hcrypto: import libtommath v1.2.0
This commit is contained in:
@@ -1,4 +1,26 @@
|
||||
LibTomMath is hereby released into the Public Domain.
|
||||
The LibTom license
|
||||
|
||||
-- Tom St Denis
|
||||
This is free and unencumbered software released into the public domain.
|
||||
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or
|
||||
distribute this software, either in source code form or as a compiled
|
||||
binary, for any purpose, commercial or non-commercial, and by any
|
||||
means.
|
||||
|
||||
In jurisdictions that recognize copyright laws, the author or authors
|
||||
of this software dedicate any and all copyright interest in the
|
||||
software to the public domain. We make this dedication for the benefit
|
||||
of the public at large and to the detriment of our heirs and
|
||||
successors. We intend this dedication to be an overt act of
|
||||
relinquishment in perpetuity of all present and future rights to this
|
||||
software under copyright law.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
For more information, please refer to <http://unlicense.org/>
|
||||
|
44
lib/hcrypto/libtommath/README.md
Normal file
44
lib/hcrypto/libtommath/README.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# libtommath
|
||||
|
||||
This is the git repository for [LibTomMath](http://www.libtom.net/LibTomMath/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C.
|
||||
|
||||
## Build Status
|
||||
|
||||
### Travis CI
|
||||
|
||||
master: [](https://travis-ci.org/libtom/libtommath)
|
||||
|
||||
develop: [](https://travis-ci.org/libtom/libtommath)
|
||||
|
||||
### AppVeyor
|
||||
|
||||
master: [](https://ci.appveyor.com/project/libtom/libtommath/branch/master)
|
||||
|
||||
develop: [](https://ci.appveyor.com/project/libtom/libtommath/branch/develop)
|
||||
|
||||
### ABI Laboratory
|
||||
|
||||
API/ABI changes: [check here](https://abi-laboratory.pro/tracker/timeline/libtommath/)
|
||||
|
||||
## Summary
|
||||
|
||||
The `develop` branch contains the in-development version. Stable releases are tagged.
|
||||
|
||||
Documentation is built from the LaTeX file `bn.tex`. There is also limited documentation in `tommath.h`.
|
||||
There is also a document, `tommath.pdf`, which describes the goals of the project and many of the algorithms used.
|
||||
|
||||
The project can be build by using `make`. Along with the usual `make`, `make clean` and `make install`,
|
||||
there are several other build targets, see the makefile for details.
|
||||
There are also makefiles for certain specific platforms.
|
||||
|
||||
## Testing
|
||||
|
||||
Tests are located in `demo/` and can be built in two flavors.
|
||||
* `make test` creates a stand-alone test binary that executes several test routines.
|
||||
* `make mtest_opponent` creates a test binary that is intended to be run against `mtest`.
|
||||
`mtest` can be built with `make mtest` and test execution is done like `./mtest/mtest | ./mtest_opponent`.
|
||||
`mtest` is creating test vectors using an alternative MPI library and `test` is consuming these vectors to verify correct behavior of ltm
|
||||
|
||||
## Building and Installing
|
||||
|
||||
Building is straightforward for GNU Linux only, the section "Building LibTomMath" in the documentation in `doc/bn.pdf` has the details.
|
@@ -1 +0,0 @@
|
||||
0.41
|
20
lib/hcrypto/libtommath/appveyor.yml
Normal file
20
lib/hcrypto/libtommath/appveyor.yml
Normal file
@@ -0,0 +1,20 @@
|
||||
version: 1.2.0-{build}
|
||||
branches:
|
||||
only:
|
||||
- master
|
||||
- develop
|
||||
- /^release/
|
||||
- /^travis/
|
||||
image:
|
||||
- Visual Studio 2019
|
||||
- Visual Studio 2017
|
||||
- Visual Studio 2015
|
||||
build_script:
|
||||
- cmd: >-
|
||||
if "Visual Studio 2019"=="%APPVEYOR_BUILD_WORKER_IMAGE%" call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
|
||||
if "Visual Studio 2017"=="%APPVEYOR_BUILD_WORKER_IMAGE%" call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat"
|
||||
if "Visual Studio 2015"=="%APPVEYOR_BUILD_WORKER_IMAGE%" call "C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin\SetEnv.cmd" /x64
|
||||
if "Visual Studio 2015"=="%APPVEYOR_BUILD_WORKER_IMAGE%" call "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\vcvarsall.bat" x86_amd64
|
||||
nmake -f makefile.msvc all
|
||||
test_script:
|
||||
- cmd: test.exe
|
30
lib/hcrypto/libtommath/astylerc
Normal file
30
lib/hcrypto/libtommath/astylerc
Normal file
@@ -0,0 +1,30 @@
|
||||
# Artistic Style, see http://astyle.sourceforge.net/
|
||||
# full documentation, see: http://astyle.sourceforge.net/astyle.html
|
||||
#
|
||||
# usage:
|
||||
# astyle --options=astylerc *.[ch]
|
||||
|
||||
# Do not create backup, annonying in the times of git
|
||||
suffix=none
|
||||
|
||||
## Bracket Style Options
|
||||
style=kr
|
||||
|
||||
## Tab Options
|
||||
indent=spaces=3
|
||||
|
||||
## Bracket Modify Options
|
||||
|
||||
## Indentation Options
|
||||
min-conditional-indent=0
|
||||
|
||||
## Padding Options
|
||||
pad-header
|
||||
unpad-paren
|
||||
align-pointer=name
|
||||
|
||||
## Formatting Options
|
||||
break-after-logical
|
||||
max-code-length=120
|
||||
convert-tabs
|
||||
mode=c
|
@@ -1,6 +0,0 @@
|
||||
This is makeindex, version 2.14 [02-Oct-2002] (kpathsea + Thai support).
|
||||
Scanning input file bn.idx....done (79 entries accepted, 0 rejected).
|
||||
Sorting entries....done (511 comparisons).
|
||||
Generating output file bn.ind....done (82 lines written, 0 warnings).
|
||||
Output written in bn.ind.
|
||||
Transcript written in bn.ilg.
|
@@ -1,82 +0,0 @@
|
||||
\begin{theindex}
|
||||
|
||||
\item mp\_add, \hyperpage{31}
|
||||
\item mp\_add\_d, \hyperpage{56}
|
||||
\item mp\_and, \hyperpage{31}
|
||||
\item mp\_clear, \hyperpage{12}
|
||||
\item mp\_clear\_multi, \hyperpage{13}
|
||||
\item mp\_cmp, \hyperpage{25}
|
||||
\item mp\_cmp\_d, \hyperpage{26}
|
||||
\item mp\_cmp\_mag, \hyperpage{23}
|
||||
\item mp\_div, \hyperpage{32}
|
||||
\item mp\_div\_2, \hyperpage{28}
|
||||
\item mp\_div\_2d, \hyperpage{30}
|
||||
\item mp\_div\_d, \hyperpage{56}
|
||||
\item mp\_dr\_reduce, \hyperpage{45}
|
||||
\item mp\_dr\_setup, \hyperpage{45}
|
||||
\item MP\_EQ, \hyperpage{23}
|
||||
\item mp\_error\_to\_string, \hyperpage{9}
|
||||
\item mp\_expt\_d, \hyperpage{47}
|
||||
\item mp\_exptmod, \hyperpage{47}
|
||||
\item mp\_exteuclid, \hyperpage{55}
|
||||
\item mp\_gcd, \hyperpage{55}
|
||||
\item mp\_get\_int, \hyperpage{20}
|
||||
\item mp\_grow, \hyperpage{17}
|
||||
\item MP\_GT, \hyperpage{23}
|
||||
\item mp\_init, \hyperpage{11}
|
||||
\item mp\_init\_copy, \hyperpage{14}
|
||||
\item mp\_init\_multi, \hyperpage{13}
|
||||
\item mp\_init\_set, \hyperpage{21}
|
||||
\item mp\_init\_set\_int, \hyperpage{21}
|
||||
\item mp\_init\_size, \hyperpage{15}
|
||||
\item mp\_int, \hyperpage{10}
|
||||
\item mp\_invmod, \hyperpage{56}
|
||||
\item mp\_jacobi, \hyperpage{56}
|
||||
\item mp\_lcm, \hyperpage{56}
|
||||
\item mp\_lshd, \hyperpage{30}
|
||||
\item MP\_LT, \hyperpage{23}
|
||||
\item MP\_MEM, \hyperpage{9}
|
||||
\item mp\_mod, \hyperpage{39}
|
||||
\item mp\_mod\_d, \hyperpage{56}
|
||||
\item mp\_montgomery\_calc\_normalization, \hyperpage{42}
|
||||
\item mp\_montgomery\_reduce, \hyperpage{42}
|
||||
\item mp\_montgomery\_setup, \hyperpage{42}
|
||||
\item mp\_mul, \hyperpage{33}
|
||||
\item mp\_mul\_2, \hyperpage{28}
|
||||
\item mp\_mul\_2d, \hyperpage{29}
|
||||
\item mp\_mul\_d, \hyperpage{56}
|
||||
\item mp\_n\_root, \hyperpage{48}
|
||||
\item mp\_neg, \hyperpage{31, 32}
|
||||
\item MP\_NO, \hyperpage{9}
|
||||
\item MP\_OKAY, \hyperpage{9}
|
||||
\item mp\_or, \hyperpage{31}
|
||||
\item mp\_prime\_fermat, \hyperpage{49}
|
||||
\item mp\_prime\_is\_divisible, \hyperpage{49}
|
||||
\item mp\_prime\_is\_prime, \hyperpage{51}
|
||||
\item mp\_prime\_miller\_rabin, \hyperpage{50}
|
||||
\item mp\_prime\_next\_prime, \hyperpage{51}
|
||||
\item mp\_prime\_rabin\_miller\_trials, \hyperpage{50}
|
||||
\item mp\_prime\_random, \hyperpage{51}
|
||||
\item mp\_prime\_random\_ex, \hyperpage{52}
|
||||
\item mp\_radix\_size, \hyperpage{53}
|
||||
\item mp\_read\_radix, \hyperpage{53}
|
||||
\item mp\_read\_unsigned\_bin, \hyperpage{54}
|
||||
\item mp\_reduce, \hyperpage{40}
|
||||
\item mp\_reduce\_2k, \hyperpage{46}
|
||||
\item mp\_reduce\_2k\_setup, \hyperpage{46}
|
||||
\item mp\_reduce\_setup, \hyperpage{40}
|
||||
\item mp\_rshd, \hyperpage{30}
|
||||
\item mp\_set, \hyperpage{19}
|
||||
\item mp\_set\_int, \hyperpage{20}
|
||||
\item mp\_shrink, \hyperpage{16}
|
||||
\item mp\_sqr, \hyperpage{35}
|
||||
\item mp\_sub, \hyperpage{31}
|
||||
\item mp\_sub\_d, \hyperpage{56}
|
||||
\item mp\_to\_unsigned\_bin, \hyperpage{54}
|
||||
\item mp\_toradix, \hyperpage{53}
|
||||
\item mp\_unsigned\_bin\_size, \hyperpage{54}
|
||||
\item MP\_VAL, \hyperpage{9}
|
||||
\item mp\_xor, \hyperpage{31}
|
||||
\item MP\_YES, \hyperpage{9}
|
||||
|
||||
\end{theindex}
|
Binary file not shown.
14
lib/hcrypto/libtommath/bn_cutoffs.c
Normal file
14
lib/hcrypto/libtommath/bn_cutoffs.c
Normal file
@@ -0,0 +1,14 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_CUTOFFS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#ifndef MP_FIXED_CUTOFFS
|
||||
#include "tommath_cutoffs.h"
|
||||
int KARATSUBA_MUL_CUTOFF = MP_DEFAULT_KARATSUBA_MUL_CUTOFF,
|
||||
KARATSUBA_SQR_CUTOFF = MP_DEFAULT_KARATSUBA_SQR_CUTOFF,
|
||||
TOOM_MUL_CUTOFF = MP_DEFAULT_TOOM_MUL_CUTOFF,
|
||||
TOOM_SQR_CUTOFF = MP_DEFAULT_TOOM_SQR_CUTOFF;
|
||||
#endif
|
||||
|
||||
#endif
|
321
lib/hcrypto/libtommath/bn_deprecated.c
Normal file
321
lib/hcrypto/libtommath/bn_deprecated.c
Normal file
@@ -0,0 +1,321 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_DEPRECATED_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#ifdef BN_MP_GET_BIT_C
|
||||
int mp_get_bit(const mp_int *a, int b)
|
||||
{
|
||||
if (b < 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return (s_mp_get_bit(a, (unsigned int)b) == MP_YES) ? MP_YES : MP_NO;
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_JACOBI_C
|
||||
mp_err mp_jacobi(const mp_int *a, const mp_int *n, int *c)
|
||||
{
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
if (mp_cmp_d(n, 0uL) != MP_GT) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return mp_kronecker(a, n, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_PRIME_RANDOM_EX_C
|
||||
mp_err mp_prime_random_ex(mp_int *a, int t, int size, int flags, private_mp_prime_callback cb, void *dat)
|
||||
{
|
||||
return s_mp_prime_random_ex(a, t, size, flags, cb, dat);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_RAND_DIGIT_C
|
||||
mp_err mp_rand_digit(mp_digit *r)
|
||||
{
|
||||
mp_err err = s_mp_rand_source(r, sizeof(mp_digit));
|
||||
*r &= MP_MASK;
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_FAST_MP_INVMOD_C
|
||||
mp_err fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return s_mp_invmod_fast(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
mp_err fast_mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
|
||||
{
|
||||
return s_mp_montgomery_reduce_fast(x, n, rho);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
mp_err fast_s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
return s_mp_mul_digs_fast(a, b, c, digs);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
|
||||
mp_err fast_s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs)
|
||||
{
|
||||
return s_mp_mul_high_digs_fast(a, b, c, digs);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_FAST_S_MP_SQR_C
|
||||
mp_err fast_s_mp_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
return s_mp_sqr_fast(a, b);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_BALANCE_MUL_C
|
||||
mp_err mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return s_mp_balance_mul(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
mp_err mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
|
||||
{
|
||||
return s_mp_exptmod_fast(G, X, P, Y, redmode);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_INVMOD_SLOW_C
|
||||
mp_err mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return s_mp_invmod_slow(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_KARATSUBA_MUL_C
|
||||
mp_err mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return s_mp_karatsuba_mul(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_KARATSUBA_SQR_C
|
||||
mp_err mp_karatsuba_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
return s_mp_karatsuba_sqr(a, b);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TOOM_MUL_C
|
||||
mp_err mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return s_mp_toom_mul(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TOOM_SQR_C
|
||||
mp_err mp_toom_sqr(const mp_int *a, mp_int *b)
|
||||
{
|
||||
return s_mp_toom_sqr(a, b);
|
||||
}
|
||||
#endif
|
||||
#ifdef S_MP_REVERSE_C
|
||||
void bn_reverse(unsigned char *s, int len)
|
||||
{
|
||||
if (len > 0) {
|
||||
s_mp_reverse(s, (size_t)len);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TC_AND_C
|
||||
mp_err mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return mp_and(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TC_OR_C
|
||||
mp_err mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return mp_or(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TC_XOR_C
|
||||
mp_err mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
return mp_xor(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TC_DIV_2D_C
|
||||
mp_err mp_tc_div_2d(const mp_int *a, int b, mp_int *c)
|
||||
{
|
||||
return mp_signed_rsh(a, b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_INIT_SET_INT_C
|
||||
mp_err mp_init_set_int(mp_int *a, unsigned long b)
|
||||
{
|
||||
return mp_init_u32(a, (uint32_t)b);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_SET_INT_C
|
||||
mp_err mp_set_int(mp_int *a, unsigned long b)
|
||||
{
|
||||
mp_set_u32(a, (uint32_t)b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_SET_LONG_C
|
||||
mp_err mp_set_long(mp_int *a, unsigned long b)
|
||||
{
|
||||
mp_set_u64(a, b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_SET_LONG_LONG_C
|
||||
mp_err mp_set_long_long(mp_int *a, unsigned long long b)
|
||||
{
|
||||
mp_set_u64(a, b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_GET_INT_C
|
||||
unsigned long mp_get_int(const mp_int *a)
|
||||
{
|
||||
return (unsigned long)mp_get_mag_u32(a);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_GET_LONG_C
|
||||
unsigned long mp_get_long(const mp_int *a)
|
||||
{
|
||||
return (unsigned long)mp_get_mag_ul(a);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_GET_LONG_LONG_C
|
||||
unsigned long long mp_get_long_long(const mp_int *a)
|
||||
{
|
||||
return mp_get_mag_ull(a);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
|
||||
mp_err mp_prime_is_divisible(const mp_int *a, mp_bool *result)
|
||||
{
|
||||
return s_mp_prime_is_divisible(a, result);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_EXPT_D_EX_C
|
||||
mp_err mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
{
|
||||
(void)fast;
|
||||
if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return mp_expt_u32(a, (uint32_t)b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_EXPT_D_C
|
||||
mp_err mp_expt_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return mp_expt_u32(a, (uint32_t)b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_N_ROOT_EX_C
|
||||
mp_err mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
|
||||
{
|
||||
(void)fast;
|
||||
if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return mp_root_u32(a, (uint32_t)b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_N_ROOT_C
|
||||
mp_err mp_n_root(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
if (b > MP_MIN(MP_DIGIT_MAX, UINT32_MAX)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return mp_root_u32(a, (uint32_t)b, c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
|
||||
int mp_unsigned_bin_size(const mp_int *a)
|
||||
{
|
||||
return (int)mp_ubin_size(a);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_READ_UNSIGNED_BIN_C
|
||||
mp_err mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c)
|
||||
{
|
||||
return mp_from_ubin(a, b, (size_t) c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_C
|
||||
mp_err mp_to_unsigned_bin(const mp_int *a, unsigned char *b)
|
||||
{
|
||||
return mp_to_ubin(a, b, SIZE_MAX, NULL);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
|
||||
mp_err mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
size_t n = mp_ubin_size(a);
|
||||
if (*outlen < (unsigned long)n) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = (unsigned long)n;
|
||||
return mp_to_ubin(a, b, n, NULL);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_SIGNED_BIN_SIZE_C
|
||||
int mp_signed_bin_size(const mp_int *a)
|
||||
{
|
||||
return (int)mp_sbin_size(a);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_READ_SIGNED_BIN_C
|
||||
mp_err mp_read_signed_bin(mp_int *a, const unsigned char *b, int c)
|
||||
{
|
||||
return mp_from_sbin(a, b, (size_t) c);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TO_SIGNED_BIN_C
|
||||
mp_err mp_to_signed_bin(const mp_int *a, unsigned char *b)
|
||||
{
|
||||
return mp_to_sbin(a, b, SIZE_MAX, NULL);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TO_SIGNED_BIN_N_C
|
||||
mp_err mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
size_t n = mp_sbin_size(a);
|
||||
if (*outlen < (unsigned long)n) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = (unsigned long)n;
|
||||
return mp_to_sbin(a, b, n, NULL);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TORADIX_N_C
|
||||
mp_err mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen)
|
||||
{
|
||||
if (maxlen < 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
return mp_to_radix(a, str, (size_t)maxlen, NULL, radix);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_TORADIX_C
|
||||
mp_err mp_toradix(const mp_int *a, char *str, int radix)
|
||||
{
|
||||
return mp_to_radix(a, str, SIZE_MAX, NULL, radix);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_IMPORT_C
|
||||
mp_err mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails,
|
||||
const void *op)
|
||||
{
|
||||
return mp_unpack(rop, count, order, size, endian, nails, op);
|
||||
}
|
||||
#endif
|
||||
#ifdef BN_MP_EXPORT_C
|
||||
mp_err mp_export(void *rop, size_t *countp, int order, size_t size,
|
||||
int endian, size_t nails, const mp_int *op)
|
||||
{
|
||||
return mp_pack(rop, SIZE_MAX, countp, order, size, endian, nails, op);
|
||||
}
|
||||
#endif
|
||||
#endif
|
@@ -1,47 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_ERROR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
static const struct {
|
||||
int code;
|
||||
const char *msg;
|
||||
} msgs[] = {
|
||||
{ MP_OKAY, "Successful" },
|
||||
{ MP_MEM, "Out of heap" },
|
||||
{ MP_VAL, "Value out of range" }
|
||||
};
|
||||
|
||||
/* return a char * string for a given code */
|
||||
const char *mp_error_to_string(int code)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* scan the lookup table for the given message */
|
||||
for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
|
||||
if (msgs[x].code == code) {
|
||||
return msgs[x].msg;
|
||||
}
|
||||
}
|
||||
|
||||
/* generic reply for invalid code */
|
||||
return "Invalid error code";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_error.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,148 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_FAST_MP_INVMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes the modular inverse via binary extended euclidean algorithm,
|
||||
* that is c = 1/a mod b
|
||||
*
|
||||
* Based on slow invmod except this is optimized for the case where b is
|
||||
* odd as per HAC Note 14.64 on pp. 610
|
||||
*/
|
||||
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x, y, u, v, B, D;
|
||||
int res, neg;
|
||||
|
||||
/* 2. [modified] b must be odd */
|
||||
if (mp_iseven (b) == 1) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init all our temps */
|
||||
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* x == modulus, y == value to invert */
|
||||
if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* we need y = |a| */
|
||||
if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||||
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set (&D, 1);
|
||||
|
||||
top:
|
||||
/* 4. while u is even do */
|
||||
while (mp_iseven (&u) == 1) {
|
||||
/* 4.1 u = u/2 */
|
||||
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if B is odd then */
|
||||
if (mp_isodd (&B) == 1) {
|
||||
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* B = B/2 */
|
||||
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5. while v is even do */
|
||||
while (mp_iseven (&v) == 1) {
|
||||
/* 5.1 v = v/2 */
|
||||
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if D is odd then */
|
||||
if (mp_isodd (&D) == 1) {
|
||||
/* D = (D-x)/2 */
|
||||
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* D = D/2 */
|
||||
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 6. if u >= v then */
|
||||
if (mp_cmp (&u, &v) != MP_LT) {
|
||||
/* u = u - v, B = B - D */
|
||||
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
/* v - v - u, D = D - B */
|
||||
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* if not zero goto step 4 */
|
||||
if (mp_iszero (&u) == 0) {
|
||||
goto top;
|
||||
}
|
||||
|
||||
/* now a = C, b = D, gcd == g*v */
|
||||
|
||||
/* if v != 1 then there is no inverse */
|
||||
if (mp_cmp_d (&v, 1) != MP_EQ) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* b is now the inverse */
|
||||
neg = a->sign;
|
||||
while (D.sign == MP_NEG) {
|
||||
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
mp_exch (&D, c);
|
||||
c->sign = neg;
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_fast_mp_invmod.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,172 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction
|
||||
*
|
||||
* This is an optimized implementation of montgomery_reduce
|
||||
* which uses the comba method to quickly calculate the columns of the
|
||||
* reduction.
