Files
.github
.zed
admin
appl
cf
doc
etc
include
kadmin
kcm
kdc
kpasswd
kuser
lib
asn1
base
Makefile.am
NTMakefile
array.c
baselocl.h
bool.c
bsearch.c
common_plugin.h
config_file.c
config_reg.c
context.c
data.c
db.c
dict.c
dll.c
error.c
error_string.c
expand_path.c
heim_err.et
heimbase-atomics.h
heimbase-svc.h
heimbase.c
heimbase.h
heimbasepriv.h
json.c
log.c
null.c
number.c
plugin.c
roken_rename.h
string.c
test_base.c
version-script.map
warn.c
com_err
gss_preauth
gssapi
hcrypto
hdb
heimdal
hx509
ipc
kadm5
kafs
kdfs
krb5
libedit
ntlm
otp
roken
sl
sqlite
vers
wind
Makefile.am
NTMakefile
nix
packages
po
tests
tools
windows
.gitignore
.travis.yml
CODE_OF_CONDUCT.md
ChangeLog
ChangeLog.1998
ChangeLog.1999
ChangeLog.2000
ChangeLog.2001
ChangeLog.2002
ChangeLog.2003
ChangeLog.2004
ChangeLog.2005
ChangeLog.2006
ChangeLog.2007
LICENSE
Makefile.am
Makefile.am.common
NEWS
NTMakefile
README
README.fast
README.md
SECURITY.md
TODO
acinclude.m4
appveyor.yml
autogen.sh
configure.ac
flake.lock
flake.nix
krb5.conf
Nicolas Williams ed0fd1263a base: Fix warnings
2022-01-14 12:01:33 -06:00

889 lines
25 KiB
C

/*
* Copyright (c) 2011, Secure Endpoints Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "baselocl.h"
#include <sys/types.h>
#include <sys/stat.h>
#ifdef HAVE_IO_H
#include <io.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <fcntl.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#include <errno.h>
#include <assert.h>
/*
* This file contains functions for binary searching flat text in memory
* and in text files where each line is a [variable length] record.
* Each record has a key and an optional value separated from the key by
* unquoted whitespace. Whitespace in the key, and leading whitespace
* for the value, can be quoted with backslashes (but CR and LF must be
* quoted in such a way that they don't appear in the quoted result).
*
* Binary searching a tree are normally a dead simple algorithm. It
* turns out that binary searching flat text with *variable* length
* records is... tricky. There's no indexes to record beginning bytes,
* thus any index selected during the search is likely to fall in the
* middle of a record. When deciding to search a left sub-tree one
* might fail to find the last record in that sub-tree on account of the
* right boundary falling in the middle of it -- the chosen solution to
* this makes left sub-tree searches slightly less efficient than right
* sub-tree searches.
*
* If binary searching flat text in memory is tricky, using block-wise
* I/O instead is trickier! But it's necessary in order to support
* large files (which we either can't or wouldn't want to read or map
* into memory). Each block we read has to be large enough that the
* largest record can fit in it. And each block might start and/or end
* in the middle of a record. Here it is the right sub-tree searches
* that are less efficient than left sub-tree searches.
*
* bsearch_common() contains the common text block binary search code.
*
* _bsearch_text() is the interface for searching in-core text.
* _bsearch_file() is the interface for block-wise searching files.
*/
struct bsearch_file_handle {
int fd; /* file descriptor */
char *cache; /* cache bytes */
char *page; /* one double-size page worth of bytes */
size_t file_sz; /* file size */
size_t cache_sz; /* cache size */
size_t page_sz; /* page size */
};
/* Find a new-line */
static const char *
find_line(const char *buf, size_t i, size_t right)
{
if (i == 0)
return &buf[i];
for (; i < right; i++) {
if (buf[i] == '\n') {
if ((i + 1) < right)
return &buf[i + 1];
return NULL;
}
}
return NULL;
}
/*
* Common routine for binary searching text in core.
*
* Perform a binary search of a char array containing a block from a
* text file where each line is a record (LF and CRLF supported). Each
* record consists of a key followed by an optional value separated from
* the key by whitespace. Whitespace can be quoted with backslashes.
* It's the caller's responsibility to encode/decode keys/values if
* quoting is desired; newlines should be encoded such that a newline
* does not appear in the result.
