1472 lines
38 KiB
C
1472 lines
38 KiB
C
/*
|
|
* Copyright (c) 2010 Kungliga Tekniska Högskolan
|
|
* (Royal Institute of Technology, Stockholm, Sweden).
|
|
* All rights reserved.
|
|
*
|
|
* Portions Copyright (c) 2010 Apple Inc. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the Institute nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "baselocl.h"
|
|
#include <ctype.h>
|
|
#include <base64.h>
|
|
|
|
#ifndef WIN32
|
|
#include <langinfo.h>
|
|
#endif
|
|
|
|
static heim_base_once_t heim_json_once = HEIM_BASE_ONCE_INIT;
|
|
static heim_string_t heim_tid_data_uuid_key = NULL;
|
|
|
|
static void
|
|
json_init_once(void *arg)
|
|
{
|
|
heim_tid_data_uuid_key = __heim_string_constant("heimdal-type-data-76d7fca2-d0da-4b20-a126-1a10f8a0eae6");
|
|
}
|
|
|
|
struct twojson {
|
|
void *ctx;
|
|
void (*out)(void *, const char *);
|
|
size_t indent;
|
|
heim_json_flags_t flags;
|
|
int ret;
|
|
int first;
|
|
};
|
|
|
|
struct heim_strbuf {
|
|
char *str;
|
|
size_t len;
|
|
size_t alloced;
|
|
int enomem;
|
|
heim_json_flags_t flags;
|
|
};
|
|
|
|
static int
|
|
base2json(heim_object_t, struct twojson *, int);
|
|
|
|
static void
|
|
indent(struct twojson *j)
|
|
{
|
|
size_t i = j->indent;
|
|
if (j->flags & HEIM_JSON_F_ONE_LINE)
|
|
return;
|
|
if (j->flags & HEIM_JSON_F_INDENT2)
|
|
while (i--)
|
|
j->out(j->ctx, " ");
|
|
else if (j->flags & HEIM_JSON_F_INDENT4)
|
|
while (i--)
|
|
j->out(j->ctx, " ");
|
|
else if (j->flags & HEIM_JSON_F_INDENT8)
|
|
while (i--)
|
|
j->out(j->ctx, " ");
|
|
else
|
|
while (i--)
|
|
j->out(j->ctx, "\t");
|
|
}
|
|
|
|
static void
|
|
array2json(heim_object_t value, void *ctx, int *stop)
|
|
{
|
|
struct twojson *j = ctx;
|
|
if (j->ret)
|
|
return;
|
|
if (j->first) {
|
|
j->first = 0;
|
|
} else {
|
|
j->out(j->ctx, NULL); /* eat previous '\n' if possible */
|
|
j->out(j->ctx, ",\n");
|
|
}
|
|
j->ret = base2json(value, j, 0);
|
|
}
|
|
|
|
static void
|
|
dict2json(heim_object_t key, heim_object_t value, void *ctx)
|
|
{
|
|
struct twojson *j = ctx;
|
|
if (j->ret)
|
|
return;
|
|
if (j->first) {
|
|
j->first = 0;
|
|
} else {
|
|
j->out(j->ctx, NULL); /* eat previous '\n' if possible */
|
|
j->out(j->ctx, ",\n");
|
|
}
|
|
j->ret = base2json(key, j, 0);
|
|
if (j->ret)
|
|
return;
|
|
switch (heim_get_tid(value)) {
|
|
case HEIM_TID_ARRAY:
|
|
case HEIM_TID_DICT:
|
|
case HEIM_TID_DATA:
|
|
j->out(j->ctx, ":\n");
|
|
j->indent++;
|
|
j->ret = base2json(value, j, 0);
|
|
if (j->ret)
|
|
return;
|
|
j->indent--;
|
|
break;
|
|
default:
|
|
j->out(j->ctx, ": ");
|
|
j->ret = base2json(value, j, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef WIN32
|
|
static void
|
|
init_is_utf8(void *ptr)
|
|
{
|
|
*(int *)ptr = strcasecmp("utf-8", nl_langinfo(CODESET)) == 0;
|
|
}
|
|
#endif
|
|
|
|
int
|
|
heim_locale_is_utf8(void)
|
|
{
|
|
#ifdef WIN32
|
|
return 0; /* XXX Implement */
|
|
#else
|
|
static int locale_is_utf8 = -1;
|
|
static heim_base_once_t once = HEIM_BASE_ONCE_INIT;
|
|
|
|
heim_base_once_f(&once, &locale_is_utf8, init_is_utf8);
|
|
return locale_is_utf8;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
out_escaped_bmp(struct twojson *j, const unsigned char *p, int nbytes)
|
|
{
|
|
unsigned char e[sizeof("\\u0000")];
|
|
unsigned codepoint;
|
|
|
|
if (nbytes == 2)
|
|
codepoint = ((p[0] & 0x1f) << 6) | (p[1] & 0x3f);
|
|
else if (nbytes == 3)
|
|
codepoint = ((p[0] & 0x0f) << 12) | ((p[1] & 0x3f) << 6) | (p[2] & 0x3f);
|
|
else
|
|
abort();
|
|
e[0] = '\\';
|
|
e[1] = 'u';
|
|
e[2] = codepoint >> 12;
|
|
e[2] += (e[2] < 10) ? '0' : ('A' - 10);
|
|
e[3] = (codepoint >> 8) & 0x0f;
|
|
e[3] += (e[3] < 10) ? '0' : ('A' - 10);
|
|
e[4] = (codepoint >> 4) & 0x0f;
|
|
e[4] += (e[4] < 10) ? '0' : ('A' - 10);
|
|
e[5] = codepoint & 0x0f;
|
|
e[5] += (e[5] < 10) ? '0' : ('A' - 10);
|
|
e[6] = '\0';
|
|
j->out(j->ctx, (char *)e);
|
|
}
|
|
|
|
static int
|
|
base2json(heim_object_t obj, struct twojson *j, int skip_indent)
|
|
{
|
|
heim_tid_t type;
|
|
int first = 0;
|
|
|
|
if (obj == NULL) {
|
|
if (j->flags & HEIM_JSON_F_CNULL2JSNULL) {
|
|
obj = heim_null_create();
|
|