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
|
||||
/* get old used count */
|
||||
olduse = x->used;
|
||||
|
||||
/* grow a as required */
|
||||
if (x->alloc < n->used + 1) {
|
||||
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* first we have to get the digits of the input into
|
||||
* an array of double precision words W[...]
|
||||
*/
|
||||
{
|
||||
register mp_word *_W;
|
||||
register mp_digit *tmpx;
|
||||
|
||||
/* alias for the W[] array */
|
||||
_W = W;
|
||||
|
||||
/* alias for the digits of x*/
|
||||
tmpx = x->dp;
|
||||
|
||||
/* copy the digits of a into W[0..a->used-1] */
|
||||
for (ix = 0; ix < x->used; ix++) {
|
||||
*_W++ = *tmpx++;
|
||||
}
|
||||
|
||||
/* zero the high words of W[a->used..m->used*2] */
|
||||
for (; ix < n->used * 2 + 1; ix++) {
|
||||
*_W++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* now we proceed to zero successive digits
|
||||
* from the least significant upwards
|
||||
*/
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * m' mod b
|
||||
*
|
||||
* We avoid a double precision multiplication (which isn't required)
|
||||
* by casting the value down to a mp_digit. Note this requires
|
||||
* that W[ix-1] have the carry cleared (see after the inner loop)
|
||||
*/
|
||||
register mp_digit mu;
|
||||
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i
|
||||
*
|
||||
* This is computed in place and on the fly. The multiplication
|
||||
* by b**i is handled by offseting which columns the results
|
||||
* are added to.
|
||||
*
|
||||
* Note the comba method normally doesn't handle carries in the
|
||||
* inner loop In this case we fix the carry from the previous
|
||||
* column since the Montgomery reduction requires digits of the
|
||||
* result (so far) [see above] to work. This is
|
||||
* handled by fixing up one carry after the inner loop. The
|
||||
* carry fixups are done in order so after these loops the
|
||||
* first m->used words of W[] have the carries fixed
|
||||
*/
|
||||
{
|
||||
register int iy;
|
||||
register mp_digit *tmpn;
|
||||
register mp_word *_W;
|
||||
|
||||
/* alias for the digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* Alias for the columns set by an offset of ix */
|
||||
_W = W + ix;
|
||||
|
||||
/* inner loop */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
|
||||
}
|
||||
}
|
||||
|
||||
/* now fix carry for next digit, W[ix+1] */
|
||||
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* now we have to propagate the carries and
|
||||
* shift the words downward [all those least
|
||||
* significant digits we zeroed].
|
||||
*/
|
||||
{
|
||||
register mp_digit *tmpx;
|
||||
register mp_word *_W, *_W1;
|
||||
|
||||
/* nox fix rest of carries */
|
||||
|
||||
/* alias for current word */
|
||||
_W1 = W + ix;
|
||||
|
||||
/* alias for next word, where the carry goes */
|
||||
_W = W + ++ix;
|
||||
|
||||
for (; ix <= n->used * 2 + 1; ix++) {
|
||||
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* copy out, A = A/b**n
|
||||
*
|
||||
* The result is A/b**n but instead of converting from an
|
||||
* array of mp_word to mp_digit than calling mp_rshd
|
||||
* we just copy them in the right order
|
||||
*/
|
||||
|
||||
/* alias for destination word */
|
||||
tmpx = x->dp;
|
||||
|
||||
/* alias for shifted double precision result */
|
||||
_W = W + n->used;
|
||||
|
||||
for (ix = 0; ix < n->used + 1; ix++) {
|
||||
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
||||
}
|
||||
|
||||
/* zero oldused digits, if the input a was larger than
|
||||
* m->used+1 we'll have to clear the digits
|
||||
*/
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpx++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* set the max used and clamp */
|
||||
x->used = n->used + 1;
|
||||
mp_clamp (x);
|
||||
|
||||
/* if A >= m then A = A - m */
|
||||
if (mp_cmp_mag (x, n) != MP_LT) {
|
||||
return s_mp_sub (x, n, x);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_fast_mp_montgomery_reduce.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,107 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* Fast (comba) multiplier
|
||||
*
|
||||
* This is the fast column-array [comba] multiplier. It is
|
||||
* designed to compute the columns of the product first
|
||||
* then handle the carries afterwards. This has the effect
|
||||
* of making the nested loops that compute the columns very
|
||||
* simple and schedulable on super-scalar processors.
|
||||
*
|
||||
* This has been modified to produce a variable number of
|
||||
* digits of output so if say only a half-product is required
|
||||
* you don't have to compute the upper half (a feature
|
||||
* required for fast Barrett reduction).
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*
|
||||
*/
|
||||
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
register mp_word _W;
|
||||
|
||||
/* grow the destination as required */
|
||||
if (c->alloc < digs) {
|
||||
if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
pa = MIN(digs, a->used + b->used);
|
||||
|
||||
/* clear the carry */
|
||||
_W = 0;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
int tx, ty;
|
||||
int iy;
|
||||
mp_digit *tmpx, *tmpy;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(b->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = b->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; ++iz) {
|
||||
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
||||
|
||||
}
|
||||
|
||||
/* store term */
|
||||
W[ix] = ((mp_digit)_W) & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
_W = _W >> ((mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
c->used = pa;
|
||||
|
||||
{
|
||||
register mp_digit *tmpc;
|
||||
tmpc = c->dp;
|
||||
for (ix = 0; ix < pa+1; ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp (c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_fast_s_mp_mul_digs.c,v $ */
|
||||
/* $Revision: 1.8 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,98 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* this is a modified version of fast_s_mul_digs that only produces
|
||||
* output digits *above* digs. See the comments for fast_s_mul_digs
|
||||
* to see how it works.
|
||||
*
|
||||
* This is used in the Barrett reduction since for one of the multiplications
|
||||
* only the higher digits were needed. This essentially halves the work.
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
mp_word _W;
|
||||
|
||||
/* grow the destination as required */
|
||||
pa = a->used + b->used;
|
||||
if (c->alloc < pa) {
|
||||
if ((res = mp_grow (c, pa)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
pa = a->used + b->used;
|
||||
_W = 0;
|
||||
for (ix = digs; ix < pa; ix++) {
|
||||
int tx, ty, iy;
|
||||
mp_digit *tmpx, *tmpy;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(b->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = b->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially its
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
||||
}
|
||||
|
||||
/* store term */
|
||||
W[ix] = ((mp_digit)_W) & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
_W = _W >> ((mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
c->used = pa;
|
||||
|
||||
{
|
||||
register mp_digit *tmpc;
|
||||
|
||||
tmpc = c->dp + digs;
|
||||
for (ix = digs; ix < pa; ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp (c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_fast_s_mp_mul_high_digs.c,v $ */
|
||||
/* $Revision: 1.6 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,114 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_FAST_S_MP_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* the jist of squaring...
|
||||
* you do like mult except the offset of the tmpx [one that
|
||||
* starts closer to zero] can't equal the offset of tmpy.
|
||||
* So basically you set up iy like before then you min it with
|
||||
* (ty-tx) so that it never happens. You double all those
|
||||
* you add in the inner loop
|
||||
|
||||
After that loop you do the squares and add them in.
|
||||
*/
|
||||
|
||||
int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY], *tmpx;
|
||||
mp_word W1;
|
||||
|
||||
/* grow the destination as required */
|
||||
pa = a->used + a->used;
|
||||
if (b->alloc < pa) {
|
||||
if ((res = mp_grow (b, pa)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
W1 = 0;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
int tx, ty, iy;
|
||||
mp_word _W;
|
||||
mp_digit *tmpy;
|
||||
|
||||
/* clear counter */
|
||||
_W = 0;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(a->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = a->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* now for squaring tx can never equal ty
|
||||
* we halve the distance since they approach at a rate of 2x
|
||||
* and we have to round because odd cases need to be executed
|
||||
*/
|
||||
iy = MIN(iy, (ty-tx+1)>>1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
||||
}
|
||||
|
||||
/* double the inner product and add carry */
|
||||
_W = _W + _W + W1;
|
||||
|
||||
/* even columns have the square term in them */
|
||||
if ((ix&1) == 0) {
|
||||
_W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
|
||||
}
|
||||
|
||||
/* store it */
|
||||
W[ix] = (mp_digit)(_W & MP_MASK);
|
||||
|
||||
/* make next carry */
|
||||
W1 = _W >> ((mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = b->used;
|
||||
b->used = a->used+a->used;
|
||||
|
||||
{
|
||||
mp_digit *tmpb;
|
||||
tmpb = b->dp;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
*tmpb++ = W[ix] & MP_MASK;
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp (b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_fast_s_mp_sqr.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,48 +1,31 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_2EXPT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* computes a = 2**b
|
||||
*
|
||||
* Simple algorithm which zeroes the int, grows it then just sets one bit
|
||||
* as required.
|
||||
*/
|
||||
int
|
||||
mp_2expt (mp_int * a, int b)
|
||||
mp_err mp_2expt(mp_int *a, int b)
|
||||
{
|
||||
int res;
|
||||
mp_err err;
|
||||
|
||||
/* zero a as per default */
|
||||
mp_zero (a);
|
||||
/* zero a as per default */
|
||||
mp_zero(a);
|
||||
|
||||
/* grow a to accomodate the single bit */
|
||||
if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
/* grow a to accomodate the single bit */
|
||||
if ((err = mp_grow(a, (b / MP_DIGIT_BIT) + 1)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* set the used count of where the bit will go */
|
||||
a->used = b / DIGIT_BIT + 1;
|
||||
/* set the used count of where the bit will go */
|
||||
a->used = (b / MP_DIGIT_BIT) + 1;
|
||||
|
||||
/* put the single bit in its place */
|
||||
a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
|
||||
/* put the single bit in its place */
|
||||
a->dp[b / MP_DIGIT_BIT] = (mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT);
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_2expt.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,43 +1,26 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ABS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* b = |a|
|
||||
*
|
||||
* Simple function copies the input and fixes the sign to positive
|
||||
*/
|
||||
int
|
||||
mp_abs (mp_int * a, mp_int * b)
|
||||
mp_err mp_abs(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res;
|
||||
mp_err err;
|
||||
|
||||
/* copy a to b */
|
||||
if (a != b) {
|
||||
if ((res = mp_copy (a, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* copy a to b */
|
||||
if (a != b) {
|
||||
if ((err = mp_copy(a, b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* force the sign of b to positive */
|
||||
b->sign = MP_ZPOS;
|
||||
/* force the sign of b to positive */
|
||||
b->sign = MP_ZPOS;
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_abs.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,53 +1,38 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ADD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* high level addition (handles signs) */
|
||||
int mp_add (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int sa, sb, res;
|
||||
mp_sign sa, sb;
|
||||
mp_err err;
|
||||
|
||||
/* get sign of both inputs */
|
||||
sa = a->sign;
|
||||
sb = b->sign;
|
||||
/* get sign of both inputs */
|
||||
sa = a->sign;
|
||||
sb = b->sign;
|
||||
|
||||
/* handle two cases, not four */
|
||||
if (sa == sb) {
|
||||
/* both positive or both negative */
|
||||
/* add their magnitudes, copy the sign */
|
||||
c->sign = sa;
|
||||
res = s_mp_add (a, b, c);
|
||||
} else {
|
||||
/* one positive, the other negative */
|
||||
/* subtract the one with the greater magnitude from */
|
||||
/* the one of the lesser magnitude. The result gets */
|
||||
/* the sign of the one with the greater magnitude. */
|
||||
if (mp_cmp_mag (a, b) == MP_LT) {
|
||||
c->sign = sb;
|
||||
res = s_mp_sub (b, a, c);
|
||||
} else {
|
||||
/* handle two cases, not four */
|
||||
if (sa == sb) {
|
||||
/* both positive or both negative */
|
||||
/* add their magnitudes, copy the sign */
|
||||
c->sign = sa;
|
||||
res = s_mp_sub (a, b, c);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
err = s_mp_add(a, b, c);
|
||||
} else {
|
||||
/* one positive, the other negative */
|
||||
/* subtract the one with the greater magnitude from */
|
||||
/* the one of the lesser magnitude. The result gets */
|
||||
/* the sign of the one with the greater magnitude. */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
c->sign = sb;
|
||||
err = s_mp_sub(b, a, c);
|
||||
} else {
|
||||
c->sign = sa;
|
||||
err = s_mp_sub(a, b, c);
|
||||
}
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_add.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,112 +1,89 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ADD_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* single digit addition */
|
||||
int
|
||||
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
mp_err mp_add_d(const mp_int *a, mp_digit b, mp_int *c)
|
||||
{
|
||||
int res, ix, oldused;
|
||||
mp_digit *tmpa, *tmpc, mu;
|
||||
mp_err err;
|
||||
int ix, oldused;
|
||||
mp_digit *tmpa, *tmpc;
|
||||
|
||||
/* grow c as required */
|
||||
if (c->alloc < a->used + 1) {
|
||||
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* grow c as required */
|
||||
if (c->alloc < (a->used + 1)) {
|
||||
if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* if a is negative and |a| >= b, call c = |a| - b */
|
||||
if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
|
||||
/* temporarily fix sign of a */
|
||||
a->sign = MP_ZPOS;
|
||||
/* if a is negative and |a| >= b, call c = |a| - b */
|
||||
if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
|
||||
mp_int a_ = *a;
|
||||
/* temporarily fix sign of a */
|
||||
a_.sign = MP_ZPOS;
|
||||
|
||||
/* c = |a| - b */
|
||||
res = mp_sub_d(a, b, c);
|
||||
/* c = |a| - b */
|
||||
err = mp_sub_d(&a_, b, c);
|
||||
|
||||
/* fix sign */
|
||||
a->sign = c->sign = MP_NEG;
|
||||
/* fix sign */
|
||||
c->sign = MP_NEG;
|
||||
|
||||
/* clamp */
|
||||
mp_clamp(c);
|
||||
/* clamp */
|
||||
mp_clamp(c);
|
||||
|
||||
return res;
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
/* old number of used digits in c */
|
||||
oldused = c->used;
|
||||
/* old number of used digits in c */
|
||||
oldused = c->used;
|
||||
|
||||
/* sign always positive */
|
||||
c->sign = MP_ZPOS;
|
||||
/* source alias */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* source alias */
|
||||
tmpa = a->dp;
|
||||
/* destination alias */
|
||||
tmpc = c->dp;
|
||||
|
||||
/* destination alias */
|
||||
tmpc = c->dp;
|
||||
/* if a is positive */
|
||||
if (a->sign == MP_ZPOS) {
|
||||
/* add digits, mu is carry */
|
||||
mp_digit mu = b;
|
||||
for (ix = 0; ix < a->used; ix++) {
|
||||
*tmpc = *tmpa++ + mu;
|
||||
mu = *tmpc >> MP_DIGIT_BIT;
|
||||
*tmpc++ &= MP_MASK;
|
||||
}
|
||||
/* set final carry */
|
||||
ix++;
|
||||
*tmpc++ = mu;
|
||||
|
||||
/* if a is positive */
|
||||
if (a->sign == MP_ZPOS) {
|
||||
/* add digit, after this we're propagating
|
||||
* the carry.
|
||||
*/
|
||||
*tmpc = *tmpa++ + b;
|
||||
mu = *tmpc >> DIGIT_BIT;
|
||||
*tmpc++ &= MP_MASK;
|
||||
/* setup size */
|
||||
c->used = a->used + 1;
|
||||
} else {
|
||||
/* a was negative and |a| < b */
|
||||
c->used = 1;
|
||||
|
||||
/* now handle rest of the digits */
|
||||
for (ix = 1; ix < a->used; ix++) {
|
||||
*tmpc = *tmpa++ + mu;
|
||||
mu = *tmpc >> DIGIT_BIT;
|
||||
*tmpc++ &= MP_MASK;
|
||||
}
|
||||
/* set final carry */
|
||||
ix++;
|
||||
*tmpc++ = mu;
|
||||
/* the result is a single digit */
|
||||
if (a->used == 1) {
|
||||
*tmpc++ = b - a->dp[0];
|
||||
} else {
|
||||
*tmpc++ = b;
|
||||
}
|
||||
|
||||
/* setup size */
|
||||
c->used = a->used + 1;
|
||||
} else {
|
||||
/* a was negative and |a| < b */
|
||||
c->used = 1;
|
||||
/* setup count so the clearing of oldused
|
||||
* can fall through correctly
|
||||
*/
|
||||
ix = 1;
|
||||
}
|
||||
|
||||
/* the result is a single digit */
|
||||
if (a->used == 1) {
|
||||
*tmpc++ = b - a->dp[0];
|
||||
} else {
|
||||
*tmpc++ = b;
|
||||
}
|
||||
/* sign always positive */
|
||||
c->sign = MP_ZPOS;
|
||||
|
||||
/* setup count so the clearing of oldused
|
||||
* can fall through correctly
|
||||
*/
|
||||
ix = 1;
|
||||
}
|
||||
/* now zero to oldused */
|
||||
MP_ZERO_DIGITS(tmpc, oldused - ix);
|
||||
mp_clamp(c);
|
||||
|
||||
/* now zero to oldused */
|
||||
while (ix++ < oldused) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
mp_clamp(c);
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_add_d.c,v $ */
|
||||
/* $Revision: 1.5 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,41 +1,25 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ADDMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* d = a + b (mod c) */
|
||||
int
|
||||
mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d)
|
||||
{
|
||||
int res;
|
||||
mp_int t;
|
||||
mp_err err;
|
||||
mp_int t;
|
||||
|
||||
if ((res = mp_init (&t)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((err = mp_init(&t)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((res = mp_add (a, b, &t)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
res = mp_mod (&t, c, d);
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
if ((err = mp_add(a, b, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
err = mp_mod(&t, c, d);
|
||||
|
||||
LBL_ERR:
|
||||
mp_clear(&t);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_addmod.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,57 +1,56 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_AND_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* AND two ints together */
|
||||
int
|
||||
mp_and (mp_int * a, mp_int * b, mp_int * c)
|
||||
/* two complement and */
|
||||
mp_err mp_and(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, ix, px;
|
||||
mp_int t, *x;
|
||||
int used = MP_MAX(a->used, b->used) + 1, i;
|
||||
mp_err err;
|
||||
mp_digit ac = 1, bc = 1, cc = 1;
|
||||
mp_sign csign = ((a->sign == MP_NEG) && (b->sign == MP_NEG)) ? MP_NEG : MP_ZPOS;
|
||||
|
||||
if (a->used > b->used) {
|
||||
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
px = b->used;
|
||||
x = b;
|
||||
} else {
|
||||
if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
px = a->used;
|
||||
x = a;
|
||||
}
|
||||
if (c->alloc < used) {
|
||||
if ((err = mp_grow(c, used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
for (ix = 0; ix < px; ix++) {
|
||||
t.dp[ix] &= x->dp[ix];
|
||||
}
|
||||
for (i = 0; i < used; i++) {
|
||||
mp_digit x, y;
|
||||
|
||||
/* zero digits above the last from the smallest mp_int */
|
||||
for (; ix < t.used; ix++) {
|
||||
t.dp[ix] = 0;
|
||||
}
|
||||
/* convert to two complement if negative */
|
||||
if (a->sign == MP_NEG) {
|
||||
ac += (i >= a->used) ? MP_MASK : (~a->dp[i] & MP_MASK);
|
||||
x = ac & MP_MASK;
|
||||
ac >>= MP_DIGIT_BIT;
|
||||
} else {
|
||||
x = (i >= a->used) ? 0uL : a->dp[i];
|
||||
}
|
||||
|
||||
mp_clamp (&t);
|
||||
mp_exch (c, &t);
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
/* convert to two complement if negative */
|
||||
if (b->sign == MP_NEG) {
|
||||
bc += (i >= b->used) ? MP_MASK : (~b->dp[i] & MP_MASK);
|
||||
y = bc & MP_MASK;
|
||||
bc >>= MP_DIGIT_BIT;
|
||||
} else {
|
||||
y = (i >= b->used) ? 0uL : b->dp[i];
|
||||
}
|
||||
|
||||
c->dp[i] = x & y;
|
||||
|
||||
/* convert to to sign-magnitude if negative */
|
||||
if (csign == MP_NEG) {
|
||||
cc += ~c->dp[i] & MP_MASK;
|
||||
c->dp[i] = cc & MP_MASK;
|
||||
cc >>= MP_DIGIT_BIT;
|
||||
}
|
||||
}
|
||||
|
||||
c->used = used;
|
||||
c->sign = csign;
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_and.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,19 +1,7 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CLAMP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* trim unused digits
|
||||
*
|
||||
@@ -22,23 +10,18 @@
|
||||
* Typically very fast. Also fixes the sign if there
|
||||
* are no more leading digits
|
||||
*/
|
||||
void
|
||||
mp_clamp (mp_int * a)
|
||||
void mp_clamp(mp_int *a)
|
||||
{
|
||||
/* decrease used while the most significant digit is
|
||||
* zero.
