
At some point before we make an 8.0 release we'll probably just remove all the legacy, weak ciphers and hashes (except MD5, most likely). To drop these we'll have to re-generate PKCS#12 test samples using stronger PBEs, and possible add new PBE types.
660 lines
19 KiB
C
660 lines
19 KiB
C
/*
|
|
* Copyright (c) 2016, Kungliga Tekniska Högskolan
|
|
* (Royal Institute of Technology, Stockholm, Sweden).
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* OpenSSL provider */
|
|
|
|
#include "config.h"
|
|
#include <roken.h>
|
|
#include <heimbase.h>
|
|
|
|
#include <assert.h>
|
|
#include <evp.h>
|
|
|
|
#ifdef HAVE_HCRYPTO_W_OPENSSL
|
|
|
|
/*
|
|
* This is the OpenSSL 1.x backend for hcrypto. It has been tested with
|
|
* OpenSSL 1.0.1f and OpenSSL 1.1.0-pre3-dev.
|
|
*
|
|
* NOTE: In order for this to work with OpenSSL 1.1.x and up, it is
|
|
* critical to use opaque OpenSSL type accessors everywhere /
|
|
* never use knowledge of opaque OpenSSL type internals.
|
|
*/
|
|
|
|
#include <evp-openssl.h>
|
|
|
|
/*
|
|
* This being an OpenSSL backend for hcrypto... we need to be able to
|
|
* refer to types and objects (functions) from both, OpenSSL and
|
|
* hcrypto.
|
|
*
|
|
* The hcrypto API is *very* similar to the OpenSSL 1.0.x API, with the
|
|
* same type and symbol names in many cases, except that the hcrypto
|
|
* names are prefixed with hc_*. hcrypto has convenience macros that
|
|
* provide OpenSSL aliases for the hcrypto interfaces, and hcrypto
|
|
* applications are expected to use the OpenSSL names.
|
|
*
|
|
* Since here we must be able to refer to types and objects from both
|
|
* OpenSSL and from hcrypto, we disable the hcrypto renaming for the
|
|
* rest of this file. These #undefs could be collected into an
|
|
* <hcrypto/undef.h> for the purpose of permitting other applications to
|
|
* use both, hcrypto and OpenSSL in the same source files (provided that
|
|
* such applications refer to hcrypto types and objects by their proper
|
|
* hc_-prefixed names).
|
|
*/
|
|
#include <undef.h>
|
|
|
|
/* Now it's safe to include OpenSSL headers */
|
|
#include <openssl/evp.h>
|
|
|
|
#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
|
|
#define EVP_MD_CTX_new EVP_MD_CTX_create
|
|
#define EVP_MD_CTX_free EVP_MD_CTX_destroy
|
|
#endif
|
|
|
|
#if defined(HAVE_OPENSSL_FIPS_H) || defined(HAVE_OPENSSL_FIPS_MODE_SET_API)
|
|
int _heim_openssl_fips_enabled(void);
|
|
int
|
|
_heim_openssl_fips_enabled(void)
|
|
{
|
|
static int fips_enabled_res = -1;
|
|
|
|
if (fips_enabled_res != -1)
|
|
return fips_enabled_res;
|
|
|
|
#ifdef HAVE_OPENSSL_30
|
|
return fips_enabled_res = !!EVP_default_properties_is_fips_enabled(NULL);
|
|
#else
|
|
return fips_enabled_res = !!FIPS_mode();
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* A HEIM_BASE_ONCE argument struct for per-EVP one-time initialization */
|
|
struct once_init_cipher_ctx {
|
|
const hc_EVP_CIPHER **hc_memoizep;
|
|
hc_EVP_CIPHER *hc_memoize;
|
|
const hc_EVP_CIPHER *fallback;
|
|
unsigned long flags;
|
|
int nid;
|
|
};
|
|
|
|
/* Our wrapper for OpenSSL EVP_CIPHER_CTXs */
|
|
struct ossl_cipher_ctx {
|
|
EVP_CIPHER_CTX *ossl_cipher_ctx; /* OpenSSL cipher ctx */
|
|
const EVP_CIPHER *ossl_cipher; /* OpenSSL cipher */
|
|
int initialized;
|
|
};
|
|
|
|
/*
|
|
* Our hc_EVP_CIPHER init() method; wraps around OpenSSL
|
|
* EVP_CipherInit_ex().