} else if (j->flags & HEIM_JSON_F_NO_C_NULL) {
|
|
return EINVAL;
|
|
} else {
|
|
indent(j);
|
|
j->out(j->ctx, "<NULL>\n"); /* This is NOT valid JSON! */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
type = heim_get_tid(obj);
|
|
switch (type) {
|
|
case HEIM_TID_ARRAY:
|
|
indent(j);
|
|
j->out(j->ctx, "[\n");
|
|
j->indent++;
|
|
first = j->first;
|
|
j->first = 1;
|
|
heim_array_iterate_f(obj, j, array2json);
|
|
j->indent--;
|
|
if (!j->first)
|
|
j->out(j->ctx, "\n");
|
|
indent(j);
|
|
j->out(j->ctx, "]\n");
|
|
j->first = first;
|
|
break;
|
|
|
|
case HEIM_TID_DICT:
|
|
indent(j);
|
|
j->out(j->ctx, "{\n");
|
|
j->indent++;
|
|
first = j->first;
|
|
j->first = 1;
|
|
heim_dict_iterate_f(obj, j, dict2json);
|
|
j->indent--;
|
|
if (!j->first)
|
|
j->out(j->ctx, "\n");
|
|
indent(j);
|
|
j->out(j->ctx, "}\n");
|
|
j->first = first;
|
|
break;
|
|
|
|
case HEIM_TID_STRING: {
|
|
const unsigned char *s = (const unsigned char *)heim_string_get_utf8(obj);
|
|
const unsigned char *p;
|
|
unsigned int c, cp, ctop, cbot;
|
|
char e[sizeof("\\u0123\\u3210")];
|
|
int good;
|
|
size_t i;
|
|
|
|
if (!skip_indent)
|
|
indent(j);
|
|
j->out(j->ctx, "\"");
|
|
for (p = s; (c = *p); p++) {
|
|
switch (c) {
|
|
/* ASCII control characters w/ C-like escapes */
|
|
case '\b': j->out(j->ctx, "\\b"); continue;
|
|
case '\f': j->out(j->ctx, "\\f"); continue;
|
|
case '\n': j->out(j->ctx, "\\n"); continue;
|
|
case '\r': j->out(j->ctx, "\\r"); continue;
|
|
case '\t': j->out(j->ctx, "\\t"); continue;
|
|
/* Other must-escape non-control ASCII characters */
|
|
case '"': j->out(j->ctx, "\\\""); continue;
|
|
case '\\': j->out(j->ctx, "\\\\"); continue;
|
|
default: break;
|
|
}
|
|
|
|
/*
|
|
* JSON string encoding is... complex.
|
|
*
|
|
* Invalid UTF-8 w/ HEIM_JSON_F_STRICT_STRINGS set -> return 1
|
|
*
|
|
* Invalid UTF-8 w/o HEIM_JSON_F_STRICT_STRINGS set -> pass
|
|
* through, a sort of Heimdal WTF-8, but not _the_ WTF-8.
|
|
*/
|
|
if (c < 0x20) {
|
|
/* ASCII control character w/o C-like escape */
|
|
e[0] = '\\';
|
|
e[1] = 'u';
|
|
e[2] = '0';
|
|
e[3] = '0';
|
|
e[4] = "0123456789ABCDEF"[c>>4];
|
|
e[5] = "0123456789ABCDEF"[c & 0x0f];
|
|
e[6] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
}
|
|
if (c < 0x80) {
|
|
/* ASCII */
|
|
e[0] = c;
|
|
e[1] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
}
|
|
if ((c & 0xc0) == 0x80) {
|
|
/* UTF-8 bare non-leading byte */
|
|
if (!(j->flags & HEIM_JSON_F_STRICT_STRINGS)) {
|
|
e[0] = c;
|
|
e[1] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
}
|
|
return 1;
|
|
}
|
|
if ((c & 0xe0) == 0xc0) {
|
|
/* UTF-8 leading byte of two-byte sequence */
|
|
good = 1;
|
|
for (i = 1; i < 2 && good && p[i]; i++) {
|
|
if ((p[i] & 0xc0) != 0x80)
|
|
good = 0;
|
|
}
|
|
if (i != 2)
|
|
good = 0;
|
|
if (!good && !(j->flags & HEIM_JSON_F_STRICT_STRINGS)) {
|
|
e[0] = c;
|
|
e[1] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
} else if (!good) {
|
|
return 1;
|
|
}
|
|
if (j->flags & HEIM_JSON_F_ESCAPE_NON_ASCII) {
|
|
out_escaped_bmp(j, p, 2);
|
|
p += 1;
|
|
continue;
|
|
}
|
|
e[0] = c;
|
|
e[1] = p[1];
|
|
e[2] = '\0';
|
|
j->out(j->ctx, e);
|
|
p += 1;
|
|
continue;
|
|
}
|
|
if ((c & 0xf0) == 0xe0) {
|
|
/* UTF-8 leading byte of three-byte sequence */
|
|
good = 1;
|
|
for (i = 1; i < 3 && good && p[i]; i++) {
|
|
if ((p[i] & 0xc0) != 0x80)
|
|
good = 0;
|
|
}
|
|
if (i != 3)
|
|
good = 0;
|
|
if (!good && !(j->flags & HEIM_JSON_F_STRICT_STRINGS)) {
|
|
e[0] = c;
|
|
e[1] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
} else if (!good) {
|
|
return 1;
|
|
}
|
|
if (j->flags & HEIM_JSON_F_ESCAPE_NON_ASCII) {
|
|
out_escaped_bmp(j, p, 3);
|
|
p += 2;
|
|
continue;
|
|
}
|
|
e[0] = c;
|
|
e[1] = p[1];
|
|
e[2] = p[2];
|
|
e[3] = '\0';
|
|
j->out(j->ctx, e);
|
|
p += 2;
|
|
continue;
|
|
}
|
|
|
|
if (c > 0xf7) {
|
|
/* Invalid UTF-8 leading byte */
|
|
if (!(j->flags & HEIM_JSON_F_STRICT_STRINGS)) {
|
|
e[0] = c;
|
|
e[1] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A codepoint > U+FFFF, needs encoding a la UTF-16 surrogate
|
|
* pair because JSON takes after JS which uses UTF-16. Ugly.
