708 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			708 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2006 - 2008 Kungliga Tekniska Högskolan
 | |
|  * (Royal Institute of Technology, Stockholm, Sweden).
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * 3. Neither the name of the Institute nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <config.h>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <krb5-types.h>
 | |
| #include <rfc2459_asn1.h>
 | |
| 
 | |
| #include <der.h>
 | |
| 
 | |
| #include <rsa.h>
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #include <roken.h>
 | |
| 
 | |
| /**
 | |
|  * @page page_rsa RSA - public-key cryptography
 | |
|  *
 | |
|  * RSA is named by its inventors (Ron Rivest, Adi Shamir, and Leonard
 | |
|  * Adleman) (published in 1977), patented expired in 21 September 2000.
 | |
|  *
 | |
|  *
 | |
|  * Speed for RSA in seconds
 | |
|  *   no key blinding
 | |
|  *   1000 iteration,
 | |
|  *   same rsa keys (1024 and 2048)
 | |
|  *   operation performed each eteration sign, verify, encrypt, decrypt on a random bit pattern
 | |
|  *
 | |
|  * name		1024	2048	4098
 | |
|  * =================================
 | |
|  * gmp: 	 0.73	  6.60	 44.80
 | |
|  * tfm: 	 2.45	    --	    --
 | |
|  * ltm:		 3.79	 20.74	105.41	(default in hcrypto)
 | |
|  * openssl:	 4.04	 11.90	 82.59
 | |
|  * cdsa:	15.89	102.89	721.40
 | |
|  * imath: 	40.62	    --	    --
 | |
|  *
 | |
|  * See the library functions here: @ref hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Same as RSA_new_method() using NULL as engine.
 | |
|  *
 | |
|  * @return a newly allocated RSA object. Free with RSA_free().
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| RSA *
 | |
| RSA_new(void)
 | |
| {
 | |
|     return RSA_new_method(NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Allocate a new RSA object using the engine, if NULL is specified as
 | |
|  * the engine, use the default RSA engine as returned by
 | |
|  * ENGINE_get_default_RSA().
 | |
|  *
 | |
|  * @param engine Specific what ENGINE RSA provider should be used.
 | |
|  *
 | |
|  * @return a newly allocated RSA object. Free with RSA_free().
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| RSA *
 | |
| RSA_new_method(ENGINE *engine)
 | |
| {
 | |
|     RSA *rsa;
 | |
| 
 | |
|     rsa = calloc(1, sizeof(*rsa));
 | |
|     if (rsa == NULL)
 | |
| 	return NULL;
 | |
| 
 | |
|     rsa->references = 1;
 | |
| 
 | |
|     if (engine) {
 | |
| 	ENGINE_up_ref(engine);
 | |
| 	rsa->engine = engine;
 | |
|     } else {
 | |
| 	rsa->engine = ENGINE_get_default_RSA();
 | |
|     }
 | |
| 
 | |
|     if (rsa->engine) {
 | |
| 	rsa->meth = ENGINE_get_RSA(rsa->engine);
 | |
| 	if (rsa->meth == NULL) {
 | |
| 	    ENGINE_finish(engine);
 | |
| 	    free(rsa);
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (rsa->meth == NULL)
 | |
| 	rsa->meth = rk_UNCONST(RSA_get_default_method());
 | |
| 
 | |
|     (*rsa->meth->init)(rsa);
 | |
| 
 | |
|     return rsa;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Free an allocation RSA object.
 | |
|  *
 | |
|  * @param rsa the RSA object to free.
