Files
heimdal/lib/hdb/hdb-mitdb.c
Nicolas Williams 57f1545a46 Add support for writing to KDB and dumping HDB to MIT KDB dump format
Before this change Heimdal could read KDBs.  Now it can write to
    them too.

    Heimdal can now also dump HDBs (including KDBs) in MIT format, which
    can then be imported with kdb5_util load.

    This is intended to help in migrations from MIT to Heimdal by
    allowing migrations from Heimdal to MIT so that it is possible
    to rollback from Heimdal to MIT should there be any issues.  The
    idea is to allow a) running Heimdal kdc/kadmind with a KDB, or
    b) running Heimdal with an HDB converted from a KDB and then
    rollback by dumping the HDB and loading a KDB.

    Note that not all TL data types are supported, only two: last
    password change and modify-by.  This is the minimum necessary.
    PKINIT users may need to add support for KRB5_TL_USER_CERTIFICATE,
    and for databases with K/M history we may need to add KRB5_TL_MKVNO
    support.

    Support for additional TL data types can be added in
    lib/hdb/hdb-mitdb.c:_hdb_mdb_value2entry() and
    lib/hdb/print.c:entry2mit_string_int().
2012-05-03 14:24:18 -05:00

1379 lines
37 KiB
C

/*
* Copyright (c) 1997 - 2001 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Portions Copyright (c) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define KRB5_KDB_DISALLOW_POSTDATED 0x00000001
#define KRB5_KDB_DISALLOW_FORWARDABLE 0x00000002
#define KRB5_KDB_DISALLOW_TGT_BASED 0x00000004
#define KRB5_KDB_DISALLOW_RENEWABLE 0x00000008
#define KRB5_KDB_DISALLOW_PROXIABLE 0x00000010
#define KRB5_KDB_DISALLOW_DUP_SKEY 0x00000020
#define KRB5_KDB_DISALLOW_ALL_TIX 0x00000040
#define KRB5_KDB_REQUIRES_PRE_AUTH 0x00000080
#define KRB5_KDB_REQUIRES_HW_AUTH 0x00000100
#define KRB5_KDB_REQUIRES_PWCHANGE 0x00000200
#define KRB5_KDB_DISALLOW_SVR 0x00001000
#define KRB5_KDB_PWCHANGE_SERVICE 0x00002000
#define KRB5_KDB_SUPPORT_DESMD5 0x00004000
#define KRB5_KDB_NEW_PRINC 0x00008000
/*
key: krb5_unparse_name + NUL
16: baselength
32: attributes
32: max time
32: max renewable time
32: client expire
32: passwd expire
32: last successful passwd
32: last failed attempt
32: num of failed attempts
16: num tl data
16: num data data
16: principal length
length: principal
for num tl data times
16: tl data type
16: tl data length
length: length
for num key data times
16: version (num keyblocks)
16: kvno
for version times:
16: type
16: length
length: keydata
key_data_contents[0]
int16: length
read-of-data: key-encrypted, key-usage 0, master-key
salt:
version2 = salt in key_data->key_data_contents[1]
else default salt.
*/
#include "hdb_locl.h"
static void
attr_to_flags(unsigned attr, HDBFlags *flags)
{
flags->postdate = !(attr & KRB5_KDB_DISALLOW_POSTDATED);
flags->forwardable = !(attr & KRB5_KDB_DISALLOW_FORWARDABLE);
flags->initial = !!(attr & KRB5_KDB_DISALLOW_TGT_BASED);
flags->renewable = !(attr & KRB5_KDB_DISALLOW_RENEWABLE);
flags->proxiable = !(attr & KRB5_KDB_DISALLOW_PROXIABLE);
/* DUP_SKEY */
flags->invalid = !!(attr & KRB5_KDB_DISALLOW_ALL_TIX);
flags->require_preauth = !!(attr & KRB5_KDB_REQUIRES_PRE_AUTH);
flags->require_hwauth = !!(attr & KRB5_KDB_REQUIRES_HW_AUTH);
flags->server = !(attr & KRB5_KDB_DISALLOW_SVR);
flags->change_pw = !!(attr & KRB5_KDB_PWCHANGE_SERVICE);
flags->client = 1; /* XXX */
}
#define KDB_V1_BASE_LENGTH 38
#define CHECK(x) do { if ((x)) goto out; } while(0)
#ifdef HAVE_DB1
static krb5_error_code
mdb_principal2key(krb5_context context,
krb5_const_principal principal,
krb5_data *key)
{
krb5_error_code ret;
char *str;
ret = krb5_unparse_name(context, principal, &str);
if (ret)
return ret;
key->data = str;
key->length = strlen(str) + 1;
return 0;
}
#endif /* HAVE_DB1 */
#define KRB5_KDB_SALTTYPE_NORMAL 0
#define KRB5_KDB_SALTTYPE_V4 1
#define KRB5_KDB_SALTTYPE_NOREALM 2
#define KRB5_KDB_SALTTYPE_ONLYREALM 3
#define KRB5_KDB_SALTTYPE_SPECIAL 4
#define KRB5_KDB_SALTTYPE_AFS3 5
#define KRB5_KDB_SALTTYPE_CERTHASH 6
static krb5_error_code
fix_salt(krb5_context context, hdb_entry *ent, Key *k)
{
krb5_error_code ret;
Salt *salt = k->salt;
/* fix salt type */
