Files
heimdal/lib/hdb/test_namespace.c
Nicolas Williams 5f63215d0d Always perform == or != operation on cmp function result
Although not required to address bad code generation in
some versions of gcc 9 and 10, a coding style that requires
explicit comparison of the result to zero before use is
both clearer and would have avoided the generation of bad
code.

This change converts all use of cmp function usage from

```
    if (strcmp(a, b) || !strcmp(c, d)) ...
```

to

```
    if (strcmp(a, b) != 0 || strcmp(c, d)) == 0
```

for all C library cmp functions and related:

 - strcmp(), strncmp()
 - strcasecmp(), strncasecmp()
 - stricmp(), strnicmp()
 - memcmp()

Change-Id: Ic60c15e1e3a07e4faaf10648eefe3adae2543188
2021-11-24 22:30:44 -05:00

944 lines
31 KiB
C

/*
* Copyright (c) 2020 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This program implements an ephemeral, memory-based HDB backend, stores into
* it just one HDB entry -one for a namespace- then checks that virtual
* principals are returned below that namespace by hdb_fetch_kvno(), and that
* the logic for automatic key rotation of virtual principals is correct.
*/
#include "hdb_locl.h"
#include <hex.h>
static KeyRotation krs[2];
static const char *base_pw[2] = { "Testing123...", "Tested123..." };
typedef struct {
HDB hdb; /* generic members */
/*
* Make this dict a global, add a mutex lock around it, and a .finit and/or
* atexit() handler to free it, and we'd have a first-class MEMORY HDB.
*
* What would a first-class MEMORY HDB be good for though, besides testing?
*
* However, we could move this dict into `HDB' and then have _hdb_store()
* and friends support it as a cache for frequently-used & seldom-changing
* entries, such as: K/M, namespaces, and krbtgt principals. That would
* speed up lookups, especially for backends with poor reader-writer
* concurrency (DB, LMDB) and LDAP. Such entries could be cached for a
* minute or three at a time.
*/
heim_dict_t dict;
} TEST_HDB;
struct hdb_called {
int create;
int init;
int fini;
};
static krb5_error_code
TDB_close(krb5_context context, HDB *db)
{
return 0;
}
static krb5_error_code
TDB_destroy(krb5_context context, HDB *db)
{
TEST_HDB *tdb = (void *)db;
heim_release(tdb->dict);
free(tdb->hdb.hdb_name);
free(tdb);
return 0;
}
static krb5_error_code
TDB_set_sync(krb5_context context, HDB *db, int on)
{
return 0;
}
static krb5_error_code
TDB_lock(krb5_context context, HDB *db, int operation)
{
return 0;
}
static krb5_error_code
TDB_unlock(krb5_context context, HDB *db)
{
return 0;
}
static krb5_error_code
TDB_firstkey(krb5_context context, HDB *db, unsigned flags, hdb_entry_ex *entry)
{
/* XXX Implement */
/* Tricky thing: heim_dict_iterate_f() is inconvenient here */
/* We need this to check that virtual principals aren't created */
return 0;
}
static krb5_error_code
TDB_nextkey(krb5_context context, HDB *db, unsigned flags, hdb_entry_ex *entry)
{
/* XXX Implement */
