175 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_S_MP_KARATSUBA_MUL_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis */
 | |
| /* SPDX-License-Identifier: Unlicense */
 | |
| 
 | |
| /* c = |a| * |b| using Karatsuba Multiplication using
 | |
|  * three half size multiplications
 | |
|  *
 | |
|  * Let B represent the radix [e.g. 2**MP_DIGIT_BIT] and
 | |
|  * let n represent half of the number of digits in
 | |
|  * the min(a,b)
 | |
|  *
 | |
|  * a = a1 * B**n + a0
 | |
|  * b = b1 * B**n + b0
 | |
|  *
 | |
|  * Then, a * b =>
 | |
|    a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 | |
|  *
 | |
|  * Note that a1b1 and a0b0 are used twice and only need to be
 | |
|  * computed once.  So in total three half size (half # of
 | |
|  * digit) multiplications are performed, a0b0, a1b1 and
 | |
|  * (a1+b1)(a0+b0)
 | |
|  *
 | |
|  * Note that a multiplication of half the digits requires
 | |
|  * 1/4th the number of single precision multiplications so in
 | |
|  * total after one call 25% of the single precision multiplications
 | |
|  * are saved.  Note also that the call to mp_mul can end up back
 | |
|  * in this function if the a0, a1, b0, or b1 are above the threshold.
 | |
|  * This is known as divide-and-conquer and leads to the famous
 | |
|  * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 | |
|  * the standard O(N**2) that the baseline/comba methods use.
 | |
|  * Generally though the overhead of this method doesn't pay off
 | |
|  * until a certain size (N ~ 80) is reached.
 | |
|  */
 | |
| mp_err s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
 | |
| {
 | |
|    mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
 | |
|    int     B;
 | |
|    mp_err  err = MP_MEM; /* default the return code to an error */
 | |
| 
 | |
|    /* min # of digits */
 | |
|    B = MP_MIN(a->used, b->used);
 | |
| 
 | |
|    /* now divide in two */
 | |
|    B = B >> 1;
 | |
| 
 | |
|    /* init copy all the temps */
 | |
|    if (mp_init_size(&x0, B) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
|    if (mp_init_size(&x1, a->used - B) != MP_OKAY) {
 | |
|       goto X0;
 | |
|    }
 | |
|    if (mp_init_size(&y0, B) != MP_OKAY) {
 | |
|       goto X1;
 | |
|    }
 | |
|    if (mp_init_size(&y1, b->used - B) != MP_OKAY) {
 | |
|       goto Y0;
 | |
|    }
 | |
| 
 | |
|    /* init temps */
 | |
|    if (mp_init_size(&t1, B * 2) != MP_OKAY) {
 | |
|       goto Y1;
 | |
|    }
 | |
|    if (mp_init_size(&x0y0, B * 2) != MP_OKAY) {
 | |
|       goto T1;
 | |
|    }
 | |
|    if (mp_init_size(&x1y1, B * 2) != MP_OKAY) {
 | |
|       goto X0Y0;
 | |
|    }
 | |
| 
 | |
|    /* now shift the digits */
 | |
|    x0.used = y0.used = B;
 | |
|    x1.used = a->used - B;
 | |
|    y1.used = b->used - B;
 | |
| 
 | |
|    {
 | |
|       int x;
 | |
|       mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
 | |
| 
 | |
|       /* we copy the digits directly instead of using higher level functions
 | |
|        * since we also need to shift the digits
 | |
|        */
 | |
|       tmpa = a->dp;
 | |
|       tmpb = b->dp;
 | |
| 
 | |
|       tmpx = x0.dp;
 | |
|       tmpy = y0.dp;
 | |
|       for (x = 0; x < B; x++) {
 | |
|          *tmpx++ = *tmpa++;
 | |
|          *tmpy++ = *tmpb++;
 | |
|       }
 | |
| 
 | |
|       tmpx = x1.dp;
 | |
|       for (x = B; x < a->used; x++) {
 | |
|          *tmpx++ = *tmpa++;
 | |
|       }
 | |
| 
 | |
|       tmpy = y1.dp;
 | |
|       for (x = B; x < b->used; x++) {
 | |
|          *tmpy++ = *tmpb++;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* only need to clamp the lower words since by definition the
 | |
|     * upper words x1/y1 must have a known number of digits
 | |
|     */
 | |
|    mp_clamp(&x0);
 | |
|    mp_clamp(&y0);
 | |
| 
 | |
|    /* now calc the products x0y0 and x1y1 */
 | |
|    /* after this x0 is no longer required, free temp [x0==t2]! */
 | |
|    if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) {
 | |
|       goto X1Y1;          /* x0y0 = x0*y0 */
 | |
|    }
 | |
|    if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) {
 | |
|       goto X1Y1;          /* x1y1 = x1*y1 */
 | |
|    }
 | |
| 
 | |
|    /* now calc x1+x0 and y1+y0 */
 | |
|    if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t1 = x1 - x0 */
 | |
|    }
 | |
|    if (s_mp_add(&y1, &y0, &x0) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t2 = y1 - y0 */
 | |
|    }
 | |
|    if (mp_mul(&t1, &x0, &t1) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */
 | |
|    }
 | |
| 
 | |
|    /* add x0y0 */
 | |
|    if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t2 = x0y0 + x1y1 */
 | |
|    }
 | |
|    if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
 | |
|    }
 | |
| 
 | |
|    /* shift by B */
 | |
|    if (mp_lshd(&t1, B) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
 | |
|    }
 | |
|    if (mp_lshd(&x1y1, B * 2) != MP_OKAY) {
 | |
|       goto X1Y1;          /* x1y1 = x1y1 << 2*B */
 | |
|    }
 | |
| 
 | |
|    if (mp_add(&x0y0, &t1, &t1) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t1 = x0y0 + t1 */
 | |
|    }
 | |
|    if (mp_add(&t1, &x1y1, c) != MP_OKAY) {
 | |
|       goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
 | |
|    }
 | |
| 
 | |
|    /* Algorithm succeeded set the return code to MP_OKAY */
 | |
|    err = MP_OKAY;
 | |
| 
 | |
| X1Y1:
 | |
|    mp_clear(&x1y1);
 | |
| X0Y0:
 | |
|    mp_clear(&x0y0);
 | |
| T1:
 | |
|    mp_clear(&t1);
 | |
| Y1:
 | |
|    mp_clear(&y1);
 | |
| Y0:
 | |
|    mp_clear(&y0);
 | |
| X1:
 | |
|    mp_clear(&x1);
 | |
| X0:
 | |
|    mp_clear(&x0);
 | |
| LBL_ERR:
 | |
|    return err;
 | |
| }
 | |
| #endif
 | 
