Files
Joseph Sutton 744678eb03 krb5: Use NULL pointer constant
Signed-off-by: Joseph Sutton <josephsutton@catalyst.net.nz>
2023-11-28 21:37:56 -05:00

675 lines
19 KiB
C

/*
* Copyright (c) 1997 - 2008 Kungliga Tekniska Högskolan
* (Royal Institute of Technology, Stockholm, Sweden).
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Institute nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "krb5_locl.h"
void
_krb5_evp_schedule(krb5_context context,
struct _krb5_key_type *kt,
struct _krb5_key_data *kd)
{
struct _krb5_evp_schedule *key = kd->schedule->data;
const EVP_CIPHER *c = (*kt->evp)();
EVP_CIPHER_CTX_init(&key->ectx);
EVP_CIPHER_CTX_init(&key->dctx);
EVP_CipherInit_ex(&key->ectx, c, NULL, kd->key->keyvalue.data, NULL, 1);
EVP_CipherInit_ex(&key->dctx, c, NULL, kd->key->keyvalue.data, NULL, 0);
}
void
_krb5_evp_cleanup(krb5_context context, struct _krb5_key_data *kd)
{
struct _krb5_evp_schedule *key = kd->schedule->data;
EVP_CIPHER_CTX_cleanup(&key->ectx);
EVP_CIPHER_CTX_cleanup(&key->dctx);
}
int
_krb5_evp_digest_iov(krb5_crypto crypto,
const struct krb5_crypto_iov *iov,
int niov,
void *hash,
unsigned int *hsize,
const EVP_MD *md,
ENGINE *engine)
{
EVP_MD_CTX *ctx;
int ret, i;
krb5_data current = {0,0};
if (crypto != NULL) {
if (crypto->mdctx == NULL)
crypto->mdctx = EVP_MD_CTX_create();
if (crypto->mdctx == NULL)
return 0;
ctx = crypto->mdctx;
} else
ctx = EVP_MD_CTX_create();
ret = EVP_DigestInit_ex(ctx, md, engine);
if (ret != 1)
goto out;
/* Minimize EVP calls by coalescing contiguous iovec elements */
for (i = 0; i < niov; i++) {
if (_krb5_crypto_iov_should_sign(&iov[i])) {
if (current.data &&
(char *)current.data + current.length == iov[i].data.data) {
current.length += iov[i].data.length;
} else {
if (current.data) {
ret = EVP_DigestUpdate(ctx, current.data, current.length);
if (ret != 1)
goto out;
}
current = iov[i].data;
}
}
}
if (current.data) {
ret = EVP_DigestUpdate(ctx, current.data, current.length);
if (ret != 1)
goto out;
}
ret = EVP_DigestFinal_ex(ctx, hash, hsize);
out:
if (crypto == NULL)
EVP_MD_CTX_destroy(ctx);
return ret;
}
krb5_error_code
_krb5_evp_hmac_iov(krb5_context context,
krb5_crypto crypto,
struct _krb5_key_data *key,
const struct krb5_crypto_iov *iov,
int niov,
void *hmac,
unsigned int *hmaclen,
const EVP_MD *md,
ENGINE *engine)
{
HMAC_CTX *ctx;
krb5_data current = {0, NULL};
int i;
if (crypto != NULL) {
if (crypto->hmacctx == NULL)
crypto->hmacctx = HMAC_CTX_new();
ctx = crypto->hmacctx;
} else {
ctx = HMAC_CTX_new();
}
if (ctx == NULL)
return krb5_enomem(context);
if (HMAC_Init_ex(ctx, key->key->keyvalue.data, key->key->keyvalue.length,
md, engine) == 0) {
HMAC_CTX_free(ctx);
return krb5_enomem(context);
}
for (i = 0; i < niov; i++) {
if (_krb5_crypto_iov_should_sign(&iov[i])) {
if (current.data &&
(char *)current.data + current.length == iov[i].data.data) {
current.length += iov[i].data.length;
} else {
if (current.data)
HMAC_Update(ctx, current.data, current.length);
current = iov[i].data;
}
}
}
if (current.data)
HMAC_Update(ctx, current.data, current.length);
HMAC_Final(ctx, hmac, hmaclen);
if (crypto == NULL)
HMAC_CTX_free(ctx);
return 0;
}
krb5_error_code
_krb5_evp_encrypt(krb5_context context,
