 8dc29ae1a0
			
		
	
	8dc29ae1a0
	
	
	
		
			
			Now that mp_prime() is no longer used, remove bn_mp_isprime.c from the source tree. Change-Id: Ie0f7ce3184c000f27ae5b9dbe07b323c02ce7199
		
			
				
	
	
		
			591 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			591 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
 | |
|  */
 | |
| #ifndef BN_H_
 | |
| #define BN_H_
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include <limits.h>
 | |
| 
 | |
| #include <tommath_class.h>
 | |
| 
 | |
| #ifndef MIN
 | |
|    #define MIN(x,y) ((x)<(y)?(x):(y))
 | |
| #endif
 | |
| 
 | |
| #ifndef MAX
 | |
|    #define MAX(x,y) ((x)>(y)?(x):(y))
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| 
 | |
| /* C++ compilers don't like assigning void * to mp_digit * */
 | |
| #define  OPT_CAST(x)  (x *)
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* C on the other hand doesn't care */
 | |
| #define  OPT_CAST(x)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* detect 64-bit mode if possible */
 | |
| #if defined(__x86_64__)
 | |
|    #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
 | |
|       #define MP_64BIT
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| /* some default configurations.
 | |
|  *
 | |
|  * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 | |
|  * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 | |
|  *
 | |
|  * At the very least a mp_digit must be able to hold 7 bits
 | |
|  * [any size beyond that is ok provided it doesn't overflow the data type]
 | |
|  */
 | |
| #ifdef MP_8BIT
 | |
|    typedef unsigned char      mp_digit;
 | |
|    typedef unsigned short     mp_word;
 | |
| #elif defined(MP_16BIT)
 | |
|    typedef unsigned short     mp_digit;
 | |
|    typedef unsigned long      mp_word;
 | |
| #elif defined(MP_64BIT)
 | |
|    /* for GCC only on supported platforms */
 | |
| #ifndef CRYPT
 | |
|    typedef unsigned long long ulong64;
 | |
|    typedef signed long long   long64;
 | |
| #endif
 | |
| 
 | |
|    typedef unsigned long      mp_digit;
 | |
|    typedef unsigned long      mp_word __attribute__ ((mode(TI)));
 | |
| 
 | |
|    #define DIGIT_BIT          60
 | |
| #else
 | |
|    /* this is the default case, 28-bit digits */
 | |
| 
 | |
|    /* this is to make porting into LibTomCrypt easier :-) */
 | |
| #ifndef CRYPT
 | |
|    #if defined(_MSC_VER) || defined(__BORLANDC__)
 | |
|       typedef unsigned __int64   ulong64;
 | |
|       typedef signed __int64     long64;
 | |
|    #else
 | |
|       typedef unsigned long long ulong64;
 | |
|       typedef signed long long   long64;
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
|    typedef unsigned long      mp_digit;
 | |
|    typedef ulong64            mp_word;
 | |
| 
 | |
| #ifdef MP_31BIT
 | |
|    /* this is an extension that uses 31-bit digits */
 | |
|    #define DIGIT_BIT          31
 | |
| #else
 | |
|    /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
 | |
|    #define DIGIT_BIT          28
 | |
|    #define MP_28BIT
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* define heap macros */
 | |
| #ifndef CRYPT
 | |
|    /* default to libc stuff */
 | |
|    #ifndef XMALLOC
 | |
|        #define XMALLOC  malloc
 | |
|        #define XFREE    free
 | |
|        #define XREALLOC realloc
 | |
|        #define XCALLOC  calloc
 | |
|    #else
 | |
|       /* prototypes for our heap functions */
 | |
|       extern void *XMALLOC(size_t n);
 | |
|       extern void *XREALLOC(void *p, size_t n);
 | |
|       extern void *XCALLOC(size_t n, size_t s);
 | |
|       extern void XFREE(void *p);
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
 | |
| #ifndef DIGIT_BIT
 | |
|    #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
 | |
| #endif
 | |
| 
 | |
| #define MP_DIGIT_BIT     DIGIT_BIT
 | |
| #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
 | |
| #define MP_DIGIT_MAX     MP_MASK
 | |
| 
 | |
| /* equalities */
 | |
