | |
| **     * The FTS3 module is being built as an extension
 | |
| **       (in which case SQLITE_CORE is not defined), or
 | |
| **
 | |
| **     * The FTS3 module is being built into the core of
 | |
| **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
 | |
| */
 | |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| typedef struct simple_tokenizer {
 | |
|   sqlite3_tokenizer base;
 | |
|   char delim[128];             /* flag ASCII delimiters */
 | |
| } simple_tokenizer;
 | |
| 
 | |
| typedef struct simple_tokenizer_cursor {
 | |
|   sqlite3_tokenizer_cursor base;
 | |
|   const char *pInput;          /* input we are tokenizing */
 | |
|   int nBytes;                  /* size of the input */
 | |
|   int iOffset;                 /* current position in pInput */
 | |
|   int iToken;                  /* index of next token to be returned */
 | |
|   char *pToken;                /* storage for current token */
 | |
|   int nTokenAllocated;         /* space allocated to zToken buffer */
 | |
| } simple_tokenizer_cursor;
 | |
| 
 | |
| 
 | |
| /* Forward declaration */
 | |
| static const sqlite3_tokenizer_module simpleTokenizerModule;
 | |
| 
 | |
| static int simpleDelim(simple_tokenizer *t, unsigned char c){
 | |
|   return c<0x80 && t->delim[c];
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Create a new tokenizer instance.
 | |
| */
 | |
| static int simpleCreate(
 | |
|   int argc, const char * const *argv,
 | |
|   sqlite3_tokenizer **ppTokenizer
 | |
| ){
 | |
|   simple_tokenizer *t;
 | |
| 
 | |
|   t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t));
 | |
|   if( t==NULL ) return SQLITE_NOMEM;
 | |
|   memset(t, 0, sizeof(*t));
 | |
| 
 | |
|   /* TODO(shess) Delimiters need to remain the same from run to run,
 | |
|   ** else we need to reindex.  One solution would be a meta-table to
 | |
|   ** track such information in the database, then we'd only want this
 | |
|   ** information on the initial create.
 | |
|   */
 | |
|   if( argc>1 ){
 | |
|     int i, n = strlen(argv[1]);
 | |
|     for(i=0; i<n; i++){
 | |
|       unsigned char ch = argv[1][i];
 | |
|       /* We explicitly don't support UTF-8 delimiters for now. */
 | |
|       if( ch>=0x80 ){
 | |
|         sqlite3_free(t);
 | |
|         return SQLITE_ERROR;
 | |
|       }
 | |
|       t->delim[ch] = 1;
 | |
|     }
 | |
|   } else {
 | |
|     /* Mark non-alphanumeric ASCII characters as delimiters */
 | |
|     int i;
 | |
|     for(i=1; i<0x80; i++){
 | |
|       t->delim[i] = !isalnum(i);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   *ppTokenizer = &t->base;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Destroy a tokenizer
 | |
| */
 | |
| static int simpleDestroy(sqlite3_tokenizer *pTokenizer){
 | |
|   sqlite3_free(pTokenizer);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Prepare to begin tokenizing a particular string.  The input
 | |
| ** string to be tokenized is pInput[0..nBytes-1].  A cursor
 | |
| ** used to incrementally tokenize this string is returned in 
 | |
| ** *ppCursor.
 | |
| */
 | |
| static int simpleOpen(
 | |
|   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
 | |
|   const char *pInput, int nBytes,        /* String to be tokenized */
 | |
|   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
 | |
| ){
 | |
|   simple_tokenizer_cursor *c;
 | |
| 
 | |
|   c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
 | |
|   if( c==NULL ) return SQLITE_NOMEM;
 | |
| 
 | |
|   c->pInput = pInput;
 | |
|   if( pInput==0 ){
 | |
|     c->nBytes = 0;
 | |
|   }else if( nBytes<0 ){
 | |
|     c->nBytes = (int)strlen(pInput);
 | |
|   }else{
 | |
|     c->nBytes = nBytes;
 | |
|   }
 | |
|   c->iOffset = 0;                 /* start tokenizing at the beginning */
 | |
|   c->iToken = 0;
 | |
|   c->pToken = NULL;               /* no space allocated, yet. */
 | |
|   c->nTokenAllocated = 0;
 | |
| 
 | |
|   *ppCursor = &c->base;
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Close a tokenization cursor previously opened by a call to
 | |
| ** simpleOpen() above.
