Files
heimdal/lib/hx509/crypto.c
Love Hörnquist Åstrand 64bc25c77b (hx509_crypto_encrypt): free correctly in error path. From Andrew Bartlett.
git-svn-id: svn://svn.h5l.se/heimdal/trunk/heimdal@17520 ec53bebd-3082-4978-b11e-865c3cabbd6b
2006-05-08 20:34:48 +00:00

1921 lines
43 KiB
C

/*
* Copyright (c) 2004 - 2006 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "hx_locl.h"
RCSID("$Id$");
struct hx509_crypto;
struct signature_alg;
struct hx509_private_key {
const struct signature_alg *md;
const heim_oid *signature_alg;
struct {
RSA *rsa;
} private_key;
};
/*
*
*/
struct signature_alg {
char *name;
const heim_oid *(*sig_oid)(void);
const heim_oid *(*key_oid)(void);
const heim_oid *(*digest_oid)(void);
int flags;
#define PROVIDE_CONF 1
#define REQUIRE_SIGNER 2
int (*verify_signature)(const struct signature_alg *,
const Certificate *,
const AlgorithmIdentifier *,
const heim_octet_string *,
const heim_octet_string *);
int (*create_signature)(const struct signature_alg *,
const hx509_private_key,
const AlgorithmIdentifier *,
const heim_octet_string *,
AlgorithmIdentifier *,
heim_octet_string *);
int (*parse_private_key)(const struct signature_alg *,
const void *data,
size_t len,
hx509_private_key private_key);
int (*private_key2SPKI)(hx509_private_key private_key,
SubjectPublicKeyInfo *spki);
};
/*
*
*/
static BIGNUM *
heim_int2BN(const heim_integer *i)
{
BIGNUM *bn;
bn = BN_bin2bn(i->data, i->length, NULL);
BN_set_negative(bn, i->negative);
return bn;
}
static int
rsa_verify_signature(const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const SubjectPublicKeyInfo *spi;
DigestInfo di;
unsigned char *to;
int tosize;
int ret;
RSA *rsa;
RSAPublicKey pk;
size_t size;
memset(&di, 0, sizeof(di));
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
rsa = RSA_new();
if (rsa == NULL)
return ENOMEM;
ret = decode_RSAPublicKey(spi->subjectPublicKey.data,
spi->subjectPublicKey.length / 8,
&pk, &size);
if (ret)
goto out;
rsa->n = heim_int2BN(&pk.modulus);
rsa->e = heim_int2BN(&pk.publicExponent);
free_RSAPublicKey(&pk);
if (rsa->n == NULL || rsa->e == NULL) {
ret = ENOMEM;
goto out;
}
tosize = RSA_size(rsa);
to = malloc(tosize);
if (to == NULL) {
ret = ENOMEM;
goto out;
}
ret = RSA_public_decrypt(sig->length, (unsigned char *)sig->data,
to, rsa, RSA_PKCS1_PADDING);
if (ret == -1) {
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
free(to);
goto out;
}
if (ret > tosize)
_hx509_abort("internal rsa decryption failure: ret > tosize");
ret = decode_DigestInfo(to, ret, &di, &size);
free(to);
if (ret) {
goto out;
}
if (sig_alg->digest_oid &&
heim_oid_cmp(&di.digestAlgorithm.algorithm,
(*sig_alg->digest_oid)()) != 0)
{
ret = HX509_CRYPTO_OID_MISMATCH;
goto out;
}
ret = _hx509_verify_signature(NULL,
&di.digestAlgorithm,
data,
&di.digest);
out:
free_DigestInfo(&di);
RSA_free(rsa);
return ret;
}
static int
rsa_create_signature(const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
const AlgorithmIdentifier *digest_alg;
heim_octet_string indata;
const heim_oid *sig_oid;
DigestInfo di;
size_t size;
int ret;
if (alg)
sig_oid = &alg->algorithm;
else
sig_oid = signer->signature_alg;
if (heim_oid_cmp(sig_oid, oid_id_pkcs1_sha256WithRSAEncryption()) == 0) {
digest_alg = hx509_signature_sha256();
} else if (heim_oid_cmp(sig_oid, oid_id_pkcs1_sha1WithRSAEncryption()) == 0) {
digest_alg = hx509_signature_sha1();
} else if (heim_oid_cmp(sig_oid, oid_id_pkcs1_md5WithRSAEncryption()) == 0) {
digest_alg = hx509_signature_md5();
} else if (heim_oid_cmp(sig_oid, oid_id_pkcs1_md5WithRSAEncryption()) == 0) {
digest_alg = hx509_signature_md5();
} else if (heim_oid_cmp(sig_oid, oid_id_dsa_with_sha1()) == 0) {
digest_alg = hx509_signature_sha1();
} else
return HX509_ALG_NOT_SUPP;
if (signatureAlgorithm) {
ret = _hx509_set_digest_alg(signatureAlgorithm,
sig_oid, "\x05\x00", 2);
if (ret)
return ret;
}
memset(&di, 0, sizeof(di));
ret = _hx509_create_signature(NULL,
digest_alg,
data,
&di.digestAlgorithm,
&di.digest);
ASN1_MALLOC_ENCODE(DigestInfo,
indata.data,
indata.length,
&di,
&size,
ret);
free_DigestInfo(&di);
if (ret)
return ret;
if (indata.length != size)
_hx509_abort("internal ASN.1 encoder error");
sig->length = RSA_size(signer->private_key.rsa);
sig->data = malloc(sig->length);
if (sig->data == NULL)
return ENOMEM;
ret = RSA_private_encrypt(indata.length, indata.data,
sig->data,
signer->private_key.rsa,
RSA_PKCS1_PADDING);
free_octet_string(&indata);
if (ret <= 0)
return HX509_CMS_FAILED_CREATE_SIGATURE;
if (ret < sig->length)
_hx509_abort("RSA signature prelen shorter the output len");
sig->length = ret;
return 0;
}
#if 0
static int