*
* All output arguments are optional.
*
* Returns 0 if key is found, -1 if not found, or an error code such as
* ENOMEM in case of error.
*
* Inputs:
*
* @buf String to search
* @sz Size of string to search
* @key Key string to search for
* @buf_is_start True if the buffer starts with a record, false if it
* starts in the middle of a record or if the caller
* doesn't know.
*
* Outputs:
*
* @value Location to store a copy of the value (caller must free)
* @location Record location if found else the location where the
* record should be inserted (index into @buf)
* @cmp Set to less than or greater than 0 to indicate that a
* key not found would have fit in an earlier or later
* part of a file. Callers should use this to decide
* whether to read a block to the left or to the right and
* search that.
* @loops Location to store a count of bisections required for
* search (useful for confirming logarithmic performance)
*/
static int
bsearch_common(const char *buf, size_t sz, const char *key,
int buf_is_start, char **value, size_t *location,
int *cmp, size_t *loops)
{
const char *linep;
size_t key_start, key_len; /* key string in buf */
size_t val_start, val_len; /* value string in buf */
int key_cmp = -1;
size_t k;
size_t l; /* left side of buffer for binary search */
size_t r; /* right side of buffer for binary search */
size_t rmax; /* right side of buffer for binary search */
size_t i; /* index into buffer, typically in the middle of l and r */
size_t loop_count = 0;
int ret = -1;
if (value)
*value = NULL;
if (cmp)
*cmp = 0;
if (loops)
*loops = 0;
/* Binary search; file should be sorted */
for (l = 0, r = rmax = sz, i = sz >> 1; i >= l && i < rmax; loop_count++) {
heim_assert(i < sz, "invalid aname2lname db index");
/* buf[i] is likely in the middle of a line; find the next line */
linep = find_line(buf, i, rmax);
k = linep ? linep - buf : i;
if (linep == NULL || k >= rmax) {
/*
* No new line found to the right; search to the left then
* but don't change rmax (this isn't optimal, but it's
* simple).
*/
if (i == l)
break;
r = i;
i = l + ((r - l) >> 1);
continue;
}
i = k;
heim_assert(i >= l && i < rmax, "invalid aname2lname db index");
/* Got a line; check it */
/* Search for and split on unquoted whitespace */
val_start = 0;
for (key_start = i, key_len = 0, val_len = 0, k = i; k < rmax; k++) {
if (buf[k] == '\\') {
k++;
continue;
}
if (buf[k] == '\r' || buf[k] == '\n') {
/* We now know where the key ends, and there's no value */
key_len = k - i;
break;
}
if (!isspace((unsigned char)buf[k]))
continue;
while (k < rmax && isspace((unsigned char)buf[k])) {
key_len = k - i;
k++;
}
if (k < rmax)
val_start = k;
/* Find end of value */
for (; k < rmax && buf[k] != '\0'; k++) {
if (buf[k] == '\r' || buf[k] == '\n') {
val_len = k - val_start;
break;
}
}
break;
}
/*
* The following logic is for dealing with partial buffers,
* which we use for block-wise binary searches of large files
*/
if (key_start == 0 && !buf_is_start) {
/*
* We're at the beginning of a block that might have started
* in the middle of a record whose "key" might well compare
* as greater than the key we're looking for, so we don't
* bother comparing -- we know key_cmp must be -1 here.
*/
key_cmp = -1;
break;
}
if ((val_len && buf[val_start + val_len] != '\n') ||
(!val_len && buf[key_start + key_len] != '\n')) {
/*
* We're at the end of a block that ends in the middle of a
* record whose "key" might well compare as less than the
* key we're looking for, so we don't bother comparing -- we
* know key_cmp must be >= 0 but we can't tell. Our caller
* will end up reading a double-size block to handle this.