 | |
| */
 | |
| static int simpleClose(sqlite3_tokenizer_cursor *pCursor){
 | |
|   simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
 | |
|   sqlite3_free(c->pToken);
 | |
|   sqlite3_free(c);
 | |
|   return SQLITE_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** Extract the next token from a tokenization cursor.  The cursor must
 | |
| ** have been opened by a prior call to simpleOpen().
 | |
| */
 | |
| static int simpleNext(
 | |
|   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by simpleOpen */
 | |
|   const char **ppToken,               /* OUT: *ppToken is the token text */
 | |
|   int *pnBytes,                       /* OUT: Number of bytes in token */
 | |
|   int *piStartOffset,                 /* OUT: Starting offset of token */
 | |
|   int *piEndOffset,                   /* OUT: Ending offset of token */
 | |
|   int *piPosition                     /* OUT: Position integer of token */
 | |
| ){
 | |
|   simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor;
 | |
|   simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer;
 | |
|   unsigned char *p = (unsigned char *)c->pInput;
 | |
| 
 | |
|   while( c->iOffset<c->nBytes ){
 | |
|     int iStartOffset;
 | |
| 
 | |
|     /* Scan past delimiter characters */
 | |
|     while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){
 | |
|       c->iOffset++;
 | |
|     }
 | |
| 
 | |
|     /* Count non-delimiter characters. */
 | |
|     iStartOffset = c->iOffset;
 | |
|     while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){
 | |
|       c->iOffset++;
 | |
|     }
 | |
| 
 | |
|     if( c->iOffset>iStartOffset ){
 | |
|       int i, n = c->iOffset-iStartOffset;
 | |
|       if( n>c->nTokenAllocated ){
 | |
|         c->nTokenAllocated = n+20;
 | |
|         c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated);
 | |
|         if( c->pToken==NULL ) return SQLITE_NOMEM;
 | |
|       }
 | |
|       for(i=0; i<n; i++){
 | |
|         /* TODO(shess) This needs expansion to handle UTF-8
 | |
|         ** case-insensitivity.
 | |
|         */
 | |
|         unsigned char ch = p[iStartOffset+i];
 | |
|         c->pToken[i] = ch<0x80 ? tolower(ch) : ch;
 | |
|       }
 | |
|       *ppToken = c->pToken;
 | |
|       *pnBytes = n;
 | |
|       *piStartOffset = iStartOffset;
 | |
|       *piEndOffset = c->iOffset;
 | |
|       *piPosition = c->iToken++;
 | |
| 
 | |
|       return SQLITE_OK;
 | |
|     }
 | |
|   }
 | |
|   return SQLITE_DONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
| ** The set of routines that implement the simple tokenizer
 | |
| */
 | |
| static const sqlite3_tokenizer_module simpleTokenizerModule = {
 | |
|   0,
 | |
|   simpleCreate,
 | |
|   simpleDestroy,
 | |
|   simpleOpen,
 | |
|   simpleClose,
 | |
|   simpleNext,
 | |
| };
 | |
| 
 | |
| /*
 | |
| ** Allocate a new simple tokenizer.  Return a pointer to the new
 | |
| ** tokenizer in *ppModule
 | |
| */
 | |
| SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(
 | |
|   sqlite3_tokenizer_module const**ppModule
 | |
| ){
 | |
|   *ppModule = &simpleTokenizerModule;
 | |
| }
 | |
| 
 | |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */
 | |
| 
 | |
| /************** End of fts3_tokenizer1.c *************************************/
 |