| #define MP_LT        -1   /* less than */
 | |
| #define MP_EQ         0   /* equal to */
 | |
| #define MP_GT         1   /* greater than */
 | |
| 
 | |
| #define MP_ZPOS       0   /* positive integer */
 | |
| #define MP_NEG        1   /* negative */
 | |
| 
 | |
| #define MP_OKAY       0   /* ok result */
 | |
| #define MP_MEM        -2  /* out of mem */
 | |
| #define MP_VAL        -3  /* invalid input */
 | |
| #define MP_RANGE      MP_VAL
 | |
| 
 | |
| #define MP_YES        1   /* yes response */
 | |
| #define MP_NO         0   /* no response */
 | |
| 
 | |
| /* Primality generation flags */
 | |
| #define LTM_PRIME_BBS      0x0001 /* BBS style prime */
 | |
| #define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
 | |
| #define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
 | |
| 
 | |
| typedef int           mp_err;
 | |
| 
 | |
| /* you'll have to tune these... */
 | |
| extern int KARATSUBA_MUL_CUTOFF,
 | |
|            KARATSUBA_SQR_CUTOFF,
 | |
|            TOOM_MUL_CUTOFF,
 | |
|            TOOM_SQR_CUTOFF;
 | |
| 
 | |
| /* define this to use lower memory usage routines (exptmods mostly) */
 | |
| /* #define MP_LOW_MEM */
 | |
| 
 | |
| /* default precision */
 | |
| #ifndef MP_PREC
 | |
|    #ifndef MP_LOW_MEM
 | |
|       #define MP_PREC                 32     /* default digits of precision */
 | |
|    #else
 | |
|       #define MP_PREC                 8      /* default digits of precision */
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
 | |
| #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
 | |
| 
 | |
| /* the infamous mp_int structure */
 | |
| typedef struct  {
 | |
|     int used, alloc, sign;
 | |
|     mp_digit *dp;
 | |
| } mp_int;
 | |
| 
 | |
| /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
 | |
| typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
 | |
| 
 | |
| 
 | |
| #define USED(m)    ((m)->used)
 | |
| #define DIGIT(m,k) ((m)->dp[(k)])
 | |
| #define SIGN(m)    ((m)->sign)
 | |
| 
 | |
| /* error code to const char* string */
 | |
| const char *mp_error_to_string(int code);
 | |
| 
 | |
| /* ---> init and deinit bignum functions <--- */
 | |
| /* init a bignum */
 | |
| int mp_init(mp_int *a);
 | |
| 
 | |
| /* free a bignum */
 | |
| void mp_clear(mp_int *a);
 | |
| 
 | |
| /* init a null terminated series of arguments */
 | |
| int mp_init_multi(mp_int *mp, ...);
 | |
| 
 | |
| /* clear a null terminated series of arguments */
 | |
| void mp_clear_multi(mp_int *mp, ...);
 | |
| 
 | |
| /* exchange two ints */
 | |
| void mp_exch(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* shrink ram required for a bignum */
 | |
| int mp_shrink(mp_int *a);
 | |
| 
 | |
| /* grow an int to a given size */
 | |
| int mp_grow(mp_int *a, int size);
 | |
| 
 | |
| /* init to a given number of digits */
 | |
| int mp_init_size(mp_int *a, int size);
 | |
| 
 | |
| /* ---> Basic Manipulations <--- */
 | |
| #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
 | |
| #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
 | |
| #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
 | |
| #define mp_isneg(a)  (((a)->sign) ? MP_YES : MP_NO)
 | |
| 
 | |
| /* set to zero */
 | |
| void mp_zero(mp_int *a);
 | |
| 
 | |
| /* set to zero, multi */
 | |
| void mp_zero_multi(mp_int *a, ...);
 | |
| 
 | |
| /* set to a digit */
 | |
| void mp_set(mp_int *a, mp_digit b);
 | |
| 
 | |
| /* set a 32-bit const */
 | |
| int mp_set_int(mp_int *a, unsigned long b);
 | |
| 
 | |
| /* get a 32-bit value */
 | |
| unsigned long mp_get_int(mp_int * a);
 | |
| 
 | |
| /* initialize and set a digit */
 | |
| int mp_init_set (mp_int * a, mp_digit b);
 | |
| 
 | |
| /* initialize and set 32-bit value */
 | |
| int mp_init_set_int (mp_int * a, unsigned long b);
 | |
| 
 | |
| /* copy, b = a */
 | |
| int mp_copy(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* inits and copies, a = b */
 | |