switch((int)salt->type) {
case KRB5_KDB_SALTTYPE_NORMAL:
salt->type = KRB5_PADATA_PW_SALT;
break;
case KRB5_KDB_SALTTYPE_V4:
krb5_data_free(&salt->salt);
salt->type = KRB5_PADATA_PW_SALT;
break;
case KRB5_KDB_SALTTYPE_NOREALM:
{
size_t len;
size_t i;
char *p;
len = 0;
for (i = 0; i < ent->principal->name.name_string.len; ++i)
len += strlen(ent->principal->name.name_string.val[i]);
ret = krb5_data_alloc (&salt->salt, len);
if (ret)
return ret;
p = salt->salt.data;
for (i = 0; i < ent->principal->name.name_string.len; ++i) {
memcpy (p,
ent->principal->name.name_string.val[i],
strlen(ent->principal->name.name_string.val[i]));
p += strlen(ent->principal->name.name_string.val[i]);
}
salt->type = KRB5_PADATA_PW_SALT;
break;
}
case KRB5_KDB_SALTTYPE_ONLYREALM:
krb5_data_free(&salt->salt);
ret = krb5_data_copy(&salt->salt,
ent->principal->realm,
strlen(ent->principal->realm));
if(ret)
return ret;
salt->type = KRB5_PADATA_PW_SALT;
break;
case KRB5_KDB_SALTTYPE_SPECIAL:
salt->type = KRB5_PADATA_PW_SALT;
break;
case KRB5_KDB_SALTTYPE_AFS3:
krb5_data_free(&salt->salt);
ret = krb5_data_copy(&salt->salt,
ent->principal->realm,
strlen(ent->principal->realm));
if(ret)
return ret;
salt->type = KRB5_PADATA_AFS3_SALT;
break;
case KRB5_KDB_SALTTYPE_CERTHASH:
krb5_data_free(&salt->salt);
free(k->salt);
k->salt = NULL;
break;
default:
abort();
}
return 0;
}
/**
* This function takes a key from a krb5_storage from an MIT KDB encoded
* entry and places it in the given Key object.
*
* @param context Context
* @param entry HDB entry
* @param sp krb5_storage with current offset set to the beginning of a
* key
* @param version See comments in caller body for the backstory on this
* @param k Key * to load the key into
*/
static krb5_error_code
mdb_keyvalue2key(krb5_context context, hdb_entry *entry, krb5_storage *sp, uint16_t version, Key *k)
{
size_t i;
uint16_t u16, type;
krb5_error_code ret;
k->mkvno = malloc(sizeof(*k->mkvno));
if (k->mkvno == NULL) {
ret = ENOMEM;
goto out;
}
*k->mkvno = 1;
for (i = 0; i < version; i++) {
CHECK(ret = krb5_ret_uint16(sp, &type));
CHECK(ret = krb5_ret_uint16(sp, &u16));
if (i == 0) {
/* This "version" means we have a key */
k->key.keytype = type;
/*
* MIT stores keys encrypted keys as {16-bit length
* of plaintext key, {encrypted key}}. The reason
* for this is that the Kerberos cryptosystem is not
* length-preserving. Heimdal's approach is to
* truncate the plaintext to the expected length of
* the key given its enctype, so we ignore this
* 16-bit length-of-plaintext-key field.
*/
if (u16 > 2) {
krb5_storage_seek(sp, 2, SEEK_CUR); /* skip real length */
k->key.keyvalue.length = u16 - 2; /* adjust cipher len */
k->key.keyvalue.data = malloc(k->key.keyvalue.length);
krb5_storage_read(sp, k->key.keyvalue.data,
k->key.keyvalue.length);
} else {
/* We'll ignore this key; see our caller */
k->key.keyvalue.length = 0;
k->key.keyvalue.data = NULL;
krb5_storage_seek(sp, u16, SEEK_CUR); /* skip real length */
}
} else if (i == 1) {
/* This "version" means we have a salt */
k->salt = calloc(1, sizeof(*k->salt));
if (k->salt == NULL) {
ret = ENOMEM;
goto out;
}
k->salt->type = type;
if (u16 != 0) {
k->salt->salt.data = malloc(u16);
if (k->salt->salt.data == NULL) {
ret = ENOMEM;
goto out;
}
k->salt->salt.length = u16;
krb5_storage_read(sp, k->salt->salt.data, k->salt->salt.length);
}
fix_salt(context, entry, k);
} else {
/*
* Whatever this "version" might be, we skip it
*
* XXX A krb5.conf parameter requesting that we log
* about strangeness like this, or return an error
* from here, might be nice.
*/
krb5_storage_seek(sp, u16, SEEK_CUR);
}
}
return 0;
out:
free_Key(k);
return ret;
}
static krb5_error_code
add_1des_dup(krb5_context context, Keys *keys, Key *key, krb5_keytype keytype)
{
key->key.keytype = keytype;
return add_Keys(keys, key);
}
/*
* This monstrosity is here so we can avoid having to do enctype
* similarity checking in the KDC. This helper function dups 1DES keys
* in a keyset for all the similar 1DES enctypes for which keys are
* missing. And, of course, we do this only if there's any 1DES keys in
* the keyset to begin with.