create_signature(const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
const heim_oid *digest_oid, *sig_oid;
const EVP_MD *mdtype;
EVP_MD_CTX md;
unsigned len;
int ret;
if (alg)
sig_oid = &alg->algorithm;
else
sig_oid = signer->signature_alg;
if (heim_oid_cmp(sig_oid, oid_id_dsa_with_sha1()) == 0) {
mdtype = EVP_sha1();
digest_oid = oid_id_secsig_sha_1();
} else
return HX509_ALG_NOT_SUPP;
if (signatureAlgorithm) {
ret = _hx509_set_digest_alg(signatureAlgorithm,
sig_oid, "\x05\x00", 2);
if (ret)
return ret;
}
sig->data = malloc(EVP_PKEY_size(signer->private_key));
if (sig->data == NULL)
return ENOMEM;
EVP_SignInit(&md, mdtype);
EVP_SignUpdate(&md, data->data, data->length);
ret = EVP_SignFinal(&md, sig->data, &len, signer->private_key);
if (ret != 1) {
free(sig->data);
sig->data = NULL;
return HX509_CMS_FAILED_CREATE_SIGATURE;
}
sig->length = len;
return 0;
}
#endif
static int
rsa_parse_private_key(const struct signature_alg *sig_alg,
const void *data,
size_t len,
hx509_private_key private_key)
{
const unsigned char *p = data;
private_key->private_key.rsa =
d2i_RSAPrivateKey(NULL, &p, len);
if (private_key->private_key.rsa == NULL)
return EINVAL;
private_key->signature_alg = oid_id_pkcs1_sha1WithRSAEncryption();
return 0;
}
static int
rsa_private_key2SPKI(hx509_private_key private_key,
SubjectPublicKeyInfo *spki)
{
int len, ret;
memset(spki, 0, sizeof(*spki));
len = i2d_RSAPublicKey(private_key->private_key.rsa, NULL);
spki->subjectPublicKey.data = malloc(len);
if (spki->subjectPublicKey.data == NULL)
return ENOMEM;
spki->subjectPublicKey.length = len * 8;
ret = _hx509_set_digest_alg(&spki->algorithm,
oid_id_pkcs1_rsaEncryption(),
"\x05\x00", 2);
if (ret) {
free(spki->subjectPublicKey.data);
spki->subjectPublicKey.data = NULL;
spki->subjectPublicKey.length = 0;
return ret;
}
{
unsigned char *pp = spki->subjectPublicKey.data;
i2d_RSAPublicKey(private_key->private_key.rsa, &pp);
}
return 0;
}
/*
*
*/
static int
dsa_verify_signature(const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const SubjectPublicKeyInfo *spi;
DSAPublicKey pk;
DSAParams param;
size_t size;
DSA *dsa;
int ret;
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
dsa = DSA_new();
if (dsa == NULL)
return ENOMEM;
ret = decode_DSAPublicKey(spi->subjectPublicKey.data,
spi->subjectPublicKey.length / 8,
&pk, &size);
if (ret)
goto out;
dsa->pub_key = heim_int2BN(&pk);
free_DSAPublicKey(&pk);
if (dsa->pub_key == NULL) {
ret = ENOMEM;
goto out;
}
if (spi->algorithm.parameters == NULL) {
ret = EINVAL;
goto out;
}
ret = decode_DSAParams(spi->algorithm.parameters->data,
spi->algorithm.parameters->length,
&param,
&size);
if (ret)
goto out;
dsa->p = heim_int2BN(&param.p);
dsa->q = heim_int2BN(&param.q);
dsa->g = heim_int2BN(&param.g);
free_DSAParams(&param);
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
ret = ENOMEM;
goto out;
}
ret = DSA_verify(-1, data->data, data->length,
(unsigned char*)sig->data, sig->length,
dsa);
if (ret == 1)
ret = 0;
else if (ret == 0 || ret == -1)
ret = HX509_CRYPTO_BAD_SIGNATURE;
else
ret = HX509_CRYPTO_SIG_INVALID_FORMAT;
out:
DSA_free(dsa);
return ret;
}
static int
dsa_parse_private_key(const struct signature_alg *sig_alg,
const void *data,
size_t len,
hx509_private_key private_key)
{
#if 0
const unsigned char *p = data;
private_key->private_key.dsa =
d2i_DSAPrivateKey(NULL, &p, len);
if (private_key->private_key.dsa == NULL)
return EINVAL;
private_key->signature_alg = oid_id_dsa_with_sha1();
return 0;
#else
return EINVAL;
#endif
}
static int
sha1_verify_signature(const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
unsigned char digest[SHA_DIGEST_LENGTH];
SHA_CTX m;
if (sig->length != SHA_DIGEST_LENGTH)
return HX509_CRYPTO_SIG_INVALID_FORMAT;
SHA1_Init(&m);
SHA1_Update(&m, data->data, data->length);
SHA1_Final (digest, &m);
if (memcmp(digest, sig->data, SHA_DIGEST_LENGTH) != 0)
return HX509_CRYPTO_BAD_SIGNATURE;
return 0;
}
static int
sha256_create_signature(const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
SHA256_CTX m;
memset(sig, 0, sizeof(*sig));
if (signatureAlgorithm) {
int ret;
ret = _hx509_set_digest_alg(signatureAlgorithm,
(*sig_alg->sig_oid)(), "\x05\x00", 2);
if (ret)
return ret;
}
sig->data = malloc(SHA256_DIGEST_LENGTH);
if (sig->data == NULL) {
sig->length = 0;
return ENOMEM;
}
sig->length = SHA256_DIGEST_LENGTH;
SHA256_Init(&m);
SHA256_Update(&m, data->data, data->length);
SHA256_Final (sig->data, &m);
return 0;
}
static int
sha256_verify_signature(const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
unsigned char digest[SHA256_DIGEST_LENGTH];
SHA256_CTX m;
if (sig->length != SHA256_DIGEST_LENGTH)