| int mp_init_copy(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* trim unused digits */
 | |
| void mp_clamp(mp_int *a);
 | |
| 
 | |
| /* ---> digit manipulation <--- */
 | |
| 
 | |
| /* right shift by "b" digits */
 | |
| void mp_rshd(mp_int *a, int b);
 | |
| 
 | |
| /* left shift by "b" digits */
 | |
| int mp_lshd(mp_int *a, int b);
 | |
| 
 | |
| /* c = a / 2**b */
 | |
| int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
 | |
| 
 | |
| /* b = a/2 */
 | |
| int mp_div_2(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* c = a * 2**b */
 | |
| int mp_mul_2d(mp_int *a, int b, mp_int *c);
 | |
| 
 | |
| /* b = a*2 */
 | |
| int mp_mul_2(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* c = a mod 2**d */
 | |
| int mp_mod_2d(mp_int *a, int b, mp_int *c);
 | |
| 
 | |
| /* computes a = 2**b */
 | |
| int mp_2expt(mp_int *a, int b);
 | |
| 
 | |
| /* Counts the number of lsbs which are zero before the first zero bit */
 | |
| int mp_cnt_lsb(mp_int *a);
 | |
| 
 | |
| /* I Love Earth! */
 | |
| 
 | |
| /* makes a pseudo-random int of a given size */
 | |
| int mp_rand(mp_int *a, int digits);
 | |
| 
 | |
| /* ---> binary operations <--- */
 | |
| /* c = a XOR b  */
 | |
| int mp_xor(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* c = a OR b */
 | |
| int mp_or(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* c = a AND b */
 | |
| int mp_and(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* ---> Basic arithmetic <--- */
 | |
| 
 | |
| /* b = -a */
 | |
| int mp_neg(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* b = |a| */
 | |
| int mp_abs(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* compare a to b */
 | |
| int mp_cmp(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* compare |a| to |b| */
 | |
| int mp_cmp_mag(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* c = a + b */
 | |
| int mp_add(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* c = a - b */
 | |
| int mp_sub(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* c = a * b */
 | |
| int mp_mul(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* b = a*a  */
 | |
| int mp_sqr(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* a/b => cb + d == a */
 | |
| int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | |
| 
 | |
| /* c = a mod b, 0 <= c < b  */
 | |
| int mp_mod(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* ---> single digit functions <--- */
 | |
| 
 | |
| /* compare against a single digit */
 | |
| int mp_cmp_d(mp_int *a, mp_digit b);
 | |
| 
 | |
| /* c = a + b */
 | |
| int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
 | |
| 
 | |
| /* c = a - b */
 | |
| int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
 | |
| 
 | |
| /* c = a * b */
 | |
| int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
 | |
| 
 | |
| /* a/b => cb + d == a */
 | |
| int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
 | |
| 
 | |
| /* a/3 => 3c + d == a */
 | |
| int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
 | |
| 
 | |
| /* c = a**b */
 | |
| int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
 | |
| 
 | |
| /* c = a mod b, 0 <= c < b  */
 | |
| int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
 | |
| 
 | |
| /* ---> number theory <--- */
 | |
| 
 | |
| /* d = a + b (mod c) */
 | |
| int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | |
| 
 | |
| /* d = a - b (mod c) */
 | |
| int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | |
| 
 | |
| /* d = a * b (mod c) */
 | |
| int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | |
| 
 | |
| /* c = a * a (mod b) */
 | |
| int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* c = 1/a (mod b) */
 | |
| int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* c = (a, b) */
 | |
| int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* produces value such that U1*a + U2*b = U3 */
 | |
| int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
 | |
| 
 | |