*/
key_cmp = 1;
break;
}
key_cmp = strncmp(key, &buf[key_start], key_len);
if (key_cmp == 0 && strlen(key) != key_len)
key_cmp = 1;
if (key_cmp < 0) {
/* search left */
r = rmax = (linep - buf);
i = l + ((r - l) >> 1);
if (location)
*location = key_start;
} else if (key_cmp > 0) {
/* search right */
if (l == i)
break; /* not found */
l = i;
i = l + ((r - l) >> 1);
if (location)
*location = val_start + val_len;
} else {
/* match! */
if (location)
*location = key_start;
ret = 0;
if (val_len && value) {
/* Avoid strndup() so we don't need libroken here yet */
if ((*value = malloc(val_len + 1))) {
(void) memcpy(*value, &buf[val_start], val_len);
(*value)[val_len] = '\0';
} else {
ret = errno;
}
}
break;
}
}
if (cmp)
*cmp = key_cmp;
if (loops)
*loops = loop_count;
return ret;
}
/*
* Binary search a char array containing sorted text records separated
* by new-lines (or CRLF). Each record consists of a key and an
* optional value following the key, separated from the key by unquoted
* whitespace.
*
* All output arguments are optional.
*
* Returns 0 if key is found, -1 if not found, or an error code such as
* ENOMEM in case of error.
*
* Inputs:
*
* @buf Char array pointer
* @buf_sz Size of buf
* @key Key to search for
*
* Outputs:
*
* @value Location where to put the value, if any (caller must free)
* @location Record location if found else the location where the record
* should be inserted (index into @buf)
* @loops Location where to put a number of loops (or comparisons)
* needed for the search (useful for benchmarking)
*/
int
_bsearch_text(const char *buf, size_t buf_sz, const char *key,
char **value, size_t *location, size_t *loops)
{
return bsearch_common(buf, buf_sz, key, 1, value, location, NULL, loops);
}
#define MAX_BLOCK_SIZE (1024 * 1024)
#define DEFAULT_MAX_FILE_SIZE (1024 * 1024)
/*
* Open a file for binary searching. The file will be read in entirely
* if it is smaller than @max_sz, else a cache of @max_sz bytes will be
* allocated.
*
* Returns 0 on success, else an error number or -1 if the file is empty.
*
* Inputs:
*
* @fname Name of file to open
* @max_sz Maximum size of cache to allocate, in bytes (if zero, default)
* @page_sz Page size (must be a power of two, larger than 256, smaller
* than 1MB; if zero use default)
*
* Outputs:
*
* @bfh Handle for use with _bsearch_file() and _bsearch_file_close()
* @reads Number of reads performed
*/
int
_bsearch_file_open(const char *fname, size_t max_sz, size_t page_sz,
bsearch_file_handle *bfh, size_t *reads)
{
bsearch_file_handle new_bfh = NULL;
struct stat st;
size_t i;
int fd;
int ret;
*bfh = NULL;
if (reads)
*reads = 0;
fd = open(fname, O_RDONLY);
if (fd == -1)
return errno;
if (fstat(fd, &st) == -1) {
ret = errno;
goto err;
}
if (st.st_size == 0) {
ret = -1; /* no data -> no binary search */
goto err;
}
/* Validate / default arguments */
if (max_sz == 0)
max_sz = DEFAULT_MAX_FILE_SIZE;
for (i = page_sz; i; i >>= 1) {
/* Make sure page_sz is a power of two */
if ((i % 2) && (i >> 1)) {
page_sz = 0;
break;
}
}
if (page_sz == 0)
#ifdef HAVE_STRUCT_STAT_ST_BLKSIZE
page_sz = st.st_blksize;
#else
page_sz = 4096;
#endif
for (i = page_sz; i; i >>= 1) {
/* Make sure page_sz is a power of two */
if ((i % 2) && (i >> 1)) {
/* Can't happen! Filesystems always use powers of two! */
page_sz = 4096;
break;
}
}
if (page_sz > MAX_BLOCK_SIZE)
page_sz = MAX_BLOCK_SIZE;
new_bfh = calloc(1, sizeof (*new_bfh));
if (new_bfh == NULL) {
ret = ENOMEM;
goto err;
}
new_bfh->fd = fd;
new_bfh->page_sz = page_sz;
new_bfh->file_sz = st.st_size;
if (max_sz >= st.st_size) {
/* Whole-file method */
new_bfh->cache = malloc(st.st_size + 1);
if (new_bfh->cache) {
new_bfh->cache[st.st_size] = '\0';
new_bfh->cache_sz = st.st_size;
ret = read(fd, new_bfh->cache, st.st_size);
if (ret < 0) {
ret = errno;
goto err;
}
if (ret != st.st_size) {
ret = EIO; /* XXX ??? */
goto err;
}
if (reads)
*reads = 1;
(void) close(fd);
new_bfh->fd = -1;
*bfh = new_bfh;
return 0;
}
}
/* Block-size method, or above malloc() failed */
new_bfh->page = malloc(new_bfh->page_sz << 1);
if (new_bfh->page == NULL) {
/* Can't even allocate a single double-size page! */
ret = ENOMEM;
goto err;
}
new_bfh->cache_sz = max_sz < st.st_size ? max_sz : st.st_size;
new_bfh->cache = malloc(new_bfh->cache_sz);
*bfh = new_bfh;
/*
* malloc() may have failed because we were asking for a lot of
* memory, but we may still be able to operate without a cache,
* so let's not fail.