*/
static krb5_error_code
dup_similar_keys_in_keyset(krb5_context context, Keys *keys)
{
krb5_error_code ret;
size_t i, k;
Key key;
int keyset_has_1des = 0;
int keyset_has_1des_crc = 0;
int keyset_has_1des_md4 = 0;
int keyset_has_1des_md5 = 0;
memset(&key, 0, sizeof (key));
k = keys->len;
for (i = 0; i < keys->len; i++) {
if (keys->val[i].key.keytype == ETYPE_DES_CBC_CRC) {
keyset_has_1des_crc = 1;
if (k == keys->len)
k = i;
} else if (keys->val[i].key.keytype == ETYPE_DES_CBC_MD4) {
keyset_has_1des_crc = 1;
if (k == keys->len)
k = i;
} else if (keys->val[i].key.keytype == ETYPE_DES_CBC_MD5) {
keyset_has_1des_crc = 1;
if (k == keys->len)
k = i;
}
}
if (k == keys->len)
return 0;
keyset_has_1des = 1;
ret = copy_Key(&keys->val[k], &key);
if (ret)
return ret;
if (!keyset_has_1des_crc) {
ret = add_1des_dup(context, keys, &key, ETYPE_DES_CBC_CRC);
if (ret)
goto out;
}
if (!keyset_has_1des_md4) {
ret = add_1des_dup(context, keys, &key, ETYPE_DES_CBC_MD4);
if (ret)
goto out;
}
if (!keyset_has_1des_md5) {
ret = add_1des_dup(context, keys, &key, ETYPE_DES_CBC_MD5);
if (ret)
goto out;
}
out:
free_Key(&key);
return ret;
}
static krb5_error_code
dup_similar_keys(krb5_context context, hdb_entry *entry)
{
krb5_error_code ret;
HDB_Ext_KeySet *hist_keys;
HDB_extension *extp;
size_t i;
ret = dup_similar_keys_in_keyset(context, &entry->keys);
if (ret)
return ret;
extp = hdb_find_extension(entry, choice_HDB_extension_data_hist_keys);
if (extp == NULL)
return 0;
hist_keys = &extp->data.u.hist_keys;
for (i = 0; i < hist_keys->len; i++) {
ret = dup_similar_keys_in_keyset(context, &hist_keys->val[i].keys);
if (ret)
return ret;
}
return 0;
}
/**
* This function parses an MIT krb5 encoded KDB entry and fills in the
* given HDB entry with it.
*
* @param context krb5_context
* @param data Encoded MIT KDB entry
* @param target_kvno Desired kvno, or 0 for the entry's current kvno
* @param entry Desired kvno, or 0 for the entry's current kvno
*/
krb5_error_code
_hdb_mdb_value2entry(krb5_context context, krb5_data *data,
krb5_kvno target_kvno, hdb_entry *entry)
{
krb5_error_code ret;
krb5_storage *sp;
Key k;
krb5_kvno key_kvno;
uint32_t u32;
uint16_t u16, num_keys, num_tl;
ssize_t sz;
size_t i;
char *p;
memset(&k, 0, sizeof (k));
memset(entry, 0, sizeof(*entry));
sp = krb5_storage_from_data(data);
if (sp == NULL) {
krb5_set_error_message(context, ENOMEM, "out of memory");
return ENOMEM;
}
krb5_storage_set_byteorder(sp, KRB5_STORAGE_BYTEORDER_LE);
/*
* 16: baselength
*
* The story here is that these 16 bits have to be a constant:
* KDB_V1_BASE_LENGTH. Once upon a time a different value here
* would have been used to indicate the presence of "extra data"
* between the "base" contents and the {principal name, TL data,
* keys} that follow it. Nothing supports such "extra data"
* nowadays, so neither do we here.
*
* XXX But... surely we ought to log about this extra data, or skip
* it, or something, in case anyone has MIT KDBs with ancient
* entries in them... Logging would allow the admin to know which
* entries to dump with MIT krb5's kdb5_util. But logging would be
* noisy. For now we do nothing.
*/
CHECK(ret = krb5_ret_uint16(sp, &u16));
if (u16 != KDB_V1_BASE_LENGTH) { ret = EINVAL; goto out; }
/* 32: attributes */
CHECK(ret = krb5_ret_uint32(sp, &u32));
attr_to_flags(u32, &entry->flags);
/* 32: max time */
CHECK(ret = krb5_ret_uint32(sp, &u32));
if (u32) {
entry->max_life = malloc(sizeof(*entry->max_life));
*entry->max_life = u32;
}
/* 32: max renewable time */
CHECK(ret = krb5_ret_uint32(sp, &u32));
if (u32) {
entry->max_renew = malloc(sizeof(*entry->max_renew));
*entry->max_renew = u32;
}
/* 32: client expire */
CHECK(ret = krb5_ret_uint32(sp, &u32));
if (u32) {
entry->valid_end = malloc(sizeof(*entry->valid_end));
*entry->valid_end = u32;
}
/* 32: passwd expire */
CHECK(ret = krb5_ret_uint32(sp, &u32));
if (u32) {
entry->pw_end = malloc(sizeof(*entry->pw_end));
*entry->pw_end = u32;
}
/* 32: last successful passwd */
CHECK(ret = krb5_ret_uint32(sp, &u32));
/* 32: last failed attempt */
CHECK(ret = krb5_ret_uint32(sp, &u32));
/* 32: num of failed attempts */
CHECK(ret = krb5_ret_uint32(sp, &u32));
/* 16: num tl data */
CHECK(ret = krb5_ret_uint16(sp, &u16));
num_tl = u16;
/* 16: num key data */
CHECK(ret = krb5_ret_uint16(sp, &u16));
num_keys = u16;
/* 16: principal length */
CHECK(ret = krb5_ret_uint16(sp, &u16));
/* length: principal */
{
/*
* Note that the principal name includes the NUL in the entry,
* but we don't want to take chances, so we add an extra NUL.