return HX509_CRYPTO_SIG_INVALID_FORMAT;
SHA256_Init(&m);
SHA256_Update(&m, data->data, data->length);
SHA256_Final (digest, &m);
if (memcmp(digest, sig->data, SHA256_DIGEST_LENGTH) != 0)
return HX509_CRYPTO_BAD_SIGNATURE;
return 0;
}
static int
sha1_create_signature(const struct signature_alg *sig_alg,
const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
SHA_CTX m;
memset(sig, 0, sizeof(*sig));
if (signatureAlgorithm) {
int ret;
ret = _hx509_set_digest_alg(signatureAlgorithm,
(*sig_alg->sig_oid)(), "\x05\x00", 2);
if (ret)
return ret;
}
sig->data = malloc(SHA_DIGEST_LENGTH);
if (sig->data == NULL) {
sig->length = 0;
return ENOMEM;
}
sig->length = SHA_DIGEST_LENGTH;
SHA1_Init(&m);
SHA1_Update(&m, data->data, data->length);
SHA1_Final (sig->data, &m);
return 0;
}
static int
md5_verify_signature(const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
unsigned char digest[MD5_DIGEST_LENGTH];
MD5_CTX m;
if (sig->length != MD5_DIGEST_LENGTH)
return HX509_CRYPTO_SIG_INVALID_FORMAT;
MD5_Init(&m);
MD5_Update(&m, data->data, data->length);
MD5_Final (digest, &m);
if (memcmp(digest, sig->data, MD5_DIGEST_LENGTH) != 0)
return HX509_CRYPTO_BAD_SIGNATURE;
return 0;
}
static int
md2_verify_signature(const struct signature_alg *sig_alg,
const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
unsigned char digest[MD2_DIGEST_LENGTH];
MD2_CTX m;
if (sig->length != MD2_DIGEST_LENGTH)
return HX509_CRYPTO_SIG_INVALID_FORMAT;
MD2_Init(&m);
MD2_Update(&m, data->data, data->length);
MD2_Final (digest, &m);
if (memcmp(digest, sig->data, MD2_DIGEST_LENGTH) != 0)
return HX509_CRYPTO_BAD_SIGNATURE;
return 0;
}
static struct signature_alg pkcs1_rsa_sha1_alg = {
"rsa",
oid_id_pkcs1_rsaEncryption,
oid_id_pkcs1_rsaEncryption,
NULL,
PROVIDE_CONF|REQUIRE_SIGNER,
rsa_verify_signature,
rsa_create_signature,
rsa_parse_private_key,
rsa_private_key2SPKI
};
static struct signature_alg rsa_with_sha256_alg = {
"rsa-with-sha256",
oid_id_pkcs1_sha256WithRSAEncryption,
oid_id_pkcs1_rsaEncryption,
oid_id_sha256,
PROVIDE_CONF|REQUIRE_SIGNER,
rsa_verify_signature,
rsa_create_signature,
rsa_parse_private_key,
rsa_private_key2SPKI
};
static struct signature_alg rsa_with_sha1_alg = {
"rsa-with-sha1",
oid_id_pkcs1_sha1WithRSAEncryption,
oid_id_pkcs1_rsaEncryption,
oid_id_secsig_sha_1,
PROVIDE_CONF|REQUIRE_SIGNER,
rsa_verify_signature,
rsa_create_signature,
rsa_parse_private_key,
rsa_private_key2SPKI
};
static struct signature_alg rsa_with_md5_alg = {
"rsa-with-md5",
oid_id_pkcs1_md5WithRSAEncryption,
oid_id_pkcs1_rsaEncryption,
oid_id_rsa_digest_md5,
PROVIDE_CONF|REQUIRE_SIGNER,
rsa_verify_signature,
rsa_create_signature,
rsa_parse_private_key,
rsa_private_key2SPKI
};
static struct signature_alg rsa_with_md2_alg = {
"rsa-with-md2",
oid_id_pkcs1_md2WithRSAEncryption,
oid_id_pkcs1_rsaEncryption,
oid_id_rsa_digest_md2,
PROVIDE_CONF|REQUIRE_SIGNER,
rsa_verify_signature,
rsa_create_signature,
rsa_parse_private_key,
rsa_private_key2SPKI
};
static struct signature_alg dsa_sha1_alg = {
"dsa-with-sha1",
oid_id_dsa_with_sha1,
oid_id_dsa,
oid_id_secsig_sha_1,
PROVIDE_CONF|REQUIRE_SIGNER,
dsa_verify_signature,
/* create_signature */ NULL,
dsa_parse_private_key
};
static struct signature_alg sha256_alg = {
"sha-256",
oid_id_sha256,
NULL,
NULL,
0,
sha256_verify_signature,
sha256_create_signature
};
static struct signature_alg sha1_alg = {
"sha1",
oid_id_secsig_sha_1,
NULL,
NULL,
0,
sha1_verify_signature,
sha1_create_signature
};
static struct signature_alg md5_alg = {
"rsa-md5",
oid_id_rsa_digest_md5,
NULL,
NULL,
0,
md5_verify_signature
};
static struct signature_alg md2_alg = {
"rsa-md2",
oid_id_rsa_digest_md2,
NULL,
NULL,
0,
md2_verify_signature
};
static struct signature_alg *sig_algs[] = {
&pkcs1_rsa_sha1_alg,
&rsa_with_sha256_alg,
&rsa_with_sha1_alg,
&rsa_with_md5_alg,
&rsa_with_md2_alg,
&dsa_sha1_alg,
&sha256_alg,
&sha1_alg,
&md5_alg,
&md2_alg,
NULL
};
static const struct signature_alg *
find_sig_alg(const heim_oid *oid)
{
int i;
for (i = 0; sig_algs[i]; i++)
if (heim_oid_cmp((*sig_algs[i]->sig_oid)(), oid) == 0)
return sig_algs[i];
return NULL;
}
static const struct signature_alg *
find_key_alg(const heim_oid *oid)
{
int i;
for (i = 0; sig_algs[i]; i++) {
if (sig_algs[i]->key_oid == NULL)
continue;
if (heim_oid_cmp((*sig_algs[i]->key_oid)(), oid) == 0)
return sig_algs[i];
}
return NULL;
}
int
_hx509_verify_signature(const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_octet_string *sig)
{
const struct signature_alg *md;
md = find_sig_alg(&alg->algorithm);
if (md == NULL) {
return HX509_SIG_ALG_NO_SUPPORTED;
}
if (signer && (md->flags & PROVIDE_CONF) == 0)
return HX509_CRYPTO_SIG_NO_CONF;