*/
if (new_bfh->cache == NULL) {
new_bfh->cache_sz = 0;
return 0;
}
/* Initialize cache */
for (i = 0; i < new_bfh->cache_sz; i += new_bfh->page_sz)
new_bfh->cache[i] = '\0';
return 0;
err:
(void) close(fd);
if (new_bfh) {
free(new_bfh->page);
free(new_bfh->cache);
free(new_bfh);
}
return ret;
}
/*
* Indicate whether the given binary search file handle will be searched
* with block-wise method.
*/
void
_bsearch_file_info(bsearch_file_handle bfh,
size_t *page_sz, size_t *max_sz, int *blockwise)
{
if (page_sz)
*page_sz = bfh->page_sz;
if (max_sz)
*max_sz = bfh->cache_sz;
if (blockwise)
*blockwise = (bfh->file_sz != bfh->cache_sz);
}
/*
* Close the given binary file search handle.
*
* Inputs:
*
* @bfh Pointer to variable containing handle to close.
*/
void
_bsearch_file_close(bsearch_file_handle *bfh)
{
if (!*bfh)
return;
if ((*bfh)->fd >= 0)
(void) close((*bfh)->fd);
if ((*bfh)->page)
free((*bfh)->page);
if ((*bfh)->cache)
free((*bfh)->cache);
free(*bfh);
*bfh = NULL;
}
/*
* Private function to get a page from a cache. The cache is a char
* array of 2^n - 1 double-size page worth of bytes, where n is the
* number of tree levels that the cache stores. The cache can be
* smaller than n implies.
*
* The page may or may not be valid. If the first byte of it is NUL
* then it's not valid, else it is.
*
* Returns 1 if page is in cache and valid, 0 if the cache is too small
* or the page is invalid. The page address is output in @buf if the
* cache is large enough to contain it regardless of whether the page is
* valid.
*
* Inputs:
*
* @bfh Binary search file handle
* @level Level in the tree that we want a page for
* @page_idx Page number in the given level (0..2^level - 1)
*
* Outputs:
*
* @buf Set to address of page if the cache is large enough
*/
static int
get_page_from_cache(bsearch_file_handle bfh, size_t level, size_t page_idx,
char **buf)
{
size_t idx = 0;
size_t page_sz;
page_sz = bfh->page_sz << 1; /* we use double-size pages in the cache */
*buf = NULL;
/*
* Compute index into cache. The cache is basically an array of
* double-size pages. The first (zeroth) double-size page in the
* cache will be the middle page of the file -- the root of the
* tree. The next two double-size pages will be the left and right
* pages of the second level in the tree. The next four double-size
* pages will be the four pages at the next level. And so on for as
* many pages as fit in the cache.
*
* The page index is the number of the page at the given level. We
* then compute (2^level - 1 + page index) * 2page size, check that
* we have that in the cache, check that the page has been read (it
* doesn't start with NUL).
*/
if (level)
idx = (1 << level) - 1 + page_idx;
if (((idx + 1) * page_sz * 2) > bfh->cache_sz)
return 0;
*buf = &bfh->cache[idx * page_sz * 2];
if (bfh->cache[idx * page_sz * 2] == '\0')
return 0; /* cache[idx] == NUL -> page not loaded in cache */
return 1;
}
/*
* Private function to read a page of @page_sz from @fd at offset @off
* into @buf, outputing the number of bytes read, which will be the same
* as @page_sz unless the page being read is the last page, in which
* case the number of remaining bytes in the file will be output.