struct _krb5_key_data *key,
void *data,
size_t len,
krb5_boolean encryptp,
int usage,
void *ivec)
{
struct _krb5_evp_schedule *ctx = key->schedule->data;
EVP_CIPHER_CTX *c;
c = encryptp ? &ctx->ectx : &ctx->dctx;
if (ivec == NULL) {
/* alloca ? */
size_t len2 = EVP_CIPHER_CTX_iv_length(c);
void *loiv = malloc(len2);
if (loiv == NULL)
return krb5_enomem(context);
memset(loiv, 0, len2);
EVP_CipherInit_ex(c, NULL, NULL, NULL, loiv, -1);
free(loiv);
} else
EVP_CipherInit_ex(c, NULL, NULL, NULL, ivec, -1);
EVP_Cipher(c, data, data, len);
return 0;
}
struct _krb5_evp_iov_cursor
{
struct krb5_crypto_iov *iov;
int niov;
krb5_data current;
int nextidx;
};
static const unsigned char zero_ivec[EVP_MAX_BLOCK_LENGTH] = { 0 };
static inline int
_krb5_evp_iov_should_encrypt(struct krb5_crypto_iov *iov)
{
return (iov->flags == KRB5_CRYPTO_TYPE_DATA
|| iov->flags == KRB5_CRYPTO_TYPE_HEADER
|| iov->flags == KRB5_CRYPTO_TYPE_PADDING);
}
/*
* If we have a group of iovecs which have been split up from
* a single common buffer, expand the 'current' iovec out to
* be as large as possible.
*/
static inline void
_krb5_evp_iov_cursor_expand(struct _krb5_evp_iov_cursor *cursor)
{
if (cursor->nextidx == cursor->niov)
return;
while (_krb5_evp_iov_should_encrypt(&cursor->iov[cursor->nextidx])) {
if (cursor->iov[cursor->nextidx].data.length != 0 &&
((char *)cursor->current.data + cursor->current.length
!= cursor->iov[cursor->nextidx].data.data)) {
return;
}
cursor->current.length += cursor->iov[cursor->nextidx].data.length;
cursor->nextidx++;
}
return;
}
/* Move the cursor along to the start of the next block to be
* encrypted */
static inline void
_krb5_evp_iov_cursor_nextcrypt(struct _krb5_evp_iov_cursor *cursor)
{
for (; cursor->nextidx < cursor->niov; cursor->nextidx++) {
if (_krb5_evp_iov_should_encrypt(&cursor->iov[cursor->nextidx])
&& cursor->iov[cursor->nextidx].data.length != 0) {
cursor->current = cursor->iov[cursor->nextidx].data;
cursor->nextidx++;
_krb5_evp_iov_cursor_expand(cursor);
return;
}
}
cursor->current.length = 0; /* No matches, so we're done here */
}
static inline void
_krb5_evp_iov_cursor_init(struct _krb5_evp_iov_cursor *cursor,
struct krb5_crypto_iov *iov, int niov)
{
memset(cursor, 0, sizeof(struct _krb5_evp_iov_cursor));
cursor->iov = iov;
cursor->niov = niov;
cursor->nextidx = 0;
/* Move along to the first block we're going to be encrypting */
_krb5_evp_iov_cursor_nextcrypt(cursor);
}
static inline void
_krb5_evp_iov_cursor_advance(struct _krb5_evp_iov_cursor *cursor,
size_t amount)
{
while (amount > 0) {
if (cursor->current.length > amount) {
cursor->current.data = (char *)cursor->current.data + amount;
cursor->current.length -= amount;
return;
}
amount -= cursor->current.length;
_krb5_evp_iov_cursor_nextcrypt(cursor);
}
}
static inline int
_krb5_evp_iov_cursor_done(struct _krb5_evp_iov_cursor *cursor)
{
return (cursor->nextidx == cursor->niov && cursor->current.length == 0);
}
/* Fill a memory buffer with data from one or more iovecs. Doesn't
* advance the passed in cursor - use outcursor for the position
* at the end
*/
static inline void
_krb5_evp_iov_cursor_fillbuf(struct _krb5_evp_iov_cursor *cursor,
unsigned char *buf, size_t length,