*/
p = malloc(u16 + 1);
if (p == NULL) {
ret = ENOMEM;
goto out;
}
sz = krb5_storage_read(sp, p, u16);
if (sz != u16) {
ret = EINVAL; /* XXX */
goto out;
}
p[u16] = '\0';
CHECK(ret = krb5_parse_name(context, p, &entry->principal));
free(p);
}
/* for num tl data times
16: tl data type
16: tl data length
length: length */
#define mit_KRB5_TL_LAST_PWD_CHANGE 1
#define mit_KRB5_TL_MOD_PRINC 2
for (i = 0; i < num_tl; i++) {
int tl_type;
krb5_principal modby;
/* 16: TL data type */
CHECK(ret = krb5_ret_uint16(sp, &u16));
tl_type = u16;
/* 16: TL data length */
CHECK(ret = krb5_ret_uint16(sp, &u16));
/*
* For rollback to MIT purposes we really must understand some
* TL data!
*
* XXX Move all this to separate functions, one per-TL type.
*/
switch (tl_type) {
case mit_KRB5_TL_LAST_PWD_CHANGE:
CHECK(ret = krb5_ret_uint32(sp, &u32));
CHECK(ret = hdb_entry_set_pw_change_time(context, entry, u32));
break;
case mit_KRB5_TL_MOD_PRINC:
if (u16 < 5) {
ret = EINVAL; /* XXX */
goto out;
}
CHECK(ret = krb5_ret_uint32(sp, &u32)); /* mod time */
p = malloc(u16 - 4 + 1);
if (!p) {
ret = ENOMEM;
goto out;
}
p[u16 - 4] = '\0';
sz = krb5_storage_read(sp, p, u16 - 4);
if (sz != u16 - 4) {
ret = EINVAL; /* XXX */
goto out;
}
CHECK(ret = krb5_parse_name(context, p, &modby));
ret = hdb_set_last_modified_by(context, entry, modby, u32);
krb5_free_principal(context, modby);
free(p);
break;
default:
krb5_storage_seek(sp, u16, SEEK_CUR);
break;
}
}
/*
* for num key data times
* 16: "version"
* 16: kvno
* for version times:
* 16: type
* 16: length
* length: keydata
*
* "version" here is really 1 or 2, the first meaning there's only
* keys for this kvno, the second meaning there's keys and salt[s?].
* That's right... hold that gag reflex, you can do it.
*/
for (i = 0; i < num_keys; i++) {
uint16_t version;
CHECK(ret = krb5_ret_uint16(sp, &u16));
version = u16;
CHECK(ret = krb5_ret_uint16(sp, &u16));
key_kvno = u16;
ret = mdb_keyvalue2key(context, entry, sp, version, &k);
if (ret)
goto out;
if (k.key.keytype == 0 || k.key.keyvalue.length == 0) {
/*
* Older MIT KDBs may have enctype 0 / length 0 keys. We
* ignore these.
*/
free_Key(&k);
continue;
}
if ((target_kvno == 0 && entry->kvno < key_kvno) ||
(target_kvno == key_kvno && entry->kvno != target_kvno)) {
/*
* MIT's KDB doesn't keep track of kvno. The highest kvno
* is the current kvno, and we just found a new highest
* kvno or the desired kvno.
*
* Note that there's no guarantee of any key ordering, but
* generally MIT KDB entries have keys in strictly
* descending kvno order.
*
* XXX We do assume that keys are clustered by kvno. If
* not, then bad. It might be possible to construct
* non-clustered keys via the kadm5 API. It wouldn't be
* hard to cope with this, since if it happens the worst
* that will happen is that some of the current keys can be
* found in the history extension, and we could just pull
* them back out in that case.
*/
ret = hdb_add_current_keys_to_history(context, entry);
if (ret)
goto out;
free_Keys(&entry->keys);
ret = add_Keys(&entry->keys, &k);
free_Key(&k);
if (ret)
goto out;
entry->kvno = key_kvno;
continue;
}
if (entry->kvno == key_kvno) {
/*
* Note that if key_kvno == 0 and target_kvno == 0 then we
* end up adding those keys here. Yeah, kvno 0 is very
* special for us, but just in case, we keep such keys.