/* Tricky thing: heim_dict_iterate_f() is inconvenient here */
/* We need this to check that virtual principals aren't created */
return 0;
}
static krb5_error_code
TDB_rename(krb5_context context, HDB *db, const char *new_name)
{
return EEXIST;
}
static krb5_error_code
TDB__get(krb5_context context, HDB *db, krb5_data key, krb5_data *reply)
{
krb5_error_code ret = 0;
TEST_HDB *tdb = (void *)db;
heim_object_t k, v = NULL;
if ((k = heim_data_create(key.data, key.length)) == NULL)
ret = krb5_enomem(context);
if (ret == 0 && (v = heim_dict_get_value(tdb->dict, k)) == NULL)
ret = HDB_ERR_NOENTRY;
if (ret == 0)
ret = krb5_data_copy(reply, heim_data_get_ptr(v), heim_data_get_length(v));
heim_release(k);
return ret;
}
static krb5_error_code
TDB__put(krb5_context context, HDB *db, int rplc, krb5_data kd, krb5_data vd)
{
krb5_error_code ret = 0;
TEST_HDB *tdb = (void *)db;
heim_object_t e = NULL;
heim_object_t k = NULL;
heim_object_t v = NULL;
if ((k = heim_data_create(kd.data, kd.length)) == NULL ||
(v = heim_data_create(vd.data, vd.length)) == NULL)
ret = krb5_enomem(context);
if (ret == 0 && !rplc && (e = heim_dict_get_value(tdb->dict, k)) != NULL)
ret = HDB_ERR_EXISTS;
if (ret == 0 && heim_dict_set_value(tdb->dict, k, v))
ret = krb5_enomem(context);
heim_release(k);
heim_release(v);
return ret;
}
static krb5_error_code
TDB__del(krb5_context context, HDB *db, krb5_data key)
{
krb5_error_code ret = 0;
TEST_HDB *tdb = (void *)db;
heim_object_t k, v;
if ((k = heim_data_create(key.data, key.length)) == NULL)
ret = krb5_enomem(context);
if (ret == 0 && (v = heim_dict_get_value(tdb->dict, k)) == NULL)
ret = HDB_ERR_NOENTRY;
if (ret == 0)
heim_dict_delete_key(tdb->dict, k);
heim_release(k);
return ret;
}
static krb5_error_code
TDB_open(krb5_context context, HDB *db, int flags, mode_t mode)
{
return 0;
}
static krb5_error_code
hdb_test_create(krb5_context context, struct HDB **db, const char *arg)
{
TEST_HDB *tdb;
if ((tdb = calloc(1, sizeof(tdb[0]))) == NULL ||
(tdb->hdb.hdb_name = strdup(arg)) == NULL ||
(tdb->dict = heim_dict_create(10)) == NULL) {
free(tdb->hdb.hdb_name);
free(tdb);
return krb5_enomem(context);
}
tdb->hdb.hdb_db = NULL;
tdb->hdb.hdb_master_key_set = 0;
tdb->hdb.hdb_openp = 0;
tdb->hdb.hdb_capability_flags = HDB_CAP_F_HANDLE_ENTERPRISE_PRINCIPAL;
tdb->hdb.hdb_open = TDB_open;
tdb->hdb.hdb_close = TDB_close;
tdb->hdb.hdb_fetch_kvno = _hdb_fetch_kvno;
tdb->hdb.hdb_store = _hdb_store;
tdb->hdb.hdb_remove = _hdb_remove;
tdb->hdb.hdb_firstkey = TDB_firstkey;
tdb->hdb.hdb_nextkey= TDB_nextkey;
tdb->hdb.hdb_lock = TDB_lock;
tdb->hdb.hdb_unlock = TDB_unlock;
tdb->hdb.hdb_rename = TDB_rename;
tdb->hdb.hdb__get = TDB__get;
tdb->hdb.hdb__put = TDB__put;
tdb->hdb.hdb__del = TDB__del;
tdb->hdb.hdb_destroy = TDB_destroy;
tdb->hdb.hdb_set_sync = TDB_set_sync;
*db = &tdb->hdb;
return 0;
}
static krb5_error_code
hdb_test_init(krb5_context context, void **ctx)
{
*ctx = NULL;
return 0;
}
static void hdb_test_fini(void *ctx)
{
}