struct _krb5_evp_iov_cursor *outcursor)
{
struct _krb5_evp_iov_cursor cursorint;
cursorint = *cursor;
while (length > 0 && !_krb5_evp_iov_cursor_done(&cursorint)) {
if (cursorint.current.length > length) {
memcpy(buf, cursorint.current.data, length);
_krb5_evp_iov_cursor_advance(&cursorint, length);
length = 0;
} else {
memcpy(buf, cursorint.current.data, cursorint.current.length);
length -= cursorint.current.length;
buf += cursorint.current.length;
_krb5_evp_iov_cursor_nextcrypt(&cursorint);
}
}
if (outcursor != NULL)
*outcursor = cursorint;
}
/* Fill an iovec from a memory buffer. Always advances the cursor to
* the end of the filled region
*/
static inline void
_krb5_evp_iov_cursor_fillvec(struct _krb5_evp_iov_cursor *cursor,
unsigned char *buf, size_t length)
{
while (length > 0 && !_krb5_evp_iov_cursor_done(cursor)) {
if (cursor->current.length > length) {
memcpy(cursor->current.data, buf, length);
_krb5_evp_iov_cursor_advance(cursor, length);
length = 0;
} else {
memcpy(cursor->current.data, buf, cursor->current.length);
length -= cursor->current.length;
buf += cursor->current.length;
_krb5_evp_iov_cursor_nextcrypt(cursor);
}
}
}
static size_t
_krb5_evp_iov_cryptlength(struct krb5_crypto_iov *iov, int niov)
{
int i;
size_t length = 0;
for (i = 0; i < niov; i++) {
if (_krb5_evp_iov_should_encrypt(&iov[i]))
length += iov[i].data.length;
}
return length;
}
int
_krb5_evp_encrypt_iov(krb5_context context,
struct _krb5_key_data *key,
struct krb5_crypto_iov *iov,
int niov,
krb5_boolean encryptp,
int usage,
void *ivec)
{
size_t blocksize, blockmask, wholeblocks;
struct _krb5_evp_schedule *ctx = key->schedule->data;
unsigned char tmp[EVP_MAX_BLOCK_LENGTH];
EVP_CIPHER_CTX *c;
struct _krb5_evp_iov_cursor cursor;
c = encryptp ? &ctx->ectx : &ctx->dctx;
blocksize = EVP_CIPHER_CTX_block_size(c);
blockmask = ~(blocksize - 1);
if (ivec)
EVP_CipherInit_ex(c, NULL, NULL, NULL, ivec, -1);
else
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
_krb5_evp_iov_cursor_init(&cursor, iov, niov);
while (!_krb5_evp_iov_cursor_done(&cursor)) {
/* Number of bytes of data in this iovec that are in whole blocks */
wholeblocks = cursor.current.length & ~blockmask;
if (wholeblocks != 0) {
EVP_Cipher(c, cursor.current.data,
cursor.current.data, wholeblocks);
_krb5_evp_iov_cursor_advance(&cursor, wholeblocks);
}
/* If there's a partial block of data remaining in the current
* iovec, steal enough from subsequent iovecs to form a whole block */
if (cursor.current.length > 0 && cursor.current.length < blocksize) {
/* Build up a block's worth of data in tmp, leaving the cursor
* pointing at where we started */
_krb5_evp_iov_cursor_fillbuf(&cursor, tmp, blocksize, NULL);
EVP_Cipher(c, tmp, tmp, blocksize);
/* Copy the data in tmp back into the iovecs that it came from,
* advancing the cursor */
_krb5_evp_iov_cursor_fillvec(&cursor, tmp, blocksize);
}
}
return 0;
}
int
_krb5_evp_encrypt_iov_cts(krb5_context context,
struct _krb5_key_data *key,
struct krb5_crypto_iov *iov,
int niov,
krb5_boolean encryptp,
int usage,
void *ivec)
{
size_t blocksize, blockmask, wholeblocks, length;
size_t remaining, partiallen;
struct _krb5_evp_iov_cursor cursor, lastpos;