*/
ret = add_Keys(&entry->keys, &k);
free_Key(&k);
if (ret)
goto out;
entry->kvno = key_kvno;
} else {
ret = hdb_add_history_key(context, entry, key_kvno, &k);
if (ret)
goto out;
free_Key(&k);
}
}
if (target_kvno != 0 && entry->kvno != target_kvno) {
ret = HDB_ERR_KVNO_NOT_FOUND;
goto out;
}
krb5_storage_free(sp);
return dup_similar_keys(context, entry);
out:
krb5_storage_free(sp);
if (ret == HEIM_ERR_EOF)
/* Better error code than "end of file" */
ret = HEIM_ERR_BAD_HDBENT_ENCODING;
free_hdb_entry(entry);
free_Key(&k);
return ret;
}
#if 0
static krb5_error_code
mdb_entry2value(krb5_context context, hdb_entry *entry, krb5_data *data)
{
return EINVAL;
}
#endif
#if HAVE_DB1
#if defined(HAVE_DB_185_H)
#include <db_185.h>
#elif defined(HAVE_DB_H)
#include <db.h>
#endif
static krb5_error_code
mdb_close(krb5_context context, HDB *db)
{
DB *d = (DB*)db->hdb_db;
(*d->close)(d);
return 0;
}
static krb5_error_code
mdb_destroy(krb5_context context, HDB *db)
{
krb5_error_code ret;
ret = hdb_clear_master_key (context, db);
free(db->hdb_name);
free(db);
return ret;
}
static krb5_error_code
mdb_lock(krb5_context context, HDB *db, int operation)
{
DB *d = (DB*)db->hdb_db;
int fd = (*d->fd)(d);
krb5_error_code ret;
if (db->lock_count > 1) {
db->lock_count++;
if (db->lock_type == HDB_WLOCK || db->lock_count == operation)
return 0;
}
if(fd < 0) {
krb5_set_error_message(context, HDB_ERR_CANT_LOCK_DB,
"Can't lock database: %s", db->hdb_name);
return HDB_ERR_CANT_LOCK_DB;
}
ret = hdb_lock(fd, operation);
if (ret)
return ret;
db->lock_count++;
return 0;
}
static krb5_error_code
mdb_unlock(krb5_context context, HDB *db)
{
DB *d = (DB*)db->hdb_db;
int fd = (*d->fd)(d);
if (db->lock_count > 1) {
db->lock_count--;
return 0;
}
heim_assert(db->lock_count == 1, "HDB lock/unlock sequence does not match");
db->lock_count--;
if(fd < 0) {
krb5_set_error_message(context, HDB_ERR_CANT_LOCK_DB,
"Can't unlock database: %s", db->hdb_name);
return HDB_ERR_CANT_LOCK_DB;
}
return hdb_unlock(fd);
}
static krb5_error_code
mdb_seq(krb5_context context, HDB *db,
unsigned flags, hdb_entry_ex *entry, int flag)
{
DB *d = (DB*)db->hdb_db;
DBT key, value;
krb5_data key_data, data;
int code;
code = db->hdb_lock(context, db, HDB_RLOCK);
if(code == -1) {
krb5_set_error_message(context, HDB_ERR_DB_INUSE, "Database %s in use", db->hdb_name);
return HDB_ERR_DB_INUSE;
}
code = (*d->seq)(d, &key, &value, flag);
db->hdb_unlock(context, db); /* XXX check value */
if(code == -1) {
code = errno;
krb5_set_error_message(context, code, "Database %s seq error: %s",
db->hdb_name, strerror(code));
return code;
}
if(code == 1) {
krb5_clear_error_message(context);
return HDB_ERR_NOENTRY;
}
key_data.data = key.data;
key_data.length = key.size;
data.data = value.data;
data.length = value.size;
memset(entry, 0, sizeof(*entry));
if (_hdb_mdb_value2entry(context, &data, 0, &entry->entry))
return mdb_seq(context, db, flags, entry, R_NEXT);
if (db->hdb_master_key_set && (flags & HDB_F_DECRYPT)) {
code = hdb_unseal_keys (context, db, &entry->entry);
if (code)
hdb_free_entry (context, entry);
}
return code;
}
static krb5_error_code
mdb_firstkey(krb5_context context, HDB *db, unsigned flags, hdb_entry_ex *entry)
{
return mdb_seq(context, db, flags, entry, R_FIRST);
}
static krb5_error_code
mdb_nextkey(krb5_context context, HDB *db, unsigned flags, hdb_entry_ex *entry)
{
return mdb_seq(context, db, flags, entry, R_NEXT);
}
static krb5_error_code
mdb_rename(krb5_context context, HDB *db, const char *new_name)
{
int ret;
char *old = NULL;
char *new = NULL;
if (asprintf(&old, "%s.db", db->hdb_name) < 0)
goto out;
if (asprintf(&new, "%s.db", new_name) < 0)
goto out;
ret = rename(old, new);
if(ret)
goto out;
free(db->hdb_name);
db->hdb_name = strdup(new_name);
errno = 0;
out:
free(old);
free(new);
return errno;
}
static krb5_error_code
mdb__get(krb5_context context, HDB *db, krb5_data key, krb5_data *reply)
{
DB *d = (DB*)db->hdb_db;
DBT k, v;
int code;
k.data = key.data;
k.size = key.length;
code = db->hdb_lock(context, db, HDB_RLOCK);
if(code)
return code;
code = (*d->get)(d, &k, &v, 0);
db->hdb_unlock(context, db);
if(code < 0) {
code = errno;
krb5_set_error_message(context, code, "Database %s get error: %s",