|
|
*/
|
|
cp = c & 0x7;
|
|
good = 1;
|
|
for (i = 1; i < 4 && good && p[i]; i++) {
|
|
if ((p[i] & 0xc0) == 0x80)
|
|
cp = (cp << 6) | (p[i] & 0x3f);
|
|
else
|
|
good = 0;
|
|
}
|
|
if (i != 4)
|
|
good = 0;
|
|
if (!good && !(j->flags & HEIM_JSON_F_STRICT_STRINGS)) {
|
|
e[0] = c;
|
|
e[1] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
} else if (!good) {
|
|
return 1;
|
|
}
|
|
p += 3;
|
|
|
|
cp -= 0x10000;
|
|
ctop = 0xD800 + (cp >> 10);
|
|
cbot = 0xDC00 + (cp & 0x3ff);
|
|
|
|
e[0 ] = '\\';
|
|
e[1 ] = 'u';
|
|
e[2 ] = "0123456789ABCDEF"[(ctop ) >> 12];
|
|
e[3 ] = "0123456789ABCDEF"[(ctop & 0x0f00) >> 8];
|
|
e[4 ] = "0123456789ABCDEF"[(ctop & 0x00f0) >> 4];
|
|
e[5 ] = "0123456789ABCDEF"[(ctop & 0x000f) ];
|
|
e[6 ] = '\\';
|
|
e[7 ] = 'u';
|
|
e[8 ] = "0123456789ABCDEF"[(cbot ) >> 12];
|
|
e[9 ] = "0123456789ABCDEF"[(cbot & 0x0f00) >> 8];
|
|
e[10] = "0123456789ABCDEF"[(cbot & 0x00f0) >> 4];
|
|
e[11] = "0123456789ABCDEF"[(cbot & 0x000f) ];
|
|
e[12] = '\0';
|
|
j->out(j->ctx, e);
|
|
continue;
|
|
}
|
|
j->out(j->ctx, "\"");
|
|
break;
|
|
}
|
|
|
|
case HEIM_TID_DATA: {
|
|
heim_dict_t d;
|
|
heim_string_t v;
|
|
const heim_octet_string *data;
|
|
char *b64 = NULL;
|
|
int ret;
|
|
|
|
if (j->flags & HEIM_JSON_F_NO_DATA)
|
|
return EINVAL; /* JSON doesn't do binary */
|
|
|
|
data = heim_data_get_data(obj);
|
|
ret = rk_base64_encode(data->data, data->length, &b64);
|
|
if (ret < 0 || b64 == NULL)
|
|
return ENOMEM;
|
|
|
|
if (j->flags & HEIM_JSON_F_NO_DATA_DICT) {
|
|
indent(j);
|
|
j->out(j->ctx, "\"");
|
|
j->out(j->ctx, b64); /* base64-encode; hope there's no aliasing */
|
|
j->out(j->ctx, "\"");
|
|
free(b64);
|
|
} else {
|
|
/*
|
|
* JSON has no way to represent binary data, therefore the
|
|
* following is a Heimdal-specific convention.
|
|
*
|
|
* We encode binary data as a dict with a single very magic
|
|
* key with a base64-encoded value. The magic key includes
|
|
* a uuid, so we're not likely to alias accidentally.
|
|
*/
|
|
d = heim_dict_create(2);
|
|
if (d == NULL) {
|
|
free(b64);
|
|
return ENOMEM;
|
|
}
|
|
v = heim_string_ref_create(b64, free);
|
|
if (v == NULL) {
|
|
free(b64);
|
|
heim_release(d);
|
|
return ENOMEM;
|
|
}
|
|
ret = heim_dict_set_value(d, heim_tid_data_uuid_key, v);
|
|
heim_release(v);
|
|
if (ret) {
|
|
heim_release(d);
|
|
return ENOMEM;
|
|
}
|
|
ret = base2json(d, j, 0);
|
|
heim_release(d);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case HEIM_TID_NUMBER: {
|
|
char num[32];
|
|
if (!skip_indent)
|
|
indent(j);
|
|
snprintf(num, sizeof (num), "%d", heim_number_get_int(obj));
|
|
j->out(j->ctx, num);
|
|
break;
|
|
}
|
|
case HEIM_TID_NULL:
|
|
if (!skip_indent)
|
|
indent(j);
|
|
j->out(j->ctx, "null");
|
|
break;
|
|
case HEIM_TID_BOOL:
|
|
if (!skip_indent)
|
|
indent(j);
|
|
j->out(j->ctx, heim_bool_val(obj) ? "true" : "false");
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
heim_base2json(heim_object_t obj, void *ctx, heim_json_flags_t flags,
|
|
void (*out)(void *, const char *))
|
|
{
|
|
struct twojson j;
|
|
|
|
heim_base_once_f(&heim_json_once, NULL, json_init_once);
|
|
|
|
j.indent = 0;
|
|
j.ctx = ctx;
|
|
j.out = out;
|
|
j.flags = flags;
|
|
j.ret = 0;
|
|
j.first = 1;
|
|
|
|
if (!(flags & HEIM_JSON_F_NO_ESCAPE_NON_ASCII) &&
|
|
!heim_locale_is_utf8())
|
|
j.flags |= HEIM_JSON_F_ESCAPE_NON_ASCII;
|
|
|
|
return base2json(obj, &j, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
*
|
|
*/
|
|
|
|
struct parse_ctx {
|
|
unsigned long lineno;
|
|
const uint8_t *p;
|
|
const uint8_t *pstart;
|
|
const uint8_t *pend;
|
|
heim_error_t error;
|
|
size_t depth;
|
|
heim_json_flags_t flags;
|
|
};
|
|
|
|
|
|
static heim_object_t
|
|
parse_value(struct parse_ctx *ctx);
|
|
|
|
/*
|
|
* This function eats whitespace, but, critically, it also succeeds
|
|
* only if there's anything left to parse.
|
|
*/
|
|
static int
|
|
white_spaces(struct parse_ctx *ctx)
|
|
{
|
|
while (ctx->p < ctx->pend) {
|
|
uint8_t c = *ctx->p;
|
|
if (c == ' ' || c == '\t' || c == '\r') {
|
|
|
|
} else if (c == '\n') {
|
|
ctx->lineno++;
|
|
} else
|
|
return 0;
|
|
(ctx->p)++;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
is_number(uint8_t n)
|
|
{
|
|
return ('0' <= n && n <= '9');
|
|
}
|
|
|
|
static heim_number_t
|
|
parse_number(struct parse_ctx *ctx)
|
|
{
|
|
int number = 0, neg = 1;
|
|
|
|
if (ctx->p >= ctx->pend)
|
|
return NULL;
|
|
|
|
if (*ctx->p == '-') {
|
|
if (ctx->p + 1 >= ctx->pend)
|
|
return NULL;
|
|
neg = -1;
|
|
ctx->p += 1;
|
|
}
|
|
|
|
while (ctx->p < ctx->pend) {
|
|
if (is_number(*ctx->p)) {
|
|
number = (number * 10) + (*ctx->p - '0');
|
|
} else {
|
|
break;
|
|
}
|
|
ctx->p += 1;
|
|
}
|
|
|
|
return heim_number_create(number * neg);
|
|
}
|
|
|
|
/*
|
|
* Read 4 hex digits from ctx->p.