*
* Returns 0 on success or an errno value otherwise (EIO if reads are
* short).
*
* Inputs:
*
* @bfh Binary search file handle
* @level Level in the binary search tree that we're at
* @page_idx Page "index" at the @level of the tree that we want
* @page Actual page number that we want
* want_double Whether we need a page or double page read
*
* Outputs:
*
* @buf Page read or cached
* @bytes Bytes read (may be less than page or double page size in
* the case of the last page, of course)
*/
static int
read_page(bsearch_file_handle bfh, size_t level, size_t page_idx, size_t page,
int want_double, const char **buf, size_t *bytes)
{
int ret;
off_t off;
size_t expected;
size_t wanted;
char *page_buf;
/* Figure out where we're reading and how much */
off = page * bfh->page_sz;
if (off < 0)
return EOVERFLOW;
wanted = bfh->page_sz << want_double;
expected = ((bfh->file_sz - off) > wanted) ? wanted : bfh->file_sz - off;
if (get_page_from_cache(bfh, level, page_idx, &page_buf)) {
*buf = page_buf;
*bytes = expected;
return 0; /* found in cache */
}
*bytes = 0;
*buf = NULL;
/* OK, we have to read a page or double-size page */
if (page_buf)
want_double = 1; /* we'll be caching; we cache double-size pages */
else
page_buf = bfh->page; /* we won't cache this page */
wanted = bfh->page_sz << want_double;
expected = ((bfh->file_sz - off) > wanted) ? wanted : bfh->file_sz - off;
#ifdef HAVE_PREAD
ret = pread(bfh->fd, page_buf, expected, off);
#else
if (lseek(bfh->fd, off, SEEK_SET) == (off_t)-1)
return errno;
ret = read(bfh->fd, page_buf, expected);
#endif
if (ret < 0)
return errno;
if (ret != expected)
return EIO; /* XXX ??? */
*buf = page_buf;
*bytes = expected;
return 0;
}
/*
* Perform a binary search of a file where each line is a record (LF and
* CRLF supported). Each record consists of a key followed by an
* optional value separated from the key by whitespace. Whitespace can
* be quoted with backslashes. It's the caller's responsibility to
* encode/decode keys/values if quoting is desired; newlines should be
* encoded such that a newline does not appear in the result.
*
* The search is done with block-wise I/O (i.e., the whole file is not
* read into memory).
*
* All output arguments are optional.
*
* Returns 0 if key is found, -1 if not found, or an error code such as
* ENOMEM in case of error.
*
* NOTE: We could improve this by not freeing the buffer, instead
* requiring that the caller provide it. Further, we could cache
* the top N levels of [double-size] pages (2^N - 1 pages), which
* should speed up most searches by reducing the number of reads
* by N.
*
* Inputs:
*
* @fd File descriptor (file to search)
* @page_sz Page size (if zero then the file's st_blksize will be used)
* @key Key string to search for
*
* Outputs:
*
* @value Location to store a copy of the value (caller must free)
* @location Record location if found else the location where the
* record should be inserted (index into @buf)
* @loops Location to store a count of bisections required for
* search (useful for confirming logarithmic performance)
* @reads Location to store a count of pages read during search
* (useful for confirming logarithmic performance)
*/
int
_bsearch_file(bsearch_file_handle bfh, const char *key,
char **value, size_t *location, size_t *loops, size_t *reads)
{
int ret;
const char *buf;
size_t buf_sz;
size_t page, l, r;
size_t my_reads = 0;
size_t my_loops_total = 0;
size_t my_loops;
size_t level; /* level in the tree */
size_t page_idx = 0; /* page number in the tree level */
size_t buf_location;
int cmp;
int buf_ends_in_eol = 0;
int buf_is_start = 0;
if (reads)
*reads = 0;
if (value)
*value = NULL;
if (loops)
*loops = 0;
/* If whole file is in memory then search that and we're done */
if (bfh->file_sz == bfh->cache_sz)
return _bsearch_text(bfh->cache, bfh->cache_sz, key, value, location, loops);
/* Else block-wise binary search */
l = 0;
r = (bfh->file_sz / bfh->page_sz) + 1;
for (level = 0, page = r >> 1; page >= l && page < r ; level++) {
ret = read_page(bfh, level, page_idx, page, 0, &buf, &buf_sz);
if (ret != 0)
return ret;
my_reads++;
if (buf[buf_sz - 1] == '\r' || buf[buf_sz - 1] == '\n')
buf_ends_in_eol = 1;
else
buf_ends_in_eol = 0;
buf_is_start = page == 0 ? 1 : 0;
ret = bsearch_common(buf, (size_t)buf_sz, key, buf_is_start,
value, &buf_location, &cmp, &my_loops);
if (ret > 0)
return ret;
/* Found or no we update stats */
my_loops_total += my_loops;
if (loops)
*loops = my_loops_total;
if (reads)
*reads = my_reads;
if (location)
*location = page * bfh->page_sz + buf_location;
if (ret == 0)
return 0; /* found! */
/* Not found */
if (cmp < 0) {
/* Search left */
page_idx <<= 1;
r = page;
page = l + ((r - l) >> 1);
continue;
} else {
/*
* Search right, but first search the current and next
* blocks in case that the record we're looking for either
* straddles the boundary between this and the next record,
* or in case the record starts exactly at the next page.