|
|
*
|
|
* This is very similar to the init() function pointer in an OpenSSL
|
|
* EVP_CIPHER, but a) we can't access them in 1.1, and b) the method
|
|
* invocation protocols in hcrypto and OpenSSL are similar but not the
|
|
* same, thus we must have this wrapper.
|
|
*/
|
|
static int
|
|
cipher_ctx_init(hc_EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
|
const unsigned char *iv, int enc)
|
|
{
|
|
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data; /* EVP_CIPHER_CTX wrapper */
|
|
const EVP_CIPHER *c;
|
|
|
|
assert(ossl_ctx != NULL);
|
|
assert(ctx->cipher != NULL);
|
|
assert(ctx->cipher->app_data != NULL);
|
|
|
|
/*
|
|
* Here be dragons.
|
|
*
|
|
* We need to make sure that the OpenSSL EVP_CipherInit_ex() is
|
|
* called with cipher!=NULL just once per EVP_CIPHER_CTX, otherwise
|
|
* state in the OpenSSL EVP_CIPHER_CTX will get cleaned up and then
|
|
* we'll segfault.
|
|
*
|
|
* hcrypto applications can re-initialize an (hc_)EVP_CIPHER_CTX as
|
|
* usual by calling (hc)EVP_CipherInit_ex() with a non-NULL cipher
|
|
* argument, and that will cause cipher_cleanup() (below) to be
|
|
* called.
|
|
*/
|
|
c = ossl_ctx->ossl_cipher = ctx->cipher->app_data; /* OpenSSL's EVP_CIPHER * */
|
|
if (!ossl_ctx->initialized) {
|
|
ossl_ctx->ossl_cipher_ctx = EVP_CIPHER_CTX_new();
|
|
if (ossl_ctx->ossl_cipher_ctx == NULL)
|
|
return 0;
|
|
/*
|
|
* So we always call EVP_CipherInit_ex() with c!=NULL, but other
|
|
* things NULL...
|
|
*/
|
|
if (!EVP_CipherInit_ex(ossl_ctx->ossl_cipher_ctx, c, NULL, NULL, NULL, enc))
|
|
return 0;
|
|
ossl_ctx->initialized = 1;
|
|
}
|
|
|
|
/* ...and from here on always call EVP_CipherInit_ex() with c=NULL */
|
|
if ((ctx->cipher->flags & hc_EVP_CIPH_VARIABLE_LENGTH) &&
|
|
ctx->key_len > 0)
|
|
EVP_CIPHER_CTX_set_key_length(ossl_ctx->ossl_cipher_ctx, ctx->key_len);
|
|
|
|
return EVP_CipherInit_ex(ossl_ctx->ossl_cipher_ctx, NULL, NULL, key, iv, enc);
|
|
}
|
|
|
|
static int
|
|
cipher_do_cipher(hc_EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
const unsigned char *in, unsigned int len)
|
|
{
|
|
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data;
|
|
|
|
assert(ossl_ctx != NULL);
|
|
return EVP_Cipher(ossl_ctx->ossl_cipher_ctx, out, in, len) == 0 ? 0 : 1;
|
|
}
|
|
|
|
static int
|
|
cipher_cleanup(hc_EVP_CIPHER_CTX *ctx)
|
|
{
|
|
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data;
|
|
|
|
if (ossl_ctx == NULL || !ossl_ctx->initialized)
|
|
return 1;
|
|
|
|
if (ossl_ctx->ossl_cipher_ctx != NULL)
|
|
EVP_CIPHER_CTX_free(ossl_ctx->ossl_cipher_ctx);
|
|
|
|
ossl_ctx->ossl_cipher_ctx = NULL;
|
|
ossl_ctx->ossl_cipher = NULL;
|
|
ossl_ctx->initialized = 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
cipher_ctrl(hc_EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr)
|
|
{
|
|
struct ossl_cipher_ctx *ossl_ctx = ctx->cipher_data;
|
|
|
|
assert(ossl_ctx != NULL);
|
|
return EVP_CIPHER_CTX_ctrl(ossl_ctx->ossl_cipher_ctx, type, arg, ptr);
|
|
}
|
|
|
|
|
|
static void
|
|
get_EVP_CIPHER_once_cb(void *d)
|
|
{
|
|
struct once_init_cipher_ctx *arg = d;
|
|
const EVP_CIPHER *ossl_evp;
|
|
hc_EVP_CIPHER *hc_evp;
|
|
|
|
hc_evp = arg->hc_memoize;
|
|
|
|
/*
|
|
* We lookup EVP_CIPHER *s by NID so that we don't fail to find a
|
|
* symbol such as EVP_aes...() when libcrypto changes after build
|
|
* time (e.g., updates, LD_LIBRARY_PATH/LD_PRELOAD).
