160 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_S_MP_MONTGOMERY_REDUCE_FAST_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction
 | |
|  *
 | |
|  * This is an optimized implementation of montgomery_reduce
 | |
|  * which uses the comba method to quickly calculate the columns of the
 | |
|  * reduction.
 | |
|  *
 | |
|  * Based on Algorithm 14.32 on pp.601 of HAC.
 | |
| */
 | |
| mp_err s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho)
 | |
| {
 | |
|    int     ix, olduse;
 | |
|    mp_err  err;
 | |
|    mp_word W[MP_WARRAY];
 | |
| 
 | |
|    if (x->used > MP_WARRAY) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* get old used count */
 | |
|    olduse = x->used;
 | |
| 
 | |
|    /* grow a as required */
 | |
|    if (x->alloc < (n->used + 1)) {
 | |
|       if ((err = mp_grow(x, n->used + 1)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* first we have to get the digits of the input into
 | |
|     * an array of double precision words W[...]
 | |
|     */
 | |
|    {
 | |
|       mp_word *_W;
 | |
|       mp_digit *tmpx;
 | |
| 
 | |
|       /* alias for the W[] array */
 | |
|       _W   = W;
 | |
| 
 | |
|       /* alias for the digits of  x*/
 | |
|       tmpx = x->dp;
 | |
| 
 | |
|       /* copy the digits of a into W[0..a->used-1] */
 | |
|       for (ix = 0; ix < x->used; ix++) {
 | |
|          *_W++ = *tmpx++;
 | |
|       }
 | |
| 
 | |
|       /* zero the high words of W[a->used..m->used*2] */
 | |
|       if (ix < ((n->used * 2) + 1)) {
 | |
|          MP_ZERO_BUFFER(_W, sizeof(mp_word) * (size_t)(((n->used * 2) + 1) - ix));
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* now we proceed to zero successive digits
 | |
|     * from the least significant upwards
 | |
|     */
 | |
|    for (ix = 0; ix < n->used; ix++) {
 | |
|       /* mu = ai * m' mod b
 | |
|        *
 | |
|        * We avoid a double precision multiplication (which isn't required)
 | |
|        * by casting the value down to a mp_digit.  Note this requires
 | |
|        * that W[ix-1] have  the carry cleared (see after the inner loop)
 | |
|        */
 | |
|       mp_digit mu;
 | |
|       mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;
 | |
| 
 | |
|       /* a = a + mu * m * b**i
 | |
|        *
 | |
|        * This is computed in place and on the fly.  The multiplication
 | |
|        * by b**i is handled by offseting which columns the results
 | |
|        * are added to.
 | |
|        *
 | |
|        * Note the comba method normally doesn't handle carries in the
 | |
|        * inner loop In this case we fix the carry from the previous
 | |
|        * column since the Montgomery reduction requires digits of the
 | |
|        * result (so far) [see above] to work.  This is
 | |
|        * handled by fixing up one carry after the inner loop.  The
 | |
|        * carry fixups are done in order so after these loops the
 | |
|        * first m->used words of W[] have the carries fixed
 | |
|        */
 | |
|       {
 | |
|          int iy;
 | |
|          mp_digit *tmpn;
 | |
|          mp_word *_W;
 | |
| 
 | |
|          /* alias for the digits of the modulus */
 | |
|          tmpn = n->dp;
 | |
| 
 | |
|          /* Alias for the columns set by an offset of ix */
 | |
|          _W = W + ix;
 | |
| 
 | |
|          /* inner loop */
 | |
|          for (iy = 0; iy < n->used; iy++) {
 | |
|             *_W++ += (mp_word)mu * (mp_word)*tmpn++;
 | |
|          }
 | |
|       }
 | |
| 
 | |
|       /* now fix carry for next digit, W[ix+1] */
 | |
|       W[ix + 1] += W[ix] >> (mp_word)MP_DIGIT_BIT;
 | |
|    }
 | |
| 
 | |
|    /* now we have to propagate the carries and
 | |
|     * shift the words downward [all those least
 | |
|     * significant digits we zeroed].
 | |
|     */
 | |
|    {
 | |
|       mp_digit *tmpx;
 | |
|       mp_word *_W, *_W1;
 | |
| 
 | |
|       /* nox fix rest of carries */
 | |
| 
 | |
|       /* alias for current word */
 | |
|       _W1 = W + ix;
 | |
| 
 | |
|       /* alias for next word, where the carry goes */
 | |
|       _W = W + ++ix;
 | |
| 
 | |
|       for (; ix < ((n->used * 2) + 1); ix++) {
 | |
|          *_W++ += *_W1++ >> (mp_word)MP_DIGIT_BIT;
 | |
|       }
 | |
| 
 | |
|       /* copy out, A = A/b**n
 | |
|        *
 | |
|        * The result is A/b**n but instead of converting from an
 | |
|        * array of mp_word to mp_digit than calling mp_rshd
 | |
|        * we just copy them in the right order
 | |
|        */
 | |
| 
 | |
|       /* alias for destination word */
 | |
|       tmpx = x->dp;
 | |
| 
 | |
|       /* alias for shifted double precision result */
 | |
|       _W = W + n->used;
 | |
| 
 | |
|       for (ix = 0; ix < (n->used + 1); ix++) {
 | |
|          *tmpx++ = *_W++ & (mp_word)MP_MASK;
 | |
|       }
 | |
| 
 | |
|       /* zero oldused digits, if the input a was larger than
 | |
|        * m->used+1 we'll have to clear the digits
 | |
|        */
 | |
|       MP_ZERO_DIGITS(tmpx, olduse - ix);
 | |
|    }
 | |
| 
 | |
|    /* set the max used and clamp */
 | |
|    x->used = n->used + 1;
 | |
|    mp_clamp(x);
 | |
| 
 | |
|    /* if A >= m then A = A - m */
 | |
|    if (mp_cmp_mag(x, n) != MP_LT) {
 | |
|       return s_mp_sub(x, n, x);
 | |
|    }
 | |
|    return MP_OKAY;
 | |
| }
 | |
| #endif
 | 