|
||||
*/
|
||||
while (a->used > 0 && a->dp[a->used - 1] == 0) {
|
||||
--(a->used);
|
||||
}
|
||||
/* decrease used while the most significant digit is
|
||||
* zero.
|
||||
*/
|
||||
while ((a->used > 0) && (a->dp[a->used - 1] == 0u)) {
|
||||
--(a->used);
|
||||
}
|
||||
|
||||
/* reset the sign flag if used == 0 */
|
||||
if (a->used == 0) {
|
||||
a->sign = MP_ZPOS;
|
||||
}
|
||||
/* reset the sign flag if used == 0 */
|
||||
if (a->used == 0) {
|
||||
a->sign = MP_ZPOS;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_clamp.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,44 +1,20 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CLEAR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* clear one (frees) */
|
||||
void
|
||||
mp_clear (mp_int * a)
|
||||
void mp_clear(mp_int *a)
|
||||
{
|
||||
int i;
|
||||
/* only do anything if a hasn't been freed previously */
|
||||
if (a->dp != NULL) {
|
||||
/* free ram */
|
||||
MP_FREE_DIGITS(a->dp, a->alloc);
|
||||
|
||||
/* only do anything if a hasn't been freed previously */
|
||||
if (a->dp != NULL) {
|
||||
/* first zero the digits */
|
||||
for (i = 0; i < a->used; i++) {
|
||||
a->dp[i] = 0;
|
||||
}
|
||||
|
||||
/* free ram */
|
||||
XFREE(a->dp);
|
||||
|
||||
/* reset members to make debugging easier */
|
||||
a->dp = NULL;
|
||||
a->alloc = a->used = 0;
|
||||
a->sign = MP_ZPOS;
|
||||
}
|
||||
/* reset members to make debugging easier */
|
||||
a->dp = NULL;
|
||||
a->alloc = a->used = 0;
|
||||
a->sign = MP_ZPOS;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_clear.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,34 +1,19 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CLEAR_MULTI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
void mp_clear_multi(mp_int *mp, ...)
|
||||
{
|
||||
mp_int* next_mp = mp;
|
||||
va_list args;
|
||||
va_start(args, mp);
|
||||
while (next_mp != NULL) {
|
||||
mp_clear(next_mp);
|
||||
next_mp = va_arg(args, mp_int*);
|
||||
}
|
||||
va_end(args);
|
||||
mp_int *next_mp = mp;
|
||||
va_list args;
|
||||
va_start(args, mp);
|
||||
while (next_mp != NULL) {
|
||||
mp_clear(next_mp);
|
||||
next_mp = va_arg(args, mp_int *);
|
||||
}
|
||||
va_end(args);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_clear_multi.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,43 +1,26 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CMP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* compare two ints (signed)*/
|
||||
int
|
||||
mp_cmp (mp_int * a, mp_int * b)
|
||||
mp_ord mp_cmp(const mp_int *a, const mp_int *b)
|
||||
{
|
||||
/* compare based on sign */
|
||||
if (a->sign != b->sign) {
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_GT;
|
||||
}
|
||||
}
|
||||
/* compare based on sign */
|
||||
if (a->sign != b->sign) {
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_GT;
|
||||
}
|
||||
}
|
||||
|
||||
/* compare digits */
|
||||
if (a->sign == MP_NEG) {
|
||||
/* if negative compare opposite direction */
|
||||
return mp_cmp_mag(b, a);
|
||||
} else {
|
||||
return mp_cmp_mag(a, b);
|
||||
}
|
||||
/* compare digits */
|
||||
if (a->sign == MP_NEG) {
|
||||
/* if negative compare opposite direction */
|
||||
return mp_cmp_mag(b, a);
|
||||
} else {
|
||||
return mp_cmp_mag(a, b);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_cmp.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,44 +1,28 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CMP_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* compare a digit */
|
||||
int mp_cmp_d(mp_int * a, mp_digit b)
|
||||
mp_ord mp_cmp_d(const mp_int *a, mp_digit b)
|
||||
{
|
||||
/* compare based on sign */
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
}
|
||||
/* compare based on sign */
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_LT;
|
||||
}
|
||||
|
||||
/* compare based on magnitude */
|
||||
if (a->used > 1) {
|
||||
return MP_GT;
|
||||
}
|
||||
/* compare based on magnitude */
|
||||
if (a->used > 1) {
|
||||
return MP_GT;
|
||||
}
|
||||
|
||||
/* compare the only digit of a to b */
|
||||
if (a->dp[0] > b) {
|
||||
return MP_GT;
|
||||
} else if (a->dp[0] < b) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_EQ;
|
||||
}
|
||||
/* compare the only digit of a to b */
|
||||
if (a->dp[0] > b) {
|
||||
return MP_GT;
|
||||
} else if (a->dp[0] < b) {
|
||||
return MP_LT;
|
||||
} else {
|
||||
return MP_EQ;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_cmp_d.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,55 +1,39 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CMP_MAG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* compare maginitude of two ints (unsigned) */
|
||||
int mp_cmp_mag (mp_int * a, mp_int * b)
|
||||
mp_ord mp_cmp_mag(const mp_int *a, const mp_int *b)
|
||||
{
|
||||
int n;
|
||||
mp_digit *tmpa, *tmpb;
|
||||
int n;
|
||||
const mp_digit *tmpa, *tmpb;
|
||||
|
||||
/* compare based on # of non-zero digits */
|
||||
if (a->used > b->used) {
|
||||
return MP_GT;
|
||||
}
|
||||
|
||||
if (a->used < b->used) {
|
||||
return MP_LT;
|
||||
}
|
||||
|
||||
/* alias for a */
|
||||
tmpa = a->dp + (a->used - 1);
|
||||
|
||||
/* alias for b */
|
||||
tmpb = b->dp + (a->used - 1);
|
||||
|
||||
/* compare based on digits */
|
||||
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
||||
if (*tmpa > *tmpb) {
|
||||
/* compare based on # of non-zero digits */
|
||||
if (a->used > b->used) {
|
||||
return MP_GT;
|
||||
}
|
||||
}
|
||||
|
||||
if (*tmpa < *tmpb) {
|
||||
if (a->used < b->used) {
|
||||
return MP_LT;
|
||||
}
|
||||
}
|
||||
return MP_EQ;
|
||||
}
|
||||
|
||||
/* alias for a */
|
||||
tmpa = a->dp + (a->used - 1);
|
||||
|
||||
/* alias for b */
|
||||
tmpb = b->dp + (a->used - 1);
|
||||
|
||||
/* compare based on digits */
|
||||
for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
|
||||
if (*tmpa > *tmpb) {
|
||||
return MP_GT;
|
||||
}
|
||||
|
||||
if (*tmpa < *tmpb) {
|
||||
return MP_LT;
|
||||
}
|
||||
}
|
||||
return MP_EQ;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_cmp_mag.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,53 +1,37 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_CNT_LSB_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
static const int lnz[16] = {
|
||||
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
|
||||
};
|
||||
|
||||
/* Counts the number of lsbs which are zero before the first zero bit */
|
||||
int mp_cnt_lsb(mp_int *a)
|
||||
int mp_cnt_lsb(const mp_int *a)
|
||||
{
|
||||
int x;
|
||||
mp_digit q, qq;
|
||||
|
||||
/* easy out */
|
||||
if (mp_iszero(a) == 1) {
|
||||
if (MP_IS_ZERO(a)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* scan lower digits until non-zero */
|
||||
for (x = 0; x < a->used && a->dp[x] == 0; x++);
|
||||
for (x = 0; (x < a->used) && (a->dp[x] == 0u); x++) {}
|
||||
q = a->dp[x];
|
||||
x *= DIGIT_BIT;
|
||||
x *= MP_DIGIT_BIT;
|
||||
|
||||
/* now scan this digit until a 1 is found */
|
||||
if ((q & 1) == 0) {
|
||||
if ((q & 1u) == 0u) {
|
||||
do {
|
||||
qq = q & 15;
|
||||
qq = q & 15u;
|
||||
x += lnz[qq];
|
||||
q >>= 4;
|
||||
} while (qq == 0);
|
||||
} while (qq == 0u);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_cnt_lsb.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
12
lib/hcrypto/libtommath/bn_mp_complement.c
Normal file
12
lib/hcrypto/libtommath/bn_mp_complement.c
Normal file
@@ -0,0 +1,12 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_COMPLEMENT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* b = ~a */
|
||||
mp_err mp_complement(const mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_err err = mp_neg(a, b);
|
||||
return (err == MP_OKAY) ? mp_sub_d(b, 1uL, b) : err;
|
||||
}
|
||||
#endif
|
@@ -1,68 +1,47 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_COPY_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* copy, b = a */
|
||||
int
|
||||
mp_copy (mp_int * a, mp_int * b)
|
||||
mp_err mp_copy(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int res, n;
|
||||
int n;
|
||||
mp_digit *tmpa, *tmpb;
|
||||
mp_err err;
|
||||
|
||||
/* if dst == src do nothing */
|
||||
if (a == b) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* if dst == src do nothing */
|
||||
if (a == b) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* grow dest */
|
||||
if (b->alloc < a->used) {
|
||||
if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* grow dest */
|
||||
if (b->alloc < a->used) {
|
||||
if ((err = mp_grow(b, a->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero b and copy the parameters over */
|
||||
{
|
||||
register mp_digit *tmpa, *tmpb;
|
||||
/* zero b and copy the parameters over */
|
||||
/* pointer aliases */
|
||||
|
||||
/* pointer aliases */
|
||||
/* source */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* source */
|
||||
tmpa = a->dp;
|
||||
/* destination */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* destination */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* copy all the digits */
|
||||
for (n = 0; n < a->used; n++) {
|
||||
/* copy all the digits */
|
||||
for (n = 0; n < a->used; n++) {
|
||||
*tmpb++ = *tmpa++;
|
||||
}
|
||||
}
|
||||
|
||||
/* clear high digits */
|
||||
for (; n < b->used; n++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
/* clear high digits */
|
||||
MP_ZERO_DIGITS(tmpb, b->used - n);
|
||||
|
||||
/* copy used count and sign */
|
||||
b->used = a->used;
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
/* copy used count and sign */
|
||||
b->used = a->used;
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_copy.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,45 +1,28 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_COUNT_BITS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* returns the number of bits in an int */
|
||||
int
|
||||
mp_count_bits (mp_int * a)
|
||||
int mp_count_bits(const mp_int *a)
|
||||
{
|
||||
int r;
|
||||
mp_digit q;
|
||||
int r;
|
||||
mp_digit q;
|
||||
|
||||
/* shortcut */
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
/* shortcut */
|
||||
if (MP_IS_ZERO(a)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits and add that */
|
||||
r = (a->used - 1) * DIGIT_BIT;
|
||||
/* get number of digits and add that */
|
||||
r = (a->used - 1) * MP_DIGIT_BIT;
|
||||
|
||||
/* take the last digit and count the bits in it */
|
||||
q = a->dp[a->used - 1];
|
||||
while (q > ((mp_digit) 0)) {
|
||||
++r;
|
||||
q >>= ((mp_digit) 1);
|
||||
}
|
||||
return r;
|
||||
/* take the last digit and count the bits in it */
|
||||
q = a->dp[a->used - 1];
|
||||
while (q > 0u) {
|
||||
++r;
|
||||
q >>= 1u;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_count_bits.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
34
lib/hcrypto/libtommath/bn_mp_decr.c
Normal file
34
lib/hcrypto/libtommath/bn_mp_decr.c
Normal file
@@ -0,0 +1,34 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DECR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* Decrement "a" by one like "a--". Changes input! */
|
||||
mp_err mp_decr(mp_int *a)
|
||||
{
|
||||
if (MP_IS_ZERO(a)) {
|
||||
mp_set(a,1uL);
|
||||
a->sign = MP_NEG;
|
||||
return MP_OKAY;
|
||||
} else if (a->sign == MP_NEG) {
|
||||
mp_err err;
|
||||
a->sign = MP_ZPOS;
|
||||
if ((err = mp_incr(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
/* There is no -0 in LTM */
|
||||
if (!MP_IS_ZERO(a)) {
|
||||
a->sign = MP_NEG;
|
||||
}
|
||||
return MP_OKAY;
|
||||
} else if (a->dp[0] > 1uL) {
|
||||
a->dp[0]--;
|
||||
if (a->dp[0] == 0u) {
|
||||
mp_zero(a);
|
||||
}
|
||||
return MP_OKAY;
|
||||
} else {
|
||||
return mp_sub_d(a, 1uL,a);
|
||||
}
|
||||
}
|
||||
#endif
|
@@ -1,88 +1,71 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#ifdef BN_MP_DIV_SMALL
|
||||
|
||||
/* slower bit-bang division... also smaller */
|
||||
int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_int ta, tb, tq, q;
|
||||
int res, n, n2;
|
||||
int n, n2;
|
||||
mp_err err;
|
||||
|
||||
/* is divisor zero ? */
|
||||
if (mp_iszero (b) == 1) {
|
||||
return MP_VAL;
|
||||
}
|
||||
/* is divisor zero ? */
|
||||
if (MP_IS_ZERO(b)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if a < b then q=0, r = a */
|
||||
if (mp_cmp_mag (a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
res = mp_copy (a, d);
|
||||
} else {
|
||||
res = MP_OKAY;
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero (c);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
/* if a < b then q=0, r = a */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
err = mp_copy(a, d);
|
||||
} else {
|
||||
err = MP_OKAY;
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero(c);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
/* init our temps */
|
||||
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
|
||||
return res;
|
||||
}
|
||||
/* init our temps */
|
||||
if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
mp_set(&tq, 1);
|
||||
n = mp_count_bits(a) - mp_count_bits(b);
|
||||
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
|
||||
((res = mp_abs(b, &tb)) != MP_OKAY) ||
|
||||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
|
||||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set(&tq, 1uL);
|
||||
n = mp_count_bits(a) - mp_count_bits(b);
|
||||
if ((err = mp_abs(a, &ta)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_abs(b, &tb)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
while (n-- >= 0) {
|
||||
if (mp_cmp(&tb, &ta) != MP_GT) {
|
||||
if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
|
||||
((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
|
||||
((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
while (n-- >= 0) {
|
||||
if (mp_cmp(&tb, &ta) != MP_GT) {
|
||||
if ((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_add(&q, &tq, &q)) != MP_OKAY) goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY) goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* now q == quotient and ta == remainder */
|
||||
n = a->sign;
|
||||
n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
|
||||
if (c != NULL) {
|
||||
mp_exch(c, &q);
|
||||
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
|
||||
}
|
||||
if (d != NULL) {
|
||||
mp_exch(d, &ta);
|
||||
d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
|
||||
}
|
||||
/* now q == quotient and ta == remainder */
|
||||
n = a->sign;
|
||||
n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
if (c != NULL) {
|
||||
mp_exch(c, &q);
|
||||
c->sign = MP_IS_ZERO(c) ? MP_ZPOS : n2;
|
||||
}
|
||||
if (d != NULL) {
|
||||
mp_exch(d, &ta);
|
||||
d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n;
|
||||
}
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&ta, &tb, &tq, &q, NULL);
|
||||
return res;
|
||||
return err;
|
||||
}
|
||||
|
||||
#else
|
||||
@@ -100,193 +83,168 @@ LBL_ERR:
|
||||
* The overall algorithm is as described as
|
||||
* 14.20 from HAC but fixed to treat these cases.