db->hdb_name, strerror(code));
return code;
}
if(code == 1) {
krb5_clear_error_message(context);
return HDB_ERR_NOENTRY;
}
krb5_data_copy(reply, v.data, v.size);
return 0;
}
static krb5_error_code
mdb__put(krb5_context context, HDB *db, int replace,
krb5_data key, krb5_data value)
{
DB *d = (DB*)db->hdb_db;
DBT k, v;
int code;
k.data = key.data;
k.size = key.length;
v.data = value.data;
v.size = value.length;
code = db->hdb_lock(context, db, HDB_WLOCK);
if(code)
return code;
code = (*d->put)(d, &k, &v, replace ? 0 : R_NOOVERWRITE);
db->hdb_unlock(context, db);
if(code < 0) {
code = errno;
krb5_set_error_message(context, code, "Database %s put error: %s",
db->hdb_name, strerror(code));
return code;
}
if(code == 1) {
krb5_clear_error_message(context);
return HDB_ERR_EXISTS;
}
return 0;
}
static krb5_error_code
mdb__del(krb5_context context, HDB *db, krb5_data key)
{
DB *d = (DB*)db->hdb_db;
DBT k;
krb5_error_code code;
k.data = key.data;
k.size = key.length;
code = db->hdb_lock(context, db, HDB_WLOCK);
if(code)
return code;
code = (*d->del)(d, &k, 0);
db->hdb_unlock(context, db);
if(code == 1) {
code = errno;
krb5_set_error_message(context, code, "Database %s put error: %s",
db->hdb_name, strerror(code));
return code;
}
if(code < 0)
return errno;
return 0;
}
static krb5_error_code
mdb_fetch_kvno(krb5_context context, HDB *db, krb5_const_principal principal,
unsigned flags, krb5_kvno kvno, hdb_entry_ex *entry)
{
krb5_data key, value;
krb5_error_code ret;
ret = mdb_principal2key(context, principal, &key);
if (ret)
return ret;
ret = db->hdb__get(context, db, key, &value);
krb5_data_free(&key);
if(ret)
return ret;
ret = _hdb_mdb_value2entry(context, &value, kvno, &entry->entry);
krb5_data_free(&value);
if (ret)
return ret;
if (db->hdb_master_key_set && (flags & HDB_F_DECRYPT)) {
ret = hdb_unseal_keys (context, db, &entry->entry);
if (ret) {
hdb_free_entry(context, entry);
return ret;
}
}
return 0;
}
static krb5_error_code
mdb_store(krb5_context context, HDB *db, unsigned flags, hdb_entry_ex *entry)
{
krb5_error_code ret;
krb5_storage *sp = NULL;
krb5_storage *spent = NULL;
krb5_data line = { 0, 0 };
krb5_data kdb_ent = { 0, 0 };
krb5_data key = { 0, 0 };
ssize_t sz;
sp = krb5_storage_emem();
if (!sp) return ENOMEM;
ret = _hdb_set_master_key_usage(context, db, 0); /* MIT KDB uses KU 0 */
ret = hdb_seal_keys(context, db, &entry->entry);
if (ret) return ret;
ret = entry2mit_string_int(context, sp, &entry->entry);
if (ret) goto out;
sz = krb5_storage_write(sp, "\n", 2); /* NUL-terminate */
ret = ENOMEM;
if (sz == -1) goto out;
ret = krb5_storage_to_data(sp, &line);
if (ret) goto out;
ret = ENOMEM;
spent = krb5_storage_emem();
if (!spent) goto out;
ret = _hdb_mit_dump2mitdb_entry(context, line.data, spent);
if (ret) goto out;
ret = krb5_storage_to_data(spent, &kdb_ent);
if (ret) goto out;
ret = mdb_principal2key(context, entry->entry.principal, &key);
if (ret) goto out;
ret = mdb__put(context, db, 1, key, kdb_ent);
out:
if (sp)
krb5_storage_free(sp);
if (spent)
krb5_storage_free(spent);
krb5_data_free(&line);
krb5_data_free(&kdb_ent);
krb5_data_free(&key);
return ret;
}
static krb5_error_code
mdb_remove(krb5_context context, HDB *db, krb5_const_principal principal)
{
krb5_error_code code;
krb5_data key;
mdb_principal2key(context, principal, &key);
code = db->hdb__del(context, db, key);
krb5_data_free(&key);
return code;
}
static krb5_error_code
mdb_open(krb5_context context, HDB *db, int flags, mode_t mode)
{
char *fn;
char *actual_fn;
krb5_error_code ret;
struct stat st;
if (asprintf(&fn, "%s.db", db->hdb_name) < 0) {
krb5_set_error_message(context, ENOMEM, "malloc: out of memory");
return ENOMEM;
}
if (stat(fn, &st) == 0)
actual_fn = fn;
else
actual_fn = db->hdb_name;
db->hdb_db = dbopen(actual_fn, flags, mode, DB_BTREE, NULL);
if (db->hdb_db == NULL) {
switch (errno) {
#ifdef EFTYPE
case EFTYPE:
#endif
case EINVAL:
db->hdb_db = dbopen(actual_fn, flags, mode, DB_HASH, NULL);
}
}
free(fn);
if (db->hdb_db == NULL) {
ret = errno;
krb5_set_error_message(context, ret, "dbopen (%s): %s",
db->hdb_name, strerror(ret));
return ret;
}
#if 0
/*
* Don't do this -- MIT won't be able to handle the
* HDB_DB_FORMAT_ENTRY key.