if (signer == NULL && (md->flags & REQUIRE_SIGNER))
return HX509_CRYPTO_SIGNATURE_WITHOUT_SIGNER;
if (md->key_oid && signer) {
const SubjectPublicKeyInfo *spi;
spi = &signer->tbsCertificate.subjectPublicKeyInfo;
if (heim_oid_cmp(&spi->algorithm.algorithm, (*md->key_oid)()) != 0)
return HX509_SIG_ALG_DONT_MATCH_KEY_ALG;
}
return (*md->verify_signature)(md, signer, alg, data, sig);
}
int
_hx509_verify_signature_bitstring(const Certificate *signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
const heim_bit_string *sig)
{
heim_octet_string os;
if (sig->length & 7)
return EINVAL;
os.data = sig->data;
os.length = sig->length / 8;
return _hx509_verify_signature(signer, alg, data, &os);
}
int
_hx509_create_signature(const hx509_private_key signer,
const AlgorithmIdentifier *alg,
const heim_octet_string *data,
AlgorithmIdentifier *signatureAlgorithm,
heim_octet_string *sig)
{
const struct signature_alg *md;
md = find_sig_alg(&alg->algorithm);
if (md == NULL)
return HX509_SIG_ALG_NO_SUPPORTED;
if (signer && (md->flags & PROVIDE_CONF) == 0)
return HX509_CRYPTO_SIG_NO_CONF;
if (md->create_signature == NULL) /* XXX DSA */
return HX509_CRYPTO_SIG_NO_CONF;
return (*md->create_signature)(md, signer, alg, data,
signatureAlgorithm, sig);
}
int
_hx509_public_encrypt(const heim_octet_string *cleartext,
const Certificate *cert,
heim_oid *encryption_oid,
heim_octet_string *ciphertext)
{
const SubjectPublicKeyInfo *spi;
unsigned char *to;
int tosize;
int ret;
RSA *rsa;
RSAPublicKey pk;
size_t size;
ciphertext->data = NULL;
ciphertext->length = 0;
spi = &cert->tbsCertificate.subjectPublicKeyInfo;
rsa = RSA_new();
if (rsa == NULL)
return ENOMEM;
ret = decode_RSAPublicKey(spi->subjectPublicKey.data,
spi->subjectPublicKey.length / 8,
&pk, &size);
if (ret) {
RSA_free(rsa);
return ENOMEM;
}
rsa->n = heim_int2BN(&pk.modulus);
rsa->e = heim_int2BN(&pk.publicExponent);
free_RSAPublicKey(&pk);
if (rsa->n == NULL || rsa->e == NULL) {
RSA_free(rsa);
return ENOMEM;
}
tosize = RSA_size(rsa);
to = malloc(tosize);
if (to == NULL) {
RSA_free(rsa);
return ENOMEM;
}
ret = RSA_public_encrypt(cleartext->length,
(unsigned char *)cleartext->data,
to, rsa, RSA_PKCS1_PADDING);
RSA_free(rsa);
if (ret < 0) {
free(to);
return EINVAL;
}
if (ret > tosize)
_hx509_abort("internal rsa decryption failure: ret > tosize");
ciphertext->length = ret;
ciphertext->data = to;
ret = copy_oid(oid_id_pkcs1_rsaEncryption(), encryption_oid);
if (ret) {
free_octet_string(ciphertext);
return ENOMEM;
}
return 0;
}
int
_hx509_private_key_private_decrypt(const heim_octet_string *ciphertext,
const heim_oid *encryption_oid,
hx509_private_key p,
heim_octet_string *cleartext)
{
int ret;
cleartext->data = NULL;
cleartext->length = 0;
if (p->private_key.rsa == NULL)
return EINVAL;
cleartext->length = RSA_size(p->private_key.rsa);
cleartext->data = malloc(cleartext->length);
if (cleartext->data == NULL)
return ENOMEM;
ret = RSA_private_decrypt(ciphertext->length, ciphertext->data,
cleartext->data,
p->private_key.rsa,
RSA_PKCS1_PADDING);
if (ret <= 0) {
free_octet_string(cleartext);
return ENOMEM;
}
if (cleartext->length < ret)
_hx509_abort("internal rsa decryption failure: ret > tosize");
cleartext->length = ret;
return 0;
}
int
_hx509_parse_private_key(const heim_oid *key_oid,
const void *data,
size_t len,
hx509_private_key *private_key)
{
const struct signature_alg *md;
int ret;
*private_key = NULL;
md = find_key_alg(key_oid);
if (md == NULL)
return HX509_SIG_ALG_NO_SUPPORTED;
ret = _hx509_new_private_key(private_key);
if (ret)
return ret;
ret = (*md->parse_private_key)(md, data, len, *private_key);
if (ret)
_hx509_free_private_key(private_key);
else
(*private_key)->md = md;
return ret;
}
/*
*
*/
int
_hx509_private_key2SPKI(hx509_context context,
hx509_private_key private_key,
SubjectPublicKeyInfo *spki)
{
const struct signature_alg *md = private_key->md;
if (md->private_key2SPKI == NULL) {
hx509_set_error_string(context, 0, EINVAL, "private key have no key2SPKI function");
return EINVAL;
}
return (*md->private_key2SPKI)(private_key, spki);
}
/*
*
*/
static const heim_octet_string null_entry_oid = { 2, "\x05\x00" };
static const unsigned sha512_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 3 };
const AlgorithmIdentifier _hx509_signature_sha512_data = {
{ 8, rk_UNCONST(sha512_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned sha384_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 2 };
const AlgorithmIdentifier _hx509_signature_sha384_data = {
{ 8, rk_UNCONST(sha384_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned sha256_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 2, 1 };