| /* c = [a, b] or (a*b)/(a, b) */
 | |
| int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* finds one of the b'th root of a, such that |c|**b <= |a|
 | |
|  *
 | |
|  * returns error if a < 0 and b is even
 | |
|  */
 | |
| int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
 | |
| 
 | |
| /* special sqrt algo */
 | |
| int mp_sqrt(mp_int *arg, mp_int *ret);
 | |
| 
 | |
| /* is number a square? */
 | |
| int mp_is_square(mp_int *arg, int *ret);
 | |
| 
 | |
| /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
 | |
| int mp_jacobi(mp_int *a, mp_int *n, int *c);
 | |
| 
 | |
| /* used to setup the Barrett reduction for a given modulus b */
 | |
| int mp_reduce_setup(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* Barrett Reduction, computes a (mod b) with a precomputed value c
 | |
|  *
 | |
|  * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 | |
|  * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 | |
|  */
 | |
| int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
 | |
| 
 | |
| /* setups the montgomery reduction */
 | |
| int mp_montgomery_setup(mp_int *a, mp_digit *mp);
 | |
| 
 | |
| /* computes a = B**n mod b without division or multiplication useful for
 | |
|  * normalizing numbers in a Montgomery system.
 | |
|  */
 | |
| int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
 | |
| 
 | |
| /* computes x/R == x (mod N) via Montgomery Reduction */
 | |
| int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
 | |
| 
 | |
| /* returns 1 if a is a valid DR modulus */
 | |
| int mp_dr_is_modulus(mp_int *a);
 | |
| 
 | |
| /* sets the value of "d" required for mp_dr_reduce */
 | |
| void mp_dr_setup(mp_int *a, mp_digit *d);
 | |
| 
 | |
| /* reduces a modulo b using the Diminished Radix method */
 | |
| int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
 | |
| 
 | |
| /* returns true if a can be reduced with mp_reduce_2k */
 | |
| int mp_reduce_is_2k(mp_int *a);
 | |
| 
 | |
| /* determines k value for 2k reduction */
 | |
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
 | |
| 
 | |
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
 | |
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
 | |
| 
 | |
| /* returns true if a can be reduced with mp_reduce_2k_l */
 | |
| int mp_reduce_is_2k_l(mp_int *a);
 | |
| 
 | |
| /* determines k value for 2k reduction */
 | |
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
 | |
| 
 | |
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
 | |
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
 | |
| 
 | |
| /* d = a**b (mod c) */
 | |
| int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | |
| 
 | |
| /* ---> Primes <--- */
 | |
| 
 | |
| /* number of primes */
 | |
| #ifdef MP_8BIT
 | |
|    #define PRIME_SIZE      31
 | |
| #else
 | |
|    #define PRIME_SIZE      256
 | |
| #endif
 | |
| 
 | |
| /* table of first PRIME_SIZE primes */
 | |
| extern const mp_digit ltm_prime_tab[];
 | |
| 
 | |
| /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
 | |
| int mp_prime_is_divisible(mp_int *a, int *result);
 | |
| 
 | |
| /* performs one Fermat test of "a" using base "b".
 | |
|  * Sets result to 0 if composite or 1 if probable prime
 | |
|  */
 | |
| int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
 | |
| 
 | |
| /* performs one Miller-Rabin test of "a" using base "b".
 | |
|  * Sets result to 0 if composite or 1 if probable prime
 | |
|  */
 | |
| int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
 | |
| 
 | |
| /* This gives [for a given bit size] the number of trials required
 | |
|  * such that Miller-Rabin gives a prob of failure lower than 2^-96
 | |
|  */
 | |
| int mp_prime_rabin_miller_trials(int size);
 | |
| 
 | |
| /* performs t rounds of Miller-Rabin on "a" using the first
 | |
|  * t prime bases.  Also performs an initial sieve of trial
 | |
|  * division.  Determines if "a" is prime with probability
 | |
|  * of error no more than (1/4)**t.