*/
if ((flags & O_ACCMODE) != O_RDONLY)
ret = hdb_init_db(context, db);
#endif
ret = hdb_check_db_format(context, db);
if (ret == HDB_ERR_NOENTRY) {
krb5_clear_error_message(context);
return 0;
}
if (ret) {
mdb_close(context, db);
krb5_set_error_message(context, ret, "hdb_open: failed %s database %s",
(flags & O_ACCMODE) == O_RDONLY ?
"checking format of" : "initialize",
db->hdb_name);
}
return ret;
}
krb5_error_code
hdb_mdb_create(krb5_context context, HDB **db,
const char *filename)
{
*db = calloc(1, sizeof(**db));
if (*db == NULL) {
krb5_set_error_message(context, ENOMEM, "malloc: out of memory");
return ENOMEM;
}
(*db)->hdb_db = NULL;
(*db)->hdb_name = strdup(filename);
if ((*db)->hdb_name == NULL) {
free(*db);
*db = NULL;
krb5_set_error_message(context, ENOMEM, "malloc: out of memory");
return ENOMEM;
}
(*db)->hdb_master_key_set = 0;
(*db)->hdb_openp = 0;
(*db)->hdb_capability_flags = 0;
(*db)->hdb_open = mdb_open;
(*db)->hdb_close = mdb_close;
(*db)->hdb_fetch_kvno = mdb_fetch_kvno;
(*db)->hdb_store = mdb_store;
(*db)->hdb_remove = mdb_remove;
(*db)->hdb_firstkey = mdb_firstkey;
(*db)->hdb_nextkey= mdb_nextkey;
(*db)->hdb_lock = mdb_lock;
(*db)->hdb_unlock = mdb_unlock;
(*db)->hdb_rename = mdb_rename;
(*db)->hdb__get = mdb__get;
(*db)->hdb__put = mdb__put;
(*db)->hdb__del = mdb__del;
(*db)->hdb_destroy = mdb_destroy;
return 0;
}
#endif /* HAVE_DB1 */
/*
can have any number of princ stanzas.
format is as follows (only \n indicates newlines)
princ\t%d\t (%d is KRB5_KDB_V1_BASE_LENGTH, always 38)
%d\t (strlen of principal e.g. shadow/foo@ANDREW.CMU.EDU)
%d\t (number of tl_data)
%d\t (number of key data, e.g. how many keys for this user)
%d\t (extra data length)
%s\t (principal name)
%d\t (attributes)
%d\t (max lifetime, seconds)
%d\t (max renewable life, seconds)
%d\t (expiration, seconds since epoch or 2145830400 for never)
%d\t (password expiration, seconds, 0 for never)
%d\t (last successful auth, seconds since epoch)
%d\t (last failed auth, per above)
%d\t (failed auth count)
foreach tl_data 0 to number of tl_data - 1 as above
%d\t%d\t (data type, data length)
foreach tl_data 0 to length-1
%02x (tl data contents[element n])
except if tl_data length is 0
%d (always -1)
\t
foreach key 0 to number of keys - 1 as above
%d\t%d\t (key data version, kvno)
foreach version 0 to key data version - 1 (a key or a salt)
%d\t%d\t(data type for this key, data length for this key)
foreach key data length 0 to length-1
%02x (key data contents[element n])
except if key_data length is 0
%d (always -1)
\t
foreach extra data length 0 to length - 1
%02x (extra data part)
unless no extra data
%d (always -1)
;\n
*/
static char *
nexttoken(char **p)
{
char *q;
do {
q = strsep(p, " \t");
} while(q && *q == '\0');
return q;
}
static size_t
getdata(char **p, unsigned char *buf, size_t len)
{
size_t i;
int v;
char *q = nexttoken(p);
i = 0;
while(*q && i < len) {
if(sscanf(q, "%02x", &v) != 1)
break;
buf[i++] = v;
q += 2;
}
return i;
}
static int
getint(char **p)
{
int val;
char *q = nexttoken(p);
sscanf(q, "%d", &val);
return val;
}
static unsigned int
getuint(char **p)
{
int val;
char *q = nexttoken(p);
sscanf(q, "%u", &val);
return val;
}
#define KRB5_KDB_SALTTYPE_NORMAL 0
#define KRB5_KDB_SALTTYPE_V4 1
#define KRB5_KDB_SALTTYPE_NOREALM 2
#define KRB5_KDB_SALTTYPE_ONLYREALM 3
#define KRB5_KDB_SALTTYPE_SPECIAL 4
#define KRB5_KDB_SALTTYPE_AFS3 5
#define CHECK_UINT(num) \
if ((num) < 0 || (num) > INT_MAX) return EINVAL
#define CHECK_UINT16(num) \
if ((num) < 0 || (num) > 1<<15) return EINVAL
#define CHECK_NUM(num, maxv) \
if ((num) > (maxv)) return EINVAL
/*
* This utility function converts an MIT dump entry to an MIT on-disk
* encoded entry, which can then be decoded with _hdb_mdb_value2entry().