|
||||
*/
|
||||
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
||||
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_int q, x, y, t1, t2;
|
||||
int res, n, t, i, norm, neg;
|
||||
mp_int q, x, y, t1, t2;
|
||||
int n, t, i, norm;
|
||||
mp_sign neg;
|
||||
mp_err err;
|
||||
|
||||
/* is divisor zero ? */
|
||||
if (mp_iszero (b) == 1) {
|
||||
return MP_VAL;
|
||||
}
|
||||
/* is divisor zero ? */
|
||||
if (MP_IS_ZERO(b)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if a < b then q=0, r = a */
|
||||
if (mp_cmp_mag (a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
res = mp_copy (a, d);
|
||||
} else {
|
||||
res = MP_OKAY;
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero (c);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
/* if a < b then q=0, r = a */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
if (d != NULL) {
|
||||
err = mp_copy(a, d);
|
||||
} else {
|
||||
err = MP_OKAY;
|
||||
}
|
||||
if (c != NULL) {
|
||||
mp_zero(c);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
q.used = a->used + 2;
|
||||
if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
q.used = a->used + 2;
|
||||
|
||||
if ((res = mp_init (&t1)) != MP_OKAY) {
|
||||
goto LBL_Q;
|
||||
}
|
||||
if ((err = mp_init(&t1)) != MP_OKAY) goto LBL_Q;
|
||||
|
||||
if ((res = mp_init (&t2)) != MP_OKAY) {
|
||||
goto LBL_T1;
|
||||
}
|
||||
if ((err = mp_init(&t2)) != MP_OKAY) goto LBL_T1;
|
||||
|
||||
if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
|
||||
goto LBL_T2;
|
||||
}
|
||||
if ((err = mp_init_copy(&x, a)) != MP_OKAY) goto LBL_T2;
|
||||
|
||||
if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
|
||||
goto LBL_X;
|
||||
}
|
||||
if ((err = mp_init_copy(&y, b)) != MP_OKAY) goto LBL_X;
|
||||
|
||||
/* fix the sign */
|
||||
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
x.sign = y.sign = MP_ZPOS;
|
||||
/* fix the sign */
|
||||
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
x.sign = y.sign = MP_ZPOS;
|
||||
|
||||
/* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
|
||||
norm = mp_count_bits(&y) % DIGIT_BIT;
|
||||
if (norm < (int)(DIGIT_BIT-1)) {
|
||||
norm = (DIGIT_BIT-1) - norm;
|
||||
if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
} else {
|
||||
norm = 0;
|
||||
}
|
||||
/* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */
|
||||
norm = mp_count_bits(&y) % MP_DIGIT_BIT;
|
||||
if (norm < (MP_DIGIT_BIT - 1)) {
|
||||
norm = (MP_DIGIT_BIT - 1) - norm;
|
||||
if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) goto LBL_Y;
|
||||
if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) goto LBL_Y;
|
||||
} else {
|
||||
norm = 0;
|
||||
}
|
||||
|
||||
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
||||
n = x.used - 1;
|
||||
t = y.used - 1;
|
||||
/* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
|
||||
n = x.used - 1;
|
||||
t = y.used - 1;
|
||||
|
||||
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
||||
if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
|
||||
goto LBL_Y;
|
||||
}
|
||||
/* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
|
||||
/* y = y*b**{n-t} */
|
||||
if ((err = mp_lshd(&y, n - t)) != MP_OKAY) goto LBL_Y;
|
||||
|
||||
while (mp_cmp (&x, &y) != MP_LT) {
|
||||
++(q.dp[n - t]);
|
||||
if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
}
|
||||
while (mp_cmp(&x, &y) != MP_LT) {
|
||||
++(q.dp[n - t]);
|
||||
if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) goto LBL_Y;
|
||||
}
|
||||
|
||||
/* reset y by shifting it back down */
|
||||
mp_rshd (&y, n - t);
|
||||
/* reset y by shifting it back down */
|
||||
mp_rshd(&y, n - t);
|
||||
|
||||
/* step 3. for i from n down to (t + 1) */
|
||||
for (i = n; i >= (t + 1); i--) {
|
||||
if (i > x.used) {
|
||||
continue;
|
||||
}
|
||||
/* step 3. for i from n down to (t + 1) */
|
||||
for (i = n; i >= (t + 1); i--) {
|
||||
if (i > x.used) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
||||
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
||||
if (x.dp[i] == y.dp[t]) {
|
||||
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
||||
} else {
|
||||
mp_word tmp;
|
||||
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
|
||||
tmp |= ((mp_word) x.dp[i - 1]);
|
||||
tmp /= ((mp_word) y.dp[t]);
|
||||
if (tmp > (mp_word) MP_MASK)
|
||||
tmp = MP_MASK;
|
||||
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
||||
}
|
||||
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
||||
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
||||
if (x.dp[i] == y.dp[t]) {
|
||||
q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1;
|
||||
} else {
|
||||
mp_word tmp;
|
||||
tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT;
|
||||
tmp |= (mp_word)x.dp[i - 1];
|
||||
tmp /= (mp_word)y.dp[t];
|
||||
if (tmp > (mp_word)MP_MASK) {
|
||||
tmp = MP_MASK;
|
||||
}
|
||||
q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK);
|
||||
}
|
||||
|
||||
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
||||
xi * b**2 + xi-1 * b + xi-2
|
||||
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
||||
xi * b**2 + xi-1 * b + xi-2
|
||||
|
||||
do q{i-t-1} -= 1;
|
||||
do q{i-t-1} -= 1;
|
||||
*/
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK;
|
||||
do {
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK;
|
||||
|
||||
/* find left hand */
|
||||
mp_zero(&t1);
|
||||
t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1];
|
||||
t1.dp[1] = y.dp[t];
|
||||
t1.used = 2;
|
||||
if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y;
|
||||
|
||||
/* find right hand */
|
||||
t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2];
|
||||
t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */
|
||||
t2.dp[2] = x.dp[i];
|
||||
t2.used = 3;
|
||||
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
||||
|
||||
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
||||
if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y;
|
||||
|
||||
if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y;
|
||||
|
||||
if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) goto LBL_Y;
|
||||
|
||||
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
||||
if (x.sign == MP_NEG) {
|
||||
if ((err = mp_copy(&y, &t1)) != MP_OKAY) goto LBL_Y;
|
||||
if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y;
|
||||
if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) goto LBL_Y;
|
||||
|
||||
q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
/* now q is the quotient and x is the remainder
|
||||
* [which we have to normalize]
|
||||
*/
|
||||
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
||||
do {
|
||||
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
|
||||
|
||||
/* find left hand */
|
||||
mp_zero (&t1);
|
||||
t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
|
||||
t1.dp[1] = y.dp[t];
|
||||
t1.used = 2;
|
||||
if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
/* get sign before writing to c */
|
||||
x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
|
||||
|
||||
/* find right hand */
|
||||
t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
|
||||
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
|
||||
t2.dp[2] = x.dp[i];
|
||||
t2.used = 3;
|
||||
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
c->sign = neg;
|
||||
}
|
||||
|
||||
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
|
||||
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if (d != NULL) {
|
||||
if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) goto LBL_Y;
|
||||
mp_exch(&x, d);
|
||||
}
|
||||
|
||||
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
err = MP_OKAY;
|
||||
|
||||
if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
|
||||
if (x.sign == MP_NEG) {
|
||||
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
/* now q is the quotient and x is the remainder
|
||||
* [which we have to normalize]
|
||||
*/
|
||||
|
||||
/* get sign before writing to c */
|
||||
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
||||
|
||||
if (c != NULL) {
|
||||
mp_clamp (&q);
|
||||
mp_exch (&q, c);
|
||||
c->sign = neg;
|
||||
}
|
||||
|
||||
if (d != NULL) {
|
||||
mp_div_2d (&x, norm, &x, NULL);
|
||||
mp_exch (&x, d);
|
||||
}
|
||||
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_Y:mp_clear (&y);
|
||||
LBL_X:mp_clear (&x);
|
||||
LBL_T2:mp_clear (&t2);
|
||||
LBL_T1:mp_clear (&t1);
|
||||
LBL_Q:mp_clear (&q);
|
||||
return res;
|
||||
LBL_Y:
|
||||
mp_clear(&y);
|
||||
LBL_X:
|
||||
mp_clear(&x);
|
||||
LBL_T2:
|
||||
mp_clear(&t2);
|
||||
LBL_T1:
|
||||
mp_clear(&t1);
|
||||
LBL_Q:
|
||||
mp_clear(&q);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,68 +1,49 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_2_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* b = a/2 */
|
||||
int mp_div_2(mp_int * a, mp_int * b)
|
||||
mp_err mp_div_2(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
int x, oldused;
|
||||
mp_digit r, rr, *tmpa, *tmpb;
|
||||
mp_err err;
|
||||
|
||||
/* copy */
|
||||
if (b->alloc < a->used) {
|
||||
if ((res = mp_grow (b, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* copy */
|
||||
if (b->alloc < a->used) {
|
||||
if ((err = mp_grow(b, a->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
{
|
||||
register mp_digit r, rr, *tmpa, *tmpb;
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
|
||||
/* source alias */
|
||||
tmpa = a->dp + b->used - 1;
|
||||
/* source alias */
|
||||
tmpa = a->dp + b->used - 1;
|
||||
|
||||
/* dest alias */
|
||||
tmpb = b->dp + b->used - 1;
|
||||
/* dest alias */
|
||||
tmpb = b->dp + b->used - 1;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = b->used - 1; x >= 0; x--) {
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = b->used - 1; x >= 0; x--) {
|
||||
/* get the carry for the next iteration */
|
||||
rr = *tmpa & 1;
|
||||
rr = *tmpa & 1u;
|
||||
|
||||
/* shift the current digit, add in carry and store */
|
||||
*tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
|
||||
*tmpb-- = (*tmpa-- >> 1) | (r << (MP_DIGIT_BIT - 1));
|
||||
|
||||
/* forward carry to next iteration */
|
||||
r = rr;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero excess digits */
|
||||
tmpb = b->dp + b->used;
|
||||
for (x = b->used; x < oldused; x++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
b->sign = a->sign;
|
||||
mp_clamp (b);
|
||||
return MP_OKAY;
|
||||
/* zero excess digits */
|
||||
MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used);
|
||||
|
||||
b->sign = a->sign;
|
||||
mp_clamp(b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_div_2.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,97 +1,71 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_2D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
|
||||
int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
|
||||
mp_err mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d)
|
||||
{
|
||||
mp_digit D, r, rr;
|
||||
int x, res;
|
||||
mp_int t;
|
||||
mp_digit D, r, rr;
|
||||
int x;
|
||||
mp_err err;
|
||||
|
||||
/* if the shift count is <= 0 then we do no work */
|
||||
if (b <= 0) {
|
||||
err = mp_copy(a, c);
|
||||
if (d != NULL) {
|
||||
mp_zero(d);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
/* if the shift count is <= 0 then we do no work */
|
||||
if (b <= 0) {
|
||||
res = mp_copy (a, c);
|
||||
if (d != NULL) {
|
||||
mp_zero (d);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
/* copy */
|
||||
if ((err = mp_copy(a, c)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
/* 'a' should not be used after here - it might be the same as d */
|
||||
|
||||
if ((res = mp_init (&t)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
/* get the remainder */
|
||||
if (d != NULL) {
|
||||
if ((err = mp_mod_2d(a, b, d)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* get the remainder */
|
||||
if (d != NULL) {
|
||||
if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* shift by as many digits in the bit count */
|
||||
if (b >= MP_DIGIT_BIT) {
|
||||
mp_rshd(c, b / MP_DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* copy */
|
||||
if ((res = mp_copy (a, c)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
/* shift any bit count < MP_DIGIT_BIT */
|
||||
D = (mp_digit)(b % MP_DIGIT_BIT);
|
||||
if (D != 0u) {
|
||||
mp_digit *tmpc, mask, shift;
|
||||
|
||||
/* shift by as many digits in the bit count */
|
||||
if (b >= (int)DIGIT_BIT) {
|
||||
mp_rshd (c, b / DIGIT_BIT);
|
||||
}
|
||||
/* mask */
|
||||
mask = ((mp_digit)1 << D) - 1uL;
|
||||
|
||||
/* shift any bit count < DIGIT_BIT */
|
||||
D = (mp_digit) (b % DIGIT_BIT);
|
||||
if (D != 0) {
|
||||
register mp_digit *tmpc, mask, shift;
|
||||
/* shift for lsb */
|
||||
shift = (mp_digit)MP_DIGIT_BIT - D;
|
||||
|
||||
/* mask */
|
||||
mask = (((mp_digit)1) << D) - 1;
|
||||
/* alias */
|
||||
tmpc = c->dp + (c->used - 1);
|
||||
|
||||
/* shift for lsb */
|
||||
shift = DIGIT_BIT - D;
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = c->used - 1; x >= 0; x--) {
|
||||
/* get the lower bits of this word in a temp */
|
||||
rr = *tmpc & mask;
|
||||
|
||||
/* alias */
|
||||
tmpc = c->dp + (c->used - 1);
|
||||
/* shift the current word and mix in the carry bits from the previous word */
|
||||
*tmpc = (*tmpc >> D) | (r << shift);
|
||||
--tmpc;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = c->used - 1; x >= 0; x--) {
|
||||
/* get the lower bits of this word in a temp */
|
||||
rr = *tmpc & mask;
|
||||
|
||||
/* shift the current word and mix in the carry bits from the previous word */
|
||||
*tmpc = (*tmpc >> D) | (r << shift);
|
||||
--tmpc;
|
||||
|
||||
/* set the carry to the carry bits of the current word found above */
|
||||
r = rr;
|
||||
}
|
||||
}
|
||||
mp_clamp (c);
|
||||
if (d != NULL) {
|
||||
mp_exch (&t, d);
|
||||
}
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
/* set the carry to the carry bits of the current word found above */
|
||||
r = rr;
|
||||
}
|
||||
}
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_div_2d.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,79 +1,63 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_3_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* divide by three (based on routine from MPI and the GMP manual) */
|
||||
int
|
||||
mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
|
||||
mp_err mp_div_3(const mp_int *a, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w, t;
|
||||
mp_digit b;
|
||||
int res, ix;
|
||||
mp_int q;
|
||||
mp_word w, t;
|
||||
mp_digit b;
|
||||
mp_err err;
|
||||
int ix;
|
||||
|
||||
/* b = 2**DIGIT_BIT / 3 */
|
||||
b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
|
||||
/* b = 2**MP_DIGIT_BIT / 3 */
|
||||
b = ((mp_word)1 << (mp_word)MP_DIGIT_BIT) / (mp_word)3;
|
||||
|
||||
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((err = mp_init_size(&q, a->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];
|
||||
|
||||
if (w >= 3) {
|
||||
/* multiply w by [1/3] */
|
||||
t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
|
||||
if (w >= 3u) {
|
||||
/* multiply w by [1/3] */
|
||||
t = (w * (mp_word)b) >> (mp_word)MP_DIGIT_BIT;
|
||||
|
||||
/* now subtract 3 * [w/3] from w, to get the remainder */
|
||||
w -= t+t+t;
|
||||
/* now subtract 3 * [w/3] from w, to get the remainder */
|
||||
w -= t+t+t;
|
||||
|
||||
/* fixup the remainder as required since
|
||||
* the optimization is not exact.
|
||||
*/
|
||||
while (w >= 3) {
|
||||
t += 1;
|
||||
w -= 3;
|
||||
}
|
||||
/* fixup the remainder as required since
|
||||
* the optimization is not exact.
|
||||
*/
|
||||
while (w >= 3u) {
|
||||
t += 1u;
|
||||
w -= 3u;
|
||||
}
|
||||
} else {
|
||||
t = 0;
|
||||
t = 0;
|
||||
}
|
||||
q.dp[ix] = (mp_digit)t;
|
||||
}
|
||||
}
|
||||
|
||||
/* [optional] store the remainder */
|
||||
if (d != NULL) {
|
||||
*d = (mp_digit)w;
|
||||
}
|
||||
/* [optional] store the remainder */
|
||||
if (d != NULL) {
|
||||
*d = (mp_digit)w;
|
||||
}
|
||||
|
||||
/* [optional] store the quotient */
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
}
|
||||
mp_clear(&q);
|
||||
/* [optional] store the quotient */
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
}
|
||||
mp_clear(&q);
|
||||
|
||||
return res;
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_div_3.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,115 +1,84 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DIV_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
static int s_is_power_of_two(mp_digit b, int *p)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* fast return if no power of two */
|
||||
if ((b==0) || (b & (b-1))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
for (x = 0; x < DIGIT_BIT; x++) {
|
||||
if (b == (((mp_digit)1)<<x)) {
|
||||
*p = x;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* single digit division (based on routine from MPI) */
|
||||
int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
|
||||
mp_err mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
|
||||
{
|
||||
mp_int q;
|
||||
mp_word w;
|
||||
mp_digit t;
|
||||
int res, ix;
|
||||
mp_int q;
|
||||
mp_word w;
|
||||
mp_digit t;
|
||||
mp_err err;
|
||||
int ix;
|
||||
|
||||
/* cannot divide by zero */
|
||||
if (b == 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
/* cannot divide by zero */
|
||||
if (b == 0u) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* quick outs */
|
||||
if (b == 1 || mp_iszero(a) == 1) {
|
||||
if (d != NULL) {
|
||||
*d = 0;
|
||||
}
|
||||
if (c != NULL) {
|
||||
return mp_copy(a, c);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* power of two ? */
|
||||
if (s_is_power_of_two(b, &ix) == 1) {
|
||||
if (d != NULL) {
|
||||
*d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
|
||||
}
|
||||
if (c != NULL) {
|
||||
return mp_div_2d(a, ix, c, NULL);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#ifdef BN_MP_DIV_3_C
|
||||
/* three? */
|
||||
if (b == 3) {
|
||||
return mp_div_3(a, c, d);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* no easy answer [c'est la vie]. Just division */
|
||||
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
|
||||
|
||||
if (w >= b) {
|
||||
t = (mp_digit)(w / b);
|
||||
w -= ((mp_word)t) * ((mp_word)b);
|
||||
} else {
|
||||
t = 0;
|
||||
/* quick outs */
|
||||
if ((b == 1u) || MP_IS_ZERO(a)) {
|
||||
if (d != NULL) {
|
||||
*d = 0;
|
||||
}
|
||||
q.dp[ix] = (mp_digit)t;
|
||||
}
|
||||
if (c != NULL) {
|
||||
return mp_copy(a, c);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if (d != NULL) {
|
||||
*d = (mp_digit)w;
|
||||
}
|
||||
/* power of two ? */
|
||||
if ((b & (b - 1u)) == 0u) {
|
||||
ix = 1;
|
||||
while ((ix < MP_DIGIT_BIT) && (b != (((mp_digit)1)<<ix))) {
|
||||
ix++;
|
||||
}
|
||||
if (d != NULL) {
|
||||
*d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL);
|
||||
}
|
||||
if (c != NULL) {
|
||||
return mp_div_2d(a, ix, c, NULL);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
}
|
||||
mp_clear(&q);
|
||||
/* three? */
|
||||
if (MP_HAS(MP_DIV_3) && (b == 3u)) {
|
||||
return mp_div_3(a, c, d);
|
||||
}
|
||||
|
||||
return res;
|
||||
/* no easy answer [c'est la vie]. Just division */
|
||||
if ((err = mp_init_size(&q, a->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
q.used = a->used;
|
||||
q.sign = a->sign;
|
||||
w = 0;
|
||||
for (ix = a->used - 1; ix >= 0; ix--) {
|
||||
w = (w << (mp_word)MP_DIGIT_BIT) | (mp_word)a->dp[ix];
|
||||
|
||||
if (w >= b) {
|
||||
t = (mp_digit)(w / b);
|
||||
w -= (mp_word)t * (mp_word)b;
|
||||
} else {
|
||||
t = 0;
|
||||
}
|
||||
q.dp[ix] = t;
|
||||
}
|
||||
|
||||
if (d != NULL) {
|
||||
*d = (mp_digit)w;
|
||||
}
|
||||
|
||||
if (c != NULL) {
|
||||
mp_clamp(&q);
|
||||
mp_exch(&q, c);
|
||||
}
|
||||
mp_clear(&q);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_div_d.c,v $ */
|
||||
/* $Revision: 1.5 $ */
|
||||
/* $Date: 2007/01/09 04:44:32 $ */
|
||||
|
@@ -1,43 +1,27 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* determines if a number is a valid DR modulus */
|
||||
int mp_dr_is_modulus(mp_int *a)
|
||||
mp_bool mp_dr_is_modulus(const mp_int *a)
|
||||
{
|
||||
int ix;
|
||||
|
||||
/* must be at least two digits */
|
||||
if (a->used < 2) {
|
||||
return 0;
|
||||
return MP_NO;
|
||||
}
|
||||
|
||||
/* must be of the form b**k - a [a <= b] so all
|
||||
* but the first digit must be equal to -1 (mod b).
|
||||
*/
|
||||
for (ix = 1; ix < a->used; ix++) {
|
||||
if (a->dp[ix] != MP_MASK) {
|
||||
return 0;
|
||||
}
|
||||
if (a->dp[ix] != MP_MASK) {
|
||||
return MP_NO;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
return MP_YES;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_dr_is_modulus.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,19 +1,7 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DR_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
|
||||
*
|
||||
@@ -29,66 +17,62 @@
|
||||
*
|
||||
* Input x must be in the range 0 <= x <= (n-1)**2
|
||||
*/
|
||||
int
|
||||
mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
|
||||
mp_err mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k)
|
||||
{
|
||||
int err, i, m;
|
||||
mp_word r;
|
||||
mp_digit mu, *tmpx1, *tmpx2;
|
||||
mp_err err;
|
||||
int i, m;
|
||||
mp_word r;
|
||||
mp_digit mu, *tmpx1, *tmpx2;
|
||||
|
||||
/* m = digits in modulus */
|
||||
m = n->used;
|
||||
/* m = digits in modulus */
|
||||
m = n->used;
|
||||
|
||||
/* ensure that "x" has at least 2m digits */
|
||||
if (x->alloc < m + m) {
|
||||
if ((err = mp_grow (x, m + m)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
/* ensure that "x" has at least 2m digits */
|
||||
if (x->alloc < (m + m)) {
|
||||
if ((err = mp_grow(x, m + m)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* top of loop, this is where the code resumes if
|
||||
* another reduction pass is required.
|
||||
*/
|
||||
/* top of loop, this is where the code resumes if
|
||||
* another reduction pass is required.
|
||||
*/
|
||||
top:
|
||||
/* aliases for digits */
|
||||
/* alias for lower half of x */
|
||||
tmpx1 = x->dp;
|
||||
/* aliases for digits */
|
||||
/* alias for lower half of x */
|
||||
tmpx1 = x->dp;
|
||||
|
||||
/* alias for upper half of x, or x/B**m */
|
||||
tmpx2 = x->dp + m;
|
||||
/* alias for upper half of x, or x/B**m */
|
||||
tmpx2 = x->dp + m;
|
||||
|
||||
/* set carry to zero */
|
||||
mu = 0;
|
||||
/* set carry to zero */
|
||||
mu = 0;
|
||||
|
||||
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
|
||||
for (i = 0; i < m; i++) {
|
||||
r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
|
||||
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
|
||||
for (i = 0; i < m; i++) {
|
||||
r = ((mp_word)*tmpx2++ * (mp_word)k) + *tmpx1 + mu;
|
||||
*tmpx1++ = (mp_digit)(r & MP_MASK);
|
||||
mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
|
||||
}
|
||||
mu = (mp_digit)(r >> ((mp_word)MP_DIGIT_BIT));
|
||||
}
|
||||
|
||||
/* set final carry */
|
||||
*tmpx1++ = mu;
|
||||
/* set final carry */
|
||||
*tmpx1++ = mu;
|
||||
|
||||
/* zero words above m */
|
||||
for (i = m + 1; i < x->used; i++) {
|
||||
*tmpx1++ = 0;
|
||||
}
|
||||
/* zero words above m */
|
||||
MP_ZERO_DIGITS(tmpx1, (x->used - m) - 1);
|
||||
|
||||
/* clamp, sub and return */
|
||||
mp_clamp (x);
|
||||
/* clamp, sub and return */
|
||||
mp_clamp(x);
|
||||
|
||||
/* if x >= n then subtract and reduce again
|
||||
* Each successive "recursion" makes the input smaller and smaller.
|
||||
*/
|
||||
if (mp_cmp_mag (x, n) != MP_LT) {
|
||||
s_mp_sub(x, n, x);
|
||||
goto top;
|
||||
}
|
||||
return MP_OKAY;
|
||||
/* if x >= n then subtract and reduce again
|
||||
* Each successive "recursion" makes the input smaller and smaller.