|
|
*/
|
|
ossl_evp = EVP_get_cipherbynid(arg->nid);
|
|
if (ossl_evp == NULL) {
|
|
(void) memset_s(hc_evp, sizeof(*hc_evp), 0, sizeof(*hc_evp));
|
|
#if HCRYPTO_FALLBACK
|
|
*arg->hc_memoizep = arg->fallback;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/* Build the hc_EVP_CIPHER */
|
|
hc_evp->nid = EVP_CIPHER_nid(ossl_evp); /* We would an hcrypto NIDs if we had them */
|
|
hc_evp->block_size = EVP_CIPHER_block_size(ossl_evp);
|
|
hc_evp->key_len = EVP_CIPHER_key_length(ossl_evp);
|
|
hc_evp->iv_len = EVP_CIPHER_iv_length(ossl_evp);
|
|
|
|
/*
|
|
* We force hc_EVP_CipherInit_ex to always call our init() function,
|
|
* otherwise we don't get a chance to call EVP_CipherInit_ex()
|
|
* correctly.
|
|
*/
|
|
hc_evp->flags = hc_EVP_CIPH_ALWAYS_CALL_INIT | arg->flags;
|
|
|
|
/* Our cipher context */
|
|
hc_evp->ctx_size = sizeof(struct ossl_cipher_ctx);
|
|
|
|
/* Our wrappers */
|
|
hc_evp->init = cipher_ctx_init;
|
|
hc_evp->do_cipher = cipher_do_cipher;
|
|
hc_evp->cleanup = cipher_cleanup;
|
|
hc_evp->set_asn1_parameters = NULL;
|
|
hc_evp->get_asn1_parameters = NULL;
|
|
hc_evp->ctrl = cipher_ctrl;
|
|
|
|
/* Our link to the OpenSSL EVP_CIPHER */
|
|
hc_evp->app_data = (void *)ossl_evp;
|
|
|
|
/* Finally, set the static hc_EVP_CIPHER * to the one we just built */
|
|
*arg->hc_memoizep = hc_evp;
|
|
}
|
|
|
|
static const hc_EVP_CIPHER *
|
|
get_EVP_CIPHER(heim_base_once_t *once, hc_EVP_CIPHER *hc_memoize,
|
|
const hc_EVP_CIPHER **hc_memoizep,
|
|
const hc_EVP_CIPHER *fallback,
|
|
unsigned long flags, int nid)
|
|
{
|
|
struct once_init_cipher_ctx arg;
|
|
|
|
arg.flags = flags;
|
|
arg.hc_memoizep = hc_memoizep;
|
|
arg.hc_memoize = hc_memoize;
|
|
arg.fallback = fallback;
|
|
arg.nid = nid;
|
|
heim_base_once_f(once, &arg, get_EVP_CIPHER_once_cb);
|
|
return *hc_memoizep; /* May be NULL */
|
|
}
|
|
|
|
#define OSSL_CIPHER_ALGORITHM(name, flags) \
|
|
extern const hc_EVP_CIPHER *hc_EVP_hcrypto_##name(void); \
|
|
const hc_EVP_CIPHER *hc_EVP_ossl_##name(void) \
|
|
{ \
|
|
static hc_EVP_CIPHER ossl_##name##_st; \
|
|
static const hc_EVP_CIPHER *ossl_##name; \
|
|
static heim_base_once_t once = HEIM_BASE_ONCE_INIT; \
|
|
return get_EVP_CIPHER(&once, &ossl_##name##_st, &ossl_##name, \
|
|
hc_EVP_hcrypto_##name(), \
|
|
flags, NID_##name); \
|
|
}
|
|
|
|
/* As above, but for EVP_MDs */
|
|
|
|
struct ossl_md_ctx {
|
|
EVP_MD_CTX *ossl_md_ctx; /* OpenSSL md ctx */
|
|
const EVP_MD *ossl_md; /* OpenSSL md */
|
|
int initialized;
|
|
};
|
|
|
|
static int
|
|
ossl_md_init(struct ossl_md_ctx *ctx, const EVP_MD *md)
|
|
{
|
|
if (ctx->initialized)
|
|
EVP_MD_CTX_free(ctx->ossl_md_ctx);
|
|
ctx->initialized = 0;
|
|
|
|
ctx->ossl_md = md;
|
|
ctx->ossl_md_ctx = EVP_MD_CTX_new();