const AlgorithmIdentifier _hx509_signature_sha256_data = {
{ 8, rk_UNCONST(sha256_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned sha1_oid_tree[] = { 1, 3, 14, 3, 2, 26 };
const AlgorithmIdentifier _hx509_signature_sha1_data = {
{ 6, rk_UNCONST(sha1_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned md5_oid_tree[] = { 1, 2, 840, 113549, 2, 5 };
const AlgorithmIdentifier _hx509_signature_md5_data = {
{ 6, rk_UNCONST(md5_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned md2_oid_tree[] = { 1, 2, 840, 113549, 2, 2 };
const AlgorithmIdentifier _hx509_signature_md2_data = {
{ 6, rk_UNCONST(md2_oid_tree) }, rk_UNCONST(&null_entry_oid)
};
static const unsigned rsa_with_sha512_oid[] ={ 1, 2, 840, 113549, 1, 1, 13 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha512_data = {
{ 7, rk_UNCONST(rsa_with_sha512_oid) }, NULL
};
static const unsigned rsa_with_sha384_oid[] ={ 1, 2, 840, 113549, 1, 1, 12 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha384_data = {
{ 7, rk_UNCONST(rsa_with_sha384_oid) }, NULL
};
static const unsigned rsa_with_sha256_oid[] ={ 1, 2, 840, 113549, 1, 1, 11 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha256_data = {
{ 7, rk_UNCONST(rsa_with_sha256_oid) }, NULL
};
static const unsigned rsa_with_sha1_oid[] ={ 1, 2, 840, 113549, 1, 1, 5 };
const AlgorithmIdentifier _hx509_signature_rsa_with_sha1_data = {
{ 7, rk_UNCONST(rsa_with_sha1_oid) }, NULL
};
static const unsigned rsa_oid[] ={ 1, 2, 840, 113549, 1, 1, 1 };
const AlgorithmIdentifier _hx509_signature_rsa_data = {
{ 7, rk_UNCONST(rsa_oid) }, NULL
};
const AlgorithmIdentifier *
hx509_signature_sha512(void)
{ return &_hx509_signature_sha512_data; }
const AlgorithmIdentifier *
hx509_signature_sha384(void)
{ return &_hx509_signature_sha384_data; }
const AlgorithmIdentifier *
hx509_signature_sha256(void)
{ return &_hx509_signature_sha256_data; }
const AlgorithmIdentifier *
hx509_signature_sha1(void)
{ return &_hx509_signature_sha1_data; }
const AlgorithmIdentifier *
hx509_signature_md5(void)
{ return &_hx509_signature_md5_data; }
const AlgorithmIdentifier *
hx509_signature_md2(void)
{ return &_hx509_signature_md2_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha512(void)
{ return &_hx509_signature_rsa_with_sha512_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha384(void)
{ return &_hx509_signature_rsa_with_sha384_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha256(void)
{ return &_hx509_signature_rsa_with_sha256_data; }
const AlgorithmIdentifier *
hx509_signature_rsa_with_sha1(void)
{ return &_hx509_signature_rsa_with_sha1_data; }
const AlgorithmIdentifier *
hx509_signature_rsa(void)
{ return &_hx509_signature_rsa_data; }
int
_hx509_new_private_key(hx509_private_key *key)
{
*key = calloc(1, sizeof(**key));
if (*key == NULL)
return ENOMEM;
return 0;
}
int
_hx509_free_private_key(hx509_private_key *key)
{
if ((*key)->private_key.rsa)
RSA_free((*key)->private_key.rsa);
(*key)->private_key.rsa = NULL;
free(*key);
*key = NULL;
return 0;
}
void
_hx509_private_key_assign_rsa(hx509_private_key key, void *ptr)
{
if (key->private_key.rsa)
RSA_free(key->private_key.rsa);
key->private_key.rsa = ptr;
key->md = &pkcs1_rsa_sha1_alg;
}
struct hx509cipher {
const char *name;
const heim_oid *(*oid_func)(void);
const EVP_CIPHER *(*evp_func)(void);
int (*get_params)(hx509_context, const hx509_crypto,
const heim_octet_string *, heim_octet_string *);
int (*set_params)(hx509_context, const heim_octet_string *,
hx509_crypto, heim_octet_string *);
};
struct hx509_crypto_data {
char *name;
const struct hx509cipher *cipher;
const EVP_CIPHER *c;
heim_octet_string key;
heim_oid oid;
void *param;
};
/*
*
*/
static const heim_oid *
oid_private_rc2_40(void)
{
static unsigned oid_data[] = { 127, 1 };
static const heim_oid oid = { 2, oid_data };
return &oid;
}
/*
*
*/
static int
CMSCBCParam_get(hx509_context context, const hx509_crypto crypto,
const heim_octet_string *ivec, heim_octet_string *param)
{
size_t size;
int ret;
assert(crypto->param == NULL);
if (ivec == NULL)
return 0;
ASN1_MALLOC_ENCODE(CMSCBCParameter, param->data, param->length,
ivec, &size, ret);
if (ret == 0 && size != param->length)
_hx509_abort("Internal asn1 encoder failure");
if (ret)
hx509_clear_error_string(context);
return ret;
}
static int
CMSCBCParam_set(hx509_context context, const heim_octet_string *param,
hx509_crypto crypto, heim_octet_string *ivec)
{
int ret;
if (ivec == NULL)
return 0;
ret = decode_CMSCBCParameter(param->data, param->length, ivec, NULL);
if (ret)
hx509_clear_error_string(context);
return ret;
}
struct _RC2_params {
int maximum_effective_key;