struct hdb_method hdb_test =
{
#ifdef WIN32
/* Not c99 */
HDB_INTERFACE_VERSION,
1 /*is_file_based*/, 1 /*can_taste*/,
hdb_test_init,
hdb_test_fini,
"test",
hdb_test_create
#else
.version = HDB_INTERFACE_VERSION,
.is_file_based = 1,
.can_taste = 1,
.init = hdb_test_init,
.fini = hdb_test_fini,
.prefix = "test",
.create = hdb_test_create
#endif
};
static krb5_error_code
make_base_key(krb5_context context,
krb5_const_principal p,
const char *pw,
krb5_keyblock *k)
{
return krb5_string_to_key(context, KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128,
pw, p, k);
}
static krb5_error_code
tderive_key(krb5_context context,
const char *p,
KeyRotation *kr,
int toffset,
krb5_keyblock *base,
krb5int32 etype,
krb5_keyblock *k,
uint32_t *kvno,
time_t *set_time)
{
krb5_error_code ret = 0;
krb5_crypto crypto = NULL;
EncryptionKey intermediate;
krb5_data pad, out;
size_t len;
int n;
n = toffset / kr->period;
*set_time = kr->epoch + kr->period * n;
*kvno = kr->base_kvno + n;
out.data = 0;
out.length = 0;
/* Derive intermediate key */
pad.data = (void *)(uintptr_t)p;
pad.length = strlen(p);
ret = krb5_enctype_keysize(context, base->keytype, &len);
if (ret == 0)
ret = krb5_crypto_init(context, base, 0, &crypto);
if (ret == 0)
ret = krb5_crypto_prfplus(context, crypto, &pad, len, &out);
if (crypto)
krb5_crypto_destroy(context, crypto);
crypto = NULL;
if (ret == 0)
ret = krb5_random_to_key(context, etype, out.data, out.length,
&intermediate);
krb5_data_free(&out);
/* Derive final key */
pad.data = kvno;
pad.length = sizeof(*kvno);
if (ret == 0)
ret = krb5_enctype_keysize(context, etype, &len);
if (ret == 0)
ret = krb5_crypto_init(context, &intermediate, 0, &crypto);
if (ret == 0) {
*kvno = htonl(*kvno);
ret = krb5_crypto_prfplus(context, crypto, &pad, len, &out);
*kvno = ntohl(*kvno);
}
if (crypto)
krb5_crypto_destroy(context, crypto);
if (ret == 0)
ret = krb5_random_to_key(context, etype, out.data, out.length, k);
krb5_data_free(&out);
free_EncryptionKey(&intermediate);
return ret;
}
/* Create a namespace principal */
static void
make_namespace(krb5_context context, HDB *db, const char *name)
{
krb5_error_code ret = 0;
hdb_entry_ex e;
Key k;
memset(&k, 0, sizeof(k));
k.mkvno = 0;
k.salt = 0;
/* Setup the HDB entry */
memset(&e, 0, sizeof(e));
e.ctx = 0;
e.free_entry = 0;
e.entry.created_by.time = krs[0].epoch;
e.entry.valid_start = e.entry.valid_end = e.entry.pw_end = 0;
e.entry.generation = 0;
e.entry.flags = int2HDBFlags(0);
e.entry.flags.server = e.entry.flags.client = 1;
e.entry.flags.virtual = 1;
/* Setup etypes */
if (ret == 0 &&
(e.entry.etypes = malloc(sizeof(*e.entry.etypes))) == NULL)
ret = krb5_enomem(context);
if (ret == 0)
e.entry.etypes->len = 3;
if (ret == 0 &&
(e.entry.etypes->val = calloc(e.entry.etypes->len,
sizeof(e.entry.etypes->val[0]))) == NULL)
ret = krb5_enomem(context);
if (ret == 0) {
e.entry.etypes->val[0] = KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128;