|
||||
*/
|
||||
if (mp_cmp_mag(x, n) != MP_LT) {
|
||||
if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
goto top;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_dr_reduce.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,32 +1,15 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_DR_SETUP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* determines the setup value */
|
||||
void mp_dr_setup(mp_int *a, mp_digit *d)
|
||||
void mp_dr_setup(const mp_int *a, mp_digit *d)
|
||||
{
|
||||
/* the casts are required if DIGIT_BIT is one less than
|
||||
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
|
||||
/* the casts are required if MP_DIGIT_BIT is one less than
|
||||
* the number of bits in a mp_digit [e.g. MP_DIGIT_BIT==31]
|
||||
*/
|
||||
*d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
|
||||
((mp_word)a->dp[0]));
|
||||
*d = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - (mp_word)a->dp[0]);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_dr_setup.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
27
lib/hcrypto/libtommath/bn_mp_error_to_string.c
Normal file
27
lib/hcrypto/libtommath/bn_mp_error_to_string.c
Normal file
@@ -0,0 +1,27 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ERROR_TO_STRING_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* return a char * string for a given code */
|
||||
const char *mp_error_to_string(mp_err code)
|
||||
{
|
||||
switch (code) {
|
||||
case MP_OKAY:
|
||||
return "Successful";
|
||||
case MP_ERR:
|
||||
return "Unknown error";
|
||||
case MP_MEM:
|
||||
return "Out of heap";
|
||||
case MP_VAL:
|
||||
return "Value out of range";
|
||||
case MP_ITER:
|
||||
return "Max. iterations reached";
|
||||
case MP_BUF:
|
||||
return "Buffer overflow";
|
||||
default:
|
||||
return "Invalid error code";
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@@ -1,34 +1,17 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXCH_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* swap the elements of two integers, for cases where you can't simply swap the
|
||||
* mp_int pointers around
|
||||
*/
|
||||
void
|
||||
mp_exch (mp_int * a, mp_int * b)
|
||||
void mp_exch(mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int t;
|
||||
mp_int t;
|
||||
|
||||
t = *a;
|
||||
*a = *b;
|
||||
*b = t;
|
||||
t = *a;
|
||||
*a = *b;
|
||||
*b = t;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_exch.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,57 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_EXPT_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* calculate c = a**b using a square-multiply algorithm */
|
||||
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
{
|
||||
int res, x;
|
||||
mp_int g;
|
||||
|
||||
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* set initial result */
|
||||
mp_set (c, 1);
|
||||
|
||||
for (x = 0; x < (int) DIGIT_BIT; x++) {
|
||||
/* square */
|
||||
if ((res = mp_sqr (c, c)) != MP_OKAY) {
|
||||
mp_clear (&g);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if the bit is set multiply */
|
||||
if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
|
||||
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
|
||||
mp_clear (&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift to next bit */
|
||||
b <<= 1;
|
||||
}
|
||||
|
||||
mp_clear (&g);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_expt_d.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
46
lib/hcrypto/libtommath/bn_mp_expt_u32.c
Normal file
46
lib/hcrypto/libtommath/bn_mp_expt_u32.c
Normal file
@@ -0,0 +1,46 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPT_U32_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* calculate c = a**b using a square-multiply algorithm */
|
||||
mp_err mp_expt_u32(const mp_int *a, uint32_t b, mp_int *c)
|
||||
{
|
||||
mp_err err;
|
||||
|
||||
mp_int g;
|
||||
|
||||
if ((err = mp_init_copy(&g, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* set initial result */
|
||||
mp_set(c, 1uL);
|
||||
|
||||
while (b > 0u) {
|
||||
/* if the bit is set multiply */
|
||||
if ((b & 1u) != 0u) {
|
||||
if ((err = mp_mul(c, &g, c)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* square */
|
||||
if (b > 1u) {
|
||||
if ((err = mp_sqr(&g, &g)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift to next bit */
|
||||
b >>= 1;
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
|
||||
LBL_ERR:
|
||||
mp_clear(&g);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
@@ -1,112 +1,76 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXPTMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* this is a shell function that calls either the normal or Montgomery
|
||||
* exptmod functions. Originally the call to the montgomery code was
|
||||
* embedded in the normal function but that wasted alot of stack space
|
||||
* for nothing (since 99% of the time the Montgomery code would be called)
|
||||
*/
|
||||
int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
||||
mp_err mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
|
||||
{
|
||||
int dr;
|
||||
int dr;
|
||||
|
||||
/* modulus P must be positive */
|
||||
if (P->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
/* modulus P must be positive */
|
||||
if (P->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if exponent X is negative we have to recurse */
|
||||
if (X->sign == MP_NEG) {
|
||||
#ifdef BN_MP_INVMOD_C
|
||||
mp_int tmpG, tmpX;
|
||||
int err;
|
||||
/* if exponent X is negative we have to recurse */
|
||||
if (X->sign == MP_NEG) {
|
||||
mp_int tmpG, tmpX;
|
||||
mp_err err;
|
||||
|
||||
/* first compute 1/G mod P */
|
||||
if ((err = mp_init(&tmpG)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
||||
mp_clear(&tmpG);
|
||||
return err;
|
||||
}
|
||||
if (!MP_HAS(MP_INVMOD)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* now get |X| */
|
||||
if ((err = mp_init(&tmpX)) != MP_OKAY) {
|
||||
mp_clear(&tmpG);
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_init_multi(&tmpG, &tmpX, NULL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
||||
err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
#else
|
||||
/* no invmod */
|
||||
return MP_VAL;
|
||||
#endif
|
||||
}
|
||||
/* first compute 1/G mod P */
|
||||
if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* modified diminished radix reduction */
|
||||
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
|
||||
if (mp_reduce_is_2k_l(P) == MP_YES) {
|
||||
return s_mp_exptmod(G, X, P, Y, 1);
|
||||
}
|
||||
#endif
|
||||
/* now get |X| */
|
||||
if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
#ifdef BN_MP_DR_IS_MODULUS_C
|
||||
/* is it a DR modulus? */
|
||||
dr = mp_dr_is_modulus(P);
|
||||
#else
|
||||
/* default to no */
|
||||
dr = 0;
|
||||
#endif
|
||||
/* and now compute (1/G)**|X| instead of G**X [X < 0] */
|
||||
err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&tmpG, &tmpX, NULL);
|
||||
return err;
|
||||
}
|
||||
|
||||
#ifdef BN_MP_REDUCE_IS_2K_C
|
||||
/* if not, is it a unrestricted DR modulus? */
|
||||
if (dr == 0) {
|
||||
dr = mp_reduce_is_2k(P) << 1;
|
||||
}
|
||||
#endif
|
||||
/* modified diminished radix reduction */
|
||||
if (MP_HAS(MP_REDUCE_IS_2K_L) && MP_HAS(MP_REDUCE_2K_L) && MP_HAS(S_MP_EXPTMOD) &&
|
||||
(mp_reduce_is_2k_l(P) == MP_YES)) {
|
||||
return s_mp_exptmod(G, X, P, Y, 1);
|
||||
}
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
if (mp_isodd (P) == 1 || dr != 0) {
|
||||
return mp_exptmod_fast (G, X, P, Y, dr);
|
||||
} else {
|
||||
#endif
|
||||
#ifdef BN_S_MP_EXPTMOD_C
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
return s_mp_exptmod (G, X, P, Y, 0);
|
||||
#else
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
#endif
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
}
|
||||
#endif
|
||||
/* is it a DR modulus? default to no */
|
||||
dr = (MP_HAS(MP_DR_IS_MODULUS) && (mp_dr_is_modulus(P) == MP_YES)) ? 1 : 0;
|
||||
|
||||
/* if not, is it a unrestricted DR modulus? */
|
||||
if (MP_HAS(MP_REDUCE_IS_2K) && (dr == 0)) {
|
||||
dr = (mp_reduce_is_2k(P) == MP_YES) ? 2 : 0;
|
||||
}
|
||||
|
||||
/* if the modulus is odd or dr != 0 use the montgomery method */
|
||||
if (MP_HAS(S_MP_EXPTMOD_FAST) && (MP_IS_ODD(P) || (dr != 0))) {
|
||||
return s_mp_exptmod_fast(G, X, P, Y, dr);
|
||||
} else if (MP_HAS(S_MP_EXPTMOD)) {
|
||||
/* otherwise use the generic Barrett reduction technique */
|
||||
return s_mp_exptmod(G, X, P, Y, 0);
|
||||
} else {
|
||||
/* no exptmod for evens */
|
||||
return MP_VAL;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_exptmod.c,v $ */
|
||||
/* $Revision: 1.5 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,321 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
||||
*
|
||||
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
||||
* The value of k changes based on the size of the exponent.
|
||||
*
|
||||
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
||||
*/
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
#define TAB_SIZE 32
|
||||
#else
|
||||
#define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
|
||||
/* use a pointer to the reduction algorithm. This allows us to use
|
||||
* one of many reduction algorithms without modding the guts of
|
||||
* the code with if statements everywhere.
|
||||
*/
|
||||
int (*redux)(mp_int*,mp_int*,mp_digit);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits (X);
|
||||
if (x <= 7) {
|
||||
winsize = 2;
|
||||
} else if (x <= 36) {
|
||||
winsize = 3;
|
||||
} else if (x <= 140) {
|
||||
winsize = 4;
|
||||
} else if (x <= 450) {
|
||||
winsize = 5;
|
||||
} else if (x <= 1303) {
|
||||
winsize = 6;
|
||||
} else if (x <= 3529) {
|
||||
winsize = 7;
|
||||
} else {
|
||||
winsize = 8;
|
||||
}
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
if (winsize > 5) {
|
||||
winsize = 5;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* init M array */
|
||||
/* init first cell */
|
||||
if ((err = mp_init(&M[1])) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* now init the second half of the array */
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
if ((err = mp_init(&M[x])) != MP_OKAY) {
|
||||
for (y = 1<<(winsize-1); y < x; y++) {
|
||||
mp_clear (&M[y]);
|
||||
}
|
||||
mp_clear(&M[1]);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* determine and setup reduction code */
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* now setup montgomery */
|
||||
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
|
||||
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
if (((P->used * 2 + 1) < MP_WARRAY) &&
|
||||
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
redux = fast_mp_montgomery_reduce;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
||||
/* use slower baseline Montgomery method */
|
||||
redux = mp_montgomery_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
} else if (redmode == 1) {
|
||||
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
|
||||
/* setup DR reduction for moduli of the form B**k - b */
|
||||
mp_dr_setup(P, &mp);
|
||||
redux = mp_dr_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
} else {
|
||||
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
|
||||
/* setup DR reduction for moduli of the form 2**k - b */
|
||||
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
redux = mp_reduce_2k;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* setup result */
|
||||
if ((err = mp_init (&res)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
|
||||
/* create M table
|
||||
*
|
||||
|
||||
*
|
||||
* The first half of the table is not computed though accept for M[0] and M[1]
|
||||
*/
|
||||
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/* now we need R mod m */
|
||||
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_RES;
|
||||
#endif
|
||||
|
||||
/* now set M[1] to G * R mod m */
|
||||
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
} else {
|
||||
mp_set(&res, 1);
|
||||
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
||||
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
for (x = 0; x < (winsize - 1); x++) {
|
||||
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* create upper table */
|
||||
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
||||
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* set initial mode and bit cnt */
|
||||
mode = 0;
|
||||
bitcnt = 1;
|
||||
buf = 0;
|
||||
digidx = X->used - 1;
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
|
||||
for (;;) {
|
||||
/* grab next digit as required */
|
||||
if (--bitcnt == 0) {
|
||||
/* if digidx == -1 we are out of digits so break */
|
||||
if (digidx == -1) {
|
||||
break;
|
||||
}
|
||||
/* read next digit and reset bitcnt */
|
||||
buf = X->dp[digidx--];
|
||||
bitcnt = (int)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* grab the next msb from the exponent */
|
||||
y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
||||
buf <<= (mp_digit)1;
|
||||
|
||||
/* if the bit is zero and mode == 0 then we ignore it
|
||||
* These represent the leading zero bits before the first 1 bit
|
||||
* in the exponent. Technically this opt is not required but it
|
||||
* does lower the # of trivial squaring/reductions used
|
||||
*/
|
||||
if (mode == 0 && y == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* if the bit is zero and mode == 1 then we square */
|
||||
if (mode == 1 && y == 0) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/* else we add it to the window */
|
||||
bitbuf |= (y << (winsize - ++bitcpy));
|
||||
mode = 2;
|
||||
|
||||
if (bitcpy == winsize) {
|
||||
/* ok window is filled so square as required and multiply */
|
||||
/* square first */
|
||||
for (x = 0; x < winsize; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* then multiply */
|
||||
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* empty window and reset */
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
mode = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* if bits remain then square/multiply */
|
||||
if (mode == 2 && bitcpy > 0) {
|
||||
/* square then multiply if the bit is set */
|
||||
for (x = 0; x < bitcpy; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* get next bit of the window */
|
||||
bitbuf <<= 1;
|
||||
if ((bitbuf & (1 << winsize)) != 0) {
|
||||
/* then multiply */
|
||||
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (redmode == 0) {
|
||||
/* fixup result if Montgomery reduction is used
|
||||
* recall that any value in a Montgomery system is
|
||||
* actually multiplied by R mod n. So we have
|
||||
* to reduce one more time to cancel out the factor
|
||||
* of R.
|
||||
*/
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* swap res with Y */
|
||||
mp_exch (&res, Y);
|
||||
err = MP_OKAY;
|
||||
LBL_RES:mp_clear (&res);
|
||||
LBL_M:
|
||||
mp_clear(&M[1]);
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
mp_clear (&M[x]);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_exptmod_fast.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,82 +1,73 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_EXTEUCLID_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* Extended euclidean algorithm of (a, b) produces
|
||||
a*u1 + b*u2 = u3
|
||||
*/
|
||||
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
|
||||
mp_err mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
|
||||
{
|
||||
mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
|
||||
int err;
|
||||
mp_int u1, u2, u3, v1, v2, v3, t1, t2, t3, q, tmp;
|
||||
mp_err err;
|
||||
|
||||
if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* initialize, (u1,u2,u3) = (1,0,a) */
|
||||
mp_set(&u1, 1);
|
||||
if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; }
|
||||
mp_set(&u1, 1uL);
|
||||
if ((err = mp_copy(a, &u3)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
/* initialize, (v1,v2,v3) = (0,1,b) */
|
||||
mp_set(&v2, 1);
|
||||
if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; }
|
||||
mp_set(&v2, 1uL);
|
||||
if ((err = mp_copy(b, &v3)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
/* loop while v3 != 0 */
|
||||
while (mp_iszero(&v3) == MP_NO) {
|
||||
/* q = u3/v3 */
|
||||
if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; }
|
||||
while (!MP_IS_ZERO(&v3)) {
|
||||
/* q = u3/v3 */
|
||||
if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
/* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
|
||||
if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; }
|
||||
/* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
|
||||
if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
/* (u1,u2,u3) = (v1,v2,v3) */
|
||||
if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; }
|
||||
/* (u1,u2,u3) = (v1,v2,v3) */
|
||||
if ((err = mp_copy(&v1, &u1)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_copy(&v2, &u2)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_copy(&v3, &u3)) != MP_OKAY) goto LBL_ERR;
|
||||
|
||||
/* (v1,v2,v3) = (t1,t2,t3) */
|
||||
if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; }
|
||||
if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; }
|
||||
/* (v1,v2,v3) = (t1,t2,t3) */
|
||||
if ((err = mp_copy(&t1, &v1)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_copy(&t2, &v2)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_copy(&t3, &v3)) != MP_OKAY) goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* make sure U3 >= 0 */
|
||||
if (u3.sign == MP_NEG) {
|
||||
mp_neg(&u1, &u1);
|
||||
mp_neg(&u2, &u2);
|
||||
mp_neg(&u3, &u3);
|
||||
if ((err = mp_neg(&u1, &u1)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_neg(&u2, &u2)) != MP_OKAY) goto LBL_ERR;
|
||||
if ((err = mp_neg(&u3, &u3)) != MP_OKAY) goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* copy result out */
|
||||
if (U1 != NULL) { mp_exch(U1, &u1); }
|
||||
if (U2 != NULL) { mp_exch(U2, &u2); }
|
||||
if (U3 != NULL) { mp_exch(U3, &u3); }
|
||||
if (U1 != NULL) {
|
||||
mp_exch(U1, &u1);
|
||||
}
|
||||
if (U2 != NULL) {
|
||||
mp_exch(U2, &u2);
|
||||
}
|
||||
if (U3 != NULL) {
|
||||
mp_exch(U3, &u3);
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_exteuclid.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,36 +0,0 @@
|
||||
/* TomsFastMath, a fast ISO C bignum library.
|
||||
*
|
||||
* This project is public domain and free for all purposes.
|
||||
*
|
||||
* Love Hornquist Astrand <lha@h5l.org>
|
||||
*/
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_FIND_PRIME_C
|
||||
int mp_find_prime(mp_int *a, int t)
|
||||
{
|
||||
int res = MP_NO;
|
||||
|
||||
/* valid value of t? */
|
||||
if (t <= 0 || t > PRIME_SIZE) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if (mp_iseven(a))
|
||||
mp_add_d(a, 1, a);
|
||||
|
||||
do {
|
||||
if (mp_prime_is_prime(a, t, &res) != 0) {
|
||||
res = MP_VAL;
|
||||
break;
|
||||
}
|
||||
|
||||
if (res == MP_NO) {
|
||||
mp_add_d(a, 2, a);
|
||||
continue;
|
||||
}
|
||||
|
||||
} while (res != MP_YES);
|
||||
|
||||
return res;
|
||||
}
|
||||
#endif
|
@@ -1,67 +1,60 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_FREAD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#ifndef MP_NO_FILE
|
||||
/* read a bigint from a file stream in ASCII */
|
||||
int mp_fread(mp_int *a, int radix, FILE *stream)
|
||||
mp_err mp_fread(mp_int *a, int radix, FILE *stream)
|
||||
{
|
||||
int err, ch, neg, y;
|
||||
|
||||
/* clear a */
|
||||
mp_zero(a);
|
||||
mp_err err;
|
||||
mp_sign neg;
|
||||
|
||||
/* if first digit is - then set negative */
|
||||
ch = fgetc(stream);
|
||||
if (ch == '-') {
|
||||
int ch = fgetc(stream);
|
||||
if (ch == (int)'-') {
|
||||
neg = MP_NEG;
|
||||
ch = fgetc(stream);
|
||||
} else {
|
||||
neg = MP_ZPOS;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
/* find y in the radix map */
|
||||
for (y = 0; y < radix; y++) {
|
||||
if (mp_s_rmap[y] == ch) {
|
||||
break;
|
||||
}
|
||||
/* no digits, return error */
|
||||
if (ch == EOF) {
|
||||
return MP_ERR;
|
||||
}
|
||||
|
||||
/* clear a */
|
||||
mp_zero(a);
|
||||
|
||||
do {
|
||||
int y;
|
||||
unsigned pos = (unsigned)(ch - (int)'(');
|
||||
if (mp_s_rmap_reverse_sz < pos) {
|
||||
break;
|
||||
}
|
||||
if (y == radix) {
|
||||
|
||||
y = (int)mp_s_rmap_reverse[pos];
|
||||
|
||||
if ((y == 0xff) || (y >= radix)) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* shift up and add */
|
||||
if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
|
||||
if ((err = mp_mul_d(a, (mp_digit)radix, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
|
||||
if ((err = mp_add_d(a, (mp_digit)y, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
} while ((ch = fgetc(stream)) != EOF);
|
||||
|
||||
ch = fgetc(stream);
|
||||
}
|
||||
if (mp_cmp_d(a, 0) != MP_EQ) {
|
||||
if (a->used != 0) {
|
||||
a->sign = neg;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_fread.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
#endif
|
||||
|
25
lib/hcrypto/libtommath/bn_mp_from_sbin.c
Normal file
25
lib/hcrypto/libtommath/bn_mp_from_sbin.c
Normal file
@@ -0,0 +1,25 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_FROM_SBIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
|
||||
mp_err mp_from_sbin(mp_int *a, const unsigned char *buf, size_t size)
|
||||
{
|
||||
mp_err err;
|
||||
|
||||
/* read magnitude */
|
||||
if ((err = mp_from_ubin(a, buf + 1, size - 1u)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* first byte is 0 for positive, non-zero for negative */
|
||||
if (buf[0] == (unsigned char)0) {
|
||||
a->sign = MP_ZPOS;
|
||||
} else {
|
||||
a->sign = MP_NEG;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
39
lib/hcrypto/libtommath/bn_mp_from_ubin.c
Normal file
39
lib/hcrypto/libtommath/bn_mp_from_ubin.c
Normal file
@@ -0,0 +1,39 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_FROM_UBIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
||||
mp_err mp_from_ubin(mp_int *a, const unsigned char *buf, size_t size)
|
||||
{
|
||||
mp_err err;
|
||||
|
||||
/* make sure there are at least two digits */
|
||||
if (a->alloc < 2) {
|
||||
if ((err = mp_grow(a, 2)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero the int */
|
||||
mp_zero(a);
|
||||
|
||||
/* read the bytes in */
|
||||
while (size-- > 0u) {
|
||||
if ((err = mp_mul_2d(a, 8, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
#ifndef MP_8BIT
|
||||
a->dp[0] |= *buf++;
|
||||
a->used += 1;
|
||||
#else
|
||||
a->dp[0] = (*buf & MP_MASK);
|
||||
a->dp[1] |= ((*buf++ >> 7) & 1u);
|
||||
a->used += 2;
|
||||
#endif
|
||||
}
|
||||
mp_clamp(a);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
@@ -1,52 +1,45 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_FWRITE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
int mp_fwrite(mp_int *a, int radix, FILE *stream)
|
||||
#ifndef MP_NO_FILE
|
||||
mp_err mp_fwrite(const mp_int *a, int radix, FILE *stream)
|
||||
{
|
||||
char *buf;
|
||||
int err, len, x;
|
||||
mp_err err;
|
||||
int len;
|
||||
size_t written;
|
||||
|
||||
if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
|
||||
return err;
|
||||
/* TODO: this function is not in this PR */
|
||||
if (MP_HAS(MP_RADIX_SIZE_OVERESTIMATE)) {
|
||||
/* if ((err = mp_radix_size_overestimate(&t, base, &len)) != MP_OKAY) goto LBL_ERR; */
|
||||
} else {
|
||||
if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
buf = OPT_CAST(char) XMALLOC (len);
|
||||
buf = (char *) MP_MALLOC((size_t)len);
|
||||
if (buf == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
|
||||
XFREE (buf);
|
||||
return err;
|
||||
if ((err = mp_to_radix(a, buf, (size_t)len, &written, radix)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
for (x = 0; x < len; x++) {
|
||||
if (fputc(buf[x], stream) == EOF) {
|
||||
XFREE (buf);
|
||||
return MP_VAL;
|
||||
}
|
||||
if (fwrite(buf, written, 1uL, stream) != 1uL) {
|
||||
err = MP_ERR;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
err = MP_OKAY;
|
||||
|
||||
XFREE (buf);
|
||||
return MP_OKAY;
|
||||
|
||||
LBL_ERR:
|
||||
MP_FREE_BUFFER(buf, (size_t)len);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_fwrite.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
#endif
|
||||
|
@@ -1,105 +1,92 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GCD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* Greatest Common Divisor using the binary method */
|
||||
int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int u, v;
|
||||
int k, u_lsb, v_lsb, res;
|
||||
mp_int u, v;
|
||||
int k, u_lsb, v_lsb;
|
||||
mp_err err;
|
||||
|
||||
/* either zero than gcd is the largest */
|
||||
if (mp_iszero (a) == MP_YES) {
|
||||
return mp_abs (b, c);
|
||||
}
|
||||
if (mp_iszero (b) == MP_YES) {
|
||||
return mp_abs (a, c);
|
||||
}
|
||||
/* either zero than gcd is the largest */
|
||||
if (MP_IS_ZERO(a)) {
|
||||
return mp_abs(b, c);
|
||||
}
|
||||
if (MP_IS_ZERO(b)) {
|
||||
return mp_abs(a, c);
|
||||
}
|
||||
|
||||
/* get copies of a and b we can modify */
|
||||
if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
/* get copies of a and b we can modify */
|
||||
if ((err = mp_init_copy(&u, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
|
||||
goto LBL_U;
|
||||
}
|
||||
if ((err = mp_init_copy(&v, b)) != MP_OKAY) {
|
||||
goto LBL_U;
|
||||
}
|
||||
|
||||
/* must be positive for the remainder of the algorithm */
|
||||
u.sign = v.sign = MP_ZPOS;
|
||||
/* must be positive for the remainder of the algorithm */
|
||||
u.sign = v.sign = MP_ZPOS;
|
||||
|
||||
/* B1. Find the common power of two for u and v */
|
||||
u_lsb = mp_cnt_lsb(&u);
|
||||
v_lsb = mp_cnt_lsb(&v);
|
||||
k = MIN(u_lsb, v_lsb);
|
||||
/* B1. Find the common power of two for u and v */
|
||||
u_lsb = mp_cnt_lsb(&u);
|
||||
v_lsb = mp_cnt_lsb(&v);
|
||||
k = MP_MIN(u_lsb, v_lsb);
|
||||
|
||||
if (k > 0) {
|
||||
/* divide the power of two out */
|
||||
if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
if (k > 0) {
|
||||
/* divide the power of two out */
|
||||
if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
/* divide any remaining factors of two out */
|
||||
if (u_lsb != k) {
|
||||
if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
/* divide any remaining factors of two out */
|
||||
if (u_lsb != k) {
|
||||
if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
if (v_lsb != k) {
|
||||
if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
if (v_lsb != k) {
|
||||
if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
while (mp_iszero(&v) == 0) {
|
||||
/* make sure v is the largest */
|
||||
if (mp_cmp_mag(&u, &v) == MP_GT) {
|
||||
/* swap u and v to make sure v is >= u */
|
||||
mp_exch(&u, &v);
|
||||
}
|
||||
while (!MP_IS_ZERO(&v)) {
|
||||
/* make sure v is the largest */
|
||||
if (mp_cmp_mag(&u, &v) == MP_GT) {
|
||||
/* swap u and v to make sure v is >= u */
|
||||
mp_exch(&u, &v);
|
||||
}
|
||||
|
||||
/* subtract smallest from largest */
|
||||
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
/* subtract smallest from largest */
|
||||
if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
/* Divide out all factors of two */
|
||||
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
/* Divide out all factors of two */
|
||||
if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
}
|
||||
|
||||
/* multiply by 2**k which we divided out at the beginning */
|
||||
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
c->sign = MP_ZPOS;
|
||||
res = MP_OKAY;
|
||||
LBL_V:mp_clear (&u);
|
||||
LBL_U:mp_clear (&v);
|
||||
return res;
|
||||
/* multiply by 2**k which we divided out at the beginning */
|
||||
if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
c->sign = MP_ZPOS;
|
||||
err = MP_OKAY;
|
||||
LBL_V:
|
||||
mp_clear(&u);
|
||||
LBL_U:
|
||||
mp_clear(&v);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_gcd.c,v $ */
|
||||
/* $Revision: 1.5 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
18
lib/hcrypto/libtommath/bn_mp_get_double.c
Normal file
18
lib/hcrypto/libtommath/bn_mp_get_double.c
Normal file
@@ -0,0 +1,18 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_DOUBLE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
double mp_get_double(const mp_int *a)
|
||||
{
|
||||
int i;
|
||||
double d = 0.0, fac = 1.0;
|
||||
for (i = 0; i < MP_DIGIT_BIT; ++i) {
|
||||
fac *= 2.0;
|
||||
}
|
||||
for (i = a->used; i --> 0;) {
|
||||
d = (d * fac) + (double)a->dp[i];
|
||||
}
|
||||
return (a->sign == MP_NEG) ? -d : d;
|
||||
}
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_i32.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_i32.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_I32_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_SIGNED(mp_get_i32, mp_get_mag_u32, int32_t, uint32_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_i64.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_i64.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_I64_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_SIGNED(mp_get_i64, mp_get_mag_u64, int64_t, uint64_t)
|
||||
#endif
|
@@ -1,45 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_GET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* get the lower 32-bits of an mp_int */
|
||||
unsigned long mp_get_int(mp_int * a)
|
||||
{
|
||||
int i;
|
||||
unsigned long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
|
||||
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
||||
return res & 0xFFFFFFFFUL;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_get_int.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
7
lib/hcrypto/libtommath/bn_mp_get_l.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_l.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_SIGNED(mp_get_l, mp_get_mag_ul, long, unsigned long)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_ll.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_ll.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_LL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_SIGNED(mp_get_ll, mp_get_mag_ull, long long, unsigned long long)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_mag_u32.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_mag_u32.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_MAG_U32_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_MAG(mp_get_mag_u32, uint32_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_mag_u64.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_mag_u64.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_MAG_U64_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_MAG(mp_get_mag_u64, uint64_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_mag_ul.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_mag_ul.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_MAG_UL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_MAG(mp_get_mag_ul, unsigned long)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_get_mag_ull.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_get_mag_ull.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GET_MAG_ULL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_GET_MAG(mp_get_mag_ull, unsigned long long)
|
||||
#endif
|
@@ -1,57 +1,38 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_GROW_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* grow as required */
|
||||
int mp_grow (mp_int * a, int size)
|
||||
mp_err mp_grow(mp_int *a, int size)
|
||||
{
|
||||
int i;
|
||||
mp_digit *tmp;
|
||||
int i;
|
||||
mp_digit *tmp;
|
||||
|
||||
/* if the alloc size is smaller alloc more ram */
|
||||
if (a->alloc < size) {
|
||||
/* ensure there are always at least MP_PREC digits extra on top */
|
||||
size += (MP_PREC * 2) - (size % MP_PREC);
|
||||
/* if the alloc size is smaller alloc more ram */
|
||||
if (a->alloc < size) {
|
||||
/* reallocate the array a->dp
|
||||
*
|
||||
* We store the return in a temporary variable
|
||||
* in case the operation failed we don't want
|
||||
* to overwrite the dp member of a.