};
static int
CMSRC2CBCParam_get(hx509_context context, const hx509_crypto crypto,
const heim_octet_string *ivec, heim_octet_string *param)
{
CMSRC2CBCParameter rc2params;
const struct _RC2_params *p = crypto->param;
int maximum_effective_key = 128;
size_t size;
int ret;
memset(&rc2params, 0, sizeof(rc2params));
if (p)
maximum_effective_key = p->maximum_effective_key;
switch(maximum_effective_key) {
case 40:
rc2params.rc2ParameterVersion = 160;
break;
case 64:
rc2params.rc2ParameterVersion = 120;
break;
case 128:
rc2params.rc2ParameterVersion = 58;
break;
}
rc2params.iv = *ivec;
ASN1_MALLOC_ENCODE(CMSRC2CBCParameter, param->data, param->length,
&rc2params, &size, ret);
if (ret == 0 && size != param->length)
_hx509_abort("Internal asn1 encoder failure");
return ret;
}
static int
CMSRC2CBCParam_set(hx509_context context, const heim_octet_string *param,
hx509_crypto crypto, heim_octet_string *ivec)
{
CMSRC2CBCParameter rc2param;
struct _RC2_params *p;
size_t size;
int ret;
ret = decode_CMSRC2CBCParameter(param->data, param->length,
&rc2param, &size);
if (ret) {
hx509_clear_error_string(context);
return ret;
}
p = calloc(1, sizeof(*p));
if (p == NULL) {
free_CMSRC2CBCParameter(&rc2param);
hx509_clear_error_string(context);
return ENOMEM;
}
switch(rc2param.rc2ParameterVersion) {
case 160:
crypto->c = EVP_rc2_40_cbc();
p->maximum_effective_key = 40;
break;
case 120:
crypto->c = EVP_rc2_64_cbc();
p->maximum_effective_key = 64;
break;
case 58:
crypto->c = EVP_rc2_cbc();
p->maximum_effective_key = 128;
break;
default:
free_CMSRC2CBCParameter(&rc2param);
return HX509_CRYPTO_SIG_INVALID_FORMAT;
}
if (ivec)
ret = copy_octet_string(&rc2param.iv, ivec);
free_CMSRC2CBCParameter(&rc2param);
if (ret)
hx509_clear_error_string(context);
else
crypto->param = p;
return ret;
}
/*
*
*/
static const struct hx509cipher ciphers[] = {
{
"rc2-cbc",
oid_id_pkcs3_rc2_cbc,
EVP_rc2_cbc,
CMSRC2CBCParam_get,
CMSRC2CBCParam_set
},
{
"rc2-cbc",
oid_id_rsadsi_rc2_cbc,
EVP_rc2_cbc,
CMSRC2CBCParam_get,
CMSRC2CBCParam_set
},
{
"rc2-40-cbc",
oid_private_rc2_40,
EVP_rc2_40_cbc,
CMSRC2CBCParam_get,
CMSRC2CBCParam_set
},
{
"des-ede3-cbc",
oid_id_pkcs3_des_ede3_cbc,
EVP_des_ede3_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"des-ede3-cbc",
oid_id_rsadsi_des_ede3_cbc,
EVP_des_ede3_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"aes-128-cbc",
oid_id_aes_128_cbc,
EVP_aes_128_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"aes-192-cbc",
oid_id_aes_192_cbc,
EVP_aes_192_cbc,
CMSCBCParam_get,
CMSCBCParam_set
},
{
"aes-256-cbc",
oid_id_aes_256_cbc,
EVP_aes_256_cbc,
CMSCBCParam_get,
CMSCBCParam_set
}
};
static const struct hx509cipher *
find_cipher_by_oid(const heim_oid *oid)
{
int i;
for (i = 0; i < sizeof(ciphers)/sizeof(ciphers[0]); i++)
if (heim_oid_cmp(oid, (*ciphers[i].oid_func)()) == 0)
return &ciphers[i];
return NULL;
}
static const struct hx509cipher *
find_cipher_by_name(const char *name)
{
int i;
for (i = 0; i < sizeof(ciphers)/sizeof(ciphers[0]); i++)
if (strcasecmp(name, ciphers[i].name) == 0)
return &ciphers[i];
return NULL;
}
const heim_oid *
hx509_crypto_enctype_by_name(const char *name)
{
const struct hx509cipher *cipher;
cipher = find_cipher_by_name(name);
if (cipher == NULL)
return NULL;
return (*cipher->oid_func)();
}
int
hx509_crypto_init(hx509_context context,
const char *provider,
const heim_oid *enctype,
hx509_crypto *crypto)
{
const struct hx509cipher *cipher;
*crypto = NULL;
cipher = find_cipher_by_oid(enctype);
if (cipher == NULL) {
hx509_set_error_string(context, 0, HX509_ALG_NOT_SUPP,
"Algorithm not supported");
return HX509_ALG_NOT_SUPP;
}
*crypto = calloc(1, sizeof(**crypto));
if (*crypto == NULL) {
hx509_clear_error_string(context);
return ENOMEM;
}
(*crypto)->cipher = cipher;
(*crypto)->c = (*cipher->evp_func)();
if (copy_oid(enctype, &(*crypto)->oid)) {
hx509_crypto_destroy(*crypto);
*crypto = NULL;
hx509_clear_error_string(context);
return ENOMEM;
}
return 0;
}
const char *
hx509_crypto_provider(hx509_crypto crypto)
{
return "unknown";
}
void
hx509_crypto_destroy(hx509_crypto crypto)
{
if (crypto->name)
free(crypto->name);
if (crypto->key.data)
free(crypto->key.data);
memset(crypto, 0, sizeof(*crypto));
free(crypto);
}
int
hx509_crypto_set_key_name(hx509_crypto crypto, const char *name)
{
return 0;
}
int
hx509_crypto_set_key_data(hx509_crypto crypto, const void *data, size_t length)
{
if (EVP_CIPHER_key_length(crypto->c) > length)
return HX509_CRYPTO_INTERNAL_ERROR;
if (crypto->key.data) {
free(crypto->key.data);
crypto->key.data = NULL;
crypto->key.length = 0;
}
crypto->key.data = malloc(length);
if (crypto->key.data == NULL)