e.entry.etypes->val[1] = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA384_192;
e.entry.etypes->val[2] = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA1_96;
}
/* Setup max_life and max_renew */
if (ret == 0 &&
(e.entry.max_life = malloc(sizeof(*e.entry.max_life))) == NULL)
ret = krb5_enomem(context);
if (ret == 0 &&
(e.entry.max_renew = malloc(sizeof(*e.entry.max_renew))) == NULL)
ret = krb5_enomem(context);
if (ret == 0)
/* Make it long, so we see the clamped max */
*e.entry.max_renew = 2 * ((*e.entry.max_life = 15 * 24 * 3600));
/* Setup principal name and created_by */
if (ret == 0)
ret = krb5_parse_name(context, name, &e.entry.principal);
if (ret == 0)
ret = krb5_parse_name(context, "admin@BAR.EXAMPLE",
&e.entry.created_by.principal);
/* Make base keys for first epoch */
if (ret == 0)
ret = make_base_key(context, e.entry.principal, base_pw[0], &k.key);
if (ret == 0)
add_Keys(&e.entry.keys, &k);
if (ret == 0)
ret = hdb_entry_set_pw_change_time(context, &e.entry, krs[0].epoch);
free_Key(&k);
e.entry.kvno = krs[0].base_key_kvno;
/* Move them to history */
if (ret == 0)
ret = hdb_add_current_keys_to_history(context, &e.entry);
free_Keys(&e.entry.keys);
/* Make base keys for second epoch */
if (ret == 0)
ret = make_base_key(context, e.entry.principal, base_pw[1], &k.key);
if (ret == 0)
add_Keys(&e.entry.keys, &k);
e.entry.kvno = krs[1].base_key_kvno;
if (ret == 0)
ret = hdb_entry_set_pw_change_time(context, &e.entry, krs[1].epoch);
/* Add the key rotation metadata */
if (ret == 0)
ret = hdb_entry_add_key_rotation(context, &e.entry, 0, &krs[0]);
if (ret == 0)
ret = hdb_entry_add_key_rotation(context, &e.entry, 0, &krs[1]);
if (ret == 0)
ret = db->hdb_store(context, db, 0, &e);
if (ret)
krb5_err(context, 1, ret, "failed to setup a namespace principal");
free_Key(&k);
hdb_free_entry(context, &e);
}
#define WK_PREFIX "WELLKNOWN/" HDB_WK_NAMESPACE "/"
static const char *expected[] = {
WK_PREFIX "_/bar.example@BAR.EXAMPLE",
"HTTP/bar.example@BAR.EXAMPLE",
"HTTP/foo.bar.example@BAR.EXAMPLE",
"host/foo.bar.example@BAR.EXAMPLE",
"HTTP/blah.foo.bar.example@BAR.EXAMPLE",
};
static const char *unexpected[] = {
WK_PREFIX "_/no.example@BAZ.EXAMPLE",
"HTTP/no.example@BAR.EXAMPLE",
"HTTP/foo.no.example@BAR.EXAMPLE",
"HTTP/blah.foo.no.example@BAR.EXAMPLE",
};
/*
* We'll fetch as many entries as we have principal names in `expected[]', for
* as many KeyRotation periods as we have (between 1 and 3), and for up to 5
* different time offsets in each period.
*/
#define NUM_OFFSETS 5
static hdb_entry_ex e[
(sizeof(expected) / sizeof(expected[0])) *
(sizeof(krs) / sizeof(krs[0])) *
NUM_OFFSETS
];
static int
hist_key_compar(const void *va, const void *vb)
{
const hdb_keyset *a = va;
const hdb_keyset *b = vb;
return a->kvno - b->kvno;
}
/*
* Fetch keys for some decent time in the given kr.
*
* `kr' is an index into the global `krs[]'.
* `t' is a number 0..4 inclusive that identifies a time period relative to the
* epoch of `krs[kr]' (see code below).