struct _krb5_evp_schedule *ctx = key->schedule->data;
unsigned char tmp[EVP_MAX_BLOCK_LENGTH], tmp2[EVP_MAX_BLOCK_LENGTH];
unsigned char tmp3[EVP_MAX_BLOCK_LENGTH], ivec2[EVP_MAX_BLOCK_LENGTH];
EVP_CIPHER_CTX *c;
int i;
c = encryptp ? &ctx->ectx : &ctx->dctx;
blocksize = EVP_CIPHER_CTX_block_size(c);
blockmask = ~(blocksize - 1);
length = _krb5_evp_iov_cryptlength(iov, niov);
if (length < blocksize) {
krb5_set_error_message(context, EINVAL,
"message block too short");
return EINVAL;
}
if (length == blocksize)
return _krb5_evp_encrypt_iov(context, key, iov, niov,
encryptp, usage, ivec);
if (ivec)
EVP_CipherInit_ex(c, NULL, NULL, NULL, ivec, -1);
else
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
if (encryptp) {
/* On our first pass, we want to process everything but the
* final partial block */
remaining = ((length - 1) & blockmask);
partiallen = length - remaining;
memset(&lastpos, 0, sizeof(lastpos)); /* Keep the compiler happy */
} else {
/* Decryption needs to leave 2 whole blocks and a partial for
* further processing */
if (length > 2 * blocksize) {
remaining = (((length - 1) / blocksize) * blocksize) - (blocksize*2);
partiallen = length - remaining - (blocksize * 2);
} else {
remaining = 0;
partiallen = length - blocksize;
}
}
_krb5_evp_iov_cursor_init(&cursor, iov, niov);
while (remaining > 0) {
/* If the iovec has more data than we need, just use it */
if (cursor.current.length >= remaining) {
EVP_Cipher(c, cursor.current.data, cursor.current.data, remaining);
if (encryptp) {
/* We've just encrypted the last block of data. Make a copy
* of it (and its location) for the CTS dance, below */
lastpos = cursor;
_krb5_evp_iov_cursor_advance(&lastpos, remaining - blocksize);
memcpy(ivec2, lastpos.current.data, blocksize);
}
_krb5_evp_iov_cursor_advance(&cursor, remaining);
remaining = 0;
} else {
/* Use as much as we can, firstly all of the whole blocks */
wholeblocks = cursor.current.length & blockmask;
if (wholeblocks > 0) {
EVP_Cipher(c, cursor.current.data, cursor.current.data,
wholeblocks);
_krb5_evp_iov_cursor_advance(&cursor, wholeblocks);
remaining -= wholeblocks;
}
/* Then, if we have partial data left, steal enough from subsequent
* iovecs to make a whole block */
if (cursor.current.length > 0 && cursor.current.length < blocksize) {
if (encryptp && remaining == blocksize)
lastpos = cursor;
_krb5_evp_iov_cursor_fillbuf(&cursor, ivec2, blocksize, NULL);
EVP_Cipher(c, ivec2, ivec2, blocksize);
_krb5_evp_iov_cursor_fillvec(&cursor, ivec2, blocksize);
remaining -= blocksize;
}
}
}
/* Encryption */
if (encryptp) {
/* Copy the partial block into tmp */
_krb5_evp_iov_cursor_fillbuf(&cursor, tmp, partiallen, NULL);
/* XOR the final partial block with ivec2 */
for (i = 0; i < partiallen; i++)
tmp[i] = tmp[i] ^ ivec2[i];
for (; i < blocksize; i++)
tmp[i] = 0 ^ ivec2[i]; /* XOR 0s if partial block exhausted */
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, tmp, tmp, blocksize);
_krb5_evp_iov_cursor_fillvec(&lastpos, tmp, blocksize);
_krb5_evp_iov_cursor_fillvec(&cursor, ivec2, partiallen);
if (ivec)
memcpy(ivec, tmp, blocksize);
return 0;
}
/* Decryption */
/* Make a copy of the 2nd last full ciphertext block in ivec2 before
