145 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			145 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Finds Mersenne primes using the Lucas-Lehmer test 
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com
 | |
|  */
 | |
| #include <time.h>
 | |
| #include <tommath.h>
 | |
| 
 | |
| int
 | |
| is_mersenne (long s, int *pp)
 | |
| {
 | |
|   mp_int  n, u;
 | |
|   int     res, k;
 | |
|   
 | |
|   *pp = 0;
 | |
| 
 | |
|   if ((res = mp_init (&n)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&u)) != MP_OKAY) {
 | |
|     goto LBL_N;
 | |
|   }
 | |
| 
 | |
|   /* n = 2^s - 1 */
 | |
|   if ((res = mp_2expt(&n, s)) != MP_OKAY) {
 | |
|      goto LBL_MU;
 | |
|   }
 | |
|   if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   /* set u=4 */
 | |
|   mp_set (&u, 4);
 | |
| 
 | |
|   /* for k=1 to s-2 do */
 | |
|   for (k = 1; k <= s - 2; k++) {
 | |
|     /* u = u^2 - 2 mod n */
 | |
|     if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|     if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
| 
 | |
|     /* make sure u is positive */
 | |
|     while (u.sign == MP_NEG) {
 | |
|       if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
 | |
|          goto LBL_MU;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* reduce */
 | |
|     if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if u == 0 then its prime */
 | |
|   if (mp_iszero (&u) == 1) {
 | |
|     mp_prime_is_prime(&n, 8, pp);
 | |
|   if (*pp != 1) printf("FAILURE\n");
 | |
|   }
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| LBL_MU:mp_clear (&u);
 | |
| LBL_N:mp_clear (&n);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* square root of a long < 65536 */
 | |
| long
 | |
| i_sqrt (long x)
 | |
| {
 | |
|   long    x1, x2;
 | |
| 
 | |
|   x2 = 16;
 | |
|   do {
 | |
|     x1 = x2;
 | |
|     x2 = x1 - ((x1 * x1) - x) / (2 * x1);
 | |
|   } while (x1 != x2);
 | |
| 
 | |
|   if (x1 * x1 > x) {
 | |
|     --x1;
 | |
|   }
 | |
| 
 | |
|   return x1;
 | |
| }
 | |
| 
 | |
| /* is the long prime by brute force */
 | |
| int
 | |
| isprime (long k)
 | |
| {
 | |
|   long    y, z;
 | |
| 
 | |
|   y = i_sqrt (k);
 | |
|   for (z = 2; z <= y; z++) {
 | |
|     if ((k % z) == 0)
 | |
|       return 0;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| int
 | |
| main (void)
 | |
| {
 | |
|   int     pp;
 | |
|   long    k;
 | |
|   clock_t tt;
 | |
| 
 | |
|   k = 3;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* start time */
 | |
|     tt = clock ();
 | |
| 
 | |
|     /* test if 2^k - 1 is prime */
 | |
|     if (is_mersenne (k, &pp) != MP_OKAY) {
 | |
|       printf ("Whoa error\n");
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|     if (pp == 1) {
 | |
|       /* count time */
 | |
|       tt = clock () - tt;
 | |
| 
 | |
|       /* display if prime */
 | |
|       printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
 | |
|     }
 | |
| 
 | |
|     /* goto next odd exponent */
 | |
|     k += 2;
 | |
| 
 | |
|     /* but make sure its prime */
 | |
|     while (isprime (k) == 0) {
 | |
|       k += 2;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/etc/mersenne.c,v $ */
 | |
| /* $Revision: 1.3 $ */
 | |
| /* $Date: 2006/03/31 14:18:47 $ */
 | 