*/
static void
fetch_entries(krb5_context context,
HDB *db,
size_t kr,
size_t t,
int must_fail)
{
krb5_error_code ret = 0;
krb5_principal p = NULL;
krb5_keyblock base_key, dk;
hdb_entry_ex *ep;
hdb_entry_ex no;
size_t i, b;
int toffset = 0;
memset(&base_key, 0, sizeof(base_key));
/* Work out offset of first entry in `e[]' */
assert(kr < sizeof(krs) / sizeof(krs[0]));
assert(t < NUM_OFFSETS);
b = (kr * NUM_OFFSETS + t) * (sizeof(expected) / sizeof(expected[0]));
assert(b < sizeof(e) / sizeof(e[0]));
assert(sizeof(e) / sizeof(e[0]) - b >=
(sizeof(expected) / sizeof(expected[0])));
switch (t) {
case 0: toffset = 1; break; /* epoch + 1s */
case 1: toffset = 1 + (krs[kr].period >> 1); break; /* epoch + period/2 */
case 2: toffset = 1 + (krs[kr].period >> 2); break; /* epoch + period/4 */
case 3: toffset = 1 + (krs[kr].period >> 3); break; /* epoch + period/8 */
case 4: toffset = 1 - (krs[kr].period >> 3); break; /* epoch - period/8 */
}
for (i = 0; ret == 0 && i < sizeof(expected) / sizeof(expected[0]); i++) {
ep = &e[b + i];
memset(ep, 0, sizeof(*ep));
if (ret == 0)
ret = krb5_parse_name(context, expected[i], &p);
if (ret == 0 && i == 0) {
if (toffset < 0 && kr)
ret = make_base_key(context, p, base_pw[kr - 1], &base_key);
else
ret = make_base_key(context, p, base_pw[kr], &base_key);
}
if (ret == 0)
ret = hdb_fetch_kvno(context, db, p,
HDB_F_DECRYPT | HDB_F_ALL_KVNOS,
krs[kr].epoch + toffset, 0, 0, ep);
if (i && must_fail && ret == 0)
krb5_errx(context, 1,
"virtual principal that shouldn't exist does");
if (kr == 0 && toffset < 0 && ret == HDB_ERR_NOENTRY)
continue;
if (kr == 0 && toffset < 0) {
/*
* Virtual principals don't exist before their earliest key
* rotation epoch's start time.
*/
if (i == 0) {
if (ret)
krb5_errx(context, 1,
"namespace principal does not exist before its time");
} else if (i != 0) {
if (ret == 0)
krb5_errx(context, 1,
"virtual principal exists before its time");
if (ret != HDB_ERR_NOENTRY)
krb5_errx(context, 1, "wrong error code");
ret = 0;
}
} else {
if (ret == 0 &&
!krb5_principal_compare(context, p, ep->entry.principal))
krb5_errx(context, 1, "wrong principal in fetched entry");
}
{
HDB_Ext_KeySet *hist_keys;
HDB_extension *ext;
ext = hdb_find_extension(&ep->entry,
choice_HDB_extension_data_hist_keys);
if (ext) {
/* Sort key history by kvno, why not */
hist_keys = &ext->data.u.hist_keys;
qsort(hist_keys->val, hist_keys->len,
sizeof(hist_keys->val[0]), hist_key_compar);
}
}
krb5_free_principal(context, p);
}
if (ret && must_fail) {
free_EncryptionKey(&base_key);
return;
}
if (ret)
krb5_err(context, 1, ret, "virtual principal test failed");
for (i = 0; i < sizeof(unexpected) / sizeof(unexpected[0]); i++) {
memset(&no, 0, sizeof(no));
if (ret == 0)
ret = krb5_parse_name(context, unexpected[i], &p);
if (ret == 0)
ret = hdb_fetch_kvno(context, db, p, HDB_F_DECRYPT,
krs[kr].epoch + toffset, 0, 0, &no);
if (ret == 0)
krb5_errx(context, 1, "bogus principal exists, wat");
krb5_free_principal(context, p);
ret = 0;
}
if (kr == 0 && toffset < 0)
return;
/*
* XXX
*
* Add check that derived keys are a) different, b) as expected, using a
* set of test vectors or else by computing the expected keys here with
* code that's not shared with lib/hdb/common.c.
*
* Add check that we get expected past and/or future keys, not just current
* keys.