|
|
if (!EVP_DigestInit(ctx->ossl_md_ctx, md)) {
|
|
EVP_MD_CTX_free(ctx->ossl_md_ctx);
|
|
ctx->ossl_md_ctx = NULL;
|
|
ctx->ossl_md = NULL;
|
|
return 0;
|
|
}
|
|
ctx->initialized = 1;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
ossl_md_update(hc_EVP_MD_CTX *d, const void *data, size_t count)
|
|
{
|
|
struct ossl_md_ctx *ctx = (void *)d;
|
|
|
|
return EVP_DigestUpdate(ctx->ossl_md_ctx, data, count);
|
|
}
|
|
|
|
static int
|
|
ossl_md_final(void *md_data, hc_EVP_MD_CTX *d)
|
|
{
|
|
struct ossl_md_ctx *ctx = (void *)d;
|
|
|
|
return EVP_DigestFinal(ctx->ossl_md_ctx, md_data, NULL);
|
|
}
|
|
|
|
static int
|
|
ossl_md_cleanup(hc_EVP_MD_CTX *d)
|
|
{
|
|
struct ossl_md_ctx *ctx = (void *)d;
|
|
|
|
if (!ctx->initialized)
|
|
return 1;
|
|
EVP_MD_CTX_free(ctx->ossl_md_ctx);
|
|
ctx->ossl_md = NULL;
|
|
ctx->initialized = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
struct once_init_md_ctx {
|
|
const EVP_MD **ossl_memoizep;
|
|
const hc_EVP_MD **hc_memoizep;
|
|
hc_EVP_MD *hc_memoize;
|
|
const hc_EVP_MD *fallback;
|
|
hc_evp_md_init md_init;
|
|
int nid;
|
|
};
|
|
|
|
static void
|
|
get_EVP_MD_once_cb(void *d)
|
|
{
|
|
struct once_init_md_ctx *arg = d;
|
|
const EVP_MD *ossl_evp;
|
|
hc_EVP_MD *hc_evp;
|
|
|
|
hc_evp = arg->hc_memoize;
|
|
*arg->ossl_memoizep = ossl_evp = EVP_get_digestbynid(arg->nid);
|
|
|
|
if (ossl_evp == NULL) {
|
|
(void) memset_s(hc_evp, sizeof(*hc_evp), 0, sizeof(*hc_evp));
|
|
#if HCRYPTO_FALLBACK
|
|
*arg->hc_memoizep = arg->fallback;
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/* Build the hc_EVP_MD */
|
|
hc_evp->block_size = EVP_MD_block_size(ossl_evp);
|
|
hc_evp->hash_size = EVP_MD_size(ossl_evp);
|
|
hc_evp->ctx_size = sizeof(struct ossl_md_ctx);
|
|
hc_evp->init = arg->md_init;
|
|
hc_evp->update = ossl_md_update;
|
|
hc_evp->final = ossl_md_final;
|
|
hc_evp->cleanup = ossl_md_cleanup;
|
|
|
|
*arg->hc_memoizep = hc_evp;
|
|
}
|
|
|
|
static const hc_EVP_MD *
|
|
get_EVP_MD(heim_base_once_t *once, hc_EVP_MD *hc_memoize,
|
|
const hc_EVP_MD **hc_memoizep, const EVP_MD **ossl_memoizep,
|
|
const hc_EVP_MD *fallback,
|
|
hc_evp_md_init md_init, int nid)
|
|
{
|
|
struct once_init_md_ctx ctx;
|
|
|
|
ctx.ossl_memoizep = ossl_memoizep;
|
|
ctx.hc_memoizep = hc_memoizep;
|
|
ctx.hc_memoize = hc_memoize;
|
|
ctx.fallback = fallback;
|
|
ctx.md_init = md_init;
|
|
ctx.nid = nid;
|
|
heim_base_once_f(once, &ctx, get_EVP_MD_once_cb);
|
|
return *hc_memoizep; /* May be NULL */
|
|
}
|
|
|
|
#define OSSL_MD_ALGORITHM(name) \
|
|
extern const hc_EVP_MD *hc_EVP_hcrypto_##name(void); \
|
|
static const EVP_MD *ossl_EVP_##name; \
|
|
static const hc_EVP_MD *ossl_##name; \
|
|
static int ossl_init_##name(hc_EVP_MD_CTX *d) \