|
||||
*/
|
||||
tmp = (mp_digit *) MP_REALLOC(a->dp,
|
||||
(size_t)a->alloc * sizeof(mp_digit),
|
||||
(size_t)size * sizeof(mp_digit));
|
||||
if (tmp == NULL) {
|
||||
/* reallocation failed but "a" is still valid [can be freed] */
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* reallocate the array a->dp
|
||||
*
|
||||
* We store the return in a temporary variable
|
||||
* in case the operation failed we don't want
|
||||
* to overwrite the dp member of a.
|
||||
*/
|
||||
tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
|
||||
if (tmp == NULL) {
|
||||
/* reallocation failed but "a" is still valid [can be freed] */
|
||||
return MP_MEM;
|
||||
}
|
||||
/* reallocation succeeded so set a->dp */
|
||||
a->dp = tmp;
|
||||
|
||||
/* reallocation succeeded so set a->dp */
|
||||
a->dp = tmp;
|
||||
|
||||
/* zero excess digits */
|
||||
i = a->alloc;
|
||||
a->alloc = size;
|
||||
for (; i < a->alloc; i++) {
|
||||
a->dp[i] = 0;
|
||||
}
|
||||
}
|
||||
return MP_OKAY;
|
||||
/* zero excess digits */
|
||||
i = a->alloc;
|
||||
a->alloc = size;
|
||||
MP_ZERO_DIGITS(a->dp + i, a->alloc - i);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_grow.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
30
lib/hcrypto/libtommath/bn_mp_incr.c
Normal file
30
lib/hcrypto/libtommath/bn_mp_incr.c
Normal file
@@ -0,0 +1,30 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INCR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* Increment "a" by one like "a++". Changes input! */
|
||||
mp_err mp_incr(mp_int *a)
|
||||
{
|
||||
if (MP_IS_ZERO(a)) {
|
||||
mp_set(a,1uL);
|
||||
return MP_OKAY;
|
||||
} else if (a->sign == MP_NEG) {
|
||||
mp_err err;
|
||||
a->sign = MP_ZPOS;
|
||||
if ((err = mp_decr(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
/* There is no -0 in LTM */
|
||||
if (!MP_IS_ZERO(a)) {
|
||||
a->sign = MP_NEG;
|
||||
}
|
||||
return MP_OKAY;
|
||||
} else if (a->dp[0] < MP_DIGIT_MAX) {
|
||||
a->dp[0]++;
|
||||
return MP_OKAY;
|
||||
} else {
|
||||
return mp_add_d(a, 1uL,a);
|
||||
}
|
||||
}
|
||||
#endif
|
@@ -1,46 +1,23 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* init a new mp_int */
|
||||
int mp_init (mp_int * a)
|
||||
mp_err mp_init(mp_int *a)
|
||||
{
|
||||
int i;
|
||||
/* allocate memory required and clear it */
|
||||
a->dp = (mp_digit *) MP_CALLOC((size_t)MP_PREC, sizeof(mp_digit));
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* allocate memory required and clear it */
|
||||
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
/* set the used to zero, allocated digits to the default precision
|
||||
* and sign to positive */
|
||||
a->used = 0;
|
||||
a->alloc = MP_PREC;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
/* set the digits to zero */
|
||||
for (i = 0; i < MP_PREC; i++) {
|
||||
a->dp[i] = 0;
|
||||
}
|
||||
|
||||
/* set the used to zero, allocated digits to the default precision
|
||||
* and sign to positive */
|
||||
a->used = 0;
|
||||
a->alloc = MP_PREC;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_init.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,32 +1,21 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_COPY_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* creates "a" then copies b into it */
|
||||
int mp_init_copy (mp_int * a, mp_int * b)
|
||||
mp_err mp_init_copy(mp_int *a, const mp_int *b)
|
||||
{
|
||||
int res;
|
||||
mp_err err;
|
||||
|
||||
if ((res = mp_init (a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
return mp_copy (b, a);
|
||||
if ((err = mp_init_size(a, b->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((err = mp_copy(b, a)) != MP_OKAY) {
|
||||
mp_clear(a);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_init_copy.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
7
lib/hcrypto/libtommath/bn_mp_init_i32.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_i32.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_I32_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_i32, mp_set_i32, int32_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_init_i64.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_i64.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_I64_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_i64, mp_set_i64, int64_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_init_l.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_l.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_L_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_l, mp_set_l, long)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_init_ll.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_ll.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_LL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_ll, mp_set_ll, long long)
|
||||
#endif
|
@@ -1,59 +1,41 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_MULTI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#include <stdarg.h>
|
||||
|
||||
int mp_init_multi(mp_int *mp, ...)
|
||||
mp_err mp_init_multi(mp_int *mp, ...)
|
||||
{
|
||||
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
||||
int n = 0; /* Number of ok inits */
|
||||
mp_int* cur_arg = mp;
|
||||
va_list args;
|
||||
mp_err err = MP_OKAY; /* Assume ok until proven otherwise */
|
||||
int n = 0; /* Number of ok inits */
|
||||
mp_int *cur_arg = mp;
|
||||
va_list args;
|
||||
|
||||
va_start(args, mp); /* init args to next argument from caller */
|
||||
while (cur_arg != NULL) {
|
||||
if (mp_init(cur_arg) != MP_OKAY) {
|
||||
/* Oops - error! Back-track and mp_clear what we already
|
||||
succeeded in init-ing, then return error.
|
||||
*/
|
||||
va_list clean_args;
|
||||
va_start(args, mp); /* init args to next argument from caller */
|
||||
while (cur_arg != NULL) {
|
||||
if (mp_init(cur_arg) != MP_OKAY) {
|
||||
/* Oops - error! Back-track and mp_clear what we already
|
||||
succeeded in init-ing, then return error.
|
||||
*/
|
||||
va_list clean_args;
|
||||
|
||||
/* end the current list */
|
||||
va_end(args);
|
||||
|
||||
/* now start cleaning up */
|
||||
cur_arg = mp;
|
||||
va_start(clean_args, mp);
|
||||
while (n--) {
|
||||
mp_clear(cur_arg);
|
||||
cur_arg = va_arg(clean_args, mp_int*);
|
||||
}
|
||||
va_end(clean_args);
|
||||
res = MP_MEM;
|
||||
break;
|
||||
}
|
||||
n++;
|
||||
cur_arg = va_arg(args, mp_int*);
|
||||
}
|
||||
va_end(args);
|
||||
return res; /* Assumed ok, if error flagged above. */
|
||||
/* now start cleaning up */
|
||||
cur_arg = mp;
|
||||
va_start(clean_args, mp);
|
||||
while (n-- != 0) {
|
||||
mp_clear(cur_arg);
|
||||
cur_arg = va_arg(clean_args, mp_int *);
|
||||
}
|
||||
va_end(clean_args);
|
||||
err = MP_MEM;
|
||||
break;
|
||||
}
|
||||
n++;
|
||||
cur_arg = va_arg(args, mp_int *);
|
||||
}
|
||||
va_end(args);
|
||||
return err; /* Assumed ok, if error flagged above. */
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_init_multi.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,32 +1,16 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_SET_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set (mp_int * a, mp_digit b)
|
||||
mp_err mp_init_set(mp_int *a, mp_digit b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
mp_set(a, b);
|
||||
return err;
|
||||
mp_err err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
mp_set(a, b);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_init_set.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,31 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_INIT_SET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set_int (mp_int * a, unsigned long b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
return mp_set_int(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_init_set_int.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,48 +1,24 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_SIZE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* init an mp_init for a given size */
|
||||
int mp_init_size (mp_int * a, int size)
|
||||
mp_err mp_init_size(mp_int *a, int size)
|
||||
{
|
||||
int x;
|
||||
size = MP_MAX(MP_MIN_PREC, size);
|
||||
|
||||
/* pad size so there are always extra digits */
|
||||
size += (MP_PREC * 2) - (size % MP_PREC);
|
||||
/* alloc mem */
|
||||
a->dp = (mp_digit *) MP_CALLOC((size_t)size, sizeof(mp_digit));
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* alloc mem */
|
||||
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
|
||||
if (a->dp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
/* set the members */
|
||||
a->used = 0;
|
||||
a->alloc = size;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
/* set the members */
|
||||
a->used = 0;
|
||||
a->alloc = size;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
/* zero the digits */
|
||||
for (x = 0; x < size; x++) {
|
||||
a->dp[x] = 0;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_init_size.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
7
lib/hcrypto/libtommath/bn_mp_init_u32.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_u32.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_U32_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_u32, mp_set_u32, uint32_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_init_u64.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_u64.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_U64_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_u64, mp_set_u64, uint64_t)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_init_ul.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_ul.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_UL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_ul, mp_set_ul, unsigned long)
|
||||
#endif
|
7
lib/hcrypto/libtommath/bn_mp_init_ull.c
Normal file
7
lib/hcrypto/libtommath/bn_mp_init_ull.c
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INIT_ULL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
MP_INIT_INT(mp_init_ull, mp_set_ull, unsigned long long)
|
||||
#endif
|
@@ -1,43 +1,23 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_INVMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_err mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
/* b cannot be negative */
|
||||
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
||||
return MP_VAL;
|
||||
}
|
||||
/* b cannot be negative and has to be >1 */
|
||||
if ((b->sign == MP_NEG) || (mp_cmp_d(b, 1uL) != MP_GT)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
#ifdef BN_FAST_MP_INVMOD_C
|
||||
/* if the modulus is odd we can use a faster routine instead */
|
||||
if (mp_isodd (b) == 1) {
|
||||
return fast_mp_invmod (a, b, c);
|
||||
}
|
||||
#endif
|
||||
/* if the modulus is odd we can use a faster routine instead */
|
||||
if (MP_HAS(S_MP_INVMOD_FAST) && MP_IS_ODD(b)) {
|
||||
return s_mp_invmod_fast(a, b, c);
|
||||
}
|
||||
|
||||
#ifdef BN_MP_INVMOD_SLOW_C
|
||||
return mp_invmod_slow(a, b, c);
|
||||
#else
|
||||
return MP_VAL;
|
||||
#endif
|
||||
return MP_HAS(S_MP_INVMOD_SLOW)
|
||||
? s_mp_invmod_slow(a, b, c)
|
||||
: MP_VAL;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_invmod.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,175 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_INVMOD_SLOW_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x, y, u, v, A, B, C, D;
|
||||
int res;
|
||||
|
||||
/* b cannot be negative */
|
||||
if (b->sign == MP_NEG || mp_iszero(b) == 1) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init temps */
|
||||
if ((res = mp_init_multi(&x, &y, &u, &v,
|
||||
&A, &B, &C, &D, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* x = a, y = b */
|
||||
if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 2. [modified] if x,y are both even then return an error! */
|
||||
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||||
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set (&A, 1);
|
||||
mp_set (&D, 1);
|
||||
|
||||
top:
|
||||
/* 4. while u is even do */
|
||||
while (mp_iseven (&u) == 1) {
|
||||
/* 4.1 u = u/2 */
|
||||
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if A or B is odd then */
|
||||
if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
|
||||
/* A = (A+y)/2, B = (B-x)/2 */
|
||||
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* A = A/2, B = B/2 */
|
||||
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5. while v is even do */
|
||||
while (mp_iseven (&v) == 1) {
|
||||
/* 5.1 v = v/2 */
|
||||
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if C or D is odd then */
|
||||
if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
|
||||
/* C = (C+y)/2, D = (D-x)/2 */
|
||||
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* C = C/2, D = D/2 */
|
||||
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 6. if u >= v then */
|
||||
if (mp_cmp (&u, &v) != MP_LT) {
|
||||
/* u = u - v, A = A - C, B = B - D */
|
||||
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
/* v - v - u, C = C - A, D = D - B */
|
||||
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* if not zero goto step 4 */
|
||||
if (mp_iszero (&u) == 0)
|
||||
goto top;
|
||||
|
||||
/* now a = C, b = D, gcd == g*v */
|
||||
|
||||
/* if v != 1 then there is no inverse */
|
||||
if (mp_cmp_d (&v, 1) != MP_EQ) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* if its too low */
|
||||
while (mp_cmp_d(&C, 0) == MP_LT) {
|
||||
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* too big */
|
||||
while (mp_cmp_mag(&C, b) != MP_LT) {
|
||||
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* C is now the inverse */
|
||||
mp_exch (&C, c);
|
||||
res = MP_OKAY;
|
||||
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_invmod_slow.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,109 +1,93 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_IS_SQUARE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* Check if remainders are possible squares - fast exclude non-squares */
|
||||
static const char rem_128[128] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
static const char rem_105[105] = {
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
|
||||
0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
|
||||
1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
|
||||
};
|
||||
|
||||
/* Store non-zero to ret if arg is square, and zero if not */
|
||||
int mp_is_square(mp_int *arg,int *ret)
|
||||
mp_err mp_is_square(const mp_int *arg, mp_bool *ret)
|
||||
{
|
||||
int res;
|
||||
mp_digit c;
|
||||
mp_int t;
|
||||
unsigned long r;
|
||||
mp_err err;
|
||||
mp_digit c;
|
||||
mp_int t;
|
||||
unsigned long r;
|
||||
|
||||
/* Default to Non-square :) */
|
||||
*ret = MP_NO;
|
||||
/* Default to Non-square :) */
|
||||
*ret = MP_NO;
|
||||
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
if (arg->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* digits used? (TSD) */
|
||||
if (arg->used == 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
if (MP_IS_ZERO(arg)) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
|
||||
if (rem_128[127 & DIGIT(arg,0)] == 1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* First check mod 128 (suppose that MP_DIGIT_BIT is at least 7) */
|
||||
if (rem_128[127u & arg->dp[0]] == (char)1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* Next check mod 105 (3*5*7) */
|
||||
if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (rem_105[c] == 1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* Next check mod 105 (3*5*7) */
|
||||
if ((err = mp_mod_d(arg, 105uL, &c)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (rem_105[c] == (char)1) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
|
||||
if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
r = mp_get_int(&t);
|
||||
/* Check for other prime modules, note it's not an ERROR but we must
|
||||
* free "t" so the easiest way is to goto ERR. We know that res
|
||||
* is already equal to MP_OKAY from the mp_mod call
|
||||
*/
|
||||
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
|
||||
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
|
||||
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
|
||||
if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
|
||||
if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
|
||||
if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
|
||||
if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
|
||||
if ((err = mp_init_u32(&t, 11u*13u*17u*19u*23u*29u*31u)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_mod(arg, &t, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
r = mp_get_u32(&t);
|
||||
/* Check for other prime modules, note it's not an ERROR but we must
|
||||
* free "t" so the easiest way is to goto LBL_ERR. We know that err
|
||||
* is already equal to MP_OKAY from the mp_mod call
|
||||
*/
|
||||
if (((1uL<<(r%11uL)) & 0x5C4uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%13uL)) & 0x9E4uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%17uL)) & 0x5CE8uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%19uL)) & 0x4F50CuL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%23uL)) & 0x7ACCA0uL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%29uL)) & 0xC2EDD0CuL) != 0uL) goto LBL_ERR;
|
||||
if (((1uL<<(r%31uL)) & 0x6DE2B848uL) != 0uL) goto LBL_ERR;
|
||||
|
||||
/* Final check - is sqr(sqrt(arg)) == arg ? */
|
||||
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* Final check - is sqr(sqrt(arg)) == arg ? */
|
||||
if ((err = mp_sqrt(arg, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_sqr(&t, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
*ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
|
||||
ERR:mp_clear(&t);
|
||||
return res;
|
||||
*ret = (mp_cmp_mag(&t, arg) == MP_EQ) ? MP_YES : MP_NO;
|
||||
LBL_ERR:
|
||||
mp_clear(&t);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_is_square.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
10
lib/hcrypto/libtommath/bn_mp_iseven.c
Normal file
10
lib/hcrypto/libtommath/bn_mp_iseven.c
Normal file
@@ -0,0 +1,10 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ISEVEN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
mp_bool mp_iseven(const mp_int *a)
|
||||
{
|
||||
return MP_IS_EVEN(a) ? MP_YES : MP_NO;
|
||||
}
|
||||
#endif
|
10
lib/hcrypto/libtommath/bn_mp_isodd.c
Normal file
10
lib/hcrypto/libtommath/bn_mp_isodd.c
Normal file
@@ -0,0 +1,10 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_ISODD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
mp_bool mp_isodd(const mp_int *a)
|
||||
{
|
||||
return MP_IS_ODD(a) ? MP_YES : MP_NO;
|
||||
}
|
||||
#endif
|
@@ -1,105 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_JACOBI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
|
||||
* HAC pp. 73 Algorithm 2.149
|
||||
*/
|
||||
int mp_jacobi (mp_int * a, mp_int * p, int *c)
|
||||
{
|
||||
mp_int a1, p1;
|
||||
int k, s, r, res;
|
||||
mp_digit residue;
|
||||
|
||||
/* if p <= 0 return MP_VAL */
|
||||
if (mp_cmp_d(p, 0) != MP_GT) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* step 1. if a == 0, return 0 */
|
||||
if (mp_iszero (a) == 1) {
|
||||
*c = 0;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* step 2. if a == 1, return 1 */
|
||||
if (mp_cmp_d (a, 1) == MP_EQ) {
|
||||
*c = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* default */
|
||||
s = 0;
|
||||
|
||||
/* step 3. write a = a1 * 2**k */
|
||||
if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&p1)) != MP_OKAY) {
|
||||
goto LBL_A1;
|
||||
}
|
||||
|
||||
/* divide out larger power of two */
|
||||
k = mp_cnt_lsb(&a1);
|
||||
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
|
||||
/* step 4. if e is even set s=1 */
|
||||
if ((k & 1) == 0) {
|
||||
s = 1;
|
||||
} else {
|
||||
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
|
||||
residue = p->dp[0] & 7;
|
||||
|
||||
if (residue == 1 || residue == 7) {
|
||||
s = 1;
|
||||
} else if (residue == 3 || residue == 5) {
|
||||
s = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
||||
if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
|
||||
s = -s;
|
||||
}
|
||||
|
||||
/* if a1 == 1 we're done */
|
||||
if (mp_cmp_d (&a1, 1) == MP_EQ) {
|
||||
*c = s;
|
||||
} else {
|
||||
/* n1 = n mod a1 */
|
||||
if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
*c = s * r;
|
||||
}
|
||||
|
||||
/* done */
|
||||
res = MP_OKAY;
|
||||
LBL_P1:mp_clear (&p1);
|
||||
LBL_A1:mp_clear (&a1);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_jacobi.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,167 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_KARATSUBA_MUL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* c = |a| * |b| using Karatsuba Multiplication using
|
||||
* three half size multiplications
|
||||
*
|
||||
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
||||
* let n represent half of the number of digits in
|
||||
* the min(a,b)
|
||||
*
|
||||
* a = a1 * B**n + a0
|
||||
* b = b1 * B**n + b0
|
||||
*
|
||||
* Then, a * b =>
|
||||
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
|
||||
*
|
||||
* Note that a1b1 and a0b0 are used twice and only need to be
|
||||
* computed once. So in total three half size (half # of
|
||||
* digit) multiplications are performed, a0b0, a1b1 and
|
||||
* (a1+b1)(a0+b0)
|
||||
*
|
||||
* Note that a multiplication of half the digits requires
|
||||
* 1/4th the number of single precision multiplications so in
|
||||
* total after one call 25% of the single precision multiplications
|
||||
* are saved. Note also that the call to mp_mul can end up back
|
||||
* in this function if the a0, a1, b0, or b1 are above the threshold.