|
|
*
|
|
* If we don't have enough, rewind ctx->p and return -1 .
|
|
*/
|
|
static int
|
|
unescape_unicode(struct parse_ctx *ctx)
|
|
{
|
|
int c = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 4 && ctx->p < ctx->pend; i++, ctx->p++) {
|
|
if (*ctx->p >= '0' && *ctx->p <= '9') {
|
|
c = (c << 4) + (*ctx->p - '0');
|
|
} else if (*ctx->p >= 'A' && *ctx->p <= 'F') {
|
|
c = (c << 4) + (10 + *ctx->p - 'A');
|
|
} else if (*ctx->p >= 'a' && *ctx->p <= 'f') {
|
|
c = (c << 4) + (10 + *ctx->p - 'a');
|
|
} else {
|
|
ctx->p -= i;
|
|
return -1;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static int
|
|
encode_utf8(struct parse_ctx *ctx, char **pp, char *pend, int c)
|
|
{
|
|
char *p = *pp;
|
|
|
|
if (c < 0x80) {
|
|
/* ASCII */
|
|
if (p >= pend) return 0;
|
|
*(p++) = c;
|
|
*pp = p;
|
|
return 1;
|
|
}
|
|
if (c < 0x800) {
|
|
/* 2 code unit UTF-8 sequence */
|
|
if (p >= pend) return 0;
|
|
*(p++) = 0xc0 | ((c >> 6) );
|
|
if (p == pend) return 0;
|
|
*(p++) = 0x80 | ((c ) & 0x3f);
|
|
*pp = p;
|
|
return 1;
|
|
}
|
|
if (c < 0x10000) {
|
|
/* 3 code unit UTF-8 sequence */
|
|
if (p >= pend) return 0;
|
|
*(p++) = 0xe0 | ((c >> 12) );
|
|
if (p == pend) return 0;
|
|
*(p++) = 0x80 | ((c >> 6) & 0x3f);
|
|
if (p == pend) return 0;
|
|
*(p++) = 0x80 | ((c) & 0x3f);
|
|
*pp = p;
|
|
return 1;
|
|
}
|
|
if (c < 0x110000) {
|
|
/* 4 code unit UTF-8 sequence */
|
|
if (p >= pend) return 0;
|
|
*(p++) = 0xf0 | ((c >> 18) );
|
|
if (p == pend) return 0;
|
|
*(p++) = 0x80 | ((c >> 12) & 0x3f);
|
|
if (p == pend) return 0;
|
|
*(p++) = 0x80 | ((c >> 6) & 0x3f);
|
|
if (p == pend) return 0;
|
|
*(p++) = 0x80 | ((c) & 0x3f);
|
|
*pp = p;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static heim_string_t
|
|
parse_string_error(struct parse_ctx *ctx,
|
|
char *freeme,
|
|
const char *msg)
|
|
{
|
|
free(freeme);
|
|
ctx->error = heim_error_create(EINVAL, "%s at %lu", msg, ctx->lineno);
|
|
return NULL;
|
|
}
|
|
|
|
static heim_string_t
|
|
parse_string(struct parse_ctx *ctx)
|
|
{
|
|
const uint8_t *start;
|
|
heim_object_t o;
|
|
size_t alloc_len = 0;
|
|
size_t need = 0;
|
|
char *p0, *p, *pend;
|
|
int strict = ctx->flags & HEIM_JSON_F_STRICT_STRINGS;
|
|
int binary = 0;
|
|
|
|
if (*ctx->p != '"')
|
|
return parse_string_error(ctx, NULL,
|
|
"Expected a JSON string but found "
|
|
"something else");
|
|
start = ++(ctx->p);
|
|
|
|
/* Estimate how many bytes we need to allocate */
|
|
p0 = p = pend = NULL;
|
|
for (need = 1; ctx->p < ctx->pend; ctx->p++) {
|
|
need++;
|
|
if (*ctx->p == '\\')
|
|
ctx->p++;
|
|
else if (*ctx->p == '"')
|
|
break;
|
|
}
|
|
if (ctx->p == ctx->pend)
|
|
return parse_string_error(ctx, NULL, "Unterminated JSON string");
|
|
|
|
ctx->p = start;
|
|
while (ctx->p < ctx->pend) {
|
|
const unsigned char *p_save;
|
|
int32_t ctop, cbot;
|
|
|
|
if (*ctx->p == '"') {
|
|
ctx->p++;
|
|
break;
|
|
}
|
|
|
|
/* Allocate or resize our output buffer if need be */
|
|
if (need || p == pend) {
|
|
char *tmp;
|
|
|
|
/*
|
|
* Work out how far p is into p0 to re-esablish p after
|
|
* the realloc()
|
|
*/
|
|
size_t p0_to_p_len = (p - p0);
|
|
|
|
tmp = realloc(p0, alloc_len + need + 5 /* slop? */);
|
|
|
|
if (tmp == NULL) {
|
|
ctx->error = heim_error_create_enomem();
|
|
free(p0);
|
|
return NULL;
|
|
}
|
|
alloc_len += need + 5;
|
|
|
|
/*
|
|
* We have two pointers, p and p0, we want to keep them
|
|
* pointing into the same memory after the realloc()
|
|
*/
|
|
p = tmp + p0_to_p_len;
|
|
p0 = tmp;
|
|
pend = p0 + alloc_len;
|
|
|
|
need = 0;
|
|
}
|
|
|
|
if (*ctx->p != '\\') {
|
|
unsigned char c = *ctx->p;
|
|
|
|
/*
|
|
* Not backslashed -> consume now.
|
|
*
|
|
* NOTE: All cases in this block must continue or return w/ error.
