149 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include <tommath.h>
 | 
						|
#ifdef BN_FAST_MP_INVMOD_C
 | 
						|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 | 
						|
 *
 | 
						|
 * LibTomMath is a library that provides multiple-precision
 | 
						|
 * integer arithmetic as well as number theoretic functionality.
 | 
						|
 *
 | 
						|
 * The library was designed directly after the MPI library by
 | 
						|
 * Michael Fromberger but has been written from scratch with
 | 
						|
 * additional optimizations in place.
 | 
						|
 *
 | 
						|
 * The library is free for all purposes without any express
 | 
						|
 * guarantee it works.
 | 
						|
 *
 | 
						|
 * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | 
						|
 */
 | 
						|
 | 
						|
/* computes the modular inverse via binary extended euclidean algorithm,
 | 
						|
 * that is c = 1/a mod b
 | 
						|
 *
 | 
						|
 * Based on slow invmod except this is optimized for the case where b is
 | 
						|
 * odd as per HAC Note 14.64 on pp. 610
 | 
						|
 */
 | 
						|
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  mp_int  x, y, u, v, B, D;
 | 
						|
  int     res, neg;
 | 
						|
 | 
						|
  /* 2. [modified] b must be odd   */
 | 
						|
  if (mp_iseven (b) == 1) {
 | 
						|
    return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* init all our temps */
 | 
						|
  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
 | 
						|
     return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* x == modulus, y == value to invert */
 | 
						|
  if ((res = mp_copy (b, &x)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  /* we need y = |a| */
 | 
						|
  if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | 
						|
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
  mp_set (&D, 1);
 | 
						|
 | 
						|
top:
 | 
						|
  /* 4.  while u is even do */
 | 
						|
  while (mp_iseven (&u) == 1) {
 | 
						|
    /* 4.1 u = u/2 */
 | 
						|
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
    /* 4.2 if B is odd then */
 | 
						|
    if (mp_isodd (&B) == 1) {
 | 
						|
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | 
						|
        goto LBL_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* B = B/2 */
 | 
						|
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* 5.  while v is even do */
 | 
						|
  while (mp_iseven (&v) == 1) {
 | 
						|
    /* 5.1 v = v/2 */
 | 
						|
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
    /* 5.2 if D is odd then */
 | 
						|
    if (mp_isodd (&D) == 1) {
 | 
						|
      /* D = (D-x)/2 */
 | 
						|
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | 
						|
        goto LBL_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* D = D/2 */
 | 
						|
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* 6.  if u >= v then */
 | 
						|
  if (mp_cmp (&u, &v) != MP_LT) {
 | 
						|
    /* u = u - v, B = B - D */
 | 
						|
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    /* v - v - u, D = D - B */
 | 
						|
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* if not zero goto step 4 */
 | 
						|
  if (mp_iszero (&u) == 0) {
 | 
						|
    goto top;
 | 
						|
  }
 | 
						|
 | 
						|
  /* now a = C, b = D, gcd == g*v */
 | 
						|
 | 
						|
  /* if v != 1 then there is no inverse */
 | 
						|
  if (mp_cmp_d (&v, 1) != MP_EQ) {
 | 
						|
    res = MP_VAL;
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  /* b is now the inverse */
 | 
						|
  neg = a->sign;
 | 
						|
  while (D.sign == MP_NEG) {
 | 
						|
    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  mp_exch (&D, c);
 | 
						|
  c->sign = neg;
 | 
						|
  res = MP_OKAY;
 | 
						|
 | 
						|
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* $Source: /cvs/libtom/libtommath/bn_fast_mp_invmod.c,v $ */
 | 
						|
/* $Revision: 1.4 $ */
 | 
						|
/* $Date: 2006/12/28 01:25:13 $ */
 |