*/
for (i = 1; ret == 0 && i < sizeof(expected) / sizeof(expected[0]); i++) {
uint32_t kvno;
time_t set_time, chg_time;
ep = &e[b + i];
if (toffset > 0) {
ret = tderive_key(context, expected[i], &krs[kr], toffset,
&base_key, base_key.keytype, &dk, &kvno, &set_time);
} else /* XXX */{
/* XXX */
assert(kr);
ret = tderive_key(context, expected[i], &krs[kr - 1],
krs[kr].epoch - krs[kr - 1].epoch + toffset,
&base_key, base_key.keytype, &dk, &kvno, &set_time);
}
if (ret)
krb5_err(context, 1, ret, "deriving keys for comparison");
if (kvno != ep->entry.kvno)
krb5_errx(context, 1, "kvno mismatch (%u != %u)", kvno, ep->entry.kvno);
(void) hdb_entry_get_pw_change_time(&ep->entry, &chg_time);
if (set_time != chg_time)
krb5_errx(context, 1, "key change time mismatch");
if (ep->entry.keys.len == 0)
krb5_errx(context, 1, "no keys!");
if (ep->entry.keys.val[0].key.keytype != dk.keytype)
krb5_errx(context, 1, "enctype mismatch!");
if (ep->entry.keys.val[0].key.keyvalue.length !=
dk.keyvalue.length)
krb5_errx(context, 1, "key length mismatch!");
if (memcmp(ep->entry.keys.val[0].key.keyvalue.data,
dk.keyvalue.data, dk.keyvalue.length) != 0)
krb5_errx(context, 1, "key mismatch!");
if (memcmp(ep->entry.keys.val[0].key.keyvalue.data,
e[b + i - 1].entry.keys.val[0].key.keyvalue.data,
dk.keyvalue.length) == 0)
krb5_errx(context, 1, "different virtual principals have the same keys!");
/* XXX Add check that we have the expected number of history keys */
free_EncryptionKey(&dk);
}
free_EncryptionKey(&base_key);
}
static void
check_kvnos(krb5_context context)
{
HDB_Ext_KeySet keysets;
size_t i, k, m, p; /* iterator indices */
keysets.len = 0;
keysets.val = 0;
/* For every principal name */
for (i = 0; i < sizeof(expected)/sizeof(expected[0]); i++) {
free_HDB_Ext_KeySet(&keysets);
/* For every entry we've fetched for it */
for (k = 0; k < sizeof(e)/sizeof(e[0]); k++) {
HDB_Ext_KeySet *hist_keys;
HDB_extension *ext;
hdb_entry_ex *ep;
int match = 0;
if ((k % NUM_OFFSETS) != i)
continue;
ep = &e[k];
if (ep->entry.principal == NULL)
continue; /* Didn't fetch this one */
/*
* Check that the current keys for it match what we've seen already
* or else add them to `keysets'.
*/
for (m = 0; m < keysets.len; m++) {
if (ep->entry.kvno == keysets.val[m].kvno) {
/* Check the key is the same */
if (ep->entry.keys.val[0].key.keytype !=
keysets.val[m].keys.val[0].key.keytype ||
ep->entry.keys.val[0].key.keyvalue.length !=
keysets.val[m].keys.val[0].key.keyvalue.length ||
memcmp(ep->entry.keys.val[0].key.keyvalue.data,
keysets.val[m].keys.val[0].key.keyvalue.data,
ep->entry.keys.val[0].key.keyvalue.length) != 0)
krb5_errx(context, 1,
"key mismatch for same princ & kvno");
match = 1;
}
}
if (m == keysets.len) {
hdb_keyset ks;
ks.kvno = ep->entry.kvno;
ks.keys = ep->entry.keys;
ks.set_time = 0;
if (add_HDB_Ext_KeySet(&keysets, &ks))
krb5_err(context, 1, ENOMEM, "out of memory");
match = 1;
}
if (match)
continue;
/* For all non-current keysets, repeat the above */
ext = hdb_find_extension(&ep->entry,
choice_HDB_extension_data_hist_keys);
if (!ext)
continue;
hist_keys = &ext->data.u.hist_keys;
for (p = 0; p < hist_keys->len; p++) {
for (m = 0; m < keysets.len; m++) {
if (keysets.val[m].kvno == hist_keys->val[p].kvno)
if (ep->entry.keys.val[0].key.keytype !=