|
|
*/
|
|
|
|
/* Check for unescaped ASCII control characters */
|
|
if (c == '\n') {
|
|
if (strict)
|
|
return parse_string_error(ctx, p0,
|
|
"Unescaped newline in JSON string");
|
|
/* Count the newline but don't add it to the decoding */
|
|
ctx->lineno++;
|
|
} else if (strict && *ctx->p <= 0x1f) {
|
|
return parse_string_error(ctx, p0, "Unescaped ASCII control character");
|
|
} else if (c == 0) {
|
|
binary = 1;
|
|
}
|
|
if (!strict || c < 0x80) {
|
|
/* ASCII, or not strict -> no need to validate */
|
|
*(p++) = c;
|
|
ctx->p++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Being strict for parsing means we want to detect malformed UTF-8
|
|
* sequences.
|
|
*
|
|
* If not strict then we just go on below and add to `p' whatever
|
|
* bytes we find in `ctx->p' as we find them.
|
|
*
|
|
* For each two-byte sequence we need one more byte in `p[]'. For
|
|
* each three-byte sequence we need two more bytes in `p[]'.
|
|
*
|
|
* Setting `need' and looping will cause `p0' to be grown.
|
|
*
|
|
* NOTE: All cases in this block must continue or return w/ error.
|
|
*/
|
|
if ((c & 0xe0) == 0xc0) {
|
|
/* Two-byte UTF-8 encoding */
|
|
if (pend - p < 2) {
|
|
need = 2;
|
|
continue; /* realloc p0 */
|
|
}
|
|
|
|
*(p++) = c;
|
|
ctx->p++;
|
|
if (ctx->p == ctx->pend)
|
|
return parse_string_error(ctx, p0, "Truncated UTF-8");
|
|
c = *(ctx->p++);
|
|
if ((c & 0xc0) != 0x80)
|
|
return parse_string_error(ctx, p0, "Truncated UTF-8");
|
|
*(p++) = c;
|
|
continue;
|
|
}
|
|
if ((c & 0xf0) == 0xe0) {
|
|
/* Three-byte UTF-8 encoding */
|
|
if (pend - p < 3) {
|
|
need = 3;
|
|
continue; /* realloc p0 */
|
|
}
|
|
|
|
*(p++) = c;
|
|
ctx->p++;
|
|
if (ctx->p == ctx->pend)
|
|
return parse_string_error(ctx, p0, "Truncated UTF-8");
|
|
c = *(ctx->p++);
|
|
if ((c & 0xc0) != 0x80)
|
|
return parse_string_error(ctx, p0, "Truncated UTF-8");
|
|
*(p++) = c;
|
|
c = *(ctx->p++);
|
|
if ((c & 0xc0) != 0x80)
|
|
return parse_string_error(ctx, p0, "Truncated UTF-8");
|
|
*(p++) = c;
|
|
continue;
|
|
}
|
|
if ((c & 0xf8) == 0xf0)
|
|
return parse_string_error(ctx, p0, "UTF-8 sequence not "
|
|
"encoded as escaped UTF-16");
|
|
if ((c & 0xc0) == 0x80)
|
|
return parse_string_error(ctx, p0,
|
|
"Invalid UTF-8 "
|
|
"(bare continuation code unit)");
|
|
|
|
return parse_string_error(ctx, p0, "Not UTF-8");
|
|
}
|
|
|
|
/* Backslash-quoted character */
|
|
ctx->p++;
|
|
if (ctx->p == ctx->pend) {
|
|
ctx->error =
|
|
heim_error_create(EINVAL,
|
|
"Unterminated JSON string at line %lu",
|
|
ctx->lineno);
|
|
free(p0);
|
|
return NULL;
|
|
}
|
|
switch (*ctx->p) {
|
|
/* Simple escapes */
|
|
case 'b': *(p++) = '\b'; ctx->p++; continue;
|
|
case 'f': *(p++) = '\f'; ctx->p++; continue;
|
|
case 'n': *(p++) = '\n'; ctx->p++; continue;
|
|
case 'r': *(p++) = '\r'; ctx->p++; continue;
|
|
case 't': *(p++) = '\t'; ctx->p++; continue;
|
|
case '"': *(p++) = '"'; ctx->p++; continue;
|
|
case '\\': *(p++) = '\\'; ctx->p++; continue;
|
|
/* Escaped Unicode handled below */
|
|
case 'u':
|
|
/*
|
|
* Worst case for !strict we need 11 bytes for a truncated non-BMP
|
|
* codepoint escape. Call it 12.
|
|
*/
|
|
if (strict)
|
|
need = 4;
|
|
else
|
|
need = 12;
|
|
if (pend - p < need) {
|
|
/* Go back to the backslash, realloc, try again */
|
|
ctx->p--;
|
|
continue;
|
|
}
|
|
|
|
need = 0;
|
|
ctx->p++;
|
|
break;
|
|
default:
|
|
if (!strict) {
|
|
*(p++) = *ctx->p;
|
|
ctx->p++;
|
|
continue;
|
|
}
|
|
ctx->error =
|
|
heim_error_create(EINVAL,
|
|
"Invalid backslash escape at line %lu",
|
|
ctx->lineno);
|
|
free(p0);
|
|
return NULL;
|
|
}
|
|
|
|
/* Unicode code point */
|
|
if (pend - p < 12) {
|
|
need = 12;
|
|
ctx->p -= 2; /* for "\\u" */
|
|
continue; /* This will cause p0 to be realloc'ed */
|
|
}
|
|
p_save = ctx->p;
|
|
cbot = -3;
|
|
ctop = unescape_unicode(ctx);
|
|
if (ctop == -1 && strict)
|
|
return parse_string_error(ctx, p0, "Invalid escaped Unicode");
|
|
if (ctop == -1) {
|
|
/*
|
|
* Not strict; tolerate bad input.
|
|
*
|
|
* Output "\\u" and then loop to treat what we expected to be four
|
|
* digits as if they were not part of an escaped Unicode codepoint.
|
|
*/
|
|
ctx->p = p_save;
|
|
if (p < pend)
|
|
*(p++) = '\\';
|
|
if (p < pend)
|
|
*(p++) = 'u';
|
|
continue;
|
|
}
|
|
if (ctop == 0) {
|
|
*(p++) = '\0';
|
|
binary = 1;
|
|
continue;
|
|
}
|
|
if (ctop < 0xd800) {
|
|
if (!encode_utf8(ctx, &p, pend, ctop))
|
|
return parse_string_error(ctx, p0,
|
|
"Internal JSON string parse error");
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We parsed the top escaped codepoint of a surrogate pair encoding
|
|
* of a non-BMP Unicode codepoint. What follows must be another
|
|
* escaped codepoint.