* decrypting it. If no such block exists, use ivec or zero_ivec */
if (length <= blocksize * 2) {
if (ivec)
memcpy(ivec2, ivec, blocksize);
else
memcpy(ivec2, zero_ivec, blocksize);
} else {
_krb5_evp_iov_cursor_fillbuf(&cursor, ivec2, blocksize, NULL);
EVP_Cipher(c, tmp, ivec2, blocksize);
_krb5_evp_iov_cursor_fillvec(&cursor, tmp, blocksize);
}
lastpos = cursor; /* Remember where the last block is */
_krb5_evp_iov_cursor_fillbuf(&cursor, tmp, blocksize, &cursor);
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, tmp2, tmp, blocksize); /* tmp eventually becomes output ivec */
_krb5_evp_iov_cursor_fillbuf(&cursor, tmp3, partiallen, NULL);
memcpy(tmp3 + partiallen, tmp2 + partiallen, blocksize - partiallen); /* xor 0 */
for (i = 0; i < partiallen; i++)
tmp2[i] = tmp2[i] ^ tmp3[i];
_krb5_evp_iov_cursor_fillvec(&cursor, tmp2, partiallen);
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, tmp3, tmp3, blocksize);
for (i = 0; i < blocksize; i++)
tmp3[i] ^= ivec2[i];
_krb5_evp_iov_cursor_fillvec(&lastpos, tmp3, blocksize);
if (ivec)
memcpy(ivec, tmp, blocksize);
return 0;
}
krb5_error_code
_krb5_evp_encrypt_cts(krb5_context context,
struct _krb5_key_data *key,
void *data,
size_t len,
krb5_boolean encryptp,
int usage,
void *ivec)
{
size_t i, blocksize;
struct _krb5_evp_schedule *ctx = key->schedule->data;
unsigned char tmp[EVP_MAX_BLOCK_LENGTH], ivec2[EVP_MAX_BLOCK_LENGTH];
EVP_CIPHER_CTX *c;
unsigned char *p;
c = encryptp ? &ctx->ectx : &ctx->dctx;
blocksize = EVP_CIPHER_CTX_block_size(c);
if (len < blocksize) {
krb5_set_error_message(context, EINVAL,
"message block too short");
return EINVAL;
} else if (len == blocksize) {
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, data, data, len);
return 0;
}
if (ivec)
EVP_CipherInit_ex(c, NULL, NULL, NULL, ivec, -1);
else
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
if (encryptp) {
p = data;
i = ((len - 1) / blocksize) * blocksize;
EVP_Cipher(c, p, p, i);
p += i - blocksize;
len -= i;
memcpy(ivec2, p, blocksize);
for (i = 0; i < len; i++)
tmp[i] = p[i + blocksize] ^ ivec2[i];
for (; i < blocksize; i++)
tmp[i] = 0 ^ ivec2[i];
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, p, tmp, blocksize);
memcpy(p + blocksize, ivec2, len);
if (ivec)
memcpy(ivec, p, blocksize);
} else {
unsigned char tmp2[EVP_MAX_BLOCK_LENGTH], tmp3[EVP_MAX_BLOCK_LENGTH];
p = data;
if (len > blocksize * 2) {
/* remove last two blocks and round up, decrypt this with cbc, then do cts dance */
i = ((((len - blocksize * 2) + blocksize - 1) / blocksize) * blocksize);
memcpy(ivec2, p + i - blocksize, blocksize);
EVP_Cipher(c, p, p, i);
p += i;
len -= i + blocksize;
} else {
if (ivec)
memcpy(ivec2, ivec, blocksize);
else
memcpy(ivec2, zero_ivec, blocksize);
len -= blocksize;
}
memcpy(tmp, p, blocksize);
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, tmp2, p, blocksize);
memcpy(tmp3, p + blocksize, len);
memcpy(tmp3 + len, tmp2 + len, blocksize - len); /* xor 0 */
for (i = 0; i < len; i++)
p[i + blocksize] = tmp2[i] ^ tmp3[i];
EVP_CipherInit_ex(c, NULL, NULL, NULL, zero_ivec, -1);
EVP_Cipher(c, p, tmp3, blocksize);
for (i = 0; i < blocksize; i++)
p[i] ^= ivec2[i];
if (ivec)
memcpy(ivec, tmp, blocksize);
}
return 0;
}