keysets.val[m].keys.val[0].key.keytype ||
ep->entry.keys.val[0].key.keyvalue.length !=
keysets.val[m].keys.val[0].key.keyvalue.length ||
memcmp(ep->entry.keys.val[0].key.keyvalue.data,
keysets.val[m].keys.val[0].key.keyvalue.data,
ep->entry.keys.val[0].key.keyvalue.length) != 0)
krb5_errx(context, 1,
"key mismatch for same princ & kvno");
}
if (m == keysets.len) {
hdb_keyset ks;
ks.kvno = ep->entry.kvno;
ks.keys = ep->entry.keys;
ks.set_time = 0;
if (add_HDB_Ext_KeySet(&keysets, &ks))
krb5_err(context, 1, ENOMEM, "out of memory");
}
}
}
}
free_HDB_Ext_KeySet(&keysets);
}
static void
print_em(krb5_context context)
{
HDB_Ext_KeySet *hist_keys;
HDB_extension *ext;
size_t i, p;
for (i = 0; i < sizeof(e)/sizeof(e[0]); i++) {
const char *name = expected[i % (sizeof(expected)/sizeof(expected[0]))];
char *x;
if (0 == i % (sizeof(expected)/sizeof(expected[0])))
continue;
if (e[i].entry.principal == NULL)
continue;
hex_encode(e[i].entry.keys.val[0].key.keyvalue.data,
e[i].entry.keys.val[0].key.keyvalue.length, &x);
printf("%s %u %s\n", x, e[i].entry.kvno, name);
free(x);
ext = hdb_find_extension(&e[i].entry,
choice_HDB_extension_data_hist_keys);
if (!ext)
continue;
hist_keys = &ext->data.u.hist_keys;
for (p = 0; p < hist_keys->len; p++) {
hex_encode(hist_keys->val[p].keys.val[0].key.keyvalue.data,
hist_keys->val[p].keys.val[0].key.keyvalue.length, &x);
printf("%s %u %s\n", x, hist_keys->val[p].kvno, name);
}
}
}
#if 0
static void
check_expected_kvnos(krb5_context context)
{
HDB_Ext_KeySet *hist_keys;
HDB_extension *ext;
size_t i, k, m, p;
for (i = 0; i < sizeof(expected)/sizeof(expected[0]); i++) {
for (k = 0; k < sizeof(krs)/sizeof(krs[0]); k++) {
hdb_entry_ex *ep = &e[k * sizeof(expected)/sizeof(expected[0]) + i];
if (ep->entry.principal == NULL)
continue;
for (m = 0; m < NUM_OFFSETS; m++) {
ext = hdb_find_extension(&ep->entry,
choice_HDB_extension_data_hist_keys);
if (!ext)
continue;
hist_keys = &ext->data.u.hist_keys;
for (p = 0; p < hist_keys->len; p++) {
fprintf(stderr, "%s at %lu, %lu: history kvno %u\n",
expected[i], k, m, hist_keys->val[p].kvno);
}
}
fprintf(stderr, "%s at %lu: kvno %u\n", expected[i], k,
ep->entry.kvno);
}
}
}
#endif
#define SOME_TIME 1596318329
#define SOME_BASE_KVNO 150
#define SOME_EPOCH (SOME_TIME - (7 * 24 * 3600) - (SOME_TIME % (7 * 24 * 3600)))
#define SOME_PERIOD 3600
#define CONF \
"[hdb]\n" \
"\tenable_virtual_hostbased_princs = true\n" \
"\tvirtual_hostbased_princ_mindots = 1\n" \
"\tvirtual_hostbased_princ_maxdots = 3\n" \
int
main(int argc, char **argv)
{
krb5_error_code ret;
krb5_context context;
size_t i;
HDB *db = NULL;
setprogname(argv[0]);
memset(e, 0, sizeof(e));
ret = krb5_init_context(&context);
if (ret == 0)
ret = krb5_set_config(context, CONF);
if (ret == 0)
ret = krb5_plugin_register(context, PLUGIN_TYPE_DATA, "hdb_test_interface",
&hdb_test);
if (ret == 0)
ret = hdb_create(context, &db, "test:mem");
if (ret)
krb5_err(context, 1, ret, "failed to setup HDB driver and test");
assert(db->enable_virtual_hostbased_princs);
assert(db->virtual_hostbased_princ_ndots == 1);
assert(db->virtual_hostbased_princ_maxdots == 3);
/* Setup key rotation metadata in a convenient way */
/*
* FIXME Reorder these two KRs to match how we store them to avoid
* confusion. #0 should be future-most, #1 should past-post.