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| void
 | |
| RSA_free(RSA *rsa)
 | |
| {
 | |
|     if (rsa->references <= 0)
 | |
| 	abort();
 | |
| 
 | |
|     if (--rsa->references > 0)
 | |
| 	return;
 | |
| 
 | |
|     (*rsa->meth->finish)(rsa);
 | |
| 
 | |
|     if (rsa->engine)
 | |
| 	ENGINE_finish(rsa->engine);
 | |
| 
 | |
| #define free_if(f) if (f) { BN_free(f); }
 | |
|     free_if(rsa->n);
 | |
|     free_if(rsa->e);
 | |
|     free_if(rsa->d);
 | |
|     free_if(rsa->p);
 | |
|     free_if(rsa->q);
 | |
|     free_if(rsa->dmp1);
 | |
|     free_if(rsa->dmq1);
 | |
|     free_if(rsa->iqmp);
 | |
| #undef free_if
 | |
| 
 | |
|     memset(rsa, 0, sizeof(*rsa));
 | |
|     free(rsa);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Add an extra reference to the RSA object. The object should be free
 | |
|  * with RSA_free() to drop the reference.
 | |
|  *
 | |
|  * @param rsa the object to add reference counting too.
 | |
|  *
 | |
|  * @return the current reference count, can't safely be used except
 | |
|  * for debug printing.
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| int
 | |
| RSA_up_ref(RSA *rsa)
 | |
| {
 | |
|     return ++rsa->references;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Return the RSA_METHOD used for this RSA object.
 | |
|  *
 | |
|  * @param rsa the object to get the method from.
 | |
|  *
 | |
|  * @return the method used for this RSA object.
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| const RSA_METHOD *
 | |
| RSA_get_method(const RSA *rsa)
 | |
| {
 | |
|     return rsa->meth;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set a new method for the RSA keypair.
 | |
|  *
 | |
|  * @param rsa rsa parameter.
 | |
|  * @param method the new method for the RSA parameter.
 | |
|  *
 | |
|  * @return 1 on success.
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| int
 | |
| RSA_set_method(RSA *rsa, const RSA_METHOD *method)
 | |
| {
 | |
|     (*rsa->meth->finish)(rsa);
 | |
| 
 | |
|     if (rsa->engine) {
 | |
| 	ENGINE_finish(rsa->engine);
 | |
| 	rsa->engine = NULL;
 | |
|     }
 | |
| 
 | |
|     rsa->meth = method;
 | |
|     (*rsa->meth->init)(rsa);
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set the application data for the RSA object.
 | |
|  *
 | |
|  * @param rsa the rsa object to set the parameter for
 | |
|  * @param arg the data object to store
 | |
|  *
 | |
|  * @return 1 on success.
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| int
 | |
| RSA_set_app_data(RSA *rsa, void *arg)
 | |
| {
 | |
|     rsa->ex_data.sk = arg;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the application data for the RSA object.
 | |
|  *
 | |
|  * @param rsa the rsa object to get the parameter for
 | |
|  *
 | |
|  * @return the data object
 | |
|  *
 | |
|  * @ingroup hcrypto_rsa
 | |
|  */
 | |
| 
 | |
| void *
 | |
| RSA_get_app_data(const RSA *rsa)
 | |
| {
 | |
|     return rsa->ex_data.sk;
 | |
| }
 | |
| 
 | |
| int
 | |
| RSA_check_key(const RSA *key)
 | |
| {
 | |
|     static const unsigned char inbuf[] = "hello, world!";
 | |
|     RSA *rsa = rk_UNCONST(key);
 | |
|     void *buffer;
 | |
|     int ret;
 | |
| 
 | |
|     /*
 | |
|      * XXX I have no clue how to implement this w/o a bignum library.
 | |
|      * Well, when we have a RSA key pair, we can try to encrypt/sign
 | |
|      * and then decrypt/verify.