|
||||
* This is known as divide-and-conquer and leads to the famous
|
||||
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
|
||||
* the standard O(N**2) that the baseline/comba methods use.
|
||||
* Generally though the overhead of this method doesn't pay off
|
||||
* until a certain size (N ~ 80) is reached.
|
||||
*/
|
||||
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||||
int B, err;
|
||||
|
||||
/* default the return code to an error */
|
||||
err = MP_MEM;
|
||||
|
||||
/* min # of digits */
|
||||
B = MIN (a->used, b->used);
|
||||
|
||||
/* now divide in two */
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
goto ERR;
|
||||
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
||||
goto X0;
|
||||
if (mp_init_size (&y0, B) != MP_OKAY)
|
||||
goto X1;
|
||||
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
||||
goto Y0;
|
||||
|
||||
/* init temps */
|
||||
if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
||||
goto Y1;
|
||||
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
||||
goto T1;
|
||||
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
||||
goto X0Y0;
|
||||
|
||||
/* now shift the digits */
|
||||
x0.used = y0.used = B;
|
||||
x1.used = a->used - B;
|
||||
y1.used = b->used - B;
|
||||
|
||||
{
|
||||
register int x;
|
||||
register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
||||
|
||||
/* we copy the digits directly instead of using higher level functions
|
||||
* since we also need to shift the digits
|
||||
*/
|
||||
tmpa = a->dp;
|
||||
tmpb = b->dp;
|
||||
|
||||
tmpx = x0.dp;
|
||||
tmpy = y0.dp;
|
||||
for (x = 0; x < B; x++) {
|
||||
*tmpx++ = *tmpa++;
|
||||
*tmpy++ = *tmpb++;
|
||||
}
|
||||
|
||||
tmpx = x1.dp;
|
||||
for (x = B; x < a->used; x++) {
|
||||
*tmpx++ = *tmpa++;
|
||||
}
|
||||
|
||||
tmpy = y1.dp;
|
||||
for (x = B; x < b->used; x++) {
|
||||
*tmpy++ = *tmpb++;
|
||||
}
|
||||
}
|
||||
|
||||
/* only need to clamp the lower words since by definition the
|
||||
* upper words x1/y1 must have a known number of digits
|
||||
*/
|
||||
mp_clamp (&x0);
|
||||
mp_clamp (&y0);
|
||||
|
||||
/* now calc the products x0y0 and x1y1 */
|
||||
/* after this x0 is no longer required, free temp [x0==t2]! */
|
||||
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
||||
goto X1Y1; /* x0y0 = x0*y0 */
|
||||
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
||||
goto X1Y1; /* x1y1 = x1*y1 */
|
||||
|
||||
/* now calc x1+x0 and y1+y0 */
|
||||
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x1 - x0 */
|
||||
if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
|
||||
goto X1Y1; /* t2 = y1 - y0 */
|
||||
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
|
||||
|
||||
/* add x0y0 */
|
||||
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
|
||||
goto X1Y1; /* t2 = x0y0 + x1y1 */
|
||||
if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
|
||||
|
||||
/* shift by B */
|
||||
if (mp_lshd (&t1, B) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
||||
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
||||
goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
||||
|
||||
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x0y0 + t1 */
|
||||
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
||||
|
||||
/* Algorithm succeeded set the return code to MP_OKAY */
|
||||
err = MP_OKAY;
|
||||
|
||||
X1Y1:mp_clear (&x1y1);
|
||||
X0Y0:mp_clear (&x0y0);
|
||||
T1:mp_clear (&t1);
|
||||
Y1:mp_clear (&y1);
|
||||
Y0:mp_clear (&y0);
|
||||
X1:mp_clear (&x1);
|
||||
X0:mp_clear (&x0);
|
||||
ERR:
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_mul.c,v $ */
|
||||
/* $Revision: 1.6 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
@@ -1,121 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#ifdef BN_MP_KARATSUBA_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* Karatsuba squaring, computes b = a*a using three
|
||||
* half size squarings
|
||||
*
|
||||
* See comments of karatsuba_mul for details. It
|
||||
* is essentially the same algorithm but merely
|
||||
* tuned to perform recursive squarings.
|
||||
*/
|
||||
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
mp_int x0, x1, t1, t2, x0x0, x1x1;
|
||||
int B, err;
|
||||
|
||||
err = MP_MEM;
|
||||
|
||||
/* min # of digits */
|
||||
B = a->used;
|
||||
|
||||
/* now divide in two */
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
goto ERR;
|
||||
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
||||
goto X0;
|
||||
|
||||
/* init temps */
|
||||
if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
|
||||
goto X1;
|
||||
if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
|
||||
goto T1;
|
||||
if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
|
||||
goto T2;
|
||||
if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
|
||||
goto X0X0;
|
||||
|
||||
{
|
||||
register int x;
|
||||
register mp_digit *dst, *src;
|
||||
|
||||
src = a->dp;
|
||||
|
||||
/* now shift the digits */
|
||||
dst = x0.dp;
|
||||
for (x = 0; x < B; x++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
|
||||
dst = x1.dp;
|
||||
for (x = B; x < a->used; x++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
}
|
||||
|
||||
x0.used = B;
|
||||
x1.used = a->used - B;
|
||||
|
||||
mp_clamp (&x0);
|
||||
|
||||
/* now calc the products x0*x0 and x1*x1 */
|
||||
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
||||
goto X1X1; /* x0x0 = x0*x0 */
|
||||
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
||||
goto X1X1; /* x1x1 = x1*x1 */
|
||||
|
||||
/* now calc (x1+x0)**2 */
|
||||
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x1 - x0 */
|
||||
if (mp_sqr (&t1, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
|
||||
|
||||
/* add x0y0 */
|
||||
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
||||
goto X1X1; /* t2 = x0x0 + x1x1 */
|
||||
if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
|
||||
|
||||
/* shift by B */
|
||||
if (mp_lshd (&t1, B) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
|
||||
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
||||
goto X1X1; /* x1x1 = x1x1 << 2*B */
|
||||
|
||||
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x0x0 + t1 */
|
||||
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
|
||||
|
||||
err = MP_OKAY;
|
||||
|
||||
X1X1:mp_clear (&x1x1);
|
||||
X0X0:mp_clear (&x0x0);
|
||||
T2:mp_clear (&t2);
|
||||
T1:mp_clear (&t1);
|
||||
X1:mp_clear (&x1);
|
||||
X0:mp_clear (&x0);
|
||||
ERR:
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_sqr.c,v $ */
|
||||
/* $Revision: 1.6 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
129
lib/hcrypto/libtommath/bn_mp_kronecker.c
Normal file
129
lib/hcrypto/libtommath/bn_mp_kronecker.c
Normal file
@@ -0,0 +1,129 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_KRONECKER_C
|
||||
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/*
|
||||
Kronecker symbol (a|p)
|
||||
Straightforward implementation of algorithm 1.4.10 in
|
||||
Henri Cohen: "A Course in Computational Algebraic Number Theory"
|
||||
|
||||
@book{cohen2013course,
|
||||
title={A course in computational algebraic number theory},
|
||||
author={Cohen, Henri},
|
||||
volume={138},
|
||||
year={2013},
|
||||
publisher={Springer Science \& Business Media}
|
||||
}
|
||||
*/
|
||||
mp_err mp_kronecker(const mp_int *a, const mp_int *p, int *c)
|
||||
{
|
||||
mp_int a1, p1, r;
|
||||
mp_err err;
|
||||
int v, k;
|
||||
|
||||
static const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
|
||||
|
||||
if (MP_IS_ZERO(p)) {
|
||||
if ((a->used == 1) && (a->dp[0] == 1u)) {
|
||||
*c = 1;
|
||||
} else {
|
||||
*c = 0;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if (MP_IS_EVEN(a) && MP_IS_EVEN(p)) {
|
||||
*c = 0;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((err = mp_init_copy(&a1, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if ((err = mp_init_copy(&p1, p)) != MP_OKAY) {
|
||||
goto LBL_KRON_0;
|
||||
}
|
||||
|
||||
v = mp_cnt_lsb(&p1);
|
||||
if ((err = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
|
||||
goto LBL_KRON_1;
|
||||
}
|
||||
|
||||
if ((v & 1) == 0) {
|
||||
k = 1;
|
||||
} else {
|
||||
k = table[a->dp[0] & 7u];
|
||||
}
|
||||
|
||||
if (p1.sign == MP_NEG) {
|
||||
p1.sign = MP_ZPOS;
|
||||
if (a1.sign == MP_NEG) {
|
||||
k = -k;
|
||||
}
|
||||
}
|
||||
|
||||
if ((err = mp_init(&r)) != MP_OKAY) {
|
||||
goto LBL_KRON_1;
|
||||
}
|
||||
|
||||
for (;;) {
|
||||
if (MP_IS_ZERO(&a1)) {
|
||||
if (mp_cmp_d(&p1, 1uL) == MP_EQ) {
|
||||
*c = k;
|
||||
goto LBL_KRON;
|
||||
} else {
|
||||
*c = 0;
|
||||
goto LBL_KRON;
|
||||
}
|
||||
}
|
||||
|
||||
v = mp_cnt_lsb(&a1);
|
||||
if ((err = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
|
||||
if ((v & 1) == 1) {
|
||||
k = k * table[p1.dp[0] & 7u];
|
||||
}
|
||||
|
||||
if (a1.sign == MP_NEG) {
|
||||
/*
|
||||
* Compute k = (-1)^((a1)*(p1-1)/4) * k
|
||||
* a1.dp[0] + 1 cannot overflow because the MSB
|
||||
* of the type mp_digit is not set by definition
|
||||
*/
|
||||
if (((a1.dp[0] + 1u) & p1.dp[0] & 2u) != 0u) {
|
||||
k = -k;
|
||||
}
|
||||
} else {
|
||||
/* compute k = (-1)^((a1-1)*(p1-1)/4) * k */
|
||||
if ((a1.dp[0] & p1.dp[0] & 2u) != 0u) {
|
||||
k = -k;
|
||||
}
|
||||
}
|
||||
|
||||
if ((err = mp_copy(&a1, &r)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
r.sign = MP_ZPOS;
|
||||
if ((err = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
if ((err = mp_copy(&r, &p1)) != MP_OKAY) {
|
||||
goto LBL_KRON;
|
||||
}
|
||||
}
|
||||
|
||||
LBL_KRON:
|
||||
mp_clear(&r);
|
||||
LBL_KRON_1:
|
||||
mp_clear(&p1);
|
||||
LBL_KRON_0:
|
||||
mp_clear(&a1);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif
|
@@ -1,60 +1,44 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_LCM_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* computes least common multiple as |a*b|/(a, b) */
|
||||
int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_err mp_lcm(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res;
|
||||
mp_int t1, t2;
|
||||
mp_err err;
|
||||
mp_int t1, t2;
|
||||
|
||||
|
||||
if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((err = mp_init_multi(&t1, &t2, NULL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* t1 = get the GCD of the two inputs */
|
||||
if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
/* t1 = get the GCD of the two inputs */
|
||||
if ((err = mp_gcd(a, b, &t1)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
|
||||
/* divide the smallest by the GCD */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
/* store quotient in t2 such that t2 * b is the LCM */
|
||||
if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
res = mp_mul(b, &t2, c);
|
||||
} else {
|
||||
/* store quotient in t2 such that t2 * a is the LCM */
|
||||
if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
res = mp_mul(a, &t2, c);
|
||||
}
|
||||
/* divide the smallest by the GCD */
|
||||
if (mp_cmp_mag(a, b) == MP_LT) {
|
||||
/* store quotient in t2 such that t2 * b is the LCM */
|
||||
if ((err = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
err = mp_mul(b, &t2, c);
|
||||
} else {
|
||||
/* store quotient in t2 such that t2 * a is the LCM */
|
||||
if ((err = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
|
||||
goto LBL_T;
|
||||
}
|
||||
err = mp_mul(a, &t2, c);
|
||||
}
|
||||
|
||||
/* fix the sign to positive */
|
||||
c->sign = MP_ZPOS;
|
||||
/* fix the sign to positive */
|
||||
c->sign = MP_ZPOS;
|
||||
|
||||
LBL_T:
|
||||
mp_clear_multi (&t1, &t2, NULL);
|
||||
return res;
|
||||
mp_clear_multi(&t1, &t2, NULL);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_lcm.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
180
lib/hcrypto/libtommath/bn_mp_log_u32.c
Normal file
180
lib/hcrypto/libtommath/bn_mp_log_u32.c
Normal file
@@ -0,0 +1,180 @@
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_LOG_U32_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* Compute log_{base}(a) */
|
||||
static mp_word s_pow(mp_word base, mp_word exponent)
|
||||
{
|
||||
mp_word result = 1uLL;
|
||||
while (exponent != 0u) {
|
||||
if ((exponent & 1u) == 1u) {
|
||||
result *= base;
|
||||
}
|
||||
exponent >>= 1;
|
||||
base *= base;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static mp_digit s_digit_ilogb(mp_digit base, mp_digit n)
|
||||
{
|
||||
mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N;
|
||||
mp_digit ret, high = 1uL, low = 0uL, mid;
|
||||
|
||||
if (n < base) {
|
||||
return 0uL;
|
||||
}
|
||||
if (n == base) {
|
||||
return 1uL;
|
||||
}
|
||||
|
||||
bracket_high = (mp_word) base ;
|
||||
N = (mp_word) n;
|
||||
|
||||
while (bracket_high < N) {
|
||||
low = high;
|
||||
bracket_low = bracket_high;
|
||||
high <<= 1;
|
||||
bracket_high *= bracket_high;
|
||||
}
|
||||
|
||||
while (((mp_digit)(high - low)) > 1uL) {
|
||||
mid = (low + high) >> 1;
|
||||
bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low));
|
||||
|
||||
if (N < bracket_mid) {
|
||||
high = mid ;
|
||||
bracket_high = bracket_mid ;
|
||||
}
|
||||
if (N > bracket_mid) {
|
||||
low = mid ;
|
||||
bracket_low = bracket_mid ;
|
||||
}
|
||||
if (N == bracket_mid) {
|
||||
return (mp_digit) mid;
|
||||
}
|
||||
}
|
||||
|
||||
if (bracket_high == N) {
|
||||
ret = high;
|
||||
} else {
|
||||
ret = low;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* TODO: output could be "int" because the output of mp_radix_size is int, too,
|
||||
as is the output of mp_bitcount.
|
||||
With the same problem: max size is INT_MAX * MP_DIGIT not INT_MAX only!
|
||||
*/
|
||||
mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c)
|
||||
{
|
||||
mp_err err;
|
||||
mp_ord cmp;
|
||||
uint32_t high, low, mid;
|
||||
mp_int bracket_low, bracket_high, bracket_mid, t, bi_base;
|
||||
|
||||
err = MP_OKAY;
|
||||
|
||||
if (a->sign == MP_NEG) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if (MP_IS_ZERO(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if (base < 2u) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* A small shortcut for bases that are powers of two. */
|
||||
if ((base & (base - 1u)) == 0u) {
|
||||
int y, bit_count;
|
||||
for (y=0; (y < 7) && ((base & 1u) == 0u); y++) {
|
||||
base >>= 1;
|
||||
}
|
||||
bit_count = mp_count_bits(a) - 1;
|
||||
*c = (uint32_t)(bit_count/y);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if (a->used == 1) {
|
||||
*c = (uint32_t)s_digit_ilogb(base, a->dp[0]);
|
||||
return err;
|
||||
}
|
||||
|
||||
cmp = mp_cmp_d(a, base);
|
||||
if ((cmp == MP_LT) || (cmp == MP_EQ)) {
|
||||
*c = cmp == MP_EQ;
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((err =
|
||||
mp_init_multi(&bracket_low, &bracket_high,
|
||||
&bracket_mid, &t, &bi_base, NULL)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
low = 0u;
|
||||
mp_set(&bracket_low, 1uL);
|
||||
high = 1u;
|
||||
|
||||
mp_set(&bracket_high, base);
|
||||
|
||||
/*
|
||||
A kind of Giant-step/baby-step algorithm.
|
||||
Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
|
||||
The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
|
||||
for small n.
|
||||
*/
|
||||
while (mp_cmp(&bracket_high, a) == MP_LT) {
|
||||
low = high;
|
||||
if ((err = mp_copy(&bracket_high, &bracket_low)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
high <<= 1;
|
||||
if ((err = mp_sqr(&bracket_high, &bracket_high)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
mp_set(&bi_base, base);
|
||||
|
||||
while ((high - low) > 1u) {
|
||||
mid = (high + low) >> 1;
|
||||
|
||||
if ((err = mp_expt_u32(&bi_base, (uint32_t)(mid - low), &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
cmp = mp_cmp(a, &bracket_mid);
|
||||
if (cmp == MP_LT) {
|
||||
high = mid;
|
||||
mp_exch(&bracket_mid, &bracket_high);
|
||||
}
|
||||
if (cmp == MP_GT) {
|
||||
low = mid;
|
||||
mp_exch(&bracket_mid, &bracket_low);
|
||||
}
|
||||
if (cmp == MP_EQ) {
|
||||
*c = mid;
|
||||
goto LBL_END;
|
||||
}
|
||||
}
|
||||
|
||||
*c = (mp_cmp(&bracket_high, a) == MP_EQ) ? high : low;
|
||||
|
||||
LBL_END:
|
||||
LBL_ERR:
|
||||
mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid,
|
||||
&t, &bi_base, NULL);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
@@ -1,67 +1,51 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_LSHD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* shift left a certain amount of digits */
|
||||
int mp_lshd (mp_int * a, int b)
|
||||
mp_err mp_lshd(mp_int *a, int b)
|
||||
{
|
||||
int x, res;
|
||||
int x;
|
||||
mp_err err;
|
||||
mp_digit *top, *bottom;
|
||||
|
||||
/* if its less than zero return */
|
||||
if (b <= 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* if its less than zero return */
|
||||
if (b <= 0) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* no need to shift 0 around */
|
||||
if (MP_IS_ZERO(a)) {
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* grow to fit the new digits */
|
||||
if (a->alloc < a->used + b) {
|
||||
if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* grow to fit the new digits */
|
||||
if (a->alloc < (a->used + b)) {
|
||||
if ((err = mp_grow(a, a->used + b)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
register mp_digit *top, *bottom;
|
||||
/* increment the used by the shift amount then copy upwards */
|
||||
a->used += b;
|
||||
|
||||
/* increment the used by the shift amount then copy upwards */
|
||||
a->used += b;
|
||||
/* top */
|
||||
top = a->dp + a->used - 1;
|
||||
|
||||
/* top */
|
||||
top = a->dp + a->used - 1;
|
||||
/* base */
|
||||
bottom = (a->dp + a->used - 1) - b;
|
||||
|
||||
/* base */
|
||||
bottom = a->dp + a->used - 1 - b;
|
||||
|
||||
/* much like mp_rshd this is implemented using a sliding window
|
||||
* except the window goes the otherway around. Copying from
|
||||
* the bottom to the top. see bn_mp_rshd.c for more info.