return ENOMEM;
memcpy(crypto->key.data, data, length);
crypto->key.length = length;
return 0;
}
int
hx509_crypto_set_random_key(hx509_crypto crypto, heim_octet_string *key)
{
if (crypto->key.data) {
free(crypto->key.data);
crypto->key.length = 0;
}
crypto->key.length = EVP_CIPHER_key_length(crypto->c);
crypto->key.data = malloc(crypto->key.length);
if (crypto->key.data == NULL) {
crypto->key.length = 0;
return ENOMEM;
}
if (RAND_bytes(crypto->key.data, crypto->key.length) <= 0) {
free(crypto->key.data);
crypto->key.data = NULL;
crypto->key.length = 0;
return HX509_CRYPTO_INTERNAL_ERROR;
}
if (key)
return copy_octet_string(&crypto->key, key);
else
return 0;
}
int
hx509_crypto_set_params(hx509_context context,
hx509_crypto crypto,
const heim_octet_string *param,
heim_octet_string *ivec)
{
return (*crypto->cipher->set_params)(context, param, crypto, ivec);
}
int
hx509_crypto_get_params(hx509_context context,
hx509_crypto crypto,
const heim_octet_string *ivec,
heim_octet_string *param)
{
return (*crypto->cipher->get_params)(context, crypto, ivec, param);
}
int
hx509_crypto_encrypt(hx509_crypto crypto,
const void *data,
const size_t length,
heim_octet_string *ivec,
heim_octet_string **ciphertext)
{
EVP_CIPHER_CTX evp;
size_t padsize;
int ret;
*ciphertext = NULL;
EVP_CIPHER_CTX_init(&evp);
ivec->length = EVP_CIPHER_iv_length(crypto->c);
ivec->data = malloc(ivec->length);
if (ivec->data == NULL) {
ret = ENOMEM;
goto out;
}
if (RAND_bytes(ivec->data, ivec->length) <= 0) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
ret = EVP_CipherInit_ex(&evp, crypto->c, NULL,
crypto->key.data, ivec->data, 1);
if (ret != 1) {
EVP_CIPHER_CTX_cleanup(&evp);
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
*ciphertext = calloc(1, sizeof(**ciphertext));
if (*ciphertext == NULL) {
ret = ENOMEM;
goto out;
}
if (EVP_CIPHER_block_size(crypto->c) == 1) {
padsize = 0;
} else {
int bsize = EVP_CIPHER_block_size(crypto->c);
padsize = bsize - (length % bsize);
}
(*ciphertext)->length = length + padsize;
(*ciphertext)->data = malloc(length + padsize);
if ((*ciphertext)->data == NULL) {
ret = ENOMEM;
goto out;
}
memcpy((*ciphertext)->data, data, length);
if (padsize) {
int i;
unsigned char *p = (*ciphertext)->data;
p += length;
for (i = 0; i < padsize; i++)
*p++ = padsize;
}
ret = EVP_Cipher(&evp, (*ciphertext)->data,
(*ciphertext)->data,
length + padsize);
if (ret != 1) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
ret = 0;
out:
if (ret) {
if (ivec->data) {
free(ivec->data);
memset(ivec, 0, sizeof(*ivec));
}
if (*ciphertext) {
if ((*ciphertext)->data) {
free((*ciphertext)->data);
}
free(*ciphertext);
*ciphertext = NULL;
}
}
EVP_CIPHER_CTX_cleanup(&evp);
return ret;
}
int
hx509_crypto_decrypt(hx509_crypto crypto,
const void *data,
const size_t length,
heim_octet_string *ivec,
heim_octet_string *clear)
{
EVP_CIPHER_CTX evp;
void *idata = NULL;
int ret;
clear->data = NULL;
clear->length = 0;
if (ivec && EVP_CIPHER_iv_length(crypto->c) < ivec->length)
return HX509_CRYPTO_INTERNAL_ERROR;
if (crypto->key.data == NULL)
return HX509_CRYPTO_INTERNAL_ERROR;
if (ivec)
idata = ivec->data;
EVP_CIPHER_CTX_init(&evp);
ret = EVP_CipherInit_ex(&evp, crypto->c, NULL,
crypto->key.data, idata, 0);
if (ret != 1) {
EVP_CIPHER_CTX_cleanup(&evp);
return HX509_CRYPTO_INTERNAL_ERROR;
}
clear->length = length;
clear->data = malloc(length);
if (clear->data == NULL) {
EVP_CIPHER_CTX_cleanup(&evp);
clear->length = 0;
return ENOMEM;
}
if (EVP_Cipher(&evp, clear->data, data, length) != 1) {
return HX509_CRYPTO_INTERNAL_ERROR;
}
EVP_CIPHER_CTX_cleanup(&evp);
if (EVP_CIPHER_block_size(crypto->c) > 1) {
int padsize;
unsigned char *p;
int j, bsize = EVP_CIPHER_block_size(crypto->c);
if (clear->length < bsize) {
ret = HX509_CMS_PADDING_ERROR;
goto out;
}
p = clear->data;
p += clear->length - 1;
padsize = *p;
if (padsize > bsize) {
ret = HX509_CMS_PADDING_ERROR;
goto out;
}
clear->length -= padsize;
for (j = 0; j < padsize; j++) {
if (*p-- != padsize) {
ret = HX509_CMS_PADDING_ERROR;
goto out;
}
}
}
return 0;
out:
if (clear->data)
free(clear->data);
clear->data = NULL;
clear->length = 0;
return ret;
}
typedef int (*PBE_string2key_func)(hx509_context,
const char *,
const heim_octet_string *,
hx509_crypto *, heim_octet_string *,
heim_octet_string *,
const heim_oid *, const EVP_MD *);
static int
PBE_string2key(hx509_context context,
const char *password,
const heim_octet_string *parameters,
hx509_crypto *crypto,
heim_octet_string *key, heim_octet_string *iv,
const heim_oid *enc_oid,
const EVP_MD *md)
{
PKCS12_PBEParams p12params;
int passwordlen = strlen(password);
hx509_crypto c;