 | |
|  *
 | |
|  * Sets result to 1 if probably prime, 0 otherwise
 | |
|  */
 | |
| int mp_prime_is_prime(mp_int *a, int t, int *result);
 | |
| 
 | |
| /* finds the next prime after the number "a" using "t" trials
 | |
|  * of Miller-Rabin.
 | |
|  *
 | |
|  * bbs_style = 1 means the prime must be congruent to 3 mod 4
 | |
|  */
 | |
| int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
 | |
| 
 | |
| /* makes a truly random prime of a given size (bytes),
 | |
|  * call with bbs = 1 if you want it to be congruent to 3 mod 4
 | |
|  *
 | |
|  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 | |
|  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 | |
|  * so it can be NULL
 | |
|  *
 | |
|  * The prime generated will be larger than 2^(8*size).
 | |
|  */
 | |
| #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
 | |
| 
 | |
| /* makes a truly random prime of a given size (bits),
 | |
|  *
 | |
|  * Flags are as follows:
 | |
|  *
 | |
|  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 | |
|  *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 | |
|  *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 | |
|  *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 | |
|  *
 | |
|  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 | |
|  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 | |
|  * so it can be NULL
 | |
|  *
 | |
|  */
 | |
| int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
 | |
| 
 | |
| int mp_find_prime(mp_int *a, int t);
 | |
| 
 | |
| /* ---> radix conversion <--- */
 | |
| int mp_count_bits(mp_int *a);
 | |
| 
 | |
| int mp_unsigned_bin_size(mp_int *a);
 | |
| int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
 | |
| int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
 | |
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
 | |
| 
 | |
| int mp_signed_bin_size(mp_int *a);
 | |
| int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
 | |
| int mp_to_signed_bin(mp_int *a,  unsigned char *b);
 | |
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
 | |
| 
 | |
| int mp_read_radix(mp_int *a, const char *str, int radix);
 | |
| int mp_toradix(mp_int *a, char *str, int radix);
 | |
| int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
 | |
| int mp_radix_size(mp_int *a, int radix, int *size);
 | |
| 
 | |
| int mp_fread(mp_int *a, int radix, FILE *stream);
 | |
| int mp_fwrite(mp_int *a, int radix, FILE *stream);
 | |
| 
 | |
| #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
 | |
| #define mp_raw_size(mp)           mp_signed_bin_size(mp)
 | |
| #define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
 | |
| #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
 | |
| #define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
 | |
| #define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))
 | |
| 
 | |
| #define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
 | |
| #define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
 | |
| #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
 | |
| #define mp_tohex(M, S)     mp_toradix((M), (S), 16)
 | |
| 
 | |
| /* lowlevel functions, do not call! */
 | |
| int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
 | |
| int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
 | |
| #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 | |
| int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 | |
| int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 | |
| int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 | |
| int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
 | |
| int fast_s_mp_sqr(mp_int *a, mp_int *b);
 | |
| int s_mp_sqr(mp_int *a, mp_int *b);
 | |
| int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
 | |
| int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
 | |
| int mp_karatsuba_sqr(mp_int *a, mp_int *b);
 | |
| int mp_toom_sqr(mp_int *a, mp_int *b);
 | |
| int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
 | |
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
 | |
| int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
 | |
| int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
 | |
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
 | |
| void bn_reverse(unsigned char *s, int len);
 | |
| 
 | |
| extern const char *mp_s_rmap;
 | |
| 
 | |
| #ifdef __cplusplus
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* $Source: /cvs/libtom/libtommath/tommath.h,v $ */
 | |
| /* $Revision: 1.8 $ */
 | |
| /* $Date: 2006/03/31 14:18:44 $ */
 |