*/
heim_assert(cmp > 0, "cmp > 0");
if (!buf_ends_in_eol || page == l || page == (r - 1)) {
ret = read_page(bfh, level, page_idx, page, 1, &buf, &buf_sz);
if (ret != 0)
return ret;
my_reads++;
buf_is_start = page == l ? 1 : 0;
ret = bsearch_common(buf, (size_t)buf_sz, key, buf_is_start,
value, &buf_location, &cmp, &my_loops);
if (ret > 0)
return ret;
my_loops_total += my_loops;
if (loops)
*loops = my_loops_total;
if (reads)
*reads = my_reads;
if (location)
*location = page * bfh->page_sz + buf_location;
if (ret == 0)
return 0;
}
/* Oh well, search right */
if (l == page && r == (l + 1))
break;
page_idx = (page_idx << 1) + 1;
l = page;
page = l + ((r - l) >> 1);
continue;
}
}
return -1;
}
static int
stdb_open(void *plug, const char *dbtype, const char *dbname,
heim_dict_t options, void **db, heim_error_t *error)
{
bsearch_file_handle bfh;
char *p;
int ret;
if (error)
*error = NULL;
if (dbname == NULL || *dbname == '\0') {
if (error)
*error = heim_error_create(EINVAL,
N_("DB name required for sorted-text DB "
"plugin", ""));
return EINVAL;
}
p = strrchr(dbname, '.');
if (p == NULL || strcmp(p, ".txt") != 0) {
if (error)
*error = heim_error_create(ENOTSUP,
N_("Text file (name ending in .txt) "
"required for sorted-text DB plugin",
""));
return ENOTSUP;
}
ret = _bsearch_file_open(dbname, 0, 0, &bfh, NULL);
if (ret)
return ret;
*db = bfh;
return 0;
}
static int
stdb_close(void *db, heim_error_t *error)
{
bsearch_file_handle bfh = db;
if (error)
*error = NULL;
_bsearch_file_close(&bfh);
return 0;
}
static heim_data_t
stdb_copy_value(void *db, heim_string_t table, heim_data_t key,
heim_error_t *error)
{
bsearch_file_handle bfh = db;
const char *k;
char *v = NULL;
heim_data_t value;
int ret;
if (error)
*error = NULL;
if (table == NULL)
table = HSTR("");
if (table != HSTR(""))
return NULL;
if (heim_get_tid(key) == HEIM_TID_STRING)
k = heim_string_get_utf8((heim_string_t)key);
else
k = (const char *)heim_data_get_ptr(key);
ret = _bsearch_file(bfh, k, &v, NULL, NULL, NULL);
if (ret == 0 && v == NULL)
ret = -1; /* Quiet lint */
if (ret != 0) {
if (ret > 0 && error)
*error = heim_error_create(ret, "%s", strerror(ret));
return NULL;
}
value = heim_data_create(v, strlen(v));
free(v);
/* XXX Handle ENOMEM */
return value;
}
struct heim_db_type heim_sorted_text_file_dbtype = {
1, stdb_open, NULL, stdb_close, NULL, NULL, NULL, NULL, NULL, NULL,
stdb_copy_value, NULL, NULL, NULL
};