* This allows us to have a single decoding function (_hdb_mdb_value2entry),
* which makes the code cleaner (less code duplication), if a bit less
* efficient. It also will allow us to have a function to dump an HDB
* entry in MIT format so we can dump HDB into MIT format for rollback
* purposes. And that will allow us to write to MIT KDBs, again
* somewhat inefficiently, also for migration/rollback purposes.
*/
int
_hdb_mit_dump2mitdb_entry(krb5_context context, char *line, krb5_storage *sp)
{
krb5_error_code ret = EINVAL;
char *p = line, *q;
char *princ;
ssize_t sz;
size_t i;
size_t princ_len;
unsigned int num_tl_data;
size_t num_key_data;
unsigned int attributes;
int tmp;
krb5_storage_set_byteorder(sp, KRB5_STORAGE_BYTEORDER_LE);
q = nexttoken(&p);
if (strcmp(q, "kdb5_util") == 0 || strcmp(q, "policy") == 0 ||
strcmp(q, "princ") != 0) {
return -1;
}
if (getint(&p) != 38)
return EINVAL;
#define KDB_V1_BASE_LENGTH 38
ret = krb5_store_int16(sp, KDB_V1_BASE_LENGTH);
if (ret) return ret;
nexttoken(&p); /* length of principal */
num_tl_data = getuint(&p); /* number of tl-data */
num_key_data = getuint(&p); /* number of key-data */
getint(&p); /* length of extra data */
princ = nexttoken(&p); /* principal name */
attributes = getuint(&p); /* attributes */
ret = krb5_store_uint32(sp, attributes);
if (ret) return ret;
tmp = getint(&p); /* max life */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
tmp = getint(&p); /* max renewable life */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
tmp = getint(&p); /* expiration */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
tmp = getint(&p); /* pw expiration */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
tmp = getint(&p); /* last auth */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
tmp = getint(&p); /* last failed auth */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
tmp = getint(&p); /* fail auth count */
CHECK_UINT(tmp);
ret = krb5_store_uint32(sp, tmp);
if (ret) return ret;
/* add TL data count */
CHECK_NUM(num_tl_data, 1023);
ret = krb5_store_uint16(sp, num_tl_data);
if (ret) return ret;
/* add key count */
CHECK_NUM(num_key_data, 1023);
ret = krb5_store_uint16(sp, num_key_data);
if (ret) return ret;
/* add principal unparsed name length and unparsed name */
princ_len = strlen(princ);
if (princ_len > (1<<15) - 1) return EINVAL;
princ_len++; /* must count and write the NUL in the on-disk encoding */
ret = krb5_store_uint16(sp, princ_len);
if (ret) return ret;
sz = krb5_storage_write(sp, princ, princ_len);
if (sz == -1) return ENOMEM;
/* scan and write TL data */
for (i = 0; i < num_tl_data; i++) {
int tl_type, tl_length;
unsigned char *buf;
tl_type = getint(&p); /* data type */
tl_length = getint(&p); /* data length */
CHECK_UINT16(tl_type);
ret = krb5_store_uint16(sp, tl_type);
if (ret) return ret;
CHECK_UINT16(tl_length);
ret = krb5_store_uint16(sp, tl_length);
if (ret) return ret;
if (tl_length) {
buf = malloc(tl_length);
if (!buf) return ENOMEM;
if (getdata(&p, buf, tl_length) != tl_length) return EINVAL;
sz = krb5_storage_write(sp, buf, tl_length);
free(buf);
if (sz == -1) return ENOMEM;
} else {
if (strcmp(nexttoken(&p), "-1") != 0) return EINVAL;
}
}
for (i = 0; i < num_key_data; i++) {
unsigned char *buf;
int key_versions;
int kvno;
int keytype;
int keylen;
size_t k;
key_versions = getint(&p); /* key data version */
CHECK_UINT16(key_versions);
ret = krb5_store_int16(sp, key_versions);
if (ret) return ret;
kvno = getint(&p);
CHECK_UINT16(kvno);
ret = krb5_store_int16(sp, kvno);
if (ret) return ret;
for (k = 0; k < key_versions; k++) {
keytype = getint(&p);
CHECK_UINT16(keytype);
ret = krb5_store_int16(sp, keytype);
if (ret) return ret;
keylen = getint(&p);
CHECK_UINT16(keylen);
ret = krb5_store_int16(sp, keylen);
if (ret) return ret;
if (keylen) {
buf = malloc(keylen);
if (!buf) return ENOMEM;
if (getdata(&p, buf, keylen) != keylen) return EINVAL;
sz = krb5_storage_write(sp, buf, keylen);
free(buf);
if (sz == -1) return ENOMEM;
} else {
if (strcmp(nexttoken(&p), "-1") != 0) return EINVAL;
}
}
}
/*
* The rest is "extra data", but there's never any and we wouldn't
* know what to do with it.
*/
/* nexttoken(&p); */
return 0;
}