|
|
*/
|
|
if (ctx->p < ctx->pend && ctx->p[0] == '\\')
|
|
ctx->p++;
|
|
else
|
|
ctop = -1;
|
|
if (ctop > -1 && ctx->p < ctx->pend && ctx->p[0] == 'u')
|
|
ctx->p++;
|
|
else
|
|
ctop = -1;
|
|
if (ctop > -1) {
|
|
/* Parse the hex digits of the bottom half of the surrogate pair */
|
|
cbot = unescape_unicode(ctx);
|
|
if (cbot == -1 || cbot < 0xdc00)
|
|
ctop = -1;
|
|
}
|
|
if (ctop == -1) {
|
|
if (strict)
|
|
return parse_string_error(ctx, p0,
|
|
"Invalid surrogate pair");
|
|
|
|
/*
|
|
* Output "\\u", rewind, output the digits of `ctop'.
|
|
*
|
|
* When we get to what should have been the bottom half of the
|
|
* pair we'll necessarily fail to parse it as a normal escaped
|
|
* Unicode codepoint, and once again, rewind and output its digits.
|
|
*/
|
|
if (p < pend)
|
|
*(p++) = '\\';
|
|
if (p < pend)
|
|
*(p++) = 'u';
|
|
ctx->p = p_save;
|
|
continue;
|
|
}
|
|
|
|
/* Finally decode the surrogate pair then encode as UTF-8 */
|
|
ctop -= 0xd800;
|
|
cbot -= 0xdc00;
|
|
if (!encode_utf8(ctx, &p, pend, 0x10000 + ((ctop << 10) | (cbot & 0x3ff))))
|
|
return parse_string_error(ctx, p0,
|
|
"Internal JSON string parse error");
|
|
}
|
|
|
|
if (p0 == NULL)
|
|
return heim_string_create("");
|
|
|
|
/* NUL-terminate for rk_base64_decode() and plain paranoia */
|
|
if (p0 != NULL && p == pend) {
|
|
/*
|
|
* Work out how far p is into p0 to re-establish p after
|
|
* the realloc()
|
|
*/
|
|
size_t p0_to_pend_len = (pend - p0);
|
|
char *tmp = realloc(p0, 1 + p0_to_pend_len);
|
|
|
|
if (tmp == NULL) {
|
|
ctx->error = heim_error_create_enomem();
|
|
free(p0);
|
|
return NULL;
|
|
}
|
|
/*
|
|
* We have three pointers, p, pend (which are the same)
|
|
* and p0, we want to keep them pointing into the same
|
|
* memory after the realloc()
|
|
*/
|
|
p = tmp + p0_to_pend_len;
|
|
|
|
pend = p + 1;
|
|
p0 = tmp;
|
|
}
|
|
*(p++) = '\0';
|
|
|
|
/* If there's embedded NULs, it's not a C string */
|
|
if (binary) {
|
|
o = heim_data_ref_create(p0, (p - 1) - p0, free);
|
|
return o;
|
|
}
|
|
|
|
/* Sadly this will copy `p0' */
|
|
o = heim_string_create_with_bytes(p0, p - p0);
|
|
free(p0);
|
|
return o;
|
|
}
|
|
|
|
static int
|
|
parse_pair(heim_dict_t dict, struct parse_ctx *ctx)
|
|
{
|
|
heim_string_t key;
|
|
heim_object_t value;
|
|
|
|
if (white_spaces(ctx))
|
|
return -1;
|
|
|
|
if (*ctx->p == '}') {
|
|
ctx->p++;
|
|
return 0;
|
|
}
|
|
|
|
if (ctx->flags & HEIM_JSON_F_STRICT_DICT)
|
|
/* JSON allows only string keys */
|
|
key = parse_string(ctx);
|
|
else
|
|
/* heim_dict_t allows any heim_object_t as key */
|
|
key = parse_value(ctx);
|
|
if (key == NULL)
|
|
/* Even heim_dict_t does not allow C NULLs as keys though! */
|
|
return -1;
|
|
|
|
if (white_spaces(ctx)) {
|
|
heim_release(key);
|
|
return -1;
|
|
}
|
|
|
|
if (*ctx->p != ':') {
|
|
heim_release(key);
|
|
return -1;
|
|
}
|
|
|
|
ctx->p += 1; /* safe because we call white_spaces() next */
|
|
|
|
if (white_spaces(ctx)) {
|
|
heim_release(key);
|
|
return -1;
|
|
}
|
|
|
|
value = parse_value(ctx);
|
|
if (value == NULL &&
|
|
(ctx->error != NULL || (ctx->flags & HEIM_JSON_F_NO_C_NULL))) {
|
|
if (ctx->error == NULL)
|
|
ctx->error = heim_error_create(EINVAL, "Invalid JSON encoding");
|
|
heim_release(key);
|
|
return -1;
|
|
}
|
|
heim_dict_set_value(dict, key, value);
|
|
heim_release(key);
|
|
heim_release(value);
|
|
|
|
if (white_spaces(ctx))
|
|
return -1;
|
|
|
|
if (*ctx->p == '}') {
|
|
/*
|
|
* Return 1 but don't consume the '}' so we can count the one
|
|
* pair in a one-pair dict
|
|
*/
|
|
return 1;
|
|
} else if (*ctx->p == ',') {
|
|
ctx->p++;
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static heim_dict_t
|
|
parse_dict(struct parse_ctx *ctx)
|
|
{
|
|
heim_dict_t dict;
|
|
size_t count = 0;
|
|
int ret;
|
|
|
|
heim_assert(*ctx->p == '{', "string doesn't start with {");
|
|
|
|
dict = heim_dict_create(11);
|
|
if (dict == NULL) {
|
|
ctx->error = heim_error_create_enomem();
|
|
return NULL;
|
|
}
|
|
|
|
ctx->p += 1; /* safe because parse_pair() calls white_spaces() first */
|
|
|
|
while ((ret = parse_pair(dict, ctx)) > 0)
|
|
count++;
|
|
if (ret < 0) {
|
|
heim_release(dict);
|
|
return NULL;
|
|
}
|
|
if (count == 1 && !(ctx->flags & HEIM_JSON_F_NO_DATA_DICT)) {
|
|
heim_object_t v = heim_dict_copy_value(dict, heim_tid_data_uuid_key);
|
|
|
|
/*
|
|
* Binary data encoded as a dict with a single magic key with
|
|
* base64-encoded value? Decode as heim_data_t.