|
||||
*/
|
||||
for (x = a->used - 1; x >= b; x--) {
|
||||
/* much like mp_rshd this is implemented using a sliding window
|
||||
* except the window goes the otherway around. Copying from
|
||||
* the bottom to the top. see bn_mp_rshd.c for more info.
|
||||
*/
|
||||
for (x = a->used - 1; x >= b; x--) {
|
||||
*top-- = *bottom--;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero the lower digits */
|
||||
top = a->dp;
|
||||
for (x = 0; x < b; x++) {
|
||||
*top++ = 0;
|
||||
}
|
||||
}
|
||||
return MP_OKAY;
|
||||
/* zero the lower digits */
|
||||
MP_ZERO_DIGITS(a->dp, b);
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_lshd.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,48 +1,31 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
|
||||
int
|
||||
mp_mod (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_err mp_mod(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int t;
|
||||
int res;
|
||||
mp_int t;
|
||||
mp_err err;
|
||||
|
||||
if ((res = mp_init (&t)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if ((err = mp_init_size(&t, b->used)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
if ((err = mp_div(a, b, NULL, &t)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if (mp_iszero(&t) || t.sign == b->sign) {
|
||||
res = MP_OKAY;
|
||||
mp_exch (&t, c);
|
||||
} else {
|
||||
res = mp_add (b, &t, c);
|
||||
}
|
||||
if (MP_IS_ZERO(&t) || (t.sign == b->sign)) {
|
||||
err = MP_OKAY;
|
||||
mp_exch(&t, c);
|
||||
} else {
|
||||
err = mp_add(b, &t, c);
|
||||
}
|
||||
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
LBL_ERR:
|
||||
mp_clear(&t);
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_mod.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,55 +1,38 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MOD_2D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* calc a value mod 2**b */
|
||||
int
|
||||
mp_mod_2d (mp_int * a, int b, mp_int * c)
|
||||
mp_err mp_mod_2d(const mp_int *a, int b, mp_int *c)
|
||||
{
|
||||
int x, res;
|
||||
int x;
|
||||
mp_err err;
|
||||
|
||||
/* if b is <= 0 then zero the int */
|
||||
if (b <= 0) {
|
||||
mp_zero (c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
/* if b is <= 0 then zero the int */
|
||||
if (b <= 0) {
|
||||
mp_zero(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* if the modulus is larger than the value than return */
|
||||
if (b >= (int) (a->used * DIGIT_BIT)) {
|
||||
res = mp_copy (a, c);
|
||||
return res;
|
||||
}
|
||||
/* if the modulus is larger than the value than return */
|
||||
if (b >= (a->used * MP_DIGIT_BIT)) {
|
||||
return mp_copy(a, c);
|
||||
}
|
||||
|
||||
/* copy */
|
||||
if ((res = mp_copy (a, c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
/* copy */
|
||||
if ((err = mp_copy(a, c)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* zero digits above the last digit of the modulus */
|
||||
for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
|
||||
c->dp[x] = 0;
|
||||
}
|
||||
/* clear the digit that is not completely outside/inside the modulus */
|
||||
c->dp[b / DIGIT_BIT] &=
|
||||
(mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
|
||||
mp_clamp (c);
|
||||
return MP_OKAY;
|
||||
/* zero digits above the last digit of the modulus */
|
||||
x = (b / MP_DIGIT_BIT) + (((b % MP_DIGIT_BIT) == 0) ? 0 : 1);
|
||||
MP_ZERO_DIGITS(c->dp + x, c->used - x);
|
||||
|
||||
/* clear the digit that is not completely outside/inside the modulus */
|
||||
c->dp[b / MP_DIGIT_BIT] &=
|
||||
((mp_digit)1 << (mp_digit)(b % MP_DIGIT_BIT)) - (mp_digit)1;
|
||||
mp_clamp(c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_mod_2d.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,27 +1,10 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MOD_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
int
|
||||
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
|
||||
mp_err mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c)
|
||||
{
|
||||
return mp_div_d(a, b, NULL, c);
|
||||
return mp_div_d(a, b, NULL, c);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_mod_d.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,19 +1,7 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/*
|
||||
* shifts with subtractions when the result is greater than b.
|
||||
@@ -21,39 +9,36 @@
|
||||
* The method is slightly modified to shift B unconditionally upto just under
|
||||
* the leading bit of b. This saves alot of multiple precision shifting.
|
||||
*/
|
||||
int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
|
||||
mp_err mp_montgomery_calc_normalization(mp_int *a, const mp_int *b)
|
||||
{
|
||||
int x, bits, res;
|
||||
int x, bits;
|
||||
mp_err err;
|
||||
|
||||
/* how many bits of last digit does b use */
|
||||
bits = mp_count_bits (b) % DIGIT_BIT;
|
||||
/* how many bits of last digit does b use */
|
||||
bits = mp_count_bits(b) % MP_DIGIT_BIT;
|
||||
|
||||
if (b->used > 1) {
|
||||
if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
} else {
|
||||
mp_set(a, 1);
|
||||
bits = 1;
|
||||
}
|
||||
|
||||
|
||||
/* now compute C = A * B mod b */
|
||||
for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
|
||||
if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
if (mp_cmp_mag (a, b) != MP_LT) {
|
||||
if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
|
||||
return res;
|
||||
if (b->used > 1) {
|
||||
if ((err = mp_2expt(a, ((b->used - 1) * MP_DIGIT_BIT) + bits - 1)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
mp_set(a, 1uL);
|
||||
bits = 1;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
|
||||
/* now compute C = A * B mod b */
|
||||
for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) {
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (mp_cmp_mag(a, b) != MP_LT) {
|
||||
if ((err = s_mp_sub(a, b, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_montgomery_calc_normalization.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,118 +1,102 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
|
||||
int
|
||||
mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
|
||||
{
|
||||
int ix, res, digs;
|
||||
mp_digit mu;
|
||||
int ix, digs;
|
||||
mp_err err;
|
||||
mp_digit mu;
|
||||
|
||||
/* can the fast reduction [comba] method be used?
|
||||
*
|
||||
* Note that unlike in mul you're safely allowed *less*
|
||||
* than the available columns [255 per default] since carries
|
||||
* are fixed up in the inner loop.
|
||||
*/
|
||||
digs = n->used * 2 + 1;
|
||||
if ((digs < MP_WARRAY) &&
|
||||
n->used <
|
||||
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
return fast_mp_montgomery_reduce (x, n, rho);
|
||||
}
|
||||
/* can the fast reduction [comba] method be used?
|
||||
*
|
||||
* Note that unlike in mul you're safely allowed *less*
|
||||
* than the available columns [255 per default] since carries
|
||||
* are fixed up in the inner loop.
|
||||
*/
|
||||
digs = (n->used * 2) + 1;
|
||||
if ((digs < MP_WARRAY) &&
|
||||
(x->used <= MP_WARRAY) &&
|
||||
(n->used < MP_MAXFAST)) {
|
||||
return s_mp_montgomery_reduce_fast(x, n, rho);
|
||||
}
|
||||
|
||||
/* grow the input as required */
|
||||
if (x->alloc < digs) {
|
||||
if ((res = mp_grow (x, digs)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
x->used = digs;
|
||||
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * rho mod b
|
||||
*
|
||||
* The value of rho must be precalculated via
|
||||
* montgomery_setup() such that
|
||||
* it equals -1/n0 mod b this allows the
|
||||
* following inner loop to reduce the
|
||||
* input one digit at a time
|
||||
*/
|
||||
mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i */
|
||||
{
|
||||
register int iy;
|
||||
register mp_digit *tmpn, *tmpx, u;
|
||||
register mp_word r;
|
||||
|
||||
/* alias for digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* alias for the digits of x [the input] */
|
||||
tmpx = x->dp + ix;
|
||||
|
||||
/* set the carry to zero */
|
||||
u = 0;
|
||||
|
||||
/* Multiply and add in place */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
/* compute product and sum */
|
||||
r = ((mp_word)mu) * ((mp_word)*tmpn++) +
|
||||
((mp_word) u) + ((mp_word) * tmpx);
|
||||
|
||||
/* get carry */
|
||||
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
|
||||
|
||||
/* fix digit */
|
||||
*tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
|
||||
/* grow the input as required */
|
||||
if (x->alloc < digs) {
|
||||
if ((err = mp_grow(x, digs)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
/* At this point the ix'th digit of x should be zero */
|
||||
}
|
||||
x->used = digs;
|
||||
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * rho mod b
|
||||
*
|
||||
* The value of rho must be precalculated via
|
||||
* montgomery_setup() such that
|
||||
* it equals -1/n0 mod b this allows the
|
||||
* following inner loop to reduce the
|
||||
* input one digit at a time
|
||||
*/
|
||||
mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i */
|
||||
{
|
||||
int iy;
|
||||
mp_digit *tmpn, *tmpx, u;
|
||||
mp_word r;
|
||||
|
||||
/* alias for digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* alias for the digits of x [the input] */
|
||||
tmpx = x->dp + ix;
|
||||
|
||||
/* set the carry to zero */
|
||||
u = 0;
|
||||
|
||||
/* Multiply and add in place */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
/* compute product and sum */
|
||||
r = ((mp_word)mu * (mp_word)*tmpn++) +
|
||||
(mp_word)u + (mp_word)*tmpx;
|
||||
|
||||
/* get carry */
|
||||
u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);
|
||||
|
||||
/* fix digit */
|
||||
*tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
|
||||
}
|
||||
/* At this point the ix'th digit of x should be zero */
|
||||
|
||||
|
||||
/* propagate carries upwards as required*/
|
||||
while (u) {
|
||||
*tmpx += u;
|
||||
u = *tmpx >> DIGIT_BIT;
|
||||
*tmpx++ &= MP_MASK;
|
||||
/* propagate carries upwards as required*/
|
||||
while (u != 0u) {
|
||||
*tmpx += u;
|
||||
u = *tmpx >> MP_DIGIT_BIT;
|
||||
*tmpx++ &= MP_MASK;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* at this point the n.used'th least
|
||||
* significant digits of x are all zero
|
||||
* which means we can shift x to the
|
||||
* right by n.used digits and the
|
||||
* residue is unchanged.
|
||||
*/
|
||||
/* at this point the n.used'th least
|
||||
* significant digits of x are all zero
|
||||
* which means we can shift x to the
|
||||
* right by n.used digits and the
|
||||
* residue is unchanged.
|
||||
*/
|
||||
|
||||
/* x = x/b**n.used */
|
||||
mp_clamp(x);
|
||||
mp_rshd (x, n->used);
|
||||
/* x = x/b**n.used */
|
||||
mp_clamp(x);
|
||||
mp_rshd(x, n->used);
|
||||
|
||||
/* if x >= n then x = x - n */
|
||||
if (mp_cmp_mag (x, n) != MP_LT) {
|
||||
return s_mp_sub (x, n, x);
|
||||
}
|
||||
/* if x >= n then x = x - n */
|
||||
if (mp_cmp_mag(x, n) != MP_LT) {
|
||||
return s_mp_sub(x, n, x);
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_montgomery_reduce.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,59 +1,42 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* setups the montgomery reduction stuff */
|
||||
int
|
||||
mp_montgomery_setup (mp_int * n, mp_digit * rho)
|
||||
mp_err mp_montgomery_setup(const mp_int *n, mp_digit *rho)
|
||||
{
|
||||
mp_digit x, b;
|
||||
mp_digit x, b;
|
||||
|
||||
/* fast inversion mod 2**k
|
||||
*
|
||||
* Based on the fact that
|
||||
*
|
||||
* XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
||||
* => 2*X*A - X*X*A*A = 1
|
||||
* => 2*(1) - (1) = 1
|
||||
*/
|
||||
b = n->dp[0];
|
||||
/* fast inversion mod 2**k
|
||||
*
|
||||
* Based on the fact that
|
||||
*
|
||||
* XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
||||
* => 2*X*A - X*X*A*A = 1
|
||||
* => 2*(1) - (1) = 1
|
||||
*/
|
||||
b = n->dp[0];
|
||||
|
||||
if ((b & 1) == 0) {
|
||||
return MP_VAL;
|
||||
}
|
||||
if ((b & 1u) == 0u) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**8 */
|
||||
x = (((b + 2u) & 4u) << 1) + b; /* here x*a==1 mod 2**4 */
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**8 */
|
||||
#if !defined(MP_8BIT)
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**16 */
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**16 */
|
||||
#endif
|
||||
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**32 */
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**32 */
|
||||
#endif
|
||||
#ifdef MP_64BIT
|
||||
x *= 2 - b * x; /* here x*a==1 mod 2**64 */
|
||||
x *= 2u - (b * x); /* here x*a==1 mod 2**64 */
|
||||
#endif
|
||||
|
||||
/* rho = -1/m mod b */
|
||||
*rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
|
||||
/* rho = -1/m mod b */
|
||||
*rho = (mp_digit)(((mp_word)1 << (mp_word)MP_DIGIT_BIT) - x) & MP_MASK;
|
||||
|
||||
return MP_OKAY;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_montgomery_setup.c,v $ */
|
||||
/* $Revision: 1.5 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,66 +1,52 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MUL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* high level multiplication (handles sign) */
|
||||
int mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c)
|
||||
{
|
||||
int res, neg;
|
||||
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
mp_err err;
|
||||
int min_len = MP_MIN(a->used, b->used),
|
||||
max_len = MP_MAX(a->used, b->used),
|
||||
digs = a->used + b->used + 1;
|
||||
mp_sign neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
|
||||
|
||||
/* use Toom-Cook? */
|
||||
#ifdef BN_MP_TOOM_MUL_C
|
||||
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
|
||||
res = mp_toom_mul(a, b, c);
|
||||
} else
|
||||
#endif
|
||||
#ifdef BN_MP_KARATSUBA_MUL_C
|
||||
/* use Karatsuba? */
|
||||
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
||||
res = mp_karatsuba_mul (a, b, c);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
/* can we use the fast multiplier?
|
||||
*
|
||||
* The fast multiplier can be used if the output will
|
||||
* have less than MP_WARRAY digits and the number of
|
||||
* digits won't affect carry propagation
|
||||
*/
|
||||
int digs = a->used + b->used + 1;
|
||||
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
if ((digs < MP_WARRAY) &&
|
||||
MIN(a->used, b->used) <=
|
||||
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
||||
res = fast_s_mp_mul_digs (a, b, c, digs);
|
||||
} else
|
||||
#endif
|
||||
#ifdef BN_S_MP_MUL_DIGS_C
|
||||
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
|
||||
#else
|
||||
res = MP_VAL;
|
||||
#endif
|
||||
|
||||
}
|
||||
c->sign = (c->used > 0) ? neg : MP_ZPOS;
|
||||
return res;
|
||||
if (MP_HAS(S_MP_BALANCE_MUL) &&
|
||||
/* Check sizes. The smaller one needs to be larger than the Karatsuba cut-off.
|
||||
* The bigger one needs to be at least about one MP_KARATSUBA_MUL_CUTOFF bigger
|
||||
* to make some sense, but it depends on architecture, OS, position of the
|
||||
* stars... so YMMV.
|
||||
* Using it to cut the input into slices small enough for fast_s_mp_mul_digs
|
||||
* was actually slower on the author's machine, but YMMV.
|
||||
*/
|
||||
(min_len >= MP_KARATSUBA_MUL_CUTOFF) &&
|
||||
((max_len / 2) >= MP_KARATSUBA_MUL_CUTOFF) &&
|
||||
/* Not much effect was observed below a ratio of 1:2, but again: YMMV. */
|
||||
(max_len >= (2 * min_len))) {
|
||||
err = s_mp_balance_mul(a,b,c);
|
||||
} else if (MP_HAS(S_MP_TOOM_MUL) &&
|
||||
(min_len >= MP_TOOM_MUL_CUTOFF)) {
|
||||
err = s_mp_toom_mul(a, b, c);
|
||||
} else if (MP_HAS(S_MP_KARATSUBA_MUL) &&
|
||||
(min_len >= MP_KARATSUBA_MUL_CUTOFF)) {
|
||||
err = s_mp_karatsuba_mul(a, b, c);
|
||||
} else if (MP_HAS(S_MP_MUL_DIGS_FAST) &&
|
||||
/* can we use the fast multiplier?
|
||||
*
|
||||
* The fast multiplier can be used if the output will
|
||||
* have less than MP_WARRAY digits and the number of
|
||||
* digits won't affect carry propagation
|
||||
*/
|
||||
(digs < MP_WARRAY) &&
|
||||
(min_len <= MP_MAXFAST)) {
|
||||
err = s_mp_mul_digs_fast(a, b, c, digs);
|
||||
} else if (MP_HAS(S_MP_MUL_DIGS)) {
|
||||
err = s_mp_mul_digs(a, b, c, digs);
|
||||
} else {
|
||||
err = MP_VAL;
|
||||
}
|
||||
c->sign = (c->used > 0) ? neg : MP_ZPOS;
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_mul.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
@@ -1,82 +1,64 @@
|
||||
#include <tommath.h>
|
||||
#include "tommath_private.h"
|
||||
#ifdef BN_MP_MUL_2_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
|
||||
*/
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* b = a*2 */
|
||||
int mp_mul_2(mp_int * a, mp_int * b)
|
||||
mp_err mp_mul_2(const mp_int *a, mp_int *b)
|
||||
{
|
||||
int x, res, oldused;
|
||||
int x, oldused;
|
||||
mp_err err;
|
||||
|
||||
/* grow to accomodate result */
|
||||
if (b->alloc < a->used + 1) {
|
||||
if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
/* grow to accomodate result */
|
||||
if (b->alloc < (a->used + 1)) {
|
||||
if ((err = mp_grow(b, a->used + 1)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
oldused = b->used;
|
||||
b->used = a->used;
|
||||
|
||||
{
|
||||
register mp_digit r, rr, *tmpa, *tmpb;
|
||||
{
|
||||
mp_digit r, rr, *tmpa, *tmpb;
|
||||
|
||||
/* alias for source */
|
||||
tmpa = a->dp;
|
||||
/* alias for source */
|
||||
tmpa = a->dp;
|
||||
|
||||
/* alias for dest */
|
||||
tmpb = b->dp;
|
||||
/* alias for dest */
|
||||
tmpb = b->dp;
|
||||
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = 0; x < a->used; x++) {
|
||||
/* carry */
|
||||
r = 0;
|
||||
for (x = 0; x < a->used; x++) {
|
||||
|
||||
/* get what will be the *next* carry bit from the
|
||||
* MSB of the current digit
|
||||
/* get what will be the *next* carry bit from the
|
||||
* MSB of the current digit
|
||||
*/
|
||||
rr = *tmpa >> (mp_digit)(MP_DIGIT_BIT - 1);
|
||||
|
||||
/* now shift up this digit, add in the carry [from the previous] */
|
||||
*tmpb++ = ((*tmpa++ << 1uL) | r) & MP_MASK;
|
||||
|
||||
/* copy the carry that would be from the source
|
||||
* digit into the next iteration
|
||||
*/
|
||||
r = rr;
|
||||
}
|
||||
|
||||
/* new leading digit? */
|
||||
if (r != 0u) {
|
||||
/* add a MSB which is always 1 at this point */
|
||||
*tmpb = 1;
|
||||
++(b->used);
|
||||
}
|
||||
|
||||
/* now zero any excess digits on the destination
|
||||
* that we didn't write to
|
||||
*/
|
||||
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
||||
|
||||
/* now shift up this digit, add in the carry [from the previous] */
|
||||
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
||||
|
||||
/* copy the carry that would be from the source
|
||||
* digit into the next iteration
|
||||
*/
|
||||
r = rr;
|
||||
}
|
||||
|
||||
/* new leading digit? */
|
||||
if (r != 0) {
|
||||
/* add a MSB which is always 1 at this point */
|
||||
*tmpb = 1;
|
||||
++(b->used);
|
||||
}
|
||||
|
||||
/* now zero any excess digits on the destination
|
||||
* that we didn't write to
|
||||
*/
|
||||
tmpb = b->dp + b->used;
|
||||
for (x = b->used; x < oldused; x++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
MP_ZERO_DIGITS(b->dp + b->used, oldused - b->used);
|
||||
}
|
||||
b->sign = a->sign;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/bn_mp_mul_2.c,v $ */
|
||||
/* $Revision: 1.4 $ */
|
||||
/* $Date: 2006/12/28 01:25:13 $ */
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user