103 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			103 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "tommath_private.h"
 | 
						|
#ifdef BN_MP_MONTGOMERY_REDUCE_C
 | 
						|
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | 
						|
/* SPDX-License-Identifier: Unlicense */
 | 
						|
 | 
						|
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
 | 
						|
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
 | 
						|
{
 | 
						|
   int      ix, digs;
 | 
						|
   mp_err   err;
 | 
						|
   mp_digit mu;
 | 
						|
 | 
						|
   /* can the fast reduction [comba] method be used?
 | 
						|
    *
 | 
						|
    * Note that unlike in mul you're safely allowed *less*
 | 
						|
    * than the available columns [255 per default] since carries
 | 
						|
    * are fixed up in the inner loop.
 | 
						|
    */
 | 
						|
   digs = (n->used * 2) + 1;
 | 
						|
   if ((digs < MP_WARRAY) &&
 | 
						|
       (x->used <= MP_WARRAY) &&
 | 
						|
       (n->used < MP_MAXFAST)) {
 | 
						|
      return s_mp_montgomery_reduce_fast(x, n, rho);
 | 
						|
   }
 | 
						|
 | 
						|
   /* grow the input as required */
 | 
						|
   if (x->alloc < digs) {
 | 
						|
      if ((err = mp_grow(x, digs)) != MP_OKAY) {
 | 
						|
         return err;
 | 
						|
      }
 | 
						|
   }
 | 
						|
   x->used = digs;
 | 
						|
 | 
						|
   for (ix = 0; ix < n->used; ix++) {
 | 
						|
      /* mu = ai * rho mod b
 | 
						|
       *
 | 
						|
       * The value of rho must be precalculated via
 | 
						|
       * montgomery_setup() such that
 | 
						|
       * it equals -1/n0 mod b this allows the
 | 
						|
       * following inner loop to reduce the
 | 
						|
       * input one digit at a time
 | 
						|
       */
 | 
						|
      mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
 | 
						|
 | 
						|
      /* a = a + mu * m * b**i */
 | 
						|
      {
 | 
						|
         int iy;
 | 
						|
         mp_digit *tmpn, *tmpx, u;
 | 
						|
         mp_word r;
 | 
						|
 | 
						|
         /* alias for digits of the modulus */
 | 
						|
         tmpn = n->dp;
 | 
						|
 | 
						|
         /* alias for the digits of x [the input] */
 | 
						|
         tmpx = x->dp + ix;
 | 
						|
 | 
						|
         /* set the carry to zero */
 | 
						|
         u = 0;
 | 
						|
 | 
						|
         /* Multiply and add in place */
 | 
						|
         for (iy = 0; iy < n->used; iy++) {
 | 
						|
            /* compute product and sum */
 | 
						|
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
 | 
						|
                      (mp_word)u + (mp_word)*tmpx;
 | 
						|
 | 
						|
            /* get carry */
 | 
						|
            u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
 | 
						|
 | 
						|
            /* fix digit */
 | 
						|
            *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
 | 
						|
         }
 | 
						|
         /* At this point the ix'th digit of x should be zero */
 | 
						|
 | 
						|
 | 
						|
         /* propagate carries upwards as required*/
 | 
						|
         while (u != 0u) {
 | 
						|
            *tmpx   += u;
 | 
						|
            u        = *tmpx >> MP_DIGIT_BIT;
 | 
						|
            *tmpx++ &= MP_MASK;
 | 
						|
         }
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* at this point the n.used'th least
 | 
						|
    * significant digits of x are all zero
 | 
						|
    * which means we can shift x to the
 | 
						|
    * right by n.used digits and the
 | 
						|
    * residue is unchanged.
 | 
						|
    */
 | 
						|
 | 
						|
   /* x = x/b**n.used */
 | 
						|
   mp_clamp(x);
 | 
						|
   mp_rshd(x, n->used);
 | 
						|
 | 
						|
   /* if x >= n then x = x - n */
 | 
						|
   if (mp_cmp_mag(x, n) != MP_LT) {
 | 
						|
      return s_mp_sub(x, n, x);
 | 
						|
   }
 | 
						|
 | 
						|
   return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 |