 | |
|      */
 | |
| 
 | |
|     if ((rsa->d == NULL || rsa->n == NULL) &&
 | |
| 	(rsa->p == NULL || rsa->q || rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL))
 | |
| 	return 0;
 | |
| 
 | |
|     buffer = malloc(RSA_size(rsa));
 | |
|     if (buffer == NULL)
 | |
| 	return 0;
 | |
| 
 | |
|     ret = RSA_private_encrypt(sizeof(inbuf), inbuf, buffer,
 | |
| 			     rsa, RSA_PKCS1_PADDING);
 | |
|     if (ret == -1) {
 | |
| 	free(buffer);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     ret = RSA_public_decrypt(ret, buffer, buffer,
 | |
| 			      rsa, RSA_PKCS1_PADDING);
 | |
|     if (ret == -1) {
 | |
| 	free(buffer);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (ret == sizeof(inbuf) && ct_memcmp(buffer, inbuf, sizeof(inbuf)) == 0) {
 | |
| 	free(buffer);
 | |
| 	return 1;
 | |
|     }
 | |
|     free(buffer);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| RSA_size(const RSA *rsa)
 | |
| {
 | |
|     return BN_num_bytes(rsa->n);
 | |
| }
 | |
| 
 | |
| #define RSAFUNC(name, body) \
 | |
| int \
 | |
| name(int flen,const unsigned char* f, unsigned char* t, RSA* r, int p){\
 | |
|     return body; \
 | |
| }
 | |
| 
 | |
| RSAFUNC(RSA_public_encrypt, (r)->meth->rsa_pub_enc(flen, f, t, r, p))
 | |
| RSAFUNC(RSA_public_decrypt, (r)->meth->rsa_pub_dec(flen, f, t, r, p))
 | |
| RSAFUNC(RSA_private_encrypt, (r)->meth->rsa_priv_enc(flen, f, t, r, p))
 | |
| RSAFUNC(RSA_private_decrypt, (r)->meth->rsa_priv_dec(flen, f, t, r, p))
 | |
| 
 | |
| static const heim_octet_string null_entry_oid = { 2, rk_UNCONST("\x05\x00") };
 | |
| 
 | |
| static const unsigned sha1_oid_tree[] = { 1, 3, 14, 3, 2, 26 };
 | |
| static const AlgorithmIdentifier _signature_sha1_data = {
 | |
|     { 6, rk_UNCONST(sha1_oid_tree) }, rk_UNCONST(&null_entry_oid)
 | |
| };
 | |
| static const unsigned sha256_oid_tree[] = { 2, 16, 840, 1, 101, 3, 4, 2, 1 };
 | |
| static const AlgorithmIdentifier _signature_sha256_data = {
 | |
|     { 9, rk_UNCONST(sha256_oid_tree) }, rk_UNCONST(&null_entry_oid)
 | |
| };
 | |
| static const unsigned md5_oid_tree[] = { 1, 2, 840, 113549, 2, 5 };
 | |
| static const AlgorithmIdentifier _signature_md5_data = {
 | |
|     { 6, rk_UNCONST(md5_oid_tree) }, rk_UNCONST(&null_entry_oid)
 | |
| };
 | |
| 
 | |
| 
 | |
| int
 | |
| RSA_sign(int type, const unsigned char *from, unsigned int flen,
 | |
| 	 unsigned char *to, unsigned int *tlen, RSA *rsa)
 | |
| {
 | |
|     if (rsa->meth->rsa_sign)
 | |
| 	return rsa->meth->rsa_sign(type, from, flen, to, tlen, rsa);
 | |
| 
 | |
|     if (rsa->meth->rsa_priv_enc) {
 | |
| 	heim_octet_string indata;
 | |
| 	DigestInfo di;
 | |
| 	size_t size;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&di, 0, sizeof(di));
 | |
| 
 | |
| 	if (type == NID_sha1) {
 | |
| 	    di.digestAlgorithm = _signature_sha1_data;