int iter, saltlen, ret;
unsigned char *salt;
if (parameters == NULL)
return HX509_ALG_NOT_SUPP;
ret = decode_PKCS12_PBEParams(parameters->data,
parameters->length,
&p12params, NULL);
if (ret)
goto out;
if (p12params.iterations)
iter = *p12params.iterations;
else
iter = 1;
salt = p12params.salt.data;
saltlen = p12params.salt.length;
/* XXX It needs to be here, but why ? */
if (passwordlen == 0)
password = NULL;
if (!PKCS12_key_gen (password, passwordlen, salt, saltlen,
PKCS12_KEY_ID, iter, key->length, key->data, md)) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
if (!PKCS12_key_gen (password, passwordlen, salt, saltlen,
PKCS12_IV_ID, iter, iv->length, iv->data, md)) {
ret = HX509_CRYPTO_INTERNAL_ERROR;
goto out;
}
ret = hx509_crypto_init(context, NULL, enc_oid, &c);
if (ret)
goto out;
ret = hx509_crypto_set_key_data(c, key->data, key->length);
if (ret) {
hx509_crypto_destroy(c);
goto out;
}
*crypto = c;
out:
free_PKCS12_PBEParams(&p12params);
return ret;
}
static const heim_oid *
find_string2key(const heim_oid *oid,
const EVP_CIPHER **c,
const EVP_MD **md,
PBE_string2key_func *s2k)
{
if (heim_oid_cmp(oid, oid_id_pbewithSHAAnd40BitRC2_CBC()) == 0) {
*c = EVP_rc2_40_cbc();
*md = EVP_sha1();
*s2k = PBE_string2key;
return oid_private_rc2_40();
} else if (heim_oid_cmp(oid, oid_id_pbeWithSHAAnd128BitRC2_CBC()) == 0) {
*c = EVP_rc2_cbc();
*md = EVP_sha1();
*s2k = PBE_string2key;
return oid_id_pkcs3_rc2_cbc();
#if 0
} else if (heim_oid_cmp(oid, oid_id_pbeWithSHAAnd40BitRC4()) == 0) {
*c = EVP_rc4_40();
*md = EVP_sha1();
*s2k = PBE_string2key;
return NULL;
} else if (heim_oid_cmp(oid, oid_id_pbeWithSHAAnd128BitRC4()) == 0) {
*c = EVP_rc4();
*md = EVP_sha1();
*s2k = PBE_string2key;
return oid_id_pkcs3_rc4();
#endif
} else if (heim_oid_cmp(oid, oid_id_pbeWithSHAAnd3_KeyTripleDES_CBC()) == 0) {
*c = EVP_des_ede3_cbc();
*md = EVP_sha1();
*s2k = PBE_string2key;
return oid_id_pkcs3_des_ede3_cbc();
}
return NULL;
}
int
_hx509_pbe_decrypt(hx509_context context,
hx509_lock lock,
const AlgorithmIdentifier *ai,
const heim_octet_string *econtent,
heim_octet_string *content)
{
const struct _hx509_password *pw;
heim_octet_string key, iv;
const heim_oid *enc_oid;
const EVP_CIPHER *c;
const EVP_MD *md;
PBE_string2key_func s2k;
int i, ret = 0;
memset(&key, 0, sizeof(key));
memset(&iv, 0, sizeof(iv));
memset(content, 0, sizeof(*content));
enc_oid = find_string2key(&ai->algorithm, &c, &md, &s2k);
if (enc_oid == NULL) {
hx509_set_error_string(context, 0, HX509_ALG_NOT_SUPP,
"String to key algorithm not supported");
ret = HX509_ALG_NOT_SUPP;
goto out;
}
key.length = EVP_CIPHER_key_length(c);
key.data = malloc(key.length);
if (key.data == NULL) {
ret = ENOMEM;
hx509_clear_error_string(context);
goto out;
}
iv.length = EVP_CIPHER_iv_length(c);
iv.data = malloc(iv.length);
if (iv.data == NULL) {
ret = ENOMEM;
hx509_clear_error_string(context);
goto out;
}
pw = _hx509_lock_get_passwords(lock);
ret = HX509_CRYPTO_INTERNAL_ERROR;
for (i = 0; i < pw->len + 1; i++) {
hx509_crypto crypto;
const char *password;
if (i < pw->len)
password = pw->val[i];
else
password = "";
ret = (*s2k)(context, password, ai->parameters, &crypto,
&key, &iv, enc_oid, md);
if (ret)
goto out;
ret = hx509_crypto_decrypt(crypto,
econtent->data,
econtent->length,
&iv,
content);
hx509_crypto_destroy(crypto);
if (ret == 0)
goto out;
}
out:
if (key.data)
free_octet_string(&key);
if (iv.data)
free_octet_string(&iv);
return ret;
}
/*
*
*/
int
_hx509_match_keys(hx509_cert c, hx509_private_key private_key)
{
const Certificate *cert;
const SubjectPublicKeyInfo *spi;
RSAPublicKey pk;
RSA *rsa;
size_t size;
int ret;
if (private_key->private_key.rsa == NULL)
return 0;
rsa = private_key->private_key.rsa;
if (rsa->d == NULL || rsa->p == NULL || rsa->q == NULL)
return 0;
cert = _hx509_get_cert(c);
spi = &cert->tbsCertificate.subjectPublicKeyInfo;
rsa = RSA_new();
if (rsa == NULL)
return 0;
ret = decode_RSAPublicKey(spi->subjectPublicKey.data,
spi->subjectPublicKey.length / 8,
&pk, &size);
if (ret) {
RSA_free(rsa);
return 0;
}
rsa->n = heim_int2BN(&pk.modulus);
rsa->e = heim_int2BN(&pk.publicExponent);
free_RSAPublicKey(&pk);
rsa->d = BN_dup(private_key->private_key.rsa->d);
rsa->p = BN_dup(private_key->private_key.rsa->p);
rsa->q = BN_dup(private_key->private_key.rsa->q);
rsa->dmp1 = BN_dup(private_key->private_key.rsa->dmp1);
rsa->dmq1 = BN_dup(private_key->private_key.rsa->dmq1);
if (rsa->n == NULL || rsa->e == NULL ||
rsa->d == NULL || rsa->p == NULL|| rsa->q == NULL ||
rsa->dmp1 == NULL || rsa->dmq1 == NULL) {
RSA_free(rsa);
return 0;
}
ret = RSA_check_key(rsa);
RSA_free(rsa);
return ret == 1;
}