*/
krs[0].flags = krs[1].flags = int2KeyRotationFlags(0);
krs[0].epoch = SOME_EPOCH - 20 * 24 * 3600;
krs[0].period = SOME_PERIOD >> 1;
krs[0].base_kvno = 150;
krs[0].base_key_kvno = 1;
krs[1].epoch = SOME_TIME;
krs[1].period = SOME_PERIOD;
krs[1].base_kvno = krs[0].base_kvno + 1 + (krs[1].epoch + (krs[0].period - 1) - krs[0].epoch) / krs[0].period;
krs[1].base_key_kvno = 2;
{
HDB_Ext_KeyRotation existing_krs, new_krs;
KeyRotation ordered_krs[2];
ordered_krs[0] = krs[1];
ordered_krs[1] = krs[0];
existing_krs.len = 0;
existing_krs.val = 0;
new_krs.len = 1;
new_krs.val = &ordered_krs[1];
if ((ret = hdb_validate_key_rotations(context, NULL, &new_krs)) ||
(ret = hdb_validate_key_rotations(context, &existing_krs,
&new_krs)))
krb5_err(context, 1, ret, "Valid KeyRotation thought invalid");
new_krs.len = 1;
new_krs.val = &ordered_krs[0];
if ((ret = hdb_validate_key_rotations(context, NULL, &new_krs)) ||
(ret = hdb_validate_key_rotations(context, &existing_krs,
&new_krs)))
krb5_err(context, 1, ret, "Valid KeyRotation thought invalid");
new_krs.len = 2;
new_krs.val = &ordered_krs[0];
if ((ret = hdb_validate_key_rotations(context, NULL, &new_krs)) ||
(ret = hdb_validate_key_rotations(context, &existing_krs,
&new_krs)))
krb5_err(context, 1, ret, "Valid KeyRotation thought invalid");
existing_krs.len = 1;
existing_krs.val = &ordered_krs[1];
if ((ret = hdb_validate_key_rotations(context, &existing_krs,
&new_krs)))
krb5_err(context, 1, ret, "Valid KeyRotation thought invalid");
existing_krs.len = 2;
existing_krs.val = &ordered_krs[0];
if ((ret = hdb_validate_key_rotations(context, &existing_krs,
&new_krs)))
krb5_err(context, 1, ret, "Valid KeyRotation thought invalid");
new_krs.len = 2;
new_krs.val = &krs[0];
if ((ret = hdb_validate_key_rotations(context, &existing_krs,
&new_krs)) == 0)
krb5_errx(context, 1, "Invalid KeyRotation thought valid");
}
make_namespace(context, db, WK_PREFIX "_/bar.example@BAR.EXAMPLE");
fetch_entries(context, db, 1, 0, 0);
fetch_entries(context, db, 1, 1, 0);
fetch_entries(context, db, 1, 2, 0);
fetch_entries(context, db, 1, 3, 0);
fetch_entries(context, db, 1, 4, 0); /* Just before newest KR */
fetch_entries(context, db, 0, 0, 0);
fetch_entries(context, db, 0, 1, 0);
fetch_entries(context, db, 0, 2, 0);
fetch_entries(context, db, 0, 3, 0);
fetch_entries(context, db, 0, 4, 1); /* Must fail: just before 1st KR */
/*
* Check that for every virtual principal in `expected[]', all the keysets
* with the same kvno, in all the entries fetched for different times,
* match.
*/
check_kvnos(context);
#if 0
/*
* Check that for every virtual principal in `expected[]' we have the
* expected key history.
*/
check_expected_kvnos(context);
#endif
/*
* XXX Add various tests here, checking `e[]':
*
* - Extract all {principal, kvno, key} for all keys, current and
* otherwise, then sort by {key, kvno, principal}, then check that the
* only time we have matching keys is when the kvno and principal also
* match.
*/
print_em(context);
/*
* XXX Test adding a third KR, a 4th KR, dropping KRs...
*/
/* Cleanup */
for (i = 0; ret == 0 && i < sizeof(e) / sizeof(e[0]); i++)
hdb_free_entry(context, &e[i]);
db->hdb_destroy(context, db);
krb5_free_context(context);
return 0;
}