|
|
{ \
|
|
return ossl_md_init((void *)d, ossl_EVP_##name); \
|
|
} \
|
|
const hc_EVP_MD *hc_EVP_ossl_##name(void) \
|
|
{ \
|
|
static hc_EVP_MD ossl_##name##_st; \
|
|
static heim_base_once_t once = HEIM_BASE_ONCE_INIT; \
|
|
return get_EVP_MD(&once, &ossl_##name##_st, &ossl_##name, \
|
|
&ossl_EVP_##name, hc_EVP_hcrypto_##name(), \
|
|
ossl_init_##name, NID_##name); \
|
|
}
|
|
|
|
#else /* HAVE_HCRYPTO_W_OPENSSL */
|
|
|
|
#include "evp-hcrypto.h"
|
|
|
|
#define OSSL_CIPHER_ALGORITHM(name, flags) \
|
|
extern const hc_EVP_CIPHER *hc_EVP_ossl_##name(void); \
|
|
const hc_EVP_CIPHER *hc_EVP_ossl_##name(void) \
|
|
{ \
|
|
return hc_EVP_hcrypto_##name(); \
|
|
}
|
|
|
|
#define OSSL_MD_ALGORITHM(name) \
|
|
extern const hc_EVP_MD *hc_EVP_ossl_##name(void); \
|
|
const hc_EVP_MD *hc_EVP_ossl_##name(void) \
|
|
{ \
|
|
return hc_EVP_hcrypto_##name(); \
|
|
}
|
|
|
|
#endif /* HAVE_HCRYPTO_W_OPENSSL */
|
|
|
|
/**
|
|
* The triple DES cipher type (OpenSSL provider)
|
|
*
|
|
* @return the DES-EDE3-CBC EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(des_ede3_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The DES cipher type (OpenSSL provider)
|
|
*
|
|
* @return the DES-CBC EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
#ifndef HAVE_OPENSSL_30
|
|
OSSL_CIPHER_ALGORITHM(des_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
#endif
|
|
|
|
/**
|
|
* The AES-128 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the AES-128-CBC EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(aes_128_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The AES-192 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the AES-192-CBC EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(aes_192_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The AES-256 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the AES-256-CBC EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(aes_256_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The AES-128 CFB8 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the AES-128-CFB8 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(aes_128_cfb8, hc_EVP_CIPH_CFB8_MODE)
|
|
|
|
/**
|
|
* The AES-192 CFB8 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the AES-192-CFB8 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(aes_192_cfb8, hc_EVP_CIPH_CFB8_MODE)
|
|
|
|
/**
|
|
* The AES-256 CFB8 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the AES-256-CFB8 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(aes_256_cfb8, hc_EVP_CIPH_CFB8_MODE)
|
|
|
|
#ifndef HAVE_OPENSSL_30
|
|
/*
|
|
* RC2 is only needed for tests of PKCS#12 support, which currently uses
|
|
* the RC2 PBE. So no RC2 -> tests fail.