|
|
*/
|
|
if (v != NULL && heim_get_tid(v) == HEIM_TID_STRING) {
|
|
void *buf;
|
|
size_t len;
|
|
|
|
buf = malloc(strlen(heim_string_get_utf8(v)));
|
|
if (buf == NULL) {
|
|
heim_release(dict);
|
|
heim_release(v);
|
|
ctx->error = heim_error_create_enomem();
|
|
return NULL;
|
|
}
|
|
len = rk_base64_decode(heim_string_get_utf8(v), buf);
|
|
heim_release(v);
|
|
if (len == -1) {
|
|
free(buf);
|
|
return dict; /* assume aliasing accident */
|
|
}
|
|
heim_release(dict);
|
|
return (heim_dict_t)heim_data_ref_create(buf, len, free);
|
|
}
|
|
}
|
|
return dict;
|
|
}
|
|
|
|
static int
|
|
parse_item(heim_array_t array, struct parse_ctx *ctx)
|
|
{
|
|
heim_object_t value;
|
|
|
|
if (white_spaces(ctx))
|
|
return -1;
|
|
|
|
if (*ctx->p == ']') {
|
|
ctx->p++; /* safe because parse_value() calls white_spaces() first */
|
|
return 0;
|
|
}
|
|
|
|
value = parse_value(ctx);
|
|
if (value == NULL &&
|
|
(ctx->error || (ctx->flags & HEIM_JSON_F_NO_C_NULL)))
|
|
return -1;
|
|
|
|
heim_array_append_value(array, value);
|
|
heim_release(value);
|
|
|
|
if (white_spaces(ctx))
|
|
return -1;
|
|
|
|
if (*ctx->p == ']') {
|
|
ctx->p++;
|
|
return 0;
|
|
} else if (*ctx->p == ',') {
|
|
ctx->p++;
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static heim_array_t
|
|
parse_array(struct parse_ctx *ctx)
|
|
{
|
|
heim_array_t array = heim_array_create();
|
|
int ret;
|
|
|
|
heim_assert(*ctx->p == '[', "array doesn't start with [");
|
|
ctx->p += 1;
|
|
|
|
while ((ret = parse_item(array, ctx)) > 0)
|
|
;
|
|
if (ret < 0) {
|
|
heim_release(array);
|
|
return NULL;
|
|
}
|
|
return array;
|
|
}
|
|
|
|
static heim_object_t
|
|
parse_value(struct parse_ctx *ctx)
|
|
{
|
|
size_t len;
|
|
heim_object_t o;
|
|
|
|
if (white_spaces(ctx))
|
|
return NULL;
|
|
|
|
if (*ctx->p == '"') {
|
|
return parse_string(ctx);
|
|
} else if (*ctx->p == '{') {
|
|
if (ctx->depth-- == 1) {
|
|
ctx->error = heim_error_create(EINVAL, "JSON object too deep");
|
|
return NULL;
|
|
}
|
|
o = parse_dict(ctx);
|
|
ctx->depth++;
|
|
return o;
|
|
} else if (*ctx->p == '[') {
|
|
if (ctx->depth-- == 1) {
|
|
ctx->error = heim_error_create(EINVAL, "JSON object too deep");
|
|
return NULL;
|
|
}
|
|
o = parse_array(ctx);
|
|
ctx->depth++;
|
|
return o;
|
|
} else if (is_number(*ctx->p) || *ctx->p == '-') {
|
|
return parse_number(ctx);
|
|
}
|
|
|
|
len = ctx->pend - ctx->p;
|
|
|
|
if ((ctx->flags & HEIM_JSON_F_NO_C_NULL) == 0 &&
|
|
len >= 6 && memcmp(ctx->p, "<NULL>", 6) == 0) {
|
|
ctx->p += 6;
|
|
return heim_null_create();
|
|
} else if (len >= 4 && memcmp(ctx->p, "null", 4) == 0) {
|
|
ctx->p += 4;
|
|
return heim_null_create();
|
|
} else if (len >= 4 && strncasecmp((char *)ctx->p, "true", 4) == 0) {
|
|
ctx->p += 4;
|
|
return heim_bool_create(1);
|
|
} else if (len >= 5 && strncasecmp((char *)ctx->p, "false", 5) == 0) {
|
|
ctx->p += 5;
|
|
return heim_bool_create(0);
|
|
}
|
|
|
|
ctx->error = heim_error_create(EINVAL, "unknown char %c at %lu line %lu",
|
|
(char)*ctx->p,
|
|
(unsigned long)(ctx->p - ctx->pstart),
|
|
ctx->lineno);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
heim_object_t
|
|
heim_json_create(const char *string, size_t max_depth, heim_json_flags_t flags,
|
|
heim_error_t *error)
|
|
{
|
|
return heim_json_create_with_bytes(string, strlen(string), max_depth, flags,
|
|
error);
|
|
}
|
|
|
|
heim_object_t
|
|
heim_json_create_with_bytes(const void *data, size_t length, size_t max_depth,
|
|
heim_json_flags_t flags, heim_error_t *error)
|
|
{
|
|
struct parse_ctx ctx;
|
|
heim_object_t o;
|
|
|
|
heim_base_once_f(&heim_json_once, NULL, json_init_once);
|
|
|
|
ctx.lineno = 1;
|
|
ctx.p = data;
|
|
ctx.pstart = data;
|
|
ctx.pend = ((uint8_t *)data) + length;
|
|
ctx.error = NULL;
|
|
ctx.flags = flags;
|
|
ctx.depth = max_depth;
|
|
|
|
o = parse_value(&ctx);
|
|
|
|
if (o == NULL && error) {
|
|
*error = ctx.error;
|
|
} else if (ctx.error) {
|
|
heim_release(ctx.error);
|
|
}
|
|
|
|
return o;
|
|
}
|
|
|
|
|
|
static void
|
|
show_printf(void *ctx, const char *str)
|
|
{
|
|
if (str == NULL)
|
|
return;
|
|
fprintf(ctx, "%s", str);
|
|
}
|
|
|
|
/**
|
|
* Dump a heimbase object to stderr (useful from the debugger!)