 | |
| 	} else if (type == NID_md5) {
 | |
| 	    di.digestAlgorithm = _signature_md5_data;
 | |
| 	} else if (type == NID_sha256) {
 | |
| 	    di.digestAlgorithm = _signature_sha256_data;
 | |
| 	} else
 | |
| 	    return -1;
 | |
| 
 | |
| 	di.digest.data = rk_UNCONST(from);
 | |
| 	di.digest.length = flen;
 | |
| 
 | |
| 	ASN1_MALLOC_ENCODE(DigestInfo,
 | |
| 			   indata.data,
 | |
| 			   indata.length,
 | |
| 			   &di,
 | |
| 			   &size,
 | |
| 			   ret);
 | |
| 	if (ret)
 | |
| 	    return ret;
 | |
| 	if (indata.length != size)
 | |
| 	    abort();
 | |
| 
 | |
| 	ret = rsa->meth->rsa_priv_enc(indata.length, indata.data, to,
 | |
| 				      rsa, RSA_PKCS1_PADDING);
 | |
| 	free(indata.data);
 | |
| 	if (ret > 0) {
 | |
| 	    *tlen = ret;
 | |
| 	    ret = 1;
 | |
| 	} else
 | |
| 	    ret = 0;
 | |
| 
 | |
| 	return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| RSA_verify(int type, const unsigned char *from, unsigned int flen,
 | |
| 	   unsigned char *sigbuf, unsigned int siglen, RSA *rsa)
 | |
| {
 | |
|     if (rsa->meth->rsa_verify)
 | |
| 	return rsa->meth->rsa_verify(type, from, flen, sigbuf, siglen, rsa);
 | |
| 
 | |
|     if (rsa->meth->rsa_pub_dec) {
 | |
| 	const AlgorithmIdentifier *digest_alg;
 | |
| 	void *data;
 | |
| 	DigestInfo di;
 | |
| 	size_t size;
 | |
| 	int ret, ret2;
 | |
| 
 | |
| 	data = malloc(RSA_size(rsa));
 | |
| 	if (data == NULL)
 | |
| 	    return -1;
 | |
| 
 | |
| 	memset(&di, 0, sizeof(di));
 | |
| 
 | |
| 	ret = rsa->meth->rsa_pub_dec(siglen, sigbuf, data, rsa, RSA_PKCS1_PADDING);
 | |
| 	if (ret <= 0) {
 | |
| 	    free(data);
 | |
| 	    return -2;
 | |
| 	}
 | |
| 
 | |
| 	ret2 = decode_DigestInfo(data, ret, &di, &size);
 | |
| 	free(data);
 | |
| 	if (ret2 != 0)
 | |
| 	    return -3;
 | |
| 	if (ret != size) {
 | |
| 	    free_DigestInfo(&di);
 | |
| 	    return -4;
 | |
| 	}
 | |
| 
 | |
| 	if (flen != di.digest.length || memcmp(di.digest.data, from, flen) != 0) {
 | |
| 	    free_DigestInfo(&di);
 | |
| 	    return -5;
 | |
| 	}
 | |
| 
 | |
| 	if (type == NID_sha1) {
 | |
| 	    digest_alg = &_signature_sha1_data;
 | |
| 	} else if (type == NID_md5) {
 | |
| 	    digest_alg = &_signature_md5_data;
 | |
| 	} else if (type == NID_sha256) {
 | |
| 	    digest_alg = &_signature_sha256_data;
 | |
| 	} else {
 | |
| 	    free_DigestInfo(&di);
 | |
| 	    return -1;
 | |
| 	}
 | |
| 
 | |
| 	ret = der_heim_oid_cmp(&digest_alg->algorithm,
 | |
| 			       &di.digestAlgorithm.algorithm);
 | |
| 	free_DigestInfo(&di);
 | |
| 
 | |
| 	if (ret != 0)
 | |
| 	    return 0;
 | |
| 	return 1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A NULL RSA_METHOD that returns failure for all operations. This is
 | |
|  * used as the default RSA method if we don't have any native
 | |
|  * support.
 | |
|  */
 | |
| 
 | |
| static RSAFUNC(null_rsa_public_encrypt, -1)
 | |
| static RSAFUNC(null_rsa_public_decrypt, -1)
 | |
| static RSAFUNC(null_rsa_private_encrypt, -1)
 | |
| static RSAFUNC(null_rsa_private_decrypt, -1)
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  */
 | |
| 
 | |
| int
 | |
| RSA_generate_key_ex(RSA *r, int bits, BIGNUM *e, BN_GENCB *cb)
 | |
| {
 | |
|     if (r->meth->rsa_keygen)
 | |
| 	return (*r->meth->rsa_keygen)(r, bits, e, cb);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static int
 | |
| null_rsa_init(RSA *rsa)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| null_rsa_finish(RSA *rsa)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static const RSA_METHOD rsa_null_method = {
 | |
|     "hcrypto null RSA",
 | |
|     null_rsa_public_encrypt,
 | |
|     null_rsa_public_decrypt,
 | |
|     null_rsa_private_encrypt,
 | |
|     null_rsa_private_decrypt,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     null_rsa_init,
 | |
|     null_rsa_finish,
 | |
|     0,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL,
 | |
|     NULL
 | |
| };
 | |
| 
 | |
| const RSA_METHOD *
 | |
| RSA_null_method(void)
 | |
| {
 | |
|     return &rsa_null_method;
 | |
| }
 | |
| 
 | |
| extern const RSA_METHOD hc_rsa_gmp_method;
 | |
| extern const RSA_METHOD hc_rsa_tfm_method;
 | |
| extern const RSA_METHOD hc_rsa_ltm_method;
 | |
| static const RSA_METHOD *default_rsa_method = &hc_rsa_ltm_method;
 | |
| 
 | |
| 
 | |
| const RSA_METHOD *
 | |
| RSA_get_default_method(void)
 | |
| {
 | |
|     return default_rsa_method;
 | |
| }
 | |
| 
 | |
| void
 | |
| RSA_set_default_method(const RSA_METHOD *meth)
 | |
| {
 | |
|     default_rsa_method = meth;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  */
 | |
| 
 | |
| RSA *
 | |
| d2i_RSAPrivateKey(RSA *rsa, const unsigned char **pp, size_t len)
 | |
| {
 | |
|     RSAPrivateKey data;
 | |
|     RSA *k = rsa;
 | |
|     size_t size;
 | |
|     int ret;
 | |
| 
 | |
|     ret = decode_RSAPrivateKey(*pp, len, &data, &size);
 | |
|     if (ret)
 | |
| 	return NULL;
 | |
| 
 | |
|     *pp += size;
 | |
| 
 | |
|     if (k == NULL) {
 | |
| 	k = RSA_new();
 | |
| 	if (k == NULL) {
 | |
| 	    free_RSAPrivateKey(&data);
 | |
| 	    return NULL;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     k->n = _hc_integer_to_BN(&data.modulus, NULL);
 | |
|     k->e = _hc_integer_to_BN(&data.publicExponent, NULL);
 | |
|     k->d = _hc_integer_to_BN(&data.privateExponent, NULL);
 | |
|     k->p = _hc_integer_to_BN(&data.prime1, NULL);
 | |
|     k->q = _hc_integer_to_BN(&data.prime2, NULL);
 | |
|     k->dmp1 = _hc_integer_to_BN(&data.exponent1, NULL);
 | |
|     k->dmq1 = _hc_integer_to_BN(&data.exponent2, NULL);
 | |
|     k->iqmp = _hc_integer_to_BN(&data.coefficient, NULL);
 | |
|     free_RSAPrivateKey(&data);
 | |
| 
 | |
|     if (k->n == NULL || k->e == NULL || k->d == NULL || k->p == NULL ||
 | |
| 	k->q == NULL || k->dmp1 == NULL || k->dmq1 == NULL || k->iqmp == NULL)
 | |
|     {
 | |
| 	RSA_free(k);
 | |
| 	return NULL;
 | |
|     }
 | |
| 
 | |
|     return k;
 | |
| }
 | |
| 
 | |
| int
 | |
| i2d_RSAPrivateKey(RSA *rsa, unsigned char **pp)
 | |
| {
 | |
|     RSAPrivateKey data;
 | |
|     size_t size;
 | |
|     int ret;
 | |
| 
 | |
|     if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL || rsa->p == NULL ||
 | |
| 	rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 == NULL ||
 | |
| 	rsa->iqmp == NULL)
 | |
| 	return -1;
 | |
| 
 | |
|     memset(&data, 0, sizeof(data));
 | |
| 
 | |
|     ret  = _hc_BN_to_integer(rsa->n, &data.modulus);
 | |
|     ret |= _hc_BN_to_integer(rsa->e, &data.publicExponent);
 | |
|     ret |= _hc_BN_to_integer(rsa->d, &data.privateExponent);
 | |
|     ret |= _hc_BN_to_integer(rsa->p, &data.prime1);
 | |
|     ret |= _hc_BN_to_integer(rsa->q, &data.prime2);
 | |
|     ret |= _hc_BN_to_integer(rsa->dmp1, &data.exponent1);
 | |
|     ret |= _hc_BN_to_integer(rsa->dmq1, &data.exponent2);
 | |
|     ret |= _hc_BN_to_integer(rsa->iqmp, &data.coefficient);
 | |
|     if (ret) {
 | |
| 	free_RSAPrivateKey(&data);
 | |
| 	return -1;
 | |
|     }
 | |
| 
 | |
|     if (pp == NULL) {
 | |
| 	size = length_RSAPrivateKey(&data);
 | |
| 	free_RSAPrivateKey(&data);
 | |
|     } else {
 | |
| 	void *p;
 | |
| 	size_t len;
 | |
| 
 | |
| 	ASN1_MALLOC_ENCODE(RSAPrivateKey, p, len, &data, &size, ret);
 | |
| 	free_RSAPrivateKey(&data);
 | |
| 	if (ret)
 | |
| 	    return -1;
 | |
| 	if (len != size)
 | |
| 	    abort();
 | |
| 
 | |
| 	memcpy(*pp, p, size);
 | |
| 	free(p);
 | |
| 
 | |
| 	*pp += size;
 | |
| 
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| int
 | |
| i2d_RSAPublicKey(RSA *rsa, unsigned char **pp)
 | |
| {
 | |
|     RSAPublicKey data;
 | |
|     size_t size;
 | |
|     int ret;
 | |
| 
 | |
|     memset(&data, 0, sizeof(data));
 | |
| 
 | |
|     if (_hc_BN_to_integer(rsa->n, &data.modulus) ||
 | |
| 	_hc_BN_to_integer(rsa->e, &data.publicExponent))
 | |
|     {
 | |
| 	free_RSAPublicKey(&data);
 | |
| 	return -1;
 | |
|     }
 | |
| 
 | |
|     if (pp == NULL) {
 | |
| 	size = length_RSAPublicKey(&data);
 | |
| 	free_RSAPublicKey(&data);
 | |
|     } else {
 | |
| 	void *p;
 | |
| 	size_t len;
 | |
| 
 | |
| 	ASN1_MALLOC_ENCODE(RSAPublicKey, p, len, &data, &size, ret);
 | |
| 	free_RSAPublicKey(&data);
 | |
| 	if (ret)
 | |
| 	    return -1;
 | |
| 	if (len != size)
 | |
| 	    abort();
 | |
| 
 | |
| 	memcpy(*pp, p, size);
 | |
| 	free(p);
 | |
| 
 | |
| 	*pp += size;
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| RSA *
 | |
| d2i_RSAPublicKey(RSA *rsa, const unsigned char **pp, size_t len)
 | |
| {
 | |
|     RSAPublicKey data;
 | |
|     RSA *k = rsa;
 | |
|     size_t size;
 | |
|     int ret;
 | |
| 
 | |
|     ret = decode_RSAPublicKey(*pp, len, &data, &size);
 | |
|     if (ret)
 | |
| 	return NULL;
 | |
| 
 | |
|     *pp += size;
 | |
| 
 | |
|     if (k == NULL) {
 | |
| 	k = RSA_new();
 | |
| 	if (k == NULL) {
 | |
| 	    free_RSAPublicKey(&data);
 | |
| 	    return NULL;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     k->n = _hc_integer_to_BN(&data.modulus, NULL);
 | |
|     k->e = _hc_integer_to_BN(&data.publicExponent, NULL);
 | |
| 
 | |
|     free_RSAPublicKey(&data);
 | |
| 
 | |
|     if (k->n == NULL || k->e == NULL) {
 | |
| 	RSA_free(k);
 | |
| 	return NULL;
 | |
|     }
 | |
| 
 | |
|     return k;
 | |
| }
 | 