|
|
*/
|
|
|
|
/**
|
|
* The RC2 cipher type - OpenSSL
|
|
*
|
|
* @return the RC2 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(rc2_cbc,
|
|
hc_EVP_CIPH_CBC_MODE |
|
|
hc_EVP_CIPH_VARIABLE_LENGTH)
|
|
|
|
/**
|
|
* The RC2-40 cipher type - OpenSSL
|
|
*
|
|
* @return the RC2-40 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(rc2_40_cbc,
|
|
hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The RC2-64 cipher type - OpenSSL
|
|
*
|
|
* @return the RC2-64 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(rc2_64_cbc,
|
|
hc_EVP_CIPH_CBC_MODE |
|
|
hc_EVP_CIPH_VARIABLE_LENGTH)
|
|
#endif
|
|
|
|
/**
|
|
* The Camellia-128 cipher type - OpenSSL
|
|
*
|
|
* @return the Camellia-128 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(camellia_128_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The Camellia-198 cipher type - OpenSSL
|
|
*
|
|
* @return the Camellia-198 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(camellia_192_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
/**
|
|
* The Camellia-256 cipher type - OpenSSL
|
|
*
|
|
* @return the Camellia-256 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(camellia_256_cbc, hc_EVP_CIPH_CBC_MODE)
|
|
|
|
#ifndef HAVE_OPENSSL_30
|
|
/**
|
|
* The RC4 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the RC4 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(rc4,
|
|
hc_EVP_CIPH_STREAM_CIPHER |
|
|
hc_EVP_CIPH_VARIABLE_LENGTH)
|
|
|
|
/**
|
|
* The RC4-40 cipher type (OpenSSL provider)
|
|
*
|
|
* @return the RC4 EVP_CIPHER pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_CIPHER_ALGORITHM(rc4_40,
|
|
hc_EVP_CIPH_STREAM_CIPHER |
|
|
hc_EVP_CIPH_VARIABLE_LENGTH)
|
|
|
|
/**
|
|
* The MD4 hash algorithm (OpenSSL provider)
|
|
*
|
|
* @return the MD4 EVP_MD pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_MD_ALGORITHM(md4)
|
|
#endif
|
|
|
|
/**
|
|
* The MD5 hash algorithm (OpenSSL provider)
|
|
*
|
|
* @return the MD5 EVP_MD pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_MD_ALGORITHM(md5)
|
|
|
|
/**
|
|
* The SHA-1 hash algorithm (OpenSSL provider)
|
|
*
|
|
* @return the SHA-1 EVP_MD pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_MD_ALGORITHM(sha1)
|
|
|
|
/**
|
|
* The SHA-256 hash algorithm (OpenSSL provider)
|
|
*
|
|
* @return the SHA-256 EVP_MD pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_MD_ALGORITHM(sha256)
|
|
|
|
/**
|
|
* The SHA-384 hash algorithm (OpenSSL provider)
|
|
*
|
|
* @return the SHA-384 EVP_MD pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_MD_ALGORITHM(sha384)
|
|
|
|
/**
|
|
* The SHA-512 hash algorithm (OpenSSL provider)
|
|
*
|
|
* @return the SHA-512 EVP_MD pointer.
|
|
*
|
|
* @ingroup hcrypto_evp
|
|
*/
|
|
OSSL_MD_ALGORITHM(sha512)
|