|
|
*
|
|
* @param obj object to dump using JSON or JSON-like format
|
|
*
|
|
* @addtogroup heimbase
|
|
*/
|
|
void
|
|
heim_show(heim_object_t obj)
|
|
{
|
|
heim_base2json(obj, stderr, HEIM_JSON_F_NO_DATA_DICT, show_printf);
|
|
}
|
|
|
|
static void
|
|
strbuf_add(void *ctx, const char *str)
|
|
{
|
|
struct heim_strbuf *strbuf = ctx;
|
|
size_t len;
|
|
|
|
if (strbuf->enomem)
|
|
return;
|
|
|
|
if (str == NULL) {
|
|
/*
|
|
* Eat the last '\n'; this is used when formatting dict pairs
|
|
* and array items so that the ',' separating them is never
|
|
* preceded by a '\n'.
|
|
*/
|
|
if (strbuf->len > 0 && strbuf->str[strbuf->len - 1] == '\n')
|
|
strbuf->len--;
|
|
return;
|
|
}
|
|
|
|
len = strlen(str);
|
|
if ((len + 1) > (strbuf->alloced - strbuf->len)) {
|
|
size_t new_len = strbuf->alloced + (strbuf->alloced >> 2) + len + 1;
|
|
char *s;
|
|
|
|
s = realloc(strbuf->str, new_len);
|
|
if (s == NULL) {
|
|
strbuf->enomem = 1;
|
|
return;
|
|
}
|
|
strbuf->str = s;
|
|
strbuf->alloced = new_len;
|
|
}
|
|
/* +1 so we copy the NUL */
|
|
(void) memcpy(strbuf->str + strbuf->len, str, len + 1);
|
|
strbuf->len += len;
|
|
if (strbuf->str[strbuf->len - 1] == '\n' &&
|
|
strbuf->flags & HEIM_JSON_F_ONE_LINE)
|
|
strbuf->len--;
|
|
}
|
|
|
|
#define STRBUF_INIT_SZ 64
|
|
|
|
heim_string_t
|
|
heim_json_copy_serialize(heim_object_t obj, heim_json_flags_t flags, heim_error_t *error)
|
|
{
|
|
heim_string_t str;
|
|
struct heim_strbuf strbuf;
|
|
int ret;
|
|
|
|
if (error)
|
|
*error = NULL;
|
|
|
|
memset(&strbuf, 0, sizeof (strbuf));
|
|
strbuf.str = malloc(STRBUF_INIT_SZ);
|
|
if (strbuf.str == NULL) {
|
|
if (error)
|
|
*error = heim_error_create_enomem();
|
|
return NULL;
|
|
}
|
|
strbuf.len = 0;
|
|
strbuf.alloced = STRBUF_INIT_SZ;
|
|
strbuf.str[0] = '\0';
|
|
strbuf.flags = flags;
|
|
|
|
ret = heim_base2json(obj, &strbuf, flags, strbuf_add);
|
|
if (ret || strbuf.enomem) {
|
|
if (error) {
|
|
if (strbuf.enomem || ret == ENOMEM)
|
|
*error = heim_error_create_enomem();
|
|
else
|
|
*error = heim_error_create(1, "Impossible to JSON-encode "
|
|
"object");
|
|
}
|
|
free(strbuf.str);
|
|
return NULL;
|
|
}
|
|
if (flags & HEIM_JSON_F_ONE_LINE) {
|
|
strbuf.flags &= ~HEIM_JSON_F_ONE_LINE;
|
|
strbuf_add(&strbuf, "\n");
|
|
}
|
|
str = heim_string_ref_create(strbuf.str, free);
|
|
if (str == NULL) {
|
|
if (error)
|
|
*error = heim_error_create_enomem();
|
|
free(strbuf.str);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
struct heim_eq_f_ctx {
|
|
heim_dict_t other;
|
|
int ret;
|
|
};
|
|
|
|
static void
|
|
heim_eq_dict_iter_f(heim_object_t key, heim_object_t val, void *d)
|
|
{
|
|
struct heim_eq_f_ctx *ctx = d;
|
|
heim_object_t other_val;
|
|
|
|
if (!ctx->ret)
|
|
return;
|
|
|
|
/*
|
|
* This doesn't work if the key is an array or a dict, which, anyways,
|
|
* isn't allowed in JSON, though we allow it.
|
|
*/
|
|
other_val = heim_dict_get_value(ctx->other, key);
|
|
ctx->ret = heim_json_eq(val, other_val);
|
|
}
|
|
|
|
int
|
|
heim_json_eq(heim_object_t a, heim_object_t b)
|
|
{
|
|
heim_tid_t atid, btid;
|
|
|
|
if (a == b)
|
|
return 1;
|
|
if (a == NULL || b == NULL)
|
|
return 0;
|
|
atid = heim_get_tid(a);
|
|
btid = heim_get_tid(b);
|
|
if (atid != btid)
|
|
return 0;
|
|
switch (atid) {
|
|
case HEIM_TID_ARRAY: {
|
|
size_t len = heim_array_get_length(b);
|
|
size_t i;
|
|
|
|
if (heim_array_get_length(a) != len)
|
|
return 0;
|
|
for (i = 0; i < len; i++) {
|
|
if (!heim_json_eq(heim_array_get_value(a, i),
|
|
heim_array_get_value(b, i)))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
case HEIM_TID_DICT: {
|
|
struct heim_eq_f_ctx ctx;
|
|
|
|
ctx.other = b;
|
|
ctx.ret = 1;
|
|
heim_dict_iterate_f(a, &ctx, heim_eq_dict_iter_f);
|
|
|
|
if (ctx.ret) {
|
|
ctx.other = a;
|
|
heim_dict_iterate_f(b, &ctx, heim_eq_dict_iter_f);
|
|
}
|
|
return ctx.ret;
|
|
}
|
|
case HEIM_TID_STRING:
|
|
return strcmp(heim_string_get_utf8(a), heim_string_get_utf8(b)) == 0;
|
|
case HEIM_TID_DATA: {
|
|
return heim_data_get_length(a) == heim_data_get_length(b) &&
|
|
memcmp(heim_data_get_ptr(a), heim_data_get_ptr(b),
|
|
heim_data_get_length(a)) == 0;
|
|
}
|
|
case HEIM_TID_NUMBER:
|
|
return heim_number_get_long(a) == heim_number_get_long(b);
|
|
case HEIM_TID_NULL:
|
|
case HEIM_TID_BOOL:
|
|
return heim_bool_val(a) == heim_